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ABSTRACT
Objective Progranulin- related frontotemporal dementia 
(FTD- GRN) is a fast progressive disease. Modelling 
the cascade of multimodal biomarker changes aids in 
understanding the aetiology of this disease and enables 
monitoring of individual mutation carriers. In this cross- 
sectional study, we estimated the temporal cascade of 
biomarker changes for FTD- GRN, in a data- driven way.
Methods We included 56 presymptomatic and 35 
symptomatic GRN mutation carriers, and 35 healthy 
non- carriers. Selected biomarkers were neurofilament 
light chain (NfL), grey matter volume, white matter 
microstructure and cognitive domains. We used 
discriminative event- based modelling to infer the cascade 
of biomarker changes in FTD- GRN and estimated 
individual disease severity through cross- validation. We 
derived the biomarker cascades in non- fluent variant 
primary progressive aphasia (nfvPPA) and behavioural 
variant FTD (bvFTD) to understand the differences 
between these phenotypes.
Results Language functioning and NfL were the earliest 
abnormal biomarkers in FTD- GRN. White matter tracts 
were affected before grey matter volume, and the left 
hemisphere degenerated before the right. Based on 
individual disease severities, presymptomatic carriers 
could be delineated from symptomatic carriers with 
a sensitivity of 100% and specificity of 96.1%. The 
estimated disease severity strongly correlated with 
functional severity in nfvPPA, but not in bvFTD. In 
addition, the biomarker cascade in bvFTD showed more 
uncertainty than nfvPPA.
Conclusion Degeneration of axons and language 
deficits are indicated to be the earliest biomarkers in 
FTD- GRN, with bvFTD being more heterogeneous in 
disease progression than nfvPPA. Our data- driven model 
could help identify presymptomatic GRN mutation 
carriers at risk of conversion to the clinical stage.

INTRODUCTION
Mutations in the progranulin (GRN) gene on chro-
mosome 17q21 are a major cause of autosomal 
dominant inherited frontotemporal dementia 
(FTD).1 2 The majority of mutation carriers develops 
a behavioural variant FTD (bvFTD) phenotype,3 

and another significant proportion of patients 
present with non- fluent variant primary progressive 
aphasia (nfvPPA).3 4 The age of symptom onset varies 
between 35 years and 90 years in GRN mutation 
carriers,1 2 without clear associations with familial 
age of onset.4 Brain changes in FTD- GRN patients 
can evolve symmetrically, or predominantly asym-
metrically, in either the left or right hemisphere.5 6

Recent longitudinal studies have suggested that 
the time- window between emerging pathophysi-
ological changes and the first clinical symptoms is 
short in GRN mutation carriers, and covers only 
2–4 years.7 8 During this period, the serum neurofil-
ament light chain (NfL) level—a marker of axonal 
degeneration—increases twofold–threefold,9 10 loss 
of grey and white matter emerges,7 11 and cogni-
tive functioning declines.8 However, most of the 
biomarker studies in FTD- GRN have investigated 
one type of biomarker, that is, fluid, neuroim-
aging or cognition, leaving the temporal relations 
and ordering of these biomarkers unknown. These 
temporal relations could potentially provide novel 
insights into disease progression mechanisms in 
GRN mutation carriers. Moreover, because of the 
fast progression of pathophysiological changes, 
determining the earliest abnormal biomarker is 
crucial, as the optimal window of opportunity for 
treatment might be small.

Recently, novel data- driven methods for disease 
progression modelling have emerged, focusing on 
the cascade of biomarker changes.12 13 Event- based 
models are a class of disease progression models 
that estimate the cascade of biomarker changes 
derived from cross- sectional data.6 13 14 This is done 
without strong a priori assumptions regarding the 
relationship between different biomarkers. A prom-
ising novel method that estimates the cascade of 
biomarker change is discriminative event- based 
modelling (DEBM).13 15 This model is robust to 
disease phenotypic heterogeneity in a cohort and 
can handle missing data.

In this study, we use DEBM to estimate the 
temporal cascade of biomarker changes in presymp-
tomatic and symptomatic FTD- GRN mutation 
carriers, distinguishing between early and late 
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biomarkers. Furthermore, we determine phenotypic differences 
in patterns of biomarker changes in nfvPPA and bvFTD, to gain 
more insights into their distinct disease progression mechanisms.

METHODS
Sample and study procedures
Subjects were recruited prospectively from three European 
centres of the Genetic Frontotemporal dementia Initiative 
(GENFI): Rotterdam (the Netherlands), Brescia (Italy) and 
Barcelona (Spain). We collected cognitive and clinical data, MRI 
and serum samples from 126 participants. We included 35 symp-
tomatic GRN mutation carriers (Rotterdam: n=11, Brescia: 
n=22, and Barcelona: n=2), 56 presymptomatic GRN mutation 
carriers (Rotterdam: n=33, Brescia: n=17, and Barcelona: n=6) 
and 35 cognitively healthy non- carriers (Rotterdam: n=34, 
Brescia: n=0, and Barcelona: n=1). Local clinical genetics 
departments performed DNA genotyping to confirm the pres-
ence of a GRN mutation. Non- carriers were first- degree family 
members of GRN patients without a mutation. Symptomatic 
mutation carriers were diagnosed based on the established clin-
ical criteria for bvFTD16 (n=17), nfvPPA17 (n=16) or cortico- 
basal syndrome18 (n=2). Mutation carriers were defined as 
presymptomatic when clinical criteria were not fulfilled, that is, 
behavioural or cognitive symptoms were absent.19 Clinical ques-
tionnaires were administered to the caregiver, spouse or a family 
member, that is, the Frontotemporal Lobar Degeneration Clin-
ical Dementia Rating Scale Sum of Boxes (FTD- CDR- SOB),20 
the Neuropsychiatric Inventory (NPI)21 and the Frontotem-
poral Dementia Rating Scale (FRS).22 The study was carried out 
according to the Declaration of Helsinki, approved by the local 
medical ethics board at each site, and all participants provided 
written informed consent.

Biomarker collection and processing
Biomarker selection
For biomarker selection, we performed a literature search using 
Pubmed. We included studies that (1) performed research in 
presymptomatic GRN mutation carriers and (2) biomarker 
studies that examined biomarkers in blood or cerebrospinal 
fluid (CSF), neuroimaging biomarkers and cognition. We 
selected serum NfL,9 Mini Mental State Examiation (MMSE), 
cognitive domains of attention and processing speed, executive 
functioning, language and social cognition8 23; left and right 
grey matter volumes of the insula, frontal lobe, parietal lobe 
and temporal lobe7 11; and left and right white matter tracts of 
the anterior thalamic radiation, superior longitudinal fasciculus, 
uncinate fasciculus and the forceps minor.7 24 For detailed infor-
mation about the literature review and subsequent biomarker 
selection, please see online supplemental appendix A.

Neurofilament light chain
Serum samples were obtained through venepunctures and 
analysed with single molecular assay technology, as described 
previously.10 Samples were measured in a single laboratory, in 
duplicate, with an intra- assay coefficient of variation below 
5%. Inter- assay variation between batches was below 8%. NfL 
concentrations were expressed in pg/mL.

MRI
Three- dimensional T1- weighted and diffusion tensor imaging 
were acquired with 3T MRI scanners across the three sites. MRI 
was missing in 25 participants due to unavailability (n=16) and 
insufficient quality due to motion artefacts (n=9). Availability 

of MRI and an overview of the scanning protocols are listed in 
online supplemental appendix A, Table A.1. Image processing 
was carried out in FMRIB Software Library (FSL),25 using default 
pipelines for grey matter volumes and white matter tracts. For 
grey matter volumetric regions of interest (ROI), we used the 
Montreal Neurological Institute atlas,26 and for the fractional 
anisotropy of white matter tracts, we used the Johns Hopkins 
University atlas.27 Left and right regions and tracts were consid-
ered separately. Raw regional volumes and fractional anisotropy 
values were transformed to z- scores, based on the mean and SD 
from the non- carriers. A detailed description of processing and 
ROI calculation is reported in online supplemental appendix A.

Cognitive assessment
Cognitive data were collected from all participants in four cogni-
tive domains, described in detail in online supplemental appendix 
A. Raw cognitive test scores were transformed to z- scores based 
on the mean and SD in non- carriers, and then combined into 
cognitive domain scores similar to previous studies.8

Confounding factors correction
All selected biomarkers were tested for normality (see online 
supplemental appendix A for details) and log- transformed in 
case of a skewed distribution. As most non- carriers originated 
from one centre, we used presymptomatic subjects for regressing 
out possible confounding effects using multiple linear regression, 
before continuing with event- based modelling. NfL levels were 
corrected for age and sex. Grey matter volumes and fractional 
anisotropy values were corrected for age, sex, total intracranial 
volume and MRI scanning protocol. Cognitive domain scores 
were corrected for confounding effects of age, sex and total 
years of education.

Temporal cascade of biomarker changes
The DEBM model introduced by Venkatraghavan et al13 15 esti-
mates the cascade of biomarker changes in a three- step process. 
For each biomarker, it first estimates the distributions of normal 
and pathological (or abnormal) values using Gaussian mixture 
modelling (GMM), and uses these to compute, for each subject, 
the probability that the biomarker is abnormal (explained in 
detail in online supplemental appendix B). The method then 
estimates the biomarker cascade independently for each subject 
based on the biomarker values present for that subject. The 
mean cascade is estimated such that the sum of the probabilistic 
Kendall’s Tau distances is minimised between the mean cascade 
and all the subject- specific cascades. For subjects with missing 
biomarker values, only the corresponding subset of the biomarker 
cascade present in the subject- specific cascade is used to compute 
the probabilistic Kendall’s Tau distance. Lastly, the severity of 
disease as a summary measure for each subject is computed by 
estimating the subject’s progression along the resulting disease 
progression timeline. In this section, we describe the experiments 
we performed for estimating the cascade of biomarker changes 
for non- imaging biomarkers, as well as for neuroimaging and 
non- imaging biomarkers together.

DEBM model for non-imaging biomarkers
As imaging was missing in a lot of subjects (n=25), we first esti-
mated the cascade of biomarker changes procedure with solely 
NfL and cognitive biomarkers. Since the non- carriers are healthy 
in this cohort, the normal Gaussians were fixed at the mean 
and SD of the biomarker values of the non- carriers. We used 
GMM only to estimate the abnormal Gaussian and the mixing 
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parameter for each biomarker. In order to estimate the posi-
tional variance in the estimated cascade, the entire dataset was 
randomly sampled using bootstrap sampling with 100 different 
random seeds, and the cascade of biomarker change was esti-
mated for each of those randomly sampled datasets.13 15

DEBM model for neuroimaging and non-imaging biomarkers 
together
For the imaging biomarkers, we modified the GMM step in 
DEBM to make it better suited for the FTD- GRN population, 
known for its asymmetric pattern of atrophy.5 Abnormal values 
of biomarkers that typically become abnormal late in the disease 
are usually under- represented in a specific patient population 
as compared with the early biomarkers. This could make the 
GMM of late biomarkers unstable, as previously reported.15 
Due to the asymmetrical atrophy patterns of FTD- GRN,5 6 later-
alised neuroimaging biomarkers that become abnormal early 
in the disease process may have a corresponding biomarker 
from the other hemisphere that remains stable until much later 
in the disease process. To exploit this, we assumed that the 
normal and abnormal Gaussians from the left and right hemi-
spheric biomarkers (expressed as z- scores) are the same, and the 
biomarkers from both hemispheres only differ in their position 
along the disease progression timeline. With this assumption, we 
proposed a novel modification to the GMM optimisation called 
Siamese GMM, in which the biomarkers of the same region from 
left and right hemispheres are jointly optimised. The abnormal 
and normal Gaussians are shared between the left and right 
hemispheres, but the mixing parameters are independently esti-
mated (see online supplemental appendix B for details). In this 
way, the numerical stability of GMM optimisation in the late 
neuroimaging biomarkers improved.

For non- imaging biomarkers, GMM was performed as 
described in the previous section. After GMM, further steps 
of DEBM modelling were carried out as usual, to estimate the 
complete cascade of neuroimaging and non- imaging biomarker 
changes in presymptomatic and symptomatic GRN mutation 
carriers. The positional variance in the estimated cascade was 
again estimated using bootstrap sampling with 100 different 
random seeds. For brevity, in the remainder of the paper, we 
refer to this model, which integrates neuroimaging and non- 
imaging biomarkers, as the multimodal DEBM.

Validation
To validate the DEBM models, we used 10- fold cross- validation. 
In each fold of the cross- validation, the DEBM model was built 
in the training set and the disease severity was estimated in the 
test set. We distinguished symptomatic mutation carriers from 
presymptomatic mutation carriers, and reported the corre-
sponding sensitivity and specificity. Furthermore, in bvFTD and 
nfvPPA subjects, the estimated disease severity was correlated 
with years since symptom onset and FTD- CDR- SOB scores, using 
Pearson’s correlation. Symptomatic carriers without imaging 
biomarkers were excluded for the validation of the multimodal 
DEBM but were included in the non- imaging DEBM.

Differential phenotype analysis
In order to examine the differences between bvFTD and 
nfvPPA variants of FTD- GRN, we built separate DEBM models. 
Presymptomatic subjects were excluded from this analysis as no 
phenotype information is available. The numbers of symptom-
atic subjects in each group (17 with bvFTD and 16 with nfvPPA) 
are too small to build complete DEBM models reliably. As a 

solution, we assumed that the biomarkers for the two pheno-
types shared the same normal and abnormal biomarker distribu-
tions, and that they only differ in their position along the disease 
progression timeline. We hence optimised the GMM such that 
the normal and abnormal Gaussians were estimated without 
considering the phenotypes, whereas the mixing parameters 
were estimated separately for each phenotype. As before, we 
estimated the cascade of biomarker changes in the two pheno-
types for non- imaging and multimodal (neuroimaging and non- 
imaging together) biomarkers.

RESULTS
Sample
A total of 126 subjects were included in this study. Availability 
and characteristics of the data are listed in table 1. Details on 
biomarker availability and characteristics can be found in online 
supplemental appendix, Tables A.2 and A.3. Symptomatic muta-
tion carriers were older, had fewer years of education and had 
higher scores on the NPI and FTD- CDR- SOB, and lower scores 
on the FRS than both presymptomatic mutation carriers and 
non- carriers. There were no differences in demographic or clin-
ical characteristics between presymptomatic mutation carriers 
and non- carriers.

Cascade of biomarker changes

Non-imaging and multimodal DEBM models
In figure 1A,B, we show the estimated mean cascade of 
biomarker changes and the uncertainty within the model for 
non- imaging and multimodal biomarkers. Language was the 
earliest biomarker to become abnormal, followed by NfL. It can 
be seen in figure 1B that left anterior thalamic radiation, left 
insula and bilateral uncinate fasciculi were the earliest imaging 
biomarkers. It can also be observed that imaging biomarkers 
from the left hemisphere became abnormal earlier than their 
right counterpart. GMM estimations with normal and abnormal 
Gaussian distributions are shown in figure 2, where the esti-
mated Gaussians are seen to fit the observed histograms well. 
Figure 1C shows the positional variance of the cascade of multi-
modal biomarker changes obtained when GMM of the imaging 
biomarkers was done without using Siamese GMM. Generally, 
the positional variance was smaller with Siamese GMM than 
without.

Validation
Figure 3A,B shows the estimated disease severity when using 
non- imaging and multimodal biomarkers, respectively. It can be 
seen that estimated disease severity delineated the symptomatic 
subjects from the presymptomatic subjects. The sensitivity and 
specificity of this delineation were 1.0 and 0.982, respectively, 
while using non- imaging biomarkers, and 1.0 and 0.961, respec-
tively, while using multimodal biomarkers.

Figure 4 shows the correlation of the estimated disease 
severity with years since symptom onset and FTD- CDR- SB for 
nfvPPA and bvFTD subjects, when using multimodal DEBM. 
It can be seen from figure 4 that estimated disease severity 
strongly correlated with years since symptom onset (R=0.95, 
p=0.0003) and the FTD- CDR- SB (R=0.84, p=0.0189) in 
nfvPPA patients. However, estimated disease severity correlated 
poorly with years since symptom onset (R=0.22, p=0.6331) 
and the FTD- CDR- SB (R=0.28, p=0.5866) in bvFTD patients. 
Online supplemental figure B.2 shows a similar plot when using 
non- imaging biomarkers, where estimated disease severity did 
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not correlate with years since symptom onset and FTD- CDR- SB, 
neither for nfvPPA nor for bvFTD subjects.

Differential phenotype analysis
Figure 5 shows the multimodal biomarker cascade for nfvPPA 
and bvFTD phenotypes. nfvPPA patients showed language and 
NfL as first abnormal biomarkers followed by other cogni-
tive domains. Left hemispheric imaging biomarkers became 
abnormal before right hemispheric imaging biomarkers, starting 
with the uncinated fasciculus (white matter integrity), insula and 
temporal lobe (grey matter volume). Only the left superior longi-
tudinal fasciculus was estimated as late biomarker, even later 
then its right- sided counterpart.

Interestingly, in bvFTD patients, the biomarker ordering also 
indicated that language and NfL were the earliest abnormal 
biomarkers. In contrast to the nfvPPA, the left superior longi-
tudinal fasciculus (white matter integrity) was estimated as the 

first abnormal imaging biomarker in bvFTD. However, the 
biomarker orderings in bvFTD were predominantly character-
ised by large uncertainty in the positioning of biomarkers in the 
disease timeline, with hardly any observable distinction between 
early and late biomarkers. Online supplemental figure B.3 pres-
ents the non- imaging biomarker cascade for the two phenotypes, 
showing that the uncertainty in the mean cascade in bvFTD is 
more than in nfvPPA.

DISCUSSION
In this study, we estimated the cascade of biomarker changes in 
FTD-GRN. We validated our model by delineating the symp-
tomatic mutation carriers from the presymptomatic mutation 
carriers using the estimated disease severity. We demonstrated 
that language and NfL levels are the earliest biomarkers to 
become abnormal in the FTD- GRN spectrum. Other early 
biomarkers were the white matter microstructure of the thalamic 

Table 1 Data availability and characteristics

Symptomatic

Presymptomatic Non- carriersTotal bvFTD nfvPPA

N

  Subjects (% female) 35* (60.0%) 17 (47.1%) 16 (75%) 56 (69.6%) 35 (54.4%)

  Rotterdam 11 8 3 33 34

  Brescia 22* 9 11 17 0

  Barcelona 2 0 2 6 1

Data availability

  Serum NfL 91.7% 88.9% 93.8% 69.64% 91.67%

  Cognitive assessment 91.7% 88.9% 93.8% 98.21% 91.67%

  T1- weighted MRI 44.4% 38.9% 50.0% 96.4% 88.6%

  DTI 50.0% 44.4% 56.3% 92.9% 91.4%

Sample characteristics

  Age (years) 62.57±6.72† 62.93±6.11‡ 61.78±7.78§ 51.52±11.42 55.15±12.55

  Education (years) 10.61±4.59† 10.27±4.91‡ 11.79±4.02 13.79±3.27 13.21±2.84

  TIV (litres) 1.44±0.17 1.50±0.17 1.42±0.14 1.39±0.15 1.40±0.14

  NPI 23.77±28.38† 28.90±30.64‡,¶ 6.67±6.03¶ 1.87±3.37 2.24±4.32

  FRS 56.50±30.43† 48.86±29.91‡ 67.20±30.96§ 97.27±10.11 95.47±7.45

  FTD- CDR- SOB 7.64±6.52† 9.68±7.47‡,¶ 5.25±4.37§,¶ 0.04±0.21 0.00±0.00

  Disease duration (years) 2.45±2.01 2.37±1.92 2.48±2.29 N/A N/A

*The two remaining patients presented with cortico- basal syndrome.
†Significant difference between symptomatic carriers and presymptomatic carriers as well as non- carriers.
‡Significant difference between bvFTD patients and presymptomatic patients as well as non- carriers.
§Significant difference between nfvPPA patients and presymptomatic patients as well as non- carriers.
¶Significant difference between bvFTD patients and nfvPPA patients.
bvFTD, behavioural variant frontotemporal dementia; DTI, diffusion tensor imaging; FRS, Frontotemporal Dementia Rating Scale; FTD- CDR- SOB, Frontotemporal Lobar 
Degeneration Clinical Dementia Rating Scale Sum of Boxes; mean±SD. GM, grey matter; NfL, neurofilament light chain; nfvPPA, non- fluent variant primary progressive aphasia; 
NPI, Neuropsychiatric Inventory; TIV, total intracranial volume.

Figure 1 Cascade of biomarker changes in FTD- GRN along with the uncertainty associated with it. (A) Non- imaging biomarkers. (B) Multimodal 
biomarkers with Siamese GMM. (C) Multimodal biomarkers without Siamese GMM. The biomarkers are ordered based on the position in the estimated 
cascade. The colour map is based on the number of times a biomarker is at a position in 100 repetitions of bootstrapping. FTD- GRN, progranulin- related 
frontotemporal dementia; GMM, Gaussian mixture modelling.
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radiation and the cognitive domain of attention and mental 
processing speed.

Our findings support other studies that proposed NfL as an 
early biomarker for disease onset in FTD- GRN.9 10 We demon-
strated that the left anterior thalamic radiation also degenerated 
early. This is also supported by previous studies which suggested 
that white matter microstructure markers may correlate with 
changes in NfL.9 28 Cognitive changes in attention, mental 
processing speed and executive functioning occurred relatively 
early in the estimated disease progression timeline. This corre-
sponds well with the early white matter changes (ie, NfL and 
fractional anisotropy changes), as attention and processing speed 
are cognitive functions that highly depend on the integrity of 
axons and their myelin sheaths.29 30 The early involvement of 
these biomarkers point towards axonal degeneration as one 
of the first pathological processes in GRN mutation carriers. 
However, it must be noted that the estimated cascade shows 
the sequence of biomarker events when they are detectably 
abnormal. One of the important factors that affects the detect-
ability of biomarker abnormality in a cross- sectional dataset is 
the overlap between the normal and abnormal biomarker distri-
butions. Therefore, the presented cross- sectional model cannot 
provide insight into the sequence of earliest (hardly detectable) 
changes in the carriers’ biomarker levels. Figure 2 showed that 
the overlap in cognitive biomarkers was relatively smaller than 
the overlap in neuroimaging biomarkers, which could explain 
the relative early positioning of the cognitive biomarker events.

With the differential phenotypic analysis, we estimated the 
biomarker cascade for nfvPPA and bvFTD patients. Strikingly, 
language functions deteriorated early in both nfvPPA and 
bvFTD. While not currently embedded in the clinical criteria for 
bvFTD,16 our results demonstrate the importance of decreased 
language functions in both phenotypes. This is in line with 
multiple previous studies.31–33 In addition, multiple determi-
nants of the complex language network were also affected early, 
for example, the left insula and uncinate fasciculus.34 While 
language deficits were estimated as the first detectable abnormal 
biomarker, the overlap with the second, the elevation in NfL 
levels, complicates distinguishing the timeline of these disease 
events. Furthermore, as depicted in figure 2, (subtle) language 
deficits were less specific for disease onset than NfL levels. 
However, the high sensitivity of the language biomarker in our 
study and the relative uncomplicated administration of language 
tests (compared with neuroimaging techniques, for example) 
offer potential for longitudinal research in the preclinical stage 
of FTD- GRN—ideally in combination with NfL levels.

For nfvPPA, NfL levels and other cognitive domains became 
abnormal in early disease stages, consistent with findings from 
previous studies.9 10 35 In addition, we showed that left hemi-
spheric tracts and regions were affected in nfvPPA patients 
before right regions, accordant with the previously reported 
strong involvement of the left hemisphere in primary progressive 
aphasia.36 37 We showed that NfL levels and cognitive domains 
may be possible biomarkers for disease onset, while neuroim-
aging markers were highly correlated with clinical indicators of 
progression (years since onset, FTD- CDR- SOB).

For bvFTD, however, the biomarker cascade was character-
ised by large uncertainty, and the estimated disease severities did 
not correlate with actual years since onset or FTD- CDR- SOB. 
This uncertainty could indicate large neuroanatomical heteroge-
neities between bvFTD patients. Differences in neuroanatomical 
atrophy patterns have been associated with FTD- GRN patients 
before.5 6 Here, we demonstrated that this anatomical heteroge-
neity is predominantly associated with the bvFTD phenotype, 
while nfvPPA patients showed a clear pattern of left hemi-
spheric degeneration before the right hemisphere was affected. 

Figure 2 Gaussian mixture modelling (GMM) distributions. The histogram bins are divided in three colours, where the green part shows the proportion of 
non- carriers, the yellow part shows the proportion of presymptomatic carriers and the red part shows the proportion of symptomatic carriers. The Gaussians 
shown here are the ones that were estimated using GMM, where the green Gaussian is the normal one estimated using non- carriers and the red Gaussian 
is the abnormal one estimated using the carriers. The amplitudes of these Gaussians are based on the estimated mixing parameter. The grey curve shows the 
total estimated distribution, which is the summation of green and red Gaussians.

Figure 3 Frequency of occurrence of subjects with different disease 
severities, estimated using cross- validation. (A) Results using non- imaging 
biomarkers in discriminative event- based modelling (DEBM). (B) Results 
using multimodal biomarkers in DEBM.
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Furthermore, bvFTD patients present with cognitive symptoms 
such as impaired social conduct and executive function but can 
also have severe memory problems. In summary, within the 
group of bvFTD, spatial and temporal brain degeneration and 
cognitive changes are more heterogeneous than in the nfvPPA 
group.

From a methodological point of view, the strength of this paper 
lies in the introduction of the Siamese GMM approach in DEBM. 
We showed that Siamese GMM reduces the positional variance in 
neuroimaging biomarkers, most notably in the right insula, the right 
anterior thalamic radiation and the right superior longitudinal fascic-
ulus. This is because GMM is known to be unstable in the presence of 
biomarkers with a large overlap between the normal and abnormal 
Gaussians.13 This is often the case in biomarkers becoming abnormal 
late in the disease and having very few samples representative of the 
typical abnormal values expected in the disease. The joint GMM in 
the Siamese counterpart exploits the knowledge that FTD- GRN is 
generally an asymmetric brain disease, and uses the neuroimaging 
biomarkers that become abnormal early in the disease process to aid 
the GMM of its hemispheric counterpart that becomes abnormal far 
later in the disease process. Another strong point about the DEBM 
model is that it infers disease progression from cross- sectional data, 
which is more readily available than longitudinal data, especially in a 
rare disease as FTD- GRN.

From the clinical point of view, a major strength of our study is 
the large, well- defined cohort of presymptomatic and symptomatic 
GRN mutation carriers, and availability of multimodal (ie, fluid, 
imaging and cognitive) biomarkers. Although we did not have fluid- 
attenuated inversion recovery (FLAIR) or T2 imaging data avail-
able for the current study, it would be interesting to incorporate 
white matter lesions in a future version of the model, as a number 
of studies have indicated the presence of white matter lesions in 
FTD- GRN carriers.38 Additionally, including functional neuroim-
aging, measures in future studies possibly provide new insights into 
the temporal biomarker sequence and underlying disease mecha-
nism as well. Recent papers have addressed functional changes 
in FTD- GRN, showing thalamic- cortical hyperconnectivity in 
early preclinical stages39 and presymptomatic abnormalities in 
neurophysiology.40

A minor limitation in our study is the difference in mean age 
between the non- carrier, presymptomatic and symptomatic muta-
tion carrier groups. We adjusted for this in the analysis rather than 
matching the groups. It should be noted that the small sample size 
may have caused a large part of the uncertainty of our model, espe-
cially in the case of missing (neuroimaging) biomarkers. Our bvFTD 
and nfvPPA samples due to GRN mutations were relatively large 
compared with previous studies.41 However, the DEBM model 
would improve substantially if the phenotypic samples were larger, 
as we could only include symptomatic subjects for the phenotypic 
analysis. Uncertainties in the estimation of the phenotypic biomarker 
cascades may be improved with upcoming longitudinal data, when 
some of the converted mutation carriers can be included in the 
phenotypic models.

Figure 4 Correlation of disease severity (as estimated by multimodal 
DEBM using cross- validation) with years since onset and FTD- CDR- SOB. 
The 2D scatter plots in subfigures A and C show the correlations of 
disease severity with years since onset, for symptomatic nfvPPA and bvFTD 
subjects, respectively. The 2D scatter plot in subfigures B and D show the 
correlations of disease severity with FTD- CDR- SOB. The plot on top of each 
subfigure shows the probability density function of the disease stages. 
The plots on the right of subfigures A and C show the probability density 
functions of years since symptom onset. The plots on the right of subfigures 
B and D show the probability density function of FTD- CDR- SOB. 2D, two- 
dimensional; bvFTD, behavioural variant frontotemporal dementia; DEBM, 
discriminative event- based modelling; FTD- CDR- SOB, Frontotemporal Lobar 
Degeneration Clinical Dementia Rating Scale Sum of Boxes; nfvPPA, non- 
fluent variant primary progressive aphasia.

Figure 5 Cascade of multimodal biomarker changes in nfvPPA (A) and bvFTD (B) subjects along with the uncertainty associated with it. The biomarkers 
are ordered based on the position in the estimated cascade. The colour map is based on the number of times a biomarker is at a position in 100 repetitions 
of bootstrapping. bvFTD, behavioural variant frontotemporal dementia; nfvPPA, non- fluent variant primary progressive aphasia.
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In conclusion, with this DEBM study in the FTD- GRN spec-
trum, we were able to demonstrate that language functions and NfL 
levels are the earliest abnormal biomarkers, regardless of pheno-
type. However, bvFTD show more heterogeneity and uncertainty in 
disease progression, pointing towards more variability in biomarkers 
than nfvPPA. Our analyses suggest axonal degeneration and damage 
to the language network as the earliest biomarkers in GRN mutation 
carriers, which could potentially be used as endpoints in clinical trials 
for disease modifying treatments. Future efforts should be directed at 
confirmation and validation of these findings with longitudinal data. 
Validation of these results in an external cohort such as the Longi-
tudinal Evaluation of Familial Frontotemporal Dementia Subjects 
(LEFFTDS)42 could further aid in confirming these results and eluci-
date any ethnic variations in the disease progression timeline. We 
expect that DEBM modelling will benefit individual prediction of 
symptom onset in the future, and may optimise selection of eligible 
mutation carriers for clinical trials.
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