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Abstract

Motivated by transportation tasks on construction sites, this contribution deals with an AI-driven approach to human-robot col-
laborative transportation. An essential part of the considered problem is navigating the robot to the object to be transported, in
the presence of other moving items like the human moving to the object. Robot navigation is tackled with reinforcement learning,
and the impact of randomness in the other moving items’ behaviour on the robot’s training performance is investigated. Results
show that the move failure rate of the trained robot policy increases, when the behavioural patterns in the human’s movements are
disturbed by randomness. On the other hand, when both human and robot are connected to the object, the navigation problem is
delegated to the human, which guides the compound human-object-robot to the goal location.
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1. Introduction

In this paper, human-robot collaboration for the transportation of heavy and bulky objects at construction sites is
investigated. For a human-robot collaboration, construction sites pose a challenge due to them being unstructured and
dynamic environments. For the movement of heavy objects, a mixed human-robot team has to navigate uncertain and
constantly changing terrain. Also, in human-robot collaborative transportation, the robot is confronted with a situation
that there is no guarantee that the human involved in such a collaboration may always act strictly rational and, for
example, follow a shortest path to a destination where these heavy objects are transported to. In this paper, training
robot navigation policies in the presence of a human as the collaboration partner, as well as random events occurring
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in the environment, such as moving obstacles (workers, construction machines) are considered. These moving items
may behave randomly to some extent, and the impact of that randomness on the robot’s training performance is
investigated. The investigations were conducted in a virtual environment. The concepts presented in this paper were
developed in the context of the EU-funded CONCERT project.

The remainder of the paper is structured as follows. Related work is discussed in section 2, followed by the problem
description in section 3. The approach to solve the collaborative transportation problem is described in section 4.
Results are presented in section 5, followed by concluding remarks and an outlook on further research in section 6.

2. Related work

Transportation tasks often require the collaboration of multiple agents for transporting heavy load. Approaches to
enable multi-robot collaboration (without human intervention) are shown e.g. in [5, 20, 21]. In contrast, approaches
for transportation through human-robot collaboration are presented e.g. in [1, 10, 14, 22].

With respect to grid-world-based reinforcement learning applied to robot navigation, in [18], the performance of
different deep reinforcement learning algorithms is compared. The comparison is conducted with a use case where a
robot has to navigate from a random starting location to a random destination, avoiding up to two randomly located
obstacles. The use case is implemented as grid world. In [9], a reward shaping framework for average learning in
continuing tasks is presented. The framework is evaluated with several test cases; one of the cases is a continuing
grid world, where the robot has to navigate to a given goal cell, avoiding a large obstacle. [3] tackles the problem of
perceptual aliasing in robot navigation, i.e., due to sensor limitations the robot sometimes is not able to distinguish
between differing world states. The work uses Sutton’s grid world, see [19], as well as a simple 1-D example. [17]
investigates into efficient initialisation approaches for Q-learning, using a maze-like grid world as test case. The
training goal is to navigate to a specified goal location. A maze-like grid world environment is also used in [4] ; the
authors present a modified scheme for reinforcement learning with separated mechanisms for positive and negative
rewards, respectively. In [16], the authors investigate invariance principles for stronger generalisation in reinforcement
learning; the test case is implemented as grid world: a robot is located in one room of the grid world, and it must learn
to navigate to a goal location in a different room. To enter the room, the robot first has to acquire a ’key’ object.

In the related work discussed above, the robot is not confronted with moving items that do not always act in
a completely rational fashion. We address this research gap in this paper, training robot navigation policies in the
presence of moving items with partially random behaviour.

3. Problem Description

At a two-dimensional construction site, an object has to be transported to a specific goal location and two agents
(human and robot) are available for the transportation task. The agents start at random locations, i.e., the first part of
the transportation task for an agent is to move to the object and connect to it. Moving to the object, the robot should
not collide with the human (also moving to the object).

Figure 1 in the middle depicts the technical embedding of the problem using a Behaviour Tree notation. Behaviour
Trees are a common tool for human robot interaction to foster elementary skills into higher-level tasks, see [8].
However, the major drawback is its fixed sequential execution of siblings (e.g. move left,move right etc.) making it
inflexible in the execution. This paper investigates on a trained node, that dynamically dispatches robot actions until
the robot is connected to the object. Please note, while this paper focuses on learning in simulation only, for the
execution on the robot an interpretation of the real environment as grid world is possible with an available computer
vision system based on [7].

As soon as both agents are connected to the object, the human guides the compound robot-object-human to the
goal location (MoveCompound). This research problem, which investigates the physical coupling of the agents, has
been extensively studied in the literature [1, 10] as well as within the CONCERT project [13, 14], and hence will be
mentioned in this paper for the sake of completeness, to show the overall functionality of the proposed framework.
In addition to the basic transportation problem described above, a problem variant is considered. In this variant, a
dynamic obstacle (e.g., another human) moves on the construction site, impeding the agents’ movements.

https://concertproject.eu/
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Fig. 1: Behaviour Tree notation of the transport task. The self-learned Control Flow Node dispatches the right actions sequence for connecting to
the object. After connection, the MoveCompound node is executed. While policies are learned in simulation, a perception of the real environment
as grid world is possible via a computer vision system.

4. Approach

For the first part of the transportation task, the main problem is the robot navigation behaviour. The robot should
move efficiently from a random starting location to the object and connect to it. While moving, the robot should avoid
collisions with the human and the moving obstacle. To implement such behaviour, deep reinforcement learning is
applied.

Deep reinforcement learning

In reinforcement learning, an agent acquires decision-making skills through sequential interactions with an envi-
ronment. At each time step t, the agent receives an observation st from the environment, and based upon st the agent
decides on an action at, using a policy function π(at |st). The training goal for the agent is to maximise the expected
cumulative reward:

Rt =

∞∑
k=0

γkrt+k, γ ∈ (0, 1]. (1)

In equation 1, γ is a discount factor, and rt is the reward at time t, provided by the environment to the agent. The
value of a policy π for a state s is defined as

vπ(s) = Eπ(Rt |st = s), (2)

and the policy’s action-value function is

qπ(s, a) = Eπ(Rt |st = s, at = a), (3)

with action a taken in state s. An optimal policy results from maximising the action-value function. In deep rein-
forcement learning, deep neural networks are used for the representation of policy functions, introducing the network
parameter θ. With the introduction of θ it is possible to search for an optimal value for θ in the policy space {πθ(at |st), θ}.

Policy gradient methods implement a gradient ascent approach for the optimisation of the neural network parameter
θ, see [2]. A parameter update is proportional to an estimate of the objective function’s gradient. A frequently used
objective function in policy gradient methods is proposed in [12]:

LPG(θ) = Êt[log πθ(at |st)Ât] (4)
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Fig. 2: Snapshot of the grid world training environment; the 10x10 grid world is surrounded by walls (grey cells); the object encoding is as follows:
red cross − > robot, green cross − > human, grey cross − > moving obstacle, purple square − > goal, orange square − > object to be transported;

where Ât is an estimator of the advantage function that describes the additional benefit that could be gained by
acting in the manner indicated by at. The combination of policy gradient approaches with action-value functions gives
rise to actor-critic methods, where the critic network approximates the action-value function, and the actor network
implements an approximation of the policy function. In training the networks, the critic’s task is to criticise the actions
taken by the actor.

In the presented work, RLlib’s implementation of a Proximal Policy Optimisation algorithm (PPO) is used for
reinforcement learning, see [11] and [12]. PPO algorithms belong to the family of actor-critic methods, implementing
a constraint mechanism to stabilise training. Policy changes are constrained by the objective function 5, resulting in
smaller increments in θ.

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)], (5)

where clip(rt(θ), 1 − ϵ, 1 + ϵ) clips the ratio to the interval [1 − ϵ, 1 + ϵ], and rt(θ) = πθ(at |st)/πθold (at |st)).

Reinforcement learning in a grid world

The training environment for the robot policy is modelled as grid world, see figure 2. Each training episode starts
with random locations for robot, goal and object. The episode terminates successfully when the robot has connected to
the object. In a failed episode the robot was not able to connect to the object within a given number of time steps (time
out). At each time step, all dynamic items (robot, human, moving obstacle) act simultaneously. To avoid collisions,
the robot has to learn to anticipate the movements of human and obstacle.

In reinforcement learning, at each time step the robot acts in the environment, and the environment’s response is
an observation and a reward for the action taken. Hence crucial design decisions are:

• the observation space: what is the observation that is provided by the environment to the robot?
• the action space: what are the actions that are available to the robot?
• the reward scheme: what is the reward that is provided by the environment to the robot, in response to an action?

In the presented work, the robot’s observation is global, consisting of an item encoding for every cell in the grid
world. The items are one-hot encoded with vector length L, hence the size of the observation space is 10x10xL, where
10x10 is the size of the grid world. The robot’s action space is {move left, move right, move up, move down, connect
to object}. To increase training efficiency, action masking is applied. In action masking, physically impossible actions
are ruled out by the environment. The following action masking rules apply:

• If any item from the set {object, wall, obstacle, human} is in an adjacent cell to the robot, the action to move to
that cell is ruled out.
• If the object is not in an adjacent cell to the robot, the action ”connect to object” is ruled out.

The reward is a scalar, encoding the quality of an action taken with respect to the pursued training goals. The
training goals are:
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1. Move to the object and connect to it;
2. Move efficiently;
3. Avoid collisions with human and obstacle;

The training goals are addressed with the following reward scheme:

1. A positive reward for successfully connecting to the object; addresses goal 1;
2. A negative reward for each action; addresses goal 2;
3. A negative reward for an illegal action, i.e., an action that resulted in a collision; addresses goal 3;

Models for human and moving obstacle

The human is modelled as an agent in the grid world with the following behaviour:

• The human moves on a shortest path to the object. Shortest paths are calculated with an A* algorithm, see [6].
• Due to the fact that the agents act simultaneously in the grid world, A* can suggest moves that would result in

collisions. For example, at time T the human agent wants to move to grid cell B, but at time T the robot agent
has already moved to cell B. In such a case, the move resulting from A* is ignored, and the human agent does
not move.
• In addition to rationally moving along shortest paths, the human may move in a random fashion. The strength

of the random component of the human agent’s behaviour can be configured with parameter ph = [0, 1], where
ph is the probability that the human’s move is random.

The moving obstacle’s behaviour is modelled as follows:

• The moving obstacle is configured with a sequence of waypoints in the grid world. In each training episode,
the obstacle starts at the first waypoint. Then, the obstacle visits the waypoints in the given sequence, moving
on shortest paths. When the last waypoint has been visited, the obstacle moves on a shortest path to the first
waypoint, and the movement across the sequence of waypoints is repeated. The obstacle stops when the episode
terminates.
• The collision avoidance behaviour is equal to the human agent.
• Similar to the human agent, the moving obstacle can behave randomly. Parameter po = [0, 1] configures the

strength of the random component of the obstacle’s behaviour, where po is the probability that the obstacle’s
move is random.

Fig. 3: Human-robot collaborative carrying of objects with unknown deformability. The framework integrates haptic information conveyed through
the carried object with human kinematic information acquired from a motion capture system, generating responsive whole-body movements on a
mobile collaborative robot [14].
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In the remainder of the transportation task (MoveCompound) two problems have to be tackled: a) the robot has to
assist the human in carrying the object, and b) the human has to navigate the compound human-object-robot onto the
goal location.

For this manuscript, we adopt the strategy presented in [14], which consists in a novel human-robot collaborative
co-carry framework characterised by 1) the possibility to transport objects with unknown deformability, by means of
the combination of both force sensing and real-time human motion capture (see figure 3), and 2) obstacle-aware vibro-
tactile feedback during co-carry, which is motivated by the fact that occlusions of the human vision when carrying
large objects may occur, compromising the environmental awareness of the human and hence demoting safety [15].
More details of the co-carry framework and results of the framework in physical settings can be found in [14, 15].

5. Results

In this section, results are presented with respect to training the robot policy in the virtual grid world. The focus is
on investigating the impact of ph and po on the training performance for the robot policy. The experimental setup is
as follows:

• Grid world size: 10x10; the origin (0,0) is in the upper left corner;
• Episode time out: 40 time steps
• Reward for successfully connecting to the object: 1.0
• Reward for each action: -0.01
• Reward for illegal action: -0.05
• ph = {0, 0.3}
• po = {0, 0.3}
• Training duration: 10 million time steps (no obstacle), 30 million time steps (moving obstacle)
• Sequence of way points for moving obstacle: (8,2), (5,2), (7,4), (2,5), (3,8)

With 50cm units in the grid world, a grid cell is 50cm x 50cm, providing enough space for a human. A grid with
size 10 x 10 then covers an area of 5m x 5m, and that’s what usually can be covered by a camera.

Following the specified sequence of waypoints, the moving obstacle traverses large parts of the grid world, poten-
tially resulting in collisions with the robot. The other setup parameters were determined empirically.

Figures 4 and 5 show training results for the grid world without obstacle. The plots in figure 4 contain outliers in
chart scaling; these plots are useful to get an overall impression of the training performance. Outliers are omitted in
figure 5, providing more details. In each plot, the x-axis shows the number of time steps. Figure 5 clearly illustrates
the impact of ph on the training performance: with ph = 0.3, the average number of illegal move actions increases,
due to collisions between human and robot. Training results for the grid world with a moving obstacle are depicted in
figures 6 and 7. The impact of ph and po on the average number of illegal move actions is noticeable: with ph = 0 and
po = 0, the number of collisions is lowest. With either ph = 0.3 or po = 0.3, the number of collisions increases, and
with ph = 0.3 and po = 0.3, the collision rate is highest.

6. Conclusion and outlook

In this contribution, an approach to human-robot collaborative transportation is presented. An essential part of
the collaborative transportation problem is navigating the robot from a random initial location to the object to be
transported, avoiding collisions with humans. That part is solved with an AI approach, namely reinforcement learning
in a grid world. The results obtained in a virtual environment show a significant impact of the random component in
the human’s behaviour on the robot’s training performance. If the human acts randomly to some extent, it is harder
for the robot to learn to anticipate the human’s movements, and thus the collision rate increases. The negative impact
of randomness in the training environment on the robot’s training performance is also observed in a problem variant,
with a moving obstacle added to the grid world. In this case, the robot has to learn to anticipate the movements of two
dynamic items (human and obstacle). Moreover, a human-robot co-carrying framework was adopted to complement
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Fig. 4: Training performance for use case variant ”no obstacle”; green: ph = 0, blue: ph = 0.3; the left plot shows the average episode reward, the
right plot shows the average number of illegal move actions per episode (an illegal move action adds -1 to the statistics).

Fig. 5: Training performance for use case variant ”no obstacle”; outliers are ignored in chart scaling; green: ph = 0, blue: ph = 0.3; the left plot
shows the average episode reward, the right plot shows the average number of illegal move actions per episode (an illegal move action adds -1 to
the statistics).

Fig. 6: Training performance for use case variant ”moving obstacle”; violet: ph = 0, po = 0; blue: ph = 0, po = 0.3; dark green: ph = 0.3, po = 0;
orange: ph = 0.3, po = 0.3; the left plot shows the average episode reward, the right plot shows the average number of illegal move actions per
episode (an illegal move action adds -1 to the statistics).

the navigation approach. However, further research aims at integrating the individual research results for the two parts
of the collaborative transportation problem to an AI based framework for human-robot collaborative transportation.
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Fig. 7: Training performance for use case variant ”moving obstacle”; outliers are ignored in chart scaling; violet: ph = 0, po = 0; blue: ph = 0, po =

0.3; dark green: ph = 0.3, po = 0; orange: ph = 0.3, po = 0.3; the left plot shows the average episode reward, the right plot shows the average
number of illegal move actions per episode (an illegal move action adds -1 to the statistics).
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