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Featured Application: The proposed model-based approach can support and quicken the analy-
sis of collagen birefringence from a large set of polarized light microscopy images for medical
applications in different tissue types in the presence of structural diseases.

Abstract: Collagen is a key determinant of physio-pathological processes in different tissues. Polar-
ization light microscopy (PLM) of histological sections is the gold-standard for birefringence-based
collagen quantification, but post-session image analysis can be time-consuming and subjective. We
propose an efficient semi-automatic computational approach for the quantification of collagen content
from the analysis of PLM images of birefringent histological sections. The method is based on a
physical model of light-sample interaction and birefringence effect production. It combines the
information of bright and dark-field PLM images to segment the luminal region and detect the
birefringent signal associated with collagen in the tissue region. User input is limited to the selection
of a threshold on an image subset and the supervision of the processing, enabling fast analysis of large
datasets. Modeling of the birefringence signal compensates for variability factors related to sample
processing and image acquisition, such as section thickness variability and nonuniform illumination
and transmittance. As a proof-of-concept, the method was applied to human cardiac tissue PLM
images, acquired in 14 cardiac surgery patients with different arrhythmic profiles. The method was
able to detect a significantly larger amount and higher heterogeneity of fibrosis in the atrium of
patients with as opposed to without atrial fibrillation (p < 0.05). The proposed method can be a valid
aid to quicken and reinforce the analysis of large sets of PLM images for the quantification of collagen
distribution in different tissues and pathologies.

Keywords: polarized light microscopy; histology; collagen; birefringence; image processing;
segmentation; artifact removal; fibrosis; cardiac disease; atrial fibrillation

1. Introduction

Collagen is the most abundant protein in mammals and the main component of con-
nective tissue. It plays a crucial physiological role in sustaining and providing structural
integrity to healthy tissues [1]. In pathological conditions associated with inflammatory
responses, collagen production can become deregulated, resulting in fibrosis formation.
Fibrosis is a pathological process characterized by fibroblast proliferation and remodeling
of the extracellular matrix in composition and quality with the over-secretion of colla-
gen [2,3]. Fibrotic remodeling can lead to distorted tissue architecture and impaired tissue
function in several organ and tissue types. Accumulating evidence indicates myocardial
fibrosis is a common pattern and an important player in different cardiac diseases, such
as myocardial infarction, hypertensive heart disease, different types of cardiomyopathies,
and cardiac arrhythmias [4,5]. Focusing on the last aspect, fibrosis can favor the onset
and maintenance of cardiac arrhythmias by affecting conduction and impulse formation,
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where its effects depend not only on the amount, but also on the texture and spatial dis-
tribution of fibrosis [5–7]. A quantitative and detailed description of fibrosis/collagen
spatial distribution in cardiac tissue is thus fundamental for a complete understanding of
cardiac arrhythmia mechanisms and structure-function relation, and for the optimization
of therapeutic approaches [5].

Histological morphometric evaluation of tissue samples remains the gold standard
for cardiac tissue characterization and collagen assessment. Polarized light microscopy
(PLM) is commonly used to analyze these samples, since collagen is optically anisotropic
and intrinsically birefringent (i.e., its refractive index depends on the polarization and
propagation direction of the incident light), appearing bright when viewed in polarized
light [8–10]. The birefringence characteristics of collagen can be enhanced by specific
staining procedures, such as picrosirius red staining. Picrosirius red is an anionic dye,
which can stably bind along cationic collagen fibers and provide additional birefringence
by virtue of its anisotropic molecular organization [11–13].

Subsequent quantification of collagen from PLM images is traditionally performed
by manual stereology approaches [14], which are however strictly dependent on the skills
of the operator and can be particularly time consuming when a large number of sec-
tions need to be processed. On the other hand, extrinsic variability factors, related to
either the realization and processing of tissue slices or to limitation in the microscope
set-up and imaging sessions can produce artifacts and further affect the quantification of
collagen content.

Few methods for the semi-quantitative and/or semi-automatic estimation of collagen
content in histological sections have been previously proposed [9,10,15–19], but there is
still a lack of rigorous computational approaches, which should couple objective and fast
quantification of collagen with control of confounding factors.

Based on these considerations, in this paper, we propose a model-based semi-automatic
analysis framework for the quantification of collagen content from PLM images of histolog-
ical tissue sections. The framework combines the information in bright-field and dark-field
polarized light images to perform a semi-automatic segmentation of cardiac tissue from
the background and of collagen from cardiac tissue, providing the collagen fraction as
an output. The user tasks are limited to the initial choice of a segmentation threshold on
a limited number of sections, the supervision of the processing, and the final check of
segmentation results, with significant reduction of processing time. In addition, the frame-
work is enforced by an underling physical model of polarized light–sample interaction and
birefringence signal production, which reduces the effects of confounding factors, such
as variability in tissue slice thickness, illumination spatial inhomogeneity, and temporal
variability of the light source. As a proof-of-concept application, we applied our method to
human cardiac tissue samples and showed its capability to point out differences in fibrosis
content and distribution in patients with different cardiac rhythms, i.e., patients with and
without atrial fibrillation (AF).

2. Materials and Methods

The analysis framework aims at the fast and accurate quantification of collagen content
from the birefringent signal in samples imaged in polarized light. The framework is based
on a physical model of polarized light–sample interaction for a microscope in polarizer–
sample–analyzer configuration, which is described in Section 2.1.

The processing pipeline, schematized in Figure 1 and detailed in Sections 2.2–2.5,
received both bright-field and dark-field images as input and performed a semi-automatic
extraction of collagen density in the tissue, independent from inter-plate experimental
variability. The method addressed major variable factors, including sample tissue area and
section thickness, variations of light source intensity and exposure time, and nonuniform
field exposure in the captured image (i.e., vignetting effect), which can originate either
from back illumination or transmission through the microscope optics. The illustrative
application of the method to cardiac tissue samples is described in Section 2.6, where we
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tested the possibility of analyzing multiple sample batches acquired with the same protocol
by imposing a common collagen-detection threshold, thus minimizing human input.

2.1. Birefringence Physical Model

Birefringent materials are characterized by optical anisotropy, since their refractive
index varies depending on the direction of incident light with respect to the material main
optical axes. The anisotropy of the refractive index can be represented by an ellipsoid
named indicatrix. The intersection of the indicatrix with the plane perpendicular to the
incident light is an elliptical section, which defines two polarization axes: one where the
refractive index is larger (slow axis) and one where it is smaller (fast axis). The components
of the electrical field along these axes undergo a relative phase shift:

δ =
2π

λ
∆n·L (1)

where ∆n is the difference of the refractive indices and L is the light path, i.e., the
sample thickness.

A common configuration to study the birefringence effect in microscopy is to place the
sample between two linear polarizers (polarizer–sample–analyzer configuration, LP-S-LP).
The polarized light emerging from the sample has its components along the birefringent
axes with a phase shift δ. When the projections of these components on the transmission
axis of the analyzer recombine, the phase shift causes an interference, which modulates
the intensity of the light emerging from the analyzer. The light intensity collected from an
LP-S-LP configuration for ideal polarizers is computed as in [20]:

I =
Io

2
Ts

[
cos2 χ− sin 2φ sin 2(φ− χ) sin2 δ

2

]
(2)

where Io is the intensity of the source unpolarized light, Ts is the sample transmittance,
χ is the angle between the polarizer and analyzer transmission axes, φ is the angle
between the sample slow axis and the polarizer transmission axis. A Beer–Lambert–
Bouguer linear attenuation model with attenuation coefficient µ can be assumed for
the sample transmittance:

Ts = e−µL (3)

However, real polarizers are characterized by a transmittance along the transmitting
axis T1 smaller than unity and a transmittance along the extinction axis T2 larger than
zero [21]. The light contribution transmitted along any of the four possible combinations of
principal axes of the analyzer and polarizer can be obtained from Equation (2) changing
the angles χ and φ by π

2 accordingly. The total light intensity is then computed as:

I = Io
2 Ts
[(

T1
2+ T2

2) cos2 χ + 2T1T2 sin2 χ

−
(
T1

2 + T2
2 − 2T1T2

)
sin 2φ sin 2(φ− χ) sin2 δ

2

]
= IoTs

[
Tp cos2 χ + Tc sin2 χ

−
(
Tp − Tc

)
sin 2φ sin 2(φ− χ) sin2 δ

2

] (4)

where Tp and Tc are the transmittances of the polarizer pair in parallel and crossed con-
figurations, respectively. In this model, Tp and Tc are considered images that include the
inhomogeneous field illumination caused by the microscope filters and optics, while the
light source Io is a scalar.

When the polarizer and the analyzer are parallel (χ = 0) Equation (4) reduces to:

Ip = IoTs

[
Tp −

(
Tp − Tc

)
sin2 2φ sin2 δ

2

]
= IoTs

[
Tp −

(
Tp − Tc

)
Ks sin2 δ

2

]
(5)
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where the effect of sin2 2φ in a biological sample is expressed through the modulation
image Ks ≤ 1, which is dependent on the local prevalent direction of the birefringent fibers
in the tissue.

Similarly, when the polarizer and the analyzer are perpendicular (χ = π
2 ), Equation (4)

reduces to:

Ic = IoTs

[
Tc +

(
Tp − Tc

)
Ks sin2 δ

2

]
(6)

2.2. Data Preprocessing

The analysis software was developed in Matlab programming language (The Math-
Works, Inc., Natick, MA, USA). The structure of the analysis framework is depicted in
the block diagram of Figure 1. The input data of the software consisted in picrosirius red
stained tissue section images acquired in PLM, using a LP-S-LP configuration. For a batch
of samples composed by N sections, bright-field images, Ai

p i = 1 . . . N, and the dark-field
images, Ai

c i = 1 . . . N, were obtained setting the polarizers in parallel and crossed configu-
rations, respectively. For each batch, two white images in parallel (A0

p) and crossed (A0
c )

configurations were also acquired with a white plate inserted (i.e., without any sample).
The images were saved as uncompressed 16 bit/channel TIFF files, in RGB photometric
representation (i.e., each image corresponded to a mxnx3 matrix). The light intensity, or
radiant flux, associated with the image files was obtained by converting the original RGB
images into double precision, linearizing the pixel intensity by gamma correction, and
normalizing for the exposure times, according to:

Ii
p =

Ai
p

γ

tp
, Ii

c =
Ai

c
γ

tc
i = 0 . . . N (7)

where tp and tc are the image exposures in the parallel and crossed configurations, re-
spectively, and a camera gamma encoding of 1

γ was assumed. The use of the radiant flux,
instead of the original images, allowed us to control for the variability related to variations
in exposure time among different acquisition sessions (see Section 2.6). The linearized light
intensity images Ii

p and Ii
c were subsequently processed to obtain a signal representative

of collagen density in the tissue, independent from experimental confounding variables,
such as spatial nonuniformity of illumination in each plate and variations of light source
intensity, sample section thickness, and tissue area between different plates.
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Figure 1. Block diagram of the model-based collagen segmentation framework. The framework input
data are bright-field and dark-field tissue images. Both the bright- and dark-field images concur to
compute the tissue mask (masktis

i), the transmittance signal (Ti
s), the average optical thickness (µ(r)Li),

and the grayscale collagen signal (Si
col), which is thresholded to obtain the collagen mask (maskcol

i).
The tissue and collagen masks are combined to obtain the collagen fraction (ci) as output. See text for
intermediate step details.
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2.3. Tissue Segmentation, Transmittance, and Optical Thickness Estimation

The first phase of the processing consisted in the segmentation of the image region
corresponding to the tissue from the luminal space (or background), and the computation of
the average optical thickness of the sample to be used for subsequent signal normalization.

The isolation of the tissue was obtained by an automatic single-threshold segmenta-
tion of a mxnx3 RGB image Bi, which was proportional to the i-th sample transmittance
image Ti

s. Bi was obtained from both parallel and crossed polarized images by using
Equations (5) and (6) to compensate for the effects of nonuniform illumination and bire-
fringence. First, the nonuniform illumination was quantified for parallel and crossed
configurations by interpolation of the corresponding linearized white images, I0

p and I0
c ,

acquired at the beginning of each microscopy imaging session. The interpolation yielded
the mxnx3 smooth profiles P0

p and P0
c , representing the field illumination cleaned from high

frequency noise and acquisition artifacts of the original white images. The interpolation
was performed for each channel by least square regression with a base of two-dimensional
Legendre polynomials up to order 8. The order of the polynomials was empirically chosen
to capture the low-frequency trend of white-image illumination, while removing other
artifacts. Legendre polynomials were preferred to the monomial base to avoid numerical
overflow and allow convergence of the solver.

The image Bi, corresponding to the i-th plate, was then defined for each RGB channel
k by the following equation:

Bi
(k) =

Ii
o(k)

I0
o (k)

Ti
s(k) =

Ii
p(k) + Ii

c(k)

P0
p (k) + P0

c (k)
(8)

where the second equality results from applying Equations (5) and (6) on the analyzed
images Ii

p and Ii
c and the white profiles P0

p and P0
c (where δ = 0 and Ts = 1). I0

o and Ii
o are

1 × 3 vectors representing the RGB light intensity for the white and i-th plate acquisi-
tion, respectively. The element-by-element division by the profile matrices corrected the
luminance nonuniformity and eliminated the dependence from the polarizer transmit-
tances, so that Bi resulted proportional to Ti

s minus variations of light source during the
microscopy session.

The segmentation of tissue from luminal space relied on a background/foreground
separation method based on the histogram shape for each RGB channel of Bi. The histogram
function h(x) was reconstructed by binning the intensity values of each channel and
applying a Gaussian smoothing kernel. A bin width of 0.001 and a Gaussian sigma of
0.005 were chosen as a compromise between location accuracy and robustness against noise.
The analysis took advantage of the bimodal trend of the histogram function, where the
first broader peak corresponded to the tissue and the second peak to the background. The
threshold was detected in correspondence of the deepest valley between the two peaks of
the histogram, as shown in Figure 2. Specifically, for each separating threshold candidate t
in the histogram domain, the maxima m1 and m2 of the left and right histogram sides were
detected at intensity values x1 and x2, respectively:

m1 = max
x<t

h(x) = h(x1) m2 = max
x≥t

h(x) = h(x2) (9)

The optimal segmentation threshold tseg(k) was determined for each channel k = r, g, b
as the value of t that maximized the depth function:

d(t) = min(m1, m2)− h(t) (10)

with the constraint x2 ≥ 0.8·p99
(

Bi), where p99 is the 99-th percentile of the distribution.
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Figure 2. Automatic detection of the threshold
(
tseg
)

for separating tissue from luminal area in each
channel of the illuminance-corrected bright-field image Bi. In the histogram (in grey), tseg is placed
at the minimum d

(
tseg
)

between the tissue peak (m1) at position xtis and the lumen peak (m2) at
position xlum. The histogram is shown in semi-logarithmic scale.

In correspondence of the threshold value tseg, the positions of the tissue and lumen
peaks were then set at xtis = x1 and xlum = x2, respectively.

The automatic detection was supervised by an operator with the possibility of manual
adjustment, if required. The binary tissue mask, maski

tis, was finally defined for values of
Bi less than tseg in all the three channels:

maski
tis = ∩

k=r,g,b
Bi

(k) ≤ tseg(k) (11)

Since the sample transmittance is unitary in the lumen, Ti
s was calculated by white

balancing Bi according to the coordinates xlum of the background peak, i.e., assuming
Ii
o

I0
o

= xlum in Equation (8). Finally, the mean optical thickness in the tissue area was

estimated using Equation (3) on the red channel of Ti
s:

µ(r)L
i =

〈
− ln Ti

s(r)

〉
maski

tis

(12)

The optical thickness of the red channel was chosen as a good indicator of the section
thickness, Li, since the red channel is minimally affected by picrosirius red staining.

2.4. Tissue Birefringence Quantification

The birefringence effect was separated from the effects of the source light inten-
sity, the sample transmittance, and the microscope system transmittance, combining
Equations (5) and (6) to obtain:

Ki
s sin2 δi

2
=

Tp + Tc

Tp − Tc

Ii
c

Ii
p + Ii

c
− Tc

Tp + Tc
∼=

Ii
c

Ii
p + Ii

c
− Tc

Tp
=

Ii
c

Ii
p + Ii

c
− Po

c
Po

p
(13)

where the approximation was justifiable for Tc � Tp, and the ratio Tc
Tp

in the last equality
was obtained from the regularized white images Po

c and Po
p , where no sample was present

(δ = 0 and Ts = 1).
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The expression in Equation (13) was then normalized with respect to the mean optical
thickness µ(r)Li, calculated in Equation (12), to reduce the effects of sample thickness
variations. The normalization led to the mxnx3 RGB birefringence image:

Si
bir =

1(
µ(r)Li

)2

(
Ii
c

Ii
p + Ii

c
− Po

c
Po

p

)
≈ Ki

s

(
π

µ(r)λ
∆ni

)2

(14)

where the approximation used the first term of the Taylor expansion for sin2 δ
2 ≈

(
δ
2

)2
.

Under the assumptions that µ(r) varied minimally among plates and sin2 δ
2 � 1 (see

Section 3.3), the image Si
bir could be considered mainly dependent on the birefringent

properties of the tissue (i.e., the anisotropy and orientation of the refraction index) for
different visible wavelengths, minus a multiplicative constant unaffected by inter-plate
experimental variability.

2.5. Collagen Content Quantification

The grayscale collagen signal was defined as the mean of the RGB channels of the
birefringence signal Si

bir:

Si
col =

Si
bir(r) + Si

bir(g) + Si
bir(b)

3
(15)

where Si
col is a mxnx1 matrix. The Si

col images of a subset of plates were inspected by the
operator to define a unique threshold, tcol , to be applied for the identification of the tissue
with a significative collagen content (see Section 2.6). The threshold was then applied to all
the Si

col i = 1 . . . N, detecting the pixels of the tissue area considered rich in collagen:

maski
col =

(
Si

col ≥ tcol

)
∩maski

tis (16)

The percentage of collagen in the sample was finally computed as the ratio of the pixel
count in the area of collagen tissue and the total tissue area:

ci = 100
∑ maski

col

∑ maski
tis

(17)

2.6. Proof of Concept Application of the Framework to Cardiac Histological Sections

As a proof-of-concept application, the analysis framework was applied to a database
of bright-field/dark-field images of picrosirius red-stained atrial tissue sections, obtained
in a group of 14 patients (age 69.1 ± 10.1 years, 3 female), who underwent a cardiac surgery
intervention. The investigation was approved by the Ethical Committee for Clinical Experi-
mentation of the Provincial Agency for Health Services of the Autonomous Province of
Trento (N.6/2012) and conformed to the principles outlined in the declaration of Helsinki.
All patients gave written informed consent. In each subject, atrial specimens of few mm2

area were excised from the right atrial appendage during heart cannulation for extracorpo-
real circulation (surgical waste) and embedded in paraffine. Epicardial and endocardial
surfaces were identified, and the outmost and innermost layers (~200 um) of the samples
were removed. 15 longitudinal sections of ~5 µm thickness were cut, in each patient, along
the mid-wall using a rotary microtome (Leica RM2245; Leica Biosystems, Milan, Italy).
Tissue sections were stained with 0.1% solution of Sirius Red F3BA (Direct Red 80, CI
35780; Sigma Aldrich, Milan, Italy) according to previously reported protocols [7], and
mounted with a drop of mounting medium and a glass cover slip. Picrosirius red-stained
sections were examined by light microscopy (DMIL microscope combined with DFC420
camera, Leica, Germany; 4×magnification, 0.1 numerical aperture). Images were acquired
using a LP-S-LP setup, both in parallel (bright-field) and crossed (dark-field) filter con-
figurations. For each tissue section, a single field (3.6 × 2.7 mm2) was randomly selected
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within the entire tissue area and acquired in both modalities, resulting in 15 bright-field
and 15 dark-field images in each patient. A total of 420 images (210 in bright-field and
210 in dark-field) were acquired from the overall population and submitted to the proposed
analysis framework. Information about the microscopy camera acquisition setting was
obtained from the metadata of the image files. The exposure times were chosen in each
session to obtain an optimal dynamic range and to avoid overexposure. The exposure times
were 6.0± 0.9 [3.3–6.8] ms and 114.3± 12.7 [94.5–139.4] ms for the bright (tp) and dark-field
images (tc), respectively. Gamma encoding was γ = 1. Original images had a resolution
of 2592 × 1944 pixels, with a pixel size of 1.39 µm, and were subsequently downsized to
1296 × 972 pixels by 2 × 2 pixel binning for further processing. Before performing the over-
all analysis, the common threshold tcol for collagen segmentation was determined based on
the analysis of a subset of 56 images (2 sections per patient, yielding 28 bright-field and
28 dark-field images in the overall population). In each Si

col image of the subset, the thresh-
old value to identify collagen was manually defined by an expert biologist based on visual
inspection. The appropriateness of high-collagen region segmentation was evaluated by the
operator by comparing it with both the stained illumination-corrected bright-field image
and the processed dark-field image and considering the visual appearance of myocardial
fibrosis patterns. To avoid any prior-knowledge bias among the subsequent analysis of
images, images were anonymized and randomized, with each selection blind with respect
to the threshold numerical value. The common threshold tcol was defined as the average of
the threshold values. The range of threshold values assigned during the procedure was
used for the sensitivity analysis described at the end of this Section.

The capability of the analysis framework to point out fibrotic content differences associ-
ated with the presence of different cardiac conditions was tested. To this aim, patients were
classified based on their arrhythmic profile, as sinus rhythm (SR, age: 67.0 ± 13.0 years,
7 patients, 1 female) and atrial fibrillation (AF, age: 71.1 ± 6.7 years, 7 patients, 2 females),
and the mid-wall content of fibrosis was compared in the two groups. Specifically, the
amount of fibrosis in each subject was robustly estimated as the mean content over the
15 tissue sections (i.e., biological replicates). Fibrosis heterogeneity/variability among
different sections in each patient was quantified by the standard deviation of the content
over the 15 sections. A sensitivity analysis was performed to evaluate the effects of changes
in the threshold tcol on collagen values and collagen differences between groups. Threshold
values were changed within the range assigned during the threshold optimization step, to
reproduce potential differences in threshold assignment with different images and/or oper-
ators. Collagen distributions were recalculated for each threshold value for the complete
image database.

2.7. Statistical Analysis

Categorical variables were expressed as numbers or percentages. Continuous variables
were expressed as mean ± standard deviation (SD) or median [IQR] according to data
normality (Shapiro–Wilk test). The presence of statistical differences between the amount
and heterogeneity of fibrosis in the SR versus AF group was evaluated by a non-paired
t-test or Mann–Whitney test, as pertinent. A p-value < 0.05 was considered statistically
significant. All the analyses were performed in Matlab (The MathWorks, Inc., Natick,
MA, USA).

3. Results
3.1. Illumination Profile, Tissue Segmentation, and Transmittance Computation

The initial step of the framework was the processing of the white images, acquired
at the beginning of each acquisition session, which were interpolated to estimate the
illumination profile of the sample. The light intensities of the acquired white images in
bright-field (I0

p) and dark-field (I0
c ) presented a relative standard deviation with respect to

the mean >20% and >30%, respectively. The images P0
p and P0

c obtained after interpolation
presented a reduced variability, with a relative residual standard deviation with respect
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to the mean of <0.5% and <10% for bright-field and dark-field images, respectively. The
correlation coefficient between the original white images and the respective interpolated
profiles was >0.99 and >0.90 for bright-field and dark-field cases, respectively. Thus, the
interpolant function preserved the low-frequency trend of the illumination field, while
reducing high-frequency noise and artifacts, which were especially relevant for the dark-
field white images characterized by a lower signal-to-noise ratio.

Following the processing of the white images, the analysis proceeded with the pro-
cessing of the histological images. The first step of the procedure is exemplified in Figure 3
for a single section image. The RGB histograms (Figure 3a) of the original image Ai

p
(Figure 3b) had values spread across the whole intensity range because of the nonuniform
field illumination, which manifested as a decrease in exposure in the periphery of the image
(i.e., vignetting effect). In the histograms, the values corresponding to the luminal space
formed a low and wide peak with overlap with tissue values, which hindered an automatic
threshold-based separation between tissue and lumen values. The white-balanced image
Bi (Figure 3d) was obtained applying Equation (8), which reduced the non-uniform illu-
mination of the lumen. Following white-balance correction, RGB histograms (Figure 3c)
presented a bimodal distribution with a sharp lumen peak, suitable for automatic analysis.
The correction reduced the variability of the lumen pixels for [R G B] channels (expressed
as relative standard deviation with respect to the mean) from [25.3 23.9 24.9] % in Ai

p to
[2.6 3.2 6.1] % in Bi. The peaks corresponding to lumen and tissue areas were automatically
detected (Figure 3c), allowing normalization of Bi with respect to the lumen RGB levels.
The white-balanced image represented the transmittance Ti

s of the sample (Figure 3d). The
luminal space was segmented from the tissue area of the image by thresholding at the
minimum level (tseg) between the peaks. The obtained tissue mask maski

tis is contoured
in black in Figure 3d. In the shown case, the tissue area covered 90.1% of the image area.
The automatic segmentation assumes that the lumen/background peak is separated by a
valley from the tissue values, and this also requires a minimal lumen area in the image. In
the analyzed database, the condition was met in all the images, which presented a luminal
area > 5% in the field of view.

3.2. Birefringence Analysis and Collagen Fraction Quantification

A representative example of the birefringence analysis is shown in Figure 4 for the
same section shown in Figure 3. The intensity of the original dark-field image Ai

c (Figure 4a)
is affected by source illumination, acquisition exposure, sample transmittance, and a
nonzero transmittance Tc of the crossed polarizers. These factors create a background
illumination, which could interfere with birefringence detection. The corrections applied
through the processing pipeline up to Equation (13) isolated the birefringence signal
produced by the sample (Figure 4b), reducing the aforementioned artifacts. The subsequent
application of Equation (14) compensated for the effects of section thickness variability.
As shown in Figure 4c, the signal was normalized to unitary average optical thickness,
producing the RGB image Si

bir, which was representative of collagen density in the tissue.
The RGB collagen signal was transformed into a greyscale image Si

col (Figure 4d), suitable
for segmentation of the high-collagen tissue in the sample by thresholding according to
tcol . The collagen segmentation mask maski

col produced for the threshold tcol = 0.152 (see
next Section) is highlighted in yellow in Figure 4d. Combining the collagen mask with
the tissue mask maski

tis, the collagen fraction ci of the sample was computed according to
Equation (17), giving a value of 14.3% for the shown example.
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Figure 3. Segmentation of tissue from luminal area and calculation of the transmittance in a rep-
resentative tissue slice: (a) Smoothed histogram of the original bright-field image Ai

p separated in
the red (R), green (G), and blue (B) channels. The nonuniform illumination causes the values of
the luminal area to overlap with those corresponding to the tissue area; (b) Original bright-field
image Ai

p (windowed 0–65,535), affected by nonuniform illumination; (c) Smoothed histogram of the
bright-field image Bi separated in the red (R), green (G), and blue (B) channels. For each channel, the
corrected illumination allows the separation of the lumen peak at xlum (grey line) from the tissue peak
at xtis (black line) by the threshold tseg (magenta line); (d) Sample transmittance image Ti

s obtained
by white-balancing Bi according to the white point xlum. The black contour indicates the border
of maski

tis, obtained by thresholding Bi at tseg. The threshold separates the luminal and tissue area,
represented by the right and left portions of the histogram with respect to the magenta line in (c).

Figure 5 shows an example of the algorithm capability to compensate artifactual
variability related to sample thickness. Two spatially close tissue sections, characterized
by similar tissue composition but different thickness, were compared. At visual inspec-
tion, the tissue profile and the red stain distribution followed similar patterns, while the
different section thickness affected the transmittance values (Figure 5a,b). In the original
dark-field images, a difference in birefringent signal intensity was observed (Figure 5c,d),
where the thicker section emitted a redder and more intense birefringent light. After thick-
ness correction, the RGB birefringence images Si

bir (Figure 5e,f) were more balanced in
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terms of intensity and chroma. The threshold tcol = 0.152 on the greyscale collagen signal
(Figure 5g,h) produced comparable fractions of collagen content (8.1% and 11.1%, respec-
tively). It is to notice that a more fragmented collagen distribution was present in the
thinner section, while in the thicker one the signal formed larger clusters, probably owing
to the additive effects of a larger number of myocardial tissue layers.
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Figure 4. Birefringence processing and collagen segmentation: (a) Original dark-field image Ai
c

(windowed 0–32,768); (b) RGB birefringence signal in Equation (13) obtained after correcting for
nonuniform illumination, transmittance of the sample, and crossed transmittance Tc of the polar-
izers (windowed 0–0.05); (c) RGB birefringence signal Si

bir, obtained according to Equation (14) by
normalizing the original optical thickness of 0.22 to unitary optical thickness (windowed 0–0.5);
(d) Greyscale collagen signal Si

col from Equation (15) (windowed 0–0.5). The collagen mask maski
col

was obtained for a collagen threshold tcol = 0.152. The high-collagen area, contoured in yellow,
comprised a collagen fraction ci = 14.4%.
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Figure 5. Correction for sample thickness variability. The robustness of the algorithm against
sample thickness variability is examined comparing a slice of average optical thickness = 0.36
(left column) with a nearby slice of average optical thickness = 0.21 (right column): (a,b) The
sample transmittances Ti

s evidences the different tissue thickness between the two samples;
(c,d) Original dark-field images Ai

c (windowed 0–32,768); (e,f) RGB birefringence signal images
Si

bir (windowed 0–0.5); (g,h) Greyscale collagen signal images Si
col (windowed 0–0.5). The collagen

mask for a threshold tcol = 0.152 is contoured in yellow. The estimated collagen fractions were ci = 8.1%
and 11.1%, respectively.

3.3. Proof of Concept Application of the Framework for the Quantification of Cardiac Fibrosis

The capability of the analysis framework to detect and distinguish different fibrosis
patterns was showcased on a dataset of human cardiac tissue samples. The mean value and
the standard deviation of the mean for the collagen-detection thresholds, manually set on a
subgroup of cardiac sample images, were tcol = 0.152 = ± 0.004. The standard deviation of
the thresholds was 0.017, indicating a low dispersion of the selected threshold values and a
general coherence of choice. The threshold tcol was used for automatic processing of all the
images in the dataset.

Over the dataset, the section optical thickness varied within the range 0.13–0.46. The
validity of the approximation sin2 δ

2 � 1, used in Equation (14) for correcting against
thickness variations, was checked for the threshold tcol = 0.152. For the unnormalized

birefringence images in Equation (13), the threshold is given by tcol

(
µ(r)Li

)2
, which yielded

a maximum value of 0.032� 1 for the largest optical thickness of 0.46. The amplitude of
the unnormalized signal was in general inferior to 0.1.

Figure 6 shows representative examples of the method application in two patients
with different arrhythmic profiles. In the exemplary SR patient (left panels), the red stain
in the bright-field image occupied limited areas (Figure 6a). This suggested the presence
of a small amount of fibrosis, which was confirmed by the low intensity of the processed
birefringence signal (Figure 6c). The binary classification performed by the algorithm on
the birefringence signal yielded a value of 3.4% (Figure 6e). In the exemplary AF patient
(right panels), both the red stain and the processed birefringence signal were much more
intense and occupied a much larger area (Figure 6b,d), resulting in an estimated collagen
fraction of 18.9% (Figure 6f).

The overall results of the application of the analysis framework to the cardiac sample
database are shown in Figure 7. The method detected significant differences between
the amount and heterogeneity of mid-wall fibrosis in patients characterized by different
arrhythmic profiles. SR patients displayed low (fibrosis fraction of 7.8 ± 3.8 %) and almost
stable (fibrosis heterogeneity of 2.1 [1.9; 2.5] %) fibrotic content in the mid-wall. Conversely,
patients with AF displayed a significantly higher amount of fibrosis (14.5 ± 6.0 %, p < 0.05)
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and higher variability among slices (3.6 [2.4; 3.7] %, p < 0.05), which may be indicative of a
structural remodeling of the atrial tissue.

The results of the sensitivity analysis performed on the effects of threshold variations
on fibrosis amount results are shown in Figure 8. As it can be appreciated, the progressive
increase of the threshold from 0.12 to 0.18 made collagen detection more and more restrictive
and a progressively smaller collagen amount was detected. However, the decrease was
similar and consistent in the two patient groups, so that the relative difference in collagen
content was maintained and remained statistically significant (p < 0.05) for all the considered
thresholds. These results corroborated the method robustness and capability to distinguish
relative differences in collagen properties associated with cardiac disease.
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Figure 7. Proof of concept application of the algorithm to cardiac sample image database. Algorithm-
estimated values for the amount (left panel) and heterogeneity (right panel) of mid-wall fibrosis are
compared in patients with sinus rhythm (SR) and in patients with atrial fibrillation (AF). AF patients
displayed larger and more heterogeneous fibrosis content. In boxplots, red lines are median values,
blue boxes indicate interquartile ranges (IQR) and black whiskers 1.5*IQR. Individual values are
superimposed as black dots. *, p < 0.05. N = 14.
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4. Discussion

We introduced a novel model-based approach for the semi-automatic analysis of
collagen from histological samples analyzed in PLM. We showcased the capability of the
method to provide an efficient quantification of collagen in human cardiac tissue samples
and to distinguish fibrosis patterns associated with different arrhythmic profiles, such as
SR and AF.

4.1. Technical Features of the Method

Our approach is based on a model of sample–light interaction, which reproduces
the sources of origin of the birefringence signal of collagen, when it is imaged in a linear
polarization setting.

The regular spacing of collagen fibrils into fibers provides them with positive intrinsic
birefringence [8]. This intrinsic birefringence can be enhanced by a specific staining process
to point out even thin collagen fibers. For instance, picrosirius red staining is usually the
preferred staining, since its peculiar chemical properties results in higher specificity and
selectivity for collagen and less fading problems with respect to other techniques, such
as van Gieson and trichrome techniques [11–13]. The intrinsic and/or staining-induced
birefringence results in collagen fibers appearing bright versus a dark background when
illuminated in polarized light.
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Based on a physical model of polarized light–sample interaction, we aimed to improve
the estimation of collagen birefringence as an index of collagen amount by combining
the information in both bright-field and dark-field images, and by reducing the effects of
artifacts and confounding factors deriving from variability sources in sample preparation
as well as in microscopy set-up.

The combination of bright-field and dark-field image information occurred at dif-
ferent levels of our algorithmic flow. Specifically, both bright-field and dark-field tissue
images were used to construct a signal proportional to the transmittance, which was
used for the automatic segmentation of the tissue from the background and for the esti-
mation of sample thickness. Bright- and dark-field images of a white image were also
entered in the signal construction to correct the field illumination nonuniformity and to
improve tissue segmentation from the background. Both bright-field and dark-field images
were combined in the construction of the birefringence signal, which was used for the
semi-automatic segmentation of collagen. In particular, the birefringent signal was also
corrected for variations in sample thickness according to the thickness estimation from the
transmittance signal.

The combination of bright- and dark-field images for the segmentation of back-
ground and collagen is an original aspect of our algorithm with respect to the litera-
ture [9,10,15,22–24]. The majority of studies using picrosirius red staining in combination
with polarized light employed bright-field illumination to detect collagen [15,22–24]. In the
study by Hadi et al. [15], a semi-automatic threshold-based approach was applied to de-
tect collagen from bright-field images. A color transformation from the RGB to the CIE
LAB color space was performed and specific thresholds, associated with the staining,
were applied to detect each specific tissue compartment (i.e., lumen, cardiomyocytes,
or collagen fibers). However, the analysis of the sole bright-field images may be limited
by the fact that neither collagen fiber color nor brightness are uniform (i.e., thicker
fibers appear deep red and thin fibers appear bright pink and are more difficult to
detect), which may hinder the proper definition of thresholds. An alternative approach
was implemented by Rich et al. [10], who used color threshold analysis on dark-field
images to reveal the structure of collagen fibers of different dimensions. Of note, the
algorithm controlled for the mix in color associated with fiber density and classified
the segmented collagen into its constituent parts (thick or thin fibers) for the resolution
of complex collagen configurations and improved visualization. In our algorithm, we
did not distinguish collagen densities, but combined the information of red, blue, and
green colors by an average approach. Our approach quantified the overall content of
different types of fibers, but not their distinction. In order to detect different collagen
types, our approach may be slightly modified by converting the birefringent signal,
given in RGB, to hue formulation and finding appropriate thresholds for different
fibrosis population in the color spectrum. Alternatively, information on collagen pat-
terns may be obtained post-detection, submitting the extracted mask to algorithm for
spatial pattern extraction. In its seminal work, Whittaker et al. [9] used both dark-field
and bright-field images for the quantification of collagen, but the approach implied
hardware manipulation during image acquisition. Blue-filtered bright-field images
were used to detect the muscle tissue, which was then subtracted from the polarized
image, where both muscle and collagen appear bright. However, the brightness of
muscle in the bright-field image needed to be adjusted by manual manipulation of the
microscope lamp.

As concerns the correction of artifacts, previous algorithms introduced the possibility
of manual corrections of staining artifacts by the user [15]. However, to our knowledge,
our approach is the first that tried to correct, through a modeling framework, artifactual
variability related to sample preparation and experimental set-up. In the case of sample
thickness, the correction was directly performed by the software using transmittance infor-
mation from the tissue images. In particular, the analysis was based on the transmittance of
the red channel to limit the variability effects related to the picrosirius red stain. Picrosirius
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red stain may be differently absorbed by samples depending on experimental variability,
tissue characteristics, and collagen content, which may result in variations of the attenu-
ation coefficient µ(r). Being the least affected by red stain, the red channel should be less
exposed to these effects, although some residual variability may be present. In our test
set, we showed our approach to work for optical thickness up to 0.5. It is worth to notice
that the corrective term in our algorithm may not be able to compensate for very thick
samples, where collagen spatial distribution may change across depth. In the presence of
thick samples, the collagen signal may be intrinsically damped due to signal average across
different layers and extrinsically reduced by the quadratic dependence in Equation (14),
resulting in a less-detectable signal.

In the case of the non-uniform luminosity, an additional procedural step was required
(i.e., the acquisition of a white image). The step was of limited impact for the whole
acquisition chain, because it was performed only once at the beginning of the acquisition
session of a full stack of images. However, as shown in the representative example of
Figure 3, the correction for nonuniform illumination was relevant to grant the automatic
segmentation of the tissue area from the background, since it significantly reduced the
spread of the pixel values in the luminal space and their overlap with tissue values.

Consistent with most of the previously proposed computer-based approaches for
collagen estimation, our approach is not fully automatic. The user input is however
reduced to the definition of a common threshold on a subset of samples and the supervision
of the processing, enabling fast analysis on large batches of samples. The optimal threshold
was determined by analyzing a reduced set of images from the database. The method
is thus time-efficient when a large number of sections acquired with the same protocol
must be analyzed, and it reduces the dependence on the operator to a minimum. The
determination of a common threshold on a limited number of images and its extension to
a whole dataset is similar to the approach in [15] for bright-field images, where the color
thresholds were also assessed on a subset of images. Differently, in other approaches, which
operated on picrosirius red-stained bright-field images [17–19], the investigators had to set
thresholds for every image that was analyzed, which made the approach laborious and
sensitive to inter-observer variations. In general, it is worth noticing that the setting of a
threshold needs to be adapted to the specific sample type, preparation, and acquisition
protocol. In fact, the definition of the threshold depends on the contest and goal of the
specific application, since the quantification from the birefringent signal provides only a
relative assessment of collagen, suitable for comparative analysis, e.g., the comparison of
different diagnostic profiles. As shown by our sensitivity analysis, differences in the setting
of the threshold tcol , e.g., arising from the analysis of different image subsets, determined
changes in the absolute value of collagen detected. However, the observed changes were
consistent throughout the database and the relative differences between patient groups
were preserved in the considered threshold range.

4.2. Applications of the Method

In this study we showed a proof-of-concept application of our approach for the
characterization of fibrosis distribution in the atria of cardiac surgery patients. Fibrosis is
acknowledged as a crucial factor in the setting and maintenance of cardiac arrhythmias,
promoting the emergence of triggers and the maintenance of reentrant activity [5]. In
particular, the type, pattern, and spatial distribution of fibrosis have been connected to
different arrhythmic substrates and arrhythmic risks, pointing out the importance of a
precise and quantitative description of fibrosis features [5–7,25]. Our analysis on atrial
samples in cardiac surgery patients pointed out a significantly higher amount of fibrosis in
patients with AF (average 14.5%) than in patients without a history of arrhythmia (average
fibrosis value of 7.8%). The amount of fibrosis detected in the two populations in our study
are in line with values reported in previous histology studies in cardiac surgery [26–28]
and autopsy settings [29], despite minor differences, which may be probably ascribed to
differences in extraction sites, processing, staining, and analysis of the specimens. Similar
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to our results in the control patients, Goette et al. [26] found an average fibrosis content
of 15.8% in a large population of open-heart surgery patients without a history of AF. Of
note, a considerable variability was present in the population with values ranging from 4%
to almost 33%. In patients without previous history of AF, Swatz et al. [27] found that the
fraction of right atrial fibrosis was 5.3 ± 3.8% in patients, who developed post-operative
AF, versus 4.3 ± 3% in patients who did not, without significant differences between the
two populations. Consistently with our comparative results in controls versus AF patients,
Platonov et al. [29] found that fibrosis extent in post-mortem atrial tissue from patients
without significant valvular disease was two- to three-fold higher in patients with (range:
22–28%) than without a history of AF (5–8%). Nguyen et al. [28] reported greater amounts
of interstitial fibrosis in atrial samples from chronic AF patients with respect to SR patients
(37% versus 7%). Of note, we reported also a higher variability of fibrosis profile in AF
patients, which may be indicative of the formation of a complex 3D substrate supporting
wave propagation dynamics [6,30].

Besides the study of AF, the characterization of fibrosis is crucial in other cardiac dis-
eases, such myocardial infarction and nonischemic cardiomyopathies, where the amount
and pattern of fibrosis is associated with the risk of fatal ventricular arrhythmias and
sudden cardiac death [5]. Our algorithm may facilitate and speed up histological analysis
in animal models of cardiac disease, allowing for instance systematic assessment of fibrotic
remodeling in models of ischemic and nonischemic cardiac disease, as well as the charac-
terization of genotype-phenotype relationships in models of genetic cardiomyopathies [16].
Quantitative and accurate assessment of structural substrate formation may be important
also in other pathophysiologic conditions, such as hypertension, diabetes, or obesity, where
cardiac fibrosis is known to play a key role [2,3].

In translational research, our method may support the analysis of histological 3D
datasets, obtained as series of 2D slices. Whole-heart 3D datasets have been obtained in the
rabbit heart, where cardiac histoanatomical organization was shown as a major determinant
of heart function [31]. In addition, adult human myocardial slices from small heart biopsies
were proposed as a simple, reproducible, and relevant preparation for the study of human
cardiac tissue at the multicellular level [32].

Moreover, the method may find application in the validation of noninvasive car-
diac imaging techniques for fibrosis quantification, such as late gadolinium enhancement
magnetic resonance imaging or T1 mapping [5], for which adequate correlation with the
histological gold standard is required. Validation is usually done with a limited number of
myocardial biopsies [33], but fast analysis may help to extend the analyzed datasets, thus
enforcing the validation.

In principle, the method may be used on any kind of histological staining in any kind
of tissue, finding applications also for the characterization of hepatic, renal, dermal, or
pulmonary fibrosis, and cancer-related fibrosis [2,3], as well as for collagen quantification to
characterize bone repairing processes [34]. This however requires that suitable thresholds
are defined by tuning and re-adaptation to the new experimental setting and new batch
of images.

5. Limitations

This work presents some limitations. First, our method was based on a microscopy
set-up with linearly polarized light. Although linear polarization has been widely used
for collagen fibers quantification [35], only collagen fibers oriented at a certain angle with
respect to the polarizer can be enhanced, which leads to partial underestimation of collagen
content. To overcome this limitation, acquisition of linearly polarized light images at
different angles of rotation may be performed [36], or, alternatively, our framework may
be adapted to model a circularly polarized light configuration [9,10]. Second, we did not
assess the accuracy of our method in comparison with samples of known collagen content
nor with respect to analytical methods for collagen assessment. Third, our proof-of-concept
application was limited to cardiac samples of right atrial appendage specimens from cardiac
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surgery patients. In future studies, the validation of our approach should be extended
to include the analysis of different tissue types and the comparison with other collagen
estimation techniques.

6. Conclusions

We developed an innovative analysis framework for the efficient quantification of
collagen from birefringence images in large databases of samples. Through the modeling
of the birefringence signal, the method allowed to correct for variability sources related to
tissue sample preparation and image acquisition. The proposed method can be a valid aid
to quicken and reinforce the analysis of large sets of PLM images for the quantification of
collagen distribution in different tissues and pathologies.
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