
Toward a Better Understanding of End-User Debugging
Strategies: A Pilot Study

Ren Manfredi
1*, Margherita Andrao

1,2, Francesco Greco3 , Giuseppe Desolda3 , Barbara

Treccani1 , Massimo Zancanaro1,2

1 Department of Psychology and Cognitive Science, University of Trento, Rovereto (Trento), Italy
2 Fondazione Bruno Kessler – FBK, Trento, Italy
3 University of Bari Aldo Moro, Bari, Italy

Abstract
In this paper, we describe a pilot study aimed to explore strategies used by non-programmer

users to test trigger-action rules for customizing an IoT device. The main goal of our research

was to examine strategies used by participants to detect and solve errors. In the pilot study, we

asked non-programmers to imagine testing a set of rules, some of which were bugged. The

pilot study was meant to understand the feasibility of this approach to investigate users' mental

models while performing this kind of task.

Keywords 1
End-User Development, End-User Programming, Debugging, Trigger-action programming,

IoT.

1. Introduction

In this paper, we present a pilot study to explore the strategies of non-programmer users in debugging

trigger-action (TA) rules to customize an IoT educational tool. In particular, we wanted to investigate

how naive users approach debugging and the characteristics of the strategies they adopt.

In recent years, the rapid diffusion of IoT has brought end-users to the center of a complex ecosystem

made of interconnected objects and web services, changing the way they live [1][2].

In this context, the End-User Development (EUD) paradigm has allowed non-technical users

without programming skills to customize the behavior of their devices and applications [3], empowering

users and letting them benefit from the potential of IoT. Specifically, through the trigger-action

programming (TAP) approach, end-users have the possibility to create rules to automate the behavior

of both hardware and software artifacts.

The relative simplicity and applicability of TAP to IoT have attracted a lot of interest [4]. However,

this rule-based approach has limitations. Indeed, despite its ease of use, non-programmers still make

numerous mistakes in composing TA rules, like loops, inconsistencies, and redundancies [5]. That is

important because poor or conflicting rule settings can lead to unsatisfactory or even potentially

dangerous behavior for the user.

Only very recently, a few studies have been carried out that focused on the problem of rule errors in

EUD and explored debugging approaches to support end-users in customizing their IoT devices [6].

However, while many efforts have been directed towards debugging for mashup programming,

spreadsheet, and rule analysis, little work has investigated debugging in TAP [3][5]. Some of these

works, inspired by and extending the Interrogative Debugging paradigm of Ko and Myers [7], proposed

3rd International Workshop on Empowering People in Dealing with Internet of Things Ecosystems. Workshop co-located with AVI 2022,

June 06, 2022, Frascati, Rome, Italy

* Corresponding author
EMAIL: ren.manfredi@unitn.it (R.Manfredi); margherita.andrao@unitn.it (M.Andrao); f.greco66@studenti.uniba.it (F.Greco);

giuseppe.desolda@uniba.it (G.Desolda); barbara.treccani@unitn.it (B.Treccani); massimo.zancanaro@unitn.it (M.Zancanaro)

ORCID: 0000-0002-4584-3306 (R.Manfredi); 0000-0003-2245-9835 (M. Andrao); ; 0000-0003-2730-7697 (F. Greco) ; 0000-0001-9894-
2116 (G.Desolda); 0000-0001-8028-0708 (B. Treccani); 0000-0002-1554-5703 (M. Zancanaro)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

tools and approaches that allow end-users to simulate their own rules and identify errors [3][5][8].

Specifically, these pioneering works developed and tested different EUD interfaces able to simulate the

rules created, detect potential errors, and return an explanation of those errors to the user to support

them in correcting the rules. The results of these studies, although preliminary, seem to suggest that

interfaces of this type can support the end-user in dealing with and better understanding errors in the

composition of trigger-action rules.

However, several aspects remain to be clarified. In particular, we still do not know much about how

end-users approach debugging and what strategies they adopt [3]. Knowing more about end users'

debugging strategies is important to inform the design of better tools to support this important task [6].

The present study aimed to explore the strategies and approaches of naive users in debugging TA

rules to outline possible and valid future research.

1.1. Tool and EUD interface

In this pilot study, a tangible educational IoT device prototype (Figure 1) was employed [9]. Such a

device was designed to support mathematics learning in elementary school children. It has a rectangular

surface with five slots for placing external pieces (digit, symbol, or operator tiles), and it is provided

with a visual and acoustic feedback system. This tool makes it possible to implement different types of

mathematical exercises such as comparing quantities, sorting numbers, and simple arithmetic

operations.

Figure 1. Schematic of the tangible tool (left) and tiles (right).

Teachers could customize the tool's functioning through a set of language primitives for actions,

states, and events implemented as part of an existing authoring interface (see Figure 2). The primitives

for the actions consist of commands to control visual (lights) and acoustic feedback. At the same time,

states and events describe respectively the operations that teachers and children can perform on the tool

(i.e., insertion and removal of tiles) and the tool configuration at that moment. An example of an event

description is "WHEN a digit tile is inserted", while an example of a state is "WHILE the position to

the right of the inserted tile is empty". Finally, "Turn on blue LED SMARTER" is an example of action.

Figure 2. A screenshot of the authoring interface.

2. The pilot study

Five (5) primary school math teachers with no previous experience in programming were recruited.

The study consisted of individual semi-structured interviews conducted remotely (90 minutes).

After describing the tool and the interface through videos and explanatory images, the participants

were familiarized with the interface and a set of rules already prepared and related to a simple number

ordering game (from the smallest number to the largest). In the first phase, participants were then asked

to discuss how they would evaluate the correctness of the rules and then to indicate three specific actions

by which they would test the program's functioning (debugging task).

In the second phase of the study, participants were given an error-finding task on a different set of

rules in which two types of errors were intentionally included. Specifically, both inconsistent and

redundant rules were introduced, that is, rules providing for two conflicting actions for the same trigger

and different rules producing the same outcome, respectively.

A verbal reporting procedure was used to explore participants' strategies and mental models during

the familiarization and error-finding tasks.

2.1. Results

As a first approach to the debugging task, all participants imagined testing the rules in the field with

a hands-on approach, i.e., in the classroom with their students. Some of them proposed a trial-and-error

strategy ("I would try to make a rule if I realized something was wrong, I would go back and change

it"), while others (participants B and C) suggested testing directly with the children using a more

functional and child-focused approach.

Specifically, some participants (such as B, D, E) proposed a “step-by-step” strategy, e.g., proposing

to insert the first tile, then a correct tile, and finally an incorrect one, checking the outcomes each time

a single tile was inserted. In contrast, Participant A took a different approach, preferring to place all the

tiles first to observe the result. Interestingly, such an approach, focused on obtaining a direct solution,

has already been observed in novice programmers and has been associated with a misunderstanding of

how the system works [10][11].

Finally, participants A and C proposed the placement of a symbol tile to test the alternative case.

Also, participant E evaluated this approach, but she argued it was not fundamental considering the task

goal of sorting numbers progressively. Debugging task results are summarized in Table 1.

Table 1
Debugging task results

Strategy Strategy description Participants

Step-by-step
Placement of one tile at a time,
checking the result at each step

B, D, E

Direct solution
Placement of all tiles, with

only one final check
A

Alternative case
Placement of symbol tiles to

test alternative cases
A, C

In the error-finding phase, participants exhibited two different approaches. Some assumed a rule-

by-rule approach (participants B and D), directing the error search to individual rules and ignoring their

relationships. Participants who adopted this approach failed to identify any errors present in the ruleset.

They also state that the errors were due to the excessive number of rules, in their opinion, unnecessary

and confusing. Conversely, participants who extended their error search to include the relationships

between rules (participants A, C, E) could identify some errors. Eventually, only one participant was

able to identify all errors correctly. Results of the error-finding task are summarized in Table 2.

Consistent with the literature [5], the most commonly identified error was inconsistency, while

redundancy was the most difficult error to identify.

Table 2
Error-finding task results

Participant Approach adopted Identified errors

A Error search extended to rule relationship Inconsistency
B Error search limited to individual rules None
C Error search extended to rule relationship Inconsistency
D Error search limited to individual rules None
E Error search extended to rule relationship Inconsistency, Redundancy

3. Conclusions

In this pilot study, we explored the strategies adopted by non-programmer users for debugging a TA

rule set and for finding inconsistent and redundant rules. While the extant literature on end-users

debugging TA rules focuses on tools to support bug identification, in our approach, we tried to focus

on the mental models users initially assume in facing a debugging task.

Three different debugging strategies implemented by participants emerged from the results. These

strategies were partly similar to those already observed in novice programmers [10][11][12].

Nevertheless, to our knowledge, they have not been discussed in the context of EUD with TA rules.

Specifically, naive users might have more problems considering the entire set of rules and their

relationships. We believe that extending this approach with a more robust study will help to design

more effective tools (along the lines, for example, of the work done by Corno et al. [5]). In our future

work, we plan to refine the study's design by involving the users in actual debugging with the real tool.

4. Acknowledgments

This work has been supported by the Italian Ministry of Education, University and Research (MIUR)

under grant PRIN 2017 "EMPATHY: EMpowering People in deAling with internet of THings

ecosYstems" (Progetti di Rilevante Interesse Nazionale – Bando 2017, Grant 2017MX9T7H).

5. References

[1] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Carmen Santoro. 2017. Personalization of

context-dependent applications through trigger-action rules. ACM Transactions on Computer-

Human Interaction 24, 2 (2017), 1–33. DOI:http://dx.doi.org/10.1145/3057861

[2] Barbara Rita Barricelli and Stefano Valtolina. 2015. Designing for end-user development in the

internet of things. End-User Development (2015), 9–24. DOI:http://dx.doi.org/10.1007/978-3-

319-18425-8_2

[3] Luigi De Russis and Alberto Monge Roffarello. 2018. A debugging approach for trigger-action

programming. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing

Systems (2018). DOI:http:// dx.doi.org/10.1145/3170427.3188641

[4] Paternò, F., & Santoro, C. (2019). End-user development for personalizing applications, things,

and robots. International Journal of Human-Computer Studies, 131, 120-130.

[5] Corno, F., De Russis, L., & Monge Roffarello, A. 2019, May. Empowering end users in debugging

trigger-action rules. In Proceedings of the 2019 CHI Conference on Human Factors in Computing

Systems (pp. 1-13).

[6] Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J., Rector, K., & Kwan, I. 2012. End-user

debugging strategies: A sensemaking perspective. ACM Transactions on Computer-Human

Interaction (TOCHI), 19(1), 1-28.

[7] Ko & Myers 2004 (Ko, A. and Myers, B. 2004. Designing the whyline: A debugging interface for

asking questions about program behavior. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. ACM, 151–158)

[8] Manca, M., Paternò, F., Santoro, C., & Corcella, L. 2019. Supporting end-user debugging of

trigger-action rules for IoT applications. International Journal of Human-Computer Studies, 123,

56-69.

[9] Andrao, M., Desolda, G., Greco, F., Manfredi, R., Treccani, B., Zancanaro, M. 2022, June .

SMARTER: an IoT learning game to teach math. In International Conference on Advanced Visual

Interfaces (AVI 2022), June 6–10, 2022, Frascati, Rome, Italy.

[10] Chen Li, Emily Chan, Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2019. Towards a

framework for teaching debugging. Proceedings of the Twenty-First Australasian Computing

Education Conference on - ACE '19 (2019). DOI:http://dx.doi.org/10.1145/3286960.3286970

[11] Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L. and Zander,

C., 2008. Debugging: finding, fixing and flailing, a multi-institutional study of novice debuggers.

Computer Science Education, 18(2), pp.93-116.

[12] S. Fitzgerald, R. McCauley, B. Hanks, L. Murphy, B. Simon and C. Zander, "Debugging From the

Student Perspective," in IEEE Transactions on Education, vol. 53, no. 3, pp. 390-396, Aug. 2010,

doi: 10.1109/TE.2009.2025266.

