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Abstract

This paper present a thorough and homogeneous comparison of chunk and
peer selection strategies suitable for mesh-based, live, P2P streaming applications.
Strategies are studied in a context of push protocols, and it is shown that none of the
schedulers analyzed, which are, to the best of our knowledge, the majority of those
proposed in the literature, offer acceptable performances on a range of scenarios
commonly encountered in networks. Results also show that the key weakness is in
the peer selection strategy. Based on these observations, we propose a new peer se-
lection strategy which blends together an optimal peer selection for homogeneous
networks with a bandwidth aware approach. Extended experiments show that un-
der all the scenarios considered this peer scheduler performs consistently better
than all the others, specially when coupled with a deadline-based, robust chunk
selection strategy.

1 Introduction

Live streaming is becoming one of the most active research areas in P2P systems, in
part because of its commercial importance, with P2P-TV systems spreading on the
Internet, and in part because of its challenging research topics that stimulate the com-
munity. One of the challenges in research is the information scheduling strategy in un-
structured, mesh-based systems, which includes decisions on which information piece
is distributed to (or retrieved from) which peer in the system.

There are several reasons why this topic is extremely important and is receiving a
lot of attention: i) it is one of the main driver of the system performance; ii) efficient
and performing distributed solutions are difficult to find due to the dynamic nature
of the overlay topology and due to the tight deadlines typical of real-time systems;
and iii) when the stream is video, the networking resources required are large and
interaction of the overlay application with the underlying network play a crucial role in
both performance and efficiency.

We are not concerned here on whether unstructured systems are better than struc-
tured ones (see [3] or [10] for examples), or with the definition of any specific protocol



for the exchange of information. We assume the system is unstructured and there is a
topology management function that builds a neighbourhood A;, which is the knowl-
edge base (peers address, its characteristics, the information it owns, etc.) used by peer
P; to take its scheduling decisions. Moreover we restrict the scope of the paper to
chunk' based, push systems, once more without assuming that they are better or worse
than pull ones or of systems where information is not chunk-ized, but grouped with a
different approach (frames, layers, ...). We focus on the algorithmic choices and deci-
sions regarding the selection of peers and chunks and the effects of coupling different
algorithms for peer and chunk selection and the order they are applied (i.e., chunk first
or peer first).

What complicates the scenario is that networks are not ideal, neither homogeneous,
so that the choice of the peer will affect the performance in transferring the chunk to
it, but also how this specific chunk will be diffused in the future: peers more endowed
with resources will diffuse the chunk more efficiently than peers with scarce resources.
Until very recently, literature on chunk and peer scheduling was based on heuristics of-
ten embedded and indistinguishable from the protocol to exchange the information (see
Section 7 for a discussion of the literature), and normally overlooked both fundamental
bounds to be compared with, and the interaction between the application and the net-
work. Recently two works started looking at the problem with a different perspective.
In [4] the resources (in terms of bandwidth) of the selected peer were included in the
selection procedure, showing that in some heterogeneous scenarios this is fundamental
to achieve good performance. Even more recently, [1] proved the existence of a class of
distributed algorithms that in ideal networking scenarios achieve optimal distribution
delay for a streaming system, thus setting a clear bound against which comparisons can
be made in realistic scenarios.

As in [4], we consider the upload bandwidth of peers as their dominant character-
istic, i.e., we disregard the impact of the difference in delay between peers and we as-
sume that download bandwidth of peers is always much larger than upload bandwidth,
so that performance is dominated by this latter, apart, obviously, from the scheduling
decisions. We address both full mesh topologies, to understand basic properties of the
algorithms, and general, random topologies characterised by a reduced neighbourhood
size as they can emerge from a gossipping protocol like NewsCast [9] to understand the
impact of realistic neighborhood sizes. Finally, we consider both the limiting case of
average upload bandwidth equal to the stream bandwidth, where algorithms’ properties
are stressed and highlight their properties, and the impact of increased resources in the
network.

The contributions of this paper are two:

1. On the one hand, we explore and assess the performance of a number of pos-
sible chunk and peer scheduling algorithms known in the literature, taking into
account their combination as peer or chunk first as well as different bandwidth
models and inhomogeneity in their distribution, up to the extreme case of large
bandwidth peers coupled with “free-riders” due to the lack of resources;

2. On the other hand, we propose a peer selection algorithm that blends charac-

! A chunk is the atomic piece of information exchanged by peers



teristics of the optimal scheduler proposed in [1] with the bandwidth awareness
proposed in [4] in a joint scheduler that proves to be robust and performs better
than any other scheduler in all analysed scenarios.

The remaining of the paper is organised as follows. Section 2 introduces the no-
tation we use and defines clearly the main algorithms for peer and chunk scheduling
found in the literature. Section 3 defines the networking model and the different band-
width distribution functions that we use in performance evaluation. Section 4 presents
a set of results that show how none of the schedulers defined so far is able to per-
form well in a wide range of conditions, triggering the search for a novel scheduler,
described in Section 5, the Bandwidth-Aware Earliest-Latest peer (BAELp) scheduler.
This is the scheduler, we define and propose in this paper as the most robust blend of
network-awareness and optimality?. Section 6 presents results that demonstrate how
this BAELp performs consistenly better than any other scheduling combination when
combined with a deadline-based chunk scheduler. Section 7 discusses the remaining
literature relevant to this paper and Section 8 closes the paper with discussions on its
contributions.

2 Schedulers Definition and Composition

An unstructured P2P streaming system is modelled as a set S = {Py,... Py} of N
peers P;, whose aim is receiving a stream from a source, which is a peer itself, but
‘special’ in that it does not need to receive the stream, so is is not part of S. The media
stream is divided in M, chunks; each peer P; receives chunks C; from other peers, and
sends them out at a rate s(P;). The set of chunks already received by P; at time ¢ is
indicated as C(P;,t). The most important symbols used in this paper are recalled in
Table 1.

The source generates chunks in order, at a fixed rate A and sends them with rate
s(source) = A, i.e., the source emits only one copy of every chunk. All the bitrates
are normalised w.r.t. A, so that the generation time of C} is r; = j.

If D;(t—1;) is the set of nodes owning chunk C; at time ¢, the worst case diffusion
delay f; of chunk C; is formally defined as the time needed by C; to be distributed
to every peer: f; = min{é : D;(d) = S}. According to this definition, a generic
peer P; will receive chunk Cj at time ¢ with r; +1 < ¢t < r; + f;. Considering an
unstructured overlay ¢ will be randomly distributed inside such interval. Hence, in an
unstructured system FP; is guaranteed to receive C'; at most at time 7; + f;. To correctly
reproduce the whole media stream, a peer must buffer chunks for a time of at least
F = maxi<j<um, ( fj) before starting to play. For this reason, the worst case diffusion
delay F'is a fundamental performance metric for P2P streaming systems, and this paper
will focus on it. We will also consider the 90 percentile over chunks of the diffusion
time, which is important, for instance, when FEC or any form of redundant coding is
used®. The average delay is instead not very meaningful in streaming systems, since

2The Earliest-Latest (ELp) scheduler was proven to be the optimal peer selection strategy under homo-
geneous and ideal networking scenario in [1].

30ther percentiles, like 95, 99, or even 80 can be considered, depending on the specific redundancy of
the system



Symbol | Definition

S Set of all the peers

N Number of peers in the system

M. Number of chunks in the stream

P The i'" peer

C), The h'" chunk

rh Time when the source generates C',
N; Neighbourhood of peer P;

Ny Neighbourhood size

fn Diffusion delay of C},

(time needed by C', to reach

all the peers)

C(P;,t) | Set of chunks owned by P; at time ¢
C'(P;,t) | Set of chunks owned by P; at time ¢ which
are needed by some of P;’s neighbours
s(P;) Upload bandwidth of P,

Table 1: Symbols used in the paper for the main system parameters.

the playout buffer must be dimensioned based on the most delayed piece of information
otherwise it can empty during playout and the video must annoyingly stop waiting for
new information to fill the buffer.

Whenever a peer P; decides to contribute to the streaming and pushes a chunk, it
is responsible for selecting the chunk to be sent and the destination peer. These two
decisions form the scheduling logic, and they are taken by two schedulers: the chunk
scheduler, and peer scheduler. The peer scheduling algorithm can select a target peer
P, € N;, where N is the set of its neighbours (the neighbourhood). The case in which
Vi,N; = S — P; corresponds to a fully connected graph, and, albeit not realistic, it
is useful to explore elementary properties of different scheduling logicsx. Given an
X chunk scheduler and a Y peer scheduler, applying first X and then Y one obtains a
chunk-first X/ Y scheduler; the other way around one obtains a peer-first Y / X scheduler.

The chunk and peer scheduling algorithms can be blind (a peer does not use any
information about the chunks received by its neighbours), or can be based on some
knowledge about the status of the neighbours themselves. In the following, we briefly
define the scheduling algorithms evaluated in this paper, referring to the relevant liter-
ature when appropriate.

2.1 Chunk Schedulers
Random Blind (RBc) P, randomly selects a chunk C; € C(P;,t) regardless of its

possible usefulness for the peers in N;.

Random Useful (RUc) P; randomly selects a chunk C; € C'(P;,t) based on the
knowledge of chunks required in N;.



Latest Blind (LBc) P; selects the most recent chunk C; € C(P;,t) (that is, the one
having the largest generation time), regardless of its possible usefulness for the peers

in NV;.

Latest Useful (LUc) P; selects the most recent chunk C; € C(FP;,t) (that is, the one
having the largest generation time) that is needed by some of the peers in N;.

Deadline-based scheduler (DLc): P; selects the chunk C; € C(F;,t) having the
earliest scheduling deadline. Scheduling deadlines are assigned to the various chunks
instances present in the system, and each scheduling deadline is postponed by a fixed
amount when sending a chunk. The amount of deadline postponing is a parameter of
the algorithm, and is generally assumed to be 2 times the chunk size. This algorithm [1]
has been proved to be optimal in full meshes (like LUc), and to generally provide good
performance when the neighborhood size is reduced (hence, is is claimed to be robust,
unlike LUc).

Since the non-blind algorithms (DLc, LUc and RUc) are known from the literature
to perform better than blind ones, this paper will only consider non-blind algorithms.

2.2 Peer Schedulers

Random Useful Peer (RUp) P, randomly selects a peer in ; that needs the selected
chunk (or a generic chunk C; € C(P;,t) if the peer is selected first).

Most Deprived Peer (MDp) P; selects the peer P; in A; which owns the smallest
number of the chunks currently owned by P; [6].

Earliest Latest scheduler (ELp) P, selects the target peer owning the earliest latest
chunk [1]. See Section 5 for a description of the algorithm.

Both ELp [1] and MDp [6] have been proved to have some optimality properties
(see the original papers for more details), hence in this paper they are considered in all
the scheduling performance evaluation because of their formal properties.

As already noticed in [5, 4], to be effective in a heterogeneous system a peer sched-
uler must consider the output bandwidth of the various peers. This is the idea of Band-
width Aware peer scheduling, which tends to select as targets the peers with higher
output bitrate (as they are supposed to contribute more to the chunk diffusion).

Bandwidth Aware scheduler (BAp_w) P; randomly selects a target peer P, € N
(as in RUp); the probability of selecting P, is proportional to its output bitrate s(Py) [4].



3 Network and Bandwidth Models

Assessing performances in an heterogeneous network requires a network . . . or a model
of it. For our results we use a simulation tool developed within an EU project*. The
simulator allows describing bandwidths and delays between peers and building many
overlay topologies.

We restrict the analysis to the case when bandwidths are a property of the single
peer and the overlay topology is n-regular’. The bandwidth being a property of the
peer is typical of cases when the bottleneck is on the access link, normally the upload,
regardless of it being due to physical constraints or user choices. We use either full
meshes or n-regular topologies; other overlay topologies can be studied, but prelimi-
nary results indicate that streaming performance is not much influenced by the specific
characteristics of the topology as far as it remains reasonably random and with good
connectivity, i.e., Ny > log, (), and with good random properties. Delays between
peers are random, and for the time being we assume perfect knowledge of the neigh-
bourhood status, which correspond to situations when the delays are small compared
to chunk transmission times. The download bandwidth of a peer P; is assumed to be
much larger than its upload bandwidth s(F;).

Since the upload bandwidths of peers P; € S are not homogeneous, it is important
to model their distribution. We consider two possible bandwidth distributions: class-
based distributions (such as may arise from ADSL links), and continuous distributions
(that may arise from user-imposed constraints). In a class-based distribution, the peers
are grouped in a finite number of classes, and every class of peers is characterised by
a different upload bandwidth. In a continuous distribution, the upload bandwidth of
every single peer is randomly assigned according to a specified Probability Density
Function (PDF).

Various models of class-based and continuous bandwidth distributions have been
tested and simulated. We consider results generated in three different scenarios re-
ferred as “3-class”, “uniform”, and “free-riders”. The 3-class scenario is based on
a class-based distribution with three classes: low-bandwidth peers (having an upload
bandwidth equal to 0.5B), mid-bandwidth peers (having an upload bandwidth equal to
B), and high-bandwidth peers having an upload bandwidth equal to 2B. The fraction
of high-bandwidth peers in the system is & /3 (where h is an heterogeneity factor), the
fraction of low-bandwidth peers is 2h/3, and the fraction of mid-bandwidth peers is
1 — h; as a result, the average bandwidth is

2B-h/3+B-(1—h)+0.5B-2h/3=B.

This scenario has been selected because it captures the most important properties of a

class-based distribution, and a similar setup has already been used in literature [2].
The uniform scenario is an example of continuous distribution, in which s(P;) is

uniformly distributed between a minimum value B™" = (1 — H)B and a maximum

4We refrain from indicating its download page due to double blind review, however the tool is freely
available to the community and will be disclosed in the final version of the paper.

5In n-regular topologies all nodes have the same connectivity degree, which means that the neighbour-
hood size Ny is equal for all peers.



value B™* = (1+ H)B, where B is the average upload bandwidth and H is again an
heterogeneity factor, indicated with capital H instead of small h because the stochastic
properties of the 3-class and the uniform scenario are not equal for an equal value of
the heterogeneity factor. This scenario is particularly interesting because it allows to
check if some of the properties and results noticed in the 3-class scenario are due to
artifacts caused by a class-based distribution, or are generic properties. Different kinds
of continuous PDFs have been tested, and the uniform one is used in this paper because
it seems to capture most of the generic properties observed using other kinds of PDFs.

Finally, the free-riders scenario is based on a two-class distribution in which one
class of peers is composed by “free riders”, having upload bandwidth equal to 0. This
scenario is important as it allows to understand what happens when some of the peers
for some reasons do not contribute to the chunks diffusion.

4 The Quest for a Robust Scheduler

peers=600; degree=14; chunks=1000; 3-class scenario, h=0.15
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Figure 1: Probability to drop a chunk as a function of the playout delay (D); chunk
first schedulers.

Each of the schedulers presented in Section 2 has been found, in some context
or another, to perform well. However, a scheduling logic composing a peer and a
chunk scheduler must be, first of all, robust to different network conditions, rather
than performing well in one context and badly in another. We have evaluated all the
schedulers under many conditions through extensive simulations: The amount of data
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Figure 2: Probability to drop a chunk as a function of the playout delay (D); peer first
schedulers.

produced during such simulations is so large (hundreds of plots!) that it is important to
identify the most relevant results, and to focus on them. In particular, it is important to
understand:

e Which metric to use for comparing the algorithms;
e What algorithms are the best candidates for further refinement and development;

o Whether there is a clear advantage in using a CTL based on chunk- or peer-first
strategy.

The first batch of simulations, presented in this section, is dedicated to understand these
three major issues.

In some previous works, different scheduling algorithms were compared using the
average chunk diffusion time as a metric. This make sense, because such a metric
allows to evaluate the long-term stability of a streaming system, and gives an ideas
of the average performance. However, using the average diffusion time to predict the
QoS experienced by a user is not easy, because it does not provide enough information
about the chunks dropped in the system, or delayed beyond thir target playout time. As
noticed in Section 2, the probability to drop a chunk C'; depends on the chunk diffusion
time f;: if f; is larger than the playout delay, then C} is dropped. If some chunk loss
can be tolerated, then the metric to be measured is some percentile (depending on the
percentage of lost chunks that can be tolerated). If error correction is used (such as



FEC), then more lost chunks can be tolerated: for example, with a FEC providing 10%
of redundancy, the most important metric is the 90-th percentile, possibly coupled with
the correlation function of losses. Moreover, the chunk delay distribution is hard to
predict and definitively non-linear, so that different algorithms can behave differently
when the average, maximum, the median, or any other percentile is considered.

Figures 1 and 2 plot the probability P{§ > D} for a chunk to have a diffusion time
4 larger than the playout delay D. P{é > D} is the probability to drop a chunk (note
that this probability is equal to 1—CDF, where CDF is the Cumulative Distribution
Function of the chunk diffusion times). The networking scenario is the following:
N = 600 nodes, M. = 1000 chunks, connectivity degree Ny = 14, 3-class scenario
with A = 0.15, and the simulations have been repeated for a number of chunk-first
Figure 1 and peer-first Figures 2 algorithms.

The first observation is that the distributions of different algorithms cross one an-
other, sometimes more than one time, so that chosing a specific point of the distribu-
tion, such as the average or maximum does influence the result of the comparison, as
predictable from the theoretical characteristics of schedulers (e.g., LUc is optimal but
fragile to the connectivity degree reduction). Given the nature of the application, we
will use the maximum and 90-th percentile of delay as dominant parameters, but with
the warning that, to gain insight in schedulers’ performance it is often necessary to
analyse the entire distribution correlated to the relevant parameter under study.

Figure 1 plots all chunk-first schedulers, while Figure 2 plots all peer-first sched-
ulers. Comparing all chunk-first X/Y scheduling strategies with the dual peer-first Y /X
scheduling strategy it is clear that chunk-first CTL performs consistently better, and this
justify the decision to restrict the presentation of results in the remaining of the paper
to chunk-first strategies.

Inspecting Figure 1, it is possible to see that although the LUc chunk scheduler
provides small average diffusion times (some more focused experiments show that it
provides the smallest average diffusion times), its CDF has a long tail and the worst
case diffusion time is very large. It is also possible to notice that DLc (and in particular
DLc/ELp) provides the best performance.

To be sure that the results previously described are not the effect of some artifact
introduced by a specific scenario, and do not depend on a particular bandwidth distri-
bution, a set of experiments has been run with different scenarios, and the results were
consistent with the previous ones. For example, Figure 3 reports the 90-th percentile of
the chunk diffusion delay using the same settings as above, but in a full mesh instead
that with limited neighbourhood, and in a uniform scenario (as described in Section 3)
with average bandwidth B = 1. The plot are function of the bandwidth variability
H, with H = 0 corresponding to a homogeneous scenario (B™" = B™a* = |
and H = 1 corresponding to the peers upload bandwidths uniformly distributed in

Analysing the figure it is clear that LUc and DLc chunk schedulers ensure the
best performance (but LUc is fragile reducing the neighbourhood size), while in peer
scheduling there is no clear winner: bandwidth awareness guarantees good perfor-
mances in highly non homogeneous scenarios, while ELp performs the best (as it must
be) in case of homogeneous networks.

From these initial results it seems that chunk-first, deadline-based schedulers are
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Figure 3: 90-th percentile of delay for selected chunk-first schedulers as a function of
the bandwidth variability in the 3-class scenario.

the most promising to obtain robust yet performant scheduling procedures. For this
reason, and because of its formal optimality in full meshes, this paper will use DLc as
a chunk scheduler and will focus on comparing different peer schedulers. Moreover,
in case of homogeneous or mildly inhomogeneous networks scheduling peers based on
ELp proves to be the best solution, while in case of high inhomogeneity, bandwidth
aware peer selection gives an advantage.

These observations push us to seek and define a peer-scheduler that blends together
the proven optimality of ELp in case of homogeneous networks with the smartness of
chosing bandwidth endowed peers in case of heterogeneous networks.

5 A Bandwidth-Aware ELp Algorithm

As previously noticed, to be effective in an heterogeneous scenarios a peer scheduling
algorithm must consider the output rate of the target peer. Some scheduling algo-
rithms [4] only consider the output rate of the target peer, while other algorithms [5]
propose some sort of hierarchical scheduling, in which a set of peers is first selected
based on the output rates, and a peer is then selected in this set based on other informa-
tion.

As highlighted in Section 4, a peer scheduler, in order to be robust to different
bandwidth distribution scenarios, should be both bandwidth aware and select peers
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function L(FPy, t)
max =0
for all C}, in C(Py,t) do
if ;, > max then
max =rp,
end if
end for
return max
end function
function ELP(P;, t)
int min;
peer target;
for all P, in \V; do
if L(Py, t) < min then

min = L(Fg, t);
target = Pg;
end if
end for

return target
end function

Figure 4: The ELp algorithm.

that are in the best conditions to redistribute the chunk as ELp does [1]. ELp has
been proved to be optimal for the uniform bandwidths case and is defined in Figure 4.
In practice, ELp selects the target peer having the latest chunk C}, with the earliest
generation time 7y,.

A first way to integrate ELp with some kind of bandwidth awareness is to use hi-
erarchical scheduling. Two possible hierarchical combinations can be implemented:
ELhBAp and BAhELp. ELhBAp uses ELp to select a set of peers having the earliest
latest chunk, and then uses a bandwidth aware strategy to select the peer having the
highest output bandwidth among them. On the other hand, BAhELp first uses a band-
width aware scheduler to select the set of peers having the highest output bandwidths
and then applies ELp scheduling to this set.

Although hierarchical scheduling can be very effective in some situations, some-
times better integration of the two scheduling algorithms can improve the system’s
performance (as it will be shown in Section 6). To understand how to integrate ELp
and bandwidth aware scheduling, it is important to better understand the details of
earliest-latest scheduling.

Let L(P;,t) be the latest chunk owned by, or in arrival to, P; at time ¢. ELp min-
imises L(P;,t), and this is equivalent to maximising ¢ — L(P;, t). The meaning of this
rule is that ELp tries to select the target peer P; having the latest chunk that has been
sent more times (hence, it can be argued that such a chunk will be useful for less time,
and the peer can soon pass to redistribute another one). However, the peer status at
time t is not important and what matters is the status when the currently sent chunk

11



Combining BA and ELp,
3-class scenario with average BW=1.0, h=0.5
peers=1000; degree=20; chunks=10000; playout delay=50
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Figure 5: BAELp sensitivity to w: Worst Case Diffusion Time, neighbourhood size 20,
3-class scenario with i = 0.5.

will be received. The original ELp algorithm has been developed assuming that all the
peers have the same output bandwidth s(P;) = 1, so every chunk was diffused in 1
time unit and the quantity to be maximised was ¢t + 1 — L(P;, t). Which is equivalent
to maximising ¢ — L(P;, t).

When the output bandwidths s(P;) of the various peers are not uniform, maximis-
ing t — L( P}, t) is not sufficient anymore. If peer P; sends a chunk to peer P; at time ¢,
this chunk will be received at time ¢’ = t+1/s(P;) (assuming bandwidths in chunks per
second). Hence, we can try to maximise (t — L(P;, t))+w(s(P;)/s(P;)), where w is a
weight assigned to the upload bandwidth information. Note that the weight w allows to
realise trade-offs between BAhELp and ELhBAp: for large values of w (w >> 1), the
resulting scheduling algorithm tends to BAhELp (and for w — oo it collapses to a pure
bandwidth aware scheduler), whereas for small values of w (w << 1) the algorithm
tends to ELhBAp (and for w = 0 the algorithm collapses to ELp). Finally, note that if
all the peers have the same output bandwidth then BAELp works like ELp regardless
of the w value.

The peer scheduling algorithm resulting from this heuristic is named BAELp (Band-
width Aware Earliest Latest peer scheduler).

12



Combining BA and ELp,
average BW fixed at 1.0, uniformly distributed [0.2 ... 1.8]
peers=1000; degree=20; chunks=10000; playout delay=50
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Figure 6: BAELp sensitivity to w: Worst Case Diffusion Time, neighbourhood size 20,
uniform scenario with H = 0.8.

6 Algorithms Comparison

Before starting to compare BAELp with other schedulers, it is important to understand
how to configure it (that is, how to properly set the w parameter). This has been inves-
tigated by running an extensive set of simulations with different chunk schedulers and
different values of w. Some results are reported in Figures 5 for the 3-class bandwidth
distribution with A = 0.5 and 6 for the uniform distribution with H = 0.8. Considered
schedulers are LUc RUc and DLc schedulers with different amounts of deadline post-
poning ranging from 2 (DLc in the figures) to 10 (DLc10 in the figures). The number
of peers is N = 1000, the number of chunks is M. = 10000 and the neighbourhood
size of each peer is set to 20. The playout delay is set to 50, which explains why no
scheduler has larger delays; however, for all schedulers hitting a maximum dalay of
50, there are chunk losses. From these plots, it is fairly easy to see that the best value
of w is around 3 regardless of the chunk scheduler. Other scenarios (varying the in-
homogeneity, the average bandwidth, etc.) confirm the result. For this reason, in this
paper BAELDp has been configured with w = 3. We have to admit that we have not
interpretation of why w = 3 or around are the best choices, and we plan to further
investigate the issue.

After properly tuning BAELp, simulations have been run to compare it with other
scheduling algorithms, starting by considering the 90 percentile and the worst case dif-
fusion time. To start with, the diffusion of 5000 chunks on a system composed by 600
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Figure 7: 3-class scenario with full mesh: Worst Case Diffusion Time as a function of
the inhomogeneity factor h.

peers with average upload bandwidth equal to 1 (the stream bitrate) has been simu-
lated. The peers are assumed to be connected by a full mesh, and upload bandwidth
are distributed according to the 3-class scenario. Figures 7 and 8 plot the worst case
diffusion time and the 90-th percentile of the diffusion time for various peer scheduling
algorithms, as a function of h. From the figures, it is possible to notice two important
things. First of all, the 90-th percentile and the worst case values are very similar (for
this reason, in the following of the paper only the 90-th percentile of the chunk dif-
fusion time f; will be used as a metric). Second, the peer scheduling algorithms can
be classified in 3 groups. The first group, including BAELp ELhBAp and ELp is the
one showing consistently the best performance regardless of the inhomogeneity fac-
tor. The second group, including MDp RUp and BAp_w has worse performance when
the peers are homogeneous (h = 0) and tend to increase the performance as soon as
the heterogeneity of the system increases; the third group, finally, which only contains
BAIELp, provides reasonable performance only for homogeneous system and very in-
homogeneous ones, while in all other cases the performance is very bad (additional
tests verified that the worst case diffusion times for these algorithms tend to increase
with the number of chunks, indicating that they cannot sustain streaming).

Clearly, distributing chunks over a full mesh is not realistic, and a reduced neigh-
bourhood size has to be considered. Moreover, the playout delay is finite (hopefully
small) and this value limits the maximum delay a chunk can have before being dis-
carded. As an example of a more realistic scenario, we selected a neighbourhood size
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Figure 8: 3-class scenario with full mesh: 90-th percentile of the diffusion delay as a
function of the inhomogeneity factor h.

equal to 20 and a playout delay of 50 (once again other numbers would not change the
meaning and quality of the results). The outcome is shown in Figure 9, hich reports
the 90-th percentile and show that BAELp is still the better performing algorithm. The
reduced neighbourhood size seems to badly affect ELp when the heterogeneity of the
system is high (hence, the performance of ELhBAp are also affected), and the BAhELp
curve is now quite near to the second group of schedulers because the playout delay
limits the upper bound of the chunk diffusion time to 50 (of course, this results in a
high number of lost chunks).

To check if these results depend on the bandwidth distribution scenario, the same
experiment has been repeated in the uniform scenario, and the results are shown in
Figure 10. Although all the values are generally higher than the values in Figure 9, the
results are consistent and show that the relative performance of the various schedulers
do not change. The comparison of these two figures indicates that highly inhomoge-
neous scenario (in a uniform scenario we can have all bandwidths vaslues, while in the
3-class one only specific values are allowed) are harder to address. This is also a hint
that even slow time-variability, not addressed in this contribution, may have an impact
too.

In the next set of experiments, the B = 1 assumption has been removed, comparing
the behaviour of the schedulers when the average upload bandwidth is increased. Fig-
ure 11 reports the variation of the 90-th percentile of the chunk diffusion time with the
average bandwidth. The simulation is based on a 3-class scenario with i = 0.5, neigh-
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Figure 9: 3-class scenario with neighborhood size 20 and playout delay 50: 90-th
percentile of the diffusion delay as a function of the inhomogeneity factor h.

bourhood size 20 and playout delay 50. Again, BAELp looks like the best performing
algorithm (clearly, when the average bandwidth increases too much the differences be-
tween the various algorithms become more difficult to notice). The same experiment
has been repeated in the uniform scenario (with H = 0.8) and the results are reported
in Figure 12. Again, the results are consistent with the 3-class scenario and BAELp is
the best-performing algorithm.

Finally, we explore the ability of the various schedulers to cope with peers that do
not participate to the stream distribution. In this “free-riders” scenario the neighbor-
hood size must be increased, otherwise the system results fragile: we set it to 100 peer.
Figure 13 reports the 90-th percentile of the chunk transmission delay as a function of
the fraction of peers that do not participate to the distribution (free riders, having up-
load bandwidth equal to 0). Note that some curves (the ones relative to the ELp, RUp,
MDp, and ELhBAp schedulers) stop at 15% of free riders, because with higher frac-
tions of free riders such schedulers are not able to properly diffuse the stream. Again,
this experiment shows how BAELp outperforms all the other schedulers (more simu-
lations in the free-riders scenario have been performed, and they confirmed the results
of this experiment).
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Figure 10: Uniform scenario with neighborhood size 20 and playout delay 50: 90-th
percentile of the diffusion delay as a function of the inhomogeneity factor h.

7 Related Work

The literature on p2P streaming is now so vast that a simple listing would require pages,
starting from the commercial systems like PPlive and UUSee. However this paper deals
with a specific, well identified problem: robust and performant schedulers in mesh-
based unstructured systems. Here the literature shrinks quite a bit and restricting the
analysis to distributed systems reduces it even more.

For the case of a homogeneous full mesh overlay (with upload bandwidth equal to
1 for all peers), the generic (i.e., valid for any scheduler) lower bound of ([log,(N)] +
1)T is well known. [5] proved that such a lower bound can be reached in a stream-
ing scenario by showing the existence of a centralised scheduler that achieves it. (a
similar proof, developed for a file dissemination scenario, can be found in[7]). Re-
cently, it has been proved that the theoretical lower bound can also be reached by using
distributed schedulers, based on a chunk-first strategy (LUc/ELp and DLc/ELp) [1].
While the previous works focus on deterministic bounds for the diffusion times, some
other works studied the asymptotic properties of distributed gossipping algorithms [8],
or probabilistic bounds for specific well known algorithms [2] (in particular, it has been
shown that the combination of random peer selection and LUc achieves asymptotically
good delays if the upload bandwidths are larger than 1).

Heterogeneous scenarios have also been considered [4, 5, 2, 6], but only few of
such works (namely, [4, 5]) explicitly used bandwidth information in peer scheduling.
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Figure 11: 3-class scenario with & = 0.5, neighborhood size 20 and playout delay 50:
90-th percentile of the diffusion delay as a function of the average bandwidth B.

Moreover, most of the previous works only considered few possible scenarios, whereas
in this paper 3 different kinds of scenarios (3-class, uniform, and free-riders) have been
considered and the proposed algorithm, BAELp, appears to perform better than the
other algorithms in all the considered cases.

8 Conclusions and Future Work

This paper compared a large number of scheduling strategies for P2P streaming sys-
tems in presence of network heterogeneity (peers having different upload bandwidths)
and considering different conditions and scenarios. Since none of the existing peer
scheduling algorithms seems to perform well in all the conditions, a new peer schedul-
ing algorithm, named BAELp, has been developed and compared with the other ones.

BAELp outperforms all the other scheduling algorithms in a large number of dif-
ferent conditions and scenarios (in all the ones that have been tested): for example, in
homogeneous networks BAELp is equivalent to ELp, which is optimal, and even in
highly-heterogeneous networks it performs better than other bandwidth aware sched-
ulers. This peer scheduler seems also the only one able to cope with the presence of
free riders, namely peers that fro any reason cannot contribute to uploading chunks and
sustaining the stream.

As a future work, a more formal analysis of the BAELp algorithm will be per-
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Figure 12: Uniform scenario with i = 0.8, neighborhood size 20 and playout delay
50: 90-th percentile of the diffusion delay as a function of the average bandwidth B.

formed, and some of its theoretical properties will be analysed. Moreover, when using
a DLc/BAELp scheduler there are two parameters that can be tuned: the amount of
deadline postponing for DLc and the bandwidth weight w for BAELp. In this paper,
the algorithm has been empirically tuned, but a more detailed analysis of the effects
of the two parameters is needed. In particular, the optimal values might depend on
the network conditions; in this case, some kind of self-adaptation of the scheduling
parameters (based on a feedback loop) will be developed.
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