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Introduction

In this Chapter, we review several structural metrics for multilayer networks, highlighting
differences against definitions for single-layer networks. We start by extending the concepts
of network neighbours and network path to the multilayer structure. We then proceed by
considering how the presence of multiple layers requires more general definitions of local
and global connectivity, centrality and community structure. We also review structural
features arising from the multilayer structure that have no single-layer counterpart, such
as interlayer correlations [1, 2, 3, 4, 5], structural reducibility [6] and layer clustering [6, 7].
Notice that the algorithms for multilayer community discovery [8, 9] briefly introduced
here link together structure and dynamics of multilayer networks and are reviewed in more
depth in the Chapter about processes on multilayer networks.

multilayer neighbours, links and paths

Let us consider a multilayer network [1, 10, 11] with L layers and N nodes represented by
the multilayer adjacency tensor M i,α

j,β , with i, j ∈ 1, 2, ..., N and α, β ∈ 1, 2, ..., L. Then the
neighbours of the generic node i are all the nodes connected to i across all layers. Notice
that even if two nodes i and j might be disconnected in one layer α, they might be adjacent
on another layer β or being interconnected across layers. As in single-layer networks [12],
neighbours of node i are classified in terms of the length of the paths connecting them to i.
In the rest of this Chapter, using "neighbours" with no further attribute indicates adjacent
nodes. The presence of several network layers can drastically alter the neighbourhood
structure of a given node. An example is reported in Figure 0.1: Even though nodes 1 and
5 are disconnected in the left-most layer, there is a path connecting 1 and 5 in the central
layer.
Let us briefly discuss the concept of path within the framework of multilayer networks.

As in single layer networks [12], we define an undirected path between nodes i and j as a
set of network links p = {(i, α, k, α), (k, α, k, β), ..., (h, γ, j, γ)} where directionality is not
important and the notation is such that (i, α, k, α) indicates an intralayer link between
nodes i and k in layer α while (k, α, k, β) indicates an interlayer link between replicas
of node k in layers α and β (see Figure 0.1 for an example). The path length is then
defined as the cardinality |p| of p, i.e. the number of links in a given path. The shortest
path length is the cardinality of the path with the fewest inter- and intralinks connecting
nodes i and j. Notice that the possibility of transitioning between layers can dramatically
change the shortest path length between nodes (also called geodesic distance [12]): two
nodes could be disconnected on layer α, so that their distance would be dα(i, j) =∞, but
adjacent in another layer, consequently their distance on the multilayer structure would
be dM (i, j) = 1. A multilayer network and its aggregated single-layer counterpart display
the same distances between nodes only when interlayer links are not explicitly considered,
as in edge-coloured graphs [1, 13].

Viable clusters and mutually largest connected components

In single-layer networks [12], a connected component is a subgraph where there is at least
one path connecting any two nodes. For networks of finite size, the connected component
with the largest number of nodes is called largest connected component. For networks
of infinite size, e.g. theoretical models, the largest connected component is called giant
component. A network is connected if it coincides with its largest connected component.

In multilayer networks, the presence of different layers of interactions allows to consider
several definitions of connectedness [14, 1, 10, 11, 13, 15, 16]. The simplest approach for
node-aligned multi-layer networks is to apply the single-layer notion of connectedness to
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Figure 0.1: A node-aligned multilayer network with N = 7 nodes and L = 3 layers. The red
arrows represent a path connecting node 1 on the left-most layer to node 2 on the
right-most layer. Notice that the path considers both links between nodes in a given
layer (intralayer links) and connections between replicas of nodes in different layers
(interlayer links). Picture from De Domenico et al. 2014 [13].

the aggregate network [1], so that a multilayer network is fully connected if its aggregate
counterpart is fully connected. According to this definition, in a connected multilayer
network there exists at least one multilayer path connecting any two nodes.
Connectedness can be imposed on individual layers rather than on the aggregate network.

For node-aligned multiplex networks without explicit interlinks, this requirement leads to
the definition of a viable cluster [16]: a set of nodes that are mutually connected on each
individual layer. The notion of viable cluster reduces to the one of largest connected
component in single-layer networks. In edge-coloured graphs the viable cluster is always
smaller than the intersection of largest connected components of individual layers [17], see
Figure 0.2 for an example.
Viable clusters are related to mutually connected components in interdependent networks

[14, 15]. Each node i on layer α is in the mutually connected component if: (i) it has at least
one neighbour j on α that is connected to the mutually connected component and (ii) if all
the replicated nodes i on other layers are also in the mutually connected component. The
second requirement about interconnectedness makes the mutually connected component
a more restrictive definition compared to the one of connectedness provided through the
aggregate network. In case of full interdependency, the definition of largest mutually
connected component corresponds to one of the largest viable cluster [16].
Notice that the way nodes are connected between layers and the presence of viable

clusters or mutually connected components greatly affects the robustness properties of
multilayer networks to progressive disruption [13, 18, 17] and resilience to cascading failure
[14, 19].

Centrality measures in multilayer networks

Finding the most central nodes in complex networks is fundamental in a variety of real-
world scenarios [12], such as finding the most fragile agents in cascades of failure [14]
or pivotal disease spreaders [20, 21] in epidemics. Centrality strongly depends on the
considered network process so that a wide variety of network centrality measures have been
suggested in single-layer networks over the years (for a review from the computational social
sciences see [22]). Generalisations to multilayer networks are not always straightforward
since nodes peripheral in one layer might be extremely central in another one [1, 10,
11]. Although attempts at producing weighted averages of centralities [23] across single
layers have been successfully used in multilayer network analysis [24], many novel measures
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Figure 0.2: Example of viability in an edge-coloured network with N = 6 nodes and L = 2 lay-
ers. Red nodes are the intersection of largest connected components across layers.
Viability requires for all nodes to be connected among each other in every individual
layer and paths combining different colours do not count. The intersection of con-
nected components is not a viable cluster: There are no paths of dashed links only
connecting the node in the upper-right corner. In order to make the nodes a viable
cluster one dashed link must be added. Picture from [17].

harnessing the multilayer structure have been suggested over the last few years. Because
of space constraints, our review cannot be exhaustive so we refer the interested reader to
consult additional references for multiplex [25] and multilayer [1, 10, 11] networks.

Node activity

In multilayer networks one node might be present on one layer but absent (or disconnected)
on another one. In node-aligned multiplex networks this information can be encoded within
a node-activity vector [4]:

bi = (bi(1), bi(2), ..., bi(L)), (0.1)

with bi(α) = 0 if k(α)i = 0 and bi(α) = 1 otherwise, for α ∈ 1, ..., L. The node activity
Bi is then defined as the sum of the bi(α) across layers. The distribution of node activities
provides a compact representation of the involvement of nodes across different layers [4, 25].

Multidegree

Counting the links of a given node represents the simplest indicator of node importance at
a local level, a measure called degree centrality in single-layer networks [12]. In multilayer
networks multidegree centrality [1] is the total number of links ki in which a node i is
involved across all layers and it can be computed through the multilayer adjacency tensor:

ki =

L∑
α,β=1

N∑
j=1

M iα
jβ . (0.2)

Notice that the multidegree ki counts both inter- and intralayer links. In case interlayer
links are not explicitly considered, as in edge-coloured graphs, it can be more convenient
to consider the degrees coming from individual layers/colours. In formulas:

k
(α)
i =

N∑
j=1

Aij(α), (0.3)

where kαi is the degree of node i coming from intralayer links on layer α and Aij(α)
represents the adjacency tensor of layer α. When interlayer links are not present, the
multidegree coincides with the sum of intralayer degrees Ki =

∑
α k

(α)
i , which is also

called overlapping degree in the multiplex networks literature [26, 3, 4, 25]. Notice that
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Figure 0.3: Visual explanation of a multiplex cartography. Nodes are mapped into points of a
2D map displaying the participation coefficient on the x axis and multidegree on the
y axis. Points can be clustered in a 2D grid for easier visualisation [4]. Picture from
[28].

even in multiplex networks the multidegree of i across layers does not always coincide with
the degree of i in the aggregated network as links might overlap across layers [26].

Network cartography

Multidegree centrality ki provides global information on the amount of interactions node i
engages with. However, multidegree is not informative on the way i’s links are distributed
across layers. In multiplex networks, the participation coefficient [3] Pi quantifies how
uniformly node i distributes their own intralayer links across layers, in formulas:

Pi =
L

L− 1

1−
L∑
α=1

(
k
(α)
i

Ki

)2
 . (0.4)

Pi ranges between 0 (for nodes that concentrate all their connections in one layer only)
and 1 (for nodes that distribute connections over all the L layers uniformly).
The degree centrality and the participation coefficient of nodes in a multiplex network

represent the coordinates of the so-called multiplex cartography [3], i.e. a 2D map useful
for detecting central nodes. The concept of network cartography was originally introduced
for community analysis in single-layer networks [27] and it was later generalised to node
centrality in multiplex networks [3]. Nodes with higher multidegree centrality and higher
participation coefficient tend to have more interactions present across all layers [3, 4], thus
playing a more central role in processes such as epidemic spreading on multiple layers
[21, 20].

Multilayer versatility

In multilayer networks, nodes crucial for a given dynamics might not be central across
all layers. Consider the case in which two distinct layers have only one node in common:
Any information flow between the layers will have to pass through the common node,
independently from its centrality in the layers. Hence that node will be highly central for
the considered process. Multilayer versatility [1, 29] quantifies how important nodes are
for diffusive processes such as information flow or spreading. Since versatility is strongly
connected to diffusive processes, we hereby briefly review different types of versatility
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measures but refer the reader to the Chapter on the dynamics of multilayer networks for
a more thorough description.

Eigenvector versatility

In single-layer networks, eigenvector centrality is based on an iterative procedure giving
to each node a centrality score that is the weighted sum of the scores of its neighbours
[12]. Therefore, the eigenvector centrality gives high centrality scores to vertices that are
connected to many other well-connected vertices.
As for single-layer networks, eigenvector versatility can be defined as the solution of an

eigenvalue problem given by the multilayer adjacency tensor:

M iα
jβΘiα = λ1Θjβ, (0.5)

where Einstein summation is considered for the sake of simplicity, i.e. there is summa-
tion over repeated indices. The problem of finding the eigenvector centrality consists in
computing Θjβ = λ−11 M iα

jβΘiα, which represents the multilayer generalisation of Bonacich’s
eigenvector centrality per node per layer [1, 29]. Eigenvector versatility can then be con-
densed across layers by summing up the scores of a node across all layers θi =

∑
α Θiα.

Notice that the summation across layers appears naturally through the tensorial formalism
[1, 29]. Although other definitions of multilayer eigenvector centrality have been suggested
in the literature, by Halu et al. [30] and Solá et al. [23], they do not provide information
on how to combine centralities across layers.

Kats versatility

Kats centrality was introduced in the field of social network analysis for "evaluating status
in a manner free from the deficiency of popularity contest procedures" [31]. This metric
attributes centrality to a given node by considering contributions coming from its adjacent
and more distant neighbours. Contributions coming from more distant neighbours are
dampened by a factor a. Analogously to the eigenvector versatility, also Katz versatility
Φjβ can be defined as the solution of a tensorial equation Φjβ = aM iα

jβΦiα + bujβ [1, 29].
In formulas, the Katz centrality for a multilayer network is:

Φjβ = [(δ − aM)−1]iαjβUiα, (0.6)

where δiαjβ = δijδ
α
β , the dampening factor a has to be smaller than the reciprocal of the

absolute value of the largest eigenvalue of the multilayer tensor M iα
jβ and b is a constant

usually equal to 1. As for the eigenvector versatility, the overall Katz centrality of a node
is the sum of centrality scores Φjβ across layers [1, 29].

HITS versatility

In single-layer networks, the Hyperlink-Induced Topic Search or HITS centrality was orig-
inally introduced for Web page rating according to their authority (e.g. their content) and
their hub value (e.g. the value of their links to other web-pages) [32]. Nodes pointing
to many other nodes are considered hubs while nodes receiving links by many hubs are
considered authorities. The problem of computing hub and authority values for nodes
translates into two coupled eigenvalue problems whose multilayer counterpart is [1, 29]:{

(MMT )iαjβΓiα = λ1Γjβ

(MTM)iαjβΥiα = λ1Υjβ

(0.7)
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where ·T indicates the transpose operation, Γiα (Υiα) is the hub (authority) centrality
score of node i on layer α. The overall HITS versatilities are then obtained by summing
across layers. Notice that for undirected networks with no interlayer links the HITS ver-
satilities coincide with the eigenvector versatility.

PageRank versatility

In single-layer networks PageRank centrality [33] indicates the probability that a random
walker visits a given node by: (i) traversing node links and (ii) teleporting through nodes
at random. For multilayer networks [1, 29], the dynamics of the random walker is regulated
by a transition tensor, expressing the probability of traversing link (i, α, j, β):

Riαjβ = rT iαjβ +
(1− r)
NL

uiαjβ, (0.8)

where r is a constant expressing the probability for the random walker to teleport. In
the Google Search Algorithm r is equal to 0.85 [33]. If we denote by Ωiα the eigentensor
of Riαjβ , then the PageRank versatility ωi of a node is obtained by summing across layers∑

α Ωiα. Other definitions of multilayer PageRank have been proposed in the context of
multiplex networks [30, 34, 35]. Multilayer PageRank resulted being more powerful than
its single-layer counterpart in a wide variety of applications, including the importance
[34] and tendency to incur in passenger traffic congestion [29] of airports and identifying
interdisciplinary researchers in co-citation networks [36].

Correlations in multilayer networks

Intralayer connections can be organised in correlated ways among layers. Several attempts
have been made in order to quantify these interlayer dependencies [1, 3, 4, 37]. Let us
briefly review quantitative measures of correlation relying on link assortment across layers.

Link overlap and multiplexity

A simple measure of correlation among links in node-aligned multilayer networks is link
overlap [26, 1], i.e. the number of links being simultaneously present on several layers
at once between the same couple of nodes. Correlations influencing link overlap can be
measured via correlation metrics [1, 25], like the conditional probability P (Aij(α)|Aij(β))
of finding a link at layer α given the presence of a link between the same nodes in layer β:

P (Aij(α)|Aij(β)) =

∑
ij A

i
j(α)Aij(β)∑
ij A

i
j(β)

. (0.9)

However, such approach does not quantify the contribution that heavy-tailed degree
distributions might have in boosting or altering correlations on link overlap. This might
be problematic when analysing real-world networked systems with heavy-tailed degree
distributions [5]. The metric called multiplexity Mαβ allows to quantify pairwise link
overlap correlations between layers α and β by considering a specific null model [5], in
formulas:

Mαβ =
2
∑

i 6=j min{Aij(α), Aij(α)}

L
[α]
TOT + L

[β]
TOT

, µαβ =
Mαβ − 〈Mαβ〉

1− 〈Mαβ〉
, (0.10)

where L[.]
TOT is the number of edges in a given layer and µαβ is the normalised multiplex-

ity, which is rescaled compared to a reference null model value 〈Mαβ〉. When applied to
the International Trade Network [5], where nodes are countries and layers indicate traded
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Note that some of the alternative definitions of a three-cycle—whichwe discuss in appendix C—lead tomore
elementary cycles than the ones that we just enumerated.

To definemultiplex clustering coefficients, we need both the number t* i, of cycles and a normalization d* i, .
The symbol * stands for any type of cycle: the three-cycle thatwe define in themain text, an elementary cycle, or
the alternatives definition of three-cycles that we give in appendix C. Choosing a particular definition coincides
to a givenway to calculate the associated expression for t* i, . To determine the normalization, it is natural to
follow the same procedure as withmonoplex clustering coefficients and use a completemultiplex network

F( ) = ⊕α
α , where F J I( ) ( ) ( )= −α α α is the adjacencymatrix for a complete graph on layer α.We can then

proceed from any definition of t* i, to d* i, by replacing the second intra-layer stepwith a step in the complete

multiplex network. For example, we obtain d 2( )M i ii, = l l l for t 2[( ) ]M i ii,
3= l . Similarly, one can use

any other definition of a cycle (e.g., any of the elementary cycles or the cycles that we discuss in appendix C) as a
starting point for defining amultiplex clustering coefficient.

The above formulation allows us to define local and global clustering coefficients formultiplex networks
analogously to their definition inmonoplex networks.We can calculate a naturalmultiplex analog to the usual
monoplex local clustering coefficient for any node i of the supra-graph. Additionally, in amultiplex network, a
node u of an intra-layer network allows an intermediate description for clustering that lies between local and the
global clustering coefficients.We define

c
t

d*
*

*
, (4)i

i

i
,

,

,
=

C
t

d*
*

*
, (5)u

i l u i

i l u i
,

( ) ,

( ) ,

∑
∑= ∈

∈

C
t

d*
*

*
, (6)i i

i i

,

,

∑
∑=

where l u( ) is as defined before. Note that we refer to clustering coefficients defined either by equation (4) or by
equation (5) as local clustering coefficients. In equations (4)–(6), and in our subsequent formulas for clustering
coefficients, we are of course requiring denominators to be nonzero (as in themonoplex case). In situations in
which a denominator vanishes, we set the value of the associated clustering coefficient to 0.

We can decompose the expression in equation (6) in terms of the contributions from cycles that traverse
exactly one, two, and three layers (where m 1, 2, 3= indicates the number of layers) to give

t t t t* * * * , (7)i i i i, ,1,
3

,2,
2

,3,
3β βγ γ= + +

d d d d* * * * , (8)i i i i, ,1,
3

,2,
2

,3,
3β βγ γ= + +

C
t

d
*

*
. (9)m i m i

i m i
*
( )

, ,

, ,

∑
∑=

Wecan similarly decompose equations (4) and (5).Using the decomposition in equation (7) yields an alternative
way to average over contributions from the three types of cycles:

C C*( , , ) , (10)
m

m
m

1 2 3

3

*
( )∑ω ω ω ω=

where ω⃗ is a vector that gives the relative weights of the different contributions.We use the term layer-
decomposed clustering coefficients for C

*
(1), C

*
(2), and C

*
(3). There are also analogs of equation (10) for the

clustering coefficients defined in equations (4) and (5). Each of the clustering coefficients in equations (4)–(6)

Figure 1. Sketch of the elementary cycles ,  ,  , , and  . The orange node is the starting
point of the cycle. The intra-layer edges are the solid lines, and the intra-layer edges are the dotted curves. In each case, the yellow line
represents the second intra-layer step.

4

New J. Phys. 17 (2015) 073029 ECozzo et al

Figure 0.4: Some examples of possible 3-cycles on a multilayer structure. The orange node is
the starting point of the cycle, intralayer links are represented as solid lines while
interlayer links are dotted lines. The green line represents the second intralayer link
in the cycle. Picture reproduced from Cozzo et al.[38].

commodities, strong interlayer link correlations were hugely reduced once the heavy-tailed
empirical degree distribution was considered. Hence, with the proper choice of reference
null model (e.g. a configuration model fixing degree but randomising links) multiplexity
can discriminate between genuine link correlations and spurious effects due to interlayer
degree correlations.

Degree correlations

Degree correlations of the same node across different layers can be identified by computing
the analogue of the nearest neighbour average degree knn(k) of nodes with degree k in
single-layer networks. For node-aligned multilayer networks one can define [1, 25]:

k(β)(k(α)) =
∑
k(β)

k(β)P (k(β)|k(α)), (0.11)

which is the average degree at layer β of a node with degree k(α) on layer α. Increasing
(decreasing) trends of k(β)(k(α)) indicate positive (negative) degree correlations among
layers α and β.

Triadic closure and clustering coefficient

In single-layer networks the clustering coefficient measures the presence and strength of
triadic closure, i.e. the tendency for three connected nodes (a triplet) to form a triangle (a
closed triplet) [12]. The local clustering coefficient of node i measures how likely it is for
two neighbours of i to be connected with each other, in formulas:

Ci =

∑
j,m6=iA

i
j(α)Ajm(α)Ami (α)∑

j,m6=iA
i
j(α)Ami (α)

. (0.12)

In multilayer networks there are multiple ways of considering closed triangles across
layers, see Figure 0.4 for some possible examples. Consequently, there are several differ-
ent ways for generalising the notion of clustering to multilayer network structures. For
instance, in node-aligned multiplex networks a triangle can be formed by considering two
intralayer links on layer α and one intralayer link on β among three nodes, so that a
possible generalisation of local clustering becomes [3]:

Ci,1 =

∑
α

∑
β 6=α

∑
j,m6=iA

i
j(α)Ajm(β)Ami (α)

(L− 1)
∑

α

∑
j,m6=iA

i
j(α)Ami (α)

(0.13)

Notice that this definition averages above all possible couples of layers and the denomi-
nator considers also terms j = m, so that the maximum value of local clustering coefficient
is (N−1)/(N−2). Other attempts have been made in order to have measures of clustering
with additional features such as: (i) naturally reducing to the single-layer definition, (ii)
being bounded between 0 and 1, (iii) defined for node-layer pairs and (iv) defined also for
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non-node-aligned networks. All these features were encompassed in a recently suggested
definition of multilayer clustering based on cycles [38] and random walks:

C∗ =

∑
i t∗,i∑
i d∗,i

, (0.14)

counting the number of 3-cycles of a given type ∗ (e.g. cycles being in one layer only,
cycles jumping across two layers and so on) going through node i normalised by a factor
d∗,i.

The analysis of multilayer clustering found a strong tendency for social networks to pro-
mote link redundancy by displaying triadic closure on every layer, an effect that would be
otherwise unnoticeable by considering aggregate networks only [38]. Further investigation
of multiplex configuration models [39] highlighted that degree correlations have a strong
influence on the number of cycles a node participates in. This underlines the need for a
comparison of clustering coefficient against suitable null models in real-world networks.

Community discovery

A prominent problem in network science is the detection of densely connected groups of
nodes known as communities [40]. For single-layer networks a variety of methods has been
developed in the last twenty years, either directly maximising a given quality function of
the detected community structure [41] or rather adopting information theoretic tools [42]
or spectral features [43] of complex networks.
The multilayer structure challenges the concept of community in terms of tightly con-

nected nodes, since nodes adjacent in one layer might be disconnected in another one and,
in general, the meso-scale community organisation of nodes in one layer might dramati-
cally differ across other layers [8, 37]. This difference indicates the importance of keeping
into account interlayer dependencies and correlations within the definition of multilayer
communities.

Multi-slice modularity maximisation

One of the most popular heuristics for community detection in single-layer networks is
modularity maximisation [41, 40]. Modularity is a metric indicating the extent to which
the distribution of links across and within a given set of communities differs compared
to what one would expect in a suitable network null model. Hence, finding a network
community becomes and optimisation problem of the modularity Q. A generalisation of
modularity maximisation for multilayer networks is the multi-resolution method [8], which
employs a specific analytical generalisation of modularity to multilayer networks. Making
use of the tensorial notation [1], the multilayer modularity is written as:

QM ∝ Saiα(M iα
jβ − P iαjβ )Sjβa , (0.15)

whereM iα
jβ is the multilayer adjacency tensor, P iαjβ is the tensor encoding an appropriate

null model for the observed network structure and Siαa is defined to be 1 when node i
in layer α belongs to a given community labelled by a and 0 otherwise. The algorithm
then proceeds with the same heuristics of single-layer networks for detecting optima in the
landscape of modularity. For a more thorough discussion of the dynamical interpretation
of Qm we refer to the Chapter on dynamical processes on multilayer networks.
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InfoMAP

Spectral clustering in single-layer networks relies on the intuitive idea that a random walker
tends to remain confined preferentially within a given network community rather than
jumping across communities [43, 13, 44]. By defining a map equation for both single-[42]
and multilayer [9] network structure, encapsulating specific types of random walkers on
networks, the InfoMAP algorithm allows to detect multilayer communities. Since the map
equation is a flow-based method operating on the network dynamics, we refer the interested
reader to the Chapter on dynamical processes on multilayer networks for further details.

Non-negative matrix factorisation for temporal networks

Temporal networks can be considered as multiplex networks with layers having a spe-
cific ordering and representing time [45]. Non-negative matrix factorisation has been
suggested for detecting community structure in temporal networks [45], represented as
a three-dimensional tensor T τij . Kruskal decomposition is applied to T τij in order to as-
sign each node to a community across node. Notice that this methodology assumes as
stationary the interdependences across replica nodes over time.

Structural reducibility

The effort of considering more network layers does not always provide additional infor-
mation about interactions among agents: Consider a node-aligned multilayer or multiplex
network where all layers are copies of a single one. More in general, while individual layers
can differ from each other in terms of their topology, they can also display rather high
link overlap and thus contain redundant topological patterns [26, 46]. This naturally leads
to the following question: What would be the optimal number of layers to consider in a
trade-off between preserving the most topological information available and the least effort
in terms of different layers to be considered?
To this aim, structural reducibility analysis was recently proposed [6], as a technique

for quantifying how different a multiplex network is from its aggregate when its layers are
kept either as distinct or rather gradually aggregated. Structural reducibility encodes the
information available in the network structure through the Von Neumann entropy h [47],
which is based on the spectrum {λi}i of the degree-normalised1 Laplacian L = (D−A)/2K,
in formulas:

h = −Tr(Llog2L) = −
∑
i

λilog2λi, (0.16)

where Tr indicates the trace operator on matrices. The Von Neumann entropy hA of
the aggregated network is used as a reference value. Differences between hA and the Von
Neumann entropy of multiplex structure are then used for estimating the loss of information
relative to aggregating the multiplex structure [6]. The Von Neumann entropy hM of the
whole multiplex network is estimated as the average of the entropies of the individual
layers, in formulas:

hM (C) =

|C|∑
α=1

hα/ |C| , (0.17)

where the configuration index C labels a specific combination of |C| different layers,
either original or aggregated. Because of the definition of entropy, the ratio hM (C)/hA is

1Here D is a diagonal matrix having node degrees on its main diagonal, K is the number of links in the
network and A is the adjacency matrix.
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upper bounded by 1 (hM (C) = hA when all the layers have been aggregated together).
Therefore the rescaled index:

q(C) = 1− hM (C)

hA
, (0.18)

represents a relative entropy ranging between 0 and a given maximum value. q(C) = 0
when the aggregate network is equivalent to the multiplex in configuration C and this
can happen if and only if |C| = 1 and all layers have been aggregated (unless the mul-
tiplex network contains identical layers). q(·) is maximum when the multiplex structure
in configuration C is maximally different or the most distinguishable from the aggregated
network.
q(·) is an entropy-based approach for defining how different a given multiplex configu-

ration is compared to its aggregated counterpart. In general, q(·) can either increase or
decrease when two layers are aggregated, depending on their connectivity patterns. While
q(·) decreases when hM (C) increases and this happens mainly in two cases: (i) when two
layers with very different link densities are aggregated into one layer or (ii) when new
structural patterns that were absent in the original layers emerge in the aggregated one.
Both these cases imply a loss of topological information: This is why configurations which
minimise hM and thus maximise the relative entropy q(·) are preferred, instead. This
criterion identifies the multiplex configuration providing the most information about the
multi-relational patterns within it. Figure 0.5 reports an example of structural reducibility
analysis.
When q(·) is maximum but no aggregation is performed, i.e. layers are kept as separate,

then the original multiplex configuration is considered as irreducible: Performing any layer
aggregation would imply a loss of structural information. This is an important starting
point for justifying the multiplex approach [17], together with the interpretation of what
individual layers represent in the irreducible network representation.

Layer clustering

One issue of structural reducibility analysis is that the number of different configurations
that have to be tested for exhaustively discovering the optimal configuration is the L−th
Bell number for a multiplex with L layers, which increases super-exponentially with L.
Testing a multiplex network with only L = 15 layers would require testing more than 109

configurations.
Layer clustering is a viable heuristics for solving the above issue [6]. Structural re-

ducibility adopts a greedy-algorithm exploring the configurations were more similar layers
are aggregated first. Although there are different measures of network similarity in the lit-
erature (we refer the interested reader to [48] for a review), structural reducibility employs
a similarity metric based on the Von Neumann entropy h and commonly used in Quantum
Mechanics, namely the Jensen-Shannon divergence:

DJS(ρ, σ) = h(
ρ+ σ

2
)− h(ρ) + h(σ)

2
, (0.19)

where ρ and σ are matrices. It is easy to check that
√
DJS is bounded within [0, 1] and

satisfies the definition of a metric. When using the degree-normalised Laplacian matrices
of two distinct networks, the Jensen-Shannon distance

√
DJS can be used for implementing

a greedy algorithm performing structural reducibility among the most similar layers.
More in general, the Jensen-Shannon distance can be used also for performing hierar-

chical clustering of layers in multiplex networks, potentially unravelling community-based
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The larger q Cð Þ, the more distinguishable is the multilayer net-
work C from the corresponding aggregated graph A. It is worth
noting that if all the layers of the multilayer network C are
identical, then q Cð Þ ¼ 0, as C and the aggregated graph are totally
equivalent. Conversely, a value q Cð Þ40 indicates that the repre-
sentation with X layers is distinguishable from the aggregated
one; hence the multilayer structure must be preserved. Intuitively,
if the aggregation of two layers does not result in a decrease of the
relative entropy with respect to the multiplex in which the two
layers are kept separated, then one would prefer the reduced
configuration, which is more compact. However, it is possible to
show (see Methods) that if we consider a multilayer C with X
layers and the reduced configuration C0 with X–1 layers obtained
from C by aggregating two of its layers, then in general q C0ð Þ can
be smaller than, equal to, or even larger than q Cð Þ. This is due to
the fact that the entropy per layer !H Cð Þ can either increase or
decrease as a consequence of the aggregation of two layers (see
Supplementary Fig. 1 and Supplementary Table 1). As we show in
detail in Methods, our goal is to find argmax q Cð Þ½ %, that is, the
optimally reduced multiplex Cmax yielding the maximum value of
distinguishability from the aggregated graph. If we denote by Mopt
the number of layers corresponding to the maximum value of
relative entropy max[q(&)], we can then define the reducibility of
a multilayer network A as:

w Að Þ ¼ M'Mopt

M' 1
; ð3Þ

which is the ratio between the number of reductions (M–Mopt)
and the total possible number of potentially reducible layers
(M–1). It is worth noting that w Að Þ ¼ 0 if the system cannot be
reduced, that is, when Mopt¼M, while w Að Þ ¼ 1 only if Mopt¼ 1,
that is, if the M layers can indeed be reduced into a single one
(that is, the aggregated network).

The optimal configuration of aggregated layers is the one that
maximizes the relative entropy q(&), but finding such a
configuration would in general require the enumeration of all
the possible partitions of a set of M objects (the layers), which is a
well-known NP-hard problem (that is, its solution requires a
computational time that scales at least exponentially with M). To
overcome this problem, we adopt a greedy agglomerative
hierarchical clustering algorithm34 to explore the space of
partitions, based on a concept of distance similar to the one
adopted in quantum physics to quantify the distance between
mixed quantum states28. More specifically, capitalizing on the
concept of Von Neumann entropy of a graph, we use the
quantum Jensen–Shannon divergence to quantify the (dis-)
similarity between all pairs of layers of a multilayer network
(see Methods). At each step of the algorithm, we consider the pair
of layers having the smallest value of quantum Jensen–Shannon
divergence and we aggregate them, obtaining a new multilayer
network with one layer less. The rationale behind this choice is
that the aggregation of a pair of similar layers is more desirable
than the aggregation of two very dissimilar layers, as the latter can
introduce artificial structural patterns. The result of this
procedure is a dendrogram (see Fig. 1), that is, a hierarchical
diagram where each of the M leaves is associated to one of the
original layers of the system, each internal node indicates the
aggregation of layers (or of clusters of layers) together and the
root corresponds to the fully aggregated graph. At the mth step of
the algorithm, we obtain a multilayer with M–m layers, for which
we can compute the associated value of relative entropy q(&). The
cut of the dendrogram corresponding to the maximal value of
q(&) identifies the (sub-)optimal configuration of layers in terms
of distinguishability with respect to the aggregated graph. The
whole procedure proposed is sketched in Fig. 1 and can be
summarized as follows: (i) compute the quantum Jensen–
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Figure 1 | Layer aggregation and structural reducibility of multilayer networks. Given a multilayer network (a), we compute the Jensen–Shannon
distance DJS between each pair of its layers (b), which is a proxy for layer redundancy. Such resulting distance matrix allows to perform a hierarchical
clustering, whose output is a hierarchical diagram (a dendrogram) whose leaves represent the initial layers and internal nodes denote layer merging (c). At
each step, the two clustered layers (or group of layers) corresponding to the smallest value of DJS are aggregated and the quality of the new layer
configuration in terms of distinguishability from the aggregated graph is quantified by the global quality function q(&), shown by the curve on the left-hand
side of c. The best partition is the one for which q(&) is maximal (d).
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Figure 0.5: Example of structural reducibility analysis of a multilayer network of L = 8 layers. In-
dividual layers (a) are initially clustered according to how similar their Von Neumann
entropies are (b), see also the subsection on Layer Clustering. A greedy algorithm
selects the configurations in which the most similar layers are clustered first and it
produces a hierarchy of configurations (c). The profile of the relative entropy q is
maximised when only two aggregated layers are considered thus suggesting that the
multilayer structure can be condensed into two layers only (d). Picture reproduced
from De Domenico et al. [38].

classifications across layers of network interactions [7]. Distances between empirical net-
work layers and families of null models can also be successfully used for quantifying how
much information is needed for correctly learning the parameters of a model [7].

Software for multilayer network structure analysis

Over the years, the network community developed several libraries and software for the
analysis of the multilayer network features discussed in the previous sections. We enlist
these tools here for the interested reader:

• MuxViz (http://muxviz.net/) a self-contained framework for the structural and dy-
namical analysis and visualisation of multilayer networks, based on R and GNU
Octave [49];

• PymNet (http://www.mkivela.com/2015/12/11/multilayer-networks-library/) a Python
library for multilayer network analysis integrated with NetworkX for the analysis of
single-layer networks;

• MAMMULT (https://github.com/KatolaZ/mammult) a collection of libraries in C
and Python focusing on multiplex networks;

• GenLouvain (http://netwiki.amath.unc.edu/GenLouvain/GenLouvain) a library in
MATLAB implementing the multislice community analysis;

• InfoMAP (http://www.mapequation.org/code.html) a command line software imple-
mented in C++ for the multilayer network analysis based on random walks;

13



• MultiNet (http://multilayer.it.uu.se/software.html) a set of libraries implemented in
R for multilayer network analysis.
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