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A B S T R A C T

Neonatal respiratory disorders pose significant challenges in clinical settings, often requiring rapid and accurate
diagnostic solutions for effective management. Lung ultrasound (LUS) has emerged as a promising tool
to evaluate respiratory conditions in neonates. This evaluation is mainly based on the interpretation of
visual patterns (horizontal artifacts, vertical artifacts, and consolidations). Automated interpretation of these
patterns can assist clinicians in their evaluations. However, developing AI-based solutions for this purpose is
challenging, primarily due to the lack of annotated data and inherent subjectivity in expert interpretations.
This study aims to propose an automated solution for the reliable interpretation of patterns in LUS videos
of newborns. We employed two distinct strategies. The first strategy is a frame-to-video-level approach that
computes frame-level predictions from deep learning (DL) models trained from scratch (F2V-TS) along with
fine-tuning pre-trained models (F2V-FT) followed by aggregation of those predictions for video-level evaluation.
The second strategy is a direct video classification approach (DV) for evaluating LUS data. To evaluate our
methods, we used LUS data from 34 neonatal patients comprising of 70 exams with annotations provided by
three expert human operators (3HOs). Results show that within the frame-to-video-level approach, F2V-FT
achieved the best performance with an accuracy of 77% showing moderate agreement with the 3HOs. while
the direct video classification approach resulted in an accuracy of 72%, showing substantial agreement with
the 3HOs, our proposed study lays down the foundation for reliable AI-based solutions for newborn LUS data
evaluation.
1. Introduction

Preterm birth is defined as the delivery before 37 completed weeks
of gestation. Worldwide, about 15 million babies are born preterm
every year [1]. Preterm infants often face respiratory complications
due to the immaturity of their respiratory system. At birth, the most
frequent respiratory conditions in preterm infants are respiratory dis-
tress syndrome (RDS) [2] and Transient Tachypnea of the Newborn
(TTN) [3]. Some patients gradually improve in the first weeks of
life, while others require prolonged respiratory support and eventually
develop chronic lung dysfunction [4]. Understanding and closely mon-
itoring the respiratory condition of preterm infants over time is pivotal
in tailoring the respiratory management strategy.

Lung ultrasound (LUS) is a bedside, radiation-free imaging tech-
nique that has become increasingly popular in neonatal intensive care
units due to its safety, cost-effectiveness, and wide availability, and
has been intensively studied in clinical research [5,6]. Specifically,
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LUS has been utilized to diagnose pneumothorax [7,8], support the
differential diagnosis of neonatal respiratory distress [9], describe post-
natal adaptation [10], and monitor the natural history of neonatal
lung disease [11]. Cursomize RDS management including surfactant
replacement in preterm infants [12–14], predict the need for non-
invasive respiratory support [15] or mechanical ventilation [16], and
early identify infants at risk of bronchopulmonary dysplasia [17].

Semi-quantitative LUS scores are based on the detection and anal-
ysis of visual patterns. Such patterns mainly appear as horizontal and
vertical artifacts and small to large consolidation areas [18]. Artificial
intelligence (AI) [19] has emerged as a promising tool to support
healthcare workers by automating the interpretation of LUS patterns
and identifying respiratory conditions in newborns [20]. While various
AI methods have been developed for the adult patient population, [21–
25] limited work has been done on the LUS data analysis for newborn
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patients. In this regard, Bassiouny et al. [26], utilized the faster Region-
ased Convolutional Neural Network (fRCNN) and RetinaNet models

to detect 7 common neonates LUS features (A-lines, coalescent B-lines,
separated B-lines, irregular pleural, thick pleural, normal pleural lines
nd irregular pleural with consolidation). Additionally, Aujla et al. [27]
pplied a feature extraction method that utilizes recurrence quantifi-

cation analysis (RQA) on virtual scanlines extracted from LUS images.
This method classifies the images into six common neonatal lung condi-
ions (normal, pneumothorax, chronic lung disease, respiratory distress
yndrome, tachypnea of the newborn, and consolidation). Building on
his work with an expanded dataset, authors in study [28] isolated

and extracted localized LUS line and texture patterns of the most
common neonatal lung diseases using a two-dimensional (2D) Dual-
Tree Complex Wavelet Transform (DTCWT). Gravina et al. [29] focused
n classifying a subset of the most common neonatal lung pathologies,

specifically distinguishing between RDS and TTN diagnoses using a
re-trained ImageNet model. Another study attempted to develop a
etal lung gestational age (GA) grading model using deep learning (DL)
lgorithms, where a convolutional neural network (CNN) was designed
o identify different categories of fetal lung ultrasound images [30].

Furthermore, Jiao et al. [31] utilized machine learning algorithms
uch as Support Vector Machine (SVM) and AdaBoost algorithms to
lassify Neonatal Respiratory Morbidity (NRM) versus normal patients,
nvolving a dataset of 210 fetal LUS images. Although these studies
eported high sensitivity (0.82) and specificity (0.84) however, these
tudies focused on binary classification tasks, which do not fully address
he complexity of neonatal lung diseases. Similarly, another study [30]
nalyzed Neonatal Respiratory Distress Syndrome (NRDS) in premature
nfants using a deep residual network (DRN), the study reported high

accuracy in detecting specific pathological features, such as the disap-
pearance of A-lines and the appearance of B-lines. Some of the studies
have focused on fetal LUS image analysis, primarily using textural
descriptors to assess respiratory status [32,33].

Many of these studies are constrained by small datasets [30,31] and
ave not yet fully leveraged advanced DL strategies such as transfer

learning, fine-tuning, transformer-based architectures, attention mech-
anisms, or domain adaptation. Furthermore, these methods have been
evaluated on data acquired without a standardized acquisition protocol
r scoring system, which is attributed to a higher level of subjectivity.
ddressing these shortcomings is crucial for developing more robust

and generalizable models capable of accurately classifying a wider
range of neonatal lung conditions. Due to the limited number of expert
neonatologists in LUS, accurate manual evaluation of lung images is
challenging, often leading to increased inter-observer variability. This
ssue is further compounded by the difficulty in obtaining high-quality
nnotations, which are crucial for training DL models. Moreover, vari-
tions in LUS interpretation, stemming from differences in clinical
xpertise and experience, can introduce subjectivity in the ground truth
GT) labels used in datasets [34]. Given these constraints, the relatively

small dataset size, the subjective nature of interpretation, and the
scarcity of precise annotations developing reliable DL models becomes
challenging. These difficulties are particularly evident when assessing
the models’ ability to generalize effectively across diverse datasets.

Therefore, the motivation for this research is grounded in its poten-
ial to improve clinical decision-making and enhance patient outcomes,

particularly in neonatal care. As we discussed before, manual interpre-
tations of LUS often suffer from subjectivity and variability, leading
to inconsistent assessments of neonatal respiratory conditions. By in-
tegrating AI tools, this study aims to reduce these inconsistencies,
roviding more standardized and reliable evaluations. This is especially
mportant in resource-limited or high-demand neonatal intensive care
nits (NICUs), where time and expertise may be limited. The AI-driven
nalysis proposed in this study can rapidly and accurately identify
ey LUS patterns, enabling faster and more informed clinical deci-
ions, which could streamline workflows, reduce diagnostic errors, and
nter-observer variability. Moreover, the proposed AI solution could be
2 
adapted to other populations, age groups, or even different medical
omains, broadening its overall applicability and impact in various
ealthcare settings.

To achieve the above-mentioned goals, in this study, we will analyze
the use of different AI-based methods to assist clinicians in evaluating
LUS patterns in newborns. Furthermore, we will also evaluate the
interrater agreement between human operators (HOs) and the proposed
AI solutions [35]. This offers a comprehensive assessment of the re-
liability and efficacy of both human and AI-driven interpretations in
analyzing LUS patterns in neonates. The neonatal LUS data evaluation
performed within the study is in line with new international guidelines
nd consensus on the use of lung ultrasound [36] and offers significant

contributions to the field by:

• Developing AI-based solutions for the automated frame and video
level scoring of LUS patterns in newborns.

• Evaluating the impact of the amount of training data on the
performance of AI solutions.

• Assessing the interrater agreement between HOs and the proposed
AI solutions.

The rest of the paper is organized as follows. The proposed tech-
niques and strategies are presented in Section 2. Experimental settings
and results are provided in Sections 3 and 4, respectively. Section 5
analyzes the interrater agreement between the HOs and the AI-based
olutions. Finally, Section 6 comprehensively discusses the key findings

and draws conclusions based on the results.

2. Methods

2.1. Neonatal LUS scoring

The LUS scores used in this study are an adaptation of the score
definitions originally proposed in study [37] (see Fig. 1). For each
patient, longitudinal scans were taken along the anterior (midclav-
icular) and lateral (midaxillary) lines of each hemothorax, defining
six chest regions (upper anterior, lower anterior, and lateral for each
hemothorax). Each video was scored as per [11], a minor modification
of the score that Brat and colleagues originally created and validated
or neonates [37]. The score 2 and 3 definitions for each scan are the
ame as [11]. This comprehensive LUS score represents characteristic

signs associated with Transient Tachypnea of the Newborn (TTN) and
Respiratory Distress Syndrome (RDS) which describes the most likely
conditions of the included population [37].

Specifically, the LUS score was assigned as follows:

• Score 0: Presence of hyper-echoic horizontal artifacts, which ap-
pear due to the reverberation effect between the lung surface and
the probe, indicating fully aerated state of the lung.

• Score 1: Presence of vertical artifacts, suggesting mild lung alter-
ations as early signs of complications.

• Score 2: The presence of vertical artifacts extending through
100% of the pleural lines indicates more severe lung alterations.

• Score 3: Presence of consolidations with irregular pleural line,
indicating severe lung pathology.

2.2. Data description

Data were collected in the Neonatal Intensive Care Unit of Fon-
dazione IRCCS San Gerardo dei Tintori, Monza, Italy, as part of a
longitudinal study including preterm infants with a gestational age
below 32 weeks and/or a birth weight <1500 g free from major
congenital abnormalities. The study was approved by the local ethi-
cal committee (protocol nr. 3804/21), and written informed consent
was obtained from all parents prior to enrollment. Lung ultrasound
was performed with the patient in the supine position using a single
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Fig. 1. The upper part of the figure illustrates the division of each lung into three areas. Each area has been assigned a score ranging from 0 to 3 based on the associated LUS
patterns.
ultrasound machine (Philips Affiniti 70) and a high-resolution micro-
linear probe (7.0–15.0 MHz) named as hockey stick. Focal point is set
at pleural line with an image depth of 3 cm and frame rate of 63 Hz.
The dataset included 70 exams performed on 34 patients scored by
three expert human operators (3HOs). The experience levels of the
operators were as follows: HO1 with 4 years, HO2 with 7 years, and
HO3 with 6 years. Table 1 summarizes the characteristics of study
participants. At the time of the exam, infants had a median (Q1, Q3)
gestational age was 28.43 (25.71, 30.43) weeks, birth weight was 1025
(720, 1485)𝑔, postnatal age of 25 (9, 45) days, a postmenstrual age of
31.29 (28.29, 35.86) weeks, and a body weight of 1335 (910, 1950) g.
Infants had a wide spectrum of prematurity-related lung disorders,
namely acute lung disease (including both RDS and TTN), evolving
and established BPD. In patients who received pulmonary surfactant,
a lung ultrasound was performed afterwards. None of the infants had
pulmonary hypoplasia, pneumonia, pneumothorax, or meconium aspi-
ration at the time of assessment. In terms of respiratory support, the
median (Q1, Q3) overall airway pressure was 7 (3, 11) cmH2O, and
the fraction of inspired oxygen was 25 (21, 35)%; infants required
invasive respiratory support in 24(34%) occasions, nasal continuous
positive airway pressure or non-invasive respiratory support on 17
(24%) occasions, high flow nasal cannula on 18 (26%) occasions and
were on spontaneous breathing on the remaining 12 (17%) occasions.

Since each exam included 6 videos (one for each chest region), the
dataset comprised a total of 420 videos and 78,439 frames. The videos
varied in length with number of frames ranging from 607 to 188. The
labeling was performed at the video-level for the entire dataset; a subset
of 20 exams were additionally labeled at the frame-level.

The scoring distribution for 3HOs at the frame and video-level is
shown in Fig. 2.

2.3. Data preparation

During the acquisition of neonates’ LUS data, scanner information,
and imaging parameters are also captured alongside the frames. This
includes textual data regarding imaging settings, measurement lines,
and focal point indicators within the field of view (FOV). To ensure
accurate and unbiased analysis by an AI-based model, it is important to
filter out this information that could lead to ambiguous interpretations.
The presence of such information in LUS scans might cause the model to
3 
Table 1
Characteristics of clinical data utilized for this study.

Variable Value

N 34
GA, weeks 28.43 (25.71, 30.43)
BW, g 1025 (720, 1485)
SGA, n (%) 5 (15%)
Male, n (%) 19 (56%)
Antenatal steroids, n (%) 29 (38%)
Cesarean section, n (%) 22 (65%)
Surfactant, n (%) 29 (85%)
Duration of O2 supplementation, days 28 (2, 60)
Duration of IMV, days 2 (0, 16)
Duration of respiratory support, days 50 (24, 96)
BPD, n (%) 13 (38%)

Note*: GA = gestational age; BW = birth weight, SGA = small for gestational age, IMV
= invasive mechanical ventilation, BPD = bronchopulmonary dysplasia defined as the
need for any respiratory support at 36 weeks postmenstrual age.

learn incorrect patterns, potentially resulting in wrong predictions [38].
To this extent, we applied pre-processing techniques to extract the FOV
while maintaining the spatial resolution of each pixel (see Fig. 3). The
removal of this redundant information from the LUS data makes it
suitable for further analysis.

2.4. Lung ultrasound video classification

To evaluate LUS video data from newborns, we applied two video-
level scoring strategies. These strategies are discussed in detail in
subsequent sections.

2.4.1. Frame-to-video-level scoring
Frame-to-video-level (F2V) scoring is a multi-step approach that

involves collecting frame-level predictions of a LUS video followed by
an aggregation technique to compute the score at the video-level. Two
methods are proposed in this regard. The first method (F2V-TS) in-
volves training DL models from scratch for frame-level classification. To
this extent, we employed models from traditional deep convolutional
neural network (DCNN) [39], to transformer-based architectures such
as Vision Transformer (ViT) [40]. In addition, we utilized ResNet-18
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Fig. 2. Score-wise distribution of dataset label by 3HOs both at frame and video-level.
which consistently outperformed other models in previous state-of-the-
art benchmark studies on adult LUS pattern analysis, demonstrating its
success in this area [23,41].

To achieve a score at the video-level, we aggregated frame-level
predictions using a threshold-based method [21]. The method involves
assigning the worst score to a video if predicted for a given per-
centage of frames (threshold) within the video. The task hereby re-
quires to find the optimal threshold

(

𝑇 𝐻𝑜𝑝𝑡
)

that maximizes the overall
agreement with the clinical evaluation, as ground truth, at video-level
(

𝑉 𝑎𝑙 𝑙
𝑎𝑔 𝑟

(

𝑇 𝐻𝑖
)

)

. The mathematical representation of its calculation is
given as,

𝑉 all
𝑎𝑔 𝑟

(

𝑇 𝐻𝑖
)

=
𝑝=𝑛
∑

𝑝=1

𝑎=𝑚
∑

𝑎=1

100 ⋅ 𝑉𝑎𝑔 𝑟
(

𝑇 𝐻𝑖, 𝑝, 𝑎
)

𝑁𝑡𝑜𝑡𝑎𝑙
(1)

where 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of videos, 𝑛 represents the total number
of exams, and 𝑚 represents the total number of scanning areas within
an exam.

The second method (F2V-FT) is a domain adaptation task that
involves using a pre-trained model, originally trained on LUS data
from adults (source domain) [23] and fine-tuning it for frame-level
classification of neonatal LUS data (target domain).

To this extent, we used a ResNet-18 model initially trained on a
large representative dataset comprising 58,924 LUS frames obtained
from 35 adult COVID-19 patients. To adapt the pre-trained model for
neonatal LUS analysis, we fine-tuned it on LUS data from newborns.
Fine-tuning involves unfreezing all the layers of the DL model and back-
propagating the loss throughout the model during training. This allows
the model to adjust the learned features of adult data to accurately
recognize and interpret the specific characteristics of LUS data from
neonates. After obtaining the frame-level predictions, we employed the
aggregation technique [21], as used for F2V-TS, to compute the score
at the video-level.

2.4.2. Direct-video-level scoring
In this section, we introduce the second strategy based on di-

rect video-level scoring of neonatal LUS patterns (DV). For this pur-
pose, a CNN-LSTM and video vision transformer inspired architecture,
transferred sequential lung ultrasound encoding based transformer
(TranSLUCEnT) are utilized to classify the spatiotemporal features of
neonatal LUS data into four scores, as shown in Fig. 3. The two methods
involve a pre-trained CNN model used as a feature extractor, computing
the spatial features 𝑥𝑖 for each video frame 𝑖. Unlike using the models
pre-trained on a large ImageNet dataset, we used the ResNet-18 model
previously trained on LUS data from the adult patient population [23].
4 
The extracted spatial features are then passed to the LSTM and the
transformer encoder for predicting the score at the video level.

Long short-term memory (LSTM)
LSTMs are a special type of recurrent neural network (RNN), de-

signed to learn information over long sequential data, in our case
LUS videos. An LSTM unit, as shown in Fig. 4 proposed by Donahue
et al. [42], is a memory cell 𝑐 that encodes the information at the time
step 𝑡 of all the previous inputs till 𝑡− 1. The cell functions by three types
of gates, input gate (𝑖), forget gate (𝑓 ), and output gate (𝑜). The input
gate controls if the current input 𝑥𝑡 is to be considered or not. The forget
gate allows the LSTM to forget the previous memory cell 𝑐𝑡−1. Lastly,
the output gate determines how much memory will be transferred to
the hidden state (ℎ𝑡).

Values for each gate at the time 𝑡 are mathematically computed as
follows,

𝑖𝑡 = 𝜎
(

𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖
)

, (2)

𝑓𝑡 = 𝜎
(

𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓
)

, (3)

𝑜𝑡 = 𝜎
(

𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜
)

, (4)

𝑔𝑡 = 𝜎
(

𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑔
)

. (5)

The sum of dot products of previous cell state 𝑐𝑡−1 with values of
forget gate 𝑓𝑡 and cell update 𝑔𝑡 with input gate 𝑖𝑡 results in the new
cell state 𝑐𝑡. The output at the hidden state ℎ𝑡 is computed by the dot
product of the output gate 𝑜𝑡 and the cell state 𝑐𝑡. Mathematically given
as

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝜙𝑔𝑡, (6)

ℎ𝑡 = 𝑜𝑡 ⊙ 𝜙 (

𝑐𝑡
)

, (7)

where, 𝜎 represents the sigmoidal function, 𝜙 denotes the hyperbolic
tangent and ⊙ represents the product operation with the values of the
gate and weight 𝑊𝑖𝑗 .

In our proposed CNN-LSTM approach, each input video is normal-
ized to an equal length of 188 frames (maximum frames in a video).
Shorter videos were appended with frames with all zeros towards the
end. The pre-trained ResNet-18 extracts the distinct characteristics of
the video by obtaining features of size 188 × 512. These features are
then processed by the LSTM with 256 hidden units. Finally, the output
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Fig. 3. The block diagram represents the framework for classifying Neonatal Lung Ultrasound (LUS) frame and video data. The initial block encompasses data preprocessing,
primarily involving video cropping. The subsequent segment delineates three distinct methods. The first method involves training from scratch for frame-to-video-level classification
(F2V-TS). The second method employs a pre-trained model originally trained on adults and fine-tuned for frame-to-video-level classification (F2V-FT). The final method entails
direct video-level classification (DV).

Fig. 4. Internal structure of an LSTM Cell with gates, inputs, and outputs.

Computers in Biology and Medicine 183 (2024) 109315 
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Fig. 5. Block-based representation of TranSLUCEnT.
stage consists of a dense layer of size 4 to classify the spatiotemporal
information of a video in the four scores.

TranSLUCEnT
TranSLUCEnT is a video vision transformer-inspired architecture,

consisting of an encoding layer that captures frame-level features using
the pre-trained ResNet-18 model, followed by a transformer encoder
and a classifier. The model leverages the knowledge from the pre-
trained model to efficiently extract frame-level feature representations
and learn the relationship between the sequence of these frames and
the corresponding video label. For a video 𝑉 consisting of 𝑇 frames
with dimensions 𝑤 × ℎ × 𝑐 (where ℎ is the height, 𝑤 is the width,
and 𝑐 is the number of channels), a sequence of frames (𝑥1, 𝑥2,… , 𝑥𝑡)
is extracted. The feature encodings 𝐸, extracted from the pre-trained
ResNet-18, are combined with a learnable classification token 𝑣𝑐 𝑙 𝑎𝑠𝑠 for
the classification task. This encoded sequence of frames, along with
the classification token, is represented as 𝑧0 and passed through the
transformer encoder.

As illustrated in Fig. 5, the transformer encoder consists of 𝐿
identical layers, with each layer comprising two main components:
a multi-head self-attention (MSA) block and a fully connected feed-
forward (MLP) block. In the final layer of the encoder, TranSLUCEnT
uses the first element of the sequence 𝑧(0)𝐿 and passes it to the classifier
for predicting the class label.

To address the issue of imbalanced distribution during training,
CNN-LSTM and TranSLUCEnT model utilized class weighting tech-
nique. This method provides a straightforward yet effective way to
manage class imbalance by assigning higher weights to samples from
the minority class and lower weights to those from the majority class.
As a result, the model focuses more on the minority class, improving
its ability to make accurate predictions for that class.

3. Experimental setup
6 
3.1. Data configurations

Based on the data annotations provided at the frame and video-
levels (see Fig. 2), the entire data from 70 exams is utilized in three
different configurations (see Fig. 6). For each configuration, the train-
ing, validation, and test splits are made at the exam-level. In the first
configuration (config-1), we utilized the frame-level annotated data
from 10 exams for training and validation purposes of the DL models in
F2V-TS and F2V-FT. The remaining 60 exams, annotated at video-level,
are utilized for testing purposes. In the second configuration (config-
2), a similar approach is applied to the entire frame-level annotated
data from 20 exams for training and validation purposes while the
remaining data from 50 exams is utilized for testing purposes. In the
third configuration (config-3) the entire data from 70 exams, annotated
at video-level, is utilized for training and validation of the DV approach.
The data distribution for each configuration is provided in the following
sections.

3.1.1. Config-1
In Config-1, we utilized 8210 LUS frames from 10 exams, for train-

ing and validation. These frames were annotated at the frame level by
3HOs, with the same scores achieved 100% agreement in their labeling.
The remaining 60 exams, consisting of 360 LUS videos, were used for
testing and labeled by the 3HOs independently at the video level. The
distribution of the dataset based on config-3 is mentioned in Fig. 6.

3.1.2. Config-2
In Config-2, we utilized 22,560 LUS frames from 20 exams, for train-

ing and validation. These frames were annotated at the frame level by
3HOs through majority voting (with at least two of the 3HOs assigned
the same score). The remaining 50 exams, consisting of 300 LUS videos,
were used for testing and labeled by the 3HOs independently at the
video level. The distribution of dataset based on config-3 is mentioned
in Fig. 6.
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Fig. 6. Score-wise distribution of frame-level and video-level dataset configurations used for training, validation, and testing. F2V-TS and F2V-FT utilized config-1 and config-2
for frame-to-video-level classification, while DV utilized config-3 for direct video-level classification.
3.1.3. Config-3
In Config-3, we utilized the LUS video from 70 exams annotated at

the video level. The score provided in the majority among the three
HOs for each video was considered as the ground truth for training.
This resulted in a dataset comprising a total of 417 LUS videos. The
final model predictions were compared independently against the labels
provided by the 3HOs at the video level. The distribution of dataset
based on config-3 is mentioned in Fig. 6.

3.2. Training and validation strategy

Therefore, all the approaches, F2V-TS, F2V-FT, and DV, employed
leave-N-out cross-validation (LNOCV). This technique involves training
a model on 𝑇𝑝 − 𝑁 exams and validating it on 𝑁 exams, where 𝑇𝑝
represents the total number of exams, and 𝑁 varies within the range
𝑁 ∈ {1, 2, 3,… , 𝑇𝑝 − 1}.

For both the configurations, config-1, and config-2, F2V-TS and F2V-
FT are trained and validated over ten folds. Particularly, for config-1,
the data from 9 exams are used for training the model in each fold,
with the remaining 1 exam designated for validation (𝑁 = 1). In the
case of config-2, which comprises the data from 20 exams, 18 exams
are used for training, and the remaining 2 are held out for validation
in each fold (𝑁 = 2).
7 
DL models, for the F2V-TS approach, are trained for 100 epochs
with a batch size of 16, enabling iterative parameter updates and accu-
racy enhancement. Adam optimizer is used to update model parameters
based on gradients calculated using backpropagation. Categorical cross-
entropy is used as the loss function. To prevent overfitting, early
stopping criteria are used in this regard. In the case of the F2V-FT
method, the model has been trained in batches of 4 over 50 epochs,
with stochastic gradient descent utilized as the optimizer. The learning
rate 1e−4 is used. The details on the training settings and parameters
can be found in the study [23].

DV strategy does not utilize frame-level labels for training and it is
trained on the videos obtained from 70 exams (config-3) for video-level
classification. In this regard, for each fold, 69 out of a total of 70 exams
are allocated to the training set, and the remaining 1 exam is set aside
for validation (𝑁 = 1). The CNN-LSTM and TranSLUCEnT architectures
are trained using backpropagation with cross-entropy loss, calculated
over a batch size of 16. The Adam optimizer, with a learning rate of
1e−4, is applied for 30 epochs.

The selection of LNOCV over Leave-One-Subject-Out Cross-
Validation (LOSO-CV) is due to the unique nature of our dataset and the
developmental variability between exams. Each exam was taken at a
different time frame, capturing different stages of lung development in
neonates. Specifically, the median interquartile range (Q1, Q3) for the



N. Fatima et al. Computers in Biology and Medicine 183 (2024) 109315 
Fig. 7. Accuracy analysis of 10 plots (M1 to M10) ranging from 1% to 100% thresholds by utilizing the F2V-TS approach. The 𝑥-axis of each plot indicates the number of
thresholds applied to predicted frames of each video, while the 𝑦-axis showcases the accuracy concerning three human operators (HOs): HO1(blue lines), HO2 (red lines), and
HO3 (orange lines) representing the ground truth labels. (A), and (B) represent the results of F2V-TS approach utilizing the config-1 and config-2 respectively. The highlighted
plots M10 (A) and M4 (B) represents the best performing model.
time gaps between measurements for the same subjects was 22 (9, 49)
days, indicating significant temporal variation. For this reason, leaving
out an entire subject (LOSO-CV) can result in the model training on data
that may not capture the same variability seen within that subject. To
this extent, this would limit the model’s ability to generalize well when
faced with new subjects at different developmental stages. In contrast,
the LNOCV model is trained on a diverse range of developmental stages.
This approach helps the model generalize better across different exams,
as it captures the high variability in lung ultrasound patterns associated
with different exam intervals.

3.3. Evaluation metrics and computational resources

In this section, we describe the evaluation metrics used to assess
the performance of our proposed methods. These metrics are important
for gauging the performance of frame-level classification methods in
F2V-TS and F2V-FT and video-level classification of all three methods,
F2V-FT, F2V-TS, and DV. The metrics used in our evaluation are accu-
racy, precision, recall, and F1-Score. The formulated representation of
these metrics is given below.

Accuracy = 𝑇 𝑁 + 𝑇 𝑃
𝑇 𝑁 + 𝐹 𝑃 + 𝑇 𝑃 + 𝐹 𝑁 , (8)

Precision = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 , (9)

Recall = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 , (10)

Precision × Recall
F1 Score = 2 × Precision + Recall , (11)
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Table 2
Computational analysis of the models.

Method Models No. parameters Training time (s)
F2V-TS DCNN 1,778,708 config-1: 39.04 , config-2 : 16.29
F2V-TS VIT 47,515,396 config-1: 3318.62, config-2 : 5098.51
F2V-TS Resnet-18 11 689 512 config-1: 334 , config-2 :889
F2V-FT Resnet-18 11 178 564 config-1: 775, config-2 :2236
DV LSTM 789 508 config-3: 19
DV TranSLUCEnT [43] 11 689 512 config-3:17

where, 𝑇 𝑃 , 𝑇 𝑁 , 𝐹 𝑃 , and 𝐹 𝑁 indicate true positive, true negative, false
positive, and false negative, respectively.

All the experiments for the F2V approach were performed on
NVIDIA GeForce RTX 3060, CUDA 10.1, a 16-core processor, and 44 GB
of GPU memory (12 GB dedicated GPU memory and 32 GB shared GPU
memory). Experiments for the DV approach were performed on NVIDIA
A100 Tensor Core GPU, 80 GB. The computational details with respect
to the model parameters and training time are given in Table 2.

4. Results

4.1. Lung ultrasound video scoring using F2V-TS

In the first step of F2V-TS approach, among the three employed
models (DCNN, VIT, and ResNet-18), the best-performing model for
frame-level classification is selected. To do so, each model is trained
and validated using config-1. Based on the combined metric perfor-
mance over the 10 folds, The DCNN model performed the best among
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Fig. 8. Standard Deviation (SD) analysis of 10 plots (M1 to M10) on config-1 ranging from 1% to 100% thresholds by utilizing the F2V-TS approach. The 𝑥-axis of each plot
indicates the number of thresholds applied to predicted frames of each video, while the 𝑦-axis showcases the accuracy concerning three human operators (HOs): HO1 (blue
lines), HO2 (red lines), and HO3 (orange lines) are representing the ground truth labels. (A), and (B) represent the results of F2V-TS approach utilizing the config-1 and config-2
respectively. The highlighted plots M10 (A) and M4 (B) represents the best performing model.
the three models, achieving a mean validation accuracy of 54%, com-
pared to VIT with 52% and ResNet-18 with 51%. In the second step,
frame-level predictions for the test-set of config-1, from all the 10
DCNN models, (one model for each fold) are aggregated using the
threshold-based method mentioned in Section 2.4.1. Video-level per-
formance for each model (M1 to M10) at different levels of thresholds
(𝑇 ℎ) ranging from 1 to 100% is illustrated in Fig. 7(A). For each
model, we saw a similar trend in accuracy across different 𝑇 ℎ levels.
It is observed that, at lower 𝑇 ℎ levels, videos are likely to be scored
accurately as score 3 compared to the other scores, since a lower
percentage of frames is required to be predicted as the worst score
by the DL model. In contrast, at higher 𝑇 ℎ levels, videos indicating
a fully aerated lung show a higher percentage of frames predicted as
score 0 by the DL model and are thus accurately predicted as score
0. As we increase the 𝑇 ℎ from 1% to 100%, the video-level scoring
accuracy for scores 1 and 2 also improved, resulting in an optimal
classification performance across all four scores at the given threshold.
This observed trend across the 𝑇 ℎ levels is consistent with the GTs
provided by all 3HOs. To determine the final AI solution using the F2V-
TS approach, among the 10 models of DCNN, the corresponding model
is selected, based on the highest agreement achieved across either of
the 3HOs. In this regard, model M10 exhibited the highest accuracy
of 63.06% at a 𝑇 ℎ value 34% w.r.t the GT labels given by HO1 (GT-
HO1) (accuracy trend w.r.t 𝑇 ℎ levels shown in blue-lines of Fig. 7A).
For the model M10, the highest accuracy achieved w.r.t GT labels given
by HO2 (GT-HO2) and HO3 (GT-HO3) are reported as 54.72% at a 𝑇 ℎ
of 33%, and 57.50% at a 𝑇 ℎ of 25%, respectively (accuracy trend w.r.t
𝑇 ℎ levels shown in red and orange lines of Fig. 7A). Conclusively, the
final predicted scores (PredTS) from M10 at above-selected thresholds
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w.r.t the 3HOs (34%: GT-HO1, 33%: GT-HO2, and 25%: GT-HO3) are
utilized to compute the video-level scores. The PredTS on the test-set
of config-1 (𝑐1) for GT-HO1, GT-HO2, and GT-HO3 are represented as
PredTS𝑐1𝐻 𝑂1, PredTS𝑐1𝐻 𝑂2, and PredTS𝑐1𝐻 𝑂3 respectively.

To analyze the impact of the amount of training data for frame-level
classification models, Fig. 7(B) shows the performance of 10 DCNN
models on the test-set of config-2. A similar trend is observed across
all the 10 models as shown in Fig. 7(A). Among the 10 models, M4
provides the highest accuracy of 60.00% at 𝑇 ℎ of 33% w.r.t GT-HO1.
Similarly, the highest accuracy w.r.t other GTs are reported as 59.33%
(𝑇 ℎ: 44%, GT-HO2) and 55.67% (𝑇 ℎ: 41%, GT-HO3), respectively. The
PredTS on testset of config-2 (𝑐2) on the given threshold w.r.t GT-HO1,
GT-HO2, and GT-HO3 are represented as PredTS𝑐2𝐻 𝑂1, PredTS𝑐2𝐻 𝑂2,
and PredTS𝑐2𝐻 𝑂3 respectively.

Standard deviation (SD) calculates the variation between the video-
level scores computed across different 𝑇 ℎ values (1% to 100%) and
GT labels assigned by the 3HOs, as provided in Fig. 8. The SD values
w.r.t the increasing 𝑇 ℎ are analyzed for both configurations. In the
case of config-1 (see Fig. 8A), the model M10 showed SD value of
0.68 (𝑇 ℎ: 34%, GT-HO1), 0.75 (𝑇 ℎ: 33%, GT-HO2) and 0.75 (𝑇 ℎ: 25%,
GT-HO3), whereas for config-2 (see Fig. 8B) M4 showed SD values
of 0.69 (𝑇 ℎ: 33%, GT-HO1), 0.75 (𝑇 ℎ: 44%, GT-HO2) and 0.81 (𝑇 ℎ:
41%, GT-HO3). Overall all the models trained on config-1, compared to
config-2, demonstrated relatively lower and more consistent SD values
w.r.t the GT from 3HOs. This behavior can be attributed to the fact that
in config-1, the GT labels collected to train the DL model are based
on the perfect (i.e. 100%) agreement among the 3HOs compared to
the majority vote-based labels in config-2. Although the data increased
in config-2, varying interpretations of LUS patterns among the 3HOs
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Fig. 9. Accuracy analysis of 10 plots (M1 to M10) ranging from 1% to 100% thresholds by utilizing the F2V-FT approach. The 𝑥-axis of each plot indicates the number of
thresholds applied to predicted frames of each video, while the 𝑦-axis showcases the accuracy concerning three human operators (HOs): HO1(blue lines), HO2 (red lines), and
HO3 (orange lines) representing the ground truth labels. (A), and (B) represent the results of F2V-FT approach utilizing the config-1 and config-2 respectively. The highlighted
plots M3 (A) and M2 (B) represents the best performing model.
introduced an implicit subjectivity within the GT labels to train the DL
models.

4.2. Lung ultrasound video scoring using F2V-FT

For F2V-FT approach, frame-level scores from all 10 models of
ResNet-18, one model for each fold, using the config-1 are aggre-
gated by the threshold-based method. Video-level performance for each
model (M1 to M10) at different levels of 𝑇 ℎ (1 to 100%) are illustrated
in Fig. 9(A). For each model, we observed a similar trend among 3HOs
achieved w.r.t increasing 𝑇 ℎ levels. However, slight improvements in
accuracy are observed in all 10 models. This is likely due to the models
being pre-trained on a larger representative dataset from the adult
patient population.

Among the 10 models of ResNet-18, M3 exhibited the highest
accuracy of 66.39% (𝑇 ℎ: 15%, GT-HO2) (accuracy trend w.r.t 𝑇 ℎ levels
shown in red lines Fig. 9A). For the model M3, the highest accuracy
achieved w.r.t GT-HO2 and GT-HO3 are reported as 65.83% at 𝑇 ℎ of
33%, and 61.94% at a 𝑇 ℎ of 16%, respectively. The final video-level
predicted scores (PredFT) given by M3 at 𝑇 ℎ w.r.t 3HOs (15%: GT-
HO1, 33%: GT-HO2, and 16%: GT-HO3) are utilized for video-level
scores. The PredFT on 𝑐1 on the given threshold w.r.t GT-HO1, GT-
HO2, and GT-HO3 are represented as PredFT𝑐1𝐻 𝑂1, PredFT𝑐1𝐻 𝑂2, and
PredFT𝑐1𝐻 𝑂3 respectively.

Similarly, for config-2 the performance of ten ResNet-18 models
shown in Fig. 7(B). Among these models, M2 demonstrated the highest
performance with an accuracy of 77.33% (𝑇 ℎ: 14%, GT-HO1), see
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Table 3. Similarly, the highest accuracy achieved by M2 are reported
as 68.00% (𝑇 ℎ: 50%, GT-HO2), and 71.00% (𝑇 ℎ: 30%, GT-HO3),
respectively. It is noted that the scoring definitions of the LUS patterns
in adults and neonates are not exactly aligned. This significant increase
in the accuracies can be due to the increased training data available
to adjust the model features from source to target domain more effec-
tively. The PredFT on 𝑐2 based on the given threshold w.r.t GT-HO1,
GT-HO2, and GT-HO3 are represented as PredFT𝑐2𝐻 𝑂1, PredFT𝑐2𝐻 𝑂2,
and PredFT𝑐2𝐻 𝑂3, respectively.

Looking at the SD across the different 𝑇 ℎ for config-1 (see Fig. 10A),
the model M3 showed an SD value of 0.73 across the 𝑇 ℎ (𝑇 ℎ: 15%,
GT-HO1), while 0.77 across (𝑇 ℎ: 33%, GT-HO2) and (𝑇 ℎ: 16%, GT-
HO3). Similarly for config-2, M2 showed relatively lower SD value of
0.64 (𝑇 ℎ: 14%, GT-HO1), 0.57 (𝑇 ℎ: 50%, GT-HO2), and 0.52 (𝑇 ℎ: 30%,
GT-HO3) (see Fig. 10B). We noted that unlike the overall trend of SD
observed for the F2V-TS approach, F2V-FT models trained on config-
2 demonstrated relatively lower and more consistent SD values w.r.t
the GT from 3HOs. One possible explanation for this improvement can
be attributed to the potential of the pre-trained model to mitigate the
subjectivity of GT, in config-2, with an increase in the training data.

4.3. Lung ultrasound video scoring using DV

The 𝐷 𝑉 approach involved training and validating both CNN-LSTM
and TranSLUCEnT models using the config-3 setup. Among the two,
the TranSLUCEnT model demonstrated superior performance in video-
level classification compared to CNN-LSTM (see Table 3). The model
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Fig. 10. Standard Deviation (SD) analysis of 10 plots (M1 to M10) on config-1 ranging from 1% to 100% thresholds by utilizing the F2V-FT approach. The 𝑥-axis of each plot
indicates the number of thresholds applied to predicted frames of each video, while the 𝑦-axis showcases the accuracy concerning three human operators (HOs): HO1 (blue
lines), HO2 (red lines), and HO3 (orange lines) are representing the ground truth labels. (A), and (B) represent the results of F2V-FT approach utilizing the config-1 and config-2
respectively. The highlighted plots M3 (A) and M2 (B) represents the best performing model.
predictions across the GT-HO1 achieved a mean accuracy of 71%.
The model predictions (PredDV) across the GT-HO1 achieved a mean
accuracy of 71%. However, across the GT-HO2 and GT-HO3, the model
showed a slight improvement, reaching a mean accuracy of 72%. These
results are based on the average metrics calculated over 69 folds. The
final predicted scores from the TranSLUCEnT model in config-3 are
denoted as PredDV𝑐3.

5. Inter-rater reliability analysis (IRR)

To determine inter-rater reliability (IRR), Fleiss’s kappa (𝑓 ) coeffi-
cient [44] is computed. The interpretation of 𝑓 follows specific criteria
with its value ranging from less than 0 to 1, indicating different levels
of agreement. To this extent, an 𝑓 value less than zero indicates poor
agreement, whereas, a value between 0.00 and 0.20, indicates slight
agreement. An 𝑓 value between 0.21 and 0.40 indicates fair agreement
whereas, a value between 0.41 and 0.60 represents moderate agree-
ment. An 𝑓 value between 0.61 and 0.80 shows substantial agreement
whereas, a value above 0.81 indicates a perfect agreement. The kappa
values are calculated between the 3HOs and each of the AI solutions
PredTS, PredFT, and PredDV on different configurations, indicating the
level of agreement between the 3HOs and AI at the video-level. The
Fleiss’ kappa analysis of these solutions with the HOs is elaborated in
the subsequent sections.

5.1. HOs vs. AI (F2V-TS)

Fig. 11 shows the Fleiss’ kappa analysis among the 3HOs and
PredTS, obtained using config-1, as AI solutions. The 𝑥-axis indicates
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whether Fleiss’ kappa is computed considering all the scores (overall
shows mean kappa value) and only specific scores (from 0 to 3). Among
the 3HOs (Fig. 11 3HOs), the mean kappa value is found as 0.61 (all
the scores together). The score-wise kappa value shows a moderate
agreement for score 1 and score 2, while substantial agreement is
observed for score 0 and score 3. This suggests that for all the HOs,
classifying LUS data into scores 0 and 3 is relatively simpler than scores
1 and 2. This is primarily due to the blurred boundaries between the
neighboring scores resulting in a subjective nature of the analysis [35].
The Fleiss’ kappa analysis in subsequent plots Fig. 11(A, B, C) illustrates
the agreement between 3HOs and AI predictions. The overall mean
kappa values are found as 0.48 for both 3HOs vs. PredTS𝑐1𝐻 𝑂1, and
3HO vs. PredTS𝑐1𝐻 𝑂2, and 0.47 for 3HOs vs. PredTS𝑐1𝐻 𝑂3, indicates
a moderate level of agreement across all cases. This suggests that the
AI solutions generally aligns well with the 3HOs assessments. When
analyzing specific scores, the agreement remains moderate for scores 0,
1, and 2 across all three cases, indicating that the AI solutions reliably
replicates the variability observed among the HOs. Also, for score 3,
which likely represents more severe or distinct lung conditions, the
agreement is more substantial. This suggests that certain AI solutions
are more adept at recognizing features associated with higher scores,
such as lung consolidations. Overall, the findings suggest that introduc-
ing AI solutions as an operator alongside the 3HOs in kappa analysis
reduces the overall variability (see Fig. 11A, B, C), which is notably
higher among the human operators alone (see Fig. 11, 3HOs).

Fig. 12 shows the Fleiss’ kappa analysis among the 3HOs and
PredTS, obtained using config-2 as AI solutions. Among the 3HOs, the
mean kappa value is found to be 0.58. The score-wise analysis, as
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Table 3
Performance analysis of three different methods at video-level classification on different configurations. (Performance in Blue represents the
best-performing strategy for video-level classification following the F2V-FT approach on config-2).

Methods Models Accuracy Precision Recall F1 Score Configurations Ground Truth

0.63 0.63 0.63 0.63 config-1 GT-HO1
F2V-TS DCNN 0.54 0.60 0.54 0.55 config-1 GT-HO2

0.57 0.59 0.57 0.57 config-1 GT-HO3

0.60 0.53 0.60 0.60 config-2 GT-HO1
F2V-TS DCNN 0.59 0.61 0.59 0.60 config-2 GT-HO2

0.55 0.58 0.55 0.56 config-2 GT-HO3

0.58 0.61 0.58 0.58 config-1 GT-HO1
F2V-FT ResNet-18 0.66 0.65 0.66 0.65 config-1 GT-HO2

0.62 0.62 0.62 0.62 config-1 GT-HO3

0.77 0.78 0.77 0.76 config-2 GT-HO1
F2V-FT ResNet-18 0.68 0.77 0.68 0.68 config-2 GT-HO2

0.71 0.76 0.71 0.70 config-2 GT-HO3

0.58 0.60 0.58 0.57 config-3 GT-HO1
DV LSTM 0.53 0.61 0.53 0.55 config-3 GT-HO2

0.55 0.59 0.55 0.55 config-3 GT-HO3

0.71 0.72 0.71 0.71 config-3 GT-HO1
DV TranSLUCEnT 0.72 0.75 0.72 0.73 config-3 GT-HO2

0.72 0.72 0.72 0.72 config-3 GT-HO3
Fig. 11. (From Left to Right) illustrates Fleiss’ kappa analysis between human operators (HOs) and AI solutions at video-level using config-1; graph (3HOs) illustrates the kappa
values between 3HOs at video-level; graph (A) illustrates the kappa values between 3HOs vs. PredTS𝑐1𝐻 𝑂1; graph (B) illustrate the kappa values between 3HOs vs. PredTS𝑐1𝐻 𝑂2;
graph (C) illustrate the kappa values between 3HOs vs. PredTS𝑐1𝐻 𝑂3.
Fig. 12. (From Left to Right) illustrates Fleiss’ kappa analysis between human operators (HOs) and AI solutions at video-level using config-2; graph (3HOs) illustrates the kappa
values between 3HOs at video-level; graph (A) illustrates the kappa values between 3HOs vs. PredTS𝑐2𝐻 𝑂1; graph (B) illustrate the kappa values between 3HOs vs. PredTS𝑐2𝐻 𝑂2;
graph (C) illustrate the kappa values between 3HOs vs. PredTS𝑐2𝐻 𝑂3.
illustrated in Fig. 12 (3HOs), reveals moderate agreement among the
3HOs for scores 0, 1, and 2, with a substantial agreement for score 3.
The lower kappa value for score 0 among the 3HOs can be attributed
to the reduced number of videos classified as score 0 in the test set of
config-2. Introducing AI solutions as an operator alongside the 3HOs
results in a moderate agreement, with a mean kappa value of 0.46
across all three cases (see Fig. 12A, B, C). However, the score-wise
agreement between 3HOs vs. PredTS𝑐2𝐻 𝑂1 shows moderate agreement
for scores 0, 1, and 3, but only fair agreement for score 2 (see Fig. 12A).
On the other hand, 3HOs vs. PredTS𝑐2𝐻 𝑂2 and 3HOs vs. PredTS𝑐2𝐻 𝑂3,
the results show fair agreement for scores 0 and 2 and moderate
agreement for scores 1 and 3. The fair agreement for score 0 could
be attributed to the limited number of score 0 instances in the test
set, which may have affected the model’s performance. Additionally,
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the model seems to struggle with distinguishing between the patterns
associated with score 2 and score 3, leading to lower agreement for
these scores. Overall, the trend in Fig. 12 (A, B, C) remains consistent
with the 3HOs. This suggests that the high variability observed in the
3HOs is significantly reduced when AI is introduced as the operator.

5.2. HOs vs. AI (F2V-FT)

Fig. 13 shows the Fleiss’ kappa analysis among the 3HOs and
PredFT, obtained using config-1, as AI solutions. The agreement among
the 3HOs is previously discussed in 5.1 (mean kappa value is 0.61)
indicating the substantial agreement when it comes to kappa analysis
among the 3HOs vs. PredFT𝑐1𝐻 𝑂1 and 3HOs vs. PredFT𝑐1𝐻 𝑂3 (see
Fig. 13A, C), the mean kappa value is found as 0.51 for both cases.
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Fig. 13. (From Left to Right) illustrates Fleiss’ kappa analysis between human operators (HOs) and AI solutions at video-level using config-1; graph (3HOs) illustrates the kappa
values between 3HOs; graph (A) illustrates the kappa values between 3HOs vs. PredFT𝑐1𝐻 𝑂1; graph (B) illustrate the kappa values between 3HOs vs. PredFT𝑐1𝐻 𝑂2; graph (C)
illustrate the kappa values between 3HOs vs. PredFT𝑐1𝐻 𝑂3.
Fig. 14. (From Left to Right) illustrates Fleiss’ kappa analysis between human operators (HOs) and AI solutions at video-level using config-2; graph (3HOs) illustrates the kappa
values between 3HOs; graph (A) illustrates the kappa values between 3HOs vs. PredFT𝑐2𝐻 𝑂1; graph (B) illustrate the kappa values between 3HOs vs. PredFT𝑐2𝐻 𝑂2; graph (C)
illustrate the kappa values between 3HOs vs. PredFT𝑐2𝐻 𝑂3.
Similarly, 3HOs and PredFT𝑐1𝐻 𝑂2 (see Fig. 13B) the mean kappa value
is found as 0.49. These results show slightly lower kappa values com-
pared to the ones among the 3HOs. Specifically, score-wise agreement
(see Fig. 13 A, B, C) score 3 indicates moderate agreement among in
all three cases. This is because the DL models are previously trained on
adults LUS patterns slightly deviating from the ones of neonates [45].
When scoring LUS patterns in adults, small and large consolidations
are labeled as score 2 and score 3 respectively. Whereas, in neonates,
consolidations are only labeled as score 3. Consequently, this causes the
potential misclassification of consolidation patterns into score 2 instead
of score 3 by the AI solutions.

Fig. 14 represents the Fleiss’ kappa analysis among the 3HOs and
PredFT obtained using config-2 as AI solutions. The agreement among
the 3HOs was previously discussed in Section 5.1 (mean kappa value
is 0.58) indicating the moderate agreement. In the kappa analysis be-
tween the 3HOs and PredFT𝑐2𝐻 𝑂1 (see Fig. 14A), the mean kappa value
is 0.52. Similarly, for 3HOs and PredFT𝑐2𝐻 𝑂2 (see Fig. 14B), the mean
kappa value is 0.54. Among the 3HOs and PredFT𝑐2𝐻 𝑂3 (see Fig. 14C),
the mean kappa value is 0.51. All three cases demonstrate moderate
agreement. The score-wise kappa analysis among the 3HOs and AI
solutions (Fig. 14A, B, C) shows moderate agreement for score 0, 1,
and 2, and substantial agreement for score 3. Unlike the trend observed
for config-1 and config-2 w.r.t score 1, 2, and 3 are the same. However,
since the model was trained on a smaller set of score 0, the kappa value
has decreased in this case. The increased agreement indicates that the
pre-trained model can learn the features from the neonatal LUS data
more effectively due to the larger training data size. This potentially
enabled the pre-trained model to align the feature representations of
the LUS patterns from adults more accurately to neonates. Overall, the
findings suggest that introducing AI as an operator alongside the 3HOs
in kappa analysis reduces the overall variability (see Fig. 14A, B, C),
which is notably higher among the 3HOs (see Fig. 14, 3HOs).

5.3. HOs vs. AI (DV)

Fig. 15 presents the Fleiss’ kappa analysis 3HOs and PredDV, ob-
tained using config-3 as the AI solution. Among the 3HOs (Fig. 15
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3HOs), the analysis revealed a mean kappa value of 0.65. The score-
wise analysis shows moderate agreement for scores 1 and 2, substantial
agreement for score 0, and perfect agreement for score 3. The moderate
agreement among the HOs when labeling scores 1 and 2 suggests that
the similarity between these scores both exhibiting vertical artifacts,
with score 1 showing mild alterations and score 2 showing severe ones
made it difficult for the HOs to differentiate between them. In contrast,
scores 0 and 3 had more distinct features, resulting in higher agreement
among the HOs. These findings align with trends described in previous
studies on adult LUS patterns [35].

The Fleiss’ kappa analysis in Fig. 15 (3HOs vs. AI) further illus-
trates the agreement between the 3HOs and PredDV𝑐3, with a mean
kappa value of 0.62. Score-wise, the AI solution exhibited moderate
agreement for score 2 and substantial agreement for the other scores.
The inclusion of an AI solution alongside the 3HOs shows that the AI
performed similarly to the 3HOs and effectively distinguished the more
distinct features associated with scores 0 and 3. Notably, the integration
of AI improved the agreement for score 2, raising it from moderate
(among 3HOs) to substantial (among 3HOs vs. AI). This improvement
suggests that the AI learned the features obtained from the pre-trained
model trained on a large population of adult LUS patterns, and is
better at recognizing the subtle differences between scores 1 and 2.
The AI model identified the distinctive features in score 2, where the
HOs struggled due to the similarity of artifacts between score 1 and
score 2. As a result, the variability in interpretation was reduced by
introducing the AI as the operator with 3HOs, improving the overall
consistency and reliability of the analysis. This demonstrates that the AI
can complement HO interpretation by enhancing accuracy, especially
in challenging cases.

Statistical analysis between the 3HOs and proposed AI solutions in
terms of kappa value is given in Table 4.

6. Discussion and conclusion

In this study, we introduced two strategies for automated scoring of
LUS patterns in newborns: frame-to-video-level (F2V-TS and F2V-FT)
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Fig. 15. (From Left to Right) illustrates Fleiss’ kappa analysis between three human operators (3HOs) at video level and 3HOs vs. AI solution following the TranSLUCEnT model
prediction.
Table 4
Statistical analysis using Fleiss’s kappa, conducted between the three human operators and the proposed AI solutions (F2V-TS, F2V-FT, and DV)
across different configurations.

Operators Mean fleiss’ kappa values Score 0 Score 1 Score 2 Score 3 Configurations

3HOs 0.61 0.62 0.58 0.53 0.78 config-1
3HOs 0.58 0.50 0.56 0.53 0.75 config-2
3HOs 0.65 0.70 0.60 0.57 0.83 config-3

3HOs vs. PredTS𝑐1𝐻 𝑂1 0.48 0.48 0.47 0.42 0.61 config-1
3HOs vs. PredTS𝑐1𝐻 𝑂2 0.48 0.48 0.47 0.42 0.61 config-1
3HOs vs. PredTS𝑐1𝐻 𝑂3 0.47 0.49 0.46 0.41 0.60 config-1

3HOs vs. PredTS𝑐2𝐻 𝑂1 0.46 0.42 0.48 0.38 0.56 config-2
3HOs vs. PredTS𝑐2𝐻 𝑂2 0.46 0.36 0.49 0.39 0.58 config-2
3HOs vs. PredTS𝑐2𝐻 𝑂3 0.46 0.36 0.48 0.39 0.57 config-2

3HOs vs. PredFT𝑐1𝐻 𝑂1 0.51 0.57 0.55 0.45 0.51 config-1
3HOs vs. PredFT𝑐1𝐻 𝑂2 0.49 0.61 0.51 0.43 0.52 config-1
3HOs vs. PredFT𝑐1𝐻 𝑂3 0.51 0.56 0.55 0.45 0.51 config-1

3HOs vs. PredFT𝑐2𝐻 𝑂1 0.52 0.51 0.50 0.48 0.63 config-2
3HOs vs. PredFT𝑐2𝐻 𝑂2 0.54 0.42 0.54 0.52 0.63 config-2
3HOs vs. PredFT𝑐2𝐻 𝑂3 0.51 0.51 0.55 0.51 0.63 config-2

3HOs vs. PredDV𝑐3 0.62 0.69 0.62 0.53 0.71 config-3
and direct video-level (DV) approaches. Both strategies were trained
on foundational deep learning models, such as DCNN, and widely used
method pre-trained Resnet-18 which was outperforming in state-of-the-
art studies [23,41], as well as on more advanced models, including
VIT transformers, LSTM, and TranSLUCEnT with attention mechanisms.
The selection of these models was aimed at establishing a benchmark
for neonatal studies, ensuring a fair comparison with state-of-the-art
research. Frame-to-video-level (F2V) scoring involves producing frame-
level predictions of a LUS video followed by an aggregation technique
to compute the score at the video level. Frame-level classification mod-
els of the two methods (F2V-TS and F2V-FT) were initially trained on
a smaller dataset (config-1) labeled by 3HOs. The smaller dataset was
chosen to determine if comparable results could be achieved without
increasing the training size. Summarizing our findings, F2V-TS shows
that DCNN performs the best (accuracy: 0.54) among the employed
DL models (DCNN, ResNet-18, and VIT) for frame-level classification.
The corresponding accuracy at the video-level was 0.63. This shows
that classifying LUS frames using relatively less complex models like
DCNN, can achieve good classification performance. In comparison,
the mean Fleiss’ kappa value among the 3HOs on testset of config-1
was found as 0.61 thus indicating substantial agreement, also F2V-TS
as the AI solution with 3HOs showed a moderate agreement with the
mean kappa value of 0.48. Although the kappa value between the 3HOs
and the AI was lower, incorporating AI as an operator reduced the
variability, which had been higher among the 3HOs alone. The second
method F2V-FT was implemented using a pre-trained ResNet-18 model,
14 
initially trained on 58,924 frames of adults collected from multiple
centers [23]. The pre-trained model (ResNet-18), used in the F2V-
FT approach, outperformed DCNN in F2V-TS, achieving a relatively
higher accuracy of 0.66 at the video-level. This slight improvement in
accuracy (3%) can be due to the fact that, although the model in F2V-
FT was previously trained on relatively larger LUS data from adults,
the limited data in config-1 seems insufficient to adapt the differences
in scoring definitions of LUS patterns between adults and neonates.
F2V-FT as the AI solution with 3HOs showed moderate agreement
with the mean kappa value of 0.51. A 3% increase in the kappa
value, reflecting moderate agreement, was observed when transitioning
from the F2V-TS to the F2V-FT approach. These results suggest that
with the smaller training dataset available (config-1), no significant
improvement in video-level scoring is observed while utilizing either
of the two approaches (F2V-TS and F2V-FT).

To assess the impact of the amount of training data on overall
model performances, both methods F2V-TS, and F2V-FT were evalu-
ated on a relatively larger dataset (config-2) labeled by 3HOs. F2V-TS
with the DCNN achieved the video-level performance (accuracy: 0.60),
indicating a 3% decrease from config-1. In comparison mean kappa
value among the 3HOs was 0.58, indicating a moderate agreement. The
AI as the operator vs. 3HOs also showed a moderate agreement with
the mean kappa value of 0.46, kappa value decreased. It is observed
that in a scenario with a perfect agreement among the GT labels
given by the HOs (config-1), F2V-TS performed well. Whereas, for a
relatively larger training dataset (config-2), the results indicate that
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increasing the training data size may not necessarily enhance rather
than negatively impact the model performance due to the subjectivity
in the GT labels assigned by 3HOs with majority voting. In contrast,
with the increasing training data (config-2), results show that F2V-FT
is able to align the feature representation of LUS patterns from adults
to neonates more effectively, resulting in the highest accuracy of 0.77
at the video-level. Furthermore, compared to F2V-TS, results show that
the pre-trained model can potentially mitigate the variability in the GT
provided by HOs. AI solution shows moderate agreement with 3HOs
indicating the mean kappa value of 0.52. Thus, having relatively larger
representative data available for training, F2V-FT is able to perform the
best.

To bypass labeling at the frame-level and replicate the clinical prac-
tice of directly scoring at the video-level, the second strategy (DV) was
tilized for direct video-level classification. The TranSLUCEnT classifi-

cation model was used to classify the entire dataset (config-3), achiev-
ing an accuracy of 0.72. Compared to the Fleiss kappa value among the
3HOs was 0.65, indicating substantial agreement, the given AI solution
with 3HOs showed a mean kappa value of 0.62, also indicating substan-
ial agreement. These findings suggest that the TranSLUCEnT model
emonstrated strong performance, while also reducing the variability in

their interpretations, which was higher among the HOs. However, two
key factors are also likely contributed to this improvement; the model

as evaluated on a larger dataset, and the TranSLUCEnT model lever-
ges domain knowledge from a pre-trained Resnet-18 model, originally
rained on LUS data from COVID-19 adult patients [23]. The pre-

trained Resnet-18 serves as a feature extractor, effectively transferring
domain knowledge to provide a better representation of the LUS data
from preterm neonates.

In conclusion, the choice of a suitable method from the above-
entioned strategies depends on factors such as dataset size, clinical
references, and available resources. As clinical decision-making is

generally based on the overall interpretation of the entire video rather
han isolated frames. Therefore, Frame-to-video (F2V) scoring using
he threshold-based aggregation technique is particularly useful in
esource-constrained environments. In the scenario where we have a
imited amount of frame-level labels for model training and aim to com-

pute the video-level scores, the threshold-based aggregation technique
s the best choice. As it is a clinically validated method utilized in state-
f-the-art studies. For situations with limited frame-level labeling with
o variability among HOs, training classification models from scratch
F2V-TS) appears to be a more suitable option. On the other hand,
n cases where a relatively larger dataset is available and there is no
bsolute agreement among HOs, adapting deep learning models using

the F2V-FT approach previously trained on a larger dataset proves a
good choice. However, both F2V-TS and F2V-FT require a two-step pro-
cess that depends on frame-level labels, which can be computationally
intensive and prone to labeling errors. Alternatively, the DV strategy
ffers a more computationally efficient method by directly classifying
ideos, making it a better choice in some cases.

In contrast, the AI models developed in this study for prematurity-
related lung disorders have the potential to be utilized in other domains
beyond their original focus. These models have learned foundational
features from neonatal LUS data, which are not limited to specific lung
conditions. Because many lung disorders share common characteristics,
the models can be adapted for use in diagnosing and managing other
lung diseases. Additionally, these foundational features may be rele-
vant across different age groups, such as older children or adults. To
extend the use of these models to other domains whether it is other
lung disorders or different age groups fine-tuning is essential. This
involves retraining the model on new datasets that reflect the specific
characteristics of the target population or condition. For example, if
the model were to be applied to adult lung disorders, it would need
to learn the differences in lung structure and disease patterns between
neonates and adults. Fine-tuning allows the model to adjust its learned
features to better match the new domain, making it more accurate and
15 
applicable to a broader range of clinical scenarios. By fine-tuning, the
models become versatile tools that can perform well in various settings,
making them useful not only for neonatal lung disorders but also for
iagnosing and managing lung conditions in other populations.

7. Limitations and future work

A key limitation of this study is the small dataset size, especially
in Config-1 and Config-2, where only a limited number of exams were
abeled at the frame level for model training. Since no frame-level labels
ere available for testing, the remaining video-level exams were used

as a substitute external dataset (termed as the test set) for evaluating
he model’s performance at the video level in both configurations. In
ontrast, Config-3 leverages all available exams. For this configuration,

we employed LOOCV to train and validate the models. However, we
lacked access to an external dataset for testing. As a result, the gener-
lization performance of the models remains untested on unseen data.
ddressing this limitation by acquiring a larger, more diverse dataset

s a primary goal for future work.
Additionally, the training sets for Config-2 and Config-3 rely on

majority voting, which introduces noise and variability, ultimately
affecting the model’s performance. Moreover, due to the limited avail-
ability of frame-level labeled data, we had to employ a larger test
set for Config-1 and Config-2, which deviates from standard practice.
This approach, while necessary, also restricts the generalizability of our
findings. On the other hand, although the proposed AI solution reduces
the inter-observer variability (IOV), we plan to hold calibration sessions
to further improve inter-rater agreement among clinicians. In these
sessions, all participating clinicians will review and discuss a subset of
LUS images to align their interpretations before labeling the dataset.
In addition, we aim to involve more expert neonatal clinicians with
over 10 years of experience in LUS interpretation to enhance labeling
consistency and reduce variability.

In future work, we plan to develop an interactive AI system based
n federated learning, which will provide real-time feedback to raters.
or instance, if a rater’s label significantly deviates from the AI’s
rediction (based on prior training), the system could prompt the rater
o reconsider or provide additional information, ultimately reducing
OV. We also plan to integrate gradient-weighted class activation map
Grad-CAM) and segmentation models for feature visualization, which
ould assist clinicians in making more informed decisions. Additionally,
uture work will explore the use of generative adversarial networks
GANs) to create synthetic images, addressing class imbalances and
ugmenting the dataset. These models will also facilitate automated
abeling, improving consistency across a broader range of clinicians and
educing inter-observer variability.
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