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Abstract

Decision procedures for expressive logics such as linear arithmetic, bit-

vectors, uninterpreted functions, arrays or combinations of theories are

becoming increasingly important in various areas of hardware and software

development and verification such as test pattern generation, equivalence

checking, assertion based verification and model checking.

In particular, the need for bit-precise reasoning is an important target

for research into decision procedures. In this thesis we will describe work on

creating an efficient decision procedure for Satisfiability Modulo the Theory

of fixed-width bit-vectors, and how such a solver can be used in a real-world

application.

We will also introduce some extensions of the basic decision procedure

allowing for optimisation, and compact representation of constraints in a

SMT solver, showing how these can be succinctly and elegantly described as

a theory allowing for the extension with minimal changes to SMT solvers.
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Chapter 1

Introduction

Hardware and software systems have become incredibly complex and their

usage is widespread. In designing these systems, verification is a highly

challenging task. Hardware development costs are now routinely domi-

nated by the verification effort, and there is a growing gap between our

ability to design complex systems and the effort required to verify them,

sometimes called the verification gap.

One avenue of research into closing this gap has been formal or semi-

formal verification. A large number of techniques have been developed,

including abstract interpretation, model checking, assertion based verifica-

tion, equivalence checking, automatic test pattern generation, and many

others. Many fully automated verification techniques depend on bit-precise

reasoning to some extent, and this calls for the development of efficient and

scalable techniques able to solve such formulae.

One approach to bit-precise reasoning is translation into the SAT prob-

lem and take advantage of the impressive performance of modern SAT

solvers. These solvers are highly efficient, and are able to handle extremely

large formulae. However, they are still very low level, and they also require

some expertise in order to get the best possible performance out of them.

For a given high-level formula at the RTL or bit-vector level, there are

1



Chapter 1. Introduction

typically a vast array of different ways of encoding it into a corresponding

SAT problem. Which encoding is chosen can have a very large impact

on performance, and it may not be obvious which encoding is preferable

without some knowledge of the inner workings of modern SAT solvers.

Solvers which reason at the level of bit-vectors can be seen as an answer

to this problem. With these, the user can work at a higher level, not

needing to worry about the low-level details of SAT solvers. Even if the

bit-vector reasoner is implemented to ultimately use a SAT solver, the

knowledge for how it is best used can be captured within the solver itself

rather than in every application that needs to use it. A solver at the bit-

vector level may also take advantage of the higher level of abstraction to

either simplify the formula before attempting to solve it, or use alternative

techniques in solving which may scale better for the formulae of interest to

the user.

In recent years there has been an interest in solvers that support richer

logics than propositional logic, and the field of Satisfiability Modulo Theo-

ries (SMT) has risen as a response to this interest. SMT combines proposi-

tional logic with one or more decidable theories such as linear arithmetic or

bit-vectors to form a fully automated decision procedure at a higher level

of abstraction. In the last few years, SMT has made tremendous progress,

and SMT solvers are now being fielded in real-world applications both in

academia and industry.

In this thesis, we will see how an efficient SMT solver for the theory of

bit-vectors can be constructed, how it can be used, and what use it may be

in a real-world application. We will also see some extensions to the SMT

paradigm, pushing the growing usefulness of SMT into new areas.

2



1.1. Contribution

1.1 Contribution

The contributions of this thesis lie in several novel techniques for solving

of SMT formulae over the bit-vectors as well as some extensions to SMT.

The main contributions can be summarised as follows:

– We introduce a simple and flexible framework for simplifying formu-

lae based on term rewriting which is able to manage the potential

complexity of simplification of bit-vector terms.

– We introduce several techniques, such as partitioning or variable split-

ting, that enhances other well known preprocessing or solving tech-

niques

– We show how models can be computed while still applying all prepro-

cessing techniques, rather than resorting to disabling one or more of

them when models are requested.

– We show how the major preprocessing techniques can be used in an

incremental solver.

– We introduce some novel under- and over-approximation techniques

for bit-vector formulae.

– We introduce a lazy clustering scheme for dividing the theory solver

consistency checks into multiple independent partitions.

– We show how it is possible to use minimal model enumeration in the

lazy schema of SMT solving.

– We demonstrate how reusing learnt information from solving previous

formulae can deliver significant performance enhancements in a real-

world application without added implementation complexity

– We provide an extensive experimental evaluation, giving insight into

the efficiency of the various techniques.

– We introduce a novel theory, the theory of costs, which allows for ex-

tension of satisfiability modulo theories into optimisation and compact

3



Chapter 1. Introduction

representation of Pseudo-Boolean constraints without modification to

the standard SMT solver architecture.

Apart from the contributions of this thesis, we also try to give an overview

of some of the techniques implemented within our SMT solver MathSAT

that are relevant for the theory of bit-vectors, in the hope that it may give

some insight into the observed performance of the solver.

Rather than just present techniques which have been proven to work

in practise, this thesis will also discuss some techniques whose value has

not (yet) been proven, or seem to have limited applicability. Using experi-

mental evaluation, we will attempt to conclude which technique provide a

benefit, which have limited use, and which may be unhelpful.

1.2 Acknowledgements

The work presented here has been in part supported by Semiconductor

Research Corporation (SRC) under Global Research Collaboration (GRC)

Custom Research Project 2009-TJ-1880 “WOLFLING”.

1.3 Overview

The thesis is organised as follows. Preliminaries such as notation and

basic concepts are introduced in chapter 2. Chapter 3 describes techniques

for solving formulae, chapter 4 covers techniques which simplify formulae

before solving, and chapter 5 introduces approximation techniques.

Experimental evaluation of the techniques thus far introduced is found

in chapter 6. In chapter 7 an industrial case study is presented, together

with techniques for improving the usage of the solver in a real-world appli-

cation. Chapter 8 introduces the theory of costs, which allows us to solve

optimisation problems and encode Pseudo-Boolean constraints efficiently.

4



1.3. Overview

Finally, chapter 9 gives an overview of related work, and some conclusions

and several suggestions for future work can be found in chapter 10.

5
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Chapter 2

Preliminaries

Some background to the work presented in this thesis is necessary. In

this chapter, we will introduce the concepts of propositional logic and the

DPLL-style decision procedures often used to decide satisfiability in this

logic. We will also introduce Satisfiability Modulo Theories, and how deci-

sions procedures for this problem often works. Finally, we will give a brief

overview of the MathSAT SMT solver, which is used as the proving ground

for the techniques described in this thesis.

2.1 SAT

The satisfiability problem (SAT) is the problem of deciding satisfiability of

formulae in propositional logic. Given a set of propositions B, a proposi-

tional logic formula can be defined as

– ⊤ and ⊥ are formulae.

– If p ∈ B, p is a formula

– If α and β are formulae, then ¬α and α ∧ β are formulae.

A truth assignment or interpretation µ is a mapping from propositions to

truth values {false, true}. We will also see a truth assignment as a set

{p1, . . . , pm}∪{¬q1, . . . ,¬qn} where the pis are mapped to true and the qis

7



Chapter 2. Preliminaries

are mapped to false.

A truth assignment µ models the formula ϕ, denoted µ |= ϕ given by

the following.

µ |= ⊤
µ ̸|= ⊤
µ |= p iff p ∈ µ
µ |= ¬α iff µ ̸|= α

µ |= α ∧ β iff µ |= α and µ |= β

The SAT problem can now be stated as the problem of determining for

a given formula ϕ if there exists an interpretation such that µ |= ϕ. It is

common to extend the language with several other connectives

– Disjunction ∨ defined as α ∨ β iff ¬(¬α ∧ ¬β)

– Implication ⇒ defined as α⇒ β iff (¬α) ∨ β
– Equivalence ⇔ defined as α⇔ β iff α⇒ β and β ⇒ α

We will call a truth assignment that gives values to all propositions in a

formula ϕ a total truth assignment. A truth assignment which gives values

to a strict subset of the propositions in a formula is called partial. We will

define Atoms(ϕ) as the set of atoms in the formula ϕ.

Decision procedures for the SAT problem typically accept formulae in a

particular form called Conjunctive Normal Form (CNF) defined as follows:

– An atom is a proposition p ∈ B
– A literal is either an atom p or its negation ¬p. We say that a negated

atom is a negative literal and a non-negated atom a positive literal.

If l is a negative literal, by ¬l we mean the corresponding positive

literal.

– A clause is a disjunction of literals, often seen as a set of literals. A

clause containing a single literal will be called a unit clause.

– A formula in CNF is a conjunction of clauses, often seen as a set of

clauses.

8



2.2. Solving the SAT problem

All propositional formulae can be translated into CNF in linear time, if we

are allowed to introduce fresh propositions as described in [Tse68]. Many

variations on this technique have been proposed, and they may all be called

Tseitin-style encodings meaning that they introduce fresh propositions to

“give names” to subformulae allowing for a linear time translation.

2.2 Solving the SAT problem

The most popular approach to solving the SAT problem today is using a

DPLL-style [DLL62] algorithm. In its most basic form, the algorithm may

be outlined as in algorithm 2.1 taking a set of clauses as input and returning

either ⊤ (the formula is satisfiable) or ⊥ (the formula is unsatisfiable).

Algorithm 2.1: Basic DPLL algorithm DPLL(ϕ)

if ϕ = ∅ then1

return ⊤2

end3

if ∅ ∈ ϕ then4

return ⊥5

end6

if Some {l} ∈ ϕ then7

return DPLL({c \ {¬l} | c ∈ ϕ ∧ l ̸∈ c})8

end9

p← some atom in ϕ10

return DPLL(ϕ ∪ {p}}) ∨DPLL(ϕ ∪ {¬p})11

Many improvements have been proposed to the basic algorithm, which

allows it to scale to large formulae. A good overview of techniques is

[BHvMW09].

9



Chapter 2. Preliminaries

2.3 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) can be seen as an extension of propo-

sitional logic with some theory of interest such as linear arithmetic. The

following introduction to SMT follows standard lines, a good reference is

[BHvMW09].

We let Σ = ⟨F ,P⟩ be a signature containing a set of function symbols F
and a set of predicate symbols P , each with an associated arity. We call the

0-arity function symbols constants, and the 0-arity predicates propositional

symbols. We will call Fn the set of function symbols in F with arity n

and Pn the set of predicate symbols in P with arity n. In this thesis we

will focus on the quantifier free formulae constructed using this signature,

which we will call ground formulae. The (free) variables in formulae will be

seen as uninterpreted constant symbols in Σ. Given a signature Σ = ⟨F ,P⟩
formulae can be built according to the following

– If c ∈ F0 then c is a term

– If f ∈ Fn and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term

– ⊥ and ⊤ are formulae

– If P ∈ P0 then P is a formula

– If P ∈ Pn and t1, . . . , tn are terms, then P (t1, . . . , tn) is a formula

– If α, β are formulae, then ¬α, α ∨ β, α ∧ β α ⇒ β and α ⇔ β are

formulae

The concepts of atoms, literals, clauses, CNF, and unit clauses lifts from

propositional logic in the natural way. We let Var(ϕ) be the set of variables

in the formula ϕ and Atoms(ϕ) be the set of atoms.

To provide semantics for this logic, we need a universe (the domain

of terms), a mapping [[·]] which assigns elements in the domain for every

constant in F0. This mapping extends into an assignment over arbitrary

terms over constants and predicates over constant terms into truth values.

10
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A Σ-structure is a tuple consisting of a universe, an assignment of vari-

ables σ to elements in the domain, and an interpretation [[·]] of all other

nonlogical symbols. A Σ-formula is a formula using nonlogical symbols

in Σ. A sentence is a formula without variables. A theory is a set of

Σ-sentences. Given a theory T , a Σ-formula is satisfiable iff there exists

a Σ-structure that satisfies both the formula and all sentences of T . A

Σ-formula is valid in T iff all Σ-structures that satisfy the sentences of T

also satisfies the formula.

The SMT-LIB1 provides a publicly available benchmarks library for

SMT formulae in a number of different theories, as well as definitions of

several theories of interest.

2.4 Fixed-width bit-vectors

We define a theory of fixed-width bit-vectors similar to the theory defined

in the SMT-LIB, an overview of the operators can be found in figure 2.1.

The operators in the SMT-LIB bit-vector theory which are not included

here are still supported in MathSAT, but translated into the operators

shown here rather than handled natively.

We define semantics for bit-vector atoms in a way similar to Brinkmann

and Drechsler [BD02].

– A bit-vector constant x⟨n⟩ ∈ {0, 1}n is a vector of n bits denoted

(xn−1, . . . , x0).

– If x⟨n⟩ is a bit-vector, then x⟨n⟩[i] is the ith bit xi in x⟨n⟩.

– We define the auxiliary functions natn and bvn such that natn(x⟨n⟩) =∑
i∈1...n 2nx(i− 1) and we define bvn to be the inverse of natn (bvn =

nat−1n ).

1Available at http://smt-lib.org/
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t
⟨m⟩
1 :: t

⟨n⟩
2 Concatenation of two bit-vectors t

⟨m⟩
1 and t

⟨n⟩
2

t⟨n⟩[i : j] Selection of bits j to i inclusively of t⟨n⟩

not t⟨n⟩ Bit-wise negation of all bits in t

t
⟨n⟩
1 and t

⟨n⟩
2 Bit-wise and of all bits in t1 with all bits in t2

t
⟨n⟩
1 or t

⟨n⟩
2 Bit-wise or of all bits in t1 with all bits in t2

t
⟨n⟩
1 ≪ t

⟨n⟩
2 Shift left of t1 by the amount given by t2

t
⟨n⟩
1 ≫l t

⟨n⟩
2 Logical shift right of t1 by the amount given by t2

t
⟨n⟩
1 ≫a t

⟨n⟩
2 Arithmetic shift right of t1 by the amount given by t2

t
⟨n⟩
1 rol c Rotate left of t1 by the amount given by c ∈ [0, n− 1]

t
⟨n⟩
1 ror c Rotate right of t1 by the amount given by c ∈ [0, n− 1]

zext⟨m⟩(t⟨n⟩) Zero extension of t to a bit-vector of m bits (m ≥ n)

sext⟨m⟩(t⟨n⟩) Sign extension of t to a bit-vector of m bits (m ≥ n)

t
⟨n⟩
1 + t

⟨n⟩
2 Addition of t1 and t2

t
⟨n⟩
1 − t

⟨n⟩
2 Subtraction of t1 and t2

−t⟨n⟩ Unary subtraction

t
⟨n⟩
1 ∗ t

⟨n⟩
2 Multiplication of t1 and t2

t
⟨n⟩
1 /u t

⟨n⟩
2 Unsigned division between t1 and t2

t
⟨n⟩
1 /s t

⟨n⟩
2 Signed division between t1 and t2

t
⟨n⟩
1 remu t

⟨n⟩
2 Unsigned remainder

t
⟨n⟩
1 rems t

⟨n⟩
2 Signed remainder

t
⟨n⟩
1 <u t

⟨n⟩
2 Unsigned less than

t
⟨n⟩
1 <s t

⟨n⟩
2 Signed less than

t
⟨n⟩
1 ≤u t

⟨n⟩
2 Unsigned less than or equal

t
⟨n⟩
1 ≤s t

⟨n⟩
2 Signed less than or equal

Figure 2.1: Bit-vector operations
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– We define + as addition, · as multiplication, / as division over natural

numbers.

– We let σ be an assignment of variables to values in their domain, and

define [[t]]σ as the interpretation of the bit-vector term or atom t.

The semantics for most of the bit-vector operators can be seen in figure

2.2, and the rest are defined in terms of other operators in figure 2.3. When

the specific width of a bit-vector term t⟨n⟩ is either irrelevant or clear from

the context, it will often be dropped and we will simply write t.

2.5 Approaches to SMT

There are several different approaches to solving SMT formulae, they can

be divided into two main categories of techniques called the eager and the

lazy approaches.

2.5.1 Eager encoding into SAT

In the eager encoding into SAT the formula is translated into an equisatis-

fiable SAT instance which can then be solved in any SAT solver. How this

translation is performed is theory-specific, for the theory of bit-vectors it

can be performed by a process called bit-blasting or flattening which is ba-

sically the same technique used in hardware sysnthesis to generate a netlist

from combinational RTL.

2.5.2 Lazy encoding

The lazy approach, sometimes also referred to as the DPLL(T) schema

[NOT06], integrates solvers for the theories of interest into a SAT solver.

The SAT solver, normally a solver in the DPLL-style, performs search on

the logical structure of the formula, treating all predicates as propositional

13
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[[0⟨1⟩]]σ = (0)

[[1⟨1⟩]]σ = (1)

[[c]]σ = c

[[c]]σ = c

[[v]]σ = σ(v)

[[t
⟨m⟩
1 :: t

⟨n⟩
2 ]]σ = bvm+n(2m nat([[t1]]σ) + nat([[t2]]σ))

[[t[i : j]]]σ = bvi−j+1([[t]]σ/2
j)

not t⟨n⟩ = bvn(2n − 1− natn([[t⟨n⟩]]σ))

t
⟨n⟩
1 and t

⟨n⟩
2 = (cn−1 · dn−1, . . . , c0 · d0) where [[t

⟨n⟩
1 ]]σ = (cn−1, . . . , c0),

[[t
⟨n⟩
2 ]]σ = (dn−1, . . . , d0)

[[t
⟨n⟩
1 ≪ t

⟨n⟩
2 ]]σ = bvn(2k · natn([[t

⟨n⟩
1 ]]σ)) where k = natn([[t

⟨n⟩
2 ]]σ)

[[t
⟨n⟩
1 ≫l t

⟨n⟩
2 ]]σ = bvn(natn([[t

⟨n⟩
1 ]]σ)/2k) where k = natn([[t

⟨n⟩
2 ]]σ)

[[t
⟨n⟩
1 rol k]]σ = (cn−k−1, . . . , c0, cn−1, . . . cn−k−2) where [[t⟨n⟩]]σ = (cn−1, . . . , c0)

[[t
⟨n⟩
1 ror k]]σ = (ck−1, . . . , c0, cn−1, . . . , cn−k−2) where [[t⟨n⟩]]σ = (cn−1, . . . , c0)

[[zext⟨m⟩(t⟨n⟩)]]σ = bvm(nat([[t]]σ))

[[sext⟨m⟩(t⟨n⟩)]] = (cm−1, . . . , c0) where ci = dn−1 if i ≥ n and ci = di otherwise

and (dn−1, . . . , d0) = [[t]]σ

[[t
⟨n⟩
1 + t

⟨n⟩
2 ]]σ = bvn(natn([[t1]]σ) + natn([[t2]]σ))

[[−t⟨n⟩]]σ = bvn(2n − natn([[t⟨n⟩]]σ))

[[t
⟨n⟩
1 ∗ t

⟨n⟩
2 ]]σ = bvn(natn([[t

⟨n⟩
1 ]]σ) · natn([[t

⟨n⟩
2 ]]σ))

[[t
⟨n⟩
1 /u t

⟨n⟩
2 ]]σ = bvn(natn([[t1]]σ)/ natn([[t2]]σ))

[[t
⟨n⟩
1 remu t

⟨n⟩
2 ]]σ = bvn(natn(t

⟨n⟩
1 ) rem natn(t

⟨n⟩
1 ))

[[t
⟨n⟩
1 = t

⟨n⟩
2 ]]σ = ⊤ if bvn(natn([[t1]]σ) = natn([[t2]]σ)), ⊥ otherwise

t
⟨n⟩
1 <u t

⟨n⟩
2 = ⊤ if bvn(natn([[t1]]σ) < natn([[t2]]σ)), ⊥ otherwise

Figure 2.2: Bit-vector semantics
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t
⟨n⟩
1 or t

⟨n⟩
2 = not((not t

⟨n⟩
1 ) and(not t

⟨n⟩
2 ))

t
⟨n⟩
1 ≫a t

⟨n⟩
2 = ite(t

⟨n⟩
1 [n− 1] = 0⟨1⟩, t

⟨n⟩
1 ≫l t

⟨n⟩
2 ,not((not t

⟨n⟩
1 )≫a t

⟨n⟩
2 ))

t
⟨n⟩
1 − t

⟨n⟩
2 = t

⟨n⟩
1 + (−t⟨n⟩2 )

t
⟨n⟩
1 /s t

⟨n⟩
2 = ite(t

⟨n⟩
1 ≤s 0 ∧ t⟨n⟩2 ≤s 0, t

⟨n⟩
1 /u t

⟨n⟩
2 ,not(u1 /u u2)) where

u1 = ite(t
⟨n⟩
1 <s 0,not t

⟨n⟩
1 , t

⟨n⟩
1 ) and u2 = ite(t

⟨n⟩
2 <s 0,not t

⟨n⟩
2 , t

⟨n⟩
2 )

t
⟨n⟩
1 rems t

⟨n⟩
2 = ite(t

⟨n⟩
1 ≤s 0 ∧ t⟨n⟩2 ≤s 0, t

⟨n⟩
1 remu t

⟨n⟩
2 ,not(u1 remu u2)) where

u1 = ite(t
⟨n⟩
1 <s 0,not t

⟨n⟩
1 , t

⟨n⟩
1 ) and u2 = ite(t

⟨n⟩
2 <s 0,not t

⟨n⟩
2 , t

⟨n⟩
2 )

t
⟨n⟩
1 ≤u t

⟨n⟩
2 = ¬(t

⟨n⟩
2 <u t

⟨n⟩
1 )

t
⟨n⟩
1 ≤s t

⟨n⟩
2 = ¬(t

⟨n⟩
2 <s t

⟨n⟩
1 )

t
⟨n⟩
1 <s t

⟨n⟩
2 = ite(t

⟨n⟩
1 [n− 1] = t

⟨n⟩
2 [n− 1], t

⟨n⟩
1 <u t

⟨n⟩
2 , t

⟨n⟩
1 = 1⟨n⟩)

Figure 2.3: Syntactic sugar

atoms. We call the logical structure of the formula the propositional ab-

straction [Pla81] of the formula.

Definition The propositional abstraction of a ground formula ϕ is a propo-

sitional formula where all predicates in ϕ are replaced with propositions.

The lazy approach to SMT divides the reasoning into two parts; reason-

ing on the propositional abstraction of the formula, and reasoning in the

theories of the formula. For the propositional abstraction a boolean enu-

merator is used, typically implemented using a DPLL-style SAT solver.

The SAT solver proceeds by assigning truth values to atoms in the propo-

sitional abstraction, keeping track of the current truth assignment.

The SAT solver communicates the current truth assignments to the

theory solvers, which given a set of such truth assignments determines

consistency of the assignment in the theory. In the theory solver, this

truth assignment is seen as a set of literals L1, . . . , Ln which are positive

iff the atom was assigned to true in the truth assignment. These truth

assignments are communicated to the theory solvers during search in the

SAT solver using an incremental and backtrackable interface to the theory

solvers. Given a current partial truth assignment, it can be extended with a
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set of literals, or the last extension of the truth assignment can be retracted.

Further, when the theory solvers determine that the current truth as-

signment is inconsistent in the theory, a conflict set is produced which

encapsulates the reason for the inconsistency. The conflict set is a subset

of the current truth assignment, which in itself is inconsistent in the the-

ory. This conflict set is used by the SAT solver to produce a conflict clause,

which is used to prune further search.

Theory solvers are also allowed to deduce truth assignments to currently

unassigned theory atoms. A deduced truth assignment is one which is a

logical consequence in the theory of the current truth assignment, and will

help the SAT solver prune the search.

Several improvements to the basic lazy approach have been proposed,

see [Seb07, BHvMW09] for an overview.

2.6 DAG representation of formulae

It has become a staple in SMT solvers to represent formulae using perfect

sharing, sometimes also called aggressive sharing, structural hashing, hash

consing, or common subexpression elimination. The plethora of names

may be due to its popularity in many different fields such as functional

programming languages [Got76], theorem proving [RV01] and compiler op-

timisation [Coc70]. Instead of storing a formula as a tree, it is stored as

a directed acyclic graph (DAG). A subformula or term which is used sev-

eral times in the formula will be represented with a single node in this

DAG. Because formulae are represented in this way, we will use this when

considering the number of occurrences of subformula or terms in a given

formula.

Definition A term or formula is said to occur n times in a formula iff

the node representing it in the DAG representation of the formula has n

16
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incoming edges.

Example 2.1

Take the formula x+ 1<u(x+ 1) ∗ 2. The DAG representation of this term is

shown below

<u

∗

+ 2

x 1

and we can see that x + 1 occurs twice in this formula, while the variable x

only occurs once.

2.7 MathSAT

MathSAT [BCF+08] is a SMT solver following the lazy schema, an overview

of the architecture can be seen in 2.4. It accepts input in a number of

different input formats, and also provides an API allowing MathSAT to be

linked into other applications.

Roughly, the system consists of the following parts: A preprocessor, a

DPLL-style boolean enumerator, and theory solvers.
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Boolean CNF

Formulas

T-solver n

T-solver 1

DPLL Engine

Truth assignment

Model generator

Model

FOCIMSAT C API

Interpolant

Problem clauses

SMT-LIB

SAT/

UNSAT

Preprocessor

Input Formats

Unsat Core

Proof Engine

ProofsModel values

T-lemmas
New atoms

Figure 2.4: MathSAT architecture overview

2.7.1 Preprocessing

The preprocessor consists of several different parts: Simplification, conver-

sion to CNF, static learning and initialisation of the solver.

Simplification During simplification the goal is to produce a new simpler

formula which is equisatisfiable to the original. It is also required that given

any model for the simpler formula it is possible to compute a model for the

original formula. Examples of simplifications are computing a canonical

form for atoms in linear arithmetic.

CNF conversion Conversion into CNF is performed with a Tseitin-style

algorithm [Tse68].

18
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Static learning Static learning will add some lemmas for the atoms occur-

ring the formula. These lemmas are clauses which may help prune search,

an example is lemmas for transitivity.

Solver initialisation Lastly the CNF is fed to the solver, and the solver

is initialised. In this step the preprocessor instructs the solver to allocate

the appropriate theory solvers and also provide some heuristic information

about the formula which may help improve performance.

2.7.2 The solver proper

The heart of the solver is a boolean enumerator based on the MiniSat

DPLL-style SAT solver, which enumerates models of the propositional ab-

straction of the formula. These models correspond to a truth assignment

to the theory atoms, and this truth assignment is communicated to the

theory solvers. The theory solvers receives these, and determines if this

truth assignment is consistent in the theory.

2.7.3 Theories

MathSAT supports many of the theories of interest in practical applica-

tions, namely

– Equality and uninterpreted functions (EUF)

– Extensional arrays (ARR)

– Difference logic (DL)

– Unit two variable per inequality (UTVPI).

– Linear arithmetic over the real numbers and integers (LA)

– Fixed width bit-vectors (BV)

19
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2.7.4 API

The MathSAT API is similar to that of Yices or Z3. The relevant opera-

tions are

Assert ϕ Assert that a formula must be true

Push backtrack point Remember the current state

Pop backtrack point Restore the state at the last backtrack point

Solve Solve the conjunction of assertions in the current state

In order to solve the three formulae α, α ∧ β and α ∧ γ we can do this in

the following way

1. Assert α

2. Solve

3. Push backtrack point

4. Assert β

5. Solve

6. Pop backtrack point

7. Assert γ

8. Solve

When backtracking to a previous state, the solver is free to retain in-

formation which has been learnt previously which may help solve future

formulae. An example is the theory conflicts which are universally valid

and can therefore be reused regardless of what future formulae may look

like.

2.7.5 Performance

Since the start of the annual SMT competition2 MathSAT has been taking

part in all categories it can support. The results are in brief:

2SMT-COMP is available at http://www.smtcomp.org/
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– In 2005, MathSAT competed in 6 categories, placing second in one

and third in 5.

– In 2006, MathSAT competed in 8 categories, placing second in two

and third in 4.

– In 2007, MathSAT competed in 7 categories, placing second in two

and third in two.

– In 2008, MathSAT competed in 9 categories, placing second in 3 and

third in 4.

– In 2009, MathSAT competed in 12 categories, placing first in the bit-

vector category and the category combining uninterpreted functions

and integer difference logic. It also placed second in 7 categories and

third in one.

2.7.6 Further reading

A more in-depth look at MathSAT wrt theories other than bit-vectors can

be found in the PhD thesis of Alberto Griggio [Gri09].
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Solving techniques

There are two main techniques for solving bit-vector formulae that are

used within MathSAT: Translation into SAT and the lazy approach to

SMT, also called DPLL(T). Both the eager encoding into SAT and the lazy

approach are in this work based on bit-blasting to handle bit-vector atoms.

In this chapter, we will look at how these two techniques are used within

MathSAT, as well as some auxiliary techniques such as layering, static

learning, or modifications to the basic boolean enumeration algorithm.

We will start this chapter by looking at bit-blasting, since it is used in

both approaches to solving. Then we will discuss the lazy approach and

give some details on the bit-vector theory solver, followed by the eager

approach. We continue with the use of EUF layering in MathSAT, static

learning, clustering, and minimal model enumeration.

3.1 Bit-blasting

The bit-blasting used in MathSAT converts bit-vector atoms directly to

CNF, rather than first creating a propositional formula in some other for-

mat such as general propositional logic or And Inverter Graphs (AIGs).

The reason for this is purely historical, an early version which bit-blasted

atoms first to general propositional logic which was then converted into
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CNF turned out to be unnecessarily slow on large but trivial instances. A

disadvantage of going directly to CNF is that propositional preprocessing

techniques such as those described in [BB06] can not be applied.

Each atom is converted using a Tseitin-style CNF transformation [Tse68],

taking care that each atom is represented by a propositional literal, which

is not added (as a unit) to the CNF but kept separate. In this way, the

CNF for a particular literal is guaranteed to be satisfiable. Adding the

representative literal asserts that the atom is true and adding the negation

of the literal asserts that the atoms is false. Example 3.1 shows how this

might work in practise.

Example 3.1

We can bit-blast and convert the atom x⟨1⟩<u y
⟨1⟩ into CNF by adding one

fresh Tseitin variable v which is meant to “represent” the atom and create the

clauses

{¬v,¬x}, {¬v, y}, {v, x,¬y}

If in the truth assignment the atom is true, we solve these clauses under the

assumption of v. It the atom is false, we solve under the assumption ¬v.

Most bit-vector terms are bit-blasted in a straightforward way. E.g.

relations are bit-blasted using comparators, addition and subtraction using

ripple-carry adders and so on. Some small concessions to performance

have been done, such as strength reduction for multiplication or division

by constant [War02].

3.2 DPLL(T) or the lazy schema

The minimal requirements for a theory solver in the DPLL(T) or lazy

framework is in short
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Incrementality The current truth assignment is extended incrementally

by communicating the new truth assignments to the theory solver.

Backtrackability During backtracking, a number of the literals on the

truth assignment are retracted. The retracted literals are always those

last added

Consistency checking Given a particular truth assignment, the theory

solver should be able to detect inconsistent truth assignments, and be

able to provide models for consistent truth assignments.

Conflict set generation For inconsistent sets of literals a conflict set

should be communicated back to the boolean enumerator. This is a

subset of the current truth assignment, which in itself is inconsistent.

The underlying SAT solver is a modified version of MiniSat [ES04], with

the following modifications

– Component caching [PD07b], sometimes also called progress saving

or phase caching. This is a technique which stores the phase of all

assignments made, and when making a new decision it checks the last

decision made on this variable and makes the same one.

– Blocking literals [SE08]. This helps reduce the number of memory

references for unit-propagation on already satisfied clauses. A copy

of one of the literals is kept in the watch list data structure. If this

literal is satisfied, there is no need to visit the clause itself.

– More frequent restarts than the restart strategy implemented in Min-

iSat.

Atoms are bit-blasted as described in section 3.1 taking care that the

Tseitin-style CNF conversion for each bit-vector atom A produces a Tseitin

literal l which is equivalent to the bit-blasted atom, and we keep a mapping

between bit-vector atoms and the corresponding Tseitin literal. Normally

this literal would be added to the CNF, but here we will not add it to the
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SAT solver; In this way, the CNF for each atom is guaranteed to be satisfi-

able. In order to check consistency of a set of bit-vector literals, L1, . . . , Ln

we collect the corresponding Tseitin literals l1, . . . , ln, negating them iff the

bit-vector literal was negative. We then solve the bit-blasted formula as-

suming this set of literals enforcing the truth values of the atoms. Solving

under assumption of a number of literals is supported in a number of SAT

solvers, like MiniSat [ES04] or PicoSAT [Bie08].

Should the formula be unsatisfiable under these assumption, we can

compute a conflict in terms of the assumed literals. This can be used to

compute a conflict set, which although not guaranteed to be minimal, often

is minimal or close to minimal in practise.

There are also a number of other features of theory solvers, which al-

though not strictly necessary may be advantageous:

Early pruning Checking consistency of partial truth assignments

Deduction Deducing literals not currently on the truth assignment

For early pruning, we will use what we shall call bounded SAT reasoning.

3.2.1 Bounded SAT reasoning

When checking partial truth assignments, it is possible to check consis-

tency in the same way as for total truth assignments, but this may cause

considerable overhead. Therefore an incomplete procedure is often used.

In MathSAT, the theory solver performs search with an upper bound on

the number of conflicts. The default is to only perform unit propagation,

and report any conflicts found. It is however also possible to do search for

up to a given number of conflicts. If the truth assignment is found to be

inconsistent within this limit, a conflict set is returned. Otherwise search

in the boolean enumerator continues.
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3.2.2 Deduction

It is also possible to deduce literals. A simple way is to perform unit

propagation, and then deduce all literals which have been given a truth

value by the unit propagation. However this is not yet implemented in

MathSAT.

3.3 Eager encoding to SAT

The eager approach to SMT consists of solving formulae by translation

into an equisatisfiable SAT problem, and solving that in a standard SAT

solver. For bit-vectors this translation is straightforward, by what is called

bit-blasting or flattening.

3.3.1 Implementation issues

To achieve this encoding in a DPLL(T) style solver like MathSAT without

major modification, there are two different approaches:

– Bit-blast the formula in preprocessing. This will produce a purely

propositional formula, which can be solved by the boolean enumerator

without the help of any theory solver.

– Convert the formula into a bit-vector atom. Propositions can be re-

placed with fresh single-bit bit-vector variables, and the logical struc-

ture of the formula can be encoded using bit-wise operators. This

atom can then be solved by the bit-vector theory solver.

In MathSAT, both techniques are supported, but for pure bit-vector for-

mulae the second approach is the default. The first approach can still

be useful, for instance in cases with formulae that contains other theo-

ries disjointly, with a small number of bit-vector atoms. Implementation-

wise, in the second approach the formula is implicitly transformed into
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a conjunction of bit-vector atoms. The implicit transformation is simply

implemented by marking all conjuncts as bit-vector atoms. The boolean

enumerator will then treat these as if they were real bit-vector atoms, and

the theory solver is extended with support for bit-blasting bit-vector for-

mulae instead of just atoms.

3.4 Theory solver layering

A technique which has been in use for some time in MathSAT is layering

[BBC+05b]. The underlying idea is that given a truth assignment that is

unsatisfiable it is frequently very “obviously” inconsistent. Reasonably it

should therefore be correspondingly easy to detect the inconsistency, and

there should be no need to use a potentially expensive decision procedure

to do so. In MathSAT, it is possible to allocate a number of different the-

ory solvers which will each handle some subset of the atoms in the formula

or reason on an abstraction of the atoms. As an example, for linear arith-

metic, one can allocate one EUF solver treating all arithmetic operators

as uninterpreted functions, one difference logic solver only considering the

subset of atoms in difference logic, and finally a theory solver for full lin-

ear arithmetic, which can be used when all else fails. For bit-vectors, it is

possible, apart from using a solver for bit-vectors, to also use a solver for

EUF as a layer above the bit-vector solver. The intuition is that in cases

when it can aid in search it will do so at low cost, and in cases where it

cannot it is a very low overhead compared to a full bit-vector solver.

In order to enhance the power of the EUF solver, it has been extended

to support some semantics of other theories. In particular, different bit-

vector constants are detected as different from each other, relations over

bit-vector constants can be checked for consistency, and strict less than or

greater than relations over other terms are interpreted as disequalities.
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This gives the EUF some extra capability of detecting conflicts over

bit-vectors while still maintaining the same computational complexity and

efficiency.

3.5 Static learning

The idea behind static learning [BBC+05b, YM06] is to add lemmas which

are valid in the theory. This is done by instantiating a few basic axioms,

such as axioms for transitivity of equality, mutual exclusion of inequality

and similar.

3.6 Clustering

The idea of dividing the set of theory atoms into independent sets, called

clustering was first introduced in [BBC+05a] for EUF and linear arithmetic,

but it generalises also to other theories. Before search starts, the theory

atoms are divided into a set of independent sets each of which can not

interfere with the satisfiability of any other. Then for each such set, a

separate theory solver is used. In this way we can reduce the amount of

theory literals each theory solvers need to reason with, and hopefully avoid

some unnecessary complexity.

Definition Two atoms A1, A2 belong to the same cluster iff Var(A1) ∩
Var(A2) ̸= ∅

Definition A clustering of a set of atoms A is a partition of this set

induced by the cluster relation.

There are at least two ways of using clustering to split the problem into

several hopefully simpler problems to solve. One is to partition the set of

atoms statically before solving, the other is to perform clustering on the
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truth assignment of literals when using the lazy schema. The former has

been applied in MathSAT in the past [BBC+05b], and applied for the the-

ory of bit-vectors in [BCF+07]. For the industrial bit-vector instances used

in the latter paper, the clustering typically generated hundreds of clusters,

so it would appear to be very efficient. Looking closer however, most of

these clusters contain a handful of atoms containing a single variable, mak-

ing these clusters trivial. There was also often one large cluster containing

most of the atoms. Most of the complexity of reasoning remains in this

large cluster.

To achieve a more fine-grained clustering, a local rather than global ap-

proach must be taken, and if we are using the lazy schema this is possible

to do. Instead of clustering all theory atoms up-front during preprocess-

ing, we can attempt to cluster all literals occurring on each truth assign-

ment. Since this may be a subset of all atoms, there is the possibility

that this will produce more clusters, and simpler problems to solve. For

every truth assignment of literals L, we perform clustering of the set of

atoms Atoms(L) on that truth assignment producing several clusters of

literals L1, L2, . . . , Ln. Each cluster can now be checked for consistency

independently.

Clustering of truth assignments makes it more difficult to build a theory

solver which retains information from one consistency check to the next

however, because the clusters of literals may be different from one call to

the next. We can still create an incremental theory solver that retains

learnt information, if we relax the requirement for clustering a little.

When the theory solver is asked to check the consistency of its first truth

assignment, we perform clustering of this truth assignment and allocate one

theory solver for each cluster. When it needs to check consistency of a new

truth assignment, we check the atoms on the new truth assignment which

have not been seen before. If the variables of some of new atom occurs
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Table 3.1: Three value logic semantic of dual rail encoding

P⊤ P⊥ Meaning

False False No value

False True False

True False True

True True Illegal

in more than one cluster currently created, these clusters are merged into

a single cluster. This is done by identifying the largest of these clusters

and merging all others into it. The other clusters are then removed and

the new atom added to the merged cluster. This is just an approximation

of the original clustering technique because for a given truth assignment,

some clusters on that truth assignment may now be handled by a single

theory solver.

3.7 Minimal model enumeration

We would like to reduce the number of literals sent to the bit-vector theory

solver, since each theory solver call is potentially very expensive. One way

to do this is to have the boolean enumerator enumerate minimal models.

In [RC06], Roorda and Claessen uses a technique based on a dual-rail

encoding which gives minimal models for the SAT problem, and the same

technique lifts into SMT.

In a dual rail encoding of a formula, each propositional atom P is re-

placed by two fresh atoms P⊤ and P⊥. These are used to encode a three-

valued semantics of propositional logic according to table 3.1. To translate

a formula in CNF to dual rail, all positive literals A are replaced with A⊤,

and all negative literals ¬A are replace with A⊥. To rule out the illegal

value, for every atom A the clause {¬A⊤, ¬A⊥} is added to the CNF.
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3.7.1 Sign-Minimal Models

To see why this encoding would help in enumerating minimal models, we

can notice that in DPLL, if the decision heuristic always assigns false to

decision variables, then any model µ for a set of clauses Γ has the minimal

number of positive literals. This means that it is not possible to negate any

of the positive literals in µ and still have µ |= Γ. We say that such a model

is (positive) sign-minimal. The reverse is true if the decision heuristic

always assigns true to decision variables, and we call such models negative

sign-minimal.

To prove this, we show an invariant that holds during search. We show

that there exists a subset of Γ such that the current interpretation µ will

always be a sign-minimal model for that subset. Let us call Σ ⊆ Γ the

interesting subset. We will only cover the case were the heuristic assign

false, the other case is analogous.

Init We have that µ = ∅. Let Σ = ∅, and µ will be a sign-minimal model

of Σ.

Decision Making a decision on a variable v will add ¬v to µ. The extended

interpretation will still be a sign-minimal model of Σ.

Unit Propagation If a literal l is unit-propagated, the reason is a clause

in Γ \ Σ, since it has to be an unsatisfied clause, and all clauses in Σ are

satisfied under µ. If we extend Σ with this new clause, the extended µ will

be a sign-minimal model of the extended Σ.

Backtracking If we backtrack to a previous decision level, we can remove

any clauses from Σ which were added below that decision level. This will

restore both µ and Σ to the same state they were in when we entered that
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decision level. Therefore, the reduced µ will be a sign-minimal model for

the reduced Σ.

Adding a Conflict Clause For any new conflict clause c, Γ |= c. So, for any

µ′, µ′ |= Γ iff µ′ |= Γ∪{c}. Therefore, an interpretation µ′ is a sign-minimal

model of Γ iff it is also a sign-minimal model of Γ ∪ {c}.

Complete models In a complete model, the invariant gives us that µ is a

sign-minimal model for a subset of the clauses. Therefore, it must also be

a sign-minimal model for all clauses.

3.7.2 Minimality for Standard Dual Rail

Sign-minimality and assigning decision variables to false gives us minimal-

ity in dual rail, since only assignments to true on dual rail atoms correspond

to an assignment in the three value logic.

3.7.3 Minimality in SMT

In MathSAT, all theory conflicts consist of all negative dual rail literals.

They can never in themselves force a truth value to any literal, and so

minimality for the propositional abstraction is preserved.

For theory deduction, it can be encoded as an implication clause which is

identical to the conflict clause that would have been added had the implied

literal been assigned the inconsistent truth value. Therefore minimality is

preserved.

3.7.4 Encoding of non-CNF formulae

Encoding of non-CNF formulae is straightforward. For every subformula ϕ

we can create the dual-rail tuple ⟨ϕ⊤, ϕ⊥⟩. So, for a conjunction α ∧ β the
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Table 3.2: Dual-rail encoding of connectives

Connective Encoding

α ∧ β ⟨α⊤ ∧ β⊤, α⊥ ∨ β⊥⟩
α ∨ β ⟨α⊤ ∨ β⊤, α⊥ ∧ β⊥⟩
¬α ⟨α⊥, α⊤⟩

dual rail encoding would be simply ⟨α⊤ ∧ β⊤, α⊥ ∨ β⊥⟩. An encoding for

some common connectives can be seen if figure 3.2. Translation to CNF

can be performed in the normal way of the two formulae in the tuple.

3.7.5 Redundancy

The minimal model enumeration shown here does come with a price, and

the price to pay is in redundancy [ABC+02] of enumerated models.

Definition Given a set of interpretations I = {µ1, µ2, . . . , µN}, we say

that this set is non-redundant iff for every µi ∈ I the set I ′ = I \ {µi} is

not a cover of I.

Normally a DPLL-style enumerator will enumerate non-redundant models,

once a cover for the formula has been computed, it will terminate. But

with the dual rail encoding we will enumerate every minimal model, as can

be seen in example 3.2 where we enumerate all models of a simple formula.
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Example 3.2

Take the formula (A ∧ B) ∨ (¬A ∧ C) ∨ (¬B ∧ ¬C). This formula has the

following minimal models

{A,B}

{¬A,C}

{¬B,¬C}

{¬A,¬B}

{B,C}

{A,¬C}

In this example, it is enough to enumerate either the first three or the last three

to cover all models of the formula. However, with a dual-rail encoding we will

enumerate all six. This is easy to see by stepping through enumeration. The

formula can be written in CNF as {A,¬B,C}, {¬A,B,¬C}, and encoded in

dual rail the formula becomes

{A⊤, B⊥, C⊤}, {A⊥, B⊤, C⊥}

plus the clauses ruling out the forbidden value for each original variable, not

show here. One model for this is {A⊤,¬A⊥, B⊤,¬B⊥,¬C⊤¬C⊤} correspond-
ing to the minimal model {A,B}. Adding a blocking clause {¬A⊤,¬B⊤}. We

can iterate until we have found the next two models, adding the corresponding

blocking clauses

{¬A⊤,¬B⊤}, {¬A⊥,¬C⊤}, {¬B⊥,¬C⊥}

Even though we have now covered all models, the set of clauses are still sat-

isfied, e.g. with the model

{¬A⊤,¬A⊥, B⊤,¬B⊥, C⊤¬C⊤}
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and it is only when blocking clauses for all minimal models have been added

that the set of clauses become unsatisfiable.
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Preprocessing

Many instances, especially those coming from practical application of de-

cision procedures in industry have an inefficient encoding. There may be

a great number of redundancies, subformulae which are trivially unsatis-

fiable, and irrelevant subformulae which do not affect satisfiability. These

may cause significant slowdown when trying to solve a formula when com-

pared to a more clever encoding of the same problem.

In this chapter, we will look at some preprocessing techniques which

can help in producing a simpler equisatisfiable formula from the input

instance which can be fed into the underlying solver. The requirements for

all preprocessing is

1. The preprocessed formula must be equisatisfiable to the original

2. For any model of the preprocessed formula, it must be possible to

compute a model for the original formula.

A desirable property is also that the preprocessing is relatively inexpensive,

but it is not clear that it must be so. If some preprocessing step drasti-

cally reduces solving time, even a potentially expensive technique may be

worthwhile. It is also desirable that the preprocessing techniques support

incremental solving, so that they can be used in the incremental interface

to MathSAT. However, some of the techniques described here do not easily
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support this.

In this chapter we will look at a number of different techniques:

Normalisation Basic simplifications

Substitution Eliminating variables or propositions

Propagation of unconstrained terms Removing irrelevant parts of the

formula

Disjunctive partitioning Splitting the formula into independent parts

Packet splitting Splitting variables into several parts

Difference propagation Taking advantage of the fact that we know terms

to be different from one another

Miscellaneous A collection of minor techniques

We will also see how model can be efficiently computed while using all the

above techniques, how we can support preprocessing techniques in an incre-

mental solver, and a few words on the architecture used for preprocessing

in MathSAT.

4.1 Normal form computation

In formulae generated in real-world applications, the encoding of the prob-

lem is often filled with terms which can be trivially simplified. Let’s look

at a small motivational example:

Example 4.1

Given the equality x + 2 − (y − 1) = 2 ∗ x + 3 which we would like to solve,

we can see several opportunities for simplification. We can start by simplifying

the left hand side into x−y+3 = 2∗x+3 and then into y = 2∗x−x+3−3

which further simplifies into y = x.

One possibility in achieving this simplification would be to compute a
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canonical form for bit-vector atoms. This is however an expensive propo-

sition, it is in fact NP-hard [BDL98]. A more appealing alternative is to

perform simplifications which although not producing a canonical form are

both effective in practise and induces a low computational overhead. There

are many ways of implementing simplifications such as those seen in exam-

ple 4.1. In this thesis we will see simplifications as rewrite rules forming a

simple term rewrite system.

Definition A rewrite rule, written s→ t, has the property that s is not a

variable and Var(t) ⊆ Var(s). A term rewriting system (TRS) is a set of

rewrite rules.

Example 4.2

A simple rewrite rule for addition is 0 + x→ x

Rewrite rules are unless explicitly specified defined on non-fixed size bit-

vectors, the above example can be used to simplify addition with zero for

all bit-vector widths, it could also be written as 0⟨n⟩ + x⟨n⟩ → x⟨n⟩ An

example of a rule for a specific width might be

1⟨1⟩ + x⟨1⟩ → not(x)

which is applicable only on bit-vectors of width 1. Simplification is done

by applying all rewrite rules to a fix-point, in term rewriting called the

reflexive transitive closure, denoted t
∗→ t′. Given a term rewriting sys-

tem, a term which cannot be rewritten any further is said to be in normal

form, and hence we will call these basic simplifications of bit-vector terms

normalisation. For more information on term rewriting, Baader and Nip-

kow [BN98] is a good introduction. Here we will introduce only the parts

necessary in this application.

A rewrite rule s → t is applicable on a term u iff the left hand side t

matches u.
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Definition Given two terms s and t, the matching problem is the problem

of deciding whether there exists a substitution σ such that σ(s) = t.

For instance the rewrite rule in example 4.2 is applicable on the term

0⟨32⟩ + (y⟨16⟩ :: z⟨16⟩)

with the substitution σ = [x 7→ y⟨16⟩ :: z⟨16⟩]. In this work we will

use conditional rewrite rules. A conditional rewrite rules is of the form

s, c1, . . . , cn → where c1, . . . , cn are conditions which must all be fulfilled

for the rule to be applicable. An example of a conditional rewrite rule is

x⟨n⟩[u : l], u = n− 1, l = 0→ x⟨n⟩ which removes “unnecessary” selection

operators. We also define some predicates and functions which can be used

in conditions, such as

– const(t), which is true iff t is a bit-vector constant

– nat(t), which converts t to the corresponding natural number if it is a

constant

– eval(t), which given a bit-vector term not containing any variables,

evaluates it to the corresponding bit-vector constant.

– t1 ≺ t2, a total ordering on terms

– =, which check if two terms are equal

– The logical connectives ¬, ∨ with the usual meaning

The eval function can also be used in the right hand side of rules. Using

these operators, it is possible to define rules like x+y, const(x), const(y)→
eval(x + y) for evaluation of additions, or x + y, y ≺ x → y + x which

encodes commutativity of addition as a rewrite rule.

An important property for rewrite systems is termination, which is de-

fined as follows.

Definition A term rewriting system is terminating iff there is no infinite

rewrite sequence t1 → t2 → t3 → . . .
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There are two ways of causing non-termination for bit-vector rewrites.

– We may have cyclic rewrites such that t1 → t2 → . . . → tn → t1, e.g.

the rewrite rule x+ y → y + x.

– We may have a rewrite system which can grow the size of a term

indefinitely. E.g., the rule x→ x+ 0.

In general, given a term and a rewrite system, there may be several rules

in the rewrite system which are applicable at the same time. A rewrite

system that will always produce the same result regardless of the order of

rule applications is called confluent.

Definition A rewrite system R is confluent iff for all s, t, t′, whenever

s
∗→ t and s

∗→ t′ there exists a u such that t
∗→ u and t′

∗→ u.

In our case we do not require confluence. Instead rules are applied in

the order in which they are declared, which means that the rewrite system

does not need to be confluent, or even terminating with an arbitrary rule

application order. This means that for every rule, it is possible to take

advantage of the fact that we can assume that none of the previous rules

could be applied. As an example of how this can be used, take the following

two rules which evaluate addition over constants, and reorders addition

with constant and some other term:

t1 + t2, const(t1), const(t2) → eval(t1 + t2)

t1 + t2, const(t2) → t2 + t1

This rewrite system is clearly not terminating, since for a term 1 + 2 the

second rule could be applied infinitely many times. To achieve termination

with an arbitrary rule application order, the second rule would have to be

written as

t1 + t2, ¬ const(t1), const(t2)→ t2 + t1
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Example 4.3

If we define the following simple term rewrite system for additions

0 + t → t

t1 + t2, ¬ const(t1), const(t2) → t2 + t1

t1 + (t2 + t3), ¬ const(t1), const(t2) → t2 + (t1 + t3)

Using this TRS we can rewrite the term x+(y+2) by performing the following

rewrites x+ (y + 2)→ x+ (2 + y)→ 2 + (x+ y).

4.1.1 A simple rule language

In MathSAT, close to 300 rewrite rules have been defined. Implementing

all these rules by hand can be a time-consuming and error prone process,

and therefore a simple rule language have been developed which allows

for easy definition of new rules, and reduces the risk of introducing errors.

Two simple examples of rewrites for trivially unsatisfiable or valid atoms

are the following

bvult(t, t) ---> false;

bvule(t, t) ---> true;

The language supports all bit-vector operators supported by MathSAT

and the rewrite rule predicates and operators discussed earlier, and the

bit-vector operators are named similarly to the names used in the SMT-

LIB. There is also some syntactic sugar meant to make the writing of

rules easier. As an example, identifiers starting with c are interpreted as

constants. So the rule

bvadd(t, c) ---> bvadd(c, t);
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would be equivalent to the rule

bvadd(t1, t2), const(t2) ---> bvadd(t2, t1);

To achieve reasonable performance, memoization is used to cache the result

of previous rule applications. In addition, some basic filtering on rules are

done before checking whether they can be applied to a given term.

Currently, this normalisation language is not available to users. Instead,

it is translated into C++ code at compile time and linked into MathSAT.

It may be that some interesting rules can not be expressed in the nor-

malisation language in its current form. In these cases, they can be written

by hand and added to the normalisation engine in the same way as gener-

ated rules. Another option would be to extend the rule language to support

the necessary features. Since rules are generated at compile time, there is

not yet any reason to have a rule language that supports any possible rule

that may be interesting, and the choice between extending the language

or implementing new rules which cannot be expressed in the rule language

by hand becomes a pragmatic one.

4.1.2 Rule verification

It is easy to introduce erroneous normalisation rules for bit-vector arith-

metic, mostly because of a natural tendency to think in terms of standard

arithmetic over the integers. Take for instance the following simple exam-

ple

Example 4.4

The rule

t1 + t2<u t3, const(t2), const(t3)→ t1<u t3 − t2

would be correct in ordinary linear arithmetic, but not in bit-vector arithmetic.

For instance, consider the atom v⟨8⟩ + 2⟨8⟩<u 5⟨8⟩, which would be rewritten
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using the rule into v⟨8⟩<u 3⟨8⟩ (assuming an additional rule for evaluation of the

subtraction 5⟨8⟩−2⟨8⟩). But this atom is not equivalent to the original, we have

for instance that {v = 255} |= v⟨8⟩+2⟨8⟩<u 5⟨8⟩ but {v = 255} ̸|= v⟨8⟩<u 3⟨8⟩.

Mistakes like these can be easy to make, and verification of the correctness

of rules is therefore desirable. One possibility is to verify the correctness

on the entire solver by conventional means, i.e. testing. But in this case

it is possible to be more thorough; Since we have the rules defined in a

simple rule language we can attempt for formally verify their correctness.

Example 4.5 shows a simple example of verification of a basic rule.

Example 4.5

To verify the rule t+ 0 −→ t, we can see that it is correct iff the formula

∀n ∈ Z+∀t · t⟨n⟩ + 0⟨n⟩ = t⟨n⟩

is valid

As we can see from this example, rule verification requires reasoning on

non-fixed width bit-vectors, which requires the use of a theorem prover

with support for this theory. Several such theorem provers exist, such as

Isabelle [Daw09] or PVS [BMS+96].

Since rules are frequently defined on non-fixed width bit-vectors, verifi-

cation requires deciding validity of non-fixed width formulae, which is an

undecidable problem. This means that verification may not be fully au-

tomatic, requiring user intervention. Another alternative is to use a SMT

solver with support for fixed-width bit-vectors for verification. Since rules

are defined on non-fixed sized bit-vectors, the width needs to be instanti-

ated before generating verification conditions. Should some rule not hold

for some particular width, a counter-example showing the error can be eas-

ily produced. Although this would not fully verify the correctness of rules,
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it is possible to verify the rules for all bit-vector width below some limit,

and this should deliver high confidence in the correctness of the rules.

Example 4.6

The rule in example 4.4 can be translated into the verification condition

v
⟨n⟩
1 + v

⟨n⟩
2 <u v

⟨n⟩
3 ∧ ¬(v

⟨n⟩
1 <u v

⟨n⟩
3 − v

⟨n⟩
2 )

Selecting a particular width, say n = 4 this formula is satisfiable e.g. with the

model {v⟨4⟩1 = 15⟨4⟩, v
⟨4⟩
2 = 1⟨4⟩, v

⟨4⟩
3 = 2⟨4⟩}

The rule in example 4.5 above can be translated into the verification condi-

tion v
⟨n⟩
2 = 0⟨n⟩∧¬(v

⟨n⟩
1 +v

⟨n⟩
2 ) = v

⟨n⟩
1 . Regardless of the width n, this formula

is unsatisfiable.

4.1.3 Termination

Apart from rule correctness, another problem of the rewrite system is ter-

mination. With a potentially large number of rules, ensuring termination

may become non-trivial. There are basically two possible scenarios for

a non-terminating set of sequences; A cycle in the rewrites, and rewrites

which increase the size of the terms indefinitely. Checking for cycles can be

done by keeping track of each term in a sequence of rewrites and checking

whether it recurs. Whether the rewrites will cause the term to grow indef-

initely are not as easy to check, but by bounding the number of rewrites

applied, it is possible to avoid this, even if it isn’t possible to detect non-

termination in this way.

Currently MathSAT does not attempt to prove termination, but instead

it tracks all rewrites and discovers the particular case where rewrites are

cyclic.
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4.1.4 Implementation issues

The current implementation is straightforward, each rule is a function ob-

ject1. Rules in the rules language are translated into C++ at compile time.

Storing them as function object makes it easy to add collection of statis-

tics for rule applications and bounds on rule applications at the level of

individual rules. The framework keeps lists of all rules, and applies them

bottom-up to each subterm/subformula to a fix-point. The only optimisa-

tions are division of the rules into sublists, one for each type of operator,

and memoization of rule applications.

4.2 Substitution/variable elimination

It is very common for real-world formulae to contain a number of definitions

together with a formula that uses these definitions.(∧
i

vi = ti

)
∧ ϕ

Although input languages like the SMT-LIB standard language has support

for making such definitions using the let and flet constructs without in-

troducing fresh variables, these definitions are often encoded as an equality

between a fresh variable and the term vi = ti. For bit-vector formula these

definitions would be encoded into SAT as comparators which are entirely

unnecessary, and which could cause significant overhead in solving. So,

instead, these should be removed in preprocessing, to hopefully generate a

more compact and simpler formula to solve.

In addition, in MathSAT, there are a few other substitutions which are

performed on formulae

1Also called functors in programming
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– If there is a formula v = t ∧ ϕ, where v ̸∈ Var(t), then it can be

rewritten into the equisatisfiable formula ϕ[v 7→ t].

– It there is a formula v⟨n⟩[u : l] = t ∧ ϕ where v ̸∈ Var(t), then it can

be replaced with

ϕ[v 7→ v
⟨n−u⟩
1 :: t :: v

⟨l⟩
2 ] if u < n

ϕ[v 7→ t :: v
⟨l⟩
2 ] if u+ 1 = n

ϕ[v 7→ v
⟨n−u⟩
1 :: t] if l = 0

ϕ[v 7→ t] if l = 0 ∧ u+ 1 = n

where v1, v2 are fresh variables.

– If there is a formula (P ≡ ϕ) ∧ ψ where P ̸∈ Preds(ϕ) then it can be

replaced with ψ[P 7→ ϕ].

– If there is a formula P ∧ ϕ, this is rewritten into ϕ[P 7→ ⊤]

– If there is a formula ¬P ∧ ϕ, this is rewritten into ϕ[P 7→ ⊥]

4.3 Combining normal forms and substitution

Normalisation can cause formulae stored as DAGs using perfect sharing

to increase exponentially in size. This may happen in particular in com-

bination with substitution, which tends to increase sharing of terms and

subformulae. One possible remedy for this is to only allow normalisation

rules that are guaranteed to not cause exponential blowup. Examples of

such rule are those that simply evaluate terms or those which never intro-

duces fresh terms.

That solution might not be palatable, since it forces us to give up any

more powerful normalisation rules. An alternative is to bound the amount

of normalisation that is performed. Several ways to accomplish this is

necessary.

– Limit the number of times the normaliser is called
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– Keep a bound on the size increase of the formula, and terminate when

this bound has been reached.

– Bound the number of rule applications which are allowed

The last alternative can even be implemented at the rule level, bounding

each individual rule to a certain maximal number of applications. In this

way, those rules guaranteed to not cause blowup in the size of the formula

can be used without a bound, bounding only those rules which may cause

blowup.

In MathSAT, so far only the removal of more complicated rewrite rules

is supported. This is because it is unclear how frequently this problem

would occur in practise in real-world instances. Although considerable in-

crease in the sizes of formulae have been observed, for real-world usage the

resulting formula still appears to be either easily solvable despite the in-

creased size, or no more difficult than it would be with a more conservative

normalisation.

4.4 Propagation of unconstrained terms and formu-

lae

Formulae often contain terms of formulae which are not relevant when

determining satisfiability, but may still cause significant overhead when

solving either due to their size or the complexity of the operators used. In

these cases it can be advantageous to remove these irrelevant parts of the

formula before attempting to solve it.

Example 4.7

In the formula x + (3 ∗ y) /u(z − 7)<u 5, the term (3 ∗ y) /u(z − 7) is not

relevant for determining whether or not it is satisfiable, assuming we are not

interested in also computing a model. This is because regardless of the value
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of this term, it is possible to choose a value of x which gives any desired value

for x+ (3 ∗ y) /u(z− 7). This means that the addition could be replaced with

a fresh variable v creating the formula v <u 5 which is equisatisfiable to the

original but much easier to solve.

The reason we could perform the simplification in example 4.7 is that the

variable x was only used once in the formula, and we say in this case that

the variable is unconstrained.

Definition Given a formula ϕ and a variable v, if v occurs only once in a

DAG representation of ϕ with perfect sharing, then the variable is said to

be unconstrained in ϕ.

Once we have found a number of unconstrained variables, we can propagate

this “upwards” in the formula by checking if the terms where these formulae

occur are also unconstrained.

Definition Given a term t⟨n⟩ containing a set of unconstrained variables

V , if for any interpretation µ not giving an interpretation to any of the

variables in V it is the case that for all bit-vector constants c⟨n⟩ of width n

µ |= t⟨n⟩ = c, then t⟨n⟩ is unconstrained.

What the definition says is simply that if we have a term with a number of

unconstrained variables, this term is itself unconstrained iff for any value

of the variables in the term which are not unconstrained, it is possible to

choose values for the unconstrained variables so that the term evaluates to

any value. In example 4.7, x is unconstrained, and for any bit-vector values

c1, c2, it is possible to pick a value for x so that x + c1 = c2 is satisfiable.

This means the addition is unconstrained.

Once all unconstrained terms are identified, it is possible to replace all

of them with fresh variables to produce a new formula equisatisfiable to the

original. For almost all of the bit-vector operations defined in our theory, it

is under the right circumstances possible to propagate unconstrainedness
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:: Both operands unconstrained

[:] First operand unconstrained

not Operand unconstrained

and,or Both operands unconstrained

xor At least one operand unconstrained

≪,≫l,≫a Both operands unconstrained

rol, ror First operand unconstrained

+,− At least one operand unconstrained

∗ Both operands unconstrained, or one unconstrained and

the other an odd constant

/u, /s, remu, rems Both operands unconstrained

ite At least two operands unconstrained

= At least one operand unconstrained

<u, <s,≤u,≤s Both operands unconstrained , or one operand uncon-

strained, the other a constant and the atom is not valid

or unsatisfiable

Figure 4.1: Cases where propagation of unconstrained terms can occur

into the term. In figure 4.1, we detail the cases where this is so. Some

basic cases like x /u 1, which can be trivially normalised are left out here,

we will assume that normalisation has already been performed.

The case c∗x where c is odd may need some comment. The requirement

for this to be possible is that for any d, c ∗ x = d must have a solution.

This is not the case when c is even, for instance in the case 2∗x = 1 which

lacks a solution. But for any bit-vector width n, it is the case that c and

2n are relatively prime2, and then the equation has a solution for any d.

Theorem 4.4.1 For any bit-vector equation a⟨n⟩ ∗ x⟨n⟩ = b⟨n⟩ where a⟨n⟩ is

odd, the equation has a solution.

This is a variant of a well known theorem from number theory stating that

for any linear congruence ax ≡ b (mod n), it has a solution if a and n are

2Two number are relatively prime iff they share no common positive factors except 1
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relatively prime. This is clearly the case here, since any odd number is

relatively prime to any power of 2.

Obviously, propagation of unconstrained terms generalises into propaga-

tion of unconstrained formulae as well. A propositional variable occurring

only once in the formula is unconstrained, and it is possible to propagate

unconstrainedness upwards. E.g., if in an equivalence α ⇔ β the formula

α is unconstrained, the formula can be replaced with a fresh propositional

variable. In a similar way it is possible to define propagation conditions

for any logical connective.

4.5 Disjunctive partitioning

The core fragment of the bit-vector theory is a fragment of the bit-vector

theory where the only allowed operators are concatenation t1 :: t2, selection

t[m : l] and equality t1 = t2. In this fragment, there is a well known

technique presented by Cyrluk et al. in [CMR97, CMR96] that simplifies

the formula into an equisatisfiable but smaller formula.

The core rewrite technique can in short be described as taking the set

of equalities and reducing the widths of all bit-vectors by substituting each

variable v with a concatenation of fresh variables v 7→ vn :: . . . :: v1 in

such a way that in the resulting formula there are no selections in the

variables vn, . . . , v1 and each resulting equality can be split into a conjunc-

tion of equalities between variables vi = v′j. Every formula of this form is

satisfiable iff there is a model such that all bits in each variable have the

same value. Therefore, each such variable can be replaced with a single-bit

variable to produce an equisatisfiable formula which uses a smaller total

number of bits. This core rewrite technique chooses the division which

minimises the number of bits in the resulting formula, and we say that in

that case the variables are divided into maximal chunks.
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Figure 4.2: Core rewrite reduction

However, this technique is not always effective in reducing the width

of the bit-vector variables. In the cases where the maximal chunks are all

single bits, no reduction can be made. This is illustrated in some of the

instances in the SMT-LIB in the core fragment contributed by Roberto

Bruttomesso3. Measurements of the reduction rate measured in the reduc-

tion of the number of bits in all variables for these instances can be seen

in the stripchart in figure 4.2, where “Monolithic” denotes the reduction

rate achieved with the core rewrite technique. Although often a significant

reduction is achieved, on several instance we see little or no reduction. Out

of 672 instances, on 112 instances there is no reduction in formula size by

applying the core rewrite technique. One cause of this is that the reduc-

tion is done globally in the entire formula. If instead we could partition the

formula before applying the reduction in a way which allows us to apply

the technique on each partition individually, the technique may be more

effective on each partition. One way of producing a set of independent

formulae is disjunctive partitioning. Here we take a single formula ϕ and

3Located in QF BV/bruttomesso/core in the SMT-LIB
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4.6. Packet splitting

rewrite it into a disjunction of formulae

ϕ =
∨
i

ϕi

We call this the disjunctive partition, and we can now solve each formula

ϕi in isolation. The result of this partitioning on the core rewrite technique

can be seen in figure 4.2 denoted by “Partitioned”. The figure shows

measurements on the reduction rate of the bit-vector formulae, is the ratio

between the sum of the widths of all variables after and before applying

the technique. Performing disjunctive partitioning seems to increase the

efficacy of the technique, in particular the cases where no reduction could

be achieved on the original formulae. Using disjunctive partitioning some

reduction is always achieved on these formulae.

Disjunctive partitioning can also have a beneficial effect on other pre-

processing techniques. Take for instance the following formula

t1 − y≤u x ∨ t2 + x>u t3 + y

where x, y are variables and t1, t2, t3 are terms where x, y does not occur.

Performing disjunctive partitioning together with propagation of uncon-

strained terms can give us the disjuncts

P, Q

where P , Q are fresh predicates, and determining that the formula is sat-

isfiable is now trivial regardless of the complexity of the terms t1, t2 and

t3.

4.6 Packet splitting

In some cases, we may find formulae where certain reasoning would be

very cheap if only we had the right insight into the formula. One such case
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may be if we compute a number of bit-vector values, put them together

in a “packet” by concatenating them together and then “transport” this

packet to some other part of the formula through a chain of equalities where

they are unpacked again. The fact that the individual bit-vectors in both

ends of the chain of equalities are matching would be useful information

to discover. If all these atoms are facts, we can perform substitution and

normalisation to discover this, but if they are not, we are forced to discover

this during search.

In general, if we have 4 terms t
⟨m⟩
1 , t

⟨n⟩
2 , t

⟨m⟩
3 , t

⟨n⟩
4 , a set of variables

v1, v2, . . . , vN then if we have the following atoms

t
⟨m⟩
1 :: t

⟨n⟩
2 = v1

v1 = v2

v2 = v3

· · ·
vN−1 = vN

vN = t
⟨m⟩
3 :: t

⟨n⟩
4

Then for each variable vi we can create two fresh variables a
⟨n⟩
i , b

⟨m⟩
i and

apply the substitution vi 7→ a
⟨n⟩
i :: b

⟨m⟩
i to the formula. This will have the

effect of splitting the equalities into two, which will enhance the capability

of the EUF solver to discover inconsistencies and deductions.

Packet splitting will have no effect on bit-blasting, the resulting CNF

for each atom will be identical. So this technique should have no adverse

effect on the bit-vector solver, while helping us discover more conflicts and

deductions using EUF layering.

4.7 Difference propagation

In section 4.2, we saw how we can propagate information from equalities

by substitution. If in a formula ϕ it is known that v = t where v is a
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variable and t is some term not containing v we can substitute v for t

in ϕ. But if in the formula it is known that t1 ̸= t2, is it possible to do

something similar? To start with, it is easy to realise that if we have that

v1 ̸= v2 ∧ v2 = v3 we can deduce that v1 ̸= v3 and in the same way if we

know v1 ̸= v2 and our formula ϕ contains the subformula v2 = v3, we can

deduce that v2 = v3 ⇒ v1 ̸= v3 and conjunct that to our formula. This

propagation can be continued through further equalities. If v3 = v4 also

exist in the formula, we can add v2 = v3 ∧ v3 = v4 ⇒ v1 ̸= v4.

However, this does not appear to be very useful in a solver which uses

EUF layering. In such a solver, these facts will be easily deduced during

search. So we should probably look further to gain some advantage of

propagating differences in preprocessing. One more promising case where

EUF is unable to perform the deduction is for injective functions.

Definition Let f be a function with the domain A and codomain B. Then

this function is injective iff whenever f(x) = f(y) then x = y.

A straightforward consequence of the definition is that for any injective

function f , whenever x ̸= y we have that f(x) ̸= f(y).

Example 4.8

If we have the formula

a⟨16⟩ ̸= b⟨16⟩ ∧ a⟨16⟩[7 : 0] :: a⟨16⟩[15 : 8] = c ∧ c = b⟨16⟩[7 : 0] :: b⟨16⟩[15 : 8]

We have that a ̸= b, and by realising that f(x) = x[7 : 0] :: x[15 : 8] is an

injective function, we can deduce that a⟨16⟩[7 : 0] :: a⟨16⟩[15 : 8] ̸= b⟨16⟩[7 : 0] ::

b⟨16⟩[15 : 8]. This means that c ̸= c, and so the formula is unsatisfiable.

In general, if we have a formula ϕ containing two variables x, y, an equality

x = y and an equality between two terms t1 = t2 containing only the

variables x and y respectively such that t1 = f(x) and t2 = f(y) where f
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is some injective function, then we can deduce that ¬(x = y)⇒ ¬(f(x) =

f(y)) is a valid formula. This means we can add this axiom to the formula,

forming

ϕ ∧ (¬x = y ⇒ ¬(f(x) = f(y)))

In example 4.8, this would make this original formula

a ̸= b ∧ a⟨16⟩[7 : 0] :: a⟨16⟩[15 : 8] = c ∧ c = b⟨16⟩[7 : 0] :: b⟨16⟩[15 : 8]

∧ (a ̸= b⇒ a⟨16⟩[7 : 0] :: a⟨16⟩[15 : 8] ̸= b⟨16⟩[7 : 0] :: b⟨16⟩[15 : 8])

Which can be found to be unsatisfiable using the EUF solver. To see why

we can look at the formula as if it is a formula in EUF:

a ̸= b ∧ f(a) = c ∧ c = f(b) ∧ (a ̸= b⇒ f(a) ̸= f(b))

where f is the injective function over a and b respectively.

There may be many occurrences of the same injective function f(x)

modulo variable renaming in a formula, once one injective function has

been located it is therefore useful to locate other usage of the same function

by simply checking if there is another term in the formula identical modulo

variable renaming.

To check that a function f(x) is injective we can generate the verification

condition

x ̸= y ∧ f(x) = f(y)

which is unsatisfiable iff the function is injective. This verification condition

could be checked in the solver before attempting to solve the formula.

4.8 Other techniques

Several other minor preprocessing techniques are available in MathSAT,

some of them are listed here.
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Pure literal elimination The pure literal rule is a well known technique in

SAT solving. If in a formula in CNF an atom only occurs positively or

only negatively it is said to be pure. This variable can then be assigned to

a value which satisfies all clauses where it occurs, removing those clauses

from the formula. In MathSAT, this can also be used to filter out theory

literals which can be ignored by the theory solvers. It is also possible to

replace pure propositional atoms with truth values in preprocessing. This

step may in turn cause further simplifications by other techniques.

ITE merging Sometimes, formulae may contain multiple conjuncts of the

form
∧

i ite(ϕ, αi, βi) which can be merged into ite(ϕ,
∧

i αi,
∧

i βi).

4.9 Model computation

Computation of models for satisfiable formulae is an important feature

in real-world applications, and preprocessing steps should be compatible

with this feature if possible. When that is not possible, one alternative

approach to model computation is to simply disable any technique which

makes computing models non-trivial. This has two disadvantages:

– The techniques not compatible with model computation lose some

value, since models are frequently required in real-world applications

– Disabling some techniques will also affect performance on unsatisfiable

formulae

Here, we will make some effort in avoiding this drastic measure, and in-

stead attempt to discover ways of computing models for all preprocessing

techniques described in this thesis.

The basic problem can be stated as follows. We have an original formula

ϕ which through some preprocessing technique has been rewritten into a
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formula ϕ′. Assuming we we find a model µ |= ϕ′, how can we compute a

model µ′ |= ϕ?

For normalisation as described in section 4.1, the resulting formula is

always equivalent to the original, so any model for the normalised for-

mula will also be a model for the original formula. The other techniques

produce an equisatisfiable and generally not equivalent formula, they may

both remove variables and introduce fresh variables in the formula. Using

substitution, variables are removed from the formula by applying some sub-

stitution v 7→ t, but in this case computing a model is easy since we know

that v = t in the original formula. Given a interpretation for the variables

in t we can simply evaluate the term t to compute an interpretation for v

so that µ |= v = t.

When applying the core rewrite technique of Cyrluk et al. we know

that the original variables relate to their replacements by concatenating

the replacements together.

With packet splitting, some variable v is substituted by a concatenation

of fresh variables v1 :: v2. Given an interpretation µ for the fresh variables,

we can compute an interpretation for v such that µ′ |= v = v1 :: v2.

When propagating unconstrained terms, we replace some term t with a

fresh variable v because we know that t contains some variable or variables

that do not occur elsewhere in the formula such that for any value of v we

can find a value for these variable satisfying t = v.

To sum up, all techniques that are used can be described as simply ap-

plying some substitution ϕ′ = ϕ[t 7→ t′] , and we can use these substitutions

to help us compute models for satisfiable formulae.

One very simple solution for model computation is to keep track of

all substitutions being applied to the formula, and given a model for the

simplified formula compute a model for the original formula as well using

these substitutions. One simple approach to compute a model is to use
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a SMT solver to help us. Given a model µ and a substitution t 7→ t′

which was used to rewrite the original formula ϕ into ϕ′, we can extend the

model by computing a model for the formula µ ∧ t = t′. Working our way

backwards through all rewrites performed during preprocessing, we can in

this way accumulate a model for the original formula.

Example 4.9

If we have the formula x + 1 < y ∧ y > z ∧ z = 3, we can apply the

following preprocessing techniques: First we apply substitution on z, and then

propagation of unconstrained terms on x, keeping track of all rewrites we

perform. We see the rewrites and the resulting formula below:

Formula Substitutions

x+ 1<u y ∧ y >u z ∧ z = 3

x+ 1<u y ∧ y >u 3 z 7→ 3

v1<u y ∧ y >u 3 z 7→ 3, x+ 1 7→ v1

Let’s say the solver produces a model µ = {v1 = 3, y = 4} for the pre-

processed formula. We extend this model iteratively using the rewrites which

have been performed in reverse order.

1. We can compute a value for x by solving v1 = 3 ∧ y = 4 ∧ x + 1 = v1

giving us an extended model µ′ = {v1 = 3, y = 4, x = 2}.
2. Finally we can compute a value for z by solving the formula v1 = 3∧ y =

4 ∧ x + 1 = v1 ∧ z = 3 giving us the extended model µ′ = {v1 = 3, y =

4, x = 2, z = 3}.

This gives us a final model µ′′′ = {y = 4, x = 2, z = 3}, keeping only the

variables in the model which occurred in the original formula.

We will call this approach the incremental model computation approach,

since it builds the model for the original formula incrementally one substi-
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tution at a time. An alternative might be a monolithic approach, trying

to compute the model in one step.

Naturally, there are several obvious improvements possible on the basic

algorithm. In the last model computation step in the above example, there

is no need to use a SMT solver to compute a value for z, the rewrite rule

already gives us the value. In the same way for the rewrite rule x+ 1 7→ v1

we can replace all known values for the variables giving us the equality

x + 1 = 3. Now we can apply normalisation described in section 4.1 to

yield the equality x = 2.

The main disadvantage of this technique becomes obvious with a simple

example. Consider the formula

x /u y <u z

which can be rewritten using propagation of unconstrained terms into

v <u z where v is a fresh variable, which in turn can be rewritten into

the fresh predicate P . This removes the potentially difficult to reason with

division operator making the formula trivial to solve. However, when com-

puting a model for this formula using the technique described above, it is

necessary to solve a formula which includes the division operator, and so

we have not gained much. A solution to this problem is to store informa-

tion of why the rewrite was applied, and use an ad hoc model computation

procedure for each particular type of rewrite. In this example, the rewrites

applied (if split two separate rewrites for clarity) is x /u y 7→ v, v <u z 7→ P .

During model computation, we have the initial model {P = ⊤}, and

the first model computation condition becomes v <u z after simplification.

Since we know that this was a propagation of unconstrained terms where

both operands were unconstrained, we can choose any value for v and z

that satisfies the atom. Let’s say we choose {v = 0, z = 1}. The second

model computation condition now becomes x /u y = 0 after simplification.
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The reason for the rewrite was that both operands of the division were

unconstrained so we are free to pick suitable values for them. Let’s pick

{x = 0, y = 1}. The final model therefore becomes {x = 0, y = 1, z = 1}.
By realising why each rewrite of the formula was performed, we were able

to compute a model without having to perform any complex reasoning.

For every type of rewrite, it is possible to devise an ad hoc procedure

which solves the model computation condition efficiently. In the case of

most rewrites such as those for substitution, pure literal elimination or the

core rewriting technique, simple evaluation is enough to solve them. For

propagation of unconstrained terms, we will show how they can be solved

in some of the cases, the others are analogous.

v+ t 7→ v′ After first assigning arbitrary values to any unassigned variable

in t, the model computation condition will become v + c1 = c2 which

trivially simplifies into v = c2 − c1.

v ∗ c 7→ v, c is odd The model computation condition is v ∗ c = c′, which

can be solved by noticing that this is the same as the solving the problem

ax ≡ b (mod n) and can be solved with standard methods by computing

the least residual of xb mod n. More details can be found in number

theory textbooks, e.g. Yan [Yan02].

v1 /u v2 7→ v Both operands are unconstrained, so we can choose v2 = 1 and

v1 = v as a solution.

v1<u v2 7→ p If p evaluates to true, we can pick {v1 = 0, v2 = 1}. Otherwise

we can pick {v1 = 0, v2 = 0}.
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Example 4.10

Given the formula x = y + 2, this can be simplified in several ways. We can

realise that x is unconstrained and replace the equality with a fresh predicate,

or we can apply the substitution x 7→ y + 2. In the second case, the resulting

formula y + 2 = y + 2 simplifies into ⊤. When computing a model we now

have the model computation condition x = y + 2 to solve. With the ad hoc

method we need to realise that since this was the result of a substitution, we

can give any values to the variables in the right hand side, and then evaluate it

to get a value for x. E.g. if we assign y = 0, we get the model {x = 2, y = 0}.

4.10 Incrementality and backtrackability

To be useful in the MathSAT API, a preprocessing technique needs to be

both incremental and backtrackable. For some techniques, these features

are trivially supported. The local simplifications described in section 4.1

act locally on each subterm and subformula and naturally support both

incrementality and backtrackability.

Substitution can also support both features with some modifications.

One can either apply substitution locally on each asserted formula, or ac-

cumulate the substitutions found for each asserted formula and apply these

also for every future asserted formula. Applying substitutions globally on

all asserted formulae can cause problems with efficiency, since it may mod-

ify previously asserted formulae, and incrementality would be more difficult

to achieve. But even just applying substitutions locally is problematic. If

we first assert the formula

x > 3
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and then assert the formula

x = 1

we can not simply perform the substitution [x 7→ 1] on the second formula,

which would transform it into ⊤. This would make the conjunction of the

two formulae satisfiable, rather than unsatisfiable. Instead, when discov-

ering a new substitution, we must be careful to apply it without deleting

the equality that was used to create it, and only apply it on the rest of the

formula. So, for any substitution which eliminates a variable, the equality

used to create the substitution must be preserved iff this variable has been

asserted previously. When backtracking, this list of substitutions can be

reset to the state it had at the last backtracking point.

For propagation of unconstrained terms, the situation is a little more

complex. Whether a term is unconstrained or not is a global property

depending on all asserted formulae. This means that a term t which is

unconstrained after asserting a number of formulae may cease to be un-

constrained in the future as further formulae are asserted. When that

happens the original definition of this term must be inserted in the set of

assertions again. This can be done by keeping track of the substitution

which was performed [t 7→ v] where v was a fresh variable, and when a

new formula is asserted which makes t no longer unconstrained, we can

simply add the definition of the fresh variable v = t to the set of asserted

formulae.

Some of the other techniques also cause problems, such as disjunc-

tive partitioning and the core rewrite technique. This limitation makes

these techniques less useful in real-world applications, unless the applica-

tion itself guarantees non-incremental usage. As we shall see in chapter

7 however, even simply solving several similar formulae benefits from an

incremental solver, making incrementality a useful feature even in some

non-incremental applications.
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Chapter 4. Preprocessing

It should be noted that the necessary implementation work to achieve

incrementality and backtrackability has not yet been performed in Math-

SAT.

4.11 Architecture

The bit-vector solver is still in an experimental stage, so the design goals

are focused on configurability and simplicity rather than achieving the

best possible performance. To achieve this, each preprocessor technique

is a separate step, rather than interleaving steps into each other. The

preprocessing is performed until none of these steps changes the formula.
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Chapter 5

Approximation of formulae

Not all tranformations need be satisfiability preserving as was the case

with the preprocessing techniques discussed in chapter 4. There is an

important class of techniques, which are not. This class is often called

approximations. An approximation has the characteristic that one of the

possible results (satisfiable or unsatisfiable) are correct, but the other may

not be.

Example 5.1

We have the formula

ϕ ∨ ψ

We can abstract this formula into ϕ. If this abstraction is satisfiable, we know

that the original formula was also satisfiable. However, if ϕ is unsatisfiable, we

still do not know whether the original formula is satisfiable or not.

Approximation are commonly divided into two types: under-approximations

and over-approximations.

Definition Given a formula ϕ an under-approximation ϕ is a formula such

that if ϕ is satisfiable, so is ϕ.
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Chapter 5. Approximation of formulae

Definition Given a formula ϕ an over-approximation ϕ is a formula such

that if ϕ is unsatisfiable, so is ϕ.

The approximation used in example 5.1 is an example of an under-approximation.

An example of an over-approximation can be found in example 5.2.

Example 5.2

If we have the formula ϕ ∧ ψ it is possible to approximate it with the formula

ϕ. Should this formula be unsatisfiable, we know this holds also for the original

formula, and therefore this is an over-approximation.

The motivation for approximation techniques is that it is assumed that

some parts of the formula are not relevant for demonstrating whether or not

it is satisfiable, but there is no (simple) satisfiability-preserving rewriting

technique able to simplify the formula in a way that eliminates that part

of the formula. But as long as there exists a technique that computes an

under- or over-approximation which does remove these difficult to reason

with subformulae or subterms, we can still apply those to simplify the

formula.

The downside is that if we make the incorrect choice of abstraction,

the result from the solver does not tell us if the formula was satisfiable

or not. In this case, we need to refine the approximation. A refinement

produces a new formula, which hopefully has a better chance of producing

the desirable result. Solving and refinement are performed iteratively, in

the same way as abstraction refinement loops are used in verification.

The general algorithm in found in algorithm 5.1. It starts by generating

an initial approximation or the original formula, which is meant to be the

coarsest approximation that will be tried. This formula is solved, and if

the result is admissible, it is returned. An admissible result is one which

66



Algorithm 5.1: Approximation/refinement SolveAR(ϕ)

ϕ′ ← initial approximation of ϕ1

while Solve(ϕ′) not admissible do2

ϕ′ ← refine(ϕ′)3

end4

return Solve(ϕ′)5

holds also for the original formula, e.g., if the approximation was an under-

approximation and the approximated formula was satisfiable, this result is

admissible. If the result was not admissible, it is refined, which produces

either a new formula and the algorithm iterates in this loop until an ad-

missible result is produced. For termination there are two requirements on

the components of this algorithm

1. If ϕ′ is identical to ϕ, the result of Solve(ϕ′) is always admissible.

2. Eventually, the refinement step will produce the original formula ϕ.

Example 5.3

Consider the formula ∨
i

ϕi

Applying under-approximation, we can produce an initial approximation as ϕ1.

The result of solving the formula is then that either the approximation is sat-

isfiable, or it is identical to the original formula. In the refinement step we

can simply add one more disjunct ϕi to the approximation. Either we will be

able to show the formula satisfiable with only a subset of disjuncts, or we will

(eventually) solve the original formula.

In this chapter, we will show three different approximations; One pro-

viding over-approximation for use in the lazy SMT schema, and two under-

approximation techniques for use in preprocessing and in the theory solver
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Chapter 5. Approximation of formulae

respectively. We will also show how these can be trivially combined in

a decision procedure by nesting of approximation refinement loops, and

give some implementation details used in implementing these techniques

in MathSAT.

Naturally, as with the preprocessing steps discussed in chapter 4 it is

advantageous if the approximation techniques do not interfere with the

ability to produce models of satisfiable formulae, so we will show how

models can be computed when under-approximations are used. For the

over-approximation technique discussed here, model computation is not

an issue.

5.1 Over-approximation

Since over-approximation techniques do not require refinement when the

approximation is unsatisfiable, it makes sense to attempt to apply over-

approximation on cases where the formula at hand is believed to be un-

satisfiable. One natural candidate is in a theory solver as used in the lazy

SMT schema. In this case, the formula to be solved is a set of theory

literals. l1, . . . , lN . If for complete Boolean models the set is inconsistent

(the conjunction of all literals l1 ∧ · · · ∧ lN is unsatisfiable, we compute a

theory conflict set, perform conflict analysis in the boolean enumerator,

backtrack, and continue searching. If it is consistent (the conjunction is

satisfiable) we have found a model. That means that we can expect formu-

lae to be unsatisfiable, and the satisfiable case is the exception. For this

reason, it seems to be an ideal candidate for over-approximation.

In most cases, when a particular truth assignment is inconsistent, it

is possible to compute a conflict set which is very small in relation to the

number of literals on the truth assignment. Naturally, if we could somehow

identify this subset from the start, a good over-approximation would be
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5.1. Over-approximation

this exact subset. But this may not be possible in practise. It is also not

unusual that it is possible to find an inconsistency that is “obvious”, in the

sense that it does not require complex reasoning to discover it.

We can also observe that some operators are in general more difficult to

reason with than others, e.g., multiplication can be more difficult than ad-

dition or bit-wise operators. A simple strategy is therefore to initially only

consider literals containing “simple” operators. Only if no inconsistency is

detected among those literals are potentially more difficult-to-reason-with

literals considered.

We choose the initial approximation as the empty set of literals. It may

seem strange to choose an approximation that is guaranteed to not deliver

an admissible answer, the reason for this choice is that EUF abstraction

should be given an opportunity to show the formula unsatisfiable by itself

when it is used. In cases where the bit-vector theory solver is called, the

initial consistency check with an empty set of literals is cheap enough to

not matter.

5.1.1 Refinement

Refining the over-approximation is straightforward, simply take more lit-

erals into account. There are many choices for how this could be done, and

since the intuitive idea is to reason with “simple” atoms first the first step

is to understand which are simple and which are not. First for all atoms a

penalty is computed by accumulating penalties for all terms in each atoms

as given by table 5.1. The penalties chosen in this work are meant to con-

vey that some operators are potentially more difficult to reason with than

other, but this is still only a very rough approximation of difficulty.
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Chapter 5. Approximation of formulae

Table 5.1: Operator penalties

Operator Penalty

Constants 0

Concatenation, selection 0

Sign/zero extension 0

Variable 1

Bit-wise operators 1

Rotation 1

Addition, subtraction 100

Shift 100

Multiplication, division 1000

Example 5.4

The atom (x⟨16⟩ :: y⟨16⟩)+3⟨32⟩<u zext⟨32⟩(x)) has two variables (penalty = 2),

a zero extension (penalty = 0), a concatenation (penalty = 0) and an addition

(penalty = 100) giving a total penalty for the atom of 102.

During refinement, we add a few more of the atoms with the lowest

penalty which have not yet been added to the solver. To decide how many is

“a few”, all atoms are divided into tiers based on difficulty. The refinement

procedure checks the current truth assignment, and locates the lowest tier

containing atoms on the truth assignment which have not yet been added

to the solver and adds all those atoms in that tier which occur in the truth

assignment. In MathSAT, atoms have been somewhat arbitrarily divided

into 4 tiers, with penalties in the intervals [0, 100], [101, 1000], [1001, 10000]

and lastly [10001,∞]

Early termination An improvement of the basic refinement algorithm is

to filter out those atoms occurring on the truth assignment for which the

current theory solver model gives the correct truth value. Using this im-
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5.2. Under-approximation

provement it may be possible to discover that all literals on the truth

assignment are satisfied and terminate the approximation/refinement loop

early.

This is however not yet implemented in MathSAT.

5.2 Under-approximation

For under-approximation, we need to find another suitable case where it

might be helpful. It is well known that arithmetic may be very difficult

to reason with for SAT-based tools. But with automatically generated

formulae coming from formal verification, it may well be that much of

these arithmetic terms are not relevant for satisfiability.

So the idea here is to abstract away arithmetic in the hope that it is

irrelevant. There are a multitude of possible ways of doing this, here we

will iteratively approximate the formula, starting with those terms which

seem to be most difficult to reason with, multiplications and divisions, and

then moving on to additions/subtraction and so on.

The basic idea is to simply guess a value for a variable occurring in a

term, in such a way that the terms becomes easier to deal with.

Example 5.5

Given the formula

a+ b /u c<u 3 ∧ b ∗ c = 2

If we were to guess that c = 1 the formula simplifies to

a+ b<u 3 ∧ b = 2

which simplifies further to

a+ 2<u 3
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Chapter 5. Approximation of formulae

which can be easily solved, e.g. with a = 0

In this work, we build on this example. We first rank operators according

to “complexity”: ranking division, remainder, multiplication higher that

addition or subtraction, which in turn is ranked higher than bit-wise op-

erators. Then we locate all variables occurring as operands in operators.

Starting with the variables occurring in higher ranked operators, values are

guessed for these variable in such a way as to remove the operator from

the formula. E.g., for a divisor, 1 is a suitable value, for an addend 0 may

be suitable.

In MathSAT these under-approximations are performed iteratively. First

a candidate variable is identified, and it is replaced with a suitable value.

Then all preprocessing steps that have been enabled by the user is per-

formed on this approximation. This is done iteratively until either the

formula simplifies to ⊤ or ⊥, no more candidate variables can be found,

or an upper limit on the number of iterations is reached. There are two

reasons to perform the preprocessing steps after each under-approximation

step. First, the under-approximation may generate more opportunities for

simplification of the formula, and second, this increases the chance that we

can detect that the current under-approximation is unsatisfiable without

needing to solve the formula. This may reduce the number of unnecessary

under-approximations significantly. The result in each iteration is stored

on a stack of under-approximations, and this stack is initialised by pushing

the original formula onto the stack. The current approximation is the top

of this stack.

5.2.1 Refinement

Since during approximation one variable was assigned a variable at a time,

and each intermediate formula was stored in a stack, refinement is as simple

as removing the top of the stack and using the next formula. If the stack
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5.2. Under-approximation

becomes empty, the original formula was unsatisfiable.

Since preprocessing has been performed on each formula in the stack,

changes from one formula to the next can be more than simply replacing a

variable with a constant. In the current implementation, each refinement

is therefore solved in a separate solver rather than using a single solver

incrementally. After solving each formula the theory conflict clauses are

collected, and all clauses which are relevant are added to the new solver

before solving. A relevant clause is one whose atoms occur in the current

formula. In this way, at least some of the information gained in a previous

iteration can be reused.

Early termination Since the under-approximation trigger further rewrites

in preprocessing, early termination is not straight-forward. However, if

the theory conflicts in a particular iteration would be enough to show

unsatisfiability in the propositional abstraction of the original formula,

then the solver will be able to detect this without making any call to the

bit-vector theory solver due to the over-approximation in the theory solver

which initially ignores all bit-vector atoms.

5.2.2 Under-approximation in theory solver

In the theory solver, a similar under-approximation of assigning variables

to values technique can also be applied. A simple way of doing this is

to add extra assumption to the SAT solver which describes the under-

approximation that should be attempted. If we wish to approximate by

guessing that some variable v⟨n⟩ is 0, and this variable has been bit-blasted

into (vn−1, . . . , v0), we assume the literals ¬vn−1, . . . ,¬0 in the SAT solver

within the theory solver.

During refinement of this type of approximation, it is possible to check

whether the approximation itself is part of the cause for unsatisfiability, or

73



Chapter 5. Approximation of formulae

if the non-approximated set of literals would have been unsatisfiable as well.

This can be done by checking either the unsatisfiable core of the formula in

the sat solver, or as is done here by computing a top-level conflict in terms

of the assumptions. If this conflict does not contain any of the assumptions

that are part of the approximation, we can deduce that the problem was

unsatisfiable. Otherwise, we can refine the approximation by removing all

assumptions in the conflict that were part of the approximation, and solve

again.

5.2.3 Model computation

Since both types of under-approximation assigns concrete values to vari-

ables (or bits of variables), computing models for a formula given a model

for an under-approximated formula is trivial, we can simply extend the

model with the values provided in the approximation step.

For the under-approximation in the bit-vector theory solver, this comes

“for free” since the approximation is based on adding extra assumptions to

the underlying SAT solver. Any model returned from the SAT solver can

therefore be treated the same regardless of whether under-approximation

was used.

For the under-approximation in preprocessing, the under-approximations

of a variable v to a value c can be recorded as any other preprocessing

rewrite v 7→ c. The model computation algorithms described in section 4.9

will then work without modification. The only complication comes in re-

finement, when an approximation is refined some rewrites must be removed.

This can be easily solved by keeping the rewrites in a stack and simply re-

store the stack a the state it was in before the last under-approximation

was performed.
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5.3. Combining multiple approximation/refinement loops

5.3 Combining multiple approximation/refinement loops

It is easy to see that under- and over-approximation can be combined,

as long as the approximation/refinement loops are nested. Each approx-

imation/refinement loop will take a formula as input, approximate and

check the result. If the result is correct with respect to the approximation

it can be returned, otherwise the approximation is refined and we solve

again. This means that if the solver used is a decision procedure, then the

approximation/refinement loop will also implement a decision procedure.

Noticing this, it is easy to see that approximation/refinement loops can be

nested by replacing the function used to solve the formula in each iteration

with a function that implements an approximation/refinement loop. A

Algorithm 5.2: Approximation/refinement SolveAR(S, ϕ)

ϕ′ ← initial approximation of ϕ1

while S(ϕ′) not admissible do2

ϕ′ ← refine(ϕ′)3

end4

return S(ϕ′)5

sketch of this algorithm is shown in algorithm 5.2. This algorithm takes

two inputs, the formula ϕ to solve and a decision procedure S which can

solve formulae. This procedure can either be a normal decision procedure,

or itself implement an approximation/refinement loop.

With early termination in the inner loop, the outer loop will also termi-

nate as long as the approximations are of opposing types (under-approximation

nested inside over-approximation, or vice versa). This is because an early

termination result in this case will always be admissible in the outer loop,

and that loop will also terminate. If two approximation loops of the same

type are nested, an early termination of the inner loop will not automati-

cally terminate the outer loop, it will only terminate if the result is admis-
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sible also in the outer loop.

This is how the under- and over-approximations in the bit-vector theory

solver are combined. The under-approximation which assumes values for

particular bits is nested inside the over-approximation which only considers

a subset of the literals on the truth assignment. If the under-approximation

loop terminates early, so will the over-approximation loop.
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Chapter 6

Experimental evaluation

In this chapter we try to discover the effectiveness of the various tech-

niques discussed in this thesis. There are several questions we would like

to answer:

– Are all techniques useful?

– Is there some interaction between several different techniques, or are

they independent of each other?

– Which techniques should be used, and which should not?

– What is the effect of model computation on execution time?

Even if we can’t deliver a final answer to these questions, we will still make

an attempt to give at least a partial answer of how well these techniques

work in MathSAT. With the large number of techniques discussed, we will

focus on an interesting subset of them, and provide only a brief overview

of the efficiency of the rest.

All experiments in this chapter were carried out on machines with dual

Intel Xeon E5430 CPUs running at 2.66 GHz using 16 GB of RAM running

Linux.
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Figure 6.1: Example Cumulative Distribution Function plot

6.1 Cumulative distribution functions

Before we look at the experimental data, we introduce a graphical tool

which can be used to provide an insight into the behaviour of an algorithm.

A very useful type of plot is a Cumulative Distribution Function (CDF)

plot, and they can be seen as a type of (Kaplan-Meier) survival plots. The

CDF for some variable X can be defined as the probability that the variable

is less than some value.

F (x) = P (X < x)

An example of two CDFs can be seen in figure 6.1. Here we have measured

the execution time of two hypothetical algorithms on a set of instances,

and computed the cumulative distribution function of the execution time.

One advantage of CDF plots is that we can read off every percentile of the

measured quantity in this type of plot. In this case we have marked the

median (the 50th percentile), which is F (x) = 0.5 on the vertical axis. We

can see that the median is around 10 for algorithm A, and around 12 for

algorithm B. Looking at other percentiles, we can see that algorithm A is
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always better than B, and in this case we say that A dominates B and this is

strong evidence that A outperforms B in general assuming the experiment

was performed on a representative set of instances. Apart from being able

to give an overview of the performance of an algorithm at a glance, it

can also be used to compare more than two different algorithms, which is

cumbersome with the more traditional scatter plots.

6.2 Effects of techniques

In this section we try to discover the effect of some of the techniques that

have been presented in this thesis. We do this on a random selection of

100 real-world instances from the SMT-LIB. Since the instances from the

SAGE tool [GLM07] outnumber all other instances by a wide margin, we

first divided the instances into subsets and sampled these. We selected 20

instances from SAGE, 20 from Spear/Calysto, 20 from UCLID or related

tools, and 40 from the other sources. On these we ran several tests with

all combinations of the following techniques

– Encoding into SAT versus DPLL(T)

– Under-approximation in preprocessing

– Normalisation of bit-vector terms

– Substitution

– Propagation of unconstrained terms

– Pure literal elimination in preprocessing

A timeout of 600 second was used to keep computation time reasonable.

The results clearly showed that three of the techniques have a significant

impact on performance: Under-approximation, normalisation and substi-

tution. An overview on the results can be seen in figure 6.2. Both nor-

malisation and substitution does improve performance, while using under-

approximation increases execution time. Using SAT appears to be an im-
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provement over DPLL(T), but the effect is not as clear as for the other

three techniques. Propagation of unconstrained terms might have an over-

all effect, but it is difficult to draw any conclusion. The pure literal rule

has virtually no effect overall, so may not be very useful.

It is unlikely that the effect of a technique is independent of all other

techniques. If that were the case, we could easily find the best configura-

tion of techniques by simply testing one technique at a time, and choose

whether to use it or not. It is far more likely that there is some interaction

between different techniques, meaning the impact of one technique on per-

formance depends to some extent on whether one or more other techniques

are being used. When two techniques interact, we say there is a pairwise

interaction between them. When n techniques interact, we say there is

a n-way interaction. As an example, the choice between the lazy versus

eager approach interacts pairwise with all other techniques tested in this

experiment. Two examples of interaction can be seen in figure 6.3. The

horizontal axis is the median execution time, and in the left figure we can

see that normalisation hurts the median execution time when DPLL(T) is

used, but helps performance when SAT is used. In the right figure, we can
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see that pure literal elimination although it didn’t seem to have an overall

effect still seems to interact with normalisation.

All in all, this makes finding the optimal set of technique a difficult

problem. An automated approach like that presented in [HHLBS09] may

help find a good configuration with a small manual effort.

6.3 SAT vs DPLL(T)

To compare encodings into SAT versus the lazy (DPLL(T)) approach, all

SMT-LIB instances have been run with both techniques with a timeout

of 1800 seconds. In both cases, all other preprocessing and approximation

techniques were used, and the results can be seen in the scatter plot in

figure 6.4. Failure to solve an instance is indicated by a red cross, and

placed at an execution time > 1800 seconds. The figure clearly shows that

it is not easy to say that one technique is clearly better over the entire set

of instances.

Looking purely at the real-world instances, encoding to SAT fails to

solve 4 instances that can be solved by DPLL(T), whereas DPLL(T) fails

to solve 17 instances that can be solved with SAT. Most of the latter

instances are from Spear, specifically the wget set1. Here there are 16 in-

stances which are easy to solve with an encoding into SAT, but which we

fail to solve using DPLL(T). These instances are all satisfiable, and the

boolean enumerator happens to generate a truth assignment that is very

difficult to check consistency of, and we fail to do so in the time-limit. Had

the boolean enumerator made different decisions, the resulting consistency

checks in the bit-vector theory solver would have been trivial. This high-

lights a performance issue with DPLL(T). Once the boolean enumerator

has made a decision there is no way for the theory solver to indicate that

1Located in QF BV/spear/wget v1.10.2 in the SMT-LIB
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Figure 6.4: SAT versus DPLL(T)

this particular consistency check is “too difficult” and ask the top-level to

restart and find another. In an encoding into SAT, this is taken care of

by the restart policy of the SAT solver, but in DPLL(T) we are forced to

check consistency of the current truth assignment. There are 848 instances

where SAT uses less than half the time compared to DPLL(T), and 1036

instances where DPLL(T) uses less than half the time of SAT.

However looking purely at the real-world instances, the picture is more

clear. A scatter plot and CDF is shown in figure 6.5. Here we have excluded

the SAGE instances, both because they are so numerous as to dominate

the figures, and because the performance is very similar on these instances

with both techniques. We can clearly see that the encoding to SAT is

advantageous, on this subset of the instances.

6.4 Under-approximation

The data in section 6.2 seemed to indicate that under-approximation is

not a useful technique. But it is a technique which is targeted at a spe-
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Chapter 6. Experimental evaluation
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Figure 6.5: SAT versus DPLL(T) on real-world instances

cific case where we have potentially complicated terms which are not rel-

evant for satisfiability, but are still not unconstrained. For this reason we

have performed a more extensive experiment on real-world instances in

the SMT-LIB, shown in figure 6.6, which includes all real-world instances

except those from the SAGE tool. A timeout of 1800 seconds was used,

and it seems clear that under-approximations does help performance. This

set of instances are dominated by formulae generated by the Calysto static

checking tool2. Those instances almost all contain division and multiplica-

tion operators, making them potentially difficult to reason with. However,

these are almost all satisfiable, and under-approximation works very well in

producing a significantly simpler formula which is trivial to solve. There

are however several instances from other sources which are possible to

solve without under-approximation, but which we fail to solve while using

under-approximations. We can also see in the CDF that for longer exe-

cution times, not using under-approximation seems preferable indicating

that an aggressive refinement strategy or a limit on the execution time for

2Located in QF BV/spear in the SMT-LIB
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6.5. Minimal model enumeration
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Figure 6.6: Effect of under-approximation on real-world instances

under-approximation may be fruitful.

6.5 Minimal model enumeration

Here we present some experiments using the dual rail based minimal model

enumeration technique. We compare execution time and number of con-

flicts found on the real-world instances in the SMT-LIB again excluding

SAGE, the results are shown in figure 6.7. With a timeout of 1800 sec-

onds, we fail to solve 37 instances using DPLL(T), and with the dual rail

encoding we fail to solve 31 instances. However, looking at the CDFs it

seems clear that for the most case, dual rail suffers in performance. An

explanation for this can be seen when looking at the number of conflicts,

using dual rail almost always results in more conflicts.
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Figure 6.7: Effect of dual rail on real-world instances

6.6 Core rewriting and disjunctive partitioning

In the SMT-LIB benchmark library, there are a few instances in the core

fragment of bit-vectors, none of which come from real-world applications.

We will focus on the core fragment instances3 contributed to the SMT-LIB

by Bruttomesso, described in [BS09]. These are parametric and designed

to show the effectiveness of rewriting techniques on the core fragment. We

have tested three different techniques:

basic Uses all preprocessing techniques except the core rewriting technique

of [CMR97] (also described in section 4.5) and disjunctive partitioning.

core Same as basic, but with the core rewriting technique

disj Same as core, but with disjunctive partitioning

The result of this experiment can be seen in figure 6.8. The basic variant

fails to solve 141 instances, and is dominated by the other two techniques.

Using the core rewriting technique, we fail to solve 76 instances, and finally

using disjunctive partitioning we are able to solve all instances. However,
3Located in QF BV/bruttomesso/core in the SMT-LIB
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Figure 6.8: Effectiveness of rewriting in the core fragment

for most trivial instances, execution time is worse than just using the core

rewriting technique. The reason for this is that when using disjunctive par-

titioning we are preprocessing all disjuncts independently, and this causes

some extra overhead which is noticeable on the trivial instances.

6.7 Packet splitting

To show the benefit of the packet splitting technique, we will here use

some instances again described in [BS09]4. The results of this is shown in

figure 6.9. On these instances, the effect of packet splitting is dramatic.

This is because these instances, which are all unsatisfaible, can be solved

using DPLL(T) and the EUF solver only. Without packet splitting, these

instances require bit-vector reasoning, and the instances seem to be de-

signed to show a performance problem for bit-vector solvers based around

encoding into SAT. MathSAT is able to solve 31 out of the 64 instances if

4Located in QF BV/bruttomesso/simple processor in the SMT-LIB
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Figure 6.9: Effect of packet splitting on simple processor instances

packet splitting is not used within 1800 seconds..

6.8 Difference propagation

For difference propagation, we will once again look at instances from [BS09]5.

These examples are somewhat extreme, when difference propagation is

used, all instances become propositionally unsatisfiable. In general check-

ing whether an arbitrary term is injective may be computationally expen-

sive, so this technique probably has limited value. The results are shown in

figure 6.10, and the difference is dramatic. This is due to the fact that for

these instances, discovering that some functions are injective is the main

difficulty in showing these instances to be unsatisfiable. It should be noted

that even without this technique, all instances could still be solved within

the time limit, the maximum time was 1255 seconds.

5Located in QF BV/bruttomesso/lfsr in the SMT-LIB
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Figure 6.10: Effect of difference propagation on lfsr instances

6.9 Clustering

Performance of lazy clustering on real-world instances can be seen in figure

6.11. Performance is significantly worse, in large part due to the extra

overhead of managing the clusters, which need to be merged repeatedly.

Another problem is in excessive memory usage, which is significantly higher

compared to not performing clustering. There are several cases where the

solver run out of memory, the reason for this is as yet unclear.

Using the eager clustering technique, which clusters all atoms before

search starts once and for all, we get the results shown in figure 6.12.

The results are very similar to those found with lazy clustering, but eager

clustering appears to be slightly better below 10 seconds and slightly worse

above 10 seconds. This is likely due to less overhead in cluster management

with the eager clustering technique, an advantage which disappears once

the lazy approach has merged most of the possibly large initial number of

clusters.
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Figure 6.11: Lazy clustering
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Figure 6.12: Eager clustering
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6.10. Comparison with other solvers

6.10 Comparison with other solvers

A comparison with other state-of-the-art solvers is commonplace, but it

also has its problems. In this case, many of the other solvers are closed

source (as is currently MathSAT), and in some cases there is not much

publicly available information regarding the techniques used. Comparing

several completely different implementations, in some cases not knowing

precisely the techniques applied in the different solvers can make drawing

conclusions difficult. However, we shall make some attempt in this section.

For comparison with other solvers, we have chosen the following6 SMT

solvers

– Beaver [JLS09] SMT-COMP 2009 version

– Boolector [BB09a] version 1.2

– OpenSMT [BPST10] SMT-COMP 2009 version

– STP [GD07] SMT-COMP 2009 version

– Sword [WFG+07] SMT-COMP 2009 version

– Yices [DdM06] SMT-COMP 2009 version

– Z3 [dMB08] version 2.3

All solvers have been run with a timeout of 1800 seconds, and a memory

limit of 3.5 GB on the bit-vector instances in the SMT-LIB. An overview of

the result is shown in the CDF in figure 6.13 The SMT-LIB contains a rel-

atively large number of bit-vector instances from several different sources,

so it may be difficult to gain much insight from this overview. What seems

clear is that there is a large number of trivial instances, the median exe-

cution time for many solvers (Boolector, Yices and MathSAT) is less than

0.01 seconds. For all solvers the median execution time is less than 0.1

seconds. These trivial instances are either hand-crafted, or coming from

the SAGE tool [GLM07]7.
6CVC3 was not used because of time constraints
7Located in QF BV/sage in the SMT-LIB
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Figure 6.13: CDF of comparison with other solvers

To get a better picture, we will look at some of the sets of instances

individually. The data in figure 6.13 includes all bit-vector instances in

the SMT-LIB, but here I will focus on those which come from real-world

applications of SMT solvers. We divide these into several subsets based on

their origin as follows:

SAGE The instances coming from SAGE

Spear The instances generated by Calysto [BH08] and contributed by Do-

magoj Babić.

UCLID Various instances contributed from UCLID or related tools

Others All other “real-world” instances

Crafted All hand-crafted instances

The results on each subset are shown in figures 6.14 and 6.15, and an

overview of the number of instances which could not be solved (either by

timeout or exceeding the allowed memory) is shown in table 6.1. For the

SAGE set, it seems clear that these instances are trivial. 4 of the solvers

can solve every single one of the instances, and almost all instances with

very short execution times. These come from an application which may
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Figure 6.14: CDFs of comparison with other solvers
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Figure 6.15: CDFs of comparison with other solvers

Table 6.1: Solver failures by set

Solver SAGE Spear UCLID Others Non-ind.

Beaver 37 5 0 30 422

Boolector 0 0 1 21 87

MathSAT 0 1 0 23 86

OpenSMT 390 1465 251 34 214

STP 2 486 8 31 182

Sword 13 235 17 33 408

Yices 0 0 0 31 452

Z3 0 7 1 17 458
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Chapter 6. Experimental evaluation

generate a large number of instances in a single run of the application, and

all instances are trivial and related to each other. In this case there may

be more effective ways of solving them than treating them as individual

instances to solve as we do here. Chapter 7 shows another example of such

an application as well as some ideas for what can be done. Separating these

from the rest of the instances might give a clearer picture of performance in

other cases, information which would otherwise be drowned by the SAGE

instances which form the majority of the bit-vector instances in the SMT-

LIB.

The lagging performance of OpenSMT can be attributed to the lack of

preprocessing performed in the solver; This is the first version supporting

bit-vectors, and has not yet been optimised. Similarly for STP and Sword,

the large number of unsolved instances on Spear and UCLID might be

caused by missing preprocessing techniques, although it is difficult to say.

In the SAGE subset, Beaver seems to be lagging in performance, both on

the very simplest instances and by failing to solve 37 of them. The reason

for this is unknown, perhaps there is some inefficiency that manifests itself

on the simplest instance in this case. These formulae, although trivial can

be non-trivial in size, and so an efficient implementation makes all the

difference.

The problem area for most solvers seem to lie in hand-crafted instances.

This is hardly surprising, since for the most part these have been designed

to test the limits of the solvers. They are often instances of parametric

problems, with one or more parameters which control the difficulty of the

generated instances, and used to study how particular aspects of a solver

scale or why particular solving techniques are in the contributors mind

necessary.

More interesting is perhaps the instance in “Others” which mostly in-

clude instances which were made public very near to the 2009 competition

94



6.11. Model computation
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Figure 6.16: Overhead of model computation

giving solver authors little time to study them. They appear to be suffi-

ciently different from other instances making several of them difficult to

solve. Hopefully this doesn’t indicate the techniques which work so well for

the other older sets of instances in the SMT-LIB are really only useful for

those specific instances. Indeed there is evidence that this is not the case.

The instances in SAGE were also introduced very close to the competition,

and so were several instances in the UCLID set. For these, the techniques

used in many of the solvers appear to work quite well.

6.11 Model computation

To test how much overhead model computation generates when using all

of the preprocessing and approximation techniques described in this the-

sis are used, we have measured this overhead on all SMT-LIB bit-vector

instances. In figure 6.16, we can see all satisfiable instances solved with

MathSAT using a 1800 second timeout. The figure shows the relative

overhead compared to total execution time for both the incremental and

the ad hoc model computation technique. The median overhead is 13%

for the incremental technique and 2.9% for the ad hoc technique, the 3rd
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Chapter 6. Experimental evaluation

quartile is 20% and 9.3% respectively. We can also clearly see that the

ad hoc technique seems to be more stable, even for larger execution times

we can see outliers with significant overhead in some cases using the incre-

mental technique, whereas the relative overhead of the ad hoc technique

becomes smaller as execution times increase without apparent exception.

The maximum time for model computation is 112 seconds using the incre-

mental technique but only 3.4 seconds for the ad hoc technique. It should

be noted that the current implementation of the ad hoc technique is an

early prototype with no considerations for efficiency, a proper implemen-

tation can be expected to improve performance. Using the incremental

technique, there are 12 instances where the solver either times out or runs

out of memory during model computation.

For some of the hand-crafted instances by Brummayer and Biere8 the

advantage of the ad hoc technique for model computation is especially

clear. These instances have been crafted explicitly to show the necessity

for propagation of unconstrained terms, and without this technique they

are very difficult to solve. Using propagation of unconstrained terms these

instances become trivial, because the propagation effectively removes all

non-trivial parts of the formulae. But once a model is needed, these parts

must be taken into consideration during model computation. With the in-

cremental technique of model computation, MathSAT runs out of memory

after around 20 seconds during computation of the model, but with the

ad hoc technique they can be solved and a model produced trivially, using

less time than can be reliably measured (recorded as 0 seconds).

It should perhaps be noted that with under-approximation, 7 out of the

10 instances in that set can be trivially solved, simply because the under-

approximation step happens to select suitable values for enough variables

to make these instances trivial. But this might be attributable more to

8Located in QF BV/brummayerbiere4 in the SMT-LIB
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6.11. Model computation

luck than anything else.

An alternative to the model computation techniques tested here is to

simply avoid using preprocessing or solving techniques which make model

computation less than straightforward. This has been the approach taken

by MathSAT in the past, and the approach taken by some of the other

solvers as well. As an example, when asking Boolector to compute a

model, one can see from its output that it creates larger SAT problems

for the underlying SAT solver PicoSAT, and that solving time increases.

Which approach works best is instance-dependent, but it is clear that for

instances where propagation of unconstrained terms is important, being

able to compute models while still applying this technique is an advantage.

Another important consideration is that by disabling techniques interfering

with model computation, this has a negative impact also on unsatisfiable

instances. With the ad hoc or incremental model computation techniques,

there is no impact on unsatisfiable instances at all.

6.11.1 Other solvers

We will also take a brief look at model computation on other solvers.

To keep computation time reasonable, we will only look at two of the

other solvers, Boolector and Z3. The result for Boolector can be seen in

figure 6.17, which shows Tukey’s mean difference plots9 for satisfiable and

unsatisfiable instances respectively, plotting

(
x+ y

2
, x− y)

where x is the execution time when not requesting a model, and y is the

time when requesting a model. A positive differences means in this case

that requesting a model causes some extra overhead in the solver, and a

negative difference means formulae were solved with less execution time.

9Sometime also called Bland-Altman plots
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Figure 6.17: Model computation in Boolector

The experiments have been carried out by running the solver twice on

each instance; Once with the flag -m to request a model. To get more

accurate data, the solver should be run several times with each set of

options, but this experiment will hopefully give some indication of the scale

of the differences in execution time regardless. Since Boolector disables

some techniques when a model is requested, some formulae can be solved

in less time than otherwise, but in general a certain overhead for model

computation is incurred. Since some techniques are disabled, we can also

see that there is an effect on execution time for unsatisfiable and satisfiable

instances alike. When a model is requested, the solver fails to solve 10 more

satisfiable instances, but also solves one more unsatisfiable instance.

Using Z3, we get the results shown in figure 6.18. We can see that there

is considerable variation in execution time, although in this case the solver

solves the exact same number of instances in total. The solver does appear

to modify which techniques are applied when a model is requested as can

be seen by the varying performance on unsatisfiable instances.
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6.12. Other techniques
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Figure 6.18: Model computation in Z3

6.12 Other techniques

Here we make some brief notes on the remaining techniques.

EUF layering Using the EUF solver does have an impact when using

DPLL(T), but the effect is not of major importance. However, given that

using the solver incurs a practically negligible overhead there seems to be

little reason not to use it in general.

Over-approximation The over-approximation delivers a clear benefit, but

unfortunately only on a fairly small number of instances.

Under-approximation in theory solver No variant has yet been found which

delivers reasonable, let alone improved, performance.

Static learning The axioms that are currently instantiated in static learn-

ing are few in number and quite basic, and the impact on performance

is small. It is possible that more powerful axioms could deliver a deci-

sive performance gain, but it is unclear exactly what these axioms would

99



Chapter 6. Experimental evaluation

be. Simply checking which conflict sets which are found during search and

then adding these manually may lead to an endless number of axioms to

be added as new formulae are solved, and this will soon become unman-

ageable. A more principled approach would clearly be necessary.
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An industrial case study

A modern Intel CPU may have over 700 instructions in the Instruction Set

Architecture (ISA), some of them for backward compatibility with the very

first X86 processors. Although the processor itself is a Complex Instruction

Set Computer (CISC), the microarchtiecture (basically the implementation

of the ISA) is what can be likened to a Reduced Instruction Set Computer

(RISC).

The instructions in the ISA are translated into a smaller set of simpler

instructions called microinstructions or microperations (sometimes called

µops). The idea of using a simpler microarchitecture to implement a com-

plex ISA was developed by Maurice Wilkes in the late 1940s, first pub-

lished by Wilkes and Stringer [WS53] describing the approach taken with

the EDSAC computer. Wilkes realised that the implementation of in-

structions were essentially a sequence of simpler operations that should be

performed, and developed the idea of a microprogram. Each instruction in

the ISA is translated into a small program in microcode. Later Wilkes en-

hanced the microcode instruction set with conditional branch instructions

and this was used in the EDSAC 2, completed in 1958 [Wil92].

There are many reasons for a microcode-based CPU architecture, some

of them may be
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– It abstracts the ISA from the underlying microarchitecture. This

makes it easier to change the microarchitecture while still support-

ing the same ISA maintaining backward compatibility

– It simplifies the microarchitecture. The decode and execute logic can

be made simpler, this may help with complex instructions sets like

the IA-64.

Most instructions in Intel processors correspond to a single microinstruc-

tion or at least a small number (at most 4) which can be translated directly

into microcode, larger programs are stored in a microcode program memory

called the Microcode ROM. Some of these programs may be surprisingly

large, such as string move in the Pentium 4 which was reported in [HSU+01]

to use thousands of microinstructions. Verification of these programs is a

critical, but time-consuming process. To aid in the verification effort, a

tool chain called MicroFormal has been developed at Intel starting in 2003

and under intensive research (in collaboration with academic partners) and

development since. This system is used for several purposes:

– Generation of execution paths. These execution paths are used in

traditional testing to ensure full path coverage, and to generate test

cases which execute these paths, described in [AEMS06, AEO+08].

– Assertion-based verification. Microcode developers annotate their pro-

grams with assertions, and these can be verified to hold using Micro-

Formal.

– Verification of backwards compatibility, described in [AEF+05]. When

a new generation CPUs are developed, they should be backwards com-

patible with older generations, although they may include more fea-

tures.

At the heart of this set of tools is a system for symbolic execution of

microcode, which is the part of the tool chain where we will concentrate.
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In this chapter, we will start by giving a high-level overview of part of the

MicroFormal tool set in order to give an understanding of the application

necessary to understand the usage of decision procedures in this context.

Then some of the techniques that are used to improve performance are

described. Starting in section 7.3, the contribution using MathSAT in

this application domain is discussed, and lastly there is an experimental

evaluation section giving some evidence of how the proposed techniques

perform.

7.1 Intermediate Representation Language

To simplify the symbolic execution engine, it does not work directly with

microcode. Instead it works with an intermediate representation called

Intermediate Representation Language, or IRL. This is a simple language

with all features necessary to model microcode programs. Microcode pro-

grams are translated into IRL by a set of IRL templates, which define the

translation from microcode instructions into a corresponding sequence of

IRL instructions. This makes adapting the tool chain to a new microar-

chitecture simpler, all that needs to be written is a new set of templates

describing how instructions are translated into IRL. Another benefit of

using IRL is that it would be possible to handle other types of low-level

software. Although the precise details of the language used in MicroFormal

is not public, here we describe a simple language which will hopefully give

an understanding of the main features of the language relevant for this

work. It should be pointed out that none of the example programs in this

chapter are real microcode programs.

The details of the IRL language have not been made public, but some

features of it are known, e.g. see [AEF+05]. A grammar summarising

the known details for this simple language is sketched in figure 7.1. This
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is meant to give the general idea of relevant language features, it is not

meant as an accurate representation of a subset of the real language. In

short the language has the following main features:

– All variables in IRL are of bit-vector of type. For logical values, single

bits are used with 1 meaning true and 0 false.

– An instruction is either an assignment V1 := V2, a branching instruc-

tion or a terminating instruction.

– All instructions have a location, being the address in the microcode

ROM where they are stored

– The operations over bit-vector terms are all of the operators in the

SMT-LIB language, extended with bit versions of all relational op-

erators, with the difference that they here are functions with a bit

codomain.

– Branching instructions branch to a location indicating a specific in-

struction. This location can either be given by a constant (a direct

branch) or a bit-vector variable (an indirect branch).

– Terminating instructions are either a normal termination or an ex-

ception. Exceptions are used to model abnormal termination of the

microcode program.

Due to indirect branches, even computing a control flow graph (CFG) for

an IRL program is a non-trivial task.

The correctness of the translation from actual microcode programs into

IRL is crucial, but outside the scope of this high-level description of Mi-

croFormal. We will also make many simplifications and skip over details

that are not immediately relevant for the work presented.
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⟨declaration⟩ ::= var ⟨variable-list⟩ : BitVector[ ⟨width⟩ ] ;

⟨statement⟩ ::= ⟨location⟩ : ⟨instruction⟩ ;
⟨instruction⟩ ::= ⟨assign⟩ | ⟨branch⟩ | ⟨exception⟩ | ⟨exit⟩
⟨assign⟩ ::= ⟨variable⟩ := ⟨expression⟩
⟨expression⟩ ::= ⟨constant⟩ | ⟨variable⟩ | ⟨operator⟩ ( ⟨variable-list⟩ )
⟨branch⟩ ::= ⟨condition⟩ ? goto ⟨target⟩
⟨target⟩ ::= ⟨location⟩ | ⟨variable⟩
⟨exception⟩ ::= exception ⟨name⟩
⟨exit⟩ ::= exit

Figure 7.1: Intermediate representation language grammar

7.2 Symbolic execution of microcode

The MicroFormal symbolic execution engine is used to compute a set of

paths through a program, where a path is a sequence of locations that the

program can follow from start to finish. A path through the program for

which there exists an assignment to input registers such that the execution

follows that path is called feasible. A partial path is a path from the

start to some non-exit location within the program. The problem solved

by the symbolic execution engine is to find all paths from the starting

location to one of the exit locations. Symbolic execution [Kin76] is a form

of execution where all input (or initial values of variables) are symbolic.

Take the following simple example, which swaps values in two bit-vector

variables

x, y : BitVector[64];

l1: x := x + y;

l2: y := x - y;

l3: x := x - y;

l4: exit;
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To execute this program symbolically, we start by giving the symbolic

values x0, y0 to the variables x and y. For the first assignment x := x +

y we create a new symbolic value x1 and compute how it relates to the

symbolic values of the variables in the right hand side of the assignment

x1=̂x0 + y0 and so on for all instructions in the program, accumulating the

equations that define the symbolic values we have created.

l1: x := x + y x1=̂x0 + y0

l2: y := x - y x1=̂x0 + y0, y1=̂x1 − y0
l3: x := x - y x1=̂x0 + y0, y1=̂x1 − y0, x2=̂x1 − y1
l4: exit x1=̂x0 + y0, y1=̂x1 − y0, x2=̂x1 − y1

By expanding the final definitions1 we can see that the final values of

the variables (x′, y′) depend on the initial given by the equations x′ =

(x0 + y0) − x0 and y′ = (x0 + y0) − y0 which can be simplified to x′ = y0

and y′ = x0 respectively.

Apart from the current symbolic values for all variables in the program,

during symbolic execution we also keep track of a path condition and the

program location. The path condition is the conjunction of the conditions

on the conditional branches along the current execution path, expressed in

terms of the initial symbolic values. A more detailed description of how

this may be performed is presented in [KaaV03].

Execution starts by executing the basic block (a non-branching sequence

of instructions) starting at the beginning of the program to the first branch

instruction. This partial path is marked as open. Then as long as there

exists an open partial path π, all feasible branch targets continuing this

path are computed by generating a sequence of path feasibility conditions

which are sent to a decision procedure. A path feasibility condition is the

path condition which would result when branching into a given branch tar-

1These definition are normally stored in their expanded form, the unexpanded form is shown here only

for clarity
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Figure 7.2: Overview of the MicroFormal symbolic execution engine

get. If this path condition is satisfiable, the target is feasible in the sense

that there exists some input that would execute down the current path

and branch to that target. For every feasible branch target, MicroFormal

extends π with the basic block starting at that location into a new path

π′. If π′ reaches a terminating instruction, this path is stored in the path

database. Otherwise it is marked as an open path and the execution con-

tinues. An overview of the symbolic execution engine in MicroFormal can

be seen in figure 7.2.

A path feasibility condition for a partial path π is a formula which de-

scribes the possible branch targets symbolically in terms of the input vari-

ables combined with some query on the target, which is used to determine

the possible values for the branch target. The details on the formulation

of path feasiblity conditions are outside the scope of this thesis, here we

will focus on the decision procedure used to solve these and other decision

problems generated by MicroFormal.

From the point of view of the decision procedure, the symbolic execution

engine feeds it a sequence of formulae one after another, and the result

sent back for one formula affects the future paths taken by the symbolic

execution engine and therefore also which formulae it receives in the future.
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7.2.1 Some improvements to the basic symbolic execution algo-

rithm

To improve performance of the symbolic execution, several techniques are

used as described in [AEO+08]. Here we will briefly present three of them.

One problem is the sheer size of the formulae sent to the decision procedure.

In order to reduce the size of formulae, MicroFormal merges sets of partial

paths ending up in the same location into a single path by introducing

extra variables and conditional assignments. The details are explained

in [AEO+08], but for our purposes the relevant effect this has is that it

removes open partial paths which have so far been generated, and replaces

them with a new merged path which is equivalent to but syntactically

different from the previous paths.

Two other techniques that are used are based on caching and SSAT,

briefly described below.

Caching of solver results The result of each solver call is stored in a cache

shown in figure 7.2. This cache stores for every formula solved whether it is

satisfiable or not, as well as the model for satisfiable formulae. If a formula

α has been shown previously to be satisfiable, then any future formula α∨β
can be determined to be satisfiable without calling a solver. In the same

way, if α has been shown to be unsatisfiable, any future occurrence of it as

a subformula in future formulae can be replaced with ⊥ as a simplification

step.

In case this fails, it is possible to take a model stored in the cache and

evaluate the current formula with it. In case it evaluates to true, there is

no need to call the solver. It may also happen that the evaluation results in

a new smaller formula due to some variable occurring in the formula which

did not occur in the model. In this case it is possible to send this simplified

formula to the solver, if it is satisfiable it was possible to extend the old
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model into a model for the current formula. The motivations for caching

models is that if a path feasibility check for some partial path shows it to

be feasible, there exists an extension to this paths. Therefore the model

for this path feasibility check should be useful in the future.

SSAT In most cases, the symbolic execution engine generates a single

formula which must be solved before execution can continue, because the

satisfiability of this formula determines how the execution should proceed.

But in some cases, it is possible to generate more than one formula, which

it can predict must be solved regardless of their satisfiability. One tech-

nique used to improve performance of solving in these cases is to apply

Simultaneous SAT (SSAT) introduced by Khasidashvili et al [KNPH06].

This technique is a modification of the standard DPLL algorithm which

allows the user to solve multiple proof objectives for a single formula in

CNF. The solver will solve all proof objectives and for each of them re-

turn their satisfiability and a model in cases of satisfiable proof objectives.

The motivation behind this technique is twofold; First a single model may

satisfy more than one proof objective, and second information learnt while

solving one proof objective may be helpful in solving the others. Both of

these assume that the proof objectives are closely related to each other,

which is the case in this application.

7.3 Focus of this work

The focus of this case study is the decision procedure and its interaction

with the symbolic execution engine. The aim is twofold:

– Improve execution time for each solver call

– Discover techniques which make more efficient use of the decision pro-

cedure.
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Figure 7.3: Cumulative frequency of set cardinality

For this reason, we will use a highly simplified view of MicroFormal as a

system that captures the essential features of the tool and abstracts away

those not relevant here. In short, we will view MicroFormal as a generator

of formulae to be solved. From the solver point of view, the problem can

be stated as solving a sequence of nonempty sets of formulae

Φ1,Φ2, . . . ,ΦN

where each Φi is a nonempty set of formulae. The sequence of formulae

is not known a priori, meaning that the set Φi+1 is not known until all

formulae in the set Φi have been solved. Since all formulae in the sequence

derive from the symbolic execution of the same microcode program, they

will share the same set of variables. It will not be the case that one formula

contain some variable v of one type, and another formula contain a variable

with the same name, but a different type.

Most of the sets in the sequence will typically contain a single formula,

but they can also in some cases contain large numbers of formulae, even

thousands. Sample data for three programs is shown in figure 7.3, which

shows the cumulative cardinality. For the three programs, the sequences

contain between 84% and 92% sets with a single formula. To separate the

two cases, we will call them singleton sets and non-singleton sets.
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Definition A set with a single element will be called a singleton. Sets

with more than one element will be called non-singleton.

In this work we will focus on three aspects of the usage of decision proce-

dures in MicroFormal:

– The problem of solving singleton sets efficiently

– Improvements to the caching of solver results

– The problem of solving non-singleton sets efficiently

In the remainder of this chapter, we will consider various solutions to these

three problems, provide an experimental evaluation, and finish by an eval-

uation against the incumbent solver Prover used in MicroFormal.

7.4 Reuse of learnt information

In MicroFormal, most sets in a sequence contain a single formula, and we

need to solve this one formula to advance the search.

Each formula is usually very similar to the previous formula. This can be

seen by measuring similarity for a number of medium to large sequences.

Seeing each formula as a Directed Acyclic Graph (DAG) using perfect

sharing (sometimes also called hash consing) we can compare the similarity

of a pair of formulae ⟨ϕ1, ϕ2⟩ by measuring the number of nodes in the DAG

for ϕ1 which do not occur in the DAG for ϕ2. Given two formulae ϕ and ψ

we compute the ratio of terms occurring in ϕ which do not occur in ϕ to

the total number of terms in ϕ and vice versa. The similarity between the

two will be taken as the minimal of the two ratios. We can see the result

in figure 7.4. The figure shows measurements of similarity between each

pair of consecutive formulae in each sequence.

Consecutive formulae appear to be highly similar, with a median simi-

larity of 78%, 95% and 99% respectively, and this is something we would
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Figure 7.4: Pairwise formula similarity of instances

wish to take advantage of. The cases with very small similarity between

formulae is almost always combined with at least one of the two formulae

being very small. The approach we have taken is to reuse learnt informa-

tion from the solving of one formula to help solving the next.

Modern solvers are often quite good at handling irrelevant information,

the heuristics used in modern SAT solvers often manage to focus on the

relevant parts of a formula, ignoring the rest. We will take advantage of

this by retaining all information stored in the solver from one formula to

the next. The basic algorithm when solving a sequence of individual for-

mulae ϕ1, ϕ2, . . . is to first create one fresh predicate P1, add the formula

P1 ⇔ ϕ1 and solve under the assumption of P1 to discover if ϕ1 is satisfi-

able. Then, we create another fresh predicate P2 and add P2 ⇔ ϕ2 to the

solver and solve under the assumption of P2. In the second iteration, the

complete formula in the solver will be (P1 ⇔ ϕ1)∧ (P2 ⇔ ϕ2) and all learnt

information from the solving of ϕ1 is still available when solving ϕ2.

Given the incremental interface of MathSAT, this is very simple to

achieve and it is not necessary to introduce the fresh variables. If the

bit-vector theory solver is set up to retain its state from one formula to

112



7.4. Reuse of learnt information

the next (keeping all clauses and heuristic information), then we can solve

each formula by pushing a backtrack point, solving, and then popping the

backtrack point as shown in algorithm 7.1.

Algorithm 7.1: Solve reusing information

Input: ϕ1, ϕ2, . . . , ϕN

foreach i ∈ [1..N ] do1

Push backtrack point2

Assert(ϕi)3

Solve4

Pop backtrack point5

end6

Although the solver might be good at ignoring irrelevant information,

eventually as the amount of irrelevant clauses grow these will have a nega-

tive impact on performance, and of course also on memory usage. There-

fore it is important to at some point remove this information. The simplest

possible approach would be to just throw away all information irrelevant

or not, and then solve the next formula as if it is the first one encountered.

The advantages of this is that it is very easy to implement and to use. The

disadvantage is that we also throw away potentially useful information.

The main question with this approach of dealing with the accumulation

of irrelevant information is, when to reset the solver? Several solutions

suggest themselves:

– Use fixed reset frequency. Reset every k formulae.

– Reset based on subformula reuse. Measure how much the next formula

is already known to the solver, how much of it is not previously known,

and how much of the solver information is irrelevant.

– Use an adaptive strategy. Measure solver performance, and try to

predict when degradation starts to occur. Reset before it becomes

detrimental.
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– Delete only irrelevant information from the solver, and keep the rest.

This sounds like the best solution, but computing which information

is irrelevant is not a simple problem. Just because it is not relevant for

the current formula does not mean it will not become relevant again

in the future.

Even in the cases where no learnt information is explicitly removed, the

underlying solver is free to remove learnt clauses, as any standard SAT

solver does. This can be more or less aggressive, and works regardless

of how the solver is used. However, these techniques will not work on

the original clauses generated from encoding of the formulae given to the

solver, only the learnt clauses. In this application an aggressive heuristic

for clause removal may be interesting, such as suggested in [AS09] and used

in the glucose SAT solver.

7.5 Unsatisfiable cores for result caching

An alternative to speeding up the solving of each formula is to reduce the

number of formulas that need to be solved in the first place. This approach

has already been used successfully within MicroFormal by caching the re-

sult of each solver call. This means storing whether a particular formula is

satisfiable or unsatisfiable, and if satisfiable also storing a model for it as

decribed in section 7.2.1.

In particular if a previous formula ϕ is unsatisfiable and the current

formula ψ contain ϕ as a subformula we can deduce that this formula is

unsatisfiable, and replace all occurrences of it with ⊥. In this way, it may

be possible to deduce that the new formula is unsatisfiable without calling

the solver.

A possible improvement to this is to store not just that a formula is

unsatisfiable, but the unsatisfiable core of that formula. There are several
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ways of computing an unsatisfiable core, in this case the formulae are con-

junctions of a large number of subformulae we will take as an unsatisfiable

core a subset of the conjuncts of the formula which by themselves are un-

satisfiable. Normally, an unsatisfiable core is defined on CNF formulae as a

subset of the clauses which is unsatisfiable. In this case the formula is not

in CNF, and producing an unsatisfiable core in terms of the CNF gener-

ated from the original formula is not directly usable in this case. Therefore

we will use a more coarse-grained definition of unsatisfiable cores which is

easier to use in this application

Definition Given a formula ∧iϕi where C = {ϕi|i ∈ [1..N ]} is the set of

conjuncts, an unsatisfiable core of the formula is a subset C′ ⊆ C such that

∧i∈C′ϕi is unsatisfiable.

This can be efficiently computed as shown in a simple way by encoding

the problem so that each conjunct is represented by a literal, and solve

under the assumption of these literals. An unsatisfiable core can then be

computed by performing conflict analysis on the final conflict in the solver

taking care to produce a conflict set which only contain such literals. This

feature is built-in into the MiniSat SAT solver [ES04] used in MathSAT,

and its usage for unsat core extraction has been described in [CGS07,

ANOR08]. The difference from those works is that our unsat cores are

subsets of the conjuncts of the formula. These can be expected to be

much fewer than the number of clauses, and so should deliver acceptable

performance and avoid the bottlenecks reported in [ANOR08].

An unsatisfiable core can be seen as a reason for unsatisfiability of a

formula, it is often the case that an unsatisfiable core of a formula is much

smaller than the formula itself. This gives some hope that the unsatisfiable

core will be more effective in deducing that future formulae are unsatisfiable

than just the information that the entire formula was unsatisfiable.

If a formula contain the unsatisfiable core of a previous formula we can
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deduce that this is satisfiable without needing to solve it. We do this

by simply check if the set of conjuncts in the formula contain any of the

previously discovered unsatisfiable cores. This is both straightforward to

implement and can be computed efficiently. It also gives good performance

in practise in terms of the number of formulae which can be deduced as

unsatisfiable without solving them as we shall see later in the experimental

evaluation in section 7.8.

7.6 Non-singleton sets

In the cases where the current set of formulas contain more than one for-

mula, we should try to take advantage of this in order to improve perfor-

mance. For three medium-sized to large microcode programs the simulator

generates sets of formulae with cardinalities as can be seen in figure 7.3. In

total, there are 93 non-singleton sets with between 100 and 1000 instances,

and 11 sets with over 1000 instances.

To take advantage of this, we would like to make the solver aware of

all formulae beforehand. In this way we may be able to satisfy more than

one formula at a time, and also reuse learnt information to discover that

several formulae in the set are unsatisfiable. One way of achieving this is

shown in a simple algorithm 7.2 we will call Multiple Similar Properties

SAT (MSPSAT). Here we create one fresh predicate (boolean variable) pi

for each formula ϕi and give the solver the formula∧
i

pi ↔ ϕi

To solve ϕi, we solve under the assumption pi. Should it be satisfiable under

this assumption, we can easily check which of the other formulae are also

satisfied by the same model by checking the truth assignment for the other

fresh variables. The algorithm iteratively picks one unsolved formula as a
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goal and solves under the assumption of the corresponding fresh variable.

If it is satisfiable it checks if any other unsolved formulae are satisfied by

the same model and discharges all satisfiable formulae.

Algorithm 7.2: Guided MSPSAT

Input: ϕ1, ϕ2, . . . , ϕN

P ← ∅1

ϕ← ⊤2

foreach i ∈ [1..N ] do3

pi ← fresh predicate;4

P ← P ∪ {pi};5

ϕ← ϕ ∧ (pi ⇔ Φi);6

end7

Sat ← ∅8

Unsat ← ∅9

while P ̸= ∅ do10

pi ← some element in P11

if ϕ ∧ pi satisfiable with model µ then12

Sat← Sat ∪ {ϕj | µ |= ϕj}13

else14

Unsat← Unsat ∪ ϕi15

end16

P← P \ (Sat ∪ Unsat)17

end18

return Sat,Unsat19

7.6.1 An alternative MSPSAT algorithm

In the MSPSAT algorithm described above, in each iteration a candidate

formula is picked to check satisfiability on. This may limit the heuristics

of the solver however. An alternative is to keep track of all formulae not

yet solved, and ask the solver to solve at least one of them, any one. This

can be accomplished by giving the solver the disjunction of all formulae
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left to solve. The possible advantages of this is twofold; First, the solver

is free to find a model for any of the formulae left to solve. Second, when

all remaining formulae are unsatisfiable, it can be detected with a single

solver call.

Algorithm 7.3: Unguided MSPSAT

Input: ϕ1, ϕ2, . . . , ϕN

Unsolved← {ϕi | i ∈ [1..N ]}1

Sat← ∅, Unsat← ∅2

while Unsolved ̸= ∅ do3

ϕ←
∨

ϕi∈Unsolved ϕi4

if ϕ satisfiable with model µ then5

S ← {ϕi | ϕi ∈ Unsolved, µ |= ϕi}6

Sat← Sat ∪ S7

Unsolved← Unsolved \ S8

else9

Unsat← Unsat ∪ Unsolved10

Unsolved← ∅11

end12

end13

return Sat,Unsat14

A disadvantage may be that the search for satisfiable formulae is un-

guided. This may cause a great deal of search, especially with a solver

that assigns false on decision variables, as is usually done in MathSAT. A

possible remedy may be to set up the decision heuristics of the solver so

that it always picks true for the relevant atoms rather than false.

7.7 Basic parallelism

Another approach which comes to mind when there are a large number of

formulae to solve is to solve them in parallel. Parallel computers are now

commonplace, even on desktops, and this trend towards increasingly par-
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allel computers can be expected to continue for some time on workstations

and servers. Considering that in several cases, MicroFormal may provide

the solver with hundreds or even thousands of formulae, attempting to take

advantage of the growing number of cores in moderns computers may be

an interesting avenue to pursue.

The approach we take is to treat the problem as a so-called embarrass-

ingly parallel problem, i.e. a problem which can be divided into several

sub-problems which have little or no interaction. Here, we divide the set

into k subsets and solve each subset in parallel. Each subset can be solved

on different cores on the same computer, or distributed on different com-

puters in a cluster if k is large. If the computations were independent, we

might expect performance to improve by a factor approaching k . But if

we either reuse solver information or use MSPSAT, a linear speedup is not

likely to be achievable. We lose some of the benefit of reuse, while gaining

some by parallelism. Which outweighs the other is difficult to say, some

experiments will be presented in section 7.8.3.

If we compare parallelism with solving each formula in the set, while

reusing solver information and a particular reset interval, then it is clear

that parallelism is advantageous when the number of formulae in the set

is greater than the reset interval. If we have the reset interval r we can

divide the set into “work packages” of r instances each, and solve the work

packages in parallel on the available cores/CPUs.

7.8 Experimental evaluation

We now turn to an experimental evaluation of the techniques proposed in

this chapter. Except where explicitly noted, all experiments were carried

out on a machine with dual Intel Xeon E5430 CPUs running at 2.66 GHz

using 32 GB of RAM running Linux.

119



Chapter 7. An industrial case study

Table 7.1: MicroFormal test sets

Program Instances Satisfiable Unsatisfiable

Program 1 52933 44359 8574

Program 2 5468 4341 1127

Program 3 28962 13757 15205

Most of the experiments are run on instances coming from three nontriv-

ial microcode programs. For these three, MicroFormal was instrumented

to dump all instances to files in SMT-LIB format, and produce a log de-

scribing how these instances were created. In this thesis the programs will

be called “program 1”, “program 2” and “program 3”, table 7.1 gives the

number of formulae generated in each of these three MicroFormal runs.

A test bench has then been created which can replay the solver calls in

these three runs of MicroFormal, which makes it easy to experiment with

different strategies and instrument the system to extract interesting infor-

mation. In order to emulate the behaviour of MicroFormal, when solving a

formula it is first loaded into memory in a separate data structure to avoid

measuring the time taking for parsing formulae. From this data structure

the MathSAT API is called, creating and solving formulae simulating the

in-memory usage in MicroFormal as closely as possible without actually

running MicroFormal.

Apart from the techniques described in this chapter, these experiments

were performed with minimal preprocessing of formulae and translation

into SAT rather than DPLL(T), since for the instances that are generated

in MicroFormal, this seems to deliver better performance overall. For the

instances taking the most execution time, more aggressive preprocessing

techniques can be effective, but the total execution time is dominated by a

large number of trivial instances, and the preprocessing normally used in

MathSAT seems to be too expensive to be used here.
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Figure 7.5: Effect of reset interval on singleton calls

7.8.1 Reuse of information

We start by investigating the effect of fixed reset strategies on singleton

sets. For these experiments, we solve only singleton sets, skipping over the

other calls completely. The result on the three programs are summarised in

figure 7.5. It shows the relative improvement of reusing solver information

compared to solving each formula in isolation. The horizontal axis shows

the reset interval, that is how frequently all learnt information is thrown

away. A reset inteval of 1 corresponds to solving each formula in isolation.

From the figure, it is clear that there is a positive effect of reusing solver

information. For program 1 the best improvement is a factor of 4 (at a

reset interval of 161), and for program 2 the best improvement is a factor

of almost 10 (at reset a interval of 169). Lastly for program 3 the best

improvement is a factor of 7.4 (at a reset interval of 99).

We can also see that the exact reset frequency is not critical. For pro-

gram 1 and program 2, there is only a minor difference between different

reset intervals above 50. For program 3, the trend is similar but the data

121



Chapter 7. An industrial case study

Instance

E
xe

cu
tio

n 
tim

e 
(s

)

2 4 6 8 10

0.
0

1.
0

2.
0

Program 2

5 10 15 20 25

0
20

40
60

80

Instance
E

xe
cu

tio
n 

tim
e 

(s
)

Program 3

Figure 7.6: Effect of reset interval on individual singleton calls

appears to be more noisy. This is due to some outliers among the instances

to be solved, which are both large and significantly different from any of

the others. These cause significant overhead when these instances are re-

tained in the solver and we attempt to solve fresh instances. Performance

depends on being able to divest the solver of this irrelevant information as

soon as possible, but with a fixed reset interval how quickly this happens

is largely due to chance. To avoid this, we will choose a reset interval of 25

for future experiments, which although shorter than what is indicated as

the optimal, should on the other hand handle such outliers better. With

this reset interval, the improvement for these three programs is a factor of

2.7, 6.7 and 4.9 respectively.

To see some details of the effect of reusing solver information, we will

study the individual solver calls for program 2. In figure 7.6, we show

the execution time for all individual instances. Instance 1 is all instances

immediately after reset, instance 2, is the next instance and so on. In

this case a reset interval of 10 was chosen, to keep the figures a little

more readable. The results for longer reset intervals is similar. Given

that reusing information works so well, it might be expected that all but

the very first instance after reset will be trivial. This is not quite the
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Table 7.2: Fixed vs optimal reset strategy. Execution times in seconds

Set Freq. 25 Freq. best Optimal

Program 1 275.4 179.2 153.1

Program 2 65.6 44.0 40.8

Program 3 1724.0 1125.0 –

case, but the other solver calls are noticeably faster. The reason it is not

always the case is that a particular subsequence from reset until the next

reset may by chance start with trivial instances, and for the first slightly

harder instance solving it is harder than the rest. After that one instance,

the solver will typically have learnt the relevant information to be able to

solver the remaining instances more quickly.

In the same figure we can see the main cause for the “noisy” results of

program 3 in figure 7.5. The figure shows a sequence of singleton sets from

a reset point and 25 sets onwards. Although reusing information helps

for other singleton sets, for this particular subsequence it does not. The

performance penalty also varies greatly depending on where the resets are

performed in relation to the problematic instances.

To get an idea of how efficient a simple fixed reset strategy is, it can be

compared with an “optimal” strategy. An optimal strategy is a sequence

of reset intervals indicating where resets should take place. To keep the

time needed to compute these reset strategies reasonable, we have limited

the maximal reset interval in any such strategy to 200 instances, without

such a limit computing the optimal strategy will be prohibitively time-

consuming. The result is summarised in table 7.2. For comparison, we also

list the execution times of running with two fixed reset frequencies, namely

resetting every 25 instances and also the best reset fixed frequency found

for each program. The difference between the best fixed reset frequency,

and the optimal reset strategy is not very large, indicating that using a
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fixed frequency may be a suitable heuristic. For program 3, computing the

optimal reset strategy turned out to be too resource intensive to complete

in a reasonable time despite the limit on maximal reset interval. Neither

lower limits on the maximal reset interval nor manual effort failed to find

a strategy with an execution time less than 1100 seconds.

To check if reuse of solver information is usable outside of MicroFormal,

the technique has also been applied to the instances2 in SMT-LIB coming

from the SAGE tool [GLM07]. Out of 12 sets of instances, a fixed reset

strategy of resetting every 25 instances helped in all but two sets. In one

of the two, execution time was comparable (332 versus 334 seconds). In

the other reusing solver information used 65 seconds versus 11 seconds for

solving each instance individually. The added time is taken up in two in-

stances which take considerably more time than the rest. Full results for

these sets of instances can be found in figure 7.7, where total execution

time (in seconds) for each set of instances is reported. Although the im-

provement is not as large as for the three microcode programs seen earlier,

there is still a fairly clear improvement, and, indeed this improvement is

statistically significant (p = 0.016).

7.8.2 Non-singleton sets

For the cases where MicroFormal generates multiple formulae to solve there

are several choices, we will look at a few of them as listed below:

1. Solve them in the same way as single formulae. There might not after

all be any need to treat these instances any different from any other.

2. Solve them as with single formulae, but with an infinite reset interval.

The motivation is that similarity can be expected to be better within

each set than between singleton instances since all instances in a set

have been generated at a specific point in symbolic execution.
2Available in the SMT-LIB in QF BV/sage
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Figure 7.7: Effect of reusing solver information on SAGE instances. Execution times in seconds

3. Solve them with Guided MSPSAT.

4. Solve them with Unguided MSPSAT.

5. Use parallelism, dividing non-singleton sets into a number of subsets

and solving each in parallel using one of the above techniques.

As a baseline, let’s look at the performance when treating each instance

as a singleton, disregarding that more than one instance is known a priori.

The results are shown in the first row in table 7.3. Using the two MSP-

SAT algorithms, we get the results in the two last rows of the same table.

We can see a significant improvement over solving each formula individ-

ually. For comparison, we also include the execution time when solving

all instances reusing solver information using a reset interval of 25, and

also when resetting only in between sets of instances. We can see that

using a reset interval of 25 gives worse performance than using the Guided

MSPSAT algorithm, so there seems to be some value in treating these sets

in a special way. For these three programs at least there does however

not seem to be an advantage with MSPSAT when compared to using a
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Table 7.3: Performance of the MSPSAT algorithms

Method Program 1 Program 2 Program 3

No reuse 104459.86 1722.31 55539.64

Reset (25) 9104.31 217.13 5434.52

Reset in-between 4485.51 243.91 2694.61

Guided MSPSAT 6064.98 278.00 2826.98

Unguided MSPSAT >200000.00 292.39 9824.27

separate solver instance for non-singleton sets which is reset in-between

every set. Indeed, the latter technique has a small advantage over the oth-

ers. Unguided MSPSAT appears to work poorly, and a closer look reveals

that for large sets, the solver performs very poorly. This is not visible in

program 2, because this example doesn’t contain really large sets, all have

cardinality ≤ 96.

In a sequence of formulae, there can be many sets of low cardinality, and

in these cases treating them as if they were singleton solver calls may be

useful. As we have seen, reuse of solver information can be very benficial,

and for very small sets the penalty of initially solving without learnt in-

formation from previous formulae may dominate total solving time for the

set. A simple heuristic may be to check the cardinality of the set, and if it

is below some threshold, treat each formulae in the set as a singleton set.

An experiment with varying thresholds can be found in figure 7.8, where

total execution time is plotted as a function of the threshold. As can be

seen there seems to be some improvement, but there is also quite a bit of

noise making it difficult to quantify the gain. A smoothed line (using local

fitting) is added to make the trend more clear.
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Figure 7.8: Effect of MSPSAT threshold on program 2

7.8.3 Parallelism

Using parallelism to solve non-singleton sets appears at first glance to be

very promising way of improving performance. Non-singleton sets can con-

tain hundreds or even thousands of instances, so the problem is trivially

parallelisable. But since instances are highly similar one to the other, sim-

ply dividing a non-singleton set into a number of subsets and solving them

independently will interfere will the advantages of reusing learnt informa-

tion in solving. An example can be seen in figure 7.9 where one single

non-singleton set containing 580 instances is solved in parallel, using be-

tween 1 and 8 cores on the same machine. The figure shows the wall-clock

execution time taken to solve all instances, the speedup versus using a

single core, and the Karp-Flatt metric [KF90], defined as

1
s −

1
p

1− 1
p
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Figure 7.9: Effect of parallelism on a simple non-singleton set

where s is the speedup and p the number of cores used. An advantage of

this metric is that since the fraction will remain constant if the speedup is

ideal, it is easy to spot any issues with scaling. If the fraction increases,

extra overhead is introduced as the number of cores is increased. Although

using 2 cores shows a nice performance improvement, above 3 cores the

improvement is much less than might be expected, and it quickly seems to

stagnate at a speedup of around a factor of 2. This is due to the similarity

of formulae and that once one have been solved, solving each of the rest is

significantly cheaper. Dividing the set into several subsets means we need

to incur the cost of solving the “first” instance many times. So it seems

that for the instances generated in MicroFormal, the problem of solving

non-singleton instances is not as trivially parallelisable as it would at first

appear. The benefit of reusing solver information appear to outweigh to

some extent the benefit of solving formulae in parallel.
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Table 7.4: Hit-rate of unsatisfiable core caching

Program Singletons Hit-rate Total Hit-rate

Program 1 1059 64.3% 8574 90.3%

Program 2 534 50.9% 1127 69.7%

Program 3 3283 16.2% 15205 79.0%

7.8.4 Unsatisfiable cores

To test the effectiveness of unsatisfiable core caching, we focus on single-

ton solver calls for simplicity. For each of the three programs, we collect

the sequence of unsatisfiable singleton instances. Those are then run in

sequence, collecting each unsatisfiable core. If the cores that have been

computed in the past can be used to deduce that the current formula is

unsatisfiable, that is seen as a cache hit in a hypothetical unsatisfiable

core cache and skipped. The hit-rate for the three programs can be seen

in table 7.4. Two measurements have been made, both for only singleton

sets, and for all instances in each sequence. The table shows the number

of unsatisfiable instances in each case, as well as the potential hit-rate,

the amount of instances which would not need to be solved. We can see

that for singletons sets, there can be a considerable reduction in number

of unsatisfiable instances. Taking all instances into account, the hit-rate is

even more impressive. However, the hits which are found in non-singleton

sets are typically caused by another instance within each set. Because of

this the potential gain may be reduced somewhat.

In table 7.5, we can see the effect of removing the singleton sets which

can be detected to be unsatisfiable would have on performance. For each

program, three execution times have been measured, all with a reset in-

terval of 25 for singletons. “Original” is the time when all instances are

used, for “Singletons” all singleton instances where a previous unsatisfiable

core from a singleton instance is enough to show unsatisfiability have been
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Table 7.5: Performance on singleton sets when unsat core hits are removed

Program Original Singleton Total

Program 1 6049.2 5987.4 5914.6

Program 2 332.3 333.2 323.1

Program 3 4657.9 4892.8 4693.6

removed. Lastly for “Total” all unsatisfiable instances where any previ-

ous unsatisfiable core could be used to deduce unsatisfiability have been

removed. Although there is an effect on total execution time for all solver

calls, the effect seems to be surprisingly small. Given the large hit-rate

of caching unsatisfiable cores, a better improvement might have been ex-

pected. An explanation for this is that when reusing solver information, the

unsatisfiable core is likely to be retained by the solver if it was discovered in

the recent past, after the last reset. And it is often the case that the solver

“horizon” includes enough learnt information to easily discover unsatisfia-

bility. The case of program 3 deserves some comment. Here, performance

actually degrades (even if only slightly) when some instances are removed.

This is highly surprising; We might think that solving less instances should

require less time, not more. The explanation can be found in the results on

reuse of solver information shown in figure 7.5. The measured execution

time shows significant noise when varying reset interval, and when some

instances are removed we end up resetting the solver at more unfortunate

times during execution. This highlights the disadvantage of a static reset

strategy, which although it does provide a clear benefit compared to not

reusing solver information, is not optimal.

It should be noted that what is measured here is just the effect on

solving time, how the execution time of the rest of MicroFormal is affected

is not known as those experiments have not yet been performed.
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Table 7.6: Ample performance summary (execution times in seconds)

Solver Type Median Mean Stddev

Prover Singleton 1072.14 2887.13 5973.29

Non-singleton 389.01 2264.52 4432.13

Ample 2412.00 6282.90 10316.34

MathSAT Singleton 98.48 289.05 704.25

Non-singleton 233.25 975.24 1751.98

Ample 997.00 2183.03 2842.62

7.8.5 Ample experiments

As a final experiment the impact of MathSAT on the Ample tool is evalu-

ated. Ample (which stands for Automatic Microcode Path Logic Extrac-

tion) is a tool in MicroFormal used for then generation of execution paths

for dynamic testing, and this will be used for experimental evaluation in

this section. For this evaluation 32 different microcode programs have been

selected to be representative of small, medium, and large programs. For

each, Ample is run with the Prover SAT solver, and with MathSAT. In

MathSAT, reusing of solver information was used with a fixed reset fre-

quency of 25, and for non-singleton sets Guided MSPSAT was used. For

Prover, singleton sets were solved individually, and non-singleton sets were

solved using the SSAT algorithm. The tool was run on machines with Intel

Xeon 5160 CPUs running at 3 GHz and 32GB RAM running Linux, and

the execution times of solver calls, other processing, total execution time

and memory usage was measured. In these experiments, in no case was

memory usage an issue. For this experiment, unsatisfiable core caching is

not used. This is simply because the feature requires some changes to Am-

ple which had not been implemented at the time these experiments were

performed.

The results are summarised in table 7.6, where the median, mean, and
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Figure 7.10: Ample execution performance

standard deviation for the total execution time of singleton instances, MSP-

SAT/SSAT as well as total execution time is presented. For every program,

the performance of MathSAT is better than that of Prover, and for total ex-

ecution time the improvement is at worst a factor of 1.17, at best a factor of

4.43, and overall the improvement is a factor of 2.88. Not surprisingly, the

improvement is statistically significant (p = 9 · 10−9). As the experiments

on non-singleton sets showed, simply reusing solver information, resetting

the solver in-between each set may improve performance further. At the

time of writing, this has not been tried on these 32 microcode programs.

It should be noted that the difference on non-singleton sets are not

necessarily due to the different algorithms (MSPSAT versus SSAT) being

used, since two completely different solvers are used for the comparison.
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Chapter 8

Extensions to SMT

There are many real-world problems which deal with resource consumption.

Some examples may be

– Placing and routing in VLSI design [LMS06]. Placing deals with plac-

ing blocks on a die in the optimal way, reducing die area and maximis-

ing routability. Routing deals with laying out wires between blocks

reducing delay or interference between wires.

– Configuration design [MF89, WS97]. The configuration design prob-

lem is loosely defined as assembling a system built with components

which have interdependencies such that the overall system is feasible

and optimal according to some criteria.

– Another application area may be planning under resource constraints

[Koe98], where it is desirable to not only find some plan, but find a

plan which minimises resource usage.

In this chapter we will discuss some extensions of SMT which can allow

us to solve these and similar problems. We start with some preliminaries

peculiar to this chapter, then introduce a new theory, the theory of costs,

and then describe how optimisation of cost functions can be carried out.

After this we show how the theory can be used to extend the problems of

Max-SAT and Pseudo-Boolean Optimisation into SMT, finishing up with

133



Chapter 8. Extensions to SMT

some notes on implementation issues, and an experimental evaluation of

the approach1.

8.1 Preliminaries

The optimisation problem can be stated as minimising an objective func-

tion f(x) over some formula ϕ

min f(x)

subject to ϕ

The corresponding maximisation problem max f(x) can be restated as the

minimisation problem min−f(x), so here we will focus on the minimisation

problem only.

Informally, the objective function is a function that given a truth assign-

ment over the predicates in the formula computes an integer value. In order

to tie integer values to predicates, we need a mapping from truth values to

integer numbers. One such mapping is the characteristic function.

Definition A characteristic function 1A : A → {0, 1} for a set A is a

function such that

1A(x) =

{
1 x ∈ A
0 x /∈ A

This allows us to introduce a mapping from literals to the set {0, 1}. A

polynomial objective function over a set of literals L = {l1, l2, . . .} can then

be stated as a function over the model µ

f(l1, l2, . . .) =
∑
i

ci
∏
j

1µ(lj)

Any polynomial objective function can be linearised, that is restated as an

equivalent linear function, by introducing fresh predicates. For any product

1The work presented here will also occur in [CFG+10]
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1µ(l1) · 1µ(l2) we can introduce a fresh predicate p, conjunct p ⇔ l1 ∧ l2
to the formula and replace the product with 1µ(p). In a similar way, we

can convert all linear objective functions into functions where all literals

li are positive, that is are predicates by introducing a fresh predicate p for

every negative literal ¬pi and conjunct p⇔ ¬pi to the formula and replace

¬pi with p in the objective function. Further, we can scale the function so

that all constants are positive. If there exists a negative weight −c, we can

simply add c to all weights. After eliminating all negative weights in this

way, we can remove the products having zero weights since they do not

affect the objective function. Without loss of generality, we will therefore

only consider linear objective functions, with positive literals and positive

weights.

Definition A linear pseudo-boolean function is a function for a model µ

over a set of predicates P = {x1, x2, . . .} to a integer number

f(x1, . . . , xn) =
n∑

i=1

ci1µ(xi)

where c1, c2, . . . are positive integers.

An alternative way which is common in the literature of expressing such

functions when boolean variables have the domain {0, 1} is
∑

i cixi. We

choose the earlier description so that it fits better with the formalism in

the other chapters.

8.2 A theory of costs

In this work we will encapsulate the constructs necessary for describing ob-

jective functions and constraints over such functions in a theory, which we

will call the theory of costs, and which allows for highly efficient reasoning

on such functions and constraints. The theory of costs consists of

135



Chapter 8. Extensions to SMT

– A set of variables VC ,

– The set of positive integers Z+

– A ternary predicate symbol such that if v ∈ VC and c ∈ Z+, d ∈ Z+ ,

then incur(v, c, d) is a predicate

– A binary predicate l such that if v ∈ VC and b ∈ Z+ then v l b is a

predicate.

Informally, incur(v, c, d) incurs the cost c on the variable v, and vl b gives

an upper bound b for the variable. The total incurred cost on a variable

is the sum of all incur(v, ci, di) predicates currently assigned to true. This

means the semantics can not be defined in the traditional compositional

way, instead we must define the semantics given a truth assignment seen

as a set of literals

µ =
∪
v∈VC

µv

where each µv is a set of literals concerning the variable v ∈ VC

µv = {incur(v, c11, d11), . . . , incur(v, c1n, d1n)}

∪ {¬incur(v, c21, d21), . . . ,¬incur(v, c2m, d2m)}

∪ {v l b12, . . . v l b1o}

∪ {¬(v l b22), . . .¬(v l b2p)}

where bji , c
j
i ∈ Z+ and dji ∈ Z+. We can give semantic to each subset µv

individually since the subsets do not share any variables. The incurred

cost on the variable v given the truth assignment µv can now be defined as

incurred(v, µv) =
∑
{c | incur(v, c, d) ∈ µv}

The set µv is inconsistent iff there exists a (v l b) ∈ µv such that b ≤
incurred(v, µv). If there exists at least one (vl b) ∈ µv, then we can define

the residual of v as the smallest difference incurred(v, µv)− b. The current
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truth assignment µ would then be inconsistent if there exists a residual less

than 1.

It may seem odd that the incur predicate is ternary, since we do not use

the third argument in the semantics. A binary predicate incur(v, c) would

seem to be sufficient. The reason for the predicate being ternary rather

than binary is in order to be able to incur the same cost on a variable v

multiple times, as demonstrated in example 8.1.

Example 8.1

If the incur predicate would be binary, the formula incur(v, 3) ∧ incur(v, 3)

is equivalent to incur(v, 3) and incurs a cost 3 on the cost variable v. It is

not possible to incur the same cost twice in this case. Since we have ternary

incur predicates, we can use unique third arguments to incur the same cost

twice as in incur(v, 3, 1)∧incur(v, 3, 2) which incurs 6 on the cost variable.

8.2.1 Computing minimal conflict sets

Finding minimal conflict sets is according to Aloul et al [ARSM07] an

instance of the knapsack problem and therefore NP-complete, but in their

text what constitutes minimal can be interpreted in two different ways.

In our case, the minimal conflict set computation problem can be stated

equivalently as follows: Assuming we have a set C ⊂ Z+ and some bound

b ∈ Z+, the problem is to solve

min |C ′|
s.t. C ′ ⊆ C ∧

∑
C ′ ≥ b

A basic greedy algorithm taking the largest elements in C will produce a

minimal subset, and it is easy to see why. If there existed a smaller subset

C ′′ whose sum also exceeded the bound, then we can replace the smallest
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element in C ′′ with the largest element in C\C ′′ and end up with a set of the

same cardinality which also violates the bound. This can be repeated until

C \C ′′ doesn’t contain any element larger than the smallest element in C ′′,

which is the same set produced by the greedy algorithm. Computing the

conflict set which exceeds the bound with the smallest margin, however, is

equivalent to the minimisation knapsack problem (an overview of knapsack

problems can be found in [KPP04]) and a more difficult problem. Similarly,

computing all minimal subsets is also more complicated, but here will limit

ourselves to finding a single minimal conflict set.

In our case, computing minimal conflict sets is therefore possible in

O(n log n), assuming C is not being kept sorted. If it is, computing conflict

sets would be linear in the number of elements of the conflict set.

8.2.2 Deduction

Deducing truth values for unassigned literals is straightforward. If there

exists an unassigned predicate incur(v, c, d) for some variable v and the

residual under the current truth assignment is r, then we can deduce

¬incur(v, c, d) iff r < c.

8.3 Optimisation

Using the theory of costs, we can encode an objective function

f(l1, , . . . , ln) =
n∑

i=1

ci1µ(li)

as a small formula in the theory of costs by creating a fresh cost variable

v and create the formula

n∧
i=1

incur(v, ci, i)⇔ li
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Solving the optimisation problem in the theory of costs can now be done by

conjuncting the encoding of the objective function to the formula, and use

the simple algorithm outlined in algorithm 8.1. This algorithm relies on

Algorithm 8.1: Basic linear search based optimisation

Input: Formula ϕ with a cost variable v

if ϕ satisfiable with cost b then1

opt← b2

ϕ← ϕ ∧ v l b;3

while ϕ satisfiable with cost b′ do4

opt← b′5

ϕ← ϕ ∧ v l b′6

end7

return opt8

end9

return unsatisfiable10

an off-line refinement of the best known bound, and can be implemented

outside the solver rather than making modifications to the solver inter-

nals. Since we incrementally add new conjuncts to the formula until it

becomes satisfiable it is trivial to use an incremental solver, reusing all

learnt information. A simple alternative is to do this on-line, i.e. to let

the cost theory solver add this constraint during search when a model has

been found. Then the SMT solver can do conflict analysis, backtrack and

continue searching. This is however not yet supported in MathSAT.

8.3.1 Dichotomic search

If a formula contains a set of incur predicates {incur(c, c1, d1), . . . incur(c, cN , dN)},
we can conclude that the optimal cost must be in the interval [0,

∑n
i=1 ci]

if the formula is satisfiable. With the linear search algorithm, we can in

the worst case iterate
∑n

i=1 ci (or 2n) times in the loop before finding the
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optimum. An alternative would be to “short-circuit” this search by guess-

ing tighter bounds, which may reduce the number of formulae to solve in

order to find the optimum.

This type of search algorithm is often called dichotomic search, and is

outlined in algorithm 8.2. Instead of simply searching for a cost lower than

the lowest cost found so far, we keep track of the interval [l, u] in which we

know the optimum to lie, and we guess that it is possible to short-circuit

the search by picking some cost b in the interval, and check if the formula

conjuncted with v l b is satisfiable. If our guess was incorrect the formula

is unsatisfiable, and we can tighten the interval to [b, u]. If the formula was

satisfiable, we can tighten the interval to [l, b]. We iterate guessing and

tightening the known interval like this until the optimal has been found,

i.e when the interval contains a single value.

Algorithm 8.2: Dichotomic search based optimisation

Input: Formula ϕ with cost variable v

if ϕ satisfiable with cost b then1

⟨l, u⟩ ← ⟨0, b⟩2

while l ̸= u do3

r ← some value in (l, u]55

if ϕ ∧ v l r satisfiable with cost b then6

u← b7

else8

l← r1010

end11

end12

return l13

end14

return unsatisfiable15

Using the general dichotomic search algorithm outlined here, it is pos-

sible to implement several different search strategies. We can observe that

the linear search algorithm can be seen as a special case of the dichotomic
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search algorithm where we always pick the largest cost in the interval where

we know the optimal lies. It should also be noted that this algorithm

can easily be implemented in an incremental solver reusing all information

learnt from solving in all previous iterations. In each iteration we solve the

same formula, assuming some additional atom to be true.

In the current implementation, we use binary search. This is one vari-

ant of dichotomic search where the guessed bound in line 5 is always the

midpoint in the interval.

8.3.2 Lower bounds on the cost

If we can compute a lower bound for the cost, we can use this to prune

search. Given that we have an upper bound u which we are trying to

satisfy, and the current partial interpretation gives us a cost of b. Should

we know a lower bound on the cost l on the cost for any complete model,

then we can use this in two situations

1. If the total cost of unassigned incur predicates are less than b− l, we

have a conflict

2. If one or more of the unassigned incur predicates are needed to expand

the current interpretation to a model that satisfies the lower bound,

then they can be deduced.

In order to support this, we make the cost theory take advantage of negative

l literals. A negated v l b means that the cost must be at least b.

One possible source of lower bounds comes from the dichotomic search

algorithm. Should we find that the formula ϕ ∧ v l b is unsatisfiable we

can conclude that ϕ ∧ ¬(v l b) has the same optimum as ϕ itself. We can

update the formula in this way on line 10 in the algorithm.
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8.4 Pseudo-boolean constraints

The theory of costs can be used for more than simply encoding an objective

function, one example of this is encoding Pseudo-Boolean constraints. A

Pseudo-Boolean constraint is a constraint on 0− 1 variables∑
i

aixi ≤ b

The Pseudo-Boolean Optimisation problem is the problem of optimising

an objective function over a set of Pseudo-Boolean constraints. Recently

there have been proposed [BBR09] polynomial translations from pseudo-

boolean constraint to CNF, but a pseudo-boolean constraint remains a

more compact representation and may be more efficient to reason with.

The theory of costs can be used to represent pseudo-boolean constraint in

SMT, by using one cost variable v for each pseudo-boolean constraint and

describe it as a simple formula over incur predicates
∧

i xi ⇔ incur(v, ai)

conjuncted with a bound v l b.

The Pseudo-Boolean satisfiability problem consists of deciding satisfi-

ability for a conjunction of pseudo-boolean constraints, and the Pseudo-

Boolean optimisation problem can be stated as

min f(x)

subject to
∧

i

∑
j aijxij ≤ bi

With the theory of costs we can represent this formula efficiently in Math-

SAT by encoding each pseudo-boolean constraint as outlined above and

the objective function as we have seen in the previous section.

Proposition 8.4.1 The problem of satisfiability in SMT(Cost) is equiva-

lent to the pseudo-boolean satisfiability problem

Proof One possible proof is a constructive proof. We need to show that

any pseudo-boolean constraint can be translated in polynomial time into a
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formula in SMT(Cost), and that any SMT(Cost) formula can be translated

in polynomial time into a set of pseudo-boolean constraints. We start with

the pseudo-boolean to SMT(Cost) translation

It is enough to show how a single pseudo-boolean constraint can be

translated since all constraints can be translated independently from one

another. Given a pseudo-boolean constraint

C=̂
∑
i

cili ≥ c

we create a fresh cost variable v and create the formulaE=̂
∧

i li ⇔ incur(v, ci, i)

corresponding to the linear function and B=̂¬vlc for the lower bound. For

a pseudo-boolean formula with a set of constraints C1, C2, . . . , CN we then

create the corresponding equisatisfiable SMT(Cost) formula
∧

iEi ∧Bi.

For the other direction we first separate the propositional part of the

formula from the theory part by replacing all incur predicates with a fresh

variable pi and keeping the incur predicates separate in the formula

I=̂
∧
i

pi ⇔ incur(v, ci, di)

and in the same way replacing all l predicates with fresh variables qi and

keeping the l predicates separate

B=̂
∧
i

qi ⇔ l(v, bi)

For every cost variable v which has more than one l, we create one fresh

cost variable w and for all equivalences pi ⇔ incur(v, ci, di) in I we add

new equivalences pi ⇔ incur(w, ci, di and replace one of the vlb predicates

with w l b in B.

For each cost variable v, we now have a conjunction of incur predicates∧
i

Pi ⇔ incur(v, ci, di)
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and a single l predicate

q ⇔ v l c

This can now be expressed as two pseudo-boolean constraints, one for the

case of the upper bound ∑
i

cipi − c¬q < c

and one for the case of the lower bound∑
i

cipi + cq ≥ c

Translating the purely propositional part of the formula is straight-

forward, by first converting it into CNF and then translate each clause

{l1, . . . , lN} into one pseudo-boolean constraint
∑

i li ≥ 1. �

8.4.1 Encoding Pseudo-Boolean constraints into SAT

For purely propositional pseudo-boolean problems, we use a simple heuris-

tic to decide whether or not to encode a particular pseudo-boolean con-

straint into SAT. We based this on the work done in MiniSat+ [ES06],

if the constraint can be expressed with a small number of clauses, it is

translated into CNF. This is particularly useful for pseudo-boolean bench-

mark instances which often contain clauses {l1, . . . , ln} expressed as pseudo-

boolean constraints
∑

i li ≥ 1. Handling those in the theory of costs may

cause unnecessary overhead.

8.5 Max-SMT

Since SMT(Cost) is equivalent to the pseudo-boolean problem, it is inter-

esting to examine what properties and techniques lift from the pseudo-

boolean case into SMT. One interesting feature is Max-SAT. Given an
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unsatisfiable SAT problem in CNF, the Max-SAT problem is discovering

a maximal subset of clauses which are satisfiable. This problem can be

easily stated in SMT(Cost) by creating one cost variable v and converting

every clause

{l1, l2, . . . , lN}

where l1, l2, . . . , lN are literals into a clause

{l1, l2, . . . , lN ,¬incur(v, 1, d)}

where d is a unique integer. We shall call this optimisation problem Max-

SMT. There are several extensions of the basic problem:

– Partial Max-SMT

– Weighted partial Max-SMT

In partial Max-SMT, there are some clauses that must be satisfied, so

called hard clauses, and others that may be violated, so called soft clauses.

Hard clauses can simply be modelled as the original clause. In weighted

partial Max-SMT, each clause has a cost, and not satisfying it incurs that

cost.

In MathSAT we can generalise this into arbitrary constraints or formu-

lae. A hard formula is simply a conjunct of the formula, and a soft formula

is modelled as an equivalence incur(v, 1, d) ⇔ ϕ. A weighted soft formula

can be modelled in the same way with the corresponding weight as a cost.

8.6 Implementation issues

It is easy to make most operations in the theory solver O(1). For every

cost variable we keep track of the currently incurred cost c , and we also

keep all unassigned incur predicates on each variable sorted by cost in a

doubly linked list. We also keep a map from each literal to their position

145



Chapter 8. Extensions to SMT

in the list to keep look up in the list in constant time. When a new incur

literal is assigned, we remove the corresponding element from the linked

list and update the currently incurred cost. Since literals are retracted in

the reverse order in which they are added, we know where the element

should be place in the linked list, so retracting a literal can also be done

in constant time.

Checking for consistency is best performed by keeping two stacks of the

assigned l literals for each variable, one for upper bounds and one for

lower bounds. The current bounds [bl, bu) are reflected by the tops of these

stacks. When a positive literal vl is added, this is pushed on the stack of

upper bounds iff it is tighter than the current bound, and negative literals

are handled correspondingly. If the current upper bound bu ≤ c, we have

found a conflict, and a minimal conflict set is found by greedy search on the

positive incur literals with the largest costs. Deduction can also be done

in constant time. Since we keep all unassigned predicates incur(v, ci, di) on

cost, we can deduce ¬incur(v, cn, dn) iff cn ≥ c − bu where we only need

to look at the last predicate in the sorted list. Deductions based on lower

bounds can be implemented analogously. In this way deduction will be

linear in the number of deduced literals.

8.7 Experimental evaluation

All experiments in this chapter were carried out on machines with dual

Intel Xeon E5430 CPUs running at 2.66 GHz using 16 GB of RAM running

Linux. The experiments were run using a time limit of 300 seconds, and a

memory limit of 2 GB.

Since MathSAT extended with the theory of costs is able to support the

standard Max-SAT and Pseudo-Boolean Optimisation problems, we will

evaluate performance on such problems against some dedicated solvers for
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these problems. This will hopefully demonstrate any inefficiencies in the

basic idea wrt. optimisation and costs without mixing in other theories.

Using SMT formulae, it may be difficult to separate the performance of

the cost solver from the performance of other theory solvers. The current

implementation is still very basic and does not include any heuristics or

special tricks that may improve performance.

To get an idea of the performance of our theory solver we therefore first

evaluate MathSAT on Max-SAT and Pseudo-Boolean Optimisation prob-

lems, using dedicated solvers for these problems as comparison. Then we

evaluate the performance on Max-SMT, using the Yices solver for compar-

ison.

8.7.1 Max-SAT

For Max-SAT, we have compared performance with several dedicated Max-

SAT solvers which competed in the 2009 Max-SAT Evaluation, and with

Yices as it is also able to solve the Max-SAT problem. The solvers are

– Clone [PD07a]

– MsUncore 2 [MMP09]

– SAT4J [SAT]

– Yices [DdM06]

We have chosen 100 industrial instances randomly from each of the Max-

SAT and Partial Max-SAT categories in the last Max-SAT Evaluation 2009,

and all 80 industrial weighted partial Max-SAT instances from the same

source. In these categories MsUncore placed first in pure Max-SAT, and

third in weighted Max-SAT. SAT4J placed first in weighted partial Max-

SAT. For MathSAT, we use both linear and binary search, and the results

are summarised in table 8.1.
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Table 8.1: Performance on Max-SAT problems.

Category Solver Optimum Sat Time Mean Median

Max-SAT MsUncore 83 0 2191.17 26.40 6.94

Yices 56 0 1919.79 34.28 8.16

SAT4J 30 50 1039.07 34.64 12.54

MathSAT-binary 16 71 1017.87 63.62 20.41

Clone 15 0 2561.06 170.74 129.06

MathSAT-linear 5 82 466.91 93.38 72.05

Partial Max-SAT Yices 71 0 1643.60 23.15 0.23

SAT4J 67 31 1943.81 29.01 1.48

MathSAT-binary 55 43 248.00 4.51 0.07

MathSAT-linear 53 45 611.52 11.54 0.10

MsUncore 46 0 353.84 7.69 0.20

Clone 44 29 1743.54 39.63 6.59

Weighted partial MathSAT-binary 80 0 110.49 1.38 1.23

Max-SAT SAT4J 80 0 271.86 3.40 3.26

MsUncore 80 0 579.20 7.24 7.09

MathSAT-linear 79 1 1104.10 13.97 8.95

Clone 0 0 0.00 N/A N/A

The table shows for each solver the number of instances where it found

an optimal solution, the number of instances it found a non-optimal solu-

tion, and for the instances where it found some solution it also shows the

median, mean and total execution time. For each category the rows are

ordered from “best” to “worst”.

As expected, MathSAT performs poorly on pure Max-SAT instances.

This is due to the size of the theory conflicts, which are unable to effectively

prune search. For the other two problem categories, these problems include

a significant number of hard clauses, and so the approach we have taken

seems to perform much better.

We can however also see that MathSAT manages to find some solution

more often than any other solver, even if the optimum is not always found.
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Table 8.2: Performance on Pseudo-Boolean problems.

Category Solver Optimum Unsat Sat Time Mean Median

OPT-SMALLINT SCIP 98 8 62 3078.88 29.04 3.49

Bsolo 88 7 110 1754.31 18.46 0.43

PBClasp 67 7 127 869.66 11.75 0.05

MathSAT-linear 63 7 132 1699.69 24.28 0.21

MathSAT-binary 63 7 132 2119.07 30.27 0.22

SAT4J 59 6 127 1149.96 17.69 1.34

OPT-BIGINT MathSAT-binary 52 13 45 2373.35 36.51 15.54

MathSAT-linear 48 13 49 1610.04 26.39 13.40

SAT4J 19 18 51 759.15 20.51 3.55

8.7.2 Pseudo-Boolean Optimisation

The following dedicated solvers for Pseudo-Boolean optimisation which

were taking part in the 2009 Pseudo-Boolean Evaluation was used for com-

parison:

– Bsolo [MM05a]

– PBClasp [PBc]

– SAT4J

– SCIP [BHP09]

SCIP was the winner of the OPT-SMALLINT category, and SAT4J was the

winner of the OPT-BIGINT category. We test performance both on OPT-

SMALLINT, where all coefficients are smaller than 220, as well as on OPT-

BIGINT where at least one coefficient is larger than 220. Unfortunately,

SAT4J was the only other solver capable of handling arbitrarily large coef-

ficients. We selected 189 industrial instances from OPT-SMALLINT, and

224 industrial instances from OPT-BIGINT which were publicly available

in 2009. The results are summarised in table 8.2. For SMALLINT, Math-

SAT lags far behind the 2009 winner SCIP, closer to PBClasp which was

in third place when it comes to finding optimal solutions, or determining
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that an instance is unsatisfiable. However, MathSAT finds some solution

for 202 instances, which is only outdone by Bsolo with 205 instances.

In the OPT-BIGINT category, MathSAT clearly outperforms SAT4J,

but since this is the only other solver which support arbitrarily large co-

efficents, it is difficult to draw conclusions from this. Especially when

also noting that SAT4J appears to lag behind the other solvers on OPT-

SMALLINT.

8.7.3 Max-SMT

We have also tested performance of optimisation of formulae using some

other theory, in this case linear real arithmetic. In this experiment, we

have produced some randomly generated weighted Max-SMT formulae, by

combining several formulae from the SMT-LIB with random weights on

each clause. We have also generated partial weighted Max-SMT formulae

by assigning random weight to a subset of the theory atoms on unsatisfiable

formulae.

For comparison we use Yices, which supports Max-SMT. Barcelogic also

supports Max-SMT [BNO+08, NO06]. Unfortunately we were not able to

obtain an optimised version of Barcelogic supporting Max-SMT in time,

so here we will only use Yices for comparison.

The results are summarised in table 8.3. The table shows for how many

instances the optimum was found, for how many instances each solver was

alone in finding the optimum, the total execution time, as well as the mean

and median of the execution time. We can see that MathSAT with binary

search appears to outperform linear search, as well as Yices.
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Table 8.3: Performance on Max-SMT problems.

Category Solver Optimum Unique Time Mean Median

Weighted MathSAT-binary 56 6 4886.59 87.26 68.38

Max-SMT Yices 47 3 5260.67 111.92 86.21

MathSAT-linear 23 0 4777.45 207.71 251.00

Weighted partial MathSAT-binary 206 1 1462.98 7.10 2.45

Max-SMT MathSAT-linear 206 1 2228.39 10.81 4.02

Yices 195 0 3559.53 18.25 3.19
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Chapter 9

Related work

The topic of bit-vector reasoning has received a lot of attention in recent

years, and there is a rich corpora of related work. In this chapter, we will

try to give an overview of the field, dividing the chapter into one section

for each subtopic.

9.1 Solving

There are many works based on encoding into SAT, which uses a possibly

modified SAT solver in some way to reason with bit-vector formulae.

In [WSK04], Wedler et al. proposes a modified DPLL procedure is

proposed with ad hoc support for arithmetic. In this work, the solver

uses a modified decision heuristic and conflict analysis, in order to take

advantage of the known structure of addition networks in the original bit-

vector formula.

In [NB04], Novikov and Brinkmann describe a modular SAT procedure

aimed at RTL verification. Instead of bit-blasting the entire RTL design,

blocks may be modeled using ad hoc procedures within the SAT proce-

dure. Assigning values to inputs or outputs of this block causes the ad

hoc procedure to propagate value to other externally visible signals in the

block.
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In [CKS05] Cook et al. propose an eager encoding into SAT with the

Cogent solver which is applied for program verification. The solver encodes

bit-vector formulae in a straightforward way by standard bit-blasting.

In [WFG+07], Wille et al. describe an extension to the DPLL proce-

dure aimed at solving bit-vector formulae efficiently similar to Novikov and

Brinkmann. Apart from ad hoc procedures for modules like multiplication,

Wille et al. also use a specialised decision heuristic based on the type of

module.

9.1.1 Bit-blasting

Babić proposes in [Bab08] to use strength reduction to reduce the size of

the generated CNF. This is a technique from compiler optimisation which

can translate multiplication and division by constants into potentially more

efficient shifts and additions. He also proposes to base bit-blasting on gate-

minimal circuits which should result in a smaller number of generated

variables and clauses.

Jha et al. proposes in [JLS09] to use a relational encoding for division

and remainder, which they claim delivers superior performance.

9.1.2 Encoding into LIA

Brinkmann and Drechsler proposed [BD02] a translation of a fragment of

bit-vector constraints into linear arithmetic. Zeng et al [ZKC01] follows a

similar approach. Later, Bozzano et al. proposed an extension in [BBC+06]

into SMT formulae over the theory of bit-vectors by encoding into a SMT

formula over linear integer arithmetic rather than create a large linear

arithmetic problem for the entire formula. Independently Kroening [Kro05]

proposed a similar translation into SMT over linear arithmetic together

with a solver for linear arithmetic based on the Omega test [Pug91].
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The approach of Bozzano et al was later discovered to suffer scaling prob-

lems when applied to more complex real-world formulae, and in [BCF+07]

Bruttomesso et al. proposed a lazy encoding of bit-vector literals into lin-

ear arithmetic. In this work the translation into linear arithmetic was not

performed up-front, but inside a theory solver, and only when after sim-

plification at the bit-vector level had been performed. The lazy approach

was also paired with a number of inference rules which were applied in a

theory solver in an attempt to find many of the “simpler” theory conflicts

without having to resort to an encoding into linear arithmetic.

9.1.3 Modular arithmetic

The p-adic method was first proposed in [Mal03] and extended to non-linear

arithmetic by Babić and Musuvathi in [BM05]. As reported by Babić in

[Bab08], the approach by Babić and Musuvathi may not be scalable to

more complex bit-vector problems.

9.2 Preprocessing

Here we will give a brief overview on the related work dealing with the

main preprocessing techniques.

9.2.1 Simplification

Barrett et al. [BDL98] proposed simplifications which produces a canonical

form for a fragment of the bit-vector theory as defined in this thesis.

In [GBD05] Ganesh et al. proposed a set or simplification rules which

can be applied in polynomial time.

Bruttomesso et al. [BCF+07] proposed a small set of simplification

rules which were hardcoded into the solver. These were local, and could
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be performed in linear time.

Babić [Bab08] performs simplification using a term rewriting engine,

using approximately 160 rules. According to the author the engine is not

recursive, which seems to indicated that it is not applied to a fix-point, but

very little detail is provided on how the engine works. Our idea of using

term rewriting was developed independently of this work.

Several works have proposed simplifications on bit-blasted formulae be-

fore solving. Brummayer and Biere [BB06] proposes a set a rewrite rules

on and-inverter graphs (AIGs). Another approach was proposed by Eén et

al. [EMS07] based on DAG-aware minimisation and structure technology

mapping.

9.2.2 Substitution

Performing substitutions to eliminate variables has been proposed in sev-

eral earlier works. With this substitution, if we have a formula of the form

v = t ∧ ϕ where v does not occur in t, then this formula can be replaced

with ϕ[v 7→ t]. This has been proposed by Ganesh et al. [GBD05] were it

is called propagation of equalities as well as Bruttomesso et al. [BCF+07]

where it is called variable elimination, and Jha et al [JLS09] which call it

equality propagation. Both Bruttomesso et al. and Jha et al. also perform

substitutions on formulas on the form p ∧ ϕ which can be replaced with

ϕ[p 7→ ⊤].

Term substitution is also performed in Boolector as described by Brum-

mayer [Bru09] although there are not many details which kinds of substi-

tutions are performed.
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9.2.3 Propagation of unconstrained terms

Propagation of unconstrained terms was first proposed for SMT solving by

Bruttomesso et al. in [BCF+07].

Brummayer independently proposed the technique in [Bru09]. A more

limited version is also used in Beaver [JLS09], where if all subterms are

unconstrained, or in their terms “don’t cares”, the term itself is also a

don’t care.

None of these works describe how models can be computed for satisfiable

formulae, or how one can propagate unconstrained formulae as well as

terms.

9.3 Extension of EUF

Bruttomesso and Sharygina proposed in [BS09] an extension of EUF which

is based on a lazy version of the core rewrite technique of Cyrluk et al

[CMR97].

9.4 Minimal or reduced model enumeration

Several approaches have been proposed for reducing the number of liter-

als sent to the theory solvers. de Moura and Bjørner [dMB07b] proposed

what they call relevancy propagation. In this technique the current truth

assignment created by the SAT solver is checked on the original formula.

If a particular literal in the current truth assignment can not affect sat-

isfiability of the original formula, it is not communicated to the theory

solvers.

Another technique has been proposed by Sebastiani [Seb07] called ghost

filtering. In this technique if a particular variable only occurs in already

satisfied clauses, it can be ignored when selecting a new decision variable by
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the SAT solver. The advantage of this technique is that it does not require

a particular encoding of the formula of access to the original formula, the

downside is that it requires some changes to the decision heuristic of the

SAT solver.

Minimal model generation by a dual rail encoding was used by Roorda

and Claessen [RC06], although the paper doesn’t mention how the dual

rail encoding achieves minimality of models. It was also used for SMT in

[BCF+07], although the details were left out because of space constraints.

9.5 Approximation

Approximation/refinement schemes was first proposed for SMT solving by

Bryant et al. in [BKO+07]. In this work, under-approximations limited the

domain of bit-vector variables (reducing the number of bits and then per-

forming a sign extension back to the original width). Refinement was done

by increasing the domain. Over-approximations were done by replacing

subformulae with fresh propositional variables.

He and Hsiao [HH08] use under-approximation in a way similar to

Bryant et al., but instead of just performing sign extension they also at-

tempt to use zero-extension.

Brummayer and Biere [BB09b] propose a generalisation of the sign- and

zero-extension by He and Hsiao by partitioning bit-vectors and assigning

all bits in some partitions the same value. They also show how this can

be combined with over-approximation in a simple loop together with early

termination for admissible results.
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9.6 Reusing learnt information

Whittemore et al. [WKS01] describe reusing of learnt clauses in the SATIRE

SAT solver. This is an incremental SAT solver which allows the user to

retract clauses and add new ones before searching again. To implement

this the solver keeps track of the dependencies between learnt clauses and

original clauses. If a clause is retracted, all clauses which have been learnt

using this clause are also removed. Silva and Sakallah [SS97] proposed a

technique for reusing clauses from one formula to the next in automatic

test pattern generation (ATPG) for circuits. In this application a SAT

solver is used to try to generate stimuli that exposes a particular fault.

They notice that some learnt clauses are independent of the current target

fault instead depending only on the circuit being studied, and could be

reused from one SAT problem to the next. This happens if a learnt clause

is derived solely from clauses originating in the circuit. Strichman [Sht01]

noticed that in the context of Bounded Model Checking (BMC), certain

clauses could be reused from one unrolling to the next.

Eén and Sörensson showed in [ES03] how learnt clauses could be reused

when doing k-induction. This relies on the idea that in this application

we are monotonically adding non-unit clauses to the solver, and all unit-

clauses can be used as assumptions rather than adding them permanently

to the solver.

In [GD05] Große and Drechsler propose to reuse clauses learnt while

solving one formula when solving another iff they can be derived from the

intersection of the clauses in the two formulae.

Babić and Hu proposed some simple heuristics to decide if a fact is

reusable or not in [BH09], which allow for reuse of learnt unit clauses.

The only work which considers the idea of reusing all information is the

work by Eén and Sörensson, which is targeted for the case of k-induction
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where all non-unit clauses in one formula will occur also in the next. For

general solving of similar formulae which are not extensions of one another,

all previous work concentrate on techniques to compute the relevant parts

of the learnt clauses and reuse only those.

9.7 Simultaneous SAT

Khasidashvili et al. [KNPH06] introduced a technique for solving a set of

related formulae using an algorithm they call Simultaneous SAT (SSAT).

Given a formula in CNF and a set of proof objectives being literals in this

formula, their algorithm is a modification of a normal DPLL-like algorithm.

They always keep a particular proof objective as the current goal to satisfy,

the currently watched proof objective. At any decision this literal is chosen

unless it has already been given a truth value. When the solver finds a

model, it checks all other proof objectives and records all that have been

satisfied by the model. Then a new currently watched proof objective is

chosen among those which has not yet been solved. This is repeated until

all proof objectives have been solved. The SSAT algorithm can be seen as

a special case of reusing learnt information when all formulae to be solved

are known in advance.

In contrast to the SSAT algorithm, the MSPSAT algorithm presented

in this work doesn’t require any modifications of the underlying solver.

Indeed it would be possible to implement using the MathSAT API rather

than modifying any part of the solver.

9.8 Unsat core extraction

Zhang and Malik showed in [ZM03] how to use the proof of unsatisfiability

from a proof-producing SAT solver to compute an unsatisfiable core. In this

160



9.9. Optimisation

work a core is the set of clauses which occur in the proof of unsatisfiability.

The idea of using a set of assumptions representing subformulae and

computing an unsatisfiable core by computing a final conflict in terms of

these assumptions was first published by Griggio et al. in [CGS07] and also

by Asin et al. in [ANOR08]. The technique seems to have been previously

known in the field though.

The technique is also used in the Yices SMT solver, although the de-

tails are unpublished, and it is implemented in some SAT solvers, such as

MiniSat.

9.9 Optimisation

The problem of optimisation in SMT was first introduced by Nieuwen-

huis and Oliveras [NO06] with a focus on the Max-SMT problem. This

work introduced a theory which could encode a single objective function,

and optimisation was handled by monotonically strengthening the theory.

This strengthening is used to express an increasingly strict upper bound on

the objective function, meaning that the only possible search algorithm in

this theory is linear search. In contrast our approach supports several ob-

jective functions making it possible to encode pseudo-boolean constraints

efficiently, as well as several different optimisation algorithms.

Max-SMT is also supported in the Yices solver, but no published details

are available on the underlying techniques used to implement this feature.

In the field of Pseudo-Boolean Optimisation, the work by Aloul et al.

[ARSM07] may be the most similar. This uses a generalisation of the unit-

propagation rule to propagate literals from Pseudo-Boolean constraints, in

a way similar to how truth assignments to incur predicates can be deduced

in our theory of costs. They use a “sliding” upper bound to implement

optimisation, which also seems to rule out the possibility of performing
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dichotomic search on the objective function.

162



Chapter 10

Conclusions

We have seen several preprocessing and approximation techniques, and ex-

perimental data shows that for real-world formulae, preprocessing is often

far more important than which precise techniques are used to actually solve

a formula.

For solving formulae, the experimental evidence has shown that a basic

lazy scheme suffers from some drawback in comparison to a translation

into SAT, but that it also can help boost performance significantly on some

instances. Cases where the lazy scheme is advantageous seem to be where

layering is helpful, using abstractions of the theory which can be efficiently

decided. A possible application area where this might occur frequently is

in equivalence checking or related fields. The two instances of Burch-Dill

style [BD94] verification of processor pipelines included in the SMT-LIB

are examples of this.

We have also seen techniques which allow model computation while all

preprocessing techniques are used, which makes these techniques useful in

practise and the performance of the solver more stable and predictable

with respect solving without computing models.

With the theory of costs proposed in this thesis, we show that it is pos-

sible to support optimisation, Max-SMT and the compactness of Pseudo-
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Boolean constraints with very minor changes to any SMT solver following

the lazy schema. This is achieved by a new theory, rather than invasive

modifications of the solver.

Overall, there seems to be support for concluding that MathSAT with

the theory of costs delivers good performance, and is largely comparable

to state of the art techniques in dedicated Max-SAT and Pseudo-Boolean

solvers.

10.1 MicroFormal

In this industrial case study, we have seen that it is not enough to have

an efficient solver, how this solver is used can have a big impact on perfor-

mance. We have seen that reusing learnt information from solving previous

formulae can be very useful, and that in some cases it is possible to achieve

good performance without resorting to more complex techniques for reusing

information that have been proposed in the past.

MathSAT has now been successfully integrated into MicroFormal, and

it delivers significantly improved performance over the SAT-based solver

previously used. A version of the tool set with MathSAT integrated has

been made available to users within Intel with MathSAT available as a

command-line option. This version has been successfully used for verifica-

tion of a next generation microarchitecture. According to our partners at

Intel, in the future, MathSAT will be made the default decision procedure

in MicroFormal.

10.2 Future work

The work presented in this thesis has given us the impression that so

far, we are only scratching the surface of what may be possible with bit-
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vector reasoning. For this reason the future work section may seem to

be a bit extensive, but hopefully useful to the reader. It is not by any

means a comprehensive list of possibilities for future directions, just a small

sampling of ideas that may be interesting.

10.2.1 Stochastic local search

The success of the under-approximations used in this thesis seems to indi-

cate that often guessing values for variables may be a successful strategy.

This leads to the idea of using stochastic local search (SLS) for SMT. Some

attempt in this direction has been done in [GST09], but in that work local

search was only performed on the propositional abstraction of the formula,

essentially replacing the DPLL solver with a local search algorithm. The-

ory consistency was then checked using conventional theory solvers. But

if the results on under-approximation is an indication, performing local

search on the variables in the formula rather than the propositional ab-

straction may be fruitful. The disadvantage of this is that the local search

algorithm need to be purpose-built for each theory.

In fact, performing some preliminary exploratory experiments with SLS

was the initial motivation for what became the under-approximation de-

scribed in section 5.2.

10.2.2 Model computation

Although we have shown that it is possible to compute models while still

retaining all preprocessing techniques described in this thesis, the current

implementation which allows this is a preliminary prototype which still

shows unnecessary computational overhead. To evaluate the full potential

of the technique described, an optimised version needs to be developed and

tested in cases where large numbers of rewrites are performed on formulae
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in preprocessing.

10.2.3 Adaptability of solver

When solving bit-vector formulae using DPLL(T), MathSAT currently uses

both the EUF solver and the bit-vector solver, always calling the cheaper

EUF solver first. Only if it fails to find any inconsistency is the bit-vector

solver called. In [BCF+07], a more complicated design was shown with

more layers of increasingly more powerful solvers. This seems advantageous

in principle since it increases the chances of avoiding a potentially expensive

call to the final bit-vector solver, but on the other hand it also increases

the complexity of the system. Determining what all these layers should

contain is not a simple problem, and there is a risk that such an architecture

requires continuous tinkering with the layers to achieve good performance

as time goes by.

An alternative might be an adaptive theory solver which is capable of

learning from previous experience in solving formulae. Since we would like

to discover theory conflicts more cheaply than by a call to the bit-vector

solver, we could try to analyse the conflicts found by the theory solver and

attempt to avoid having to call the theory solver in a similar situation in

the future.

As an example, if we find the bit-vector theory conflict

¬(x⟨64⟩<u 172)

x⟨64⟩<u sext⟨64⟩(24) + sext⟨32⟩(y⟨32⟩)

¬(z⟨64⟩<u 176)

¬(z <u sext⟨64⟩(24) + sext⟨32⟩(y⟨32⟩))

z⟨64⟩<u 172

Can we learn something more general from this conflict which can be reused

later? To start with, we can notice that this conflict is not minimal,
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¬(z⟨64⟩<u 176) can be removed from the set. Now we can start trying

to create a “generalised” conflict.

¬(x⟨n⟩<u v
⟨n⟩)

x⟨n⟩<u y
⟨n⟩

¬(z⟨n⟩<u y
⟨n⟩)

z⟨n⟩<u v
⟨n⟩

Finally we can universally quantify over all variables to create a non-ground

axiom. Several steps are necessary to produce a generalised conflict from

a conflict learnt during search:

– Minimise the conflict set. This can be done with several different

techniques such as those used to compute unsatisfiable cores, or min-

imisation of infeasible subsets in linear programming e.g. following

the approaches in [CD91, AS08].

– Replacing irrelevant terms with fresh variables. This can be done using

the delta-debugging technique described by Brummayer and Biere in

[BB09c].

– Generalise from fixed sized bit-vectors to non-fixed sized bit-vector

terms where possible. Non-fixed size bit-vector formulae are not de-

cidable, so this step may not be possible to automate fully. A possible

approach could be to use a theorem prover with support for the theory

of non-fixed width bit-vectors and perform generalisation in cases this

theorem prover can prove is correct in a reasonable time.

– Add universal quantifiers on all variables to make the conflict set into

a non-ground axiom.

With a framework which is able to perform efficient matching of this gen-

eralised conflict set against the current truth assignment, we would be able

to find any similar conflict cheaply in the future. The advantage of this is

that it doesn’t depend on incrementality of any other technique of reusing
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learnt information withing the same execution of the tool, but can be used

to speed up completely separate run of the solver. If we run the solver twice

on the same formula, learning generalised conflicts after the first run, we

can expect that execution time will be improved in the second run.

An improvement would be to integrate this into the EUF solver, where

it would be possible to check for conflicts on the congruence closure rather

than just the set of literals in the current truth assignment. In this case the

matching of generalised conflicts is similar to the problem of E-matching

which have been described in earlier works [dMB07a, M LK08]

Another possibility for adaptivity of the solver would be to use machine

learning techniques to adapt solver heuristics based on previous experience.

10.2.4 DPLL(T) or the lazy schema

We have seen in the experimental evaluation in chapter 6 that in the lazy

schema there are several issues with performance.

– For satisfiable instances, the solver may visit a large number of truth

assignments before finding a consistent truth assignment. Guiding the

solver towards the right truth assignment may help improve perfor-

mance in these cases, and there are several ways in which this could

be accomplished such as by deduction.

– Sometimes the boolean enumerator makes decisions which forces the

theory solver to solve very difficult consistency problems. These may

be difficult enough that the solver times out trying to solve these,

although if the boolean enumerator had only made the “right” deci-

sions, the formula would have been trivial to solve. When translating

into SAT, the solver uses restarts to get out of unproductive parts of

the search space, but in the lazy scheme the theory solver is forced to

solve this truth assignment before search can continue. A possible so-
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lution to this would be to allow the theory solver to “give up” and ask

the top-level to attempt to find another truth assignment if possible,

– [BPST10] introduces theory solver suggestions, literals which can not

be deduced but are consistent with the internal state of a theory solver.

No data on the effectiveness of such a technique is yet available, but it

may help top guide the top-level SAT solver towards satisfiable truth

assignments, finding models quicker.

10.2.5 MicroFormal

Although some improvements have been made to MicroFormal in this case

study, the time taken to solve formulae is still considerable compared to

the rest of the work of the symbolic execution engine, on average over half

the execution time is spent in solving formulae. Therefore, it would be

interesting to look for further ways of reducing the time taken to solve

instances as well as reducing the number of instances that need to be

solved. Listed below are a few possibilities which may be interesting to

investigate.

Improvements on non-singleton sets Currently, the MSPSAT algorithm is

being used in MicroFormal for solving non-singleton sets of instances. How-

ever, the experimental results show that with a suitable reset strategy,

solving them in the same way as singleton sets can achieve better per-

formance. Switching to this would give better performance until a more

efficient version of MSPSAT can be developed.

Better models Since MicroFormal is currently capable of storing models

for previous formulae, and use these in a model caching scheme to either

avoid future solver calls, or significantly reduce the complexity of future

calls, it makes sense to attempt to adapt the models returned from the
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Table 10.1: Model caching potential

Program Instances Models

Program 1 1702 187

Program 2 1121 142

Program 3 7704 1656

solver to maximise the utility of this feature. A “good” model is in this

case one which models (or can be extended to model) as many future

formulae as possible, therefore minimal (or near minimal) models may be

interesting.

As an indication of the potential of better models, table 10.1 shows how

many unique models are needed to model all satisfiable singleton instances.

This data was computed with a basic greedy search trying to satisfy as

many instances as possible with the same model, it is possible that the

potential for model caching is greater than the results indicate. There

seems to be some significant potential in discovering better models to avoid

future solver calls, but it is unclear how this potential can be harnessed.

Heuristics for resets The reset strategy used in this work is a simple strat-

egy with a fixed reset frequency. Although it has been shown to deliver a

significant performance improvement, it is still vulnerable to outliers in the

sequence of instances. It would be interesting to discover heuristics capa-

ble of detecting when irrelevant information stored in the solver is likely to

negatively affect performance, and build an adaptive reset strategy around

such a heuristic. This should allow for longer reset intervals in the cases

where no outliers exists, and further improve performance. Given that the

chosen reset interval was conservative because of the risk of encountering

outliers, it might be possible to achieve performance closer to the optimal.

Looking closer at the singletons in program 3, the sequence which had
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several outliers, the optimal reset strategy seems to prefer to reset imme-

diately after resets. Developing a heuristic around this observation may

be fruitful. Another interesting avenue would be to experiment with tech-

niques for removing irrelevant information in the solver while still keeping

what is still relevant. A challenge is to predict which information will not

become relevant again in the near future.

Heuristics based on instance origin Although the symbolic execution en-

gine in MicroFormal only computes paths, it is possible to separate in-

stances generated by it by their origin, meaning from where inside the tool

the instances where generated. It might be possible to discover some pat-

tern in the origin of instance dividing instances into different kinds which

might be solved in different ways. Figure 10.1 shows the number of sin-

gletons of different origins in the three program used for experiments in

section 7. MicroFormal has been instrumented to provide a hint on what
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part of the engine created each instance, and in these cases there were a

total of 15 different types. It seems that certain types (6 in particular) are

very likely to be satisfiable; It may be possible to use such observations to

develop heuristics that improves performance.

A hybrid concrete/symbolic execution engine One technique which can

quickly discover sets of paths in a program is fuzz testing. It might be

possible to combine fuzzing with symbolic execution by starting with gen-

erating a number of paths with fuzzing, and then extending this set using

symbolic execution. The two methods can be interleaved by a technique

similar to [GLM07] where given a specific path computed by concrete exe-

cution new paths can be computed by picking the branching points of this

path and generating a path feasibility condition to determine if any other

branch is possible. If a new partial path is discovered, this can be com-

pleted by concrete execution of that path, and fuzzing may be applied to

discover many other similar paths taking the same branch. Judicial use of

fuzzing and concrete execution may in the best case be able to significantly

reduce the number of formulae that need to be solved, and taking a closer

look at this possibility may be a fruitful avenue of research.

Other possibilities There are many other possibilities for future improve-

ment. Among them are, apart from faster performance for pure solving,

the following:

– Support for uninterpreted functions. MicroFormal abstracts some

parts with uninterpreted functions, but currently those are eliminated

using Ackermann’s expansion by MicroFormal itself. Passing the orig-

inal formula on to the solver may improve performance.

– Parallelism. Although parallelising non-singleton sets was shown to

have some scaling issues, there are other opportunities for parallelism
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in MicroFormal. An example would be performing the symbolic exe-

cution in parallel exploring several paths simultaneously.

10.2.6 The theory of costs

The theory presented here is so far very basic, and many improvements

and extensions are possible.

Heuristics for dichotomic search Apart from the basic linear or binary

search many other strategies are possible.

– We could pick a bound other than the midpoint, say b = 2(u−l)
3 to

reduce the chance of incorrectly guessing a bound below the optimum.

– We could mix linear search with dichotomic search. We could run

a few iterations of linear search interspersed with a few iterations of

picking some lower bound.

– An interesting alternative might be an adaptive splitting strategy were

we choose to split on

b = ⌈k(u− l)⌉

were k ∈ (0, 1] and is updated in each iteration based on how the

search progresses. If the previous bound was satisfiable, we might

increase k. If it was unsatisfiable, we might decrease k.

Estimating lower bounds In Pseudo-Boolean Optimisation, several tech-

niques of estimating lower bounds have been proposed e.g. [MM05b]. It

may be interesting to investigate how well this or similar work lifts to the

theory of costs.

Cost order There are many possible extensions to the basic theory. One

in particular is to add an ordering between cost variables. If v1, v2 are
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cost variables, then v1 l v2 is a predicate imposing a strict order on these

two variables. This would allow modelling of relations between different

cost functions, which might be interesting. So far, we have however no

application of this extension in mind.
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ric Rodŕıguez-Carbonell. Efficient generation of unsatisfia-

bility proofs and cores in SAT. In Logic for Programming,

Artificial Intelligence, and Reasoning, pages 16–30. 2008.

[ARSM07] Fadi A. Aloul, Arathi Ramani, Karem A. Sakallah, and

Igor L. Markov. Solution and optimization of systems

of Pseudo-Boolean constraints. IEEE Trans. Comput.,

56(10):1415–1424, 2007.

[AS08] Mustafa K. Atlihan and Linus Schrage. Generalized filter-

ing algorithms for infeasibility analysis. Comput. Oper. Res.,

35(5):1446–1464, 2008.

[AS09] Gilles Audemard and Laurent Simon. Predicting learnt

clauses quality in modern SAT solvers. In Proceedings of the

21st international joint conference on Artifical intelligence,

pages 399–404, Pasadena, California, USA, 2009. Morgan

Kaufmann Publishers Inc.
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[SE08] Niklas Sörensson and Niklas Eén. MiniSat 2.1 and Min-

iSat++ 1.0 – Sat Race 2009 Editions. Sat Race 2008 Com-

petition solver description, 2008.

[Seb07] Roberto Sebastiani. Lazy Satisability Modulo Theories.

JSAT, 3(3-4):141–224, 2007.

[Sht01] Ofer Shtrichman. Pruning techniques for the SAT-Based

bounded model checking problem. In Correct Hardware De-

sign and Verification Methods, pages 58–70. 2001.

[SS97] Joao P. Marques Silva and Karem A. Sakallah. Robust search

algorithms for test pattern generation. In Proceedings of the

186

http://www.sat4j.org/


Bibliography

27th International Symposium on Fault-Tolerant Computing

(FTCS ’97), page 152. IEEE Computer Society, 1997.

[Tse68] G. S. Tseitin. On the complexity of derivation in proposi-

tional calculus. In Studies in Constructive Mathematics and

Mathematical Logic, pages 115–125, 1968.

[War02] Henry S. Warren. Hacker’s Delight. Addison-Wesley Profes-

sional, 2002.
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