
1

Accurate FIT Rate Estimation Through High-Level
Software Fault Injection
Pablo R. Bodmann Daniel Oliveira Paolo Rech

Abstract—Reliability is today one of the major issues for
computing devices from the embedded domain up to large High-
Performance Systems. To safely deploy a computing device in
a system, accurate measurements of the FIT rate are required
to ensure that the device complies with the project reliability
requirements. In this work, we present a method to provide a
more accurate device FIT rate estimation from software fault
injection. We use the technology sensitivity factor, obtained from
beam experiments, as well as architectural and code features
to significantly increase the FIT rate estimation accuracy. We
compare the estimated FIT rates with the ones measured from
radiation experiments of eight codes executed on ARM Cortex-
A5 and Cortex-A9. We show that, on average, we can provide a
FIT rate estimation accuracy of less than 20% (overestimation)
and 35% (underestimation) the expected FIT rate for A5 and
A9, respectively.

Index Terms—reliability, soft errors, failures in time, neutron
beam, fault injection, FIT rate estimation

I. INTRODUCTION

Reliability is one of the most critical concerns from con-
sumer applications to the automotive, military, aerospace, and
High-Performance Computing (HPC) markets. Several fields
in which computation is critical, such as self-driving cars,
airplanes, or Unmanned Aerial Vehicles (UAVs), require high
reliability and unexpected errors should be strictly avoided [1].
Additionally, reliability has been listed as one of the top ten
challenges to reach exaFLOPS scale [2] as transient errors
lead to lower scientific productivity and significant monetary
loss [3].

The reliability of computing devices has been extensively
studied [4]–[7] and the Failure In Time (FIT) rate has been ac-
curately measured for several applications on modern devices.
While one can dramatically reduce the FIT rate of compo-
nents with radiation hardening techniques [8], such methods
require expensive radiation-hardened components with per-
formance and applicability limitations. On the other hand,
several computing products are available in the consumer

This paper was submitted for review on the 1st of October 2021. This
research has been supported in part by the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant
agreement No 886202 and from the Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior - Brazil (CAPES) - Finance Code 001. Neutron
beam time was provided by ChipIR (DOI: 10.5286/ISIS.E.RB2000161) thanks
to C. Cazzaniga, M. Kastriotou, and C. Frost.

Pablo R. Bodmann is a Ph.d. student at the Informatics Institute on
the Federal university of Rio Grande do Sul, Porto Alegre, Brazil (e-mail:
prjbodmann@inf.ufrgs.br).

Daniel Oliveira is a professor at the Department of Informatics on the
Federal University of Parana, Curitiba, Brazil (e-mail: @inf.ufrgs.br)

Paolo Rech is an assistant professor at the Industrial Engineering Depart-
ment of the University of Trento, Italy (email: paolo.rech@unitn.it) and an
associate professor at the Federal university of Rio Grande do Sul, Porto
Alegre, Brazil (email: prech@inf.ufrgs.br)

market offering efficiency and delivering high performance at
a very low cost. For automotive and HPC applications, for
instance, besides reliability, performances and costs are also
main constraints. Thus, Commercial-Off-The-Shelf (COTS)
computing solutions are very attractive for these applications.
The use of COTS devices is acceptable for high-reliability
applications as long as their FIT rate is accurately evaluated.
In cases where the FIT rate exceeds the reliability requirement,
some software-level or system-level hardening solutions can
still be applied to reduce the device error rate.

The three main strategies to evaluate hardware and software
reliability are field tests, radiation experiments, and high-level
software fault injection. Field testing is a very expensive and
time-consuming approach since a large number of devices
must be employed. Radiation experiments use accelerated
particles beam and are also expensive. However, beam testing
provides a realistic FIT rate requiring few devices and a rela-
tively short testing time. High-level software fault injection, in
contrast, is much more versatile and its cost can be negligible.
The two key advantages of software fault injection are speed
and a detailed code sensitivity analysis. The major drawback
of high-level software fault injection is the limitation to access
some hardware resources not available at the software level.
Then, fault injection cannot easily mimic natural phenomena,
like radiation experiments, making the FIT rate estimation a
challenging task.

Our main contribution with this paper is a methodology to
improve the accuracy of the FIT rate estimation obtained using
high-level software fault injection. Besides the software fault
injection results, we use the device’s technology sensitivity
factor, which is the device’s raw sensitivity to neutrons. We
use the Level 1 cache cross-section as representative for the
technology sensitivity factor. It is worth noting that, while this
factor needs to be measured with radiation experiments, as it
is a property of the device, the same value can be used for
all programs of interest for a specific device. The software
fault injection provides the probability of a fault propagating
to the output manifesting as an error. Then, with a combination
of architectural and code features, extracted with profiling
tools, we can estimate a much more accurate FIT rate for
a program executed on a given device. We evaluated eight
codes executed on two ARM devices, Cortex-A5 and Cortex-
A9. Our FIT rate estimation, on average, yields an accuracy
of 20% (overestimation) and 35% (underestimation) from the
FIT rate measured using beam experiments on the A5 and A9
respectively.

The rest of the paper is organized as follows. Section II
summarizes the background and reports the related work.
Section III presents a detailed description of the adopted



2

methodologies. In Section IV we discuss and compare the
results obtained with beam and fault injection, evaluating the
accuracy of FIT rate estimation. Finally, Section V draws
conclusions.

II. BACKGROUND AND RELATED WORK

In this section, we present background material and related
works on processors’ reliability and their assessment method-
ologies.

A. Radiation Effects in Electronic Devices

The Earth is constantly bombarded by high-energy par-
ticles coming from space. These particles interact with
Earth’s atmosphere and that interaction produces a flux of
several different particles, being mainly neutrons. About
13 neutrons/((cm2)× hour) reach the ground [9]. When a
neutron hits a transistor, the strike may perturb its state which
in turn generates bit-flips in memory, or produces current
spikes in logic circuits that, if latched, lead to an error [10].
A transient error may not affect the program output (i.e., the
fault is masked, or the corrupted data is not used) or may
be propagated through the stack of system layers leading to a
Silent Data Corruption (SDC - output is corrupted without any
indication), or Detected Unrecoverable Errors (DUEs), such
as a program crash (application hang) or a device turning not
responding or rebooting (system crash). The probability of an
error to occur in a code being executed on a microprocessor
depends on the memory/logic sensitivity [11], the probabilities
for the fault to be propagated through the hardware design (the
microarchitecture), and the program [12].

B. Reliability Evaluation Methodologies

There are several different ways to evaluate the reliability of
computing devices. The most commonly used are live or field
tests, beam experiments, and fault injection at different levels
of abstractions (software, microarchitecture, RTL). Table I lists
the main characteristics of these evaluation methodologies,
including the time and cost required to complete the study,
how many of the available resources can be accessed, if the
faults are realistic or synthetic (i.e., models chosen by the
user), if the study can be performed in the early stages of the
project or only on the final product, and how detailed is the
performed evaluation.

Field tests are done by exposing devices employed in
the field to the natural particles’ flux. The FIT rate can
be obtained using either a dedicated test-bench, as Xilinx’s
Rosetta project [13], or data coming from user devices or
production machines, as supercomputers [14]. While field tests
can provide the most accurate error rate, they are extremely ex-
pensive because a huge number of devices must be employed
to have sufficient data and are very time-consuming, since the
natural error rate is very low.

Accelerated particles beams can help to reduce the cost
and time of tests by taking advantage of a much higher
particles flux intensity, while still mimicking the neutron
energy spectra [11], [15]. While the measured error rate

is very realistic, unfortunately, beam experiments have two
limitations: (1) faults can be observed only when they have
already compromised the system functionality, making it very
challenging to identify the most vulnerable parts of the system.
(2) Experiments can be performed only in special facilities that
house particle accelerators.

Fault-injection is another approach to evaluate the reliability
of a device. Faults are injected by the user at different levels
of abstractions: from Register-Transfer Level (RTL) [16] to
microarchitecture [17] and software [18]. By injecting faults in
the accessible resources of each level’s model (gates, registers,
hardware arrays, variables, instructions, etc.) it is possible to
measure the probability for a fault to propagate at the output
of an application. Fault-injection has two main limitations: (1)
the fault model and fault injection probabilities are synthetic
(i.e., defined/modeled by the user and/or the simulator), thus
the obtained results risk being unrealistic, and (2) faults can
be injected only in that subset of available resources that are
accessible. Typically, RTL fault injection can, in principle,
access any gate or storage element but it is, unfortunately,
prohibitively slow to allow large programs reliability analysis;
Microarchitecture was demonstrated to be very accurate when
compared to beam [4]. However, this type of injection can only
be made with a microarchitectural description of the target
CPU. Software fault injection is fast but can access only a
very limited set of resources (the ones accessible by the user).

To overcome the software fault injection limitations, we in-
clude software and hardware features such as variable lifetime
and cache sizes. We show that we can significantly improve the
error rate estimation by systematically combining the features
insights with fault injection results. A developer could use
these easily obtainable metrics and tools to have an early
estimation of the FIT rate. A timely and sufficiently accurate
FIT rate estimation can then be helpful in tuning the system
under development. Given the technology sensitivity of the
hardware, the strategy we propose can replace costly and time-
consuming beam testing for a preliminary investigation of the
system error rate. This, potentially, can diminish the test cost
and time-to-market.

C. Related Work

ARM Cortex-A9 processors have been exposed to acceler-
ated particles beam and have been subject to fault injection
in previous studies [19]. [20] and [21] present results on
architecture-level fault injection of the processor core, while
[22] includes a microarchitecture-level fault injection on A9.
[23] presents a comparative reliability evaluation between mi-
croarchitecture and RTL fault injection, for bare-metal work-
loads running on Cortex-A9, while [17] also includes results of
RTL fault injection on ARM CPU cores. Also, [4] compares
both microarchitecture fault injection and beam experiments
and shows that FIT estimation using microarchitecture is very
close to the beam.

Some work has been done to evaluate the influence of an
OS on the reliability of code executions [19]. It is shown that
the OS can be beneficial in the presence of cache conflicts.
However, these papers do not perform fault injection, as we do



3

TABLE I
RELIABILITY EVALUATION METHODOLOGIES CHARACTERISTICS.

Evaluation Method Time Needed Cost Accessible Resources Fault Model Availability Observability
Field/Life months/years very high all realistic final product limited

Beam hours high all realistic final product limited
SW Fault-Injection hours low limited synthetic final product medium
RTL Fault-Injection months low all synthetic early very high

in this paper, but are just based on beam experiments, which
might limit the insights that can be gathered.

Finally, in this work, we combine and compare the relia-
bility evaluation performed using beam experiments and with
statistical fault injection on top of software fault injection. This
gives the programmer a powerful tool for estimating the final
FIT rate.

III. METHODOLOGY

In this section, we describe the devices under test, the codes
we use, the radiation experiment, and fault-injection setups.
Finally, we present the methodology to estimate the error rate
from the software fault injection results.

A. Codes and Devices Under Test

Both beam experiment and fault injection campaigns are
performed on an ARM®CortexTM-A5 implemented in a 65nm
CMOS technology in the Microchip SAMA5D2 XPLAINED
ULTRA board and on the ARM®CortexTM-A9 that is embed-
ded in a Xilinx ZynqTM-7000 SoC implemented in a 28nm
CMOS technology. The two ARM CPUs have significantly
different microarchitectures: the A5 is an in-order CPU while
the A9 is an out-of-order. The silicon chips also differ: the
Microchip features a stand-alone A5 while the Xilinx features
an A9 integrated on an SoC. The SAMA5D2 device has a
single-core operating at a maximum frequency of 500MHz
and the Zynq SoC has two ARM A9 cores operating at 667
MHz and an FPGA (not used in our tests). Each core has 32
KB instruction and data caches and a unified Level 2 cache
which is 128kB in the A5 and 512kB in the A9.

We have chosen codes with different computational charac-
teristics from the mibench [24] benchmarks suite. The chosen
codes are CRC32, FFT, Matrix Multiplication (128x128 and
400x400), Qsort, and Susan C, E, and S (used in image
processing). For each code, we use the very same input (size
and value) for both beam experiment and fault injection.

B. Neutron Beam Experiments

Radiation experiments were performed at the ChipIR facility
of the Rutherford Appleton Laboratory (RAL) in Didcot, UK.
ChipIR delivers a neutron beam suitable to mimic the atmo-
spheric neutron effects in electronic devices [25], allowing to
measure the Failures In Time (FIT) rate of the device executing
a code.

Figure 1 shows part of our setup at ChipIR. We irradiate
two Xilinx Zedboards and three Microchip boards with a
3 × 3 cm beam spot, which is sufficient to irradiate the chip
uniformly without affecting the main memory or other onboard
peripherals (data in the DDR is not exposed to the beam).

Fig. 1. Part of the beam test setup at ChipIR.

The available neutron flux was about 3.5× 106n/(cm2/s).
We have carefully designed the experiments not to have

more than a single corruption during a program execution
(observed error rates were lower than 1 error per 1,000
executions).

Each of the 16 configurations (8 codes per device) was
tested for at least 100 effective hours (i.e., not considering
setup, initialization, and recovery from crash times). The 1,600
hours of the test, when scaled to the natural exposure, account
for more than 10 million years.

C. Software Fault Injection

We chose CAROL-FI [15] to inject faults at the software
level, measuring the Program Vulnerability Factor (PVF) [26].
PVF is the probability of an injected fault generating an SDC
or Crash). We inject faults using the CAROL FI random fault
model, overwriting every bit of a variable by a random bit.
As the fault is generated at a high level, we are considering
transient faults that, by propagating from the hardware level,
change the value of a memory location.

This choice is dictated by the fact that we intend to
simulate also the effect of faults in the instructions that update
the variables in which the fault is injected, not just errors
in the memory location storing the variable (for which a
single/double bit flip suffice). This methodology has already
been demonstrated to be accurate in simulating transient faults
in parallel applications [15].

CAROL-FI allows also to isolate the PVF contribution of
each variable. We use these features to refine the error rate
prediction, as shown in the next subsection.

D. Cross Section Estimation

The error rate of a code executed on a device depends on
several factors. The principal ones are (1) the probability for



4

a fault to occur in the hardware (the technology cross-section)
and (2) the amount of resources actually used for computation,
and (3) the probability for the fault to affect the software and
reach the output (the PVF).

We have experimentally measured the per bit cross-section
of the L1 cache on the A5 and the A9 to be 1.82×10−14cm2

and 1.99 × 10−15cm2, respectively. We use these values as
representative of the technology sensitivity of the two devices.
We choose the L1 cache as it is one of the most critical re-
sources in ARM devices [4]. It is worth noting that caches can
be protected with error correction or detection codes. Then,
deriving the factor from protected caches may underestimate
the fault rate of unprotected memory cells (e.g., register banks
and buffers inside the chip). On the other hand, caches may
have the highest bit cross-section, leading to overestimation
for the remainder chip components.

Software fault injection provides the probability for a fault
in a variable to affect the computation. However, to predict the
error rate of the code, we still need to estimate the probability
for the variable memory space to be alive and exposed to
neutrons. We use the following performance and architectural
metrics to adjust the fault injection prediction:

• Size
The PVF of each injected variable is multiplied by its
size to consider the memory area (a larger area implies a
higher probability for the variable to be corrupted).

• Lifetime
The bluepercentage of time that the variable is alive
during the program execution. We adjust the PVF for
each variable by multiplying it by the variable’s lifetime.

• Cache size
We consider data in the main memory to be fault-free
since most DDR chips include ECC. In our experiment,
we carefully leave DDR out of the beam spot. Thus,
only data in the caches can be corrupted. If the data
required by a code exceeds the cache size, then some
variables must be evicted and stored in the DDR, where
they are protected. To take this effect into account, we
introduce the fcache factor. We consider the total size of
the m variables that are alive at the same time during
code execution (this is a snapshot of the data currently
being used). If this value is larger than the size of the L2
cache, we know that some variables are evicted. We then
divide the L2 cache size by the sum of the variable’s total
size, resulting in a normalization factor that considers the
probability for a variable to be in the cache, that we call
fcache. This factor is lower than one since a variable may
be evicted during its lifetime. If all variables fits in the
cache, then fcache = 1.

fcachei =

{
(L2size/

∑m
j=1 sizej), if

∑m
j=1 sizej > L2size

1, otherwise

• IPC
Superscalar devices may use additional hardware to im-
prove performances (i.e., more than one operation is
being executed). We use the Instructions Per Cycle (IPC)
metric to take into account the computational efficiency

(how many variables are being processed). Higher IPC
means that more variables are being updated.

We considered four error rate estimations applying incre-
mentally each factor described above. As a first evaluation,
Estimation 1, we estimate the cross section of a code (σcode)
that has n variables by multiplying the cache per bit cross
section (σtech) with the number of bit of variable i (sizei)
and its PV Fi (measured with fault injection):

σcode =

n∑
i=1

σtech × PV Fi × sizei (1)

Then, to have a more accurate estimation, Estimation 2,
we also consider the life time of variables (LTi):

σcode =

n∑
i=1

σtech × PV Fi × sizei × LTi (2)

To take variables eviction from caches into account, we
introduce the cache factor (fcachei ). The third cross section
estimation, Estimation 3, then becomes:

σcode =

n∑
i=1

σtech × PV Fi × sizei × fcachei × LTi (3)

Finally, to consider the computational efficiency we multiply
the estimation from Eq. 3 by the code’s Instructions Per Cycle,
Estimation 4:

σcode = IPC × Equation 3 (4)

It is worth noting that all metrics are easily measured
by profiling or debugging the program, which requires a
negligible time to compute. For this work, we use GDB, Gprof,
and perf tool. The cache size is obtained from the device’s
specification. Using the estimated cross-section and the real
neutron flux of NYC, we calculate the FIT rate.

IV. RESULTS AND DISCUSSION

In this section, we first present the software fault injection
and beam experiment results. Then, we compare the code sen-
sitivity ranking for the beam test and software fault injection
(i.e., ordering the codes from the most sensitive to the least
one). A similar ranking across fault injection methodologies
indicates that a relative comparison between codes is feasible,
identifying which codes will perform better. We also quantify
how the FIT rate obtained from software fault injection is
similar to the one from beam experiments. We show that
some architectural and code features, such as cache size and
variables lifetime, greatly improve the accuracy of FIT rate
estimation.

A. High-Level Fault Injection and Beam Experiments Results

Figure 2 and Figure 3 show the PVF measured with high-
level fault injection and the FIT rate measured with Beam
experiments respectively.

The PVF is the probability for the fault to propagate to the
output. Thus, the PVF assumes that the fault has occurred and



5

PVF (%) PVF (%)

M
xM

M
xM

M
xM M

xM

Fig. 2. Program Vulnerability Factor measured with high-level fault injection. The PVF assumes that the fault has occurred and tracks its propagation to the
output. A higher PVF indicates that it is more likely for the fault to propagate to the output.

C
R
C
32

FF
T

M
xM

 1
28

M
xm

 4
00

 

Q
so

rt

S
us

an
_c

 

S
us

an
_e

 

S
us

an
_s

 

A
ve

ra
ge

10
-1

10
0

10
1

10
2

10
3

10
4

A5

SDC AppCrash

A9

SDC AppCrash

1
.3
7
·1
0
1

7
.8
5
·1
0
0

7
.8
9
·1
0
1

2
.1
7
·1
0
0

1
.1
8
·1
0
2

1
.7
2
·1
0
0

5
.3
9
·1
0
1

1
.1
1
·1
0
0

9
.0
7
·1
0
1

3
.4
2
·1
0
0

1
.1
6
·1
0
1

1
.8
7
·1
0
1

3
.7
6
·1
0
0

1
.5
3
·1
0
0

8
.4
4
·1
0
1

2
.5
2
·1
0
0

5
.8
7
·1
0
1

3
.0
1
·1
0
0

7
.0
2
·1
0
0

7
.3
6
·1
0
0

4
.3
0
·1
0
0

1
.6
5
·1
0
0

2
.8
0
·1
0
1

1
.1
5
·1
0
1

1
.8
1
·1
0
2

1
.9
5
·1
0
2

1
.2
6
·1
0
2

1
.7
6
·1
0
2

1
.1
5
·1
0
2

7
.3
6
·1
0
1

5
.2
5
·1
0
1

3
.4
2
·1
0
0

3
.5
0
·1
0
0

1
.1
8
·1
0
1

5
.1
0
·1
0
1

7
.3
7
·1
0
1

C
R
C
32

FF
T

M
xM

 1
28

M
xm

 4
00

Q
so

rt

S
us

an
_c

S
us

an
_e

S
us

an
_s

A
ve

ra
ge

FIT

10
-1

10
0

10
1

10
2

10
3

10
4

FIT

Fig. 3. FIT rates values measured with beam experiments. The FIT rates encloses all reliability factors, from the technology sensitivity to the amount of
resources used for computation and the probability for the fault to propagate (i.e., the PVF).

indicates how likely it is to affect the computation. The PVF
gives no indication about neither the raw device sensitivity
nor the amount of resources used for computation. Looking
at Figure 2, it can be seen that most of the faults injected
are masked, i. e., do not result in either a SDC or a crash.
This can be explained by the fact that the variables are either
overwritten after the injection, are not going to be used for
reaching the result, or are logically masked downstream (e.g.,
multiplied by zero). Also, it is interesting to note that, for
most benchmarks, the crash PVF is smaller than the SDC PVF.
Additionally, there is a significant difference between the PVF
of the various codes, but the PVF for a single code on both
devices is practically identical. Fault injection evaluates mostly
the code, which is generated using the same algorithm and
compiler for both devices with small variations due to the
micro-architecture. Thus, it is expected that similar codes with
the same input data will produce similar PVF results.

The FIT rate, shown in Figure 3, is the number of errors

expected in 109 hours of operation. Given the beam energy
spectrum characteristics, we can estimate the error of the
device in a realistic application rate by multiplying the ex-
perimental cross-section with the neutron flux at NYC (i.e.,
13 neutrons per cm2 per hour) [9]. SDCs are detected by
comparing the code output of the irradiated device with the
expected golden output obtained executing that code before
irradiation. A mismatch is marked as SDC. An Application
Crash occurs when the code finishes with an error or hangs
for longer than double the normal execution time.

Since the whole chip is irradiated, the FIT rate considers all
the variables that affect the sensitivity of the device executing
a code, including the code PVF. Nevertheless, as errors are
observed only at the output, it is not possible, with beam
experiments alone, to identify the variable that has the most
impact on the code FIT rate. When analyzing the result for the
beam experiments, it can be observed that the average SDC
rates are very similar for the two devices (the average SDC



6

rate difference between the A5 and A9 is 13%). Interestingly,
the average Appcrash rate is at least one order of magnitude
higher on the A9. This is expected since the A9 is bigger and
more complex (out-of-order and with a four times larger L2
cache) than the A5, so it is likely to have a higher probability
of being hit by a neutron. Moreover, in contrast to the fault
injection PVF, the most sensitive code for one device is not
the same for another one. The FIT rate takes into account the
algorithm as well as more features than fault injection, such
as components inaccessible to software and device utilization.
Thus, the FIT rate of the same algorithm and input data can
significantly change among devices.

B. SDC Code Sensitivity Ranking

To have a first evaluation of the difference between beam ex-
periments and software fault injection we present the ranking
of codes, based on their SDC sensitivity, measured with beam
experiments and predicted through software fault injection
(using the estimation methods with variable size, lifetime,
cache utilization and IPC, described in Section III-D). We want
to understand if software fault injection is able to identify the
code with the highest error rate.

Table II and III rank the codes from the most sensitive to
the least one with respect to the SDC FIT rate. This gives
us a comparison of sensitivity for each code. It is expected
that a code should be as sensitive in the beam as on the
fault injection. The first column presents the ranking from
the beam experiments, which is the ranking expected in a
real environment. The four next columns depict the ranking
considering the software fault injection’s FIT rate multiplied
incrementally by the factors described in section III-D.

The sensitivity ranking for beam experiments shows Qsort
as a highly sensitive code for both devices, which is expected
since bit-flip masking is less probable for an in-place sorting
algorithm. On the other hand, CRC32 is among the least
sensitive for both devices. CRC32 uses fewer resources in both
devices, processing a large input sequentially. Furthermore,
MxM 128 is more sensitive than MxM 400, indicating that a
larger input decreases the probability for a bit-flip to propagate
to the output, due to the input being outside the caches which
are more sensitive than the main memory. The Susan s reports
the highest sensitivity among the Susan family of codes in
both devices. However, the least sensitive for the Susan codes
changes for both devices with the corner detection as the least
sensitive for A5, and the edge detector for the A9. Detecting
corners and edges is very similar, thus, the complexity of each
device and the machine code generated can be a decisive factor
for the sensitivity ranking.

The software fault injection can identify Qsort as one of
the most sensitive codes for both devices, regardless of the
factors multiplying the FIT rate estimation. CRC32 is also
identified as one of the least sensitive ones. However, the
ranking for MxM and Susan versions are incorrect in both
devices for the first factors multiplying the FIT rate estimation.
For A5, shown in Table II, the size and lifetime factor
are insufficient to explain the sensitivity behavior in beam
experiments. However, including a third factor, cache size, is

sufficient to obtain a very similar ranking. On the other hand,
the IPC factor could not improve the estimation, indicating
that the IPC factor may depend on the hardware in which the
application is executed.

For the A9 device, in contrast to A5, software fault injection
is unable to obtain a very similar ranking to the beam one,
mostly due to the MxM codes. However, aside from MxM,
the A9 obtain a similar ranking after including three factors
(i.e., size, lifetime, and cache size), especially considering the
most and least sensitive ones. The A9 is a more complex
device capable of superscalar out-of-order execution. Then,
a more fine analysis, to compensate for the limitations of
software fault injection, is required to explain more precisely
the behavior in the beam experiments. The IPC factor does not
affect the ranking. However, as we will see in the next section,
IPC improves the estimation for A9 as an adequate factor to
take into account the extra sensitive area of superscalar cores.

C. High-Level Fault Injection and Beam Experiments Com-
parison

Figure 4 presents a comparison between the SDC FIT rate
directly measured from beam experiments and the SDC FIT
rate estimated from the software fault injection’s PVF, as
detailed in Section III-D.

The baron the right show the average FIT for all codes. It
is worth note that we inject more then 2, 000 faults in each
code, and the error bars are at most 5% for a 95% confidence
level. The only exception is CRC32 on the A9 with a error
bar interval of 12%.

The naive FIT rate estimation is computed by multiplying
the PVF by the technology factor, then we show the FIT
rate estimation multiplied incrementally by the four different
factors detailed in Section III-D. The blue bars show the FIT
rate estimation using the first factor only, the red bars use the
first two factors, the yellow bars multiply by the first three-
factor, and finally, the green bars use all four factors. The cyan
bar is the FIT rate measured with beam experiments.

The first two methods for FIT rate estimation yield, on
average, a poor accuracy for both devices. Including the cache
size factor, the results improve significantly and reduce about
two to three times the difference from the expected FIT rate.
Thus, the cache size, limiting the number of variables in such
a sensitive area, must be considered to achieve reasonable
accuracy. It is worth noting that most of the errors occur in
the caches, especially in the L2 [4].

Furthermore, for out-of-order superscalar cores such as the
A9 cores, the IPC metric is necessary to consider how much
of the extra hardware components are utilized for computation
(i.e., instruction and thread-level parallelism). Thus, the IPC
hints at the size of the sensitive chip area the code utilizes and
may improve the FIT rate estimation accuracy. However, IPC
is useful only if the code is compute-intensive and excites
the device. As shown in Figure 4, for Matmul the use of
IPC improves the FIT prediction accuracy, but, on average, it
actually deteriorates the A9 results. This means that a specific
set of features should be carefully chosen for a certain class
of algorithms and devices to obtain the most accurate results.



7

CRC32 FFT Matmul 128 Matmul 400 Qsort Susan_c Susan_e Susan_s Average
1.00·10⁰

1.00·10¹

1.00·10²

1.00·10³

1
.3
7
·1
0
¹

7
.8
9
·1
0
¹

1
.1
8
·1
0
²

5
.3
9
·1
0
¹

9
.0
7
·1
0
¹

1
.1
6
·1
0
¹

1
.8
7
·1
0
¹

8
.4
4
·1
0
¹

5
.8
7
·1
0
¹

1
.9
4
·1
0
⁰

3
.3
1
·1
0
²

2
.3
·1
0
²

3
.0
5
·1
0
²

1
.3
7
·1
0
³

9
.2
2
·1
0
²

1
.1
9
·1
0
³

5
.8
9
·1
0
²

6
.2
0
·1
0
²

1
.9
4
·1
0
⁰

9
.9
4
·1
0
¹

2
.3
·1
0
²

3
.0
2
·1
0
²

1
.3
7
·1
0
³

8
.8
5
·1
0
²

3
.0
2
·1
0
²

2
.6
6
·1
0
²

4
.3
3
·1
0
²

1
.9
4
·1
0
⁰

2
.4
8
·1
0
¹

2
.3
·1
0
²

3
.0
9
·1
0
¹

1
.7
9
·1
0
²

2
.1
3
·1
0
¹

2
.1
4
·1
0
¹ 5
.6
7
·1
0
¹

7
.1
6
·1
0
¹

1
.3
4
·1
0
⁰

1
.0
8
·1
0
¹

4
.5
6
·1
0
¹

8
.3
6
·1
0
⁰

7
.4
1
·1
0
¹

1
.5
1
·1
0
¹

1
.7
9
·1
0
¹ 4
.2
6
·1
0
¹

2
.7
0
·1
0
¹

A5

Beam

Estimation 1

Estimation 2

Estimation 3

Estimation 4

FIT

CRC32 FFT Matmul 128 Matmul 400 Qsort Susan_c Susan_e Susan_s Average
1.00·10⁻¹

1.00·10⁰

1.00·10¹

1.00·10²

1.00·10³

7
.0
2
·1
0
⁰ 2
.8
0
·1
0
¹

4
.3
0
·1
0
⁰

1
.6
5
·1
0
⁰

1
.2
6
·1
0
²

7
.3
6
·1
0
¹

5
.2
5
·1
0
¹

1
.1
5
·1
0
²

5
.1
0
·1
0
¹

2
.1
2
·1
0
⁻¹

3
.8
8
·1
0
¹

2
.6
4
·1
0
¹

2
.5
7
·1
0
²

1
.6
·1
0
²

9
.2
3
·1
0
¹

8
.2
4
·1
0
¹

5
.0
4
·1
0
¹

8
.8
7
·1
0
¹

2
.1
2
·1
0
⁻¹

1
.1
2
·1
0
¹

2
.6
4
·1
0
¹

2
.5
7
·1
0
²

1
.6
1
·1
0
²

7
.3
0
·1
0
¹

1
.5
1
·1
0
¹

3
.4
7
·1
0
¹

7
.2
5
·1
0
¹

2
.1
2
·1
0
⁻¹

1
.1
2
·1
0
¹

2
.6
4
·1
0
¹

7
.0
3
·1
0
¹

8
.4
6
·1
0
¹

7
.3
0
·1
0
¹

5
.1
8
·1
0
⁰

2
.9
6
·1
0
¹

3
.7
6
·1
0
¹

2
.3
5
·1
0
⁻¹

6
.8
1
·1
0
⁰

1
.2
8
·1
0
¹

3
.6
2
·1
0
¹

6
.3
6
·1
0
¹

7
.8
3
·1
0
¹

5
.9
8
·1
0
⁰

2
.7
3
·1
0
¹

2
.8
9
·1
0
¹

A9

Beam

Estimation 1

Estimation 2

Estimation 3

Estimation 4

FIT

Fig. 4. Comparison of SDC FIT rate measured by beam experiments and estimated by software fault injection. The estimation methodology is detailed in
Section III-D.

The CRC32 code shows a slight improvement of the FIT
rate estimation accuracy on the A9 as we include factors, in
contrast to other codes. CRC32 is a simple code reading a
file char by char and is mostly unaffected by the four factors
used in this work. Moreover, the file contents are stored in the
operating system buffers. Then, due to the limitations of the
software fault injection that is unable to access data outside
of the executing program, we cannot inject faults in the file
contents.

D. Discussion

Our analysis shows that we can improve the accuracy of
the FIT rate estimation of an application using software fault
injection with a combination of architectural and code features.

The first factor, the size of a variable, is not sufficient to
improve significantly the FIT rate estimation. The software

fault injection provides the probability of a fault propagating
to the output of the application. However, the probability of
corruption and data size, due to the hardware organization and
complexity, is unable to explain how much data are susceptible
to corruption (i.e., how much data are loaded to sensitive
hardware components such as caches). Thus, features taken
from the memory hierarchy and variable lifetime, for instance,
are required to further improve the estimation accuracy.

Moreover, most of the features chosen in this work proved to
significantly improve the accuracy of FIT rate estimation. The
best estimation, on average, is estimation 3 for both devices,
which is 20% (overestimation) accurate for A5 and 35%
(underestimation) for A9. This result indicates that code and
architectural features can indeed be used to better understand
the reliability of software, improving the FIT rate estimation.
Unfortunately, a generic model composed of the same set



8

TABLE II
A5 CODE SENSITIVITY RANKING, FROM THE MOST SENSITIVITY TO THE LEAST ONE. THE FIRST COLUMN IS THE EXPECTED RANKING MEASURED FROM

BEAM TEST, AND THE FOLLOWING COLUMNS SHOW THE RANKING FROM THE FOUR DIFFERENT ESTIMATIONS DETAILED IN SECTION III-D

Expected (Beam Test) FIT (Beam Test) Estimation 1 Estimation 2 Estimation 3 Estimation 4
MxM 128 1.18 · 102 Qsort Qsort MxM 128 Qsort

Qsort 9.07 · 101 Susan e Susan c Qsort MxM 128
Susan s 8.44 · 101 Susan c MxM 400 Susan s Susan s

FFT 7.89 · 101 Susan s Susan e MxM 400 Susan e
MxM 400 5.39 · 101 FFT Susan s FFT Susan c
Susan e 1.87 · 101 MxM 400 MxM 128 Susan e FFT
CRC32 1.37 · 101 MxM 128 FFT Susan c MxM 400
Susan c 1.16 · 101 CRC32 CRC32 CRC32 CRC32

TABLE III
A9 CODE SENSITIVITY RANKING, FROM THE MOST SENSITIVITY TO THE LEAST ONE. THE FIRST COLUMN IS THE EXPECTED RANKING MEASURED FROM

BEAM TEST, AND THE FOLLOWING COLUMNS SHOW THE RANKING FROM THE FOUR DIFFERENT ESTIMATIONS DETAILED IN SECTION III-D

Expected (Beam Test) FIT (Beam Test) Estimation 1 Estimation 2 Estimation 3 Estimation 4
Qsort 1.26 · 102 MxM 400 MxM 400 Qsort Susan c

Susan s 1.15 · 102 Qsort Qsort Susan c Qsort
Susan c 7.36 · 101 Susan c Susan c MxM 400 MxM 400
Susan e 5.25 · 101 Susan e Susan s Susan s Susan s

FFT 2.80 · 101 Susan s MxM 128 MxM 128 MxM 128
CRC32 7.02 · 100 FFT Susan e FFT FFT

MxM 128 4.30 · 100 MxM 128 FFT Susan e Susan e
MxM 400 1.65 · 100 CRC32 CRC32 CRC32 CRC32

of features for every architecture and code may not lead to
suitable SDC FIT rate estimation. However, one may infer
the best correction (i.e., set of features) for a target code by
correlating it to a set of metrics that best reflect its behavior.
For instance, one can classify the code into parallel or se-
quential (IPC), compute-intensive or memory-intensive (Cache
utilization and variables lifetime), structured or unstructured
data, and so forth. Further work is needed to explore additional
possible features and to improve overall estimation, especially
for more complex architectures such as A9.

Finally, we also studied the crash FIT rates applying the
same methodology for SDCs, detailed in section III-D. The
average accuracy of crash FIT rate estimation is about 3 to
6 orders of magnitude different for A5 and A9 respectively.
Crashes, as pointed by other works [15], are mostly caused
by faults in components not available to user-level software
and are less dependent on which application is executing.
Thus, while we can perform software fault injections in critical
components for SDC events, we cannot do the same for crash
events, nor derive insightful features to improve accuracy.

V. CONCLUSIONS

In this work, we have performed an extensive reliability
evaluation of eight codes executed in two widely used ARM
microprocessors, Cortex-A5 and Cortex-A9. We estimate the
FIT rate using high-level software fault injection with a com-
bination of architectural and code features. Then, we compare
with expected FIT rates obtained from radiation experiments.

We show an average SDC FIT using the best estimation dif-
fers 20% overestimation on the A5 and 35% underestimation
for the A9.

To improve the estimation accuracy we use four features for
A5 and A9.

One can improve even further the accuracy using different
features that may explain better the application behavior and
the actual use of underlying hardware. Unfortunately, Crash
rates are more challenging to estimate since crashes are mostly
caused by components of the hardware which cannot be
accessed by software.

Finally, this estimation method is much more accessible
than radiation experiments and field tests, providing an in-
expensive, fast, and more accurate FIT rate estimation. Once
the device’s technology factor is measured, which requires
radiation experiments, one can readily estimate the FIT rate
of several applications without the use of special facilities or
extra hardware.

REFERENCES

[1] Road vehicles — Functional safety, ISO 26 262, 2015.
[2] R. Lucas, “Top ten exascale research challenges,” Tech. Rep., February

2014. [Online]. Available: https://www.osti.gov/biblio/1222713
[3] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,

P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. A. Debardeleben, P. C. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyf-
fer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, and E. V.
Hensbergen, “Addressing failures in exascale computing,” International
Journal of High Performance Computing Application, vol. 28, no. 2, p.
129–173, May 2014.

[4] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopoulos, and
P. Rech, “Demystifying soft error assessment strategies on arm cpus:
Microarchitectural fault injection vs. neutron beam experiments,” in 49th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, June 2019, pp. 26–38.

[5] A. Vallero, S. Tselonis, D. Gizopoulos, and S. Di Carlo, “Multi-faceted
microarchitecture level reliability characterization for nvidia and amd
gpus,” in Proceedings of the IEEE 36th VLSI Test Symposium, San
Francisco, CA, USA, April 2018, pp. 186–191.

[6] F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, June 2019.



9

[7] D. Oliveira, L. Pilla, M. Hanzich, V. Fratin, F. Fernandes, C. Lunardi,
J. Cela, P. Navaux, L. Carro, and P. Rech, “Radiation-Induced Error
Criticality in Modern HPC Parallel Accelerators,” in Proceedings of
the IEEE International Symposium on High Performance Computer
Architecture, February 2017, pp. 577–588.

[8] J. Ziegler and H. Puchner, SER–history, Trends and Challenges: A
Guide for Designing with Memory ICs. Cypress, 2004. [Online].
Available: https://books.google.com.br/books?id=I 9tGwAACAAJ

[9] C. Slayman, “Jedec standards on measurement and reporting of
alpha particle and terrestrial cosmic ray induced soft errors,” in
Soft Errors in Modern Electronic Systems. Boston, MA, USA:
Springer US, 2011, vol. 41, ch. 3, pp. 55–76. [Online]. Available:
https://doi.org/10.1007/978-1-4419-6993-4 3

[10] N. Mahatme, T. Jagannathan, L. Massengill, B. Bhuva, S.-J. Wen, and
R. Wong, “Comparison of Combinational and Sequential Error Rates for
a Deep Submicron Process,” Transactions on Nuclear Science, vol. 58,
no. 6, pp. 2719–2725, December 2011.

[11] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” IEEE Transactions on Device and Materials Reliability,
vol. 5, no. 3, pp. 305–316, September 2005.

[12] V. Sridharan and D. R. Kaeli, “Using hardware vulnerability factors to
enhance AVF analysis,” in Proceedings of the 37th annual international
symposium on Computer architecture, New York, NY, USA, 2010, pp.
461–472.

[13] A. Lesea, S. Drimer, J. J. Fabula, C. Carmichael, and P. Alfke, “The
rosetta experiment: atmospheric soft error rate testing in differing tech-
nology fpgas,” IEEE Transactions on Device and Materials Reliability,
vol. 5, no. 3, pp. 317–328, September 2005.

[14] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory errors in modern systems:
The good, the bad, and the ugly,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, New York, NY, USA, 2015, p.
297–310.

[15] D. Oliveira, L. Pilla, N. DeBardeleben, S. Blanchard, H. Quinn, I. Koren,
P. Navaux, and P. Rech, “Experimental and analytical study of xeon
phi reliability,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, New York,
NY, USA, 2017, Art. No. 28, pp. 1–12.

[16] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-level impact analysis of low-level faults in a modern micro-
processor controller,” IEEE Transactions on Computers, vol. 60, no. 9,
pp. 1260–1273, September 2011.

[17] X. Iturbe, B. Venu, and E. Ozer, “Soft error vulnerability assessment of
the real-time safety-related ARM cortex-r5 CPU,” in Proceedings of the
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems. IEEE, September 2016, pp. 91–96.

[18] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben, “Binfi: An
efficient fault injector for safety-critical machine learning systems,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, New York, NY, USA,
November 2019, Art. No. 69, pp. 1–23.

[19] T. Santini, L. Carro, F. R. Wagner, and P. Rech, “Reliability analysis
of operating systems and software stack for embedded systems,” IEEE
Transactions on Nuclear Science, vol. 63, no. 4, pp. 2225–2232, August
2016.

[20] G. S. Rodrigues and F. L. Kastensmidt, “Soft error analysis at sequential
and parallel applications in ARM cortex-a9 dual-core,” in Proceedings
17th Latin-American Test Symposium. IEEE, April 2016, pp. 179–179.

[21] F. Rosa, F. Kastensmidt, R. Reis, and L. Ost, “A fast and scalable fault
injection framework to evaluate multi/many-core soft error reliability,”
in Proceedings of the IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems, October 2015,
pp. 211–215.

[22] A. Chatzidimitriou, M. Kaliorakis, S. Tselonis, and D. Gizopoulos,
“Performance-aware reliability assessment of heterogeneous chips,” in
Proceedings of the IEEE 35th VLSI Test Symposium. IEEE, April 2017,
pp. 109–115.

[23] A. Chatzidimitriou, M. Kaliorakis, D. Gizopoulos, M. Iacaruso, M. Pip-
ponzi, R. Mariani, and S. D. Carlo, “RT level vs. microarchitecture-
level reliability assessment: Case study on ARM(r) cortex(r)-a9 CPU,”
in Proceedings of the 47th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops, June 2017, pp. 117–
121.

[24] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded

benchmark suite,” in Proceedings of the 4th Annual IEEE International
Workshop on Workload Characterization, December 2001, pp. 3–14.

[25] C. Cazzaniga and C. D. Frost, “Progress of the scientific commissioning
of a fast neutron beamline for chip irradiation,” Journal of Physics, vol.
1021, pp. 12 037–12 041, May 2018.

[26] V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural depen-
dency from architectural vulnerability,” in Proceedings of the IEEE 15th
International Symposium on High Performance Computer Architecture,
Raleigh, NC, USA, February 2009, pp. 117–128.


