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In industrial processes, predictive maintenance or automated optical analysis of artifacts is 

fundamental to ensure high-quality products with low costs. However, this step is still done by 

sophisticated systems or human operators. Automating this process with low-cost solutions by 

keeping high product quality is one of the most challenging goals of the Industrial Internet of 

Things (IIoT). IIoT fosters an automation-based production model that uses machine data to enable 

faster, more flexible, and more efficient production lines [1], leading companies to produce higher-

quality goods at lower costs. 

Deep Learning (DL) is a powerful solution for implementing high-accuracy artifacts classification 

or detection; however, such algorithms are computationally intensive. A promising solution for 

implementing DL systems is edge computing and enabling the so-called tiny Machine Learning 

(TinyML) paradigm. It consists of performing all the processing near the data source, thus avoiding 

high-cost cloud infrastructures with their privacy and latency issues. Integrating ML capabilities 

on edge devices makes near-sensor data processing possible, creating more robust and scalable 

systems [2]. 

This article presents an automatic visual inspection system composed of three low-cost cameras to 

measure the quality of plastic components, as shown in Figure 1. A top camera is responsible for 

identifying shape defects, and two side cameras are used for color compliance checks. The idea 

comes from the needs of manufacturing companies that produce plastic products. During the 

molding process, some pieces may have shape and/or color defects. Thus, it is crucial for 

companies to promptly detect these artifacts to act on the settings of the plant to restore proper 

working conditions. The main contribution of this work is the development of a cyber-physical 

system that can detect defects in plastic molded objects and conduct product quality inspections 

with tiny NNs (neural networks) trained on ad-hoc datasets. The system inspects one item by 

running tiny NNs on the edge, and decides to keep or discard it by activating a plunger. The entire 

process is completed within 0.5 seconds with an impressive 99 % accuracy in defect classification. 

 

Overview of Industrial Visual Inspection 

Image sensors are widely spread in many scenarios, such as medical 2D imaging [3], and 

nanoparticle characterization with transmission electronic microscopy (TEM) images [4]. Imaging 

is also widely employed in visual inspection and declined in many industrial scenarios. 

Furthermore, it is crucial to quickly identify and address any issues or abnormalities during the 

molding process to ensure efficient operation and improve production. Additionally, integrating 

DL algorithms has significantly improved the robustness and precision of industrial visual 

inspection. Thus, it is possible to create models that can quickly assess the quality of a product, 

such as checking for the correct label on a bottle or identifying defects on the surface [5].  

Many case studies have demonstrated the potential of industrial visual inspection. For instance, 

the authors in [6] describe a solution that automatically inspects liquid drug bottles on a production 

line. It uses an ensemble learning (EL) algorithm for detection based on multiple features and a 

tunnel structure that allows the bottle inspection to be automated without disrupting original 

processes and devices. The work presented by [7] shows the ability of CNN models to measure 

wood quality in timber bundle images to support the Swedish forest industry. So far, the wood 

quality inspection is made by operators; however, with the proposed automatic visual inspection 

systems, it is possible to obtain an accurate quality measurement and employ the operators for 
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more creative tasks. The authors in [8] also provide a comprehensive and organized overview of 

the existing and emerging automated computer-vision-based methods for classifying defects in 

three types of flat steel products: con-casting slabs, hot-rolled steel strips, and cold-rolled steel 

strips. They examine approximately 140 studies on the topic and show that visual inspection is a 

promising solution in an industrial environment. 

However, all the systems presented in the above case studies have a common limitation: the usage 

of industrial cameras. They are expensive solutions with a high-energy demand. This article 

addresses this limitation by proposing a system composed of low-cost and low-power embedded 

cameras, namely the OpenMV Cam H7 Plus1. In this way, it is possible to obtain a visual inspection 

system that can be widely accessible. 

 

 
Fig. 1. System design. It is composed of a conveyor belt, a sensor that detects objects using Time-of-Flight (ToF) 

technology, three cameras that use microcontroller units to process and classify images, and a cloud-based gateway 

that accepts or rejects the object based on the classification results. The system shows the top camera in the center of 

a ring light. Each camera is positioned 25 cm from the working surface to ensure that objects are in focus. The side 

cameras are at 30° with the vertical to ensure a perspective view. 

 

System Design 

The design of the visual inspection system is depicted in Figure 1. The workflow of the system 

can be organized into four distinct stages. 

1. Item Loading. The initial step includes placing the item on the conveyor belt. There are 

no restrictions on the object rotation during the feeding process, which means the parts can 

be in any random rotation. The color of the conveyor belt was deliberately selected as 

"matte black" to prevent unwanted light reflections that may cause image distortions and 

incorrect classifications. 

 
1 https://openmv.io/products/openmv-cam-h7-plus 

https://openmv.io/products/openmv-cam-h7-plus
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2. Item Movement. The object moves along the conveyor belt, driven by a stepper motor at 

the roller. The M4 core of the STM32MP1 MPU controls the motor through the X-

NUCLEO-IHM03M1 expansion board. Additionally, items on the belt are detected with a 

Time of Flight (ToF) sensor. The same board also measures the ambient light to determine 

the lighting conditions when tagging and categorizing items. Both expansion boards are 

connected to the cloud gateway. 

3. Object classification. In this step, the system performs object classification using an edge 

computing approach with three OpenMV Cam H7 Plus cameras (Figure 1). Two different 

models are used to classify shape and color abnormalities (like those in Figure 2). The 

position and number of cameras were chosen based on the types of defects to be detected. 

The cameras are placed in different locations to ensure that all faces of the object are 

captured. A "Top camera" is positioned vertically to the belt and focuses on the 2D plane 

of the object. In contrast, the "side cameras" are positioned at an angle to expand the field 

of view on the remaining four faces. The top camera is best suited for identifying shape 

defects because shape anomalies occur on the edges; the side cameras are best suited for 

detecting color defects because they can occur in all the faces of the object. The Deep 

Neural Networks (DNN) inputs use the captured images to classify shape and color 

imperfections.  

4. Post-processing. The cloud gateway uses the information obtained from the three cameras 

to control the conveyor belt motor. If the objects are determined to be conformant, the 

conveyor belt motor is enabled. However, if the prediction result shows a non-conformant 

object, it is removed by activating a plunger.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tiny Machine Learning 

This system uses DNNs to classify color and shape anomalies in plastic objects on the same 

microcontrollers used to acquire the images. Despite the majority of DNN designs demanding 

significant computational power, which necessitates the use of specialized high-performance 

computing units, this project runs the inference on the MCU-based camera, which poses challenges 

in researching and optimizing DNNs to work within these constraints. Two state-of-the-art DNNs, 

namely MobileNetV2 and SqueezeNet, have been selected because they satisfy the company 

Fig. 2. Possible defects of the items. From left to right: two incomplete items, deformed item, compliant item, and 

polluted item. 
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requirements, and other works confirm their potential in such applications [9] [10]. Their structure 

is optimized for a small memory footprint by combining compression techniques such as parameter 

optimization, pruning, and quantization. 

 

Model Optimization 

Three different techniques were applied to MobileNetV2 and SqueezeNet to make the trained 

models compatible with the OpenMV Cam H7 plus. 

1. Parameter optimization. DNNs have a massive number of parameters, which are the sum 

of the weights and biases for each layer. We reduced the number of parameters without a 

negative impact on the overall accuracy. MobileNetV2's blocks were reduced from 17 to 

14, and SqueezeNet's blocks were reduced from 8 to 5. An ablation study led to a parameter 

reduction from 723k to 412k for MobileNetV2, and from 337k to 176k for SqueezeNet 

without considerably affecting the models' performance. 

2. Pruning. This technique is applied to reduce the model complexity further. It allows for 

cutting off weights that are not relevant for making predictions, such as weights that are 

close to zero or rarely activated. In this case, we applied a mildly aggressive pruning to 

both models, resulting in a model of only 50% of the original parameters. This threshold 

was chosen to ensure that the model's accuracy would not be affected. 

3. Quantization. This operation reduces not only the size of the model but also storage and 

memory usage during inference by replacing the model's 32-bit float representation with 

an 8-bit representation. Quantization improves hardware acceleration latency and power 

efficiency when deploying DNNs on MCUs. A quantized model with 8-bit representation 

will be 4x smaller and 1.5x-4x faster in computations. In this work, we quantized weights, 

activations, network inputs, and outputs, resulting in a "full-integer" quantized model. 

 

Consider that the two DNNs for color and shape anomalies classification utilize the same model 

architecture and input image size for both datasets, resulting in an equal number of parameters and 

resources needed. Table 1 shows the result of the model optimization procedure considering the 

RAM usage. SqueezeNet and MobileNetV2 gain a compression factor of 3.8x and 3.9x, 

respectively. 

 
Table 1. The RAM required for the models to perform inference on the MCU-based camera OpenMV Cam H7 Plus. 

The Float32 model refers to the models trained with the optimized structure obtained with parameter optimization. 

The Int8 model refers to the further optimized models with pruning and full-integer quantization. The last column 

shows the achieved compression factor. 

160x160px Float32 model  

(Parameter optimization) 

Int8 model  

(Pruning and full-integer  

quantization) 

Compression 

RAM (KB) RAM (KB) 

SqueezeNet 1780.00 455.25 3.80 x 

MobileNetV2 1490.00 381.22 3.90 x 
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System Development 

The development of the system can be divided into three steps: image preprocessing, dataset 

collection, and DNN training. 

1. Image Preprocessing. An image preprocessing algorithm is developed to analyze the 

images before feeding them to the DNN models. This fundamental step in DL permits the 

adjustment of the images to fulfill the DNN's input requirements and emphasize relevant 

features useful for classification. In this case, the image preprocessing algorithm removes 

the background as it is irrelevant for classifying object anomalies. Moreover, it permits 

considering the object's position and avoids incorrect clipping of the image. It consists of 

a combination of three state-of-the-art computer vision methods. The “Canny” algorithm 

is first applied to the image to find component contours. This method highlights all the 

contours in the image and not only the object’s contours. Then, blob detection is applied to 

the extracted contours to find the object's exact location. It follows the blob's merging and 

blob center computation. The blob center is used as a reference point to crop the image 

(size 160 x 160) and avoid clipping. Finally, Otsu's method is used to find the optimal 

threshold for background removal.  

2. Dataset Collection. The dataset for training the DNN models is collected with the setup 

shown in Figure 1. Collecting a big and heterogenous enough dataset is fundamental to 

ensure good system performance. In this case, two different datasets were organized: one 

for color defects and one for shape defects. The color-defected dataset suitable for the side 

cameras consists of 6800 images equally divided between conformant and color-defected. 

The shape-defected dataset consists of 10800 images equally divided between conformant 

and shape-defected. 

3. Training. MobileNetV2 and SqueezeNet are trained by using RGB images with a size of 

160 x 160 pixels, an initial learning rate of 10-5, the Adam optimizer, and a binary cross-

entropy loss function. The training starts with weights initialized to random values, while 

the number of epochs is set by using the early stopping callback by validation accuracy. 

This approach stops the training at the optimal point where the model has gained sufficient 

knowledge of the problem and avoids overfitting. In this case, a validation accuracy 

threshold is set to 99.5%; thus, the training stops at the epoch that reaches that required 

accuracy. Considering the top camera, the training needs 25 and 38 epochs for 

MobileNetV2 and SqueezeNet, respectively. The training for side cameras needs 12 and 

100 epochs for MobileNetV2 and SqueezeNet, respectively. The top camera is employed 

for classifying shape defects; thus, color information is not necessary. In this case, the 

images are binarized to highlight the object's perimeter but still in the RGB color space to 

avoid the model’s incompatibility in producing the prediction. On the contrary, side 

cameras oversee identifying color defects; thus, it is fundamental to keep the color 

information. In this case, the images are in the RGB color space and pixels can take values 

from 0 to 255. 
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Experimental Results 

DNNs are assessed by using a specific dataset never used during the training. In this way, it is 

possible to ensure the generalization capability of the network and its performance. The models' 

performance for the top camera and side cameras is evaluated by considering accuracy, precision, 

recall, f-score, and the loss in accuracy due to the optimization process. The top and side camera 

models are trained with two different datasets (i.e., one for shape defects and one for color defects); 

thus, their performance is different. Moreover, the platform is characterized by measuring the 

execution time of the selected algorithms.  

 

Top Camera  

The top camera is responsible for classifying conformant and shape-defected items. In this case, 

860 images are used for testing, where 410 images represent conformant objects, and the remaining 

450 images represent shape-defected objects. The test results are summarized in Table 2. Notice 

that even though the model is compressed, the loss in performance is negligible. Moreover, the 

minimization of false negatives (FN) is fundamental in an industrial visual inspection setting. 

Analyzing the recall defined in (1), it is possible to choose the best-performing model. In this case, 

MobileNetV2 achieves a recall of 100%, which means that any FN is detected during the test. Thus 

it is preferable to SqueezeNet. 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
       (1) 

 
Table 2. Models' performance for the top camera. “Base” refers to the baseline model without optimization, and 

“Optimize” refers to the optimized models with parameter optimization, pruning, and quantization. “Loss” highlights 

the loss in accuracy during the optimization process. 

 MobileNetV2 SqueezeNet 

Base Optimize Loss Base Optimize Loss 

Accuracy 99.5% 98.9% 0.6% 98.6% 98.4% 0.2% 

Precision 99.0% 98.0% 1.0% 99.0% 99.0% 0.0% 

Recall 100.0% 100.0% 0.0% 98.0% 98.0% 0.0% 

F-score 99.5% 99.0% 0.5% 98.0% 98.0% 0.0% 

 

Side Cameras 

The side cameras classify conformant and color-defected objects, and the same tests for the top 

camera are conducted. In this case, 540 test images are split equally between the two classes. Table 

3 summarizes the test results for the side cameras. Also, the optimization process does not generate 

a significant performance loss in this case. Furthermore, MobileNetV2 is still the best-performing 

model considering the minimization of FNs. 
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Table 3. Models' performance for the side cameras. “Base” refers to the baseline model without optimization and 

“Optimized” refers to the optimized models with parameter optimization, pruning, and quantization. “Loss” highlights 

the loss in accuracy during the optimization process. 

 MobileNetV2 SqueezeNet 

Base Optimized Loss Base Optimized Loss 

Accuracy 100.0% 99.6 0.6% 98.4% 98.2% 0.2% 

Precision 100.0% 100.0% 0.0% 100.0% 100.0% 0.0% 

Recall 100.0% 99.0% 1.0% 96.0% 96.0% 0.0% 

F-score 100.0% 99.5% 0.5% 98.0% 98.0% 0.0% 

 

Execution Performance 

The system performance is evaluated by considering the computational time of image 

preprocessing and DNNs classification inference. Furthermore, given that the nominal power 

consumption of the OpenMV H7 Plus in active mode is 0.8 W, it is possible to estimate the energy 

consumption of the camera system. Figure 3 shows the comparison of the execution time for 

MobileNetV2 and SqueezeNet. Considering both top and side cameras, MobileNetV2 outperforms 

SqueezeNet taking only 240 ms and 233 ms to process one image, respectively. Thus, the total 

energy required by the system is equal to 192 mJ for the top camera and 186 mJ for the side 

cameras. This system could also be battery-powered, thus deployable in positions where an 

unlimited energy source is unavailable. 

Furthermore, the experimental results confirm the system's suitability for inspecting plastic 

components. Considering the components in Figure 2, the molding process takes about 20 seconds 

to produce two moles of 8 items. Consequently, 240 ms for processing one object is enough to 

guarantee the continuous operation of the production line. 

Fig. 3. Execution time comparison for MobileNetV2 and SqueezeNet. The left side of the graph is related to the top 

camera, while the right side is related to the side cameras. 
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Conclusions 

Image sensor systems with DNNs can successfully inspect the quality of objects in an industrial 

process. The proposed system uses two DNN architectures, MobileNetV2 and SqueezeNet, which 

achieved a classification accuracy of 99% and 98%, respectively. The system can detect and 

classify two different anomalies in the objects, which are color and shape defects, and is designed 

to work in real-time with a frame rate of 5 FPS and 2 FPS for MobileNetV2 and SqueezeNet, 

respectively. Future improvements will use new training techniques such as neural architecture 

search, integrating continual learning capabilities, and improving the system's efficiency with 

more optimized DNNs. 
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