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Abstract We analyze a class of physical properties, forming the content of
the so-called von Zeipel theorem, which characterizes stationary, axisymmet-
ric, non-selfgravitating perfect fluids in circular motion in the gravitational
field of a compact object. We consider the extension of the theorem to the
magnetohydrodynamic regime, under the assumption of an infinitely conduc-
tive fluid, both in the Newtonian and in the relativistic framework. When the
magnetic field is toroidal, the conditions required by the theorem are equiva-
lent to integrability conditions, as it is the case for purely hydrodynamic flows.
When the magnetic field is poloidal, the analysis for the relativistic regime is
substantially different with respect to the Newtonian case and additional con-
straints, in the form of PDEs, must be imposed on the magnetic field in order
to guarantee that the angular velocity Ω depends only on the specific angu-
lar momentum ℓ. In order to deduce such physical constraints, it is crucial to
adopt special coordinates, which are adapted to the Ω = const surfaces. The
physical significance of these results is briefly discussed.

Keywords general relativity · magnetohydrodynamics · black holes · von
Zeipel theorem

1 Introduction

In Newtonian hydrodynamics, the so-called von Zeipel theorem [45] specifies
the physical conditions to which all stationary, axially symmetric, perfect flu-

O. Zanotti
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ids in circular motion must obey in order for the angular velocity Ω to depend
only on the distance from the rotation axis. Abramowicz formulated the rela-
tivistic version1 of the von Zeipel theorem [2,3], highlighting that the angular
velocity Ω and the specific angular momentum ℓ have common iso-surfaces,
with the topology of a cylinder, if and only if the rotating fluid is barotropic.
This property was used soon after to build equilibrium solutions of geomet-
rically thick disks (tori) around black holes [20,1,26]. In fact, the von Zeipel
theorem for a purely hydrodynamic flow represents a set of integrability condi-
tions for computing the equilibrium solution. Over the years, these analytic or
semi-analytic solutions, sometimes referred to as “Polish doughnuts”, turned
out to be very useful to study various kinds of fluid instabilities and poten-
tially detectable physical effects around compact objects, either black holes or
neutron stars [4,5,36,14,6,40,48,13,30,37,38,42].

Though rather simplified, geometrically thick discs are still attracting a
lot of interest in high energy astrophysics. From one side, they are currently
adopted as initial conditions in general relativistic hydrodynamic and magne-
tohydrodynamic numerical simulations of accretion flows [44,21,9,32,28], even
in the presence of radiation fields [41,29,47]. Moreover, an additional indica-
tion supporting their astrophysical relevance is provided by the outcome of
fully relativistic numerical simulations, which clearly show that high-density
tori are indeed produced after the merger of neutron star binaries collapsing
onto a black hole [39].

A substantial but necessary complication in the study of geometrically
thick discs is represented by magnetic fields, as it is now generally accepted
that in accretion flows magnetic fields are of fundamental importance to ac-
count for the outward transport of angular momentum induced by the mag-
netorotational instability. A few years ago, the Polish doughnut model was
extended to flows with a toroidal magnetic field [25,7,46] and later adopted
in various astrophysical applications [31,23]. However, in these works it is not
discussed whether and how the von Zeipel theorem can be rephrased when a
magnetic field is present. In this paper we fill this gap by studying the von
Zeipel theorem for a magnetized circular flow around a compact object, by
considering, separately, the case of a toroidal and of a poloidal magnetic field.
While for the former case we find that von Zeipel theorem still provides an
integrability condition, which is met, for instance, in the model by [25], for
the latter case the magnetic field needs to be constrained by two additional
partial differential equations. We emphasize that it is not our intention to
compute an equilibrium model, which would involve the solution of the Grad-
Shafranov equation, but rather to clarify the physical conditions required by
the von Zeipel theorem for a magnetized flow. We also stress that in some
circumstances, like for instance in the interior of neutron stars, the magnetic
field has a twisted topology (see [17,16]), but in our analysis we have not

1 The original version of the theorem by von Zeipel considers the role of a radiation
field (see [18] for a modern account), while in this paper we have in mind the “von Zeipel’s
theorem in General Relativity”, called in this way for the first time presumably by Thorne
[2] and which has nothing to do with radiation effects.
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considered this possibility, nor the issue of the various magnetic instabilities
which may arise.

Since Newtonian physics can still provide useful comparisons, we first start
from the Newtonian version of the von Zeipel theorem. Although our discus-
sion is motivated by the astrophysical applications mentioned so far, in what
follows we do not assume any particular form of the spacetime metric. Our
only assumptions will be those of stationarity and axisymmetry for both grav-
ity and matter, and of a perfect, infinitely conductive non-selfgravitating fluid
in purely circular motion around a compact object.

We set the speed of light c = 1, the gravitational constant G = 1, and we
adopt the Lorentz-Heaviside notation for the electromagnetic quantities, such
that all

√
4π factors disappear. Greek indices run from 0 to 3, Latin indices

run from 1 to 3 and we use the Einstein summation convention of repeated
indices.

2 Newtonian version

The Newtonian version of von Zeipel’s theorem in the absence of magnetic
fields states that the iso-density and iso-pressure surfaces within a rotating
object coincide if and only if the angular velocity is a function of the distance
from the rotation axis only [43]. If a magnetic field is present, a weaker version
of this theorem can be proved. To this scope, we consider a stationary and
axisymmetric system and a set of cylindrical coordinates (r, φ, z). The two
relevant Euler equations can be written as

∂iΦ+
1

ρ
∂ip− δriΩ

2r =
1

ρ
((∇×B)×B)i , i = r, z , (1)

where Φ is the gravitational potential, ρ is the gas density, p is the pressure,
Ω is the angular velocity of the rotating fluid and B is the magnetic field. To
simplify our treatment, in the following we separately consider the case of a
purely toroidal and of a purely poloidal magnetic field, while keeping equation
(1) as the reference equation.

2.1 Toroidal magnetic field

When the magnetic field is toroidal, the components of the poloidal vector on
the right hand side of equation (1) are given by

((∇ ×B)×B)i = −∂i(rBφ)
Bφ

r
, i = r, z . (2)

If we take the partial derivative ∂j of (1) and then multiply it with ekji, all
the symmetric terms in i and j disappear, and we are left with

ekji
∂jρ∂ip

ρ2
+ ekji∂j(δ

r
iΩ

2r) = ekji∂i(rBφ)∂j

(
Bφ

rρ

)

. (3)
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In the absence of a magnetic field, the right hand side of the above equation
vanishes and we would have the statement of the theorem as reported in [43].
On the contrary, if the magnetic field is not zero, then we can only provide a
sufficient condition for the theorem. Namely, we can say that if

1. the equation of state is barotropic, p = p(ρ), and
2. (a) Bφ ∼ r−1, or, (b) Bφ ∼ rρ, or (c) Bφ/rρ = f(rBφ),

then the angular velocity would only depend on the distance from the rotation
axis.

Note, for instance, that [34] proposed an equilibriummodel for a barotropic,
magnetized and geometrically thick disc around a central object by assuming
that the toroidal magnetic field scales like B2

φ ∼ r2(µ−1)ρµ. This choice indeed
satisfies von Zeipel’s theorem and it corresponds to constraint 2(c) above,
with f(rBφ) = (rBφ)

1−2/µ. It should be noted that the fulfillment of von
Zeipel’s hypothesis not only guarantees that Ω = Ω(r) but it also provides
the functional dependencies among Bφ, ρ and r that allows to write the Euler
equation in a potential form. In fact, we essentially imposed the vanishing of
the curl of the right hand side of equation (1), so we looked for those cases
when ((∇×B)×B)/ρ can be written as the gradient of a scalar.

2.2 Poloidal magnetic field

In cylindrical coordinates, a poloidal magnetic field can be written as

B =
1

r
∇Ψ × eφ =

(

−∂zΨ

r
, 0,

∂rΨ

r

)

, (4)

where eφ is the unit vector along the φ direction and Ψ , that physically repre-
sents the magnetic flux through a z = z0, r = r0 circle, is the φ-component of
the electromagnetic vector potential.2 While in the case of toroidal magnetic
fields the Maxwell equations ∇ ·B = 0 and ∇×E = 0 are automatically satis-
fied under the assumption of stationarity and axisymmetry, when the magnetic
field is poloidal they need to be properly taken into account, and they lead to
so called Ferraro’s iso-rotation law, namely B · ∇Ω = 0. Hence, a necessary
condition to have Ω = Ω(r) is that Br = 0, or, equivalently, that Ψ = Ψ(r).
As a result,

(∇ ×B)×B = (−Bz∂rBz, 0, 0) , (5)

and by computing the curl of equation (1) we find

2Ωr∇Ω × er = −∇ρ

ρ2
×∇p− Bz

ρ2
∂zρ ∂rBz eφ . (6)

From (6), a weaker version of von Zeipel’s theorem for a poloidal magnetic
field can be deduced. Namely, if

2 In non-relativistic studies, Ψ is usually called the magnetic stream function or magnetic

flux function.
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1. the equation of state is barotropic, p = p(ρ),
2. Br = 0, and
3. (a) Bz = const, or, (b) ρ = ρ(r) ,

then Ω = Ω(r). We note, incidentally, that a Newtonian star with a dipolar
magnetic field will not satisfy this version of von Zeipel’s theorem, since Br 6=
0.

3 General relativistic version

The general relativistic version of von Zeipel’s theorem in the absence of mag-
netic fields is due to [2] and it states that in a stationary and axisymmetric
system the surfaces of constant angular velocity Ω and the surfaces of con-
stant specific angular momentum ℓ coincide if and only if the rotating fluid is
barotropic, i.e. it has an equation of state p = p(e), where e is the total en-
ergy density. Now we consider how this theorem can be rephrased if magnetic
fields are present, again by distinguishing between the two main magnetic field
topologies. Let us first recall the form of the energy momentum tensor for an
magnetized flow with infinite conductivity, namely [8]

Tαβ = (ω + b2)uαuβ + (p+ b2/2)gαβ − bαbβ , (7)

where uα are the components of the four velocity of the fluid, bα are the
components of the four vector magnetic field, b2 = bαb

α, gαβ are the coefficients
of the metric, while ω = e + p is the enthalpy density. If we adopt a system
of coordinates (t, x1, x2, φ) where t and φ are the coordinates associated to
the temporal and axial Killing vectors, respectively, then the four velocity of
the circular motion is uα = ut(1, 0, 0, Ω), where Ω = uφ/ut is the angular
velocity. Finally, the specific angular momentum mentioned in the theorem is
ℓ = −uφ/ut, which is related to Ω by

Ω = − gtφ + gttℓ

gφφ + gtφℓ
. (8)

The relativistic Euler equation can be written as [10]

(ω + b2)aα +∇α

(

p+
b2

2

)

+ uαu
π∇π(p+ b2) + uαb

2∇πu
π −∇π(bαb

π) = 0 .

As a result of the symmetries, uα∇α(p+ b2) = ∇αu
α = 0. Moreover, the four

acceleration for the circular motion is [2]

aα = −∇α lnut +
ℓ

1−Ωℓ
∇αΩ . (9)

Combining all this, the Euler equation (9) becomes

−∇α lnut + utuφ∇αΩ = −∇α(p+ b2/2)

ω + b2
+

∇π(b
πbα)

ω + b2
, (10)
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where utuφ = ℓ/(1−Ωℓ). In ideal magnetohydrodynamics, the fluid accelera-
tion obeys a few additional contraction relations, namely [8]

aαb
α = ∇αb

α = −bα∂αp

ω
, (11)

that will be used below. Finally, according to Ferraro’s iso-rotation law valid
for stationary and axisymmetric systems, the normals to the equipotentials of
Ω and of Ψ are parallel, hence Ω = Ω(Ψ), (see [27,10,22]).

3.1 Toroidal magnetic field

When the magnetic field is purely toroidal, it has been shown by [25] that
Eq. (10) can be rewritten as

−∇α lnut + utuφ∇αΩ +
∇αp

ω
+

∇α(Lb2)
2Lω = 0 , (12)

where L = g2tφ − gttgφφ. If we now take the covariant derivative ∇β of (12)

and then we multiply it by the completely antisymmetric tensor ǫαβγδ, all the
symmetric terms in (α, β) vanish, and we find

ǫαβγδ∇αΩ∇β(u
tuφ) = ǫαβγδ

∇αp∇βω

ω2
− ǫαβγδ∇α(Lb2)∇β

(
1

2Lω

)

. (13)

In the absence of the magnetic field, the last term on the right hand side of
this equation would vanish, and we would have the statement of von Zeipel’s
theorem as provided in [2]. In the presence of a magnetic field, a weaker version
of von Zeipel’s theorem can be formulated by saying that Ω = const surfaces
coincide with ℓ = const surfaces if

1. the equation of state is barotropic, i.e. p = p(e), and
2. (a) Lb2 = const, or (b) Lω = const, or (c) Lb2 = f(Lω) .
Note that, for instance, in the equilibrium model proposed by [25] b2 ∼
Lη−1ωη, with η a real index, and this choice does satisfy von Zeipel theo-
rem as it corresponds to constraint 2(c), with f a power law, i.e. Lb2 ∼ (Lω)η.
Also note that, as expected, the Newtonian limits of constraints 2(a), 2(b) and
2(c) just found span the same physical conditions provided by their Newtonian
analogs that we found in Sec. 2.1.

3.2 Poloidal magnetic field

In the relativistic framework, the treatment of the poloidal magnetic field
is significantly more involved than that of toroidal magnetic fields, and in
what follows we use several results proved by Bekenstein & Oron [10,11]. We
first exploit the freedom in the choice of the coordinates system to adopt
coordinates x1 = z and x2 = χ such that χ is constant along Ψ = const
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surfaces, i.e. Ψ = Ψ(χ), while z is constant along the normals to those surfaces.
In the following, and just for notational convenience, we will refer to (z, χ) as to
the B-O coordinates. An example of such coordinates is reported in Appendix
A for the Schwarzschild metric.

We now recall a property highlighted by [35], who showed that a spacetime
containing a purely toroidal flow with a purely poloidal (or purely toroidal)
magnetic field is circular, meaning that in the chosen B-O coordinates the
metric can be written in “diagonal plus one” form as

ds2 = gttdt
2 + 2gtφdtdφ+ gφφdφ

2 + gzzdz
2 + gχχdχ

2 . (14)

Moreover, from the definition of magnetic field in terms of the electromagnetic
tensor, namely bα =∗ Fαβuβ , where

∗Fαβ is the dual of Fαβ , using the fact
that there is no meridional motion (uz = uχ = 0) and that Fαβu

β = 0 (because
of infinite conductivity) one finds ([11])

bt = bφ = 0 , (15)

bi =
ǫij

ut
√−g

∂jΨ i, j = z, χ , (16)

where ǫzχ = −ǫχz = 1, ǫzz = ǫχχ = 0 and where g is the determinant of the
metric (14). Therefore, the magnetic field lines lie on the equipotentials of Ψ ,
namely

bα∂αΨ = 0 , (17)

which, due to Ferraro’s iso-rotation law, also implies

bα∂αΩ = 0 . (18)

We therefore expect that the magnetic field lines lie on the surfaces of constant
magnetic potential Ψ (magnetic surfaces), which coincide with the surfaces
of constant angular velocity Ω. This property prevents the generation of a
toroidal component of the magnetic field, even in the presence of differential
rotation.3 The choice of the coordinates (z, χ) as described above turns out to
be rather useful, because the poloidal magnetic field components are

bz =
1

ut
√−g

∂χΨ , (19)

bχ = 0 , (20)

while, from Eq. (18), it also follows that

∂zΩ = 0 =⇒ Ω = Ω(χ) = Ω(Ψ) . (21)

We note that the coordinate χ resembles closely the cylindrical coordinate r
of the Newtonian case, for which we found Br = 0 from Ferraro’s iso-rotation

3 If the poloidal magnetic field lines lie on the Ψ = const surfaces, and if these surfaces
coincide with the Ω = const surfaces, then the magnetic field lines will not “feel” rotational
effects.
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law, in analogy to Eq. (20). By combining Eq. (11) and Eq. (20), the fluid
acceleration along the z-direction can be written as

az = −∂z lnu
t =

∇αb
α

bz
= −∂zp

ω
. (22)

Focusing on the last equality of Eq. (22) and writing explicitly the four-
divergence of a four-vector, we obtain

∂z ln

(
b
√−g
√
gzz

)

= −∂zp

ω
, (23)

where b = (bzbz)
1/2. Equation (23) places a first condition on the derivative

∂zb, and can be used to write ∂zb/b as function of the metric and of the field.
The interesting aspect of this equation is that it only involves derivatives along
the coordinate z. We emphasize that it has nothing to do with von Zeipel’s
theorem, and it is a consequence of the adopted B-O coordinates.

The Euler equation (10) can also be written in terms of the new coordinates
(z, χ). Before doing that, we write the magnetic terms on the right hand side
of Eq. (10) as

− 1

2
∇αb

2 +∇π(b
πbα) = bπ(∂πbα − ∂αbπ)− bαb

z∂z lnu
t , (24)

where we have again used Eq. (11), with az given by Eq. (22). Hence, we can
now write (10) in the two components χ and z to obtain

− ∂χ lnu
t + utuφ∂χΩ = − ∂χp

ω + b2
− bz∂χbz

ω + b2
(25)

−∂z lnu
t = − ∂zp

ω + b2
− b2∂z lnu

t

ω + b2
. (26)

After taking the z-derivative of the first equation and the χ-derivative of the
second one, we find

− ∂z∂χ lnut + ∂z(K(ℓ)∂χΩ) = ∂z

(

− ∂χp

ω + b2

)

− ∂z

(
bz∂χbz
ω + b2

)

(27)

−∂χ∂z lnu
t = −∂χ

(
∂zp

ω + b2

)

− ∂χ

(
b2∂z lnu

t

ω + b2

)

, (28)

where we have defined the term

K(ℓ, Ω) ≡ utuφ = l/(1−Ωl) . (29)

We now subtract Eq. (28) from Eq. (27) to find the following condition

∂z (K(ℓ, Ω)) ∂χΩ = ∂z

(
∂χp

ω

)

− ∂z

(
∂χp

ω + b2

)

− ∂z

(
bz∂χbz
ω + b2

)

︸ ︷︷ ︸

1st−term

+ ∂χ

(
∂zp

ω + b2

)

− ∂z

(
∂χp

ω

)

+ ∂χ

(
b2∂z lnu

t

ω + b2

)

︸ ︷︷ ︸

2nd
−term

, (30)
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where, for reasons that will be immediately transparent, we have added and

subtracted the term ∂z

(
∂χp
ω

)

, and where we have used ∂zΩ = 0. A generalized

von Zeipel theorem can therefore be formulated by saying that Ω = const
surfaces coincide with l = const surfaces if the right hand side of equation
(30) vanishes. In fact, when this is the case, the left hand side must satisfy

∂z (K(ℓ, Ω))∂χΩ = 0 =⇒ ∂z (K(ℓ, Ω)) = ∂lK∂zℓ+ ∂ΩK∂zΩ = ∂lK∂zℓ = 0 ,
(31)

from which it follows that ∂zl = 0. Since ∂zΩ = 0, this means that the surfaces
at ℓ = const are the same as those at Ω = const. We therefore concentrate our
attention on the right side of Eq. (30). Under the assumption of barotropic
equation of state, namely that p = p(e), and using Eq. (22) we obtain

∂z∂χ lnu
t = ∂χ∂z lnu

t = ∂χ

(
∂zp

ω

)

= ∂z

(
∂χp

ω

)

. (32)

As a result, the 2nd − term of Eq. (30) is identically zero, as dictated by
Eq. (28). On the other hand, the 1st − term of Eq. (30) can be analyzed to
obtain an expression for the partial derivative of b along χ. In fact, by imposing
the vanishing of the 1st − term we find

∂z

[
b2

ω(ω + b2)
∂χp−

bz∂χbz
ω + b2

]

= 0 . (33)

Hence, the quantity in the square brackets must be a function of the coordinate
χ only, and therefore of Ψ only. Hence, (see Appendix B for the details)

b2

2(ω + b2)

[

2
∂χp

ω
− ∂χ ln(b2gzz)

]

= P(Ψ) . (34)

The constraint expressed by Eq. (33) can be further manipulated, leading to

∂z ln
( ω

b2

)[

∂χ ln(b2gzz)− 2
∂χp

ω

]

= 2

(
ω + b2

ω

)

∂χ∂z ln(b
2√−g) . (35)

We emphasize that Eq. (35) and Eq. (23) form a system of partial differential
equations for the magnetic field b and the rest mass density ρ. To recap, when
the magnetic field is poloidal, Ω = const surfaces coincide with ℓ = const
surfaces if

1. the equation of state is barotropic, i.e. p = p(e), and
2. the magnetic field obeys the PDE (35), or, equivalently, if the left hand

side of (34) is a function of Ψ only, where (z, χ) are the B-O coordinates
such that bχ = 0.

A special case for which Eq. (23) admits a relatively simple solutions is dis-
cussed in Appendix C. It is also worth commenting about the relevance of
our result in the context of the solution of the Grad-Shafranov (GS) equation,
which is a highly non-linear partial differential equation in the unknown flux
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function Ψ . Notoriously, the GS equation is used to compute stationary and
axisymmetric magnetohydrodynamics solutions admitting a number of inte-
gral of motions, which depend only on Ψ . In the relativistic regime it has been
analyzed by several authors in various physical contexts, including astrophys-
ical jets, relativistic stars and magnetospheres of compact objects (see [15],
[33], [19], [24], [12], [22]). The GS equation, however, provides no information
about the relation among Ω and ℓ and the solution that is obtained in gen-
eral does not satisfy the conditions of von Zeipel theorem. Our results show
that, in order for the GS equation to give a solution with the property that
Ω = Ω(ℓ), there must by an additional function P(Ψ), defined by (34) in B-O
coordinates, which depends only on Ψ .

4 Conclusions

We have studied the conditions under which the surfaces of constant angular
velocity Ω coincide with those of constant specific angular momentum ℓ for
a stationary and axisymmetric magnetized perfect fluid in circular motion
around a compact object. In the case of a purely toroidal magnetic field, such
conditions amount to integrability conditions, both in the Newtonian and in
the relativistic regime. The relativistic treatment of the poloidal magnetic field
is more involved, and it is convenient to adopt suitable coordinates (z, χ), such
that χ is constant along Ψ = const surfaces, while z is constant along the
normals to those surfaces. In this way it is possible to show that Ω = const
surfaces coincide with ℓ = const surfaces if the equation of state is barotropic,
and if a function P(Ψ) exists, given by Eq. (34), which depends only on Ψ .
These results become relevant when the construction of an equilibrium solution
with a poloidal magnetic field is considered, a task that we will consider in the
future through the numerical solution of the Grad-Shafranov equation.
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22. Gourgoulhon, E., Markakis, C., Uryū, K., Eriguchi, Y.: Magnetohydrodynamics in sta-
tionary and axisymmetric spacetimes: A fully covariant approach. Phys. Rev. D 83(10),
104007 (2011). DOI 10.1103/PhysRevD.83.104007
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A Example of B-O coordinates in the Schwarzschild metric

As an example of how to choose the B-O coordinates (z, χ) in a specific context, let us briefly
consider the case of a magnetized fluid rotating with constant specific angular momentum
ℓ in a Schwarzschild metric. From the iso-rotation law we know that Ω = Ω(Ψ), and since
we are looking for a coordinate χ = χ(Ψ), we can simply take χ = Ω. However, in the
Schwarzschild metric Ω = −gttℓ/gφφ and, since ℓ = const, we can choose

χ =
(1− 2/r)

r2 sin2 θ
. (36)

http://mnras.oxfordjournals.org/content/early/2012/11/01/mnras.sts051.abstract
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On the other hand, the coordinate z can be computed from the requirement that the or-
thogonality between z and χ is preserved, i.e. gzχ = 0. Straightforward metric coefficients
transformations yield

z = (r − 3) cos θ . (37)

In terms of such B-O coordinates it is then possible to write the constraints expressed by
Eq. (23) and by Eq. (35) to guarantee that Ω = Ω(ℓ).

B Derivation of Eq. (35)

We first note that, in the coordinates (χ, z), b2 = bαbα = bzbz , and

bz =
b

√
gzz

, bz = b
√
gzz , (38)

bz∂ibz =
∂ib

2

2
− 1

2
Mib

2, Mi ≡ gzz∂ig
zz = ∂i ln gzz = −∂i ln gzz . (39)

Using these definitions, it is possible to rewrite Eq. (33) as

∂z

{
b2

2(ω + b2)

[

2
∂χp

ω
− ∂χ ln b2 − ∂χ ln gzz

]}

= 0. (40)

If we expand the derivatives in Eq. (40), we obtain

2∂z

(
∂χp

ω

)

− ∂z∂χ ln(b2gzz) + ∂z ln

(
b2

ω + b2

)[

2
∂χp

ω
− ∂χ ln(b2gzz)

]

= 0 , (41)

which, by using Eq. (23), can also be written as

− 2∂χ∂z ln(b
2
√

−g) + ∂z ln

(
b2

ω + b2

)[

2
∂χp

ω
− ∂χ ln(b2gzz)

]

= 0 , (42)

or, equivalently

∂χ ln(b2gzz) = 2
∂χp

ω
− 2∂χ∂z ln((b2

√
−g))

∂z ln
(

b2

ω+b2

) . (43)

The term ∂z ln

(
b2

ω+b2

)

can now be replaced using the identity

∂z ln(ω + b2) = ∂z ln b2 +
ω

ω + b2
∂z ln

(
ω

b2

)

, (44)

thus allowing to rewrite Eq. (43) as

∂z ln

(
ω

b2

)[

∂χ ln(b2gzz)− 2
∂χp

ω

]

= 2

(
ω + b2

ω

)

∂χ∂z ln(b2
√

−g) , (45)

which is Eq. (35) of the main text. An alternative expression in which a single term with a
first order derivative of the magnetic field is also possible and it is given by

∂χ ln b = −
(

b2 + ω

2ω

) ∂χ

(
2∂zp
ω

− ∂z ln
gzz
√

−g

)

∂z ln

√
−gω
gzz

+ ∂zp
ω

+
∂χp

ω
− ∂χ ln

√
gzz . (46)
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C Analysis of a special case: the polytropic equation of state

A particular case for which Eq. (23) allows a simple integration is for a polytropic equations
of state of the type p = kωΓ , with Γ and k constants. In such circumstances a solution of
Eq. (23) is

b = f(χ)e
−

kΓωΓ−1

Γ−1

√
gzz√
−g

, Γ 6= 1 , (47)

where f(χ) is an arbitrary function of χ, to be fixed through Eq. (35), or, alternatively,
through Eq. (46). Hence, Eq. (47) expresses the general form of the magnetic field, writ-
ten in B-O coordinates, when a polytropic equation of state is adopted. The fulfillment of
von Zeipel’s hypothesis through the additional condition (46) provides a constrain on the
function f(χ), which must satisfy

∂χf

f
+ f2f1(χ, z) + f2(χ, z) = 0, (48)

where f1 and f2 are two functions of (χ, z) through ω, the metric g and their derivatives.
As f is a function of χ only, after taking the z derivative of Eq. (48), we find the relation
f(χ)2 = −∂zf2/∂zf1, which could be in principle used to determine ω, and ultimately the
rest mass density ρ, in a given spacetime metric. Although the explicit form of f1 and f2 can
be extracted from Eq. (46), the relevant point is that, at least formally, the general solution
of Eq. (48) is

f(χ) = ∓ e

∫
χ

1

−f2(t,z) dt

√

c1 + 2
∫ χ

1
e
2
∫

s

1

−f2(t,z) dt
f1(s, z)ds

, (49)

where c1 is a constant.
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