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0.1 Chapters Outline

1. Introduction. We introduce the context of the doctoral research. We first remark
the relevance of the physics of complex systems applied to the study of cities and
human mobility. We discuss the aim of this thesis, where we focus on the interplay
between transportation network properties and collective human flows, from a
theoretical perspective to a more data driven approach.

2. Theoretical background. We provide a minimal basis of shared literature and
theoretical background on network science and statistical physics of human mobility
for the following chapters. This chapter covers core concepts and metrics in network
theory, spatial and transportation networks, statistical physics of human mobility,
and urban systems from the perspective of complexity science.

3. Multi-pathways network effective distances and prediction of human
mobility on diffusive scales. We study here the role of multiple pathways
between origin-destination in the definition of effective network distance metrics [1].
We test these metrics in the task of prediction of human mobility on diffusive scales,
with an application in a pipeline to assess the pandemic potential of a COVID-19
variant of concern [2].

4. Optimal topologies in flow-weighted transportation networks. Focusing on
transportation networks, in this chapter we show how via optimization processes
we can reconstruct different network topologies from simple constraints on a lattice
planar substrate [3]. We study the role of traffic congestion, and the integration of
spatial attractiveness in simulating human mobility patterns, illustrated through a
case study on the Greater London Area urban structure.

5. Mixing individual and collective behaviors to predict out-of-routine mo-
bility. In this chapter we focus on collective mobility dynamics, exploiting a large
scale dataset of individual trajectories in three US cities [4]. We combine individual
and collective information in human mobility models to improve next-location
prediction in the context of novel mobility, including the impact of COVID-19
restrictions. Moreover, we investigate the statistical properties of collective mobil-
ity in proximity of attractive urban areas in predicting out-of-routine individual
behaviors.

6. Discussion. We remark the core messages of this thesis, providing also a perspec-
tive on future extensions of the discussed works.



Chapter 1:

Introduction

Many systems, both natural and man-made, can be seen as a complex system of inter-
acting units [5]. The often non-linear nature of these interactions, paired to complex
topologies of connections, leads to emergent functional properties of the system that
can not be understood by only knowing the rules that govern single units. Biological
systems, from proteins as networks of amino acids [6], gene regulatory networks [7, 8],
up to entire food webs and ecosystems [9] represent in nature systems of networked
units where their collective dynamics leads to system-level functional properties. In the
context of man-made artificial or social systems, from infrastructure and transportation
networks, the internet [10], up to networks of social interactions both online and physical,
also represent paradigmatic examples of complex systems. Between the units, a plethora
of different quantities are exchanged and can be modeled: fake news or consensus and
endorsements in real and online social networks [11, 12], packages of data between servers,
regulatory pathways in genes [6], electrical signals in neuronal networks [13], up to
human beings travelling from one origin to destination in a transportation network [14].
This diverse and vast set of systems [15], spanning orders of magnitudes in spatial and
temporal scales, can be treated under the same framework of network theory, non-linear
dynamics and statistical physics. As a primary example of this is the mapping of these
very diverse systems into universality classes in the way information propagates [16, 17].

In the present day, given also the access to large scale data of different phenomena,
this system modeling has the validity and the usefulness for problems that concern our
society [18, 19]. Among alia, the assessment of the robustness of human infrastructure
systems [20] against failures which may originate from climate driven events is one
paradigmatic example. Moreover, modeling the resulting cascade of effects that can spill
into other layers such as economic and trade networks is a pressing necessity. A network
science perspective is crucial to anticipate the impact of climate change on human social
and infrastructure networks [20]. Similarly, the stability and recovering capacity of
ecosystems can also be assessed by studying their response to external perturbations as
networked systems [21]. Understanding their inherent chaotic and complex nature helps
predicting and possibly avoiding systemic collapses. In other scales, network medicine
[22] is another relevant field. Here for example the network perspective of activation
or inhibition of specific genes in signaling pathways [6] represents a core modeling step
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to improve drug design. In 2020 we have also seen that the world-scale spread of
pathogens [2] represents a fundamental case where the system perspective is essential.
Proactive measures can be designed with efficacy only when a broad view is taken into
account, and simple epidemic models that fail to address this complexity are limited.
Comprehensive views that embed together the different aspects of epidemic propagation
represent fundamental tools for policy makers. Finally, the modeling of cities as adaptive
and dynamic systems of interacting humans and infrastructure represents another critical
topic for complexity-based studies.

The relevance of the study of human mobility and cities as complex

systems.

The study of human mobility [23] and its interplay with spatial transportation networks
[14], especially in the dimension of urban structures and cities [24], has seen in the
last two decades relevant advances thanks to the powerful modeling tools coming from
the physics of complex systems and network theory. Fundamental results such as the
statistical properties of human trajectories [25, 23], the modeling of human migration
[26] or the scaling rules and the hidden hierarchical structures behind complex cities [27],
allowed novel understanding of these systems. Human mobility occurs across various
scales [28], and is mediated by intrinsically multi-layer network structures spanning from
air-transportation [29, 14] to complex structures at the urban level [30]. This intricate
human dynamics significantly influences a set of diverse phenomena, among alia the
design of sustainable and efficient transportation, the dynamics of social interactions,
pathogen spread [2] and the prediction of individual movements [31, 32].

The design of sustainable and livable cities can follow principles and be guided by the
system perspective [33]. As it is estimated that two thirds of human beings will live in
urban areas by 2050 [34], building cities that are sustainable and livable is a pressing
challenge. Among alia, considering the interplay of urban land use, multi-modal trans-
portation networks and mobility patterns is essential in the design of public transit and
active mobility infrastructure [35, 36] that can push for large cities to be less reliant on
cars [37, 38]. The non-linear dependencies between traffic patterns and congestion [39],
the morphological structure of cities [33] and the consequence on efficient transporta-
tion, segregation patterns and accessibility [40], are all intertwined dimensions where the
insights provided by complexity science modeling are essential in informing policy making.

The interconnection between human mobility and the underlying transportation network
[41] is pivotal, and when focusing on the urban scale it is intertwined with the spatial
arrangement of land use and mobility hot spots [32, 42]. The notion of "structure-
dynamics interplay" is exemplified in urban structures by the mobility flows, the traffic
congestion dynamics and the multi-layer velocity structure of public transit [43]. These
processes are all interdependent and ultimately interact in determining an effective
temporal distance [41, 44] to travel from one part to another in a metropolitan city.
The predictive modeling and understanding of this complex interplay, as well as the
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understanding of the of structural elements and how these can emerge from simple rules
[45, 46, 47], are foundational aspects of this doctoral research.

Aim: Explore the interplay of collective human mobility and transporta-

tion networks on multiple scales.

In this thesis we discuss these aspects starting from (1) a broad and more theoretical
viewpoint, with the definition of effective distances on networked dynamical processes
with a focus on human mobility seen as diffusive flows. Here we aim to show that an
effective distance computed on the network of flows can predict the arrival times of
a signal in reaction-diffusion dynamics, showing an application on a global epidemics
scenario. Subsequently, we narrow the focus into the smaller scales of urban mobility
(2). We show how the optimization of an effective temporal distance on spatial networks,
biased by traffic-like flows that mimic collective mobility, leads to the emergence of
complex topologies characteristic of urban systems. Our aim here is to uncover the
minimal conditions that lead to the emergence of optimal features on a planar substrate.
Finally (3) we aim to exploit collective mobility behaviors to enhance predictability of
individual trajectories in the context of next-location prediction. Here we adopt a data
driven approach using a large scale mobility dataset of three United States cities. We
show that collective mobility properties are intimately related to the urban space and
aid the prediction of individual mobility. We describe these 3 specific objectives more in
detail in the following paragraphs and in Figure 1.1.

(1) Knowledge of multiple pathways leads to prediction of arrival times in
diffusive dynamics mediated by collective mobility flows. In Chapter 3 we
start with the discussion of effective distances for networked dynamical systems, and
explore how multiple pathways determine the estimation of effective distances. Effective
distances on networks are fundamental as they capture and synthesize the interplay
between nodes’ interactions and the underlying structure. Their knowledge is essential
to predict signal propagation or embed the network in a latent geometry. We introduce
and discuss how a multi-pathways temporal distance [1] naturally encodes the concerted
behavior of the ensemble of paths connecting two nodes in conveying perturbations,
with applications ranging from protein-protein dynamics in the proteome to epidemic
spreading in social networks. In the specific case for diffusive dynamics we introduce
the Information Distance metric exploiting the Laplacian matrix. As collective human
mobility flows on large scales such as the World Airtransportation Network can also
be represented as proxies for diffusion processes, they represent a key modeling step
in reaction-diffusion systems such as epidemics models with meta-population nodes
connected by air transportation. We discuss how the Information Distance is employed
to compute the effective probability for infectious seeds to reach a target airport using
data from cross-national human mobility flows. The Information Distance metric with
its analytical closed form allows for fast estimation of effective distance while embedding
information of multiple pathways in the application of the Laplacian operator. We
also use it as a benchmark against other metrics as a part in a general pipeline [2]
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Figure 1.1: Thesis structure. The three main chapters of this thesis are plotted on a
bi-dimensional space based on the extent of analytical and theoretical insight and the reliance on
data used to generate networks and mobility patterns. Keywords that also highlight connections
between chapters are mapped in bold. The reference papers on which the chapters are based are
mentioned. Chapter 3 is based on the works we published in Ref. [1] and in Ref. [2]. Chapter 4
is based on our work in Ref. [3] and finally Chapter 5 is based on Ref. [4].

where national genomic surveillance was integrated with global mobility and large scale
epidemics modeling to quantify the pandemic potential of a variant of concern in the
context of the SARS-CoV-2 pandemic.

(2) Optimization of a temporal distance weighted by collective human mobility
leads to emergence of complex spatial topologies. In Chapter 4 we then focus
into the modeling of spatial transportation networks, which represent the arteries for
human movements, especially on urban scale. We aim to understand the network
topologies that emerge when a substrate network is optimized in different mobility
scenarios. Transportation and distribution networks are often characterized by the
presence of complex structures such as central loops paired with peripheral branches,
which can appear both in natural and man-made systems, such as subway and railway
networks. In this study, we investigated the conditions for the emergence of these
non-trivial topological structures [3] in the context of human transportation in cities.
We propose a minimal model for planar networks generation, where a network lattice
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acts as a spatial planar substrate and edge velocities and distances define an effective
temporal distance which quantifies the efficiency in exploring the urban space. To this
aim we implemented a simulated annealing algorithm to obtain the optimal network
configurations of velocities to guarantee the minimum effective distance given the mobility
flows. We study how the interplay between a flow probability between two nodes in space
and the associated travel cost influences the resulting optimal network. In the perspective
of urban transportation we simulate these flows by means of human mobility models
to obtain Origin-Destination matrices. We find that when using simple lattices, the
obtained optimal topologies transition from tree-like structures to more regular networks,
depending on the spatial range of flows. Remarkably, we find that branches paired to
large loops structures appear as optimal structures when the network is optimized for
an interplay between heterogeneous mobility patterns of small range travels and longer
range ones typical of commuting. Furthermore we show that our framework is able to
recover the statistical spatial properties of the Greater London Area subway network. We
extended the analysis by also considering the effect of congestion and user-equilibrium
principles in traffic routing. We derived analytical conditions for a tree structure to
transition to one where multiple alternative paths emerge to mitigate the temporal delays
introduced by congestion.

(3) Exploit collective dynamics and its dependence on the urban space to im-
prove predictive capabilities of individual mobility models. Finally in Chapter
5 we focus on predictive models of individual and collective human mobility in urban
space, adopting a more data-driven approach. Performing next-location prediction at the
individual level is a challenging task, which is critical for numerous research and practical
applications, such as urban planning, public health and sociology. Intrinsic properties of
mobility datasets limit the predictability of individual-level human mobility, such as the
visitation frequency to places following a long-tail distribution. This leads to a core prob-
lem in predicting locations not seen in training, a challenge where even state-of-the-art
deep recurrent models fail. In this chapter we propose to support next-location predictors
via collective origin-destination matrices [4]. We study minimal Markov models and
exploit a normalized Shannon’s entropy as an effective definition of individual movement’s
unpredictability seen in training. We demonstrate the effectiveness of this approach by
using a large-scale dataset that contains trajectories of more than 2 million users collected
over eight months in 2020 in New York City, Seattle and Boston provided by Cuebiq.
Our results show that this approach improves the accuracy of next-location prediction
compared to existing state-of-the-art methods. Moreover, we shed light on the features of
collective mobility linked to the urban environment: out-of-routine movements in urban
areas in proximity of POIs are better predicted by collective behaviors. Furthermore, we
investigate the changes in human mobility behavior and routines during the COVID-19
pandemic.
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Chapter 2:

Theoretical background

2.0.1 Chapter Overview

In this chapter we provide a minimal theoretical background and concepts from the
literature on complexity science applied to spatial networks, human mobility and urban
systems. The aim is to delineate the common literature and theoretical framework on
which the following chapters will be discussed and developed.

We begin introducing basic elements of network science in Section 2.2 and providing some
of the network observables and operators that will be used throughout the thesis. We
then discuss in Section 2.3 the study of spatial networks and of optimal spatial topologies,
of which transportation networks represent a peculiar case, especially for human mobility
and in cities. We then discuss some of the fundamental findings in the study of human
mobility and its statistical properties in Section 2.4. In this section we also discuss some
fundamental models that will be adopted in Chapters 4 and 5. Finally in Section 2.5
we discuss the modeling of cities as complex systems, introducing a minimal literature
background to Chapters 4 and 5 and providing a general perspective on why the study
of urban systems represents an important challenge.
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Physics of complex systems and Network Science

2.1 Physics of complex systems and Network Science

Complex systems can be described as collections of interacting elements. Here, the dy-
namics of individual elements may be well-understood in isolation, but this knowledge is
insufficient to grasp the system’s dynamics as a whole [5]. In more formal terms, the laws
governing complex systems cannot be derived as a linear combination of laws governing
each individual element as an isolated entity. The interactions between these elements
are fundamental. The final system’s behavior arises from the interplay between the
non-linear dynamics [16] that govern how a single unit’s state depends on its neighbors,
and the overall structure of these connections.

A paradigmatic example in the physics of complex systems is represented by spin glasses
[48]. These are magnetic materials that exhibit complex emergent features from quenched
disorder properties to frustrated dynamical states. These general concepts are fundamen-
tal to understand the emergence of complex behavior in many physical systems [49, 50].
In the last decades these modeling tools have been extended for example in larger scales
such as in biological systems, from the complex dynamics of flocks [50, 51], the study
protein-protein physical interactions [22], the non-linear dynamics of neuronal networks
[52], or to map the functional hierarchical structure of gene regulatory networks in cells
[53]. In system biology, the network-science perspective can be applied from the study of
transport properties of fungal networks [54] up to the multi-layered structure of ecosys-
tems [15, 55]. Within these ecosystems, mathematical tools from dynamical systems can
model complex behaviors such as predator-prey dynamics, and even quantify how it can
affect other ecosystems’ layers [56] such as the presence of certain plant species within the
layer of vegetation species. Human-made systems like infrastructure networks and the
internet [57], with its routing protocols, also can be better understood via network science.
Even social interactions, online and offline, form networks that drive information flow and
reveal communication patterns [12]. Furthermore, the rich variety (and heterogeneity) of
interactions [58] within these networks allows for the propagation of diverse signals and in-
formation exchange between the systems’ units. Despite the remarkable disparity in scale
and temporal dynamics across these systems, the framework based on graph theory and
complexity science represents a powerful tool to model these intricate connections [16, 17].

While not all complex systems can be described using the networks formalism, in many
the network science perspective allows to uncover fundamental complex properties [57].
Real world systems are characterized by connectivity patterns that are heterogeneous and
fat-tailed [58]. The presence of mesoscale communities [59, 57], hierarchical connectivity
patterns and complex information propagation patterns [17] represent some of the
systems’ functional properties that can be uncovered via network science. Moreover, from
percolation theory [20] up to approaches based on the definition of a network entropy
[60] also constitute sophisticated tools to assess the robustness and functionality of these
systems.
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Mathematics of Networks: Core concepts and metrics

2.2 Mathematics of Networks: Core concepts and metrics

A network [57] can be defined using a graph G(N,E), where N is the number of
nodes, entities that can be seen as points and represent the units of the system. Edges
e = (i, j) ∈ E define the pair-wise connections (lines) between nodes. This information
is mapped to the adjacency matrix A, which in the case of a weighted graph:

Aij =

{

wij if (i, j) ∈ E

0 otherwise
(2.1)

Where in the case of a binary network wij = 1, or in a weighted network is a scalar
value such as the number of travellers between stations i and j. If wij "= wji we refer to
the resulting graph as a directed network. From the knowledge of Aij the connectivity
properties can be computed.

Connectivity properties. The simplest connectivity feature of a graph is the number
of connections of a node, the degree k. For an undirected network:

ki =
N
∑

j=1

Aij . (2.2)

In a directed network the degree can be separated between in-degree and out-degree.
In mobility matrices, these can for example represent out-flows or in-flows of travellers
from or to a station [23]. Nodes having orders of magnitude more connections than the
average 〈k〉 are defined as "hubs", where khub >> 〈k〉.
When all connections are present: Aij "= 0 ∀(i, j) a network is said to be complete
and dimE =

(

N
2

)

. G is instead a connected network only if a path exists between
any pair of nodes. Networks can also be sparse [60], resulting in a low density of
connections, e.g. when dimE ∼ Nα with α < 2. In the statistical approach to complex
networks, the definition of the probability that a node has degree k, P (k), allows to
characterize asymptotic regularities such as networks having similar distributions P (k).
Different generative random networks models can for example be classified by their P (k).
Finally, real networks in nature often exhibit sparse connections and a power law scaling
p(k) ∼ k−γ which is related to the presence of hubs, although this represents a debated
observation [61].

The Graph Laplacian. From the knowledge of Aij and the set of nodes’ degrees {k},
matrices such the Laplacian can be built as L = D−A. Where D is the diagonal matrix
of degrees Dij = kiδij , and therefore has entries:

Lij =











ki if i = j

−Aij if i "= j

0 otherwise

. (2.3)
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Mathematics of Networks: Core concepts and metrics

L is a positive semi-definite matrix [11] (with eigenvalues λi ≥ 0, ∀i). The terminology
stems from the analogy with the heat diffusion in a continuous medium, where the
Laplacian operator (∇2) acts as a diffusion operator on the system state: ∂tu(x, t) =
∂2
xu(x, t). It can be shown that by mapping a diffusion-like equation on a network, where

the rate of change dxi/dt for each node is driven by the difference of xi with the neighbors
xj , leads to the formulation with the Laplacian graph operator:

dxi
dt

= −
∑

j

Aij (xi − xj) = −
∑

j

Lijxj . (2.4)

Moreover solutions to 2.4 can be decomposed as linear combinations xi =
∑N

i=1 ci(t)vi,
where ci(t) = ci(0)e

−λt and {λi,vi} represents the eigenspectrum of L. Therefore the
diffusion dynamics will be governed by the smallest eigenvalues of L, and the first non-
vanishing eigenvalue λ1 determines the rate of speed for these networked systems to
relax to equilibrium. Other features, such as mapping the network to low dimensional
embedding [57], the definition of density matrices [60], and other dynamical features
can be derived from the Laplacian. Overall, this shows how from the knowledge of
Aij and {k}, which represents information often directly encoded in the data, powerful
operators such as the Laplacian can be computed. And from L, even mesoscale properties
of a network can be inferred [59]. Although we mention that the inference of the net-
work connections Aij from data in many context represents instead a non-trivial task [62].

A normalization of the Laplacian matrix as LRW = D−1L allows to study random walks
on networks and other processes such as synchronization dynamics [63]. A random walk
can be introduced as a discrete-time dynamics where the probability of walker to be in
node i at time t is:

pi(t+ 1) =
∑

j

Pijpj(t), (2.5)

where Pij is the transition matrix for the discrete-time Markovian process. The probability
of jumping to one of the neighbors is Pij = Aij/ki. The continuous-time mapping of Eq.
2.5 is therefore:

ṗi =
∑

j

(Pij − δij)pj = −
∑

j

LRW
ij pj . (2.6)

Ultimately this leads to the master equation: ṗ(t) = −p(t)LRW with solution p(t) =

p(0)e−tLRW

. This can also be generalized to consensus dynamics and synchronization
near a stable state [63, 59]. LRW will be employed in Chapter 3 to introduce the
Information Distance and apply it to predict the arrival time of infectious seeds diffusing
on the routes of the World Airtransportation Network [29], further highlighting the
relevance of Laplacian in capturing the fundamental dynamics of and on networked
systems.
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Mathematics of Networks: Core concepts and metrics

Paths. Sequences of connected edges that connect an origin node i to another desti-
nation node j define a path Πij . A path of length L, Π(L) can be also defined via the
nodes it traverses:

Π(L) = {n1, . . . , nL}, (2.7)

or the set of edges (ni, ni−1) ∈ E that connect these nodes. The shortest path length,
Lij between nodes i and j is the minimum number of edges that need to be traversed
to reach node i starting from node j. From knowledge of Lij , ∀i, j, we can also define
global metrics such as the average path length:

〈L〉 = 1

N(N − 1)

∑

i,j

Lij . (2.8)

Albeit simple, metrics like 〈L〉 quantify the ability of a network to propagate in few steps
information between pairs of nodes.

Network effective distances. From the knowledge of the set of paths P(i → j) that
connect two nodes i−j, sophisticated metrics such as effective distances can be computed,
related to the general topic of network geometry [64, 65]. Here we briefly mention the
one introduced in Ref. [29] as it also represents a precursor of the metrics presented in
Chapter 3. The effective distance devised by Brockmann and Helbing [29] for diffusive
systems can be computed directly from the mobility network of air transportation where
Aij = Fij and Fij is the number of passenger on routes between airports i and j. They
devised a metric built on the definition of an edge probabilistic distance as:

deff (n,m) = d0 − logPnm, (2.9)

where Pnm = Fnm/
∑

m Fnm and d0 is a constant. From this, the effective distance of a
path can be computed as Deff (Π) =

∑

e∈Πij
deff (e) and finally the effective distance

between two nodes will be computed on the path Π ∈ P(i → j) having the smallest Deff .
In Chapter 3 we discuss more in details these effective distances. While in Chapter 4 we
work with a definition of effective distance based on the travel velocity of an edge wij ,
and the final effective temporal distance will result from the path Π having the fastest
travel time [41, 44].

Generative Models: ER and B-A. Generative models of random networks can be
devised to reproduce different P (k) with the aim of providing benchmarks with which
real networks can be compared. One of the simplest generative model is the Erdos-Rényi
(ER) network, in which given a set of N nodes, an ensemble of networks can be generated
by sampling an edge between each nodes’ pair (i, j) with probability ρER [66]. Hence
a degree k has an associated probability of appearing which is equal to the probability
of a node having k connections and N − 1− k absent connections. P (k) is therefore a
Binomial distribution:
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P (k) =

(

N − 1

k

)

ρkER(1− ρER)
N−1−k, (2.10)

which, in the thermodynamic limit of the number of particles/nodes N → ∞ and by

taking ρER · N = 〈k〉 it can be approximated as a Poisson process: P (k) = e−〈k〉 〈k〉k
k! .

Thus the presence of edges in a Erdos-Rényi graph is associated to a random white
noise process. If instead edges are not drawn independently, but rather following rules
based on other nodes’ features, different P (k) can appear. A paradigmatic example
of these rules is the preferential attachment process in the Barabasi-Albert [58] model
for generating networks with a heavy-tailed P (k) distribution. These models allow to
capture the fundamental mechanisms that generate networks with heavy-tailed degree
distributions often seen in real systems.

The different properties of P (k) distributions then reflect in actual differences in functional
properties of the networks. For example, by recalling the definition of 〈L〉, these different
generative models allow to estimate how 〈L〉 scales with network size based on P (k).
For example, in a lattice of dimension D, 〈L〉 ∝ N1/D, while it scales ∝ logN in ER
networks. Finally in scale-free networks the presence of hubs guarantees that 〈L〉 remains
low even when the size (number of nodes) of the network N grows. This is quantified by
〈L〉 ∝ log logN .
In Chapter 3 we rely on these models to perform simulations and testing different effective
distances. In Chapter 4 we also employ the ER model as a substrate for the study of
optimal topologies as a simple case of non-spatial network.

2.3 Spatial and Transportation Networks

Spatial networks [14] are a class of graphs where nodes are embedded in a D-dimensional
metric space and can be located with a set of D coordinates. Many real spatial networks,
such as road, railways, or fungal networks [54], have edges that are supported by the 2
dimensional plane and do not intersect. When edges can not intersect or overlap due to
physical constraints we have a planar network. In spatial networks, several topological
features are influenced by the inherent cost of building long-distance links [67]. Long
connections are favored only if the payoff is significant, such as connecting to a hub
that favors communication [67]. These spatial constraints limit the number of connec-
tions, therefore leading to a degree distribution P (k) that peaks at a certain number of
connections and is thus characterised by a specific scale [14]. In planar networks these
constraints are even more relevant and have an effect on how topological properties such
as 〈L〉 scale. In 2D planar networks, it scales similarly to regular lattices (〈L〉 ∝

√
N).

Although in non-planar ones, the presence of long distance links introduces topological
short-cuts and the emergence of small-world properties, and 〈L〉 scales with a logarithmic
dependency.

16



Spatial and Transportation Networks

Most of the transportation networks present in nature exhibit planar characteristics,
existing on a two-dimensional plane (despite eventual elevation changes). River networks
and leaves’ venation [68], for instance, are characterized by hierarchical branching patterns
with minimal intersections, creating a primarily unidirectional flow. Another layer of
complexity can be added when also accounting for capacity variations due to river width
and depth. Fungal networks [54], on the other hand, are characterized by a web-like
structure with bi-directional flow through mycelium threads. Similar features can be
found also in human made transportation networks [30, 43]. In Figure 2.1 we can see the
three layers for the urban transit system of London [43].

Figure 2.1: Multi-layer transit network of London. The sub graphs of transit networks in
London for the bus, metro and rail layers. We can visually appreciate the lattice-like topology of
the bus network, while the metro exhibits a structure characterized by a connected core paired
to peripheral mono-dimensional branches. Figure taken from [43].

The development of models to recover these features allow to understand and optimize
the dynamics on and of these spatial networks. As an example, in Chapter 4 we study
how to arrange the edges’ velocities on a planar substrate such that the travellers flow is
optimized [3].

2.3.1 Optimal networks

Different network features can be generated by imposing optimality constraints on spatial
embedded networks [69, 67]. For example, the hub-and-spokes structure represent a key
topological structure in optimal distribution networks, where long-distance connections
morph into high-capacity arteries, primarily interconnecting regional hubs, which in turn
distribute traffic within their local neighbor nodes [67]. Other structural properties can be
understood via optimization processes, such as fluctuations and resilience to disruptions
within optimal networks, which naturally lead to the formation of loops [68]. While a
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plethora of models to generate optimal networks exist, we mention here a relevant one
that also serves to introduce the work presented in Chapter 4.

Distance versus topology optimization. A simple model was studied in Ref. [69]
in the case of non-planar spatial networks, where different topologies emerge when the
links are drawn to either have the cumulative shortest distance or building a topology
that minimizes the betweenness centrality [57]. Given a set of N nodes in space, the
objective is to find the tree connecting them that minimizes the quantity:

E =
∑

e∈G
bµed

ν
e . (2.11)

Where µ and ν are exponents that regulate the role of betweenness (topological measure)
or the role of distance (euclidean metric measure). Samples of the resulting topologies
are shown in Fig. 3.1 reproduced from [69].

Figure 2.2: Resulting topologies. Different optimal network from the optimization of Eq.
2.11. (a-d) show topologies when (µ, ν) values are set to (0,1),(1/2,1/2),(1,1),(1,0) respectively.
The different topologies therefore transition from the Minimum Spanning Tree MST (0,1), where
the total distance is minimized, to a star-like topology, the Shortest Path Tree SPT (1,0). The
figure is taken from [69].

Interestingly, the in-between scenario with (µ = 1/2,ν = 1/2) is a non-planar spatial
optimal tree that is characterized by the presence of hubs connecting different areas,
with smaller degrees nodes connected to them. Remarkably, it exhibits a hierarchical
structure, recovering a mesoscale property typical of natural systems. This hierarchical
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topology is therefore the trade off between the efficient Shortest Path Tree (SPT, with
high cumulative edges distances) and the Minimum Spanning Tree (MST). In Chapter
4 we adopt an approach where we also observe a transition from tree-like structures
(similar to the one obtained in these model for (ν = 1, µ = 1)) to lattice-like with short
range links (µ = 0, ν = 1). Although we work on planar triangular lattices, with the aim
of optimizing edges’ velocities biased by traffic flows.

We also mention edges’ capacity-based optimal models [70], used to study for example
in botanics the evolution of leaves [68]. Highlighting that the resilience to damage also
naturally induces a high density of loops.

2.4 Statistical physics of human mobility

In recent years, the large availability of data of human mobility, mostly from GPS
trajectories [23], allowed to uncover regular patterns and develop sophisticated mobility
models for both individuals [71] and groups of people [25, 72, 26]. These in turn have
become crucial for various applications, including traffic prediction [41, 39] and congestion
mitigation [39], urban planning, and even to understand segregation dynamics in cities
[40].
To this aim, the analytical framework provided by network science and statistical physics
allows to model and capture the complex spatio-temporal inter dependencies that shape
these patterns [73]. For instance, while agent-based models (ABM) treat individuals
as autonomous agents programmed with rules for destination choice and navigation,
statistical models identify universal patterns [32] in movement data and derive mobility
laws [25, 72] that can be generalized and exploited in many use cases. Moreover, network-
based models represent the spatial physical environment (at multiple scales) as a network
of flows between locations [74]. For example, in urban planning these insights can be
exploited to design cities that facilitate the efficient flow of people or commodities.

2.4.1 Observations

From empirical individual trajectories several observations can be derived [23], such as
travel time and distance distributions, mean square displacements, the radius of gyration,
energy-related metrics, up to origin-destination matrices. Most of these are metrics
derived from the study of the physics of multi-particle systems. We briefly discuss the
ones that will be also employed in the following chapters. We start by introducing the
concept of distribution of travel distances r, fundamental develop individual mobility
models based on diffusion dynamics.

Distribution of travel lengths. The distribution P (r) [23] of distances r travelled
by individuals represents the likelihood of an individual to travel a specific distance r.
To estimate P (r) a set of very diverse sources have been used, from the tracking of bank
notes, mobile phone records, to now commonly used GPS spatio-temporal points. While
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there is a general consensus for the power-law distribution property of P (r), studies have
found that actually meaningful scales in human mobility exist [75] and the power law
behavior might result from an aggregation of these jump length log-normal distributions.
More specifically, fits from the tracking of trajectories of dollar bills P (r) was shown
to be a power law P (r) ≈ r−(1+β) with β = 0.59± 0.02 [76], while more in general for
mobile phone data, P (r) can be fitted with a truncated power law [23]:

P (∆r) = (∆r0 −∆r)−(1+β) · e−∆r/κ. (2.12)

We will adopt a power-law fit in Chapter 5 to fit the different P (r) of human mobility in
different regions in the cities under study.

Other mobility regularities and the network-based perspective. Other funda-
mental statistical regularities in human movements have been uncovered in recent years.
For example, we mention the paradigm of "returners" versus "explorers" [77, 32], two
classes of individuals identified from GPS data. Returners’ mobility is characterized
by repeated visits to a limited number of preferred locations. Their P (r) and radius
of gyration are stable in time, while explorers tend to visit diverse locations, with an
expanding radius of gyration. Furthermore, the study of mobility networks from indi-
vidual trajectories identified only 17 trip sub-networks [78] structures that can ideally
describe all daily human mobility patterns. Therefore even if each individual visits a
different set of locations, the same set of mobility motifs are common in our everyday
movements, further highlighting the relevance of the network-based modeling. Finally,
these individual networks can be aggregated in population-level Origin-Destination (OD)
matrices, where entries encode the flow of individuals from one origin location to another
[23]. We discuss in the followings different physics-inspired models to reproduce these
ODs.

2.4.2 Modeling Individual and Collective mobility

Now we briefly discuss some exemplary models devised to either reproduce individual
mobility or collective mobility patterns previously introduced.

Individual models, the EPR and other paradigms. Individual movement exhibits
inherent stochasticity due to free will and randomness in trip patterns. Initially this
lead to minimal models based on diffusive dynamics, such as the Continuous Time
Random Walk (CTRW) [23] where also the number of movements between location in a
time δt is also a stochastic variable. The ability to model travelers via diffusion-based
models will be something we will discuss also in Chapter 3. Significant regularities
in individual trajectories highlighted by recent research allows for the construction of
more sophisticated generative models for individual movement. For example, visitation
patterns in human individual trajectories follow a rank-frequency Zipf’s law: (fk ∼ k−ξ)
[23], in contrast with the set of locations a random walker would visit, gradually drifting
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from the origin. More sophisticated mechanisms have therefore been added to modify the
CTRW, such as the Exploration and Preferential Return (EPR) [79] where the tendency
of individuals to visit a set of preferred locations daily (preferential return) is mixed with
the complementary probability of exploring novel locations Pnew = ρS−γ . Where ρ, γ
are model parameters and S increases at each new visit of a location. Recent research
also highlighted modification of the EPR model including a preferential direction [32].
We will discuss in Chapter 5 the role of collective behaviors in predicting instead novel
individual mobility patterns in the task of next-location prediction.

Collective Models: from the the gravity to the radiation model. Individual
mobility data can be aggregated to generate population-level flows across spatial and
temporal scales. This allows understanding from migration patterns between nations to
commuting at the urban scale. In Chapter 3, we will develop an effective distance [64]
for a diffusive process mediated by the OD network of collective mobility flows between
airports. Here we discuss more in detail the gravity-like models [23], with a focus on the
model for spatial interaction [74] at the urban scale, which we will then use in Chapter 4.

Zipf in 1946 introduced a model to estimate migration flows between communities. It was
based on the assumption that locations with large population are both sources and targets
(high attractiveness) of large flows of people, while greater distance represents instead a
deterrent factor in migration. This lead to the first gravity-like model Tij ∝ (PiPj)/rij .
It can also be generalized to consider other variables (mj) such as the GDP of destination
j. Other distance-based deterrence functions can be considered, leading to a more general
form:

Tij = kmimjf(rij). (2.13)

While widely adopted, it shows some limitations such as the estimation of fitted parame-
ters, sensitive to data quality. Later, other non-parametric models such as the radiation
model [26] were introduced to better fit migration patterns and models based on deep
neural networks are also studied to instead learn from data these dependencies [80]. We
discuss now the development of a gravity-like model from entropy-based principles, for
human movements that will be then thoroughly used in Chapter 4.

Gravity model at the urban scale: the spatial interaction model. Alan Wilson
[42, 74] provided a derivation within the framework of classical transportation theory
and entropy maximization of the functional form of the gravity model in Eq. 2.13.
The argument was based on the concept that in absence of more information, the most
probable origin-destination (OD) matrix (denoted by {Tij}), is the one that maximizes
the number potential configurations of trips associated with it, all while respecting a
set of constraints. First, Ω({Tij}) represents the total number of distinct individual
arrangements (configurations) that can generate the flow set {Tij} as:

Ω({Tij}) =
(
∑

ij Tij)!
∏

ij Tij !
. (2.14)
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They then tried to find an equation for Tij to maximize Ω({Tij}) by also constraining
the outflow Oi =

∑

j Tij to a specific value (an empirical observed value such as the
population of a tile i), and similarly the destination inflow and the total travelling
cost C =

∑

ij TijCij can be constrained. By using Lagrange multipliers, in the limit
of large number of trips T =

∑

ij Tij this leads to a doubly-constrained gravity model:

KiOiLjDje
−βCij [23, 74]. Interestingly, the power law decays f(r) ∝ r−β can instead

be obtained by setting costs with a logarithmic dependence: Cij = ln(rij). Thus
recovering the gravity-like form from an a-priori statistical approach. Following this
process, the spatial interaction model was devised by Wilson [74] by also determining
that destination locations have an attractiveness Wj that can be quantified using for
example the commercial land use area in node j, resulting in:

Tij = KPα1

i Wα2

j · e−βcij . (2.15)

Where α2, α1, β are fit parameters. Albeit simple, the general approach of gravity-like
modeling, using the number of Points of Interest (POIs) as attractiveness metric, was
also found to be the closed form modeling that better represents OD data in urban
contexts when evaluated via a Bayesian setting [81]. Moreover, it has shown good results
even when compared to deep learning baselines, further corroborating the validity of this
closed form in generating realistic collective flow patterns in a city. This highlights the
intricate relationship between a city’s spatial characteristics and the dynamical processes
happening on it, a hallmark of cities as complex systems. In the next section we briefly
discuss the study of cities from the perspective of complexity science.

2.5 Cities as complex systems.

Cities are intricate socio-economic, cultural, and spatial entities wherein the interac-
tions between myriad agents—ranging from individuals to institutions—give rise to
emergent phenomena [24]. Cities can be viewed as complex systems with an intricate
interdependence of several layers [18]. Land-use patterns exhibit spatial organizations,
which then represent functional areas used by the human population [24]. Analogous to
biological information within a circulatory system, humans navigate the transportation
network connecting these functional zones. Furthermore, information exchange and
social interactions within these zones generate emergent social phenomena and result
in socio-economic outputs of the system. Interestingly, these systems exhibit scaling
laws [45] reminiscent of metabolic laws observed in biological organisms. Therefore, the
city-as-organism analogy, while metaphorical, may hold some validity at specific scales.
Among alia, examples of emergent collective effects include the clustering of functional
areas [82], social segregation phenomena [40], congestion dynamics in traffic [39], and the
diffusion of ideas [45]. These collective phenomena also culminate in allometric scaling
properties with the city size [45], further establishing the interdependence of all the
different layers that constitute a city.
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2.5.1 Scaling properties of cities

Cities exhibit scaling properties between different indicators and their size. The first
example is Zipf’s law Ri ∼ N−γ

i (with γ = 1.019), which suggests a rank-size relationship.
In simpler terms, the population of the second-largest city is roughly half the population
of the largest. Other properties of social, infrastructure and economic indicators scale
with the city size. The analysis of scaling properties [83] of urban systems focuses on the
non-linear (power-law) relationship between the population in a city (denoted as N , as
the city size) and a set of indicators (Y) which quantify the socio-economic activity of a
city. Ultimately this relationship is expressed as Y = Y0 ·N

β , where Y0 is a constant and
β is the scaling exponent [45]. There are different scaling regimes in a city: super-linear
scaling (β > 1, with β ∼ 1.15 [45, 84]) characterizes the socio-economic activities of a city.
Meaning that the amount of socio-economical dynamics to which a single individual is
exposed is larger in more populated ones. While sub-linear scaling instead characterizes
infrastructure related metrics (e.g. β ∼ 0.85) [45, 84], such as the number of gas stations.
As a consequence, in large cities less infrastructure is needed to provide the same amount
of services to the single individual [27, 85]. This "economy of scale" lies behind many
complex systems and further establishes complexity as a fundamental tool to study cities.
We also mention that there is ongoing research highlighting limitations in these studies
of scaling laws [86].

Mathematical models for scaling laws. Models have been devised to go beyond
empirical observational descriptions, and rather propose the emergence of these scaling
laws as the result of the multiplicative interplay and non-linear interactions between
socio-economic activities and properties of infrastructure networks. [83].
As an example, in Ref. [87] they study the allometric scaling of the centers in a city. They
start from a model in spatial economics for individual choices based on the maximization
of a joint function of benefit/attractiveness Wj (quantified as benefit of working in a tile j)
and the cost of commuting there: Zij = Wj −Cij [88]. Then they consider the Bureau of
Road Traffic [41] function to model the travel time cost affected by congestion dynamics
Cij ∝ rij [1 + (Tij/c)

µ]. An increase in population size is also associated to an increase
in congestion in a monocentric structure (single centre with high Wi). This approach
allowed to quantify the critical values of the population size such that due to an interplay
of congestion and infrastructure the city transitions from a monocentric to a polycentric

structure. This was condensed in the derivation of the scaling property N∗ ∼ c
(

l√
ANc

)µ
,

where Nc is the number of sub-centers, A is the city area, l a commuting distance, and
µ, c instead regulate the non-linearity and transportation capacity. While other models
also propose relevant mechanisms to explain scaling laws in cities [83], we discussed
specifically this one as it exploits a model from spatial economic and one from traffic
science. These models were derived in two separate sub-fields to gather insights on a
complex systems were both layers interact. Moreover, both the definitions of cost Cij (in
Chapter 4) and attractiveness Wj are used in Chapter 4 and Chapter 5.
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2.5.2 Morphology of the city

Another fundamental area of research is represented by the complex modeling relating the
morphology of a city to network metrics and in turn socio-economic indicators. Relating
these properties to real urban morphologies can inform policy-makers to plan more effi-
cient and livable cities. These properties range from polycentricity versus monocentricity
[87, 24], the studies on 15 minutes cities and their limitations [89], up to the process of
urban sprawl [33].

As an example, the study of urban sprawl paired to morphology can quantify the increase
in commute times and associated energy demands for transporting population within
these urbanized areas. Leading to insights such as the prioritization of the development of
compact and well-connected urban forms towards more livable and sustainable cities [33].
Other studies have highlighted also how morphology impacts the city livability: cities
with well-connected, diverse street networks are more walkable and foster community
development [90]. Dense, mixed-use neighborhoods with green spaces boost social
interaction and economic activity. Even street design matters as fractal patterns improve
accessibility [91, 92]. Moreover, studies on active mobility and the efficiency of public
transit networks [35] to provide accessibility [93] also provide important insights to build
sustainable cities.
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Chapter 3:

Multi-pathways network effective dis-

tances and prediction of human mo-

bility on diffusive scales

3.0.1 Chapter Overview

In this chapter we provide a theoretical view of information propagation on complex
networks, with a focus on the definition of effective distances to predict human mobility-
mediated processes. We study the interplay between the network connectivity structure
and the interaction dynamics between nodes in determining patterns of perturbation
propagation. We highlight the relevance of integrating the information of the ensemble of
pathways or routes between origin and destination. Moreover, by leveraging the formalism
of dynamics on networks this chapter explores how human collective movements can
be conceptualized as flows between nodes, embedded in OD networks such as World
Airtransportation Network (WAN), providing the arteries for the diffusion of information
such as infectious seeds in a global pandemic. This chapter stems from our works in Ref.
[1] and in Ref. [2].

In Section 3.2 we begin by providing analytical insights via a general study of perturbation
propagation on networked dynamical models near steady state. By decomposing the
perturbations across the ensemble of pathways, we highlight the significance of considering
multiple pathways (MP) in the propagation of information between origin and destination
nodes. Through the definition of a temporal distance, the hidden geometric structures
underlying information propagation are unveiled. Subsequently, we focus into the specific
application of MP distance in diffusion dynamics.
In Section 3.3 we then exploit the Laplacian operator to devise metrics better tailored
for general diffusion dynamics, and introduce the concept of Information Distance DID.
Through the integration of the Susceptible-Infectious-Recovered (SIR) model and diffusion
dynamics within WAN nodes, human collective flows between airports are modeled as
proxies for diffusion processes. We discuss how parsimonious metrics such as DID embed
multiple pathways in their analytical structure, enabling predictions comparable to
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existing methodologies, but with the advantage of reduced computational complexity.
Finally, in Section 3.4 we present the application of effective distances derived from
human mobility networks in assessing the pandemic potential of Variants of Concerns
[2]. By integrating effective distances into a comprehensive pipeline for pandemic
intelligence, effective distances such as DID is compared as benchmark against alternative
methodologies, showcasing its efficacy in discerning pandemic spread patterns.
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3.1 Information propagation on networks: interplay between

structure and dynamics.

Non-linear differential equations that model the state activity of an element, and the
formalism of networks that embed the dependence (either physical or functional) of an
element’s state to other elements’ are two powerful mathematical descriptor that are
often paired to model and simulate the behavior of intricate interdependent systems [94].
On this modeling framework, a theoretical analysis of reaction-diffusion mechanisms,
synchronization processes, and more general complex dynamical models has started
to uncover of some fundamental behaviors of these systems. In particular, analytical
approaches that capture the interplay between the system dynamics and its structural
connectivity have been of interest in recent years [16, 17]. Among others, the synchroniza-
tion properties being contingent upon both the Laplacian spectrum and the non-linear
equations for systems of oscillators [63, 95, 59] represent a relevant example. While in
this chapter we will focus mostly on diffusion dynamics [59] and its application on human
mobility scenarios, a general approach that explores the universal mechanisms that lie
behind not only the movement of people but also other information spreading processes
in nature is fundamental. Within these networked systems, connections can represent
different pairwise interactions, ranging from mass action kinetics [8] to switch-like pro-
cesses [6]. The specific choice of functions to emulate real-world mechanics yields distinct
node responses and different patterns even on top of identical networks. Consequently,
discerning the functional significance of each node, given the specific process, requires
more than just knowledge of connection topology. Among other things, the interplay
between topology and dynamics regulates the system’s transient temporal response to a
perturbation and the propagation of information. Therefore predicting arrival times of
a signal [17, 96, 97, 98] is a critical challenge and a general analytical treatment that
exploits universal properties is relevant. Furthermore, by understanding arrival times,
we can uncover the hidden geometries induced by the dynamics [29, 65].

Recent research has explored how perturbations introduced in an equilibrium state of a
networked dynamical system can shed light on this interplay of structure and dynamics
governing information propagation [99, 16]. Analytical treatment under linear response
approximation of these perturbations reveals the scaling laws governing the system’s
response to perturbations. This approach effectively disentangles the role of network
topology (a node’s degree k) from dynamics (the universal exponents obtained from
the model’s differential equations) and synthesizes the complex interplay determining
several dynamical properties such as the system’s stability [21]. This paradigm of
scaling laws identifies different systems into universality classes of dynamical regimes,
where units respond to and propagate information similarly [16]. While several metrics
have been defined to quantify different aspects of a nodes’ impact or efficiency in this
framework [100], they in particular estimate a node’s characteristic time response ⌧i
from a perturbation in a neighboring node as a scaling law of the node’s degree with a
universal exponent: ⌧i ⇠ kθi [17]. We will exploit this framework to study in depth the
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role of the ensemble of paths that connect source and target in conveying perturbation
for a general networked dynamics. In the context of human mobility, we will also discuss
the application on diffusion dynamics where we can see this perturbation as signal being
transported by human flows.

3.2 Multiple pathways decomposition of perturbation prop-

agation

We first introduce more in detail the general analytical framework devised for the study
of these universality classes [99, 16]. We employ this framework to investigate the role of
network paths in the propagation of a signal [1], and we employed the same notation for
consistency.

·xi = M0(xi) +

N

∑
j

AijM1(xi)M2(xj)

+

Topology

Dynamics

Emergent

Behavior

Multi-Pathways

Temporal Distance

Hidden

Geometry

r � �MP

Aij

Scaling 
laws and 
Correlation 
matrices


Pathways

decomposition


Gij =
dxi /xi

dxj /xj � � k�
�

k

+

Gij = ∑
��P( j�i)

G�i j

G�

Tji � �MP( j � i)

Figure 3.1: Hidden geometry of propagation patterns. The interplay between network
structure Aij and non-linear interactions (ODE) results in an complex propagation patterns.
We combine analytical knowledge of scaling laws [17] and correlation matrices [16] with the
decomposition of propagation on the ensemble of pathways to define LMP and unravel the signal
propagation. Figure is adapted from [1].
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The analytical framework

Here each node’s state can be described variable xi(t), i = 1, ..., N . This variable can
encode a large set of quantities, such as fraction of genes in a regulatory network [6] or
the fraction of infected individuals in an airport network [29]. The system’s dynamics
is encoded in a set of non-linear functions M = {M0(x),M1(x),M2(x)}, and the time
evolution of xi(t) is driven by a set of non-linear Ordinary Differential Equations (ODEs):

ẋi(t) = M0 (xi(t)) +
N
X

j=1

AijM1 (xi(t))M2 (xj(t)) . (3.1)

Where M indicates a set of general functions: M0 is element i’s self dynamics, while
M1 and M2 functions require that the interaction between i and j to be factorized.
Expansions of M functions in steady state condition of Eq. 3.1 as power series of node
degrees is the fundamental analytical step in recovering the scaling laws and universal
exponents [16, 17, 101], such as the exponent ✓ in the aforementioned scaling law ⌧i ⇠ kθi .
In this work we studied specifically three dynamical processes that represent different
systems in nature, as presented in Fig. 3.2 with their relative ✓ exponent [17]. While
in Section 3.3 we will discuss more in detail the case for diffusion dynamics. A small
constant perturbation in a source node j’s steady state (xj ! xj + dxj) is used as
an analytical probe to derive analytical relationships linking the nodes’ degrees to the
exponents derived from the ODEs 3.1 and M functions. The system’s response to this
constant perturbation is to be shifted to a new steady state (e.g. xi ! xi + dxi). This
is encoded definition of the Global Correlation Function matrix given the source node

j [99]: Gij =
�

�

�

dxi/xi

dxj/xj

�

�

�
. We remark that singularities in Eq. 3.2 do not pose an issue

because steady state activities xi 6= 0, 8i in the systems under study.

�Regulatory �

·xi = � xa
i +

N

∑
j=1

Aijx
h
j

Population

(a = 1/2, h = 1/5)� = + 1

�Epidemic

·xi = � xi +

N

∑
j=1

Aij(1 � xi)xj

� = � 1

·xi = � xi +

N

∑
j=1

Aij

xh
j

1 + xh
j

(h = 1/2)� = 0
Exponent  �

�i � k�

i

ODE

Figure 3.2: Models ODE. Ordinary Differential Equations of the three dynamical models
representing different processes in nature. R Regulatory dynamics in gene transcription regulatory
networks via Michaelis-Menten model [6], where xi represents the expression of a gene. E

Epidemic dynamics via Susceptible-Infected-Susceptible (SIS) compartmental model [102] where
xi represents the fraction of infected individuals in node i and (1� xi) of the susceptible. Finally
we also study birth-death dynamics, as a case of continuous time Markovian process where species’
concentration xi is increased/decreased at given rates. As it can be applied in demography we
refer to it as P Population dynamics. The choice of exponents (a,h) is taken in order to obtain
three different classes of time response regimes encoded in the exponent ✓ [17] of the scaling
⌧i ⇠ kθi , where ⌧i is the typical response time of a node from a nearby perturbation. For example,
this helps define whether an hub responds slowly or not in the specific dynamics. These models
are also among the set of dynamics used in Ref. [99, 16, 17].
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Multiple pathways decomposition of perturbation propagation

The concept of the emergence of a complex pattern from the interplay of structure and
dynamics, and the process of embedding the propagation pattern in a predictive metric
that encodes and predicts the interplay such that inherent geometries are obtained are
presented in Fig. 3.1. We now introduce a path-driven approach to describe Gij matrix
elements. This involves decomposing this matrix as a summation across the ensemble of
paths linking nodes i and j.
To this aim, we define P(j ! i) as the collection of all paths Π linking the source node
j to the destination node i. This definition considers paths that may traverse vertices
multiple times (walks) [103]. We quantify the correlation carried along each path, denoted
as GΠ, as the product of local correlation elements Rij . Specifically, GΠ is computed on
the set of edges in the path and is determined by the expression:

Rij =

�

�

�

�

@xi/xi
@xj/xj

�

�

�

�

, (3.2)

as outlined in [16]. Here, Rij captures node i’s state dependency on a change in its
direct neighbor j’s state, as evaluated through the partial derivative in the steady
state of Equation 3.1. Here we can also define a path Π of length L as a set of L
nodes, sorted by visiting order: Π(1 ! L) = {n1, . . . , nL}. Therefore we have that:
GΠ(L) = RL,L�1 ⇥ . . .⇥R2,1:

GΠ(L) =
L�1
Y

i=1

�

�

�

�

@xi+1/xi+1

@xi/xi

�

�

�

�

=
L�1
Y

i=1

Ri+1,i, (3.3)

and Gij can be rewritten as an sum over the ensemble of paths:

Gij =
X

Π2P(j!i)

GΠ. (3.4)

This summation can be also extended by considering neighbors NNi of target node i
and taking out the sum over Rik:

Gij =
X

k2NNi

Rik ·

0

@

X

Π2P(j!k)

GΠ(j ! k)

1

A (3.5)

=
X

k2NNi

Rik ·Gkj , (3.6)

of which the equality with Gij can be understood since terms
P

Π2P(j!k)GΠ(j ! k) =
Gkj , therefore by iteration we can recover the definition of Gij proposed in Ref. [16]. A
visual representation of this decomposition is present in Fig. 3.3.

Decomposition of Gij on few paths of relevance

One of the scaling properties uncovered in Ref. [16] for systems described by Eq. 3.1
is that the average correlation G of target nodes at a topological distance l from the
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jj j

Figure 3.3: Decomposition of Gij. The ensemble of paths between target i and source node
j and their GΠ. Regrouping the paths via Rij elements of set of node i’s neighbors, allows to
recover the definition of Gij as in Eq. 3.4. Figure is adapted from [1].

source follows an exponential decay, such that G(l) ⇡ exp(�l/�). As a consequence,
if we consider that Lij = L represents the topological distance (minimum number of
edges) between nodes i and j, we expect that only paths of length L (or L+ 1) in the
set P(j ! i) will significantly contribute to Gij . We can employ Eq. 3.4 to reconstruct
correlation matrix elements Gij using a limited subset of path between each pair of nodes.
Consequently, since P(j ! i) can be divided into subsets of paths, each with the same
length l: P(j ! i) =

S1
l=1Pl(j ! i), we aim to reconstruct the propagation from j

to i by considering only the set of shortest paths in PL(j ! i). Formally, this means
restricting the summation in Equation 3.4 to the subset of shortest paths of length Lij :

Gij ⇡ Ḡij =
X

Π2PL(j!i)

GΠ. (3.7)

We validate this assumption numerically by comparing exact values for Gij with ap-
proximate values Ḡij for the set of dynamical models described in Fig. 3.2. We
quantify the accuracy of the reconstruction by calculating the absolute relative errors
�G = |Gij � Ḡij |/Gij . Initially, we consider only single terms GΠ∗ associated with the
shortest path carrying the largest amount of correlation (Π⇤ = maxΠ(GΠ)). Then we
include in the summation all paths having shortest path length Lij = L between the pair
i� j: PL(j ! i). Finally, we integrate in the summation also paths of successive orders
Lij +N .
We compare analytical predictions from Eq. 3.7 with simulations in Fig. 3.4, showing
how we can approximate Gij with just a small subset of paths, reducing the error �G in
function of the order of paths considered. These findings suggest that when analyzing
perturbation propagation between two nodes, focusing solely on the set of shortest paths
(and potentially extending to a successive order L+1) is sufficient to capture the relevant
pathways in the spatiotemporal propagation of perturbations and in general information
that decays exponentially with a networks’ path’s length, as a trade-off between a single
shortest path and considering all paths.
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Figure 3.4: Error in reconstructing Gij with few paths. For each dynamics we test the
comparison of Gij versus the approximation, on an Erdős-Renyi (ER) [66] synthetic network (N
= 100, ⇢ER = 0.15). Average of absolute relative errors h�Gi are presented versus the path orders
in Eq. 3.4. The shortest path on average justifies only 50 % of the total perturbation propagated.
By considering the entire set PL(j ! i) of available shortest paths brings the approximation
to ⇠ 90% retaining the relevant information. Adding next orders allows to reproduce Gij more
accurately. Inset) Matrix elements Gij values against approximations Ḡij for the case of SIS E

dynamics, computed considering the subset PL. Figure is adapted from [1].

Temporal distance capturing the hidden geometry

As previously stated, as a consequence of the propagation dynamics, a target node i will
shift its steady state to a new perturbed state, forced by the constant perturbation in
node j, denoted as xnewi(t ! 1) = xi +∆xi(t ! 1). In Ref. [17], they propose an
operative definition of temporal distance between the nodes T (j ! i) as the time taken
for node i to achieve a fraction ⌘ of its total response: ∆xi(t = T (j ! i)) = ⌘∆xi(t ! 1)
. By exploiting the scaling that predicts the typical response of a node from a nearby
perturbation as a power-law of its degree ⌧i ⇠ kθi , a path Π cumulative lag time:

⌧Π =
X

p2Π(j!i)
p 6=j

kθp (3.8)

can be introduced. In Ref. [17] they considered the shortest ⌧Π as the candidate temporal
distance from j to i:
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L(j ! i) = min
Π(j!i)

{⌧Π} , (3.9)

which can be used to predict T (j ! i).
Given that the overall response in Gij stems from the collective behavior of all paths, where
additional paths may contribute significantly (non negligible GΠ), it becomes fundamental
to consider their temporal delays ⌧Π in perturbation propagation. Specifically, we can
first compute the time lag across each path ⌧Π, then we assign weights to each path based
on the proportion of perturbations it carries GΠ/Gij , effectively normalizing such that
P

Π
GΠ/Gij = 1. Consequently, we integrate effectively the two relevant descriptors of

information propagation in this framework: local perturbations Rij and relaxation times
⌧i, and we obtain a novel temporal metric LMP (j ! i) as a weighted linear combination
of the cumulative time delay across each pathway:

LMP (j ! i) =
X

Π2P(j!i)

⌧Π ·WΠ (3.10)

where:

WΠ =
GΠ

Gij
. (3.11)

As a blueprint for understanding propagation patterns, we remark that Rij and ⌧i can be
derived analytically [101, 16]. Moreover, as we have shown in Eq. 3.7, the summation in
Eq. 3.10 can also be restricted to only the set of shortest paths of length L with largest
contribution GΠ, thus also providing analytical tractability. These analytical tools can
be derived for any dynamics that can be casted into the model in Eq. 3.1.

Experiments

We assess the predictive performance of LMP (j ! i) estimations in comparison to the
prior temporal metric L(j ! i) [17] and the conventional shortest path length denoted
as Lij [57]. To conduct our evaluation, we utilize a network model characterized by
heterogeneous connectivity, specifically employing a Scale-Free network Aij generated
through the Barabási-Albert preferential attachment procedure [58]. We first numerically
compute the equilibrium states of node activities for Epidemic, Regulatory, and Population
dynamics (refer to Fig 3.2). We then select a source node and introduce a small constant
perturbation in its steady state, and numerically solve Eq. 3.1 given the perturbation.
This induces shifts in the steady states of other network units, and we determine response
times T (j ! i) [17] as defined previously. The resulting set of empirical perturbation
times T (j ! i) is then employed to evaluate the efficacy of candidate metrics. The
accuracy is assessed using Spearman’s correlation coefficient denoted as ⇢s. The average
values of ⇢s over a set of experiments on different network generative models are presented
in Table 3.1. We observe that ⇢s for our proposed metric closely approaches 1, despite
the approximations of using scaling laws ⌧i ⇠ kθi in estimating time responses, indicating
that LMP effectively predicts temporal distances [1].
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E R P

Lij 0.83 ± 0.01 0.88 ± 0.01 0.40 ± 0.02
L 0.56 ± 0.01 0.88 ± 0.01 0.85 ± 0.01

LMP 0.99 ± 4e�4 0.99 ± 2e�5 0.99 ± 4e�4

Table 3.1: Accuracy of temporal metrics. We compute the average Spearman’s ⇢s over
multiple perturbation instances for Epidemic (E), Regulatory (R), and Population (P) dynamics.
We generate 10 synthetic networks (scale free [58] N=300 nodes). Within each network, we
randomly select 10 nodes as perturbation sources and propagate a constant perturbation obtaining
T (s ! i) . Subsequently, ⇢s is calculated for the predicted times versus empirical arrival times.
Effective distances are computed using the topological Lij , the single path L in Eq. 3.9 and the
multi-pathway distance LMP . The average ⇢s and a 95% confidence interval are presented in the
table for each dynamic.

In Figure 3.5, testing on a scale-free synthetic graph [58] Aij with N = 500 nodes,
LMP (j ! i) exposes the underlying geometry shaped by the interaction set M. We
embed target nodes in a new geometry [17, 29], with a radius from the source r /
LMP (i ! j). By testing under different dynamics (Fig. 3.5) we can appreciate the
adaptive nature of LMP . In Population dynamics P, hubs respond slowly (✓ > 1), and
are their embedded distance is far from the source, whereas in Regulatory dynamics
R, the degree-independence of ⌧(k) yields a discretized propagation pattern influenced
by the topological distance Lij [17]. In this embedding the intricate propagation of
the perturbation front mirrors the behavior of a travelling wave solution similar to a
reaction-diffusion system described by a Fisher-like equation [104].
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Figure 3.5: Embedding of spatiotemporal perturbation propagation. We embed the
target nodes in a space where the radial distance r from the source node (placed in the center) is
r / LMP . This embedding unveils a the hidden geometry of complex propagation, shaping it
into a concentric pattern [17] of perturbed nodes, akin to the traveling wave solutions observed
in reaction-diffusion systems [104, 29]. Notably, diverse perturbation patterns emerge from the
same underlying topology Aij. Node sizes correspond to their degrees. Drawn edges are selected
from the path Π

∗ with the highest correlation GΠ∗ . This concentric geometry can also be used
to infer the source given the propagation pattern [29]. Figure adapted from [1].
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3.3 Diffusion dynamics and Information Distance

The study of epidemic, regulatory and population dynamics served as representative cases
of different classes of propagation. In this section we focus on the case of diffusive-like
processes. We study in this case the application of LMP and introducing a novel metric
DID, highlighting advantages and limitations in predicting complex spreading processes
mediated by collective mobility.

Diffusion dynamics. The simplest case of a diffusion process between nodes in this
framework is represented by the equation:

ẋi = +D
X

j

Aij(xj � xi), (3.12)

where D represents the diffusion constant. We derived the universal exponent for the
scaling law of the temporal response ⌧i ⇠ kθi following the methodology introduced in
[17]. Namely, by computing small perturbations in the steady state in Eq. 3.1 in a mean
field approximation paired to configuration model assumption, an analytical derivation
of functions (built using the set of M functions) that govern the temporal response of �x
can be obtained [16, 17]. Hans’ series expansion of these functions yields the power law
dependency of ⌧ with the degree of a node which is perturbed. We study the M functions
in Eq. 3.12 in this analytical framework and obtained the exponent ✓ ⇠ 0. Therefore, in
the case of diffusion dynamics the temporal response of a node is not dependent on its
degree. We can apply the steady state condition of xi setting Eq. 3.12 equal to 0, and
deriving it with respect to node j’s state, yielding:

Rdiff
ij =

�

�

�

�

1

ki
·
xj
xi

�

�

�

�

. (3.13)

The Rdiff
ij element therefore takes the form of uniform transition probability from node i

to any of its neighbors, normalized by the steady state activities xi. The generalization
to a weighted adjacency matrix (where Aij = wij) is straightforward, with Rij being
proportional to a transition probability. We study empirical versus predicted distance
on a SF and two ER networks. Results are illustrated in Fig. 3.6 where we compare
Lij , L and LMP . The decomposition of information propagation on multiple pathways
improves the prediction in the case of diffusion dynamics up to a Spearman’s of 0.97.

In the next section we study a more complicated model for reaction-diffusion, where
collective human flows on the World Air-transportation Network (WAN) mediate the
infectious seeds in a meta population SIR model. This model corresponds to the one
described in [29], and we leverage the same dataset to reconstruct the WAN. It is
important to note that while LMP has demonstrated efficacy within the theoretical
framework for which it was designed, it was primarily intended to examine the role of
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Figure 3.6: Diffusive dynamics and effective distances: We test LMP on a simple diffusion
model, against single path L and topological distance Lij predictions. An example of a single
instance of signal propagation is used to compare in a scatter plot the re-scaled effective distances
of target nodes versus re-scaled measured empirical times T (j ! i) . This is done for three
network generative models, a Scale Free (SF) and two Erdos-Renyi (ER) of different sizes and
average degree hki (see introductory Chapter 2). We highlight the improvement in ⇢s nodes’
ranking when multiple paths are considered.

pathways in conveying perturbations from a steady state. We now introduce a general
metric for dynamical processes mediated by diffusion dynamics.

3.3.1 Information Distance

We devise an alternative definition of distance on top of a network which embeds informa-
tion from multiple-pathways diffusion. We formulate here an effective distance devised
for diffusive processes exploiting the Laplacian operator [57, 59] of which powers embed
information from multiple pathways. In recent years, there has been interest in distances
derived from the mathematics of diffusion processes [65, 98]. Among others, we remark
the concept of Diffusion Distance [59], which estimates a distances between two nodes
by assessing the similarity in the exploration patterns of random walkers utilizing those
nodes as starting points. In the embedding space induced by this distance the mesoscale
structure [57] is recovered for the time scales in which the the functional communities is
explored.

Building from Diffusion Distance and recent advances on operators built on the Laplacian
such as the density matrix [60], we propose a metric tailored to rank and predict arrival
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times of a random walker within the network. As p(t | i) defines the probability
of a walker originating from node i to be in some other node at timestamp t, this
can be recovered as successive applications (powers) of the random-walk Laplacian
LRW = D�1L = I �D�1A. We introduce a new measure that also merges the insights
from the effective distance in Ref. [29], namely, the idea that low probabilities pk(t | i)
are associated with large distances. This can be embedded by taking the negative of
the logarithm of the probability. We now introduce this candidate measure for diffusive
dynamics which we define Information Distance DID:

D
(s!k)
ID (t) = � log10 pk (t | s) . (3.14)

Where pk (t | s) denotes the k-th component, corresponding to node k, within the

probability state p(t | s) = vs · e
�tLRW

, that we can therefore compute analytically from
the knowledge of LRW .
We can also see p(t | i)j as probabilities of finding an infected individual (walker) in
node j at time t. Here, vs represents the initial probability distribution for the walker
originating from node s, defined as the canonical vector with the s-th component set to 1
(p(0) = vi). The term of the random walk normalized Laplacian LRW [57] encapsulates
the probabilities of transitioning from node i to node j in its matrix elements. The
off-diagonal elements of LRW can be computed as the negative values of Pij , which are
directly derived from the WAN weighted number of passengers. We evaluate the metric
across different timescales t to determine the scale where DID(t) demonstrates its optimal

performance (e.g. in the following section is t = 1.0). The exponential operator e�tLRW

naturally embeds the multiple-pathways decomposition of information propagation. This
can be better formalized by expanding the Laplacian via Taylor expansion:

e�tLRW

=
1
X

n=0

(�t)n

n!

�

LRW
�n

. (3.15)

Where the powers (LRW )n return the probability sum of the pathways on length n.
Specifically, entry i� j:

h

�

LRW
�n
i

ij
=

X

Πij2P(L=n)

P(Πij). (3.16)

Where P(L=n) if the set of paths Πij of topological length L = n between nodes i and j,
and P is the probability of that path computed as product of each random-walk transition
probability along the edges of Πij .

3.3.2 Predicting arrival times of a reaction-diffusion model on the

World Airtransportation Network

In this section we test LMP and DID on a reaction-diffusion system that models a more
realistic scenario where a network reconstructed from collective human flows acts as a
proxy for the spreading process. Here we exploit a dataset of real collective human flows
of the World Airtransportation Network (WAN) [29].
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WAN Network

Original dataset [29] sourced from https://www.oag.com consists of 3924 airport nodes
and 51541 links (each link having the associated number of seats per year), corresponding
to a total flux of 4202 million seats per year. To ease the computation, we work with
the dataset pruned of airports representing only 5% of the total traffic, yet constituting
approximately 70% of the total nodes. The pruned WAN network consists of 965 airports
and 33369 routes, with a total flux of 3808 million seats per year. The WAN represents
a weighted undirected network as each edge (route) is weighted by daily number of seats
F ⇤
nm, where n and m indicate the airports. As weights in routes direction are similar

F ⇤
nm ⇡ F ⇤

mn, detailed balance is satisfied and we consider: Fnm = (F ⇤
nm + F ⇤

mn) /2 = Fmn.
the airport network is presented in Fig. 3.7

4 � 10
3Tij

airport
0

A B

WAN WAN Flows

Figure 3.7: World Airtransportation Network. A) Network of airports (nodes) connected
by edges (routes) [29]. B) Weighted edges represent OD flows Tij , as number of seats per day
(Fij in the model).

Now we introduce the meta-population model where in each node a local population of
susceptible individuals are infected by the seeds (infectious individuals) propagated by
collective mobility. This modeling was introduced and thoroughly described in Ref. [29]
as test benchmark for effective distances. We remark that in this section we indicate
network nodes/airports using n and m indices.

SIR coupled to Diffusion model

First, in each node n we adopt a SIR [102] compartmental model. Standard modeling
assumptions are adopted, such as population Nn is considered constant, and each
individual’s state belongs to one of three compartments: susceptible (S), infected (I), or
recovered (R), subject to the normalization condition: Sn +Rn + In = Nn. Finally, the
homogeneous mixing assumption is adopted. Transition probabilities among these states
are encoded as:

In + Sn
α
! 2In

In
β
! Rn

(3.17)
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Here, ↵ and � are the transmission rate and average recovery rate respectively, both
measured in units of [day�1]. These determine the Reproduction Rate R0 =

α
β
, which

indicates the expected number of secondary cases produced by a single infected individual.
Moreover, individuals in a node can transition from node (population) m to n at a rate
denoted by wnm. By considering the normalized states in each population, such as
in = In/Nn being the fraction of infected individuals in node n, we obtain the final model
[29]:

@tsn = �↵snin� (in/✏) + �
X

m 6=n

Pmn (sm � sn)

@tin = ↵snin� (in/✏)� �in(t) + �
X

m 6=n

Pmn (im � in) .
(3.18)

Here the r.h.s. divides into two terms: a self-dynamics term (e.g. infection dynamics
within population i) and a diffusive term governing the inter-population movement.
Fraction of recovered rn can be derived from the constant population condition (rn =
1� sn � in). Rates wnm can be determined from WAN data Fnm, and the population
size of the originating node Nm: wnm = Fnm/Nm. A detailed balance condition can also
be recovered under the assumption that the number of passengers traveling each day is,
on average, the same in both directions: Fnm = wnmNm = wmnNn = Fmn. Finally Nm

can be computed from the assumption that only a fraction � of the total population Nn

travels from m daily, hence:

Fn =
X

m

Fmn = �Nn. (3.19)

Inserting this information in the detailed balance condition (Nm/Nn)wnm = wmn, allows
to reformulate the diffusion rates as follows: wmn = Fmn/Nn = �Fmn/Fn. Resulting in:

wmn = �Pmn, (3.20)

where Pmn are actual transition probabilities. Finally, we note that in Eq. 3.18 an
additional switch-like function is added to initiate infections in a node solely once the
proportion of infected individuals surpasses a predetermined threshold ✏, employing a
sigmoid function:�(x) = xη

1+xη .

Simulation of Epidemic Spread and Prediction of Infection Times

We now predict the arrival time of the infection versus effective distances estimations.
The arrival time T (OL ! n) is determined numerically when the epidemic curve in
node n reaches its peak: in (t = T (OL ! n)) = peak (in(t)), where OL is the Outbreak
Location.
We first set the epidemic and mobility parameters of the model in Eq. 3.18. Specifically
we set ↵ = 0.42 [d�1], � = 0.285 [d�1], � = 3 · 10�3, and ✏ = 1 · 10�6. The epidemic
parameters ↵ and � result in a reproduction rate R0 = 1.5. We simulate two instances
of contagion processes, the first chosen Outbreak Location (OL) for the contagion is the
Federico Garcia Lorca Airport in Granada (IATA airport code GRX) and the second
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is the Venice Marco Polo Airport in Venice (VCE). These selections are motivated by
their status as nodes with different outflows Fi =

P

j Fij , VCE has an average annual
outflow equal to 5.3 Million passengers while GRX 415 Thousands passengers. Fraction
of infected individuals is set at iOL(t = 0) = 10�3 and we monitor the progression of
in(t) through numerical solution of Equations 3.18.

Results. In Fig. 3.8, we show the scatter plot of effective distances against peak
infection times. Recent metrics [65] have also exploited arrival time statistics devised for
these diffusion-like processes [98], and allow to decompose information propagation on
multiple pathways in the case of flows governed by probability transitions. We compare
the metric DRW

MP alongside the DID and LMP metrics. In Appendix 7.1 we discuss
the limits of extending LMP to the SIR model in Eq. 3.18. We also calculated the
geographical distance DGeo obtained using the haversine formula for spherical coordinates.
Remarkably, DID provides results comparable to the state of the art DRW

MP which was
specifically devised for these processes, while representing a simple analytical parsimonious
modeling requiring only the Laplacian of the mobility matrix.
Finally, we remark that while this metric is built on top of the flows between airports on
a world scale, their application can be extended also on more national-level scale. In the
seminal work in Ref. [29], the mobility networks of Germany were used to predict the
OL (outbreak location) of a national scale pandemic.

A B

Figure 3.8: The case for diffusion dynamics and SIR modeling. A) Empirical infection
times T (OL ! n) as peaks of i(t) curves of the target nodes are compared with re-scaled distances.
Two Outbreak Locations are considered GRX (Granada) and VCE (Venice). Spearman’s rank
is used to evaluate the accuracy of metrics. A) Single path distance DSP [29] and Multi-path
distance LMP are the worst performing. The metrics DRW

MP [65] is compared with Information
Distance DID with similar scores. The scores ⇠ 1.0 show that these metrics can accurately
predict arrival times when the diffusion process is mediated by mobility flows.
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3.4 Application on a Pipeline for Pandemic Intelligence

We now discuss the application of effective distances in a pipeline to assess the pandemic
potential of a SARS-CoV-2 variant [2]. The SARS-CoV-2 pandemic rapidly spread
globally [105], prompting a pandemic declaration by the World Health Organization on
March 11, 2020, and resulted in millions of fatalities despite public health measures [106]
such as widespread testing, masking, and vaccination [107]. The task of controlling the
spreading was further complicated as novel variants with heightened immune evasion
and/or transmissibility emerged, with the additional consequence of rendering modeling
forecasts outdated. Ongoing research, surveillance, and global cooperation are crucial to
mitigate the impact of the pandemic and preventing future outbreaks.

In this work we integrated phylogenetic data from national genomic surveillance coming
from a limited set of initial sequenced samples, with knowledge of human mobility
networks to infer country-specific projections of epidemic curve scenarios and ultimately
provide an early assessment of the pandemic potential of a Variant of Concern (VoC) [2].
This pipeline represents a blueprint for pandemic intelligence, a complexity-based model-
ing framework that merges computational and analytical tools to provide a comprehensive
understanding of epidemic spreading. We have validated the methodology using Alpha,
Delta and other variants [108]. This allowed to also obtain insights into the pandemic
potential of BA.5, BA.2.75, and other related sub-lineages. In comparison to conventional
country-level epidemic surveillance, we revealed that only via an integrated multi-scale
approach can the pandemic potentials of various lineages be accurately compared.

3.4.1 Pipeline

In this section we briefly discuss the pipeline, which we also briefly describe in Fig. 3.9.
Then we focus on how the effective distance can be used as a fundamental step in this
pipeline to provide the number of infectious seeds that traveled to a target country. Here
DID is employed as a test metric and compared to more sophisticated metrics that model
behavioral elements such as the exit probability from a node (airport), as the Import
Risk distance [109].

(1) Epidemic parameters and estimation of VoC origin from sequencing data.
SARS-CoV-2 sequences associated with the Alpha B.1.1.7, Delta B.1.617.2, and Omicron
B.1.1.529 (BA.1), BA.2, BA.5, and BA.2.75 lineages were collected from GISAID [110].
On these sequences a Bayesian evolutionary reconstruction of timed phylogenetic history
[111] was performed to derive posterior distributions for the growth rate, molecular clock
parameters, and the time of the most recent common ancestor (tMRCA). This approach
enabled us to estimate the time of the initial unreported case t0, along with other epidemic
parameters. Using these estimates, we calculated the effective reproduction number and
generation interval. These parameters were then fed to the next modules of the pipeline
(see Fig. 3.9).
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Figure 3.9: Pipeline. Three core modules of the pipeline (dashed boxes in black). Each
module takes both inputs from external data sources (orange modules) or predictions from
previous modules (dashed blue arrows). In each module the epidemic and mobility estimates
inferred from data are reported in blue. Figure is taken from Ref. [2].

(2) Infectious seeds estimation. Monthly seat capacities in the WAN dataset for
each month of 2020, 2021 and 2022 were used to estimate effective distances (see Section
3.3). Effective distances proportional to the mean first arrival time such as Import
Risk [109] are computed from WAN as DIR = � log p1(n|n0) thus probabilities that
a traveler from source n0 ends to a target country n can be directly derived. Here
p1(n|n0) is a multi-pathways metric that also models the probability that a random
walker exists from a node along a specific path before jumping to the next node. As these
distances are derived for the network of airports, nation-level distances can be computed
by aggregating distances from each airport in a country m and weighting its distance
using its outflow Fm. From the information of airport’s outflows in WAN data, we can
weight this probability and compute the mean number of travelers to target nodes. The
probability of these travelers to be infected is computed by taking the daily incidence
of new cases (7 day moving average) times the proportion of sequences of that VoC.
We also considered possible under counting scenarios. Therefore the final number of
infected seeds travelling from n0 to target is computed as the number of travelers times
the proportion of infected individuals (VoC) in source country. Correlations between
effective distances and reported arrival times is shown in Subsection 3.4.2.

(3) Epidemic modeling. Finally, to forecast new daily infections we adopted a
renewal model [112] in the main pipeline (a multi-strain SIR-like model was used for
validation). The renewal equation requires minimal data: the daily reproduction number
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Rs, its generation interval distribution Γs, and Iout(t) the number of infected individuals
(seeds) traveling from the source country to the target (as estimated from previous
step). Finally, in the model the number of infected at time t is therefore estimated as
I(t) = Iout(t) + Iin(t) and Iin(t) is modeled as:

Iin(t) =
t

X

s=t0

ΓsRsI(s), (3.21)

where t0 is the day of arrival of first infected cases. A more complex modeling was
also devised to include inhomogeneous immunization landscape due to vaccination and
previous infections processes from other variant. Here we limit the discussion to the
Renewal as a core example on how the pipeline parameters and estimates can be merged.

3.4.2 Seeds estimation with effective distances

Geographical distance Dgeo and effective distances built on WAN, specifically the effective

random walk distances (D
(N)
eff,MP [29] and D

(N)
RW,MP ) derived for reaction-diffusion models

[65], the Information Distance DID and import risk DIR [109] are used to estimate the
number of infectious seeds traveling from source country to a target country. In step
(2) of the pipeline the steps required to estimate the number of travelers from these
probabilities have been presented. We note that in the operational pipeline, estimates
from import risk distance DIR [109] were used, as the integration of modeling aspects
such as exit probabilities allowed to better infer the arrival of infectious seeds when
we performed validation (see Fig. 3.10). We remark that the Information Distance
DID,MP provided estimates similar to more sophisticated metrics, simply by computing
the logarithm of an operator built on the random-walk Laplacian LRW of the WAN.
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Figure 3.10: Comparison of effective distances estimation versus arrival times of
the variants. A) Distance measures vs. arrivals for Alpha variant. The distance measures

are the geographic distance Dgeo, the import risk distance DIR, the effective distance D
(N)
eff,MP ,

the random walk distance D
(N)
RW,MP , and the information distance D

(N)
ID,MP . B) Correlation

comparison between different distance measures and different arrival times of VoCs under study.
The uncertainties in reporting official arrival times by national authorities (due for example to
low genome sequencing rates) and the underlying stochasticity in the mobility of passengers are
possible reasons behind correlations remaining moderate (up to r-value ⇠ 0.56) even in the best
performing metrics. Figures is taken from [2].
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3.5 Conclusion

In this chapter we studied the role of multiple-pathways in defining effective distances on
top of networks. These effective distances provide an analytical description of the hidden
geometry derived from the interplay of network structure and non-linear interactions
between nodes. We define a multi-pathways distance for a generic dynamical model on
networks derived from universal scaling laws, of which knowledge allows the estimation of
the time of arrival of a signal propagated from a source node. We have also discussed how
a simple distance DID derived from the random-walk Laplacian effectively captures the
time of arrival of a signal in a reaction-diffusion process mediated by collective mobility
flows. Finally, we have shown how by leveraging data from human movements and
exploiting network-based effective distances we can obtain valuable information that can
inform a general pipeline for pandemic intelligence.
In the next chapter (Chapter 4) we will focus on shorter scales where the definition of an
effective temporal distance is used to optimize transportation networks. Moreover in the
context of urban science we exploit collective mobility models to recover spatial features
of transportation networks similar to empirical complex topologies.
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Chapter 4:

Optimal topologies in flow-weighted

transportation networks

4.0.1 Chapter Overview

Transportation and distribution networks represent the arteries for human mobility.
These networks are characterized by complex spatial topologies: from tree-like topologies,
regular graphs with lattice-like structures, to more complex ones such as networks with
a connected core paired with mono-dimensional peripheral branches. The latter in
particular can be observed in both natural and man-made systems like subway and
railway networks, especially in urban environments. In this chapter we devise a minimal
and parsimonious framework where the optimization of a temporal effective distance on
a network planar substrate leads to the emergence of these complex topological patterns.
By optimizing the networks’ edges velocities via a simulated annealing schedule, we study
the traffic conditions under which these topologies represent optimal structures. We
investigate how the interplay between spatial traffic flow probabilities and travel costs
shapes the resulting optimal network. In the context of urban transportation, we also
simulate flows using human mobility models to derive Origin-Destination matrices. This
chapter stems from our work in Ref. [3].

In Section 4.2 we first introduce a simple framework for generating spatial networks on a
lattice planar substrate. Here network’s weights act as velocities which in turn define
an effective temporal metric reflecting the efficiency of the transportation network in
moving traffic flows across the urban space. On this framework, In Section 4.3 we show
how introducing simple probabilities biasing the optimal efficiency which only depend on
the distance, force a transition between a tree-like topology and a network resembling
a simple lattice. Moreover, in Section 4.4 we discuss the effect of introducing travelers’
behaviors in choosing the route between origin and destination, following concepts such
as User Equilibrium (UE) and congestion dynamics [41, 113, 114]. There we route
traffic demand under UE in the optimization of the substrate’s velocities, uncovering a
transition from the tree structure to a multiple-pathways alternative structure necessary
to alleviate the temporal delays introduced by congestion effects. In Section 4.5 we show
also that the modeling of flows which reproduce patterns typical of collective human
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mobility in urban areas leads to the presence of preferential network paths that mediate
the traffic between the largest OD pairs. The optimal topologies defined by these paths
also showcase features seen in real systems. Features such as a bi-modality in the edges’
velocity distribution, characteristic of multi-layered transportation, and branches coupled
with large loop formations typical of subway systems [115, 30] are recovered, reflecting a
balance of heterogeneous mobility patterns such as short-range travels and longer-range
commutes. Finally in Section 4.6 we show an application of the model within the Greater
London Area by exploiting Census and OSM data, finding scaling similarities of the
optimal synthetic network generated by our framework with the London Underground
network.
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4.1 Introduction

Transportation networks have a fundamental role in mediating human activity and mo-
bility [14, 23] at different scales. Extensively studied over the last two decades, [75, 116,
117, 118] the analysis of this class of spatial networks often revolves around optimizing
and/or minimizing cost-based metrics with the aim of unveiling the networks features that
determine their efficiency or that can be used as benchmarks for policy making [24, 67],
as we discussed in Chapter 2. The concept of optimal networks, grounded in energy-like
minimization principles, finds a natural intersection with concepts from physics [69].
Systems that minimize functional trade-offs, such as the minimization of a free energy,
often reflect the most probable states observed in real-world systems. Although deriving
these physical variables directly from first principles may be challenging in complex
systems like cities, analogies and concepts from physics provide valuable perspectives for
understanding and analyzing these systems’ structure and dynamics. Recent studies have
explored simple laws that can drive the emergence of hierarchy and better highlighted
the influence of traffic on optimal network states [119, 67]. Additionally, both global and
local optimization criteria play a significant role in shaping the development of man-made
transportation systems. Hence, a network science perspective can offer insights that
policymakers and planners can leverage in their urban planning efforts.

Complex topologies characterise the spatial organization of transportation infrastructures
across different scales and modalities. As an example, a sparse, scale-free network
topology characterises the World Airtransportation Networks seen in Chapter 3. Other
modes of transportation, as a consequence of having the link infrastructure embedded in
the geographical space such as rail networks, exhibit different network topologies. Among
alia, branches paired with loops represent some of the characteristic structures of man
made systems such as railways and subways, but also seen in natural systems [120, 30,
43, 115, 54, 30]. These structural elements play a pivotal role in facilitating effective
urban transportation [30].

Emergence of complex topologies via optimization of a network substrate.

We introduce a framework based on the definition of a lattice substrate which acts as
an effective planar discretization of space, on which network topological features may
emerge from an optimization process. We aim to uncover the minimum requirements to
replicate these non-trivial structures as outcomes of the optimization process, especially
in the context of human transportation in cities [121].
At variance with the recent works on network efficiency and transportation topologies,
we adopt some fundamentally different modeling choices. We evaluate the efficiency in
terms of time necessary to explore the network, where edges’ weights we act as travel
speeds. We optimize these speeds in a continuous interval, instead of using a multi-layer
constraint or specific topologies [47, 122]. It is worth noting that we refer to “optimal
network” topology when the functional form computed on the network properties is
minimized, while definition of optimality in applied transport planning may differ based
on the specific target [123].
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Simple framework for urban spatial structure

The underlying network lattice (as represented in its simplest form by the triangular
lattice in the next sections) acts as a planar substrate that allows the network to evolve [36,
122] and possibly exhibit the network topological features typical to real world systems.
Specifically, we seek to reconstruct these topologies by means of an optimal configuration
of a network. This is done assuming a fixed total amount of edges’ weights (e.g., a
constraint in the expenditure available on infrastructure). The optimal configuration
is the assignation of edges’ velocities, such that the cumulative amount of travel time
between origin-destinations is minimized for all pairs of nodes [124, 47]. Additionally,
as these networks represent the arteries in urban navigation via public transportation,
we investigate the role of traffic flow between these OD pairs [125, 119] in weighting
the importance of routes. Moreover, the modeling of urban spatial features, allow us
to generate OD demands which simulate human mobility in urban areas, biasing these
optimal networks to converge towards specific topological structures [23].
While this framework represents a theoretical abstraction which allows us to embed
mechanisms such as human mobility [23] and congestion [41], it does not consider more
complex elements such as mode choice and trip frequency, which are crucial in urban
planning [126]. We remark that our objective is to investigate optimal network features
using parsimonious modeling choices, rather than directly informing urban planning [127,
119, 124, 47, 23, 41, 126].

Urban

Spatial Distributions

Urban

Street Network

Simple modelA B

Hexagonal tiles

+ triangular lattice

P
i

Figure 4.1: Planar network framework and urban structure mapping. A) Population
distribution in Greater London Area wards from Census 2014, and sample from Open Street
Map (OSM) urban street networks. B) These spatial distributions and the urban transportation
network can be mapped to a planar lattice substrate. There, nodes encode urban features (e.g.
Pi as population in node i) and edges can be optimized. Example with hexagonal tiling and its
dual, the triangular lattice.

4.2 Simple framework for urban spatial structure

We devise a simple framework to study and optimize a transportation network between
a set of areas. A lattice substrate serves as a network-based planar discretization of the
urban space between these areas (nodes). Nodes can embed urban attributes such as
population density and/or distribution of points of interest (POIs). This ultimately can

52



Simple framework for urban spatial structure

Figure 4.2: Triangular Lattice sizes s. Triangular lattice substrates for different sizes s
(s = 2, 3, 4, 5) with associated N of nodes. Each lattice size s can also be seen as the number of s
layers of nodes that are added from the center. Therefore given a size s the number of nodes N
in the lattice can be computed as N = 1 +

Ps+1

k=1
(k � 1) · 6. Figure adapted from [3].

be generalized as a simple modeling of a spatial urban structure.
The most elementary example of this substrate can be found in the two-dimensional
hexagonal tiling (based on the hexagonal lattice) [128] and its corresponding planar
dual, the 2-dimensional triangular lattice [14, 129]. A triangular lattice is a spatial
network embedded in 2 dimensions, where nodes have degree k � 3 and each edge has
fixed length d. The concept of a dual representation also allows to directly connect
the spatial tile (node) to its adjacent nodes in the substrate (refer to Fig. 4.1). The
physical adjacency between nodes or tiles i and j is expressed through the adjacency
matrix A, where Aij = 1 denotes adjacency between regions in the lattice. We denote
different lattices sizes as s. Size s refers to a triangular lattice with s-layers of additional
nodes form the central node. Samples of different triangular lattices s is shown in
Fig. 4.2. We remark that discretization of space via hexagonal tiling allows symmetry
in the connectivity between nearby tiles [128]. Being isotropic, it represents an ideal
test-bed as it presents fewer equivalent degenerate paths compared to a rectangular lattice.

Subsequently, network metrics and effective distances are computed and optimized on
this network substrate following a suitable definition of efficiency or cost [36]. The
network distance that we aim to minimize (optimize) is an effective temporal distance
computed on the planar substrate. This approach relies on the fundamental assumption
that in urban mobility the cost of traveling is not defined by the geographical distance
between an origin and destination point, but rather on the amount of travel time required.
Examples such as public transit networks exhibit hierarchical organization [43, 75], with
distinct characteristic speeds across links in their multi-layer structure [72]. Therefore to
improve the accessibility and efficiency, the optimization of an effective temporal distance
on top of a transportation network is essential.
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4.2.1 Flow-weighted temporal Efficiency

We denote e an edge in the substrate network, we as its weight representing its velocity
within the transportation network and de as length of edge e (euclidean distance between
its vertices). Edge weights are visually represented as the widths (as in Fig. 4.3).
Definition of de is relevant in cases where the substrate is not represented by regular
structures such as triangular lattice but by random spatial networks where edges may
vary in length. For the generalization to non-spatial networks (non embedded in euclidean
space) the model can be adapted by using topological distances, and de = Aij . Given
these definitions, the free-flow travel time of an edge e is therefore de/we. Refer to Fig.
4.3 for a visual representation.
Transportation efficiency between nodes i and j is quantified in terms of time cost [44],
and our objective is to maximize this efficiency (or minimize travel time). Hence given
the set of weights {we}, we compute the travel cost cij to go from source node i and
terminating at destination node j, as the path having the minimum cumulative total
travel time:

cij({we}) = min
Π2ΩΠij

2

4

X

e2Πij

de
we

3

5 , (4.1)

where ΩΠij
is defined as the set of paths linking two nodes. Therefore the route

assignment for each pair i� j is based on a shortest-path paradigm, and does not account
for congestion dynamics [41]. In practical terms, travel time of an edge is not influenced
by the traffic flow on that edge. This is done under the assumption that in public transit
networks, such as subways, congestion effects are less relevant (at variance with road
traffic). In Section 4.4 we extend this framework by introducing the effect of traffic
routing following the principles of User Equilibrium [41, 113] in the optimization process.

dij

we cij({we}) = min
���

�ij
∑
e��ij

de

we

de

we

Euclidean 

distance

Network 

distance

Figure 4.3: Effective temporal distance on a spatial disordered lattice. The edge’s
weight (depicted as width) is a proxy for the link velocity in a transit system. Here the effective
network distance cij is computed as the path having the smallest temporal travel time from
origin i to destination node j on the substrate. cij is visually compared to the standard euclidean
distance dij . Figure adapted from [3].

Moreover, we weight the importance of a route i � j via a travel probability Tij be-
tween node pairs or the traffic demand between two points from a data-derived Origin-
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Destination (OD) matrix. Tij may represent the likelihood of an individual traveling
from node i to node j or can be extended to collective human mobility flows. Here we
adopt the general notation Tij to refer to general "flows", and these either encode travel
probabilities or actual OD traffic demands, throughout the following sections. In Section
4.5 and Section 4.6 we specify the quantity modeled. Consequently, the flow-weighted
transportation cost (as a measure of efficiency) of network G given the weights assignation
{we} is expressed as:

E(G({we})) =
1

N(N � 1)

N
X

i

N
X

j 6=i

Tij · cij({we}). (4.2)

Here, G({we}) denotes the network configuration along with the corresponding set of
edge weights {we}. Given that paths linking different node pairs may share common
edges within the network substrate, intricate topologies arise from the optimization of
these edges that affect multiple routes.
We aim to find the assignation of weights {we} on the edges which maximizes the efficiency
(minimizes Eq. 4.2 of E({we})) while requiring that the total network infrastructure cost
remains constant CG:

CG =
X

e2G

dewe, (4.3)

which is the sum of edge weights per unit length multiplied by edge distance. We do this
using a Simulated Annealing procedure which we describe more in detail in Appendix
7.2.

4.3 Optimization of network substrates biased by simple

probabilities

Before optimizing the efficiency with traffic-like ODs, we start by investigating the impact
of distance in Tij in Eq. 4.2. To this aim we use simple travel-probabilities that depend
only on the distance between nodes: Tij / e�βdij . Here distance is used as the variable
that defines the typical spatial range of flows on top of the substrate. The parameter
β in Eq. 4.3 acts as a penalizing factor, determining how relevant is the distance dij
between pairs i� j in diminishing the probability. β can be interpreted as the inverse of
a characteristic travel distance d0 for an agent within the network, where β ⇠ 1

d0
. Other

distance-dependent probabilities (e.g., power-laws Tij / d�γ
ij ) may be considered. These

formulations are grounded on the empirical evidence of the power-law properties of jump
length distributions in human mobility [23], which we also observe in origin-destination
data discussed in Chapter 5. Here we focus on the exponential dependence due to its
association with the maximum entropy derivation of gravity flows [74], which will be
discussed in Section 4.5 and was introduced in Chapter 2. Future investigations may
focus on the network optimization with flows having power laws dependencies. Here
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instead of using Tij we use the notation pij to differentiate simple flows depending on
distances from more complex ones which include the nodes’ attractiveness. Hence pij is:

pij =
e�βdij/hdi

PN�1
k 6=i e�βdik/hdi

. (4.4)

Here, hdi = 1
N(N�1)

P

i 6=j dij represents the average euclidean distance between points in
the network and serves as a normalization factor. Therefore, pij in this simple scenario
determines the range of space explored by an agent started from source node. Fig.
4.4 illustrates the spatial dependency of target probabilities. Here we first adopt the
“all-or-nothing" paradigm where each OD demand is routed on the shortest path, and
congestion dynamics is not present.

Experiments on HEX and ER substrates.

We perform experiments on simple generative models of both spatial and non-spatial
networks. The first substrate we study here is the triangular regular lattice (HEX of size
s = 5 in Fig. 4.4 and n Fig. 4.2 for visualization). Furthermore, we extend experiments
to the case of network topologies which are not embedded in a metric space such as the
Erdős-Rényi (ER) network. In this case we use the topological shortest path Lij instead
of dij [57] in Eq. 4.4.
Given these substrates, we generate an ensemble of optimal configurations in a wide
range of β (see Fig. 4.5). We first observe that in case of β = 0 we have that the tree
structure represents the optimal topology, aligning with the literature of spatial networks
[14]. As we generate optimal substrates for values of β > 0, we study the emergence of
loops in G({we}) breaking the tree symmetry and generating complex topologies [130].
To this aim we analyze the minimum cycle basis of optimal G({we}) realizations for each
range of flows Tij , β. A loop is defined here as a set of connected edges that defines a
closed path in the network. The minimum set is the subset of loops such that any closed
path in the network can be obtained via a combination of this basis. Specifically we
compute the average loop size (length of the loops) in the cycle basis, and the dimension
of this basis (as total number of loops present in the basis) versus β. These two metrics
will allow to distinguish different topologies from the reference tree structure.

Results. Results for HEX and ER substrates are present in Fig. 4.5, while for the
ER topology are shown in Appendix Fig. 7.3. When the probability to reach a target
node in the network is uniform and independent of the distance (when β = 0 in Eq.
4.4) we obtain that the tree topology is the optimal structure (Fig. 4.5). This is in line
with recent results [14]. As farther nodes become less likely to be travelled to from a
source node (β > 1), loops in the optimal topology emerge in configurations where the
effective temporal distance is optimized for close range trips. Notably, the average loop
size undergoes a transition from zero to large values. In this β regime, the tree structure
no longer represents the most efficient topology for peripheral leaf nodes: based on Eq.
4.4, peripheral nodes for β large enough will have most travel probabilities targeting
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Figure 4.4: Optimization of simple synthetic networks. The role of β is studied for
two substrate networks: the triangular lattice (HEX) and the non-spatial (ER) network, where
distances are encoded in the topological distance Lij . A) Heatmap of target nodes probabilities
pij from the source (yellow) in the case of two β values on a HEX of size s = 5. As β grows,
distance becomes more relevant and farther nodes are more penalized: flows tend to stay close to
the source. B) Samples of the associated optimized network states: when flows are less affected
by distances (β = 0.1) source nodes target all the other nodes in the network with approximately
equal probability, and the optimal network converges to a tree-like structure. With larger β (β =
5.0), trip probabilities are more localized and loops appear as optimal structures. Figure taken
from [3].

close neighbors. Consequently, as β grows, a transition point will be reached during
the optimization where a connection between nodes in different branches will appear,
breaking the tree symmetry. This process justifies the emergence of large scale loops in
this framework (which can be seen in Fig. 4.5 panel B). Finally when β >> 1.0, the
effective distance is optimized only for direct neighbors, and a lattice-like structure with
many small loops is obtained. These observations are also present in the non-spatial
network (Fig. 7.3).

Finally we also provide an illustrative application focusing on a scenario where a single
target node is positioned at the lattice’s perimeter. Through this analysis, our model
effectively replicates the intricate patterns observed in leaf venation, as documented in
previous studies [68]. Overall we have observed how we can transition between different
topologies when distance-dependent probabilities bias the effective distances on simple
substrates. As this was done following the "all-or-nothing" assignment paradigm, in
the next section we investigate the effects of congestion dynamics in breaking the tree
topology.
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Figure 4.5: Loop Dimension vs β on HEX: We adopt the minimum cycle basis to study
the presence of loops in the optimal configurations. For each β the median and its absolute
deviation computed on the ensemble of optimal networks from a HEX size s = 3 substrate.
A) Average number of edges (dimension) of the loops present in the cycle basis. B) Number
of loops that constitute the minimum cycle basis. The optimal network transitions from tree
structure to a lattice-like with many small loops, where a set of network realization is plotted for
β = 0.01, 1.5, 10.0. Figure taken from [3].

4.4 Routing traffic under User Equilibrium: the effect on

optimal topologies

Here we discuss the effect of routing the flows Tij in Eq. 4.2 following conditions that in
the context of urban mobility model fundamental properties of users’ traveling behavior.
While in previous section a flow OD Tij was routed on the substrate path having the
smallest cumulative travel time cij , here we route the traffic following principles of User
Equilibrium [131, 41] during the generation of G({we}) via simulated annealing.
Traffic Assignment (TA) consists in routing an OD demand among the set of pathways
ΩΠij

in a transportation network, following some criteria. In Section 4.3 we used the
"all or nothing" criterion [41]. Here instead we implement the effect of congestion, a

58



Routing traffic under User Equilibrium: the effect on optimal topologies

single target/sink

source nodes
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Figure 4.6: Optimal networks resembling leaves’ veins patterns. Optimal state when a
single sink (orange node) in the extremity of the substrate is considered. Efficiency is optimized
for all nodes in space to reach the target, as source nodes. The resulting optimal state resembles
tree-like patterns found in leaves (A), while the distribution of edges weights is shown in (B).
Figure adapted from [3].

phenomenon typically represented through "latency functions" where the presence of
traffic introduces delays in an edge’s travel time, requiring traffic routing adjustments
to effectively redistribute Tij across other pathways and mitigate congestion effects.
The Wardrop’s principles [113, 41], introduce User Equilibrium (UE) and system opti-
mum criteria that can be implemented during TA. According to the User Equilibrium
principle, individual travelers select routes aiming to minimize their own travel time.
Once equilibrium is reached, travelers from i to j experience identical travel times
cij regardless of the route. On the other hand, the system optimum principle directs
traffic routing to minimize collective total travel within the system. Hence solving
traffic assignment requires optimization algorithm (such as the Frank-Wolfe or Method
of Successive Averages [113]) designed to distribute this traffic respecting these conditions.

The conventional latency function to model traffic-induced temporal delays on a route
is the Bureau of Public Roads (BPR) [41, 113]. This function defines a relationship
between the time taken to traverse a link or edge e and the total traffic routed through e:

te = t0 ·

"

1 + α

✓

Te

ce

◆λ
#

. (4.5)

Here, t0 represents the travel time without congestion (free-flow), Te denotes the traffic
volume, and ce stands for the capacity of the road or edge. The exponent λ governs the
non-linearity in the ration between traffic and capacity, while α determines its intensity.
Since we optimize edges we as proxies of velocities, the free-flow time on an edge in the
substrate can be computed as we/de (as in Eq. 4.2). Moreover, we treat edge capacity
as a constant, denoted by ce = 1.0. Finally, we apply this User Equilibrium based traffic
assignment during the annealing process to generate the optimal topology. Specifically,
for each proposed configuration of weights {we}, we apply UE to route traffic along edges

59



Routing traffic under User Equilibrium: the effect on optimal topologies

(Te) and compute E({we}). We then accept {we} based on the Metropolis rule [132].
In the next step we discuss in detail an analytical approach to quantify a threshold of
parameters in Eq. 4.5 on the simple tree topology.

4.4.1 Emergence of alternative paths in a tree structure.

In the context of simple substrates presented in Section 4.3, we focus on the tree-like
topologies (obtained in Eq. 4.4 with β = 0) these will serve as benchmark. In a tree
structure, only one path between each OD pair i�j is present [57]: as congestion becomes
more relevant, we expect a transition from this tree structure to a new topology where
additional pathways emerge to alleviate the congestion on the single path. We compute
the analytical condition in which the tree topology, given the congestion parameters α,λ,
represents a more efficient structure than one with additional n edges. To this aim we
study the critical situation of the highest-load edge Te in the tree (which in Eq. 4.5 is
the one suffering from largest delays). We can map this to a mathematical condition
where the efficiency on a single edge (n = 1) with velocity we, accommodating the traffic
Te, is compared to the efficiency (Eq. 4.2) of a set of n edges (Ne) on which we instead
distribute the traffic.

To this aim, we first show that we can perform analytical computations on the efficiency
of a single edge, after the OD demands Tij 8i, j has been assigned on the routes of
G({we}). We can decompose Eq. 4.2 as a sum of edges Ee which allows us analytical
treatment. We first decompose cij as the sum of the edges travel times te on path Πij ,
therefore cij =

P

e2Πij
te and we have that:

X

i,j

Tij(di,j ,β) · cij({we}) =
X

i,j

Tij(di,j ,β) ·
X

e2Πij

te. (4.6)

Now if we introduce Ke,(i,j) = card({e} \ {Πij}) a set operator which is equal to 1 if the
edge e 2 Πij , otherwise equals to 0 (Πij is a set of unique elements) we can extend the
sum on all e 2 G. Finally by switching summation on edges we have:

X

i,j

Tij · cij({we}) =
X

i,j

Tij

X

e2G

te · Ke,(i,j) (4.7)

=
X

e2G

te
X

i,j

Tij · Ke,(i,j) (4.8)

=
X

e2G

te · Te. (4.9)

Where the term
P

i,j Tij ·Ke,(i,j) represents the total traffic routed through edge e assigned
by the TA algorithm, which we define Te. Therefore we see that if we define Ee = Te · te
after TA, we can decompose Eq. 4.2 as

P

i,j Tij · cij =
P

e2GEe.
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Figure 4.7: Transition from a single edge to two edges. Simple situation where the
traffic Te in the assignment process is either routed through a single edge versus a 2-pathways
(n = 2) alternative structure. The optimality of the two scenarios is evaluated via traffic-weighted
temporal efficiency after traffic assignment. We remark that the total edges weight and traffic
has to be conserved between the two configurations. Figure adapted from [3].

Analytical condition: derivation of F

From Eq. 4.9 we can focus on specific edges of interest, as the one having the maximum
traffic volume in the tree structure and being subject of largest travel delays. Knowing
that in case of α = 0 (in Eq. 4.5) the TA converges to the “all-or-nothing” scenario,
obtaining the tree topology (setting β = 0 in Eq. 4.4). Eq. 4.9 can be rewritten after
the TA process (hence Te is assigned on each edge and is a known scalar value) under
User Equilibrium using Eq. 4.5:

X

e2G

te · Te =
X

e2G

Te ·
de
we

·

"

1 + α

✓

Te

ce

◆λ
#

. (4.10)

We now find the condition under which a single edge is more efficient than a set Ne of n
edges configurations under the same traffic load and total we availability. In Fig. 4.7 we
also visually present these two configurations in which (w, T ) are decomposed on a set
of n = 1 and n = 2 edges. Now, we aim to determine analytically when a single edge
is more efficient (lower traffic-weighted travel time Ee) than a set of n edges, when the
same amount of traffic Te and availability of edges speed we is conserved in the two cases.
We express this via an inequality between Eedges(Te, we) of the two configurations:

Ee [Te, we, (λ,α)] 
X

e2Ne

Ee



Te

n
,
we

n
, (λ,α)

�

. (4.11)

We then impose that we and Te are equally distributed on the n edges in the set Ne:
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·
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where the summation across the n edges was carried out. Calculation of t0 = de/we was
simplified with de = 1 and capacity was taken as constant ce = 1. We can now re-write
the inequality in a functional form of which the sign (given congestion parameters) will
determine if the inequality is respected:

Te

we
·



(1� n) + αT λ
e

✓

1�
1

nλ�1

◆�

 0 (4.15)

Te

we
· F (n,α, Te,λ)  0 (4.16)
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Figure 4.8: Function F values. F function F values, whose sign determines which of
configuration is more favorable under different congestion parameters. The values of F identify
different regimes at varying the non-linearity in the congestion term given by parameter λ.
Interestingly the optimization of travel velocities (free-flow times) leads to the tree being the
optimal structure in any scenario, even with λ = 1, a scenario where congestion mechanics is
present, but linearly dependent on Te. For λ = 2 we observe a transition in the optimality of
n-pathways as congestion intensity α increases. Figure adapted from [3].

Hence the sign of functional F (n,α, Te,λ) given the values of parameters Te,α,λ deter-
mines if the tree structure is more favorable to a n > 1 configuration with multiple routes.
Traffic Te and velocity we are to be considered always positive quantities. Specifically,
the inequality is satisfied when E(we, Te) is lower for the single edge case (as flow-
weighted travel time) and therefore F < 0. Otherwise if for the set of parameters there
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is a value of n > 1 in which F > 0, a multi-pathways structure is therefore more favorable.

Given the OD demand and the benchmark tree structure obtained setting β = 0, we first
assign the amount of traffic on the edges adjacent to the root node of the tree Te (using
α = 0). Then for a range of congestion parameters α and λ we can evaluate the value of
F . In Fig. 4.8 we evaluate the functional F (n,α, Te,λ) by setting a value of Te = 170.0,
which corresponds to the largest traffic volume in the tree topology of a HEX (s = 2). In
the next section we test the predictions based on this functional by generating optimal
networks under UE and study the transition from a tree to multi-pathways topology.

4.4.2 Optimal topologies and phase transition from tree to multi-

pathways structures under congestion.

In this section we investigate the properties of optimal topologies G({we} generated via
traffic routing following User Equilibrium. Specifically, we test the transition predicted
by the functional F on different triangular lattice HEX of sizes s = 2 and s = 3.
Here, to work with traffic volumes in all edges that respect the condition Te > 1 and
simplify analytical calculations, we impose

P

j Tij = N where N is the number of OD
nodes in the substrate. The number of nodes in the lattice (related to the size via the
Equation in Fig. 4.2) hence determines the total traffic in Eq. 4.4 and therefore defines
the maximum amount of traffic Te that is routed on the central edge of the tree. In
the tree topology, the edges connected to the root are also the ones having the largest
betweenness centrality (and traffic volume when β = 0).
In each substrate we first obtain the associated tree topology Gtree({we}) which represents
the optimal solution when β = 0 and α = 0. Consequently we can compute the value
of Te on central edges, which we then use to compute F . Then we can generate the
structures via simulated annealing for each combination of parameters, where α > 0.
Along the set of parameters, F (n,α, Te,λ) transitions from negative to positive values,
and we compute the number of additional edges Nedges from the tree topology that
emerges in the predicted transition point. We compute Nedges as the number of edges of
optimal network G({we}) under UE minus the number of edges of Gtree({we}). Therefore
it represents a proxy observable of the additional pathways that emerge from the tree
topology.

Results on size s = 2 and s = 3. Results for size s = 2 network are presented in
Fig. 4.9 . When β = 0.0 in Eq. 4.4 the resulting maximum traffic flow is Te = 170.0.
In panel A the value of F(n,α, Te,λ) is plotted by separating the cases for different
congestion intensity α, where the heatmaps axes are λ versus n additional paths. In
panel B we present the generated optimal network topologies G. Most notably, λ = 2.0
and α = 0.0001 represents a scenario where the value of F is the largest for n = 2 than
other values of n. This predicts that in this congestion regime, Nedges will be different
than zero but still limited to few additional edges.
This is indeed observed in the associated optimal network of Fig. 4.9B which results in a
non-trivial topology where only edges close to the center appear to sustain congestion,
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Associated optimal topologies: � = 2

A

B

Figure 4.9: Value of F(n,α, Te,λ) and generated optimal topologies for s=2 and λ =
2. A) Heatmap of the sign of F(n,α, Te,λ) as function of n and λ are shown for three different
values of α. This is to better highlight (in the teal quadrant) the different optimality of the
number of additional edges n when λ = 2 for different congestion intensity α. Interestingly, the
value of F when α = 0.0001 for n = 2 is larger than n = 3 and in the associated topology in panel
B this results in only the central edges of the lattice appearing in the optimal topology other
than the tree structure (rather than all edges). This network also resembles a core paired with
branches topology, which therefore can also appear in situations when β = 0.0 (tree topology)
but emerge in the presence of congestion dynamics [47]. With λ = 3 the strong non-linearity
forces all edges to be present, as in the third optimal topology. Figure adapted from [3].

and not farther edges. Which instead would appear if F(n > 2) > F(n = 2). Remarkably,
these particular patterns can be therefore predicted just from the sign of functional F ,
despite the strong approximations and the simple scenario from which F was derived.

In Fig. 4.10 we report the results on the generated topologies of Nedges = Nedges(G)�
Nedges(G

tree) as a function of the parameters in Eq. 4.5. These parameters are present
in the x-axis as re-scaled control parameter αT λ

e . We compare Nedges versus the curve
of the functional F for different values of n and different sizes s and parameter λ. We
observe the transition from the tree-like structure to a multi-pathways structure when
F(n > 1) > 0 (in Fig. 4.10 computed with n = 1.5), ultimately converging to a complete
lattice when αT λ

e >> 1.0. F approximates the transition at αT λ
e = 1.0 for different

lattice sizes and a set of congestion parameters which span several orders of magnitudes.
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Figure 4.10: Function F values. A) Plot of the emergence of additional pathways encoded
in n from the tree topology Gtree versus the value of F . We plot F(λ = 2) for different n and
HEX sizes s and highlight the threshold αTλ

e = 1.0 after which F(λ = 2, n > 1) > 0. Therefore
these curves predict the emergence of additional edges from the tree structure, computed as
Nedges. Nedges, computed on generated optimal topologies, transitions to non-zero values after
the threshold αTλ

e = 1.0. B) Associated topologies in the case of s = 3, λ = 2. Specifically for
αTλ

e ⌧ 1.0,� 1.0,� 1.0. We can observe the situation in which the tree structure transitions
to a complete lattice. This is a consequence of F (n,α, Te,λ) that for large non-linearity λ and
intensity of congestion α favors large n and therefore the routing of traffic in as many pathways
as possible in the lattice. Figure taken from [3].

4.5 Adding node attractiveness Wj

In this section we study the addition of nodes features in the lattice substrate. Human
mobility in urban systems is characterized by traffic flows [125] towards areas of interest,
with high density of commercial and/or business activities and points of interests (POIs).
Here we extend this framework to the case where we have flows which reproduce typical
patterns of human mobility in urban contexts, by adding the presence of nodes with high
attractiveness (POIs density Wj) that bias these flows. Spatial-interaction models can
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be adopted to this aim as discussed in Chapter 2. Moreover, the validity of gravity-like
models in urban contexts has been further studied by recent works [81]. Here a gravity-like
equation was derived as the best closed-form in a Bayesian model fitting, using density
of POIs as an additional measure of attractiveness [81]. More specifically, in a spatial
interaction model [133, 74] nodes with attractiveness Wj compete as possible destinations
of population nodes Pi, and here the distances dij are used as a cost of traveling between
i � j and determine the spatial dependency of the flows. Although we remark that a
formulation with power-laws represents also a valuable venue to investigate. This leads
to the equation:

Tij /
1

Z
PiWje

�βdij , (4.17)

where Z is the normalization factor Z =
P

k Wke
�βdik on the set of all target nodes. Pi

represents the population in node i and Wj represents the attractiveness of node j [133]
quantified in Section 4.6 using the number of POIs from OSM [134]. As a result, we can
see Tij as the fraction of population in node i travelling to node j. While in Section 4.6
we study the case of London as a more realistic distribution of population, we first start in
this section by only modeling the attractiveness and working with the simple assumption
of nodes having all the same population: Pi = 1.0 8i to better understand the role of Wj

in generating G({we}). We apply this modeling on the HEX lattice s = 4 to explore the
optimal features that emerge when Tij are biased towards specific areas/nodes with high
attractiveness.

3-Points polycentric structure Wj.

We examine a spatial arrangement where three nodes (POIs) at the vertices of an
equilateral triangle, are assigned high values of Wj , similar to a Steiner tree problem.
This 3-points configuration mirrors a typical polycentric arrangement of city centers.
Moreover, it is associated to the Euclidean Steiner Tree problem [135, 136], which
represents a class of problems where, given a set of N points in a plane, the objective is
to connect these points with the minimum total length. In this 3-points arrangement the
central node in the lattice would represent the Fermat point [136], and the Steiner node,
which links the three vertices of the high Wj triangle, as depicted in Fig. 4.11 panel A.
In Fig. 4.11A we observe the influence of Wj in polarizing the traffic flows, where P (Tij)
can ideally be divided into close-range trips and longer-range flows towards POIs. Fig.
4.11 illustrates optimal solutions corresponding to β = 0.1 and 4.0. In both cases, a star
with three branches from the central node to the high Wj nodes represents the solution
of the Steiner tree problem.
When β = 4.0 nodes with large Wj are penalized by the distance, and flows are more local-
ized with P (Tij) being non-negligible especially between non-POIs nodes. In this scenario
we observe the emergence of large-scale loops. Additionally, due to the heterogeneity in
Tij we observe a second mode in the distribution of optimal speeds P (we) (refer to Fig.
4.11), which can also be interpreted as the optimization process offering as a solution a
network having two different speed layers, similar to a multi-layer transportation network.

66



Case study: Greater London Area
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Figure 4.11: Simple models of urban attractiveness distributions under study (3-
Points): Spatial distribution of attractiveness Wj as number of POIs in a node, mapped with
color intensity (yellow higher). Appearance of bi-modality in the optimized velocity distributions
P ({we}) that points to the multi-layered structure of the optimal transportation networks when
close-range flows are paired with long-range traffic towards city centers (Insets P (Tij) with
peaks biased by POIs). Gaussian KDE is shown in orange as a visual aid. 3-points polycentric
distribution of POIs, resembling the Steiner Tree problem [135, 136] in the 3-points configurations.
The cases of β = 0.1 and β = 4.0 as exemplary cases, where branches connecting the POIs are
also paired with loops when the number of close range flows (β = 4.0) is more relevant. Figure
adapted from [3].

Therefore we can map this process to one in which the optimal structure, to accommodate
heterogeneous flows with a fixed amount (CG) of resources we, is mapped to a topology
with multi-layer speeds. In this topology, fast connections emerge as optimal to provide
fast travel time to long-range or commuting trajectories, while a lower speed layer for
shorter-range travels with a lower amount of traffic.

4.6 Case study: Greater London Area

We finally show an extension of this framework to a realistic case in which we integrate
data from a real urban structure. Specifically, we model the Greater London Area (GLA)
urban features on top of the triangular lattice substrate and optimize Eq. 4.2 given the
OD demand in Eq. 4.17. The aim of this analysis is to understand if a the optimization of
a travel time effective distance on the spatial substrate biased by realistic urban collective
flows are sufficient conditions to reproduce similar topological features as the London
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subway system (such as a central core paired with peripheral branches [115]).

4.6.1 Datasets and spatial interaction model
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Figure 4.12: Census data retrieval for Greater London Area. A) London’s wards data
from Census 2014 (https://data.london.gov.uk/dataset/ward-profiles-and-atlas). B)
Points are sampled in each Ward’s area with a density proportional to Census population. C)
The number of points are mapped to HEX3 tiles as Pi. Finally, a restriction to a disc is used
to enforce symmetry in the distribution of nodes and to ease the computational load. Figure
adapted from [3].

We first briefly discuss the datasets employed as Pi and Wj . We recover the distribution
of amenities [137] from OpenStreetMap (OSM) [134] as a set of geo-taggeed points of
interests (POIs) which we can use as proxy to estimate the attractiveness Wj of a urban
area. We report the dictionary of amenities extracted from OSM in Appendix 7.3.7,
following the same procedure employed in Chapter 5. Census data for Greater London
Area wards from 2014 is used as urban feature Pi. Finally, to uniquely define the areas
and obtain the spatial discretization in hexagonal tiles i we use Uber’s H3 tiling [138] of
GLA at resolution 8 [138]. OSM points Wj and Census population data are therefore
mapped as densities on these H3 tiles areas. We restrict the GLA area to a disc centered
in London City coordinates, with a radius of 14 Km, allowing us to work with an isotropic
spatial distribution of nodes. The process of mapping the Census wards densities and
point-based data to H3 tiles is presented in Fig. 4.12. With this information we can
simulate the spatial interaction OD flow Tij as defined in Eq. 4.17. In Fig. 4.13 we
provide a view of a sample OD matrix that emerges from the Eq. 4.17. Moreover, we
impose an upper limit on edge weight we this also translates in a distribution during
the optimization process: we 2 (0, w⇤), where w⇤ = 7.0. This constraint better simulates
the upper bound in speed of real multilayer systems and allows to better recover the
bi-modality of real multi-layer networks.

In Fig. 4.13C we observe that the velocity {we} distribution displays a bi-modal shape,
with a a fraction of edges being concentrated close to the upper bound w⇤ where most of
the traffic is routed. This aggregation allows to limit the analysis of the optimal network
in the sub-graph defined by the set of edges in this second mode (where we > wthreshold,
highlighted in Fig. 4.13C). In Fig. 4.13, panel C, we present a visual representation
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of this sub-graph for β = 0.35. We can observe that the optimal configuration of the
network constitutes of a central core paired with peripheral branches.

Figure 4.13: Optimal network model for Greater London Area subway network:
Application of the efficiency optimization with traffic flows simulating collective human mobility
on the urban structure of the Greater London Area. A) Population data from Census and POIs
densities from OSM are mapped to the H3 tiling [138]. B) Data on H3 tiles are mapped to the
triangular lattice, with nodes having features that allow simulation of traffic-like flows. A visual
representation of the OD matrix is shown where Tij , computed with β = 0.35. C) Optimal
network state for the London model, where only fast edges having weight larger than a threshold
(we > 5) are kept to isolate the sub-graph constituted by a high velocity set of edges, such as a
subway system, are shown. Core network structure with loops paired with peripheral branches
can be visually seen. Figure adapted from [3].

Comparison with London Subway network: Scaling and statistical properties

The model’s subgraph of high speed edges is compared the Greater London Area [43]
subway system to assess statistical similarities between the optimized substrate and the
real tube system. We obtain data of the real tube network in the GLA [43] to quantify
the similarities between the optimal structure emerging from our parsimonious framework
and the real subway system. We exploit known spatial scaling laws [115] to quantify this
similarity, these are convenient to highlight the presence of the central core structure
with dense loops, paired with quasi mono-dimensional lines branching from it.
We analyze the spatial arrangement of stations/nodes using a profile function N(r) which
represents the number of stations at a distance r from the network barycenter. The
barycenter is computed as the average position of all station nodes (in our subgraph
Ḡ we can consider the nodes as "stations")[115]. We perform this scaling analysis for
both the real network and our sub-graph simulated and the results are presented in Fig.
4.14. We observe the two characteristics scaling regimes [115] which indicate the core
plus branches topological separation. First the scaling of r2 of the spatial distribution
of nodes of the core subgraph up to a radius rC (radius of the core structure). Then a
second trend r > rC due to mono-dimensional branches can be observed. This curve can
be approximated analytically via an integral curve for N(r > rC) which itself can be
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core

branches

Figure 4.14: Scaling properties of GLA subway network: Profile of the number of stations
(nodes in the optimal subgraph network) against distance from the barycenter. N(r) profile
scaling properties are compared between the simulated and the real network system. Scaling
properties predicted in [115] are verified, finding the two different scaling regimes separated at
approximately r

rC
⇠ 1 for core paired with branches systems. Where rC is the radius of the core

structure, in which N(r) is characterized by r2 scaling, and NC is the number of stations inside
the core r < rC . The scaling exponent γ = 1.25± 0.02 is obtained as a linear fit of the integral
curve [115] for r > rC . Figure taken from [3].

further approximated by a power law rγ (γ = 1.25± 0.02), as in Ref. [115]. The curve of
N(r) is consistent with the real network and confirms scaling laws prediction from [115].
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4.7 Conclusion

Transportation networks mediate human mobility in urban areas, exhibiting complex
spatial topologies that are crucial for efficient mobility. In this chapter, we have developed
a simple framework to generate networks in urban areas, focusing on the emergence
of optimal topological patterns. By exploring the interplay between spatial traffic flow
probabilities, travel costs, and congestion dynamics, we have uncovered insights into the
optimal features of efficient transportation structures.
Our study has revealed that by weighting the metric used to evaluate the temporal
efficiency via simple flow probabilities influenced by distance, we can induce transitions
from tree-like to lattice-like network structures. Moreover, incorporating travelers’
behaviors, such as User Equilibrium criteria in traffic routing and congestion dynamics,
has led to the emergence of additional edges from a tree reference structure. These edges
allow routing traffic on alternative paths which are essential for mitigating congestion-
induced delays, and we provide an analytical derivation to predict the intensity of
congestion that drives this transition. Additionally, by modeling flows resembling
collective human mobility patterns, we have generated network features that facilitate
flows between major Origin-Destination pairs, reminiscent of real-world transportation
systems. In applying our model to the Greater London Area, we have observed scaling
similarities with the London Underground network. Therefore, with the addition of traffic
flows that simulate the fundamental patterns of collective mobility in urban areas (with
attractiveness modeled as POIs), we were able to recover non-trivial network topologies
typical of efficient public transit systems. In the next chapter, we will instead focus on
the statistical properties of collective mobility from a data-driven perspective. We will
further establish its relationship with the presence of POIs. Specifically, we leverage
its predictability to inform individual next-location prediction models in the context of
out-of-routine mobility.
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Chapter 5:

Mixing individual and collective be-

haviors to predict out-of-routine mo-

bility.

5.0.1 Chapter Overview

Across diverse domains, human mobility emerges as a critical factor and driving process.
Traffic forecasting, crime prevention strategies, disease propagation models or social
segregation dynamics represent examples of areas where accurate predictions of indi-
viduals’ future whereabouts can be essential for an effective modeling. In recent years
sophisticated prediction models ranging from pattern-based to deep-learning approaches
have been developed, although they often struggle to generalize beyond recurrent mobility
patterns. Particularly they are limited when dealing with non-routinary behaviors, which
are crucial for addressing critical situations and large-scale collective events such as
epidemics of natural disasters. This chapter studies a Markov-based model designed
to bridge this gap by dynamically integrating both individual and collective mobility
behaviors, leveraging the predictability of individual movements. This chapter is based
on the work we did in Ref. [4].

In Section 5.2 we introduce the Markov model and the process of mixing the individual
and collective behaviors via an individual’s entropy. We then introduce the dataset of
trajectories of millions of individuals in Boston, Seattle and New York City over an eight-
month period in 2020. On this dataset we provide a comprehensive evaluation the model’s
performance and compare it against models relying solely on individual or collective
data. Moreover, we focus on the test overlap problem, presenting the concept of LCST.
We show how the proposed model demonstrates considerable generalization capabilities,
particularly in out-of-routine mobility behaviors, surpassing even sophisticated deep
learning methods. Then in Section 5.3 we perform a spatial analysis which highlights
that out-of-routing mobility is effectively captured by collective behaviors particularly in
areas with high attractiveness. In this section we also investigate in detail the properties
of collective mobility that justify these results, analyzing the statistical patterns of travel
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distances and entropies of collective mobility in proximity of POIs. We also observe that
collective behaviors remain predictive in these areas even when the accessible information
is the same of other less populated areas, highlighting a behavioral aspect. In Section
5.4 we show that the model exhibits resilience to disruptions in recurrent mobility
patterns, such as those experienced during the COVID-19 pandemic, due to its dynamic
integration of individual and collective behaviors. Overall, this chapter underscores the
significance of integrating individual and collective mobility information for enhancing
next-location prediction accuracy, offering insights into addressing challenges associated
with non-routinary behaviors and disruptive events in mobility forecasting.
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5.1 Introduction

Understanding and modeling the dynamics of individual mobility is a relevant task in
many societal challenges [19]. Especially in the context of urban systems, both individual
and collective mobility represent a fundamental dimension in the design of sustainable
and livable cities [139, 140], in avoiding traffic congestion [141, 142], and fundamental to
epidemics spread mitigation and public health monitoring as also shown in Chapter 3
[143, 144, 145, 146].
Thanks to the large availability of extensive mobility data and the development of
advanced statistical techniques, the prediction of individuals’ future whereabouts has
seen continuous growth in the last years. In particular the task next-location prediction
[147, 148, 32]. While deep learning solutions have obtained substantial attention and
dedicated research due to the capacity to model complex patterns from extensive datasets
[149, 150, 151], they often lack interpretability and/or generalization power, acting
as black boxes which are unable to map these patterns into explicit mechanistic and
generalizable rules [19, 147]. Conversely, simple models such as the mobility Markov
chains are intrinsically explainable and allow the analysis of the mechanisms behind the
predictions. This although comes at the cost of a lower accuracy in forecasting future
movements [152, 153, 154]. Both deep learning and Markov models are mainly based
on individual mobility trajectories. Individual trajectories are characterized by regular
patterns such as visits to previously visited locations at regular times, hence rendering
them inherently predictable [31, 77, 155, 23]. However, in some scenarios, individuals may
have a marked preference for exploring new destinations [77] or be forced to alter their
routine due to external driving factors such as job loss, natural disasters, or epidemics
[156, 157, 158, 146].
The mobility patterns and individual trajectories that emerge in these contexts are
defined as out-of-routine mobility, and represent a challenge for statistical models. In
fact, these models are designed to capture regular patterns in individual trajectories,
and hence they often memorize these regular patterns from data rather than learning
generalised mobility behaviours [147, 159]. A large body of literature on human behaviour
across various contexts, such as social networks [160], financial networks [161], voting
and political polarization [162, 163, 164], indicates that an individual’s decisions can be
influenced or intrinsically similar to the behavioral patterns of the group they are exposed
to [165]. This suggests that information about collective mobility behaviours also holds
predictive power for individual behaviours, offering insights into out-of-routine mobility.
However, the potential of combining individual and collective behaviour to enhance
human mobility prediction also represents an unexplored field of interest. In this chapter
we tackle this challenge by mixing individual transition probabilities with collective
behaviors in three cities, exploiting the definition of an individual predictability from a
location to weight these two probabilities. This (i) allows us to generalize and accurately
predict out-of-routine behaviors, as quantified via test overlaps. And (ii) by studying
the spatial statistical properties of collective mobility we uncover the spatial correlation
with the presence of attractive areas in the urban space, highlighting a dependency of
individual movements to follow collective mobility patterns in these areas.
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5.2 Mixing individual and collective Markov models

In this section we formalize individual trajectories as set of spatio-temporal points,
defining the task of next-location prediction and the Mobility Markov Chain (MMC)
models. We present the Cuebiq dataset of individual trajectories in the cities of Boston,
New York and Seattle, on which we test the generalization capabilities of these models
when the test trajectories are characterized by different amount of novel transitions never
before seen in training.

Individual trajectories and Origin-Destination matrices

A spatio-temporal point is defined by a pair p = (i, t), where i represents a location
(defined by geographical coordinates) and t the timestamp of the point. We define
a trajectory, of length n, P = {p1, p2, . . . , pn} as a daily time-ordered sequence of n
spatio-temporal points. Each individual user u in our datasets has a set of N historical

trajectories H(u) = {P1, . . . , PN} from which we compute I
(u)
i , representing the set of

transition probabilities of user u starting from location i (see Figure 5.1B). Trajectories
of all individuals are then aggregated to obtain the collective origin-destination matrix
and then compute C, where Ci represents the probability distribution of all transitions
made by any individual starting from i (see Figure 5.1A). Specifically, for each user
u in the datasets we compute the individual origin-destination matrix which captures

the transition probabilities, T
(u)
ij /T

(u)
i , between each pair of locations visited by u.

Where T
(u)
ij is the total number of transitions in H(u) from location i to location j, and

T
(u)
i =

P

j2L T
(u)
ij accounts for the total transitions from location i to any other location

in the set L(u) of locations visited by u [78, 166].
Given a trajectory P 2 H(u) of an individual, a next-location task is the problem of

predicting the next point pn+1 2 P [147, 159]. In the literature, I
(u)
i and Ci are typically

used separately as MMC [159] models for next-location predictions.

Individual-Collective Model

In this chapter we introduce a novel model M
(u)
i that dynamically combines I

(u)
i and Ci

information based on the predictability of user u from origin i. We remark that in this
Chapter, at variance with other works [167], we use the term predictability referring to
the information of historical movements of the individual user from a specific location i,
and not the predictability defined by the previous history of a trajectory. When the next
location is highly predictable based on the historical information H(u), the model relies

more on individual information in I
(u)
i for the prediction. Conversely, more collective

information in Ci is embedded in the model probabilities from location i. We quantify
here the predictability of u’s next location from i via a normalised Shannon’s entropy,
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computed from the probability I
(u)
i [31, 168]:

S
(u)
i = �

P

k2L(u) I
(u)
i,k · log

⇣

I
(u)
i,k

⌘

log |L(u)|
, (5.1)

where L(u) is the set of distinct locations visited by u, while log |L(u)| is a normalisation

factor so that S
(u)
i 2 [0, 1], and I

(u)
i,k is the probability learned from H(u) of individual

u moving from an origin location i to a destination location k. We then use S
(u)
i to

combine probabilities from I
(u)
i and Ci as follows:

M
(u)
i = (1� S

(u)
i )I

(u)
i + S

(u)
i Ci. (5.2)

Where 1 � S
(u)
i is therefore the confidence of model M

(u)
i in relying on individual

information. To derive Markov transition probabilities, we normalise M
(u)
i , 8i using the

softmax function:

softmax(l)i =
eli

Pn
j=1 e

lj
, (5.3)

where l1, l2, . . . ln are the transition probabilities of M
(u)
i in Equation 5.2. In instances

where location i is not represented as an origin location in H(u), the probability distribu-

tion I
(u)
i is empty, and we set S

(u)
i = 1 to indicate maximum uncertainty of the model.

In such instances, no historical trajectories data is available for location i, and the model
prediction relies solely on collective information in Ci. Figure 5.1C-E illustrates the

combination of collective and individual information in M
(u)
i .
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Figure 5.1: Interplay of individual and collective mobility in next location prediction.
(A) The collective Origin-Destination (OD) matrix of aggregated flows computed for the city
of Boston using GPS trajectories. (B) An individual origin-destination matrix for a synthetic
individual u. (C) A mock individual trajectory for a user u starting from location i. We aim to
predict u’s next visited location. (D) The set of u’s trajectories in the training set H(u) (panel B)

is used to compute the transition probabilities I
(u)
i from location i. Ci represents the probability

distribution of collective flows from location i, generated from the collective OD flows (panel
A). Destinations’ tiles are coloured based on the probability Tij of visiting them from origin i.

(E) Model M
(u)
i ’s prediction of individual u’s next location is devised by combining I

(u)
i and

Ci, based on the predictability of u from location i, computed as a normalised Shannon entropy

S
(u)
i from H(u). Figure taken from [4]. Maps: Stamen Maps, Icons: Fontawesome.

5.2.1 Trajectories datasets: Boston, Seattle and NYC

We now introduce the Cuebiq dataset [146] used to perform experiments and list the pre-
processing procedures. We adopt here notations I, C, and M to refer to the individual,
collective and the model mixing the two information.
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Dataset and Pre-processing information.

To obtain I and C for real individuals and to test our models, we use privacy-enhanced
GPS trajectories provided by Cuebiq as part of the Data for Good COVID-19 Collabora-
tive program. This dataset uses privacy-enhanced GPS locations spanning nine months
(from January to August, 2020) in the cities of New York City, Seattle, and Boston in the
United States. The dataset originated from approximately 2.5 million users who willingly
opted to share their information anonymously for research purposes, adhering to the
guidelines of the CCPA (California Consumer Privacy Act) compliant framework. More-
over, sensitive points of interest are removed, and inferred home locations are obfuscated
to the Census Block Group level by the data provider. Individual user stop-locations and
trajectories are extracted from the dataset through the following procedure. Initially,
each temporal sequence of GPS coordinates within a 65-meter radius is identified, where
a user stayed for a minimum of 5 minutes [169]. Subsequently, we apply the DBSCAN
algorithm [170] to identify dense clusters of points within a distance of ✏ = ∆s � 5.
We define these dense clusters as stop locations. For an extended description of this
procedure of the GPS data processing, refer to [146].

We perform a tessellation of the cities into GeoHashes at level 6 (locations) which
refer to tiles of 1.2 Km ⇥ 609.4 m. These tiles map the locations of user stops and of
users’ trajectories. To address potential under- and over-representation issues, we filter
out trajectories with less than four points (|P (u)| < 4), and users with less than two
trajectories (|H(u)| < 2), and remove the top 95-th percentile of the most represented
users. We remark that our analysis uses trajectories consisting of at least four spatio-
temporal points, defined at Geohash level 6 for spatial resolution, and all temporal points
occurring within the same day. Figure 5.1A-B shows samples of I and C (OD) from the
trajectories of GPS Boston dataset.

Accuracy on full test

We first train and test our model in a period of three months (from January 3rd to March
1st, 2020), prior to the COVID-19 pandemic, which introduces shifts in mobility patterns
which will be modeled and discussed in Section 5.4.
For each individual u, we allocate 80% of their least recent trajectories for model training,
while the 20% most recent trajectories form the test set (which we refer to as "Full
test"). This chronological-based train-test split can be understood as a scenario in
which the movements of an hypothetical individual u are observed for 2 months (as an
example), and then his future trajectories are then predicted using these observations for
the following 2 weeks. Both recurrent and novel mobility patterns will characterize this
prediction phase. In the training phase, for each location i and user u, we compute the

distributions I
(u)
i , Ci, and S

(u)
i .

Subsequently, we perform next-location (NL) predictions on the test set and assess the
models’ accuracy using the top-5 accuracy metric (ACC@5). ACC@5 computes the
percentage of transitions (from location i to location j) where the correct next location
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Figure 5.2: Top-5 accuracies (ACC@5) of the models: Accuracies (ACC@5) for Boston,
New York City and Seattle using Individual (I), Collective (C), and Mixed (M) models. Full
test set ACC@5, where M shows comparable results to the RNN. Figure adapted from [4].

is among the top five predicted destinations, and in NL tasks represents a common
metric [159, 147]. We also compare I, C, and M with a deep learning Recurrent Neural
Network-based baseline RNN (see Appendix 7.3.5 for details). Table 5.1 and Figure 5.4A
show that on the full set, M obtains higher accuracies than I and C (eg +15% in NYC
versus I), and comparable performances to RNNs [171, 147]. Despite relying on a large
number of parameters, RNNs exhibit only marginal relative improvements over M : for
example +2% in NYC.

5.2.2 Models generalisation capability

Human mobility can also be characterized by recurrent patterns, which may result in
significant similarities among an individual’s trajectories [23, 78, 159]. As a consequence,
in test set a significant portion of trajectories from the training set may be present.
Considering trajectory overlap between the training and test sets is a relevant step to
evaluate of a model’s generalisation capability [159]. We quantify trajectory train-test
overlap with the Longest Common Sub-Trajectory (LCST) [159], which evaluates shared
sub-sequences (accounting for order and frequency of visits) between two trajectories.

LCST. Specifically, the overlap between two trajectories of an individual user u , P (u) =
{p1, p2, . . . , pn} and R(u) = {r1, r2, . . . , rm} can be defined as follows. We introduce the
prefix Pi of P (u) as the list of the first i-th locations in P (u), i.e., Pi = {p1, . . . , pi}
(dropping index (u) for simplicity). This definition extends similarly to R trajectory. The
size of the LCST for two prefixes Pi and Rj is defined as follows:

LCST (Pi, Rj) =

8

>

<

>

:

0, if i = 0 or j = 0

LCST (Pi−1, Rj−1) + 1, if i, j > 0 and pi = rj

max(LCST (Pi−1, Rj), LCST (Pi, Rj−1)), if i, j > 0 and pi 6= rj .

(5.4)

The overlap between a test trajectory R and the training set is quantified as the maximum
LCST over all the trajectories in the training set:
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Figure 5.3: Collective ODs: Collective Tij flows between Geo Hashes tiles from the Cuebiq
dataset in the cities of Boston, Seattle and New York City. The stop-location detection described
in Section 5.2 results in trajectories constituted by short-range movements between tiles. This
can be also appreciated on the P (r) visible in Figure 5.7 and Appendix 7.3.2. Figure adapted
from [4].

max
P2H(u)

LCST(P,R). (5.5)

We normalise the LCST score within the range [0, 1], and we assign each trajectory to one
of the following five bins: 0-20%, 20-40%, 40-60%, 60-80%, and 80-100%, based on their
LCST score [159]. Each of these bins will represent a stratification of test trajectories,
which we refer to as Test Overlap (BIN %). For example, if a test trajectory has an
overlap with any training trajectory with an LCST in [0, 0.2] will be assigned to the bin
of trajectories with 0-20% LCST.

Accuracies on mobility overlaps

In practise, the LCST measures how much of a trajectory in test has already been
observed in training by the model. A high LCST indicates the presence of recurrent
mobility patterns (present in training), while low LCST indicates individual’s out-of-
routine mobility behaviours. We test the I, C, M and RNN models on each of the five
overlap test sets. Table 5.1 and Figure 5.4B provide accuracies for test trajectories within
each overlap bin. M significantly outperforms I and C for intermediate levels of overlap,
with improvements across cities up to +16% (20-40% overlap), +13% (40-60% overlap).
I and RNNs outperforms M by only in high overlaps 80-100% where most transitions
have already been seen in training.

Figure 5.4C also shows that the distribution of 1� S
(u)
i and we observe that the median

value increases with trajectory overlap. Hence the higher the trajectory overlap, the
higher the confidence of model M on I and, consequently, the lower the weight given on
C information on the test set of trajectories. When the current trajectory resembles those
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Figure 5.4: Top-5 accuracies (ACC@5) on overlaps test sets for Boston, NYC and
Seattle: Accuracies (ACC@5) for Boston, New York City and Seattle using Individual (I),
Collective (C), and Mixed (M) models. (A) Models’ performance against different train-test
overlap scenarios, with 0-20% being characterized by more novel mobility behaviour and 80-100%
being constituted by repeated patterns behaviour. Model M shows improvements in accuracy
over I and especially also against RNN in smaller overlaps, where test trajectories mostly consist
of novel transitions never observed during training and exploits C. (B) Distributions of Model

M ’s confidence in exploiting individual information I, computed as by 1 � S
(u)
i . In the case

of out-of-routine behaviours the lower median value of 1� S
(u)
i indicates less reliance of M on

individual I. In this scenario collective behaviours C instead increase the predictive power of M .

The peaks observed around 1�S
(u)
i = 0 result from instances of transitions from a location i that

is not represented in the training trajectories of user u. In such case of maximum uncertainty,

we set S
(u)
i = 1, with M relying only on C. Figure taken from [4].

in the training set (e.g. a recurrent patterns with high trajectory overlap), it is instead
best to rely on individual information. We observe that RNNs achieve a low accuracy
on low trajectory overlap bins (e.g. 20-40%) and high accuracy on recurrent patterns
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full set 0-20 20-40 40-60 60-80 80-100

I C M I C M I C M I C M I C M I C M

NYC 0.61 0.50 0.68 0.10 0.42 0.38 0.32 0.40 0.47 0.57 0.45 0.64 0.80 0.55 0.82 0.97 0.70 0.95
Boston 0.71 0.64 0.75 0.09 0.47 0.41 0.32 0.45 0.49 0.60 0.54 0.68 0.83 0.67 0.85 0.98 0.84 0.93
Seattle 0.65 0.55 0.70 0.07 0.40 0.34 0.31 0.40 0.46 0.58 0.47 0.65 0.81 0.58 0.82 0.97 0.78 0.92

Table 5.1: Accuracy of models on Full and Overlap based test sets. Performance of
models I, C, M on unstratified trajectories in the test set (full set) and the performance on
trajectories stratified based on their overlap (and respective overlap bin) with training trajectories
using the longest common sub-trajectory (LCST) [159].

(80-100%) as we can see in Figure 5.4B. Therefore confirming that deep learning models
struggle to predict out-of-routine mobility. In Appendix 7.3.6, we report the accuracy
results with GeoHashes of level 7 (i.e., tiles of 153⇥ 153 meters) to verify robustness of
these results on fine-grained tessellations.

5.3 Spatial properties of models’ accuracy

We study here the models’ accuracy given the location from which the individual next-
location is predicted. To this aim we compute top-5 accuracies specifically for each subset
of test transitions originating from a specific location i. Hence the accuracy of the model
in computing a transition from i is ACC@5i. To assess spatial dependencies, we compute
the spatial-autocorrelation properties of this accuracy, to assess if some areas are better
predicted than others.
In Fig. 5.5, we present the results of this spatial analysis for the city of Boston. When
tested on trajectories constituted mostly by novel transitions (overlap 0-40%), the
ACC@5i distributions for M and C are consistently shifted to higher values compared to
I (see Figure 5.5A).
Moreover, in Figure 5.5C we show the heat map of ACC@5i, where each Geo Hash tile
is plotted with the models accuracies ACC@5i. We note that when out-of-routine is
predominant (0-40% overlap), the distribution of ACC@5i appears to have high values
in specific locations i. This is particularly pronounced when using collective information
for predictions. We remark that in this regime of low overlap M model mostly exploits
collective information. This spatial property of clustered accuracy is quantified using
Moran’s Index [173, 172], and we detect that C and M exhibit a significant and positive
spatial autocorrelation, indicating that locations where the models are accurate are
spatially close (see Figure 5.5B-C and Appendix 7.3.1). In particular, we observe that
locations where models C and M perform better are clustered in the proximity of critical
urban areas. For instance, in Boston around downtown and Logan International Airport
(see Figure 5.5C), in NYC in Manhattan, and in Seattle around downtown (Appendix
7.3.1). This is more relevant in low overlaps, indicating that novel mobility is better
predicted in these areas, and also indicating that most novel transitions happen close to
these areas (Moran’s I is larger in low overlaps).
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Figure 5.5: Spatial distributions of accuracies: Distribution of accuracies for I, C and
M (ACC@5i in predicting a transition from an origin location i. (A) Distributions of spatial
accuracies across different overlaps: as the test set includes more novel mobility patterns (e.g.,
0-40 overlap), model M , which exploits collective information C, performs better than I. While
the individual model I provides better predictions when is tested on recurrent individual patterns.
(B) The autocorrelation properties of the spatial arrangement of ACC@5i in the corresponding
overlaps is quantified via the Moran’s Index [172]. When test set consists of out-of-routine
behaviours, such as 0-40% overlaps, model C exhibits clustered accuracy (large Moran’s Index), a
property that also characterises model M since in these overlaps it mostly exploits C information.
(C) The map of spatial accuracies ACC@5i in Boston for models I,C and M in the 0-40 overlap,
where test transitions are mostly out-of-routine. Notably, for C and M models, locations with
higher accuracies are concentrated in proximity of downtown areas in Boston. Interestingly, the
area corresponding to the Boston Logan International Airport (upper right) is also well predicted
by collective behaviours. Figure taken from [4]. Maps: Stamen Maps
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S
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Seattle Boston NYC

Figure 5.6: Spatial map of collective entropy SC
i : Spatial distribution of normalized

entropy SC
i of the Collective OD transition probabilities. Areas in blue are characterized by lower

entropy, thus dominated by a collective behavior which is more local and more predictable. This
also results in a larger predictability and a stronger improvement of predictions of out-of-routine
mobility. Also refer to Fig. 5.7 where in these areas we detect an earlier cutoff and people
generally moving shorter distances (staying more in the area and thus resulting more predictable).
Figure adapted from [4].

5.3.1 Predictive capabilities of collective behaviours in proximity of

Points of Interest

This positive spatial autocorrelation for C and M suggests that an underling environ-
mental factors might exist as driver for the accuracy of collective mobility behaviours
and spatially-clustered urban factors. To investigate this hypothesis, we first measure
the entropy of collective behaviours from a location i to assess their predictability:

S
(C)
i = �

P

k2L(C) Cik · log(Cik)

log |L(C)|
2 [0, 1], (5.6)

where L(C) is the set of unique locations in C. In Figure 5.6 we can observe the spatial map

of S
(C)
i for the three cities. We quantify the relationship between the entropy of collective

behaviors from a location i and its model C accuracy via a direct Pearson correlation. We

find that S
(C)
i is strongly anti-correlated with ACC@5i (Pearson correlation of ⇢ = �0.85),

indicating that locations from which C is the most accurate are the ones with the lowest

entropy S
(C)
i . See Figure 5.7A for the scatter plot.

Also here we find that locations with low S
(C)
i are clustered in proximity to specific urban

areas. We hypothesise to be locations hosting key commercial, financial, and cultural
venues. Therefore points of interests.

Proximity with Points of Interest. To verify this hypothesis, we collect from
OpenStreetMap (OSM) the number of points of interest (POIs) in each location i, Wi

(see Appendix 7.3.7). We then split each city into two different areas: one comprising
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Figure 5.7: Statistical properties of Collective mobility in Boston. Statistical properties
of Ci analyzed based on the proximity of Points of Interests (POIs) Wi within Boston are
analysed. (A) Map of the number of POIs (Wi) in a Geo hash 6 tile i, extracted from OSM
using the set of amenities described in Appendix 7.3.7. (Inset) Geo hash locations within
a distance D = 2 Km from the tile with largest number of POIs (Wmax

i ) shaded in orange,
indicative of downtown Boston and its most attractive areas. Other areas at distance D > 2
Km are indicated in teal. Albeit this separation of the city is solely based on proximity to
high POIs areas, it allows to separate human mobility in two regimes. (B) Spatial accuracy of
C model (ACC@5i) to predict mobility originating from tile i is compared with the collective
entropy SC

i from that location. We observe anti correlation in the Pearson ⇢ = �0.86, indicating
that areas from which C is more predictive are also characterized by a lower SC

i . We report in
(C) the distribution of travel distances (P (r)), distinguishing between origins within the two
aforementioned areas and fitted with a power-law function [23] in the interval of 0 to 10 Km. The
exponent of � = �1.45± 0.04 underscores the prevalence of localised mobility when individuals
are in proximity to Wmax

i , while in other areas we have an exponent of � = �0.92± 0.04. This
observation aligns with the notion that mobility near POIs tends to be more concentrated and
less spatially dispersed towards specific destinations. This behaviour is further corroborated by
the entropy SC

i distribution, which skews towards lower values and indicates mobility directed
towards specific tiles. Figure adapted from [4]. Maps: Stamen Maps.

locations within a geographical distance D from Wmax
i , and the other consisting of

locations at a distance greater than D from Wmax
i (see Figure 5.7B for D = 2 Km in
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Boston). These locations with Wmax
i correspond to Boston downtown, Seattle downtown

and Lower Manhattan in NYC, respectively. This separation allows us to study the
properties of human mobility whether they are in proximity of the city centre, or not.
We compute the distribution of travel distances, P (r) of jumps having the origin location
within distance D = 2 km from Wmax

i (in orange) and those originating in other areas
(in teal). We show the results for Boston in Figure 5.7C. D = 2 Km stands as a
trade-off between having a sufficient number of transitions close to Wmax

i and avoiding
the inclusion of too-distant tiles. We show a sensitivity analysis for other proximity
thresholds, and results hold for other values of D (see Appendix 7.3.2). For the two
distributions P(r), we fit a power-law P (r) ⇠ r�γ [23] in the interval of 0 to 10 Km (Fig.
5.7C) to better quantify the dependency with distance. When individuals are close to
the city centre, the exponent � = �1.45± 0.04 in Boston highlights the predominance of
more localised mobility (orange points) with shorter jump length with respect to areas
far from POIs which are characterised by longer jumps.
Moreover we also focus on the entropy of collective movements within these areas. We

find that the distribution of S
(C)
i skews towards lower values when location i is within

distance D to Wmax
i (orange line in Figure 5.7D). Additionally, individuals moving

in locations in the proximity of POIs tend to travel shorter distances compared to
those originating in other areas. The distribution for Boston is present in Figure 5.7C.
These results support the idea that mobility in proximity to POIs areas is less spa-
tially dispersed, with the movement being more likely to a destination concentrated
in a small subset of locations. We see similar results in Seattle and NYC in Appendix 7.3.1.

Overall, this spatial analysis of mobility patterns in proximity to POIs reveals the
statistical properties of C that can justify its increased predictive power, and better
explain why collective mobility better captures individual out-of-routine behaviours in
these areas.

5.3.2 Robustness to Dataset Pruning

It’s important to highlight that the original sample size of flows Ti utilised for estimating
Ci probabilities presents significant differences across tiles i. Geo Hash tiles in areas with
high density of POIs have more user check-ins in the dataset. To assess that the ACC@5i
improvements in these urban areas are not a consequence of probabilities Ci which simply
may benefit from a larger sample size, we conducted a pruning test. We reduce the
collective information that can be accessed by our model M by pruning the collective OD
flows from a tile i. In what follows we described the stochastic sub sampling approach to
estimate pruned Ci.

Pruning of Collective OD in over-represented locations i. We begin from the
cumulative distribution function of the number of transitions Ti in the training set from
location i used to compute Ci. If in a tile Ti exceeds the median (50� th percentile) of all
locations (which we refer to as Tmax

i ), we uniformly and randomly pruned the subset of
transitions from location i until this threshold value. As a consequence, probabilities Ci
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are computed with a comparable amount of information across all tiles i. This pruning
process is presented in Appendix 7.3.4 with Algorithm 2.
In Figure 5.8 we present a visualization of the distribution of Ti and the effect of the
pruning process for the urban area of Seattle. We observe in Figure 5.8A that the flows
Ti spans different orders of magnitude for different Geo Hash tiles in the original dataset.
The cumulative distribution function and percentiles (Figure 5.8B) also highlight this
strong heterogeneity in Ti. We prune the set of training transitions following algorithm 2.
The resulting set of flows Ti from the pruned Collective OD is presented in Figure 5.8C,
where the maximum flow is Tmax

i = 418 for Seattle, representing the 50-th percentile
across locations i int the original dataset. This random sub-sampling process was repeated
for a number of samples Nsamples = 10, generating pruned C, from which Nsamples pruned
Markov models are computed. These are then used to generate different models M ,
which are then tested. Finally, for each tile i we compute the accuracy ACC@5i as the
average accuracy of the Nsamples of pruned M from that tile.

Figure 5.8: Sub-sampling of Collective OD flows and reduction of sample-size effects.
A) The number for total transitions in the Cuebiq dataset from a Geo hash tile i for Seattle,
computed as Ti =

P

j Tij where Tij is the flow count of transitions from location i to location j.
B) The cumulative distribution function of Ti highlights that several orders of magnitude separate
few locations from the remaining areas. The 25-th and 50-th percentiles are presented in the
legend. We use the 50-th percentile, defined as Tmax

i , as threshold to pruned the over-represented
origins and generated C̄. C) After the pruning process described in Algorithm 2 the number of
flows Ti in all tiles is now comparable and does not suffer from strong heterogeneity (Here Tmax

i

= 418). Figure adapted from [4].

Results with pruned collective OD C. In Figure 5.9, we report the average ACC@5i
of model M in Boston. Here we adopt exclusively novel transitions extracted from the
overlap 0 � 40%, i.e. transitions instances in which the correct destination j from a

location i in the test is not present in I
(u)
i for user u. The rationale of this choice is
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Figure 5.9: Spatial accuracy of M model on novel mobility with pruned C̄ in Boston.
The accuracy of M model in predicting a novel transition (never seen in a individual u’s historical
trajectories H(u)) from an origin in a Geo Hash i is presented in panel (A). In panel (B) the
accuracy ACC@5j in predicting a transition towards a destination j is depicted. We remark
that the sample size Ti used to estimate Ci exhibits strong differences, with central areas being
more densely sampled. To mitigate this potential bias, we employed a stochastic sub sampling
process to estimate Ci. Thus, spatial heterogeneity that we observe in ACC@5i cannot be
attributed to a richer dataset used to estimate C in these areas. Only locations i with at least
100 test transitions instances used to compute the ACC@5i are shown. (C) We show the Pearson
correlation between the accuracy in predicting a destination and the number of POIs in that
destination. Figure adapted from [4]. Maps: Stamen Maps

to investigate the spatial dependencies of pruned collective information C̄ to inform
the M model when individual patterns can not aid by definition because they lack the
necessary information. Hence the accuracy of model M from a tile i in this test set can
be attributable exclusively to collective pruned behaviors. In Figure 5.9A we present
the accuracy ACC@5i. Moreover, we also compute the accuracy in estimating correctly
a destination to a specific tile j. This spatial accuracy ACC@5j is computed as the
fraction of instances correctly predicted that have as destination the tile j. The results
in Boston are in Figure 5.9B, where the resulting accuracy is the average over the set
of sub-sampled M̄ built from Collective OD pruned C̄, as described in Algorithm 2.
We observe that the enhanced accuracy in of M and C ACC@5i in proximity to areas
with high density of POIs is still present and compatible to distributions in Figure 5.5.
Therefore, the spatial improvement in proximity of POIs observed in M due to C in
the accuracy ACC@5i cannot be attributed to the training dataset used to estimate Ci

probabilities being richer and more representative in specific areas.

Accuracy in predicting a destination. Moreover we observe in the map of ACC@5j
in Figure 5.9 that the best predicted destinations also appear be clustered around high
POIs areas. We compute the Pearson correlation between the accuracy of model M̄ in
predicting correctly a destination ACC@5j and the number of POIs Wj in that destination
tile j. In Fig. 5.9 we show the scatter plot between these two observable for each location
in Boston. In all cities we can appreciated that areas with large number of POIs tend to
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Distribution shift: Models reliability under COVID-19 restrictions

Mar. - Apr. Apr. - May May - Jun. Jun. - Jul. Jul. - Aug.

I C M I C M I C M I C M I C M

New York 0.484 0.541 0.655 0.390 0.541 0.617 0.358 0.536 0.602 0.325 0.524 0.585 0.290 0.515 0.570
Boston 0.491 0.632 0.696 0.394 0.609 0.654 0.350 0.620 0.651 0.307 0.619 0.642 0.255 0.615 0.637
Seattle 0.424 0.578 0.649 0.352 0.582 0.629 0.311 0.583 0.619 0.271 0.557 0.596 0.236 0.543 0.579

Table 5.2: Models accuracies with behavioral shifts (COVID-19 monthly windows).
Accuracies (ACC@5) of I, C and M trained on trajectories collected before March 1st. Models
are then evaluated on trajectories during and after lockdown every month after the pandemic
declaration (March 11). Here, we study the COVID-19 pandemic s a disruptive event that
introduces behavioral changes and alters mobility patterns of individuals. We notice how the
individual model loses half of its accuracy up to the last testing period. Instead, the collective
behaviors generalize even after months, allowing the M model to maintain pre-disruptive event
accuracies.

be the ones also better predicted as destinations by the collective behaviours. This trend
in particular is more pronounced for Boston and Seattle, with a Pearson ⇢ = 0.58 and
⇢ = 0.62 respectively, while in NYC ⇢ = 0.29 (see Appendix 7.3.4).

5.4 Distribution shift: Models reliability under COVID-19

restrictions

In this section we analyze the generalization of M model in the context of distribution
shifts. Events that disrupt the mobility patterns of individuals limit the predictive
power of models trained using trajectories collected precedent to these events. As
disruptive event we use the COVID-19 pandemic. The pandemic significantly altered
people’s mobility patterns [174, 146, 158, 175, 176], with non-pharmaceutical interventions
inherently inducing a shift in how people moved and visited locations [177, 178, 146]. In
this context, we investigate the reliability of models during these behavioural shifts.
To this aim, we first train I, C, and M using trajectories recorded until March 11th,
2020. Then we evaluated their performance on a test set consisting of five months of
data collected between March 11th, 2020 (the World Health Organization’s pandemic
declaration), and August 11th, 2020. For each month in this test set, we report models’
ACC@5 in Table 5.2.
We observe that in each city, I exhibits a notable decline in performance as the test
period (month) is farther from the training period. I loses up to 44.16% of its predictive
power when tested on trajectories collected between July and August. C’s performance
also degrades over the testing months, but with a more moderate reduction in accuracy.
Although M also experiences a drop in accuracy, it remains the most predictive model
overall, with a limited drop in accuracy of 5.32%. Therefore models based solely on
individual-level information are less resilient to behavioural shifts than models that
exploit collective information. However, the combination of individual and collective
information contributes to the model’s resilience and good predictive power even in
scenarios of behavioural changes.
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Conclusion

5.5 Conclusion

Collective behaviors significantly influence individual decisions, a phenomenon exten-
sively documented in studies on collective intelligence, social psychology, and behavioral
economics.
In this chapter we have seen how collective mobility in urban scenarios can be leveraged
to improve the prediction of out-of-routine behaviors. We propose a parameter-free
approach to next-location prediction that dynamically integrates individual and collective
information. Our model offers a potential solution to the limitations inherent in current
state-of-the-art models, including sophisticated deep-learning approaches, in the challenge
of predicting out-of-routine movements. Notably, our approach demonstrates strong
performance in predicting out-of-routine movements, including those during disruptive
events like the COVID-19 pandemic, even when the overlap between training and test
trajectories is low. Integration of dynamic mechanisms exploiting an individual entropy
to mix individual and collective Markov mobility chains allows to obtain predictions
that are both interpretable and accurate in scenarios involving both routinary and
out-of-routine movements. Furthermore, our study reveals that accurate predictions
relying on collective information spatially cluster around urban areas characterized by a
dense concentration of key commercial, financial, and cultural venues. These findings
align with recent research on flow generation, indicating the significant role of points of
interest in shaping human mobility flows, a concept that we also exploited in Chapter 4
to generate OD flows that simulated collective mobility patterns in the Greater London
Area. Moreover, the predictive power of collective mobility in these areas was found to
be robust even to the pruning of the accessible information in the dataset.
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Discussion

Understanding the interplay between human mobility and transportation networks is
fundamental in many challenges that society is currently facing: from the design of
sustainable, efficient and inclusive cities up to the containment of epidemic spreading.
This thesis aimed to explore this interplay, spanning from theoretical frameworks to
data-driven analyses, with the ultimate goal of shedding light on emergent properties and
predictive models in urban mobility. From the hidden geometries of diffusive processes
mediated by mobility flows, the complex network topologies of transit systems, up to the
statistical regularities in human trajectories in relationship with the urban functional
areas.

In Chapter 3 we started from a more theoretical perspective on the hidden geometries
induced by dynamical processes on top of complex networked systems. To this aim,
network effective distances allow to capture the fundamental mechanisms that drive these
processes, unraveling these geometries which in turn can be used to predict arrival times.
In particularly, we focused on the application on human mobility viewed through the
lens of diffusive flows. We (i) introduced a multi-pathways temporal distance, which
captures the role of the ensemble of paths between source and target nodes in conveying
signals. We demonstrated its efficacy in predicting arrival times of propagated signals,
with applications ranging from protein-protein dynamics to epidemic spreading. With
a focus on the probabilistic diffusive nature of collective mobility, we (ii) introduced
the Information Distance metric, derived from the Laplacian matrix. Using global air
transportation networks as a proxy for human mobility flows, we have shown how the
Information Distance effectively computes the arrival time of infectious agents to target
destinations. Finally, (iii) the predictive capabilities of effective distances provided
valuable insights into the pandemic potential of SARS-CoV-2 Variants of Concern, by
integrating genomic surveillance with global mobility data in a comprehensive pipeline.
This overall allowed us to better understand the role of multiple pathways in the definition
of effective network distances, establishing the relevance of these network based metrics
in providing relevant insights.

We then discussed in Chapter 4 the optimization of an effective temporal travel distances
in the context of transportation networks. Here we studied the emergence of complex
topologies in planar networks when the edges velocities were optimized to provide the
most efficient network topology, in terms of effective travel time. Through a simple
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framework based on a planar substrate, we highlighted how spatial flow probabilities,
congestion dynamics and urban features, interact to shape optimal network structures.
Our framework first revealed transitions from tree-like to lattice-like network configura-
tions based simply on the range of flows Tij . When traffic is instead routed following
realistic traveling behaviors and concepts such as User Equilibrium, congestion effects
instead alter these optimal structures. We devise an analytical condition that we use to
predict the amount of congestion necessary to disrupt the tree structure leading to the
emergence of alternative pathways (and loops) to sustain and mitigate congestion. We
show that by biasing these travelling probabilities adding spatial attractiveness Wj and
adopting spatial interaction models simulating collective mobility patterns, we recover
some complex topological features typical of human transportation networks. Finally, by
modeling the real spatial structure of the Greater London Area, we recover the scaling
properties similar to real-world transportation systems such as the London subway system.

Finally, in Chapter 5 we explored the predictive potential of collective human mobility
behaviors, particularly in informing next-location predictors when individuals deviate
from their routinary patterns. We studied a dynamical integration of individual and
collective mobility behaviors exploiting the definition of an individual normalised entropy.
Our data-driven approach showcased the significant influence of collective mobility on
individual decisions, particularly during disruptive events like the COVID-19 pandemic.
Our model offered a parameter-free solution to next-location prediction, surpassing the
limitations of traditional deep-learning approaches in out-of-routine instances. Interest-
ingly, accurate predictions relying on collective information clustered in areas with a high
concentration of key commercial, financial, and cultural venues, with the best predicted
flows pointing towards areas with large density of points of interests. This finding aligns
with research on flow generation, highlighting the impact of points of interest on shaping
human mobility patterns.

Collectively, these findings illustrate the complex interplay between human mobility,
transportation networks, and urban spatial features, with implications for diverse fields
ranging from epidemiology to urban planning. For example, the network effective distance
serves as a paradigmatic illustration of complexity science’s ability to offer a framework
for cross-disciplinary integration and modeling. The resulting comprehensive modeling of
networked dynamical systems via effective distances not only allows to map apparently
disordered processes into coherent and predictable patterns [1], but also to inform and
enrich analyses across diverse domains [2]. Moving further on tasks where network science
can provide optimal benchmark features, our framework for the optimization of spatial
networks in urban contexts may show further extensions to better accommodate concepts
of multi-layer network and other aspects in urban planning research. Moreover, it has
the potential to be adjusted to provide guidance on the optimal expansion of an existing
transit network. Finally, future analyses may focus on the interdependence of collective
mobility properties and urban space, further unravelling the complex regularities of
human mobility in cities. As an example, mixtures of individual and collective pattern
may incorporate an additional mechanism that accounts for the density of points of
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interest in the area where the individual is currently located. Eventually, an intriguing
research challenge lies also in the design of public transit infrastructure to optimize
collective flows on multi-layer transportation modes and active micro mobility.
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Appendix A

7.1 Appendix A

7.1.1 Adapting LMP to the SIR model.

We discuss here the limitations of employing LMP in the case of a SIR model described
in Chapter 3 in Eq. 3.18. It is not possible to map the 3 variables (i,s,r) of SIR model to
the set of M functions in Eq. 3.1. Therefore analytical results for the scaling properties
(such as ⌧i) can’t be derived for Eq. 3.18. Moreover, the assumption of dealing with
small perturbations around an equilibrium basin is unfeasible as introducing a small
fraction of infected in ⇡ 10�3 triggers exponential growth over time for in(t). We can try
to disregard the SIR self-dynamics which is a valid assumption in the regime of im(t) < ✏,
where �(i/✏) sets the infection threshold for node i, and therefore focus on the diffusion
term in Eq. 3.18. Under this condition: ∂in

∂t
= �

P

m 6=n Pmn (im � in). Here applying
same conditions in =

P

m 6=n Pmnim and deriving it with respect to node m, im, yields
@xi/@xj = Pmn.
Thus, Pmn serves as a substitute for Rmn. However, it should be noted that it lacks the
steady-state normalization factor xm/xn.
Finally, we set as first approximation the exponent for the estimation of ⌧ as ✓ = 0 as
for a simple diffusive dynamics. We note that a more complex derivation of ✓ can be
employed via numerical approximations [17]. Despite these strong approximations the
Spearman’s rank coefficient is above 0.9 for LMP as reported in Fig. 3.8.
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7.2 Appendix B

7.2.1 Optimization via simulated annealing

To generate the optimal topologies, i.e. the configuration of weights/velocities {we}
such that the flow weighted effective temporal distance E in Eq. 4.2 is minimized, we
employed a Simulated Annealing (SA) scheme [179]. We start from the initial lattice
substrate having all weights equal {we}init : we = 1.0, 8e and perform (SA) to obtain
{we}optimal (see Figure 7.1).
Since in the generation of optimal topologies we enforce the condition that the total sum
CG =

P

e2G dewe is conserved, this requires that also the Monte Carlo move [132] to
propose a new configuration needs to guarantee the conservation of CG. Here we provide
the algorithm for the proposal of new configurations of edges’ weights. Specifically, given
a configuration {we}t at SA-step t, we propose a new configuration {we}t+1 and accept
it via Metropolis rule [132]. To propose a candidate while respecting the condition on
the total cost CG, we implement the algorithm described in Algo. 1.

Input :Configuration {we}t at step t, parameter ↵MC

Output :Configuration {we}t+1 at step t

- Select randomly two edges e1 and e2;
- Reduce the weight of e1 by ↵MC : we1  we1 � ↵MC · we1 ;
- Compute the total associated weight that will be assigned to e2:
�MC  ↵MC · we1 · de1/de2 ;

- Update e2 weight using �MC : we2  we2 + �MC ;
return Configuration {we}t+1 at step t;

Algorithm 1: Candidate edge’s configuration proposal Algorithm

 

minimization 

E({we})

 {we}init : we = 1.0 �e   {we}optimal

Figure 7.1: Optimization via Simulated Annealing: Initial weight configuration (the
lattice substrate) is optimized via SA to obtain the optimal configuration.
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7.2.2 Simple substrate optimization
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Appendix B

Hex Lattice

N = 37

A

B

Figure 7.2: Loop Dimension vs � on HEX. We adopt the minimum cycle basis to study the
presence of loops in the optimal configurations. For each � the median and its MAD computed
on the ensemble of optimal networks from a HEX size s = 3 substrate. A) Average number of
edges (length) of the loops present in the cycle basis. In the lower panel the number of loops in
the basis is shown. B) The optimal network transitions from tree structure to a lattice-like with
many small loops. Figure taken from [3].
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ER Network

N = 30, � = 0.2

A

B

Figure 7.3: Results on the ER network. A) Average loop size and Cycle basis dimensions
exhibit the similar transitions as those presented for the HEX lattice. B) Sample networks for
different � in the case of ER with N=30 and edge probability ⇢ER = 0.2. Figure taken from [3].
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7.3 Appendix C

7.3.1 Spatial accuracies

Figure 7.4: Spatial distributions of accuracies - Seattle. Distribution of accuracies for the
individual I,the collective C and model M which combines individual and collective information,
in predicting a transition from a Geo Hash 6 tile. (A) Spatial accuracies across different overlaps.
(B) Spatial autocorrelation of the models’ accuracies in corresponding overlaps quantified via the
Moran Index. For larger out-of-routine behaviours like 0-20 and 20-40 overlaps, model C exhibits
clustered accuracy (large Moran Index). This is a consequence of novel mobility patterns being
better predicted by the collective behaviors in proximity of POIs (C) Map of spatial accuracies
in Seattle for models I,C and M in the overlap 0-40% (test trajectories in overlaps 0-20% and
20-40% merged in one single overlap). Figure taken from [4]. Maps: Stamen Maps
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Figure 7.5: Spatial distributions of accuracies - NYC. Distribution of accuracies for the
individual I,the collective C and model M which combines individual and collective information,
in predicting a transition from a Geo Hash 6 tile. (A) Spatial accuracies across different overlaps.
(B) Spatial autocorrelation of the models’ accuracies in corresponding overlaps quantified via the
Moran Index. For larger out-of-routine behaviours like 0-20 and 20-40 overlaps, model C exhibits
clustered accuracy (large Moran Index). This is a consequence of novel mobility patterns being
better predicted by the collective behaviors in proximity of POIs (C) Map of spatial accuracies
in New York City for models I,C and M in the overlap 0-40% (test trajectories in overlaps 0-20%
and 20-40% merged in one single overlap). Figure taken from [4]. Maps: Stamen Maps
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7.3.2 Collective mobility statistical properties

Figure 7.6: Statistical properties of Collective mobility and proximity of Points of
Interests. We first define the area with highest number of POIs as the attractiveness centre
Wmax

j (corresponding to downtown areas in the three cities). Then we split the cities into tiles
within a distance D from this tile and other areas with distance greater than D. We report
in (A) the distribution of travel distances (P (r)), distinguishing between origins within 2 km
from Wmax

j . Distribution are fitted with a power-law function P (r) ⇠ r−γ [23] in the interval
of 0 to 10 Km. The different characteristic exponents � for the three cities highlight a more
localised mobility in proximity of POIs. B) Entropy SC

i distributions of collective mobility
originating from tiles in the two regions. C) Map of the number of POIs (Wi) in a Geo hash 6
tile i, extracted from OSM following the procedure in Appendix 7.3.7. (Inset) Areas within a
distance D = 2 Km from the tile with largest number of POIs (Wmax

i ) shaded in orange. While
in teal other areas. Albeit this separation of the city is solely based on proximity to high POIs
areas, it separates collective human mobility in two different predictability regimes. Figure taken
from [4]. Maps: Stamen Maps
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Boston Seattle NYC

B

A

Figure 7.7: Sensitivity analysis of travel distances P (r) and collective SC
i in proximity

of POIs and in other areas.(A) Exponents � of power law fits (in the range 0 to 10 km) of
the travel distributions P (r). The exponents are presented for the two separate distributions:
P (r) for transitions having location origin at distance D from the tile Wmax

j , and P (r) for origin

in other areas. B) The median value and its median absolute deviation (MAD) of entropy SC
i

distributions for origins within D or in other areas. A sensitivity analysis of these exponents
is proposed for a range of different separation distances D. For Seattle and New York City in
particular we observe a range of distances in which we can appreciate larger differences between
the exponent � and median value of SC

i between the two proximity-based regions. In particular
D = 2 Km represents a proximity distance where in all cities we observe different predictability
and mobility properties. Figure taken from [4].
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Figure 7.8: Pearson correlation of SC
i versus ACC@5i. We report the Pearson correlation

⇢ of accuracy of C model (ACC@5i) in a tile (in the 0-40% overlap) versus its entropy SC
i for all

the three cities in the dataset. We observe anti correlation between the two variables, specifically
for Boston ⇢ = �0.86, Seattle ⇢ = �0.66 and NYC ⇢ = �0.5. Figure taken from [4].
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7.3.3 Sub-sampling collective information

Figure 7.9: Spatial accuracy of M model on novel mobility with pruned C in Seattle,
Boston and NYC. The accuracy of M model in predicting a novel transition extracted in the
0-40% overlap (a specific instance never seen in a individual u’s historical trajectories H(u)) from
an origin in a Geo Hash i is presented in panel (A). In panel (B) the accuracy in predicting
a transition towards a destination in a Geo Hash tile is depicted. It’s worth noting that in
the original dataset the sample size Ti used to estimate Ci exhibits strong heterogeneity based
on the locations i, with central areas being more densely sampled. To mitigate this potential
bias, we employed a stochastic sub sampling process to estimate Ci. Thus, spatial heterogeneity
observed in ACC@5i cannot be attributed to richness of the dataset in specific areas to estimate
Ci probabilities. Figure taken from [4]. Maps: Stamen Maps
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Figure 7.10: Pearson coefficient between ACC@5j to destination j, and Wi. Correlation
between accuracy in predicting a destination location and the number of POIs in that location
for Seattle, Boston and New York City. We observe that, specifically for Boston and Seattle,
the best predicted destinations in the regime of full novel mobility (never seen transitions in the
trajectories in H(u) in the overlap 0-40%) tend to be the locations having the largest number of
POIs. A lower Pearson is observed for New York City, where also locations with lower density of
POIs are well predicted as destinations. Figure taken from [4].
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7.3.4 Details on pruning process of Collective OD

Data: Set of training transitions Di for collective OD estimation from origin i
Data: Size of the training set from location i: Ti = |Di| =

P

j Tij

Data: Percentile X (in the analysis X = 50%)
Result: Pruned collective OD C̄i

Compute CDF and determine percentile X transitions PX ;
foreach origin i do

if Ti is larger than X percentile transitions PX (Tmax) then

Sample uniformly PX transitions from Di, as sub-sampled set D̄i;
Estimate new pruned collective probabilities C̄i using sub sample D̄i;

end

end

Algorithm 2: Pruning Collective OD Estimation. Pruning algorithm to remove bias

of collective OD Ci being estimated with a larger sample size.
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7.3.5 Recurrent Neural Network Implementation

Recurrent Neural Networks (RNNs) are commonly used as baselines for tasks in which
sequential information (such as time series) is involved. Given a sequence as input, an
RNN performs the same task for each element and the output depends on the previous
computation. Each computation involves three core parameters:

• xi the input at the ith step

• hi the hidden layer at the ith step

• yi the output of the ith step

There are many different types of recurrent neural networks and for this work, we
leveraged an Elman RNN as implemented in [151]. The computation performed by the
networks at with n gates are the following:

hi = �h(Whi
+ Uhi

hi�1 + bhi
), for each i 2 {1, . . . , n� 1} (7.1)

yi = �y(Whn−1 + bn�1) (7.2)

To train the RNN, we fine-tuned the following hyper parameters: learning rate (0.001 for
New York, 0.005 for Seattle and Boston), hidden size (750), embedding size (400), and
epochs (250 with early stop mechanism). We used Adam as optimizer.

7.3.6 Accuracies Tables

Full Set 0-20 20-40 40-60 60-80 80-100

I C M RNN I C M RNN I C M RNN I C M RNN I C M RNN I C M RNN

Geo 6
NYC 0.608 0.503 0.678 0.649 0.096 0.416 0.376 0.169 0.319 0.398 0.468 0.328 0.572 0.453 0.637 0.599 0.801 0.546 0.817 0.925 0.966 0.698 0.948 0.979
Boston 0.706 0.643 0.753 0.746 0.093 0.468 0.407 0.155 0.32 0.454 0.492 0.366 0.604 0.537 0.68 0.637 0.831 0.669 0.847 0.928 0.977 0.839 0.929 0.98
Seattle 0.645 0.549 0.697 0.694 0.073 0.395 0.34 0.148 0.314 0.397 0.461 0.343 0.581 0.471 0.646 0.625 0.808 0.584 0.824 0.936 0.971 0.781 0.918 0.969

Geo 7
NYC 0.475 0.329 0.530 0.494 0.063 0.221 0.222 0.108 0.244 0.229 0.333 0.26 0.508 0.305 0.547 0.529 0.757 0.424 0.768 0.77 0.951 0.616 0.939 0.969
Boston 0.562 0.446 0.607 0.582 0.07 0.264 0.254 0.103 0.259 0.285 0.364 0.277 0.551 0.394 0.594 0.583 0.787 0.534 0.794 0.801 0.962 0.745 0.919 0.97
Seattle 0.530 0.412 0.571 0.548 0.05 0.223 0.214 0.099 0.255 0.262 0.344 0.275 0.524 0.368 0.56 0.54 0.764 0.504 0.77 0.779 0.958 0.74 0.916 0.966

Table 7.1: Full accuracies table. Accuracies on full set and overlaps for all Markov models
and RNNS for the three cities. Both results for the trajectories with locations mapped to Geo
Hash tiles at level 6 and level 7 are reported.

7.3.7 OSM Amenities and POIs retrieval

OpenStreetMap is a collaborative mapping project that provides rich geographical data,
including various amenities types and points of interest. The following list outlines the
specific types of amenities extracted from OSM for our analyses:

amenities:[’cafe’,’college’,’library’,’university’, ’restaurant’,’pub’,’fast

food’,’bar’,’bank’,’pharmacy’,’arts centre’,’cinema’,’community centre’,’post

office’,’marketplace’]

In Chapter 5 number of POIs extracted from OSM in each Geo Hash level 6 tile for
each city is presented as a map in Fig. 5.7. Instead in Chapter 4 the number of POIs
extracted is mapped to each H3 tile [138] (at resolution 8) in the Greater London Area
as Wj .
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7.3.8 Dataset details

city users # points

Seattle 270K 12M
Boston 375K 11M
NYC 1,5M 140M

Table 7.2: Dataset statistics. Total number of users and number of spatio-temporal points
p = (i, t) in the Cuebiq dataset for the cities of Seattle, Boston and New York City. Numbers
have been approximated.
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