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Abstract—Machine Learning (ML) has proven to be effective
in many application domains. However, ML methods can be
vulnerable to adversarial attacks, in which an attacker tries to fool
the classification/prediction mechanism by crafting the input data.
In the case of ML-based Network Intrusion Detection Systems
(NIDSs), the attacker might use their knowledge of the intrusion
detection logic to generate malicious traffic that remains unde-
tected. One way to solve this issue is to adopt adversarial training,
in which the training set is augmented with adversarial traffic
samples. This paper presents an adversarial training approach
called GADoT, which leverages a Generative Adversarial Network
(GAN) to generate adversarial DDoS samples for training. We
show that a state-of-the-art NIDS with high accuracy on popular
datasets can experience more than 60% undetected malicious
flows under adversarial attacks. We then demonstrate how this
score drops to 1.8% or less after adversarial training using
GADoT.

Index Terms—Adversarial attacks, Adversarial machine learn-
ing, Adversarial training, Distributed Denial of Service, Intrusion
detection systems

I. INTRODUCTION

The complexity and volume of Distributed Denial of Service
(DDoS) attacks continues to increase, causing significant
disruption to critical online services and leading to economic
losses. For instance, the number of DDoS attacks is expected
to reach 15.4 million globally by 2023 [1]. Meanwhile, a new
record of 2.3 Tbps was reached in an attack targeting Amazon
Web Services (AWS) in Q1 2020 [2]. To achieve this scale and
damage, attackers develop more sophisticated attacks combining
multiple vectors (i.e. protocols) and adapting their attacks to
bypass NIDSs.

Over recent years, NIDSs have evolved to leverage ML
models to cope with the detection of new attacks, which cannot
be identified by signature-based detection methods. An ML-
based NIDS essentially consists of a feature extractor and a ML-
based model. The feature extractor processes the raw network
traffic to derive features that are arranged into data samples
suitable to input to the model. The model is trained using
malicious and benign samples and then deployed to classify
new samples extracted from live traffic. Several ML-based
NIDSs have been proposed demonstrating detection of DDoS
attacks with high accuracy [3]–[5].

However, in the same way that an attacker might adapt their
attack to remain just below the threshold of a threshold-based
detection system or modify their attack to avoid signature-based
detection, ML-based NIDSs are vulnerable to adversarial attack.
The adversarial attack aims to evade the classification model

and thus reach the target, achieving the planned DDoS. In a
DDoS scenario, an attacker generates perturbed DDoS flows
such that the NIDS extracts samples incorporating features
slightly different from those of unperturbed flows. The ability
to lead the ML model to misclassify adversarial samples and
hence reduce the NIDS accuracy has been demonstrated in
previous works [6], [7].

Generative Adversarial Networks (GANs) are deep generative
models with the capability of learning the distribution of the
input data, then producing new similar examples. A GAN
consists of two models: a discriminator and a generator that
are trained to compete with each other. The generator model
captures the training data distribution to produce fake samples
resembling those from the training data. Our intuition here is
that GAN-based sample generators can be exploited to enrich
the training set with adversarial examples similar to those that
an attacker would use to fool the NIDS, that is, DDoS examples
with the feature distribution of the benign samples.

In this paper, we present GAN-based Adversarial training for
robust DDoS attack deTection (GADoT), an adversarial training
framework designed to produce strong adversarial examples,
hence enabling an effective adversarial training of ML-based
DDoS classifiers. Our framework employs the generator model
of a GAN trained on benign samples to produce fake-benign
samples. Using these fake-benign samples, we perturb the
DDoS samples by replacing their features with values from
those fake samples. The perturbed samples are added to the
training dataset, which already contains benign samples and
unperturbed DDoS samples, creating an augmented dataset for
adversarial training. The trained model is expected to classify
DDoS samples correctly, whether they are perturbed or not.
To the best of our knowledge, GADoT is the first solution to
use GAN-based perturbations that decouples the trained model
from the generation process of adversarial samples to prevent
the model from influencing the strength of adversarial samples
[8].

There are two approaches to implementing adversarial
attacks against NIDS; perturbing data samples and perturbing
network traffic1. In the first approach, the adversary introduces
perturbations directly on the preprocessed samples before
feeding them to the ML model. In the second approach, the
adversary generates adversarially perturbed DDoS flows, which

1Formally, this equates to the feature space and the problem space,
respectively, as studied in [9].



are processed by the feature extractor to create data samples
to be classified by the ML model. This approach can be more
realistic than perturbing extracted samples that require the
adversary to bypass the feature extractor to feed such samples
to the model.

For a practical evaluation, we adopt the approach of per-
turbing the network traffic to generate two datasets in which
the semantics of DDoS attacks are fully preserved. The first
dataset contains six traces with adversarial SYN flood attacks
[10], while the other is based on the CICIDS2017 dataset [11]
and contains traces with adversarial HTTP GET flood attacks
[12]. The evaluation results on both datasets are the basis of
our conclusions on the performance of GADoT. To the best
of our knowledge, GADoT is the first solution to be evaluated
against representative real-world network attack scenarios.

The contributions of this paper are the following:
• We propose GADoT, which is an adversarial training

approach to increase the robustness of ML models used
for DDoS attack detection. The approach exploits a GAN
to generate fake-benign samples in order to perturb DDoS
samples. The training dataset is augmented with these
perturbed samples in order to train adversarially robust
models.

• We provide an analysis of single and multiple (combined)
feature perturbations to offer insight into the model’s
vulnerability before and after adversarial training.

• We offer a practical evaluation and analysis of the
robustness of the ML model trained with GADoT by using
network traffic traces that capture adversarially perturbed
SYN and HTTP DDoS flood attacks.

The rest of the paper is structured as follows: Section
II reviews the related work on adversarial attacks against
NIDSs and the proposed solutions to increase the robustness
of ML-based NIDSs. Section III introduces the threat model.
The proposed GADoT approach is explained in Section IV.
Section V presents the datasets, details of the specific feature
perturbation and experiment design. The results are discussed
in Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

This section reviews the recent advances in the evaluation
of NIDSs in an adversarial setting and the approaches for
enhancing the robustness of these systems.

A. Adversarial attacks against NIDSs

As highlighted in Section I, the vulnerability of learning-
based NIDSs to adversarial perturbation has been explored and
implemented by means of two approaches: perturbing data
samples and perturbing network traffic.

1) Perturbing extracted samples: The key to the success of an
adversarial evasion attack is to maintain the characteristic of the
attack. For example, for a SYN Flood attack that sends a volume
of SYN packets (i.e. SYN flag set), a feature based on the flags
of the TCP header should not be manipulated. Yan et al. [13]
split features in the KDDCup99 dataset into unchangeable that

are essential to maintain the malicious function and changeable
than can be manipulated without affecting this function. Then,
the authors employed a Wasserstein GAN (WGAN)-based
neural network to manipulate the changeable features of the
DDoS attack. The reported results show a 50% drop in the
detection accuracy of the NIDS on the KDDCup99 dataset.
However, this approach lacks the discussion of how these
perturbed samples can be reproduced in live network traffic. This
live traffic should be valid according to the different network
protocols in order to pass through the network and carry out
the intended attack function on the victim side.

2) Perturbing network traces: Aiken et al. [7] investigate
adversarial attacks targeting an anomaly based NIDS within
Software-Defined Networks (SDN). The authors propose per-
turbing three features: payload size, packet rate and volume
of bidirectional traffic, which can be implemented in live
traffic without compromising the attack function. The attack is
implemented in SYN flood traces that are classified by several
ML models, including Support Vector Machine (SVM) and K-
Nearest Neighbour (KNN). The results show that by combining
perturbed features, a detection accuracy drop from 100% to
0% is observed across some of the classifiers and the KNN
classifier is more robust than the others.

B. Defence mechanisms in NIDSs

In the following, we review some of the related work
proposed to increase the robustness of NIDSs, which are based
on denoising autoencoders [14], adversarial training [15], [16]
and combining adversarial training with ensemble voting [17].

Hashemi et al. [14] propose a solution for increasing the
robustness through denoising the samples to remove any
adversarial perturbations. The authors evaluated their approach
on the CICIDS2017 dataset and use the adversarial attacks
presented in [18]. The results suggest that RePO is more robust
than other NIDSs such as Kitsune [3].

Zhang et al. [17] propose a defence approach that combines
three techniques: ensemble voting based on three different ML
models, ensemble adversarial training [8], and query detection.
A flow is classified as benign only if all the models classify
it as benign, forcing the adversary to craft samples that can
evade all models simultaneously. Moreover, they use ensemble
adversarial training [8] to augment the training dataset with
adversarial samples, improving the robustness of individual
models. The defence approach is evaluated on the CICIDS2018
dataset [11] and was effectively able to reduce the success rate
of the adversarial attacks.

Despite the good performance of these defence approaches,
they are only evaluated on perturbations that are implemented on
extracted samples, and there is no discussion of how to convert
such perturbed samples into real network traffic. Furthermore, a
common limitation of the adversarial training approaches [15],
[16], [19] is the use of adversarial samples that are generated
based on the target/victim models. In such approaches, the
victim model learns to generate weak adversarial samples,
instead of learning to defend against strong perturbations and
hence remains vulnerable to adversarial attacks [8].



TABLE I
ADVERSARY MODEL

Threat Model
Characteristic Type Adversary

View

Adversary Goals

Compromising integrity
(Evasion) 3

Compromising availability 7

Compromising confidentiality 7

Adversary Knowledge Feature set 3

Satisfy domain constraints 3

Adversary Capabilities

Manipulate training data 7

Manipulate test data 3

Manipulate model 7

In this work, we propose an adversarial training approach
called GADoT in which the target model is decoupled from
the generation of the adversarial samples used for training. We
generate the adversarial samples by perturbing DDoS samples
with values obtained from a GAN. The trained model thus
learns to defend against strong perturbations and can be resistant
to adversarial attacks. Furthermore, we evaluate the proposed
approach using realistic network traces that are adversarially
perturbed. These traces capture perturbations that are suitable
for volumetric DDoS attacks.

III. THREAT MODEL

To characterise the adversary attacking our ML-based NIDS,
we identify their goals, capabilities and knowledge, as per the
threat modeling framework presented by Biggio et al. in [20].
Our adversary model is summarised in Table I.

A. Attacker’s goal

The adversary aims to evade the ML model through ma-
nipulating the DDoS traffic to be misclassified as benign. If
successful, this operation would allow the attack traffic to remain
undetected and to reach the victim machine or network. This
maps to the online evasion attack as defined in the recently
published MITRE adversarial threat matrix [21].

B. Attacker’s knowledge

The attackers know that the network traffic is monitored
by an ML-based NIDS. However, they have no direct access
to the NIDS itself or the underlying ML model. As a result,
they cannot compromise the NIDS by bypassing some of its
components (such as the feature extractor) in order to feed
manipulated samples directly to the model. Thus, state-of-the-
art attacks [15], [16], [22] based on techniques such as Fast
Gradient Sign Method (FGSM), which manipulate the data
samples, are not viable in such an attack scenario. However,
since DDoS attacks are well researched in the literature, the
attackers can exploit their field knowledge to know the basic
traffic features employed for attack detection. Based on that,
they manipulate these features to evade the classification model.
At the same time, the manipulated traffic must satisfy network
domain constraints such that the objective of the attack remains
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Figure 1. Illustration of the GADoT approach for adversarial training

valid. For example, as previously noted, a SYN Flood must
be comprised of SYN packets. Similarly, the adversary should
ensure that a manipulated packet will not be discarded for
reasons such as invalid header fields (e.g., the checksum).
These assumptions present a realistic threat model for the NIDS
problem space.

C. Attacker’s capability

The attackers can perturb the DDoS flows at test time in order
to evade the classification model, allowing the DDoS attack
to pass undetected. They can also build upon the published
adversarial attacks, such as [7], to select the traffic parameters
that can be tuned to craft an evasion attack.

IV. THE GADOT APPROACH

To produce a robust deep learning-based DDoS detector, we
propose an adversarial training approach, GADoT, in which
an ML model is trained with benign samples, DDoS samples,
and adversarial DDoS samples. The goal is to increase the
robustness against the perturbed DDoS samples, in anticipation
of an attacker who can craft packets and perturb malicious flows
to mimic those characteristics of benign flows. The approach
employs a generator neural network that generates fake-benign
samples used to create adversarial samples and a perturbation
module that produces the augmented dataset Tadv used for
adversarial training of the target model, as depicted in Figure
1.

In the following, we briefly introduce the target model used
in this work, Lightweight, Usable CNN in DDoS Detection
(LUCID)2 [4], and how it prepares the data samples before
classification, then we explain the modules employed by
GADoT. Finally, we describe two baseline approaches against
which GADoT is compared.

A. LUCID as a target model

LUCID is an efficient DDoS detection system that imple-
ments a pre-processing tool for the network traffic and a
Convolutional Neural Network (CNN). The source code of both
pre-processing tool and neural network are publicly available at
[23]. The preprocessing tool, which we refer to as the feature
extractor, converts the flows extracted from the network traffic
into data samples compatible with the CNN. In Figure 2, we
illustrate the feature extractor and the classification model. The

2We selected LUCID as our target model as it achieves the best classification
accuracy of the deep learning-based DDoS detection solutions in the literature.
Its preprocessing tool also enables us to adopt the practical approach of
perturbing the network traffic.
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TABLE II
THE 11 PACKET HEADER ATTRIBUTES USED IN LUCID [4]

Feature Description

Time Relative time of each packet with respect to the
first packet in the time window

Packet Len Length of the entire IP packet

Highest Layer The highest protocol in a packet, e.g. TCP or HTTP

IP Flags Three bits taking one of three states: all zeros,
do not fragment or more fragments

Protocols Representing the protocols found in the packet

TCP Len Size of the TCP segment (header + payload)

TCP Ack Relative acknowledgment number

TCP Flags Nine 1-bit flags of a TCP segment

TCP Win Size The value of the field of the same name in a TCP segment

UDP Len Size of the UDP segment (header + payload)

ICMP Type The value of the type field of an ICMP message

figure also contains other details such as dataset names that
we introduce later, in Section V. The CNN classifies the data
samples as either benign or DDoS. Each data sample includes
a set of features extracted from each packet of a bi-directional
flow in a specific time window.

Using the LUCID feature extractor, we extract 11 features
that are described in Table II and use ten seconds as the time
window length. A network flow, or sample, is represented as
an array of fixed size 10x11, whose 10 lines are the packets
that belong to the flow collected within the time window, while
the 11 columns are the features extracted from each packet.
The size of the array is fixed and decided at training time, as
this is a requirement for the CNN. Flows with more than 10
packets in a time window are truncated, while shorter flows are
zero-padded. The number of actual packets in a sample (non
zero-padded rows) can be seen as a further feature that we call
Flow length in the rest of the paper.

B. The generator neural network

The generator neural network is the generator model G of
a Wasserstein GAN with gradient penalty (WGAN-GP) [24]
that achieves a state of the art performance in terms of training
stability and diversity of the generated samples. In addition
to the generator G, the WGAN-GP includes a discriminator
model D that learns to distinguish between the real samples
from the training data and the generator’s output. During the
GAN training, G and D compete with each other. G learns to
generate better fake samples that fool D, whereas D learns to
label those samples, minimising the success of G. An optimal
generator causes the discriminator to fail to distinguish between
the real and generated samples.

Algorithm 1 Adversarial dataset generation algorithm
Input: T : Training dataset; Y : True labels of T ; F : List of features

to perturb;
Output: Tadv: Adversarial dataset;

1: Tadv = Copy(T ); . Initialise Tadv

2: for f in F do
3: z = N (0, 1); . Source of noise
4: Tg = G(z); . Generate fake-benign samples
5: Tc = Copy(T );
6: if f == flow length then
7: Fill zero-padded rows in Tc[Y == 1];
8: else
9: Tc[Y == 1, f ] = Tg[:, f ];

10: end if
11: Tadv.append(Tc);
12: end for
13: return Tadv

Given a training dataset of benign and DDoS samples, we
train the generator and discriminator of the WGAN-GP with the
benign samples. After training, the discriminator is removed and
the trained generator G of WGAN-GP becomes the generator of
GADoT (Figure 1). This generator takes a source of noise z as
an input and generates new samples x̂ = G(z) with the feature
distribution of the training data. As WGAN-GP is trained with
benign samples, the resulting G(z) produces what we call fake
benign samples.

We chose to generate benign samples in order to perturb the
features of the DDoS samples with values seen in benign traffic.
This matches with the idea of DDoS flows disguised as benign
through mimicking the characteristics of normal flows. For
instance, [6], [7] show how the attacker can evade a wide range
of classifiers after manipulating features such as the number of
bytes and packets, inter-arrival time and packet rate in malicious
network traffic. An advantage of using a GAN over the real
benign samples for perturbation is the wide variety of unique
values that a GAN produces. A well-trained GAN produces a
unique output for each random input, providing a wide range
of fake-benign samples.

The architecture of the generator neural network is based
on the deep convolutional generator of WGAN-GP [24] with
minimal changes to match the shape of LUCID samples. The
architecture is modified to have output shape 10x11, as per the
shape of LUCID samples, and 20 as the dimension of the noise
source z to keep it smaller than the dimensionality of the output
[25]. To train this generator, we utilise the discriminator of the
same WGAN-GP and modify its input shape to be 10x11. The
other hyperparameters of both generator and discriminator are
unchanged with respect to the original architecture. Finally, the
output layer in [24] uses a tanh activation function that produces
samples with features between [-1, 1]. We rescale the values
between [0, 1] in accordance with the normalisation scheme
adopted by LUCID, where all input features are normalised
between 0 and 1 before classification.

C. The perturbation module

The perturbation module takes a dataset with benign and
DDoS samples, and fake-benign samples produced by the



generator neural network and outputs the adversarial training
dataset. The perturbed DDoS samples in the adversarial training
dataset are crafted either by replacing features with values seen
in benign traffic or by replacing the zero-padded rows with
dummy packets. Both the dummy packets and the substitute
values of features are obtained using the generator model.

Algorithm 1 shows the process of generating the adversarial
training dataset Tadv . The inputs of the algorithm are a dataset
T with both benign and unperturbed DDoS samples, the ground
truth Y of the dataset and the list of features to perturb F ,
while the output is the adversarial training dataset Tadv . F is a
subset of the 12 features of a sample, 11 packet header features
plus Flow length, as described in Section IV-A. Note that each
element in Y is a binary label ∈ {0, 1}, where 1 denotes a
DDoS sample, and 0 is a benign sample.

In the algorithm, a copy of T initialises Tadv (line 1). To
perturb a feature f ∈ F , we start with feeding a source of
noise into the generator model G(z) to generate a set of fake-
benign samples Tg; then we make a copy of T named Tc (lines
3–5). For f the Flow length feature, the goal is to perturb
the number of packets in each DDoS sample of Tc; and thus
the zero-padded rows in each sample are filled with packets
from the fake samples of Tg (line 7). For the other features,
the value of feature f in each DDoS sample of Tc is replaced
by a value from the fake samples of Tg (line 9). Then Tc is
appended to Tadv (line 11). In this way, Tadv is augmented
with adversarial DDoS samples whose features can be observed
in benign traffic.

The resulting Tadv is unbalanced, with more malicious than
benign samples. To obtain a balanced dataset, we duplicate
some of the benign samples until we reach an equal number
of malicious and benign samples. Of course, the ground truth
Y is updated with the labels of the newly added adversarial
and benign samples. It is important to note that, in contrast
to the related work [16], [19], GADoT decouples the trained
model from the generation of the adversarial samples used for
training. This is important to prevent the trained model from
influencing the strength of the generated adversarial samples
[8].

D. Adversarial training

We use an adversarial training dataset Tadv in order to train
the target model to increase its robustness to adversarially
perturbed DDoS attacks. As Tadv contains benign samples as
well as perturbed and unperturbed DDoS samples, the goal of
training is to minimise the error between the ground truth and
the predictions through optimising the learnable parameters of
the model.

Having presented the modules of GADoT, we revisit Figure
1 to summarise the end-to-end approach. The input for the
perturbation module is a labelled training dataset T , which
contains unperturbed DDoS samples and benign samples. Then,
the generator neural network receives a number of noise samples
from the Gaussian noise source z = N (0, 1) to generate an
equal number of fake-benign samples Tg to perturb the DDoS
samples, as explained in Algorithm 1. This process produces

TABLE III
OVERVIEW OF THE DATASETS

Dataset #Samples #Benign #DDoS

Training Custom-SYN 52698 26349 26349
UNB201X 265902 132746 133156

Evaluation Scapy-SYN 18830 – 18830
CICIDS2017 13193 – 13193

the adversarial training dataset Tadv , which is then used to train
the model, LUCID. The outcome of the GADoT approach is a
robust DDoS detection model capable of distinguishing between
benign samples and DDoS samples even under adversarial
attack.

E. Baseline approaches

GADoT is compared against two baseline approaches that
can generate perturbed DDoS samples for adversarial training.
In the first approach, which we refer to as Benign Feature
Perturbation (BFP), the training DDoS samples are perturbed
with features obtained from the benign samples in the training
dataset. We use the same procedure explained in Algorithm
1 but with Tg from the training data to save the cost of the
GAN. The second approach is based on the renowned FGSM
[26] algorithm that uses the gradients of the neural network to
create adversarial samples. We use FGSM with `∞ bound on
the perturbation magnitude to create adversarial samples with
minimal perturbations to fool the model. For both baselines,
the augmented dataset Tadv contains benign samples, DDoS
samples, and adversarial DDoS samples with perturbed features
as well as perturbed padding rows.

V. DESIGN OF EXPERIMENTS

This section presents the datasets, the process of training
different ML models, and the design of the experiments used
to evaluate the performance of the GADoT approach in normal
and adversarial settings.

A. Datasets

For our evaluation, we consider two types of DDoS attacks:
TCP SYN flood [10] and HTTP GET flood [12]. Both aim at
exhausting the victim’s resources by sending large amounts of
requests to the victim server, making its services unavailable to
the users. We use four datasets: Custom-SYN and Scapy-SYN
contain TCP SYN flood attacks while the CICIDS2017 [11]
and the UNB201X [4] contain HTTP GET flood attacks. An
overview of these datasets is provided in Table III.

1) Custom-SYN dataset: A traffic trace recorded in our
testbed. It combines legitimate traffic, e.g. web browsing and
ssh, and SYN flood attack traffic generated by using the Hping
network tool [27].

2) UNB201X dataset: This dataset was introduced in [4]
to enable LUCID to better detect DDoS attacks irrespective
of the training dataset. UNB201X is a balanced combination



TABLE IV
SUMMARY OF THE METHODOLOGY FOR TRAINING AND EVALUATION OF

THE LUCID MODELS

Model Name Model
Detection Goal Training Evaluation

Model-SYN SYN flood Custom-SYN
training dataset

Traffic traces: Scapy-SYN
Perturbed Features: IP Flags;
TCP Len; Flow length
Crafting tool: Scapy

Model-HTTP HTTP GET
flood

UNB201X
training dataset

Traffic traces: CICIDS2017
Perturbed Features: Time
TCP Len; Flow length
Crafting tool: Scapy

of preprocessed traces from ISCX2012 [28], CICIDS2017 and
CSECIC2018 [11]3.

3) Scapy-SYN dataset: This dataset contains a SYN flood
attack crafted by using the Scapy tool [29]. Scapy is an open
source program to send, capture, dissect and forge network
packets. It comprises seven different traffic traces: one with
unperturbed SYN attack packets and six traces that contain
SYN packets with different perturbed features:

(i) IP flags: bit do not fragment randomly set to 0 or 1.
(ii) TCP length: SYN packets with random payload content.

(iii) Padding replacement: the SYN packet is followed by a
random number of dummy packets with a random delay.

(iv) SYN Packet Replication4: the SYN packet is repeated a
random number of times with a variable delay.

(v) IP flags & TCP length & Padding replacement: combina-
tion of these three perturbations.

(vi) IP flags & TCP length & SYN Packet Replication: combi-
nation of these three perturbations.

With regard to Padding replacement and SYN Packet Replica-
tion, these are perturbations to the Flow length feature in which
the attacker exploits the zero-padded rows in DDoS samples
to fool the DDoS detection model. The attacker’s aim is to
force the feature extractor to fill them with a random number
of additional packets, making the DDoS samples less dissimilar
to the benign samples (in terms of number of packets per flow).
This can easily be achieved by injecting dummy packets into
the network with the same IP address and TCP port of the
SYN packet, or by replicating the same SYN packet multiple
times within a time window.

4) CICIDS2017 dataset: The CICIDS2017 dataset contains
a wide range of normal and malicious network activities,
including DDoS. We use the timeslot 3.30PM-5.00PM of the
CICIDS2017-Fri7PM trace that contains HTTP DDoS traffic
generated by using LOIC [30]. We perturb the CICIDS2017
traffic trace with Scapy to introduce two perturbations: random
delays between the DDoS packets and the fragmentation of
those packets. The delay between packets is reflected in the
packet arrival time, which is one of the features used by LUCID
(see Table II). Similarly, packet fragmentation decreases the TCP

3The UNB201X dataset has kindly been made available by the authors of
[4] to enable our evaluation.

4The nature of the TCP SYN flood attack with a single SYN packet
constituting a flow makes this attack well suited for experimenting with
perturbations on the Flow length feature.

Len of each packet and thus increases the number of packets in
the attack flows. Both perturbations are particularly suitable for
the HTTP DDoS traffic, as each attack flow comprises several
packets.

B. Training and evaluating the models

We produce two separate models. A model called Model-
SYN is trained to detect the SYN flood attacks, while a second
model called Model-HTTP is trained to detect the HTTP GET
flood attacks5. Both models are based on the LUCID code
available at [23], hence implemented in Python v3.6.8 using
the Keras API v2.2.4 on top of Tensorflow 1.13.1 [31] and the
ADAM optimization algorithm. In the following, we present
the details of training and evaluating each model, with and
without GADoT. A summary is provided in Table IV.

1) Model-SYN: First, this model is trained with the Custom-
SYN training dataset in order to detect the SYN flood attacks in
normal settings, i.e. to classify unperturbed flood attacks. Using
GADoT, the same model is adversarially trained with the dataset
Tadv generated by inserting the Custom-SYN training set as
input to Algorithm 1. As Tadv contains adversarial samples
perturbed using the GAN neural network, we expect the model
to be robust and correctly classify the SYN flood traffic in
adversarial settings. This model is evaluated on the six perturbed
traces of the Scapy-SYN dataset to assess the robustness after
using GADoT.

2) Model-HTTP: To detect HTTP GET flood attacks, we
train this model with the UNB201X training dataset. The
trained model is used for attack detection in normal settings,
i.e. to classify unperturbed flood attacks. Using GADoT, the
model is retrained with the dataset Tadv generated by using the
UNB201X training set as input to Algorithm 1. In both cases
Tadv is generated based on F that includes the 11 features
of LUCID samples as well as perturbed padding rows. We
evaluate this model on the manipulated CICIDS2017 traffic
traces. This provides an evaluation based on the practical
adversary capability of perturbing network traffic. The results
of these experiments are presented in sections VI-A and VI-B.

In our experiments, the benign samples in the Custom-
SYN and UNB201X test datasets are fixed throughout the
experiments, while the DDoS samples in both datasets are
replaced by a similar number of perturbed DDoS samples for the
relevant experiment. In this way, variations in performance are
solely attributed to the adversarially perturbed DDoS samples,
and not to a change in benign samples.

C. Evaluation metrics

We evaluate the classification accuracy using the F1 score,
which combines both the recall and the precision and hence
provides an overall measure of the model’s performance. The
robustness can also be indicated by the false negative rate
(FNR), which is the number of misclassified DDoS samples
to the total number of DDoS samples in a test dataset. These
metrics are formally defined as follows:

5This enables comparison with the original LUCID paper when using the
UNB201X dataset.



Pr =
TP

TP + FP
Re =

TP

TP + FN

FNR =
FN

FN + TP
F1 = 2 ·

Pr ·Re

Pr + Re

where Pr=Precision, Re=Recall, F1=F1 Score, FNR=False Neg-
ative Rate, TP=True Positives, FP=False Positives, FN=False
Negatives.

VI. EXPERIMENTAL RESULTS

This section presents the detection results of the models
trained using the baseline approaches and our adversarial
training approach. We employ these models to classify network
traces with perturbed DDoS traffic. Moreover, it is important to
stress that the GAN is only used to generate adversarial samples
for training. In the following, we use the difference ∆ in the eval-
uation metric, e.g. F1 score or FNR, to show the effect of using
GADoT on the robustness of the trained models. This difference
is formally defined as: ∆ = Result(After)−Result(Before).

A. Evaluation in normal settings

First, we want to measure any negative effect of adversarial
training with GADoT on LUCID when tested on unperturbed
data. Thus, we want to ensure that training with adversarial
samples does not cause any degradation to the performance
of LUCID. In this regard, Table V shows the detection results
of the trained models on unperturbed test datasets before and
after using GADoT. The results of the baseline approaches are
omitted from the table due to space limitation.

Before using GADoT, the LUCID models are capable of
detecting DDoS flows with F1 scores above 99%, which aligns
with the results already reported in [4]. After training with
each of the baseline approaches, the models also maintain their
detection accuracy with F1 scores above 99% in all datasets.
When trained with GADoT, the models maintain high accuracy
scores, despite a drop in the F1 score of less than 1.5%. Notably,
we observe a slight drop in precision on the SYN datasets, and
in recall score on the CICIDS2017 dataset. This indicates that a
few ambiguous network flows are misclassified, which matches
the observations made in [17] after adversarial training and
[32] after employing ensemble learning to improve robustness.

B. Evaluation in adversarial settings

In what follows, we test Model-SYN and Model-HTTP on
perturbed flood attacks that can be generated according to the
attacker’s knowledge as defined in our threat model (Section
III). Moreover, we demonstrate the positive impact of using
GADoT on the models’ robustness.

1) Model-SYN: The F1 scores of Model-SYN before and
after using GADoT for training, and tested on perturbed samples,
are shown in Table VI.

With no adversarial training, we observe a substantial
sensitivity of the model to adversarial SYN flood attacks
built with perturbations on IP flags, and Padding replacement,
which leads to a drop in the F1 score to 65.96%, and 78.75%,

TABLE V
EVALUATION OF MODEL-SYN AND MODEL-HTTP AGAINST UNPERTURBED

TEST DATASETS BEFORE AND AFTER USING GADOT

Dataset
(Model Name)

Scapy-SYN
(Model-SYN)

CICIDS2017
(Model-HTTP)

Before After ∆ Before After ∆

Precision 0.9985 0.9739 -0.0246 0.9873 0.9902 0.0029

Recall 1.0000 1.0000 0.0000 0.9990 0.9978 -0.0012

F1 score 0.9992 0.9867 -0.0125 0.9931 0.9940 0.0009

FNR 0.0000 0.0000 0.0000 0.0009 0.0021 0.0012

respectively. The results obtained with IP flags confirm the high
ranking of this feature in the analysis presented in the original
LUCID paper [4]. On the other hand, the impact of manipulation
of the Flow length feature through Padding replacement can be
explained by analysing the properties of the SYN flood attack
traffic. Indeed, the Flow length of the SYN samples is either
one or two packets (the SYN packet of the attacker and the
SYN-ACK from the victim server, if its connection tables are
not full), while benign samples in our datasets are longer on
average. This difference becomes less prominent when the Flow
length feature of DDoS samples are perturbed with Padding
replacement, leading to a decrease in the classification accuracy.

These results demonstrate that perturbing the IP flags and
replacing the padding rows with dummy packets can generate a
successful evasion attack. We also identify that similar success
can be achieved by perturbing a combination of features in
the same SYN network flow. For instance, while introducing
SYN Packet Replication perturbation has decreased the F1
score to 96%, combining it with the IP flags and TCP length
perturbations yields a further 33% F1 score decrease, producing
a stronger evasion attack.

We also observe that adversarial training might produce a
decrease in the classification accuracy when perturbed samples
are present. This is indicated by the negative ∆ values in Table
VI. Although minimal, the decrease is caused by the change in
the distribution of the features due to the adversarial samples
added to the training set. This change moves the decision
boundary, and hence the accuracy scores, F1 included.

Adversarial training with the BFP baseline approach allows
the Model-SYN to restore most of its detection accuracy
with the majority of F1 scores > 97% except for the IP
Flags perturbation. This indicates that adversarial training with
this approach leaves the model vulnerable to perturbation of
features not present in the benign samples. The FGSM-based
approach leads to a minor improvement in robustness against
most of the perturbations. This minor increase in robustness
suggests that FGSM or similar methods (e.g., Projected Gradient
Descent (PGD)) might not be the best option to generate
adversarial examples for the training of NIDS. On the other
hand, after retraining using GADoT, we obtain an overall
higher classification accuracy (> 98%) and a substantial
reduction in the false negative rate, which drops to reach
approximately 0% for all perturbations. The results highlight
that the adversarial dataset Tadv created with GADoT covers the



TABLE VI
EVALUATION OF MODEL-SYN AGAINST PERTURBED TRACES OF THE SCAPY-SYN DATASET

Perturbations Before GADoT BFP FGSM

F1 Score FNR F1 Score ∆ FNR ∆ F1 Score ∆ FNR ∆ F1 Score ∆ FNR ∆

IP Flags 0.6596 0.5071 0.9867 0.3271 0.0003 -0.5068 0.6558 -0.0038 0.5071 0.0000 0.6541 -0.0055 0.5071 0.0000

TCP Len 0.9992 0.0000 0.9867 -0.0125 0.0000 0.0000 0.9953 -0.0039 0.0000 0.0000 0.9933 -0.0059 0.0000 0.0000

SYN Packet Replication 0.9547 0.0851 0.9867 0.0320 0.0000 -0.0851 0.9951 0.0404 0.0000 -0.0851 0.9933 0.0386 0.0000 -0.0851

Padding Replacement 0.7875 0.3494 0.9867 0.1992 0.0000 -0.3494 0.9757 0.1882 0.0382 0.3112 0.9127 0.1252 0.1491 -0.2003

IP Flags; TCP Len; SYN
Packet Replication 0.6322 0.5368 0.9846 0.3524 0.0041 -0.5327 0.9888 0.3566 0.0130 -0.5238 0.9066 0.2744 0.1596 -0.3772

IP Flags; TCP Len;
Padding Replacement 0.5862 0.5843 0.9867 0.4005 0.0000 -0.5843 0.9731 0.3869 0.0431 -0.5412 0.5999 0.0137 0.5657 -0.0186

TABLE VII
EVALUATION OF MODEL-HTTP AGAINST PERTURBED TRACES OF THE CICIDS2017 DATASET

Perturbations Before GADoT BFP FGSM

F1 Score FNR F1 Score ∆ FNR ∆ F1 Score ∆ FNR ∆ F1 Score ∆ FNR ∆

Delay 0.5516 0.6150 0.9871 0.4355 0.0177 -0.5973 0.9038 0.3522 0.1659 -0.4491 0.8105 0.2589 0.3124 -0.3026

Packet Fragmentation 0.9406 0.1024 0.9935 0.0529 0.0000 -0.1024 0.9879 0.0473 0.0112 -0.0912 0.8833 -0.0573 0.2019 0.0995

space of adversarial perturbations that attackers might exploit.
This also indicates that Model-SYN is more robust to adversarial
attacks with adversarial training using GADoT than without.

2) Model-HTTP: As noted in Section IV-A, packet arrival
time and TCP Len are important features in the detection
model. We therefore measure the impact of delay perturbation
and packet fragmentation on the detection accuracy. Packet
fragmentation perturbs the TCP Len feature of each packet and
increases the number of packets in each flow as well. Indeed,
packet arrival time, packet size and the number of packets in
a flow are features employed to generate adversarial network
flows across the state-of-the-art, e.g., [7], [13], [14], [17], [18].
We apply the perturbations to the DDoS packets of the HTTP-
GET flows in the CICIDS2017 dataset. As shown in Table
VII, with no adversarial training, the HTTP GET attack with a
delay perturbation generates a strong evasion attack, as the FNR
increases to 61.5%, confirming the importance of this feature
for the detection model. On the contrary, packet fragmentation
generates a weaker evasion attack with FNR around 10%. The
reason is that the attack flows naturally comprise several packets,
and hence packet fragmentation has a less noticeable impact
on the attack flows.

With adversarial training using the baseline approaches, it
is evident that the trained models remain vulnerable to DDoS
attacks with perturbed samples. The better of the two models,
which is the BFP approach, is still vulnerable to the delay
perturbation as the F1 score and FNR are approximately 90%
and 16% respectively. After using GADoT for training, the
detection accuracy of the model in the case of delay perturbation
experiences more than 43% improvement in the F1 score,
reaching 98.71%. The same improvement is also apparent in
the FNR that drops to 1.8%, indicating the increased resilience
to adversarial perturbations. A similar level of resilience is also
noticed in the case of the packet fragmentation as the FNR
has dropped to 0%. This highlights that, in comparison with
the baseline approaches, GADoT is able to create adversarial

training dataset Tadv with a wide coverage of adversarial
perturbations. These results, combined with those of Model-
SYN, demonstrate the considerable improvement in robustness
after using GADoT.

C. Discussion

The results presented in the previous sections confirm that
ML-based NIDSs are vulnerable to adversarial attacks. Potential
adversaries can exploit their domain expertise to craft perturbed
flood attacks without requiring knowledge of the underlying
detection model. For example, they can perturb the delay in
the network flows of the HTTP GET flood attack, as we
have done in the CICIDS2017 dataset, which causes the FNR
(misclassified DDoS samples) to reach 61.5%. Building upon
this FNR, they can increase the number of bots (botnet DDoS
attacks) to exhaust the victim resources and achieve a successful
DDoS attack. In contrast, after adopting GADoT, most of the
perturbed flood samples are detected, with the FNR reduced to
below 1.8%.

The models trained using GADoT achieve high performance
with F1 scores above 98% on perturbed DDoS network traces,
improving on the 62% average detection rate reported in
[14]. We highlight that the models trained using GADoT have
detected the SYN and HTTP GET flood attacks, whether they
are perturbed or not, allowing for the mitigation of such attacks.
Moreover, the architecture of those models remains unchanged,
and thus GADoT has no impact on their performance in terms
of processed samples/second and memory requirements.

Finally, a consideration for practical deployment of a ML
system such as GADoT is prediction interpretability [33].
We undertook a simple study of how our trained model
classifies samples after adversarial training by exploring the
filter activations of a convolution layer while processing samples.
This revealed a change in the filter activation across different
features as well as a shift in their ranking, and hence their
contribution to the model’s decision. For example, our initial



analysis indicated that there is no longer a heavy dependence
on a single feature such as Highest layer, as reported in [4],
which suggests to us that the adversarial training evens the
activation across multiple features, which results in the increased
robustness to evasion attacks. However, this is not conclusive
and requires an in-depth analysis, which we propose for our
future work.

VII. CONCLUSION

In this paper, we introduced GADoT, an approach for
adversarial training of ML models detecting DDoS flood attacks.
We trained two LUCID models, which are state-of-the-art for
DDoS detection, to detect two types of flood attacks, namely,
SYN flood and HTTP GET flood. However, these models, as is
the case for other ML models, are vulnerable to adversarially
perturbed DDoS samples and traces that aim to evade such
models, reaching the victim machine and achieving the DoS
goal. To defend against such adversarial attacks, we trained
both models using GADoT, which leverages a GAN to generate
adversarial DDoS samples for training. The trained models were
evaluated on real perturbed traces generated without requiring
knowledge of the victim model. This approach sets GADoT
apart from other similar solutions. The results show that the
models trained with GADoT can detect with high accuracy
both the SYN and HTTP flood attacks, regardless of whether
they are perturbed or not. The models achieved F1 score above
98% and the FNR drops to below 1.8% on perturbed DDoS
network traces. Future work will include extending GADoT to
other DDoS attack types and studying the use of open source
tools, such as LOIC, to generate perturbed DDoS attacks.
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