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Quantum error correction with gauge symmetries
Abhishek Rajput 1✉, Alessandro Roggero 2,3,4✉ and Nathan Wiebe1,5,6✉

Quantum simulations of lattice gauge theories (LGTs) are often formulated on an enlarged Hilbert space containing both physical
and unphysical sectors in order to retain a local Hamiltonian. We provide simple fault-tolerant procedures that exploit such
redundancy by combining a phase flip error correction code with the Gauss’ law constraint to correct one-qubit errors for a Z2 or
truncated U(1) LGT in 1+1 and 2+1 dimensions with a link flux cutoff of 1. Unlike existing work on detecting violations of Gauss’
law, our circuits are fault tolerant and the overall error correction scheme outperforms a naïve application of the [5, 1, 3] code. The
constructions outlined can be extended to LGT systems with larger cutoffs and may be of use in understanding how to hybridize
error correction and quantum simulation for LGTs in higher space-time dimensions and with different symmetry groups.
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INTRODUCTION
As gauge theories lie at the heart of the framework governing the
interactions and forces described by the Standard Model,
considerable effort has been expended in numerical simulations
of these theories for computing physical quantities. Lattice gauge
theories (LGTs) have been among the most fruitful formulations of
non-perturbative approaches amenable for implementation on
classical computers1–5. In regimes where classical simulations are
plagued by an exponential scaling of the computational cost,
digital quantum computers have emerged as a promising
platform for the efficient simulation of LGTs. Notable examples
are real-time dynamics or the study of systems at finite density6–9.
Despite considerable advances on this front, digital quantum

simulation of LGTs can time-evolve a given fiducial state into
unphysical sectors due to noise and the approximation error
associated with the simulation protocol used. A popular approach
to mitigate this problem, especially useful for ground-state
calculations but shown to be useful also out-of-equilibrium10, is
to enforce Gauss’ law by adding an energy penalty to the
Hamiltonian (see e.g.,6,7,10–12 and also13 for techniques to reduce
the gate cost of adding penalty terms). Another recent proposal
for error mitigation in gauge theories uses random gauge
transformations to suppress the component of the quantum state
in the unphysical Hilbert space14,15. The recent approach
proposed in16, and its generalization to non-Abelian theories17,
uses instead a quantum oracle to detect the presence of gauge
violating errors by performing explicit Gauss’ law checks and
flagging an ancilla qubit. These techniques are suitable for error
detection but in general do not possess error correction
capabilities and are not fault-tolerant.
With the long-time goal of performing quantum simulation of

LGT on fault-tolerant protocols, an intriguing possibility is to tailor
general purpose error correction schemes to best exploit the
structural properties of these theories in order to reduce the
resource requirements for early explorations (see e.g.,18 for a
recent attempt in this direction using the surface code). The
physical intuition behind the approach followed in this work is
that error correcting codes can be seen as artificial gauge theories
where the logical Hilbert space is determined by states that satisfy

a suitable local symmetry. When simulating LGTs which them-
selves need to satisfy a physical local symmetry, it might then be
advantageous to exploit this natural redundancy to reduce the
cost of the full error correction encoding.
We develop in this work fault-tolerant algorithms for error

correction suitable for Z2 or truncated U(1) lattice gauge theories
in 1+1, and 2+1 spacetime dimensions with a cutoff of 1 on the
links. These algorithms combine the physicality constraint
provided by Gauss’ law with bit and phase flip error correction
codes19 to detect and correct errors stemming from device noise
that occur on a site or its adjacent links. Error correction for a 1D
lattice with 2N links and 2N staggered fermionic sites with periodic
boundary conditions is accomplished by tessellating these
encodings across the whole lattice so that errors occurring on a
particular site and its adjacent link can be detected by a Gauss’ law
check on the next set of sites and links. The extension to 2D
follows a similar idea using instead plaquettes and links coming
out of them as the fundamental blocks of the partition.
In the electric basis used here, a gauge violation is caused by

bit-flip errors which can be corrected using a standard encoding
based on the repetition code using 12N qubits: 3 for each site and
3 for each link (see the schematic illustration in Fig. 1a). The error
correction procedure proposed here instead requires no bit-flip
repetition code for the fermionic sites and a compressed encoding
requiring only half of the qubits (3N in total) for the link variables.
Full fault-tolerance can then be achieved by concatenation with a
standard phase-flip code (similar to what is done in the 9 qubit
Shor code19) and using fault tolerant gadget design (e.g., using
flag qubits20). For the simpler case when the fermionic sites are
non-dynamical, i.e., they can be represented by classical bits, the
scheme proposed here requires 9N qubits for unit flux cutoffs with
O(1) ancillas. The full construction depicted in Fig. 1a involving
dynamical fermions requires 15N qubits with O(1) ancillas. These
are to be contrasted with the 10N and 20N qubits required for the
two cases respectively using the [5,1,3] code for each site and
link21,22. Similarly, our construction for the 2D case requires for a
lattice with 8NxNy links and 4NxNy sites, a total of 48NxNy qubits for
the dynamical fermion case and 36NxNy qubits in pure gauge or
with only static charges. For comparison, a [5, 1, 3] code would
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require 60NxNy and 40NxNy qubits, respectively (see Fig. 1b). It is
foreseeable that more space efficient codes could be constructed,
with the present work developing a first attempt to exploit the
intrinsic redundancy present in gauge theories to reduce the cost
of the error correction procedures required for their simulation at
large scale.
The structure of the paper is as follows: “Structure of U(1) and

Zn Abelian” lattice gauge theories introduces the structure of U(1)
and Zn Abelian LGTs. “Preliminaries on the repetition code”
surveys the basics of error correction codes and develops the
formalism for integrating Gauss’ law with a repetition code. “Pure
gauge theory” and on then presents applications of these ideas for
pure gauge theory first before treating the cases of error
correction for a Z2 1+1 dimensional LGT with both non-
dynamical and dynamical fermions. We discuss an extension of
these ideas to the more complex case of 2 spatial dimensions in
“Extension to two dimensions”. “Discussion” summarizes the
results and discusses future work for extending these results to
different symmetry groups, and higher spacetime dimensions, and
flux cutoffs.

RESULTS
Structure of U(1) and Zn Abelian lattice gauge theories
We follow the basic outline given in ref. 16 and review the
structure of abelian lattice gauge theories, specifically for the
general gauge groups G ¼ Zn and G= U(1) which contain those
considered throughout this work. There are several physical
models for which the gauge symmetries discussed here are
important such as the Schwinger Model, or QED in 1+1
dimensions on a lattice23,24. It is the one of the simplest concrete
examples of an Abelian LGT and serves as a convenient setting for
the analysis and application of Gauss’ law symmetries to error
correction. This model has been extensively used as an important
stepping stone in simulations of lattice field theories using both
tensor networks and quantum devices11,25–28.
We discretize space on a cubic lattice L with sites labeled by s

and links labeled by l. We assume that the lattice consists of N sites
for even N ≥ 0 and that a staggered fermion representation is used
wherein every second site is positronic. Each link l is associated an
independent separable Hilbert space Hl with the same

orthonormal basis:

hϵ0jϵi ¼ δϵ0;ϵ; 1̂ ¼
X
ϵ

ϵj i ϵh j (1)

with

ϵ0; ϵ 2 Zn; if G ¼ Zn

Z; if G ¼ Uð1Þ:

�

The Hamiltonian for this LGT is a function of the link operators
Ûl and their conjugate electric fields Êl defined explicitly in this
basis by

Ûl ¼
X
ϵl

ϵl þ 1j i ϵlh j; Êl ¼
X
ϵl

ϵl ϵlj i ϵlh j: (2)

From this expression we can see that Ûl acts as a raising operator
and its adjoint as a lowering operator on the Hilbert space Hl of
the link. Operators defined on different link Hilbert spaces
commute while the same-link commutation relations are given by

½Êl ; Ûl � ¼ Ûl; G ¼ Uð1Þ (3)

Q̂lÛlQ̂
y
l ¼ Ûle

2πi=n G ¼ Zn (4)

where

Q̂l :¼ e2πiÊl=n ¼
XN�1

ϵl¼0

e2πiϵl=n ϵlj i ϵlh j:

The form of the commutation relation for Zn is due to the fact that
the electric field values are periodic, so the Hamiltonian depends
on Q̂l .
When considering fermionic matter fields on the sites, we work

in the occupation number basis where number operators nσ are
diagonal with eigenvalues {0, 1}. Here, σ is a collective index
denoting the relevant species or indices (like flavor or spinor)
involved. The global state of the entire lattice is spanned by a
basis given by a specification of electric fields on the links of the
lattice and occupation numbers on the sites. Due to the locality of
the symmetry, we will typically consider a particular site on a
lattice and those links attached to it and denote the correspond-
ing basis states by

E; ρj i ! �D
i¼1 EiðsÞj i�D

i¼1 Eiðs� êiÞj i�σ nσj i;

Fig. 1 Error correction with Gauss’s law. a Schematic illustration of the differences between two error-correcting schemes for a simple one-
dimensional LGT: a traditional bit-flip encoding scheme and the two schemes proposed here exploiting the Gauss’ law gauge symmetry.
b Number of qubits required (excluding ancillas) for performing fault-tolerant error-correction with different encodings on a Z2 or truncated
U(1) 1+1 dimensional LGT system with 2N links, 2N staggered fermions and a 2+1 dimensional LGT with 8NxNy links and 4NxNy sites, both with
a flux cutoff of 1. The second row gives the cost for an encoding where Gauss’s law is exploited to give a bit-flip encoding via an extra even-
numbered link qubit in 1+1 D. The last row of the 1+1 and 2+1 D cases gives the cost when only the redundancies from Gauss’s law are used
at the logical level to perform error correction. The case with non-dynamical fermions requires the same resources as the pure gauge case and
is omitted from the table.
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where D is the spatial dimension of the lattice and ρ is a
discretized charge density defined by

ρ̂ðsÞ ¼
X
σ

eσn̂σðsÞ;

and eσ= ± 1. Due to gauge invariance, states in the physical
Hilbert space satisfy a local Gauss’ law which relates the state of a
site with the state of the links emanating from it. Gauge-invariant
states are in the kernel of the operator

Ĝs :¼ ð∇ � ÊÞðsÞ � ρ̂ðsÞ

:¼ PD
i¼1

ðÊiðsÞ � Êiðs� êiÞÞ �
P
σ
eσn̂σðsÞ;

(5)

where the second line is obtained by discretization of the gradient
operator on the lattice.
When dealing with a U(1) gauge group, it is necessary to

truncate the link electric field values to enable digital quantum
simulation with a finite number of qubits. This can be
accomplished by wrapping the electric field at a cutoff Λ:

Êl ¼
XΛ�1

ϵl¼�Λ

ϵl ϵlj i ϵlh j (6)

Ûl Λ� 1j i ¼ �Λj i (7)

Û
y
l �Λj i ¼ Λ� 1j i: (8)

This choice of discretization results in a modification of the
commutation relations as follows:

½Êl ; Ûl � ¼ Ûl � 2Λ �Λj i Λ� 1h j (9)

½Êl ; Ûy
l � ¼ �Û

y
l þ 2Λ Λ� 1j i �Λh j: (10)

Note that with our choice of the lower and upper bound, the
link Hilbert spaces are even-dimensional and can therefore be
mapped onto a dlogð2ΛÞe-qubit Hilbert space. In this work, we will
restrict the discussion to Λ= 1 and comment on the prospects of
generalizing our constructions to arbitrary cutoffs in “Discussion”.

Preliminaries on the repetition code
We briefly discuss the bit and phase-flip error correction codes used
throughout the paper, following the treatment given in ref. 29, and
show how to integrate them with Gauss’ law to reduce the number
of qubits required. The overarching idea is to perform an encoding
of the link physical qubits into logical states and use the local gauge
symmetry to implement a more space-efficient error correction code
under an error model with arbitrary single-qubit errors.
First consider a noisy classical communications channel through

which we wish to send a bit between two locations and suppose
its behavior is such that it flips the bit with probability p. To
protect the bit against the effects of noise, we can employ what is
known as a repetition code. This involves replacing the bit with

three copies of itself, i.e., 0→ 000 and 1→ 111. These new bit
strings are denoted as the logical 0 and logical 1 and we send
these through the channel. The receiver then attempts to decode
what the original bit was. If the output is 010 for instance, then
provided the probability p of error is not high and the noise acts
independently on each bit, it is likely the second bit was flipped
and that the original bit was 0. This is known as majority voting,
since the intended original message is determined by whatever
bit value appears more in the output. This can obviously fail if
more than one bit was flipped. It can be easily determined that
with this encoding scheme, the transmission becomes more
reliable if p < 1/2.
Now consider a noisy quantum channel that applies a bit-flip, or

X gate, to a state ψj i sent through it with probability p. We write
ψj i in terms of the computational basis as ψj i ¼ a 0j i þ b 1j i and
encode it in three qubits as a 000j i þ b 111j i. In other words, we
have a mapping between the “physical" qubits 0j i and 1j i to the
logical qubits 0j iL ¼ 000j i and 1j iL ¼ 111j i respectively, where
the subscript L denotes a logical state. Such an encoding can be
accomplished by the encoding portion of the circuit in Fig. 2a.
Each qubit in the encoded state is passed through a separate

bit-flip channel. If a bit-flip occurs on at most one qubit, we can
measure the parities of the qubits by performing projective
measurements of the operators Z1Z2 and Z2Z3, where the tensor
product is implied. This process is known as making syndrome
measurements for the error syndromes Z1Z2 and Z2Z3. These
operators have eigenvalues of ±1. Z1Z2 measures the parities of
the first two qubits and yields the eigenvalue −1 if they differ and
+1 if they do not. Z2Z3 acts in the same way for the second and
third qubits. The measurement outcomes of either operator allows
us to determine which qubit was flipped. For instance, if
eigenvalues of −1 are obtained from the measurement of both
operators, we know that with high probability the second qubit
was flipped. We can then perform error correction by applying an
X gate on the 2nd qubit to flip it back to its original state. Note that
the measurement of these operators gives no information about
the amplitudes a and b of the encoded state and therefore do not
destroy the state we wish to perform error detection and
correction on. Figure 2b outlines the possible measurement
outcomes for the syndromes Z1Z2 and Z2Z3 and the error
correction operations to perform. Figure 2a gives the full circuit
to correct bit-flip errors. An equivalent circuit used for the
projective measurement of the stabilizers Z1Z2 and Z2Z3 is
presented in Fig. 2c. We will use this decomposition in the rest
of this work.
Now suppose we have a noisy quantum channel that applies a

phase flip (i.e., a Z gate) with probability p to a qubit in the state
ψj i ¼ a 0j i þ b 1j i. Unlike the bit-flip encoding, there is no classical
analog of applying a phase to a bit. However, we can convert this
channel to a bit flip channel by working in the þj i ¼ ð 0j i þ
1j iÞ= ffiffiffi

2
p

and �j i ¼ ð 0j i � 1j iÞ= ffiffiffi
2

p
basis. With respect to this basis,

the Z operator takes þj i to �j i and therefore acts as a bit flip. We
can then apply the same logic for error correction in the bit-flip

Fig. 2 Bit-flip error correction procedure. a Full circuit for correcting a bit flip errors on a general state ψj i ¼ a 0j i þ b 1j i. b Equivalent circuit
for the measurement of the stabilizers Z1Z2 and Z2Z3 for the bit-flip error correction code. This can be obtained from the identity HZH= X and
the fact that controlled-Z gates are equivalent to a controlled-Z gate with the control and target flipped. c Syndrome measurements
outcomes, and correction operations for bit flip error correction code.
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case to the present case by switching from the computational
basis to the þj i and �j i basis via the Hadamard gate. In our
present work, we will find it convenient to use the logical
codeword basis 0j iL ¼ ð þ þþj i þ � ��j iÞ= ffiffiffi

2
p

and
1j iL ¼ ð þ þþj i � � ��j iÞ= ffiffiffi

2
p

. Then to detect errors, we can
perform projective measurements of the stabilizers X1X2 and X2X3
to determine the parity of the bits. Based on the measurement
outcomes, we can apply Z gates to correct the errors accordingly.
The logical encoding and the phase-flip error correction procedure
are depicted in Fig. 3.
The constructions given in20 allow us to ensure the fault

tolerance of the encoding, error detection, and recovery operations
in either code. The underlying technique involves introducing an
extra flag qubit prepared in the þj i state and performing CNOT
operations from it on the syndrome ancilla qubit at key points in
the circuit (see Fig. 3(b) in20). This flag qubit is then measured in
the X basis and a result of �j i indicates an error of weight two or
more on the data qubits. Additional flag qubits can be added
between each gate in the stabilizer measurement to ensure a
localization of errors. Similar constructions apply in creating fault-
tolerant versions of other important subroutines like logical state-
preparation and stabilizer measurements (see Appendix A in20).

Integrating the repetition code with Gauss’ law
We are now in the position to discuss how the expression of
Gauss’ law in Eq. (5) can remove the need to use an explicit bit flip
code in fault-tolerant LGT simulations. To simplify the discussion
we will henceforth consider the one-dimensional case (D= 1) with
staggered fermionic sites, where only one fermionic flavor with
charge es is present on any given site s. The Gauss’ law operator at
site s between links l and l+ 1 simplifies then to

Ĝs ¼ Êlþ1 � Êl � esn̂ðsÞ; (11)

and in the simpler pure gauge case with no matter to

Ĝs ¼ Êlþ1 � Êl: (12)

We start by discussing the latter case and consider a general
state of the two links in the electric basis

Ψl;lþ1

�� � ¼
X
ϵl

X
ϵlþ1

Ψϵl ;ϵlþ1 ϵlj i � ϵlþ1j i: (13)

Following the discussion in “Structure of U(1) and Zn Abelian
lattice gauge theories”, a physical state needs to be in the kernel
of the Gauss’ law operator. Using Eq. (12) above we see that Ĝs
acts on Ψl;lþ1

�� �
as

Ĝs Ψl;lþ1

�� � ¼
X
ϵl

X
ϵlþ1

Ψϵl ;ϵlþ1ðϵlþ1 � ϵlÞ ϵlj i � ϵlþ1j i; (14)

and is zero only if the coefficient matrix is diagonal

Ψϵl ;ϵlþ1ðϵlþ1 � ϵlÞ ¼ 0 () Ψϵl ;ϵlþ1 ¼ Ψϵlδϵl ;ϵlþ1 : (15)

This argument, which can be easily generalized to the case
where the state of the links is mixed, shows that gauge invariant

states are analogous to a bit-flip repetition code with only two
copies: 0j iL ¼ 0j i � 0j i and 1j iL ¼ 1j i � 1j i. The distance between
these codewords is not sufficient to allow for error correction but
is sufficient for error detection (see e.g.,30). This explains in an
intuitive way why oracles like those presented in ref. 16 are
capable of detecting bit-flip errors without requiring additional
qubits for the encoding.
It is now easy to see how the use of Gauss’ law allows for a

space reduction in the bit-flip encoding: the standard procedure
described above will require three link registers to encode a
logical link as

Φlj iL :¼ P
ϵl

Φϵl ϵlj i � ϵlj i � ϵlj i

¼ P
ϵl

Φϵl ϵlj iL:
(16)

The fact that physical states satisfy Eq. (14) means we need only
two registers per link and can use one of the two registers for the
l+ 1 link across a site s when we measure stabilizers and perform
error recovery. Since only three registers are involved in this
procedure, we will consider a construction with two-qubit
registers for even links and only one register for the odd links in
order to minimize the memory cost. More explicitly, we will use
the alternative encoding

Φlj iGLE :¼
X
ϵl

Φϵl ϵlj i � ϵlj i ¼
X
ϵl

Φϵl ϵlj iGLE ; (17)

for the even links in the lattice and

Φlj iGLO :¼
X
ϵl

Φϵl ϵlj i ¼
X
ϵl

Φϵl ϵlj iGLO; (18)

equivalent to a bare encoding, for the odd links. For physical
states that satisfy the Gauss’ law constraint in Eq. (15) we have
then

Φl;lþ1

�� �
GL

¼ P
ϵl

P
ϵlþ1

Ψϵl ;ϵlþ1 ϵlj iGLE � ϵlþ1j iGLO
¼ P

ϵl

Ψϵl ϵlj iGLE � ϵlj iGLO
¼ P

ϵl

Ψϵl ϵlj i � ϵlj i � ϵlj i;
(19)

and we can now use the stabilizer measurements and recovery
operation on the three qubits as in the bit-flip repetition code. The
second line is obtained by ensuring that the logical state Φl;lþ1

�� �
GL

is in the kernel of the logical Gauss’ law operator derived from Eq.
(12)

Ĝ
ðGLÞ
s ¼ Ê

ðGLOÞ
lþ1 � Ê

ðGLEÞ
l

¼ Êlþ1 � Êl � Êl:
(20)

The expressions above apply directly to sites s between l even
and l+ 1 odd, but it is straightforward to generalize them to the
site s+ 1 where the left link is odd and the right link is even as
follows

Φlþ1;lþ2

�� �
GL ¼ P

ϵlþ1

P
ϵlþ2

Ψϵlþ1;ϵlþ2 ϵlþ1j iGLO � ϵlþ2j iGLE
¼ P

ϵlþ1

Ψϵlþ1 ϵlþ1j iGLO � ϵlþ1j iGLE
¼ P

ϵlþ1

Ψϵlþ1 ϵlþ1j i � ϵlþ1j i � ϵlþ1j i:
(21)

The gauge invariant logical state is again equivalent to the
standard bit-flip encoding shown in Eq. (16). Since Gauss’ law only
detects errors in the flux value, which in our representation
corresponds to bit-flip errors, each register of qubits in the
construction presented above needs to be encoded in a phase-flip
code to ensure that all single errors are correctable. With this
concatenation, the gauge-invariant logical states Φl;lþ1

�� �
GL and

Fig. 3 Phase-flip error correction circuit. Full circuit for correcting
phase flip errors on a general state ψj i ¼ a 0j i þ b 1j i.
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Φlþ1;lþ2

�� �
GL

become equivalent to a full 9-qubit encoding19.
However, we encode two full links using the 9-qubit encoding as
opposed to each link separately. This encoding therefore has
better memory efficiency than error correcting codes that act on
individual qubits, the best one requiring 5 qubits21,22. Note that it
is still possible to find codes with even higher memory efficiency
when multiple logical qubit are encoded. For instance, 3 logical
qubits can be encoded into eight while correcting all single errors
(see e.g.,31,32).
Adding fermions to the system modifies the relation between

link states across a site so that they do not necessarily need to be
the same. The full state around a site s is a generalization of Eq.
(13) and should now be written as

Ψs
l;lþ1

���
E
¼

X
ϵl

X
ϵlþ1

X
n¼0;1

Ψn
ϵl ;ϵlþ1

ϵlj i � ϵlþ1j i � nj is: (22)

The gauge-invariance constraint becomes therefore

Ψ0
ϵl ;ϵlþ1

ðϵlþ1 � ϵlÞ ¼ 0;

Ψ1
ϵl ;ϵlþ1

ðϵlþ1 � ϵl � esÞ ¼ 0:
(23)

A state belonging to the physically meaningful portion of the
Hilbert space is then

Ψs
l;lþ1

���
E
¼

X
ϵl

X
n¼0;1

Ψn
ϵl
ϵlj i � ϵl þ nesj i � nj is; (24)

where we recall that es= 1 for a fermionic site and es=− 1 for an
anti-fermionic site. In order to obtain a useful encoded state for
error correction, we can then apply a lowering operator Û

y
lþ1 (for

es= 1) or a raising operator Ûlþ1 (for es=− 1) to the link l+ 1
controlled on the state of the site qubit. Calling this operation Ŵs,
for a site between an even and an odd link we have that

Ŵs Ψ
s
l;lþ1

���
E
GL

¼ P
ϵl

P
n¼0;1

Ψn
ϵl
ϵlj iGLE � ϵlj iGLO � nj is

¼ P
ϵl

P
n¼0;1

Ψn
ϵl
ϵlj i � ϵlj i � ϵlj i � nj is

(25)

and the error correction procedure can be carried out on this new
state. After one site has been processed, we apply the inverse Ŵ

y
s

and move to the next site. In this approach, we effectively move
from a gauge-invariant encoding that satisfies Eq. (23) to a logical
encoding equivalent to the bit-flip code by using Ŵs and its
inverse. This operation needs to be performed fault-tolerantly in
order to ensure a controlled propagation of errors. In the next
section, we will restrict the discussion to the simpler case where
the link registers are formed by a single qubit (ie. the flux cutoff is
set to one). In that case, we show that the construction can be
done in a fault-tolerant way.
It is preferable to avoid directly implementing the Ŵs operation

in practice as bit-flip errors can propagate from the site used as
the control for the l+ 1 link. This can be done by adopting a full
bit-flip encoding for the site alone and using the measurement of
its stabilizers to correct for the induced error in the link. A more
efficient strategy however is to compute the parity between the
between the l+ 1 link and the adjacent site and store the result in
a physical ancilla qubit, as shown schematically in Fig. 4a. The
ancilla qubit can then be used as part of a logical encoding for the
even-numbered links. We can catch errors of weight two or higher

that occur from errors propagating past the logical CNOTs with
the use of flag qubits (see ref. 20) and an example of this is shown
in Fig. 4a. This construction can be readily extended to situations
with large cutoffs if we employ a unary encoding for the flux state
using m qubits per link, in which case we will require m ancilla
qubits. Generalizing the approach to larger cutoff values with
various encodings is an important issue that will need to be
addressed in future work (see also “Discussion”). As we show in
more detail in the next section, using ancilla qubits to temporarily
store the parity of the two links allows for a fault-tolerant error
correction of a gauge theory with dynamical fermions using the
unencoded sites directly, providing a significant saving in qubits.
In summary, the number of link registers required for the Gauss’

law aided bit-flip error correction is 3N for a system with a total of
2N links. The total number of qubits required in a pure gauge
simulation is therefore 9N+O(1) when restricting the unit electric
cutoff case as done above and accounting for the additional 3
physical qubits required for the phase-flip encoding. With the
addition of dynamical fermions on 2N sites, one can exploit the
relationship given by Gauss’ law between the state of a site and its
adjacent links to do error correction with a total of 15N+O(1)
qubits, 9N for links and 6N for sites. These are impossible results if
one instead attempts to perform error correction on individual
qubits. The total space required would instead be 10N for the non-
dynamical case and 20N for the dynamical one using the perfect
5-qubit encoding from ref. 21,22. As mentioned previously, better
ratios are possible if one encodes multiple logical qubits at a time
and we leave the extension to the more efficient encodings for
future work31,32.

Pure gauge theory
We specialize in this and the next few sections to a Z2 or
truncated U(1) gauge theory in 1+1 dimensions with a cutoff of
Λ= 1 for the flux in each link. We work with a system with 2N sites
and 2N links with PBCs. Site k, for an integer k ≥ 1, is denoted by S1k
and the links coming into and out of the site are written as L1k and
L1kþ1 respectively.
Unless otherwise specified, every subsequent circuit is a

concatenated one, with every qubit encoded within the phase
flip error-correcting code as in the encoding portion of Fig. 3.
Logical qubits arising in this manner will be denoted with the
subscript L.
We applications of the previous analysis to a few gauge theories

in order of increasing generality. Beginning with the pure gauge
theory case with no matter present on the sites, Gauss’ law gives
the equality between the incoming and outgoing flux on a site.
This allows us to use L1k

�� �
and L1kþ1

�� �
as part of a single logical

qubit for a concatenated bit-flip error correction procedure, where
an additional qubit is introduced only if the links are even-
numbered.
This situation is easily generalized to a theory with static

charges or non-dynamical fermions on the sites by applying a link-
lowering operator on an odd-numbered link conditioned on the
classical state of the adjacent site. We then perform the error
correction procedure on the appropriate logical link qubit before
restoring the odd link’s flux value with a raising operator.
The scenario with dynamical fermions is dealt with by

computing the parity between an odd-numbered link and its

Fig. 4 Logical-to-physical operations. a Fault-tolerant logical-to-physical CNOT using flag qubits. b Equivalence of logical CNOT between
logical qubits and two logical-to-physical CNOTs.

A. Rajput et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2023)    41 



adjacent site and storing the result in a physical ancilla qubit. This
qubit is then used as part of a logical encoding for the even-
numbered links. Bit-flip checks can be performed on two sets of
adjacent links and sites and the information from them can be
used to correct errors on all the relevant qubits, provided there is a
single bit-flip error per two such checks.
Note that we cannot perform this analysis entirely within the

stabilizer formalism since our controlled operations are not logical
ones at the level of the bit-flip encoding. While certain aspects of
our treatment, therefore, rely on standard constructions within the
stabilizer formalism, others involving Gauss’ law require us to
move between physical and logical states.
We adopt the notation Lnk

�� �
L and Snk

�� �
L to denote link and site

logical qubits respectively in the phase flip code, and On
k for

operators acting on the k-th logical link or site qubit. The case
where n= 1 in the superscript denotes the original logical qubit
and logical qubit operator, while values of n greater than 1 denote
the auxiliary link or site qubits introduced for the error correction
procedures. If a given logical site or link is the only one of its kind,
we will drop the superscript.
In each of the subsequent circuits, we introduce no additional

qubits for the odd numbered links and an auxiliary qubit L22k
�� �

L
for

each even numbered link L12k
�� �

L
that is arranged to have the same

state as L12k
�� �

L. The constraint that the fluxes satisfy Gauss’ law at
site S12k

�� �
L
with associated link qubits f L12k

�� �
L
; L22k
�� �

L
; L2kþ1j iLg will

then ensure that L12k
�� �

L
¼ L22k

�� �
L
¼ L12kþ1

�� �
L
, or more precisely that

the wave-function factorizes as in Eq. (19) above.
As noted in the previous section, the grouping

f L12k
�� �

L
; L22k
�� �

L
; L2kþ1j iLg acts as a 3-qubit logical encoding for the

link logical qubit L12k
�� �

L
that can be used in the bit flip error

correction code outlined in Fig. 5a. The circuit is however sensitive
to single-qubit phase flip errors that propagate to weight two or
three phase flip errors. This is due to the use of logical to physical
CNOT gates, which enable the propagation of physical Z errors
from the target of these CNOTs to logical Z errors on the links. We,
therefore, employ the fault-tolerant logical-to-physical CNOT
depicted in Fig. 4a. This CNOT is implicitly used in all the
subsequent circuits where logical-to-physical CNOT operations
occur.
There is an alternative way to accomplish this error correction

procedure without introducing an additional logical qubit for the
even-numbered links. This method simply requires doing over-
lapping Gauss’s law checks on the qubits f L2kj iL; L2kþ1j iL; L2kþ2j iLg
and the qubits in Fig. 5a can then be replaced with these
respectively. The number of qubits required to fully error correct a
1+1 lattice system with 2N links would then be 6N instead of 9N.
However, we can then only tolerate at most one error occurring
over a larger portion of the lattice, namely a group of three
consecutive links, compared to the previous scenario where we

could tolerate at most one error over the more localized grouping
f L12k
�� �

L
; L22k
�� �

L
; L2kþ1j iLg. Thus there is a trade-off between the

number of qubits needed for our compressed encoding and the
spatial region over which the Gauss’s law checks need to be
performed to localize a bit-flip error. This pattern will recur in the
subsequent cases we consider and becomes less favorable in
larger dimensions.

Error correction with non-dynamical fermions
It is straightforward to generalize the results of the preceding
subsection to the case where we have non-dynamical fermions on
the sites. Since we know in this case whether or not a certain
physical site S12k (this is not a logical site qubit but a classical binary
variable) has a fermion, it is not necessary to introduce an ancilla
qubit and use the equivalence in Fig. 4b. The controlled operation
Ŵs introduced above (see Eq. (25)) is instead replaced by its
classically controlled counterpart. As such, we apply a classically
conditioned link-lowering operator to L2kþ1j iL to lower its flux
value and have it match that of L12k

�� �
L
. We then apply the

preceding bit-flip error correction code and restore the flux value
of L12kþ1

�� �
L
back to its original value with a classically conditioned

link-raising operation.
Given our assumptions on the flux cutoff, we have the circuit in

Fig. 5b for the non-dynamical fermionic case. This construction
also holds for an arbitrary site Sk and not just even-numbered
ones. Note that the circuit can be expressed in a simpler form by
exploiting commutation relations to move the initial classically
controlled X to the end of the circuit. This effectively replaces this
operation with a classically controlled flip of the last measurement
outcome.
As in the pure gauge theory case, we can dispense with the

extra logical qubit L22k
�� �

L
and extend the Gauss’s law check to the

group of qubits f L12k
�� �

L; L22k
�� �

L; L2kþ1j iLg, replacing the link qubits
in Fig. 5b accordingly. The number of qubits needed for this
approach is again 6N like the pure gauge case instead of 9N with
the above encoding, and the trade-offs are identical as well.

Error correction with dynamical fermions
A naïve approach to extend the preceding constructions to the
case with dynamical staggered fermions on the sites is to apply a
CNOT gate to L2kþ1j iL conditioned on the state of S2kj iL . We could
then introduce additional qubits S22k

�� �
L and S32k

�� �
L to create a bit-

flip encoding of S2kj iL and thereby protect it from bit-flip errors.
Errors propagating to L2kþ1j iL , L12k

�� �
L
, and L22k

�� �
L
can be corrected

with a separate bit-flip code involving these qubits, with
additional recovery operations included to account for the
propagation of X errors past the control of the CNOT.

Fig. 5 Error correction in pure and non-dynamical LGT. a Bit-flip syndrome measurement and correction operations for links in pure gauge
theory. The subscript L denotes the phase-flip encoding of these qubits shown in the encoding portion of Fig. 3. Each CNOT operation here
consists of three individual CNOTs from the qubits in the underlying phase-flip encoding. Here X is the operation X⊗ X⊗ X which acts as a
logical X. b Syndrome measurement and correction operations for LGT system with non-dynamical fermions. The circuit holds for arbitrary
sites Sk and not just even-numbered ones. Note that the circuit can be simplified by using commutation relations to move the initial classically
controlled X to the end of the circuit, thereby replacing the classical controls with a classically controlled flip of the last measurement
outcome.
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This construction only involves Clifford operations and can
easily be made fault tolerant. It however requires 18N+ 6N+ 3
N= 27N qubits for an 2N site and 2N link system excluding
ancillas, which is suboptimal compared to the 20N qubits
obtained from using the [5, 1, 3] encoding for each site and link.
We instead develop a procedure that further exploits Gauss’ law

to reduce the cost to 15N qubits. This is achieved by noticing that,
as discussed in “Integrating the repetition code with Gauss’ law”,
given the state on a site S2k+1 and its adjacent links L2k+1 and
L2k+2, a bit-flip error on any of these qubits will cause a violation of
Gauss’ law. The ambiguity in where the error occurred can be
resolved by overlapping Gauss’ law checks on the preceding and
subsequent site and their adjacent links. In fact, we will show only
two such checks are needed to resolve the ambiguity.
Figure 6 depicts to overlapping Gauss’ law checks G2k and G2kþ1

on sites S2k and S2k+1 respectively. Consider G2kþ1 in particular. We
can compute the parity between S2kþ1j iL and L2kþ1j iL as per Fig.
4b and store this result into a physical ancilla qubit 0j i, which
serves as a proxy for L2kþ1j iL but with its flux value reset. We can
then treat 0j i, L12kþ2

�� �
L, L22kþ2

�� �
L as a logical qubit for a bit-flip error

correction code and uncompute the value in 0j i afterwards. These
steps constitute G2kþ1 for the odd sites and their neighboring links
and are repeated analogously across the lattice.
To see how the information obtained from the stabilizer

measurements employing the last two ancilla qubits in Fig. 6
helps us correct errors on the data qubits, consider G2kþ1 first. The
syndrome measurement outcomes 10 and 01 uniquely identify
bit-flip errors occurring on the even links L12kþ2

�� �
L
and L22kþ2

�� �
L

respectively. The remaining non-trivial outcome 11 indicates a bit-
flip error on either L2kþ1j iL or S2kþ1j iL with no way to resolve the
ambiguity.
If the error occurred on S2kþ1j iL however, we would obtain the

syndrome 00 from the check G2k as Gauss’ law is satisfied between

S2k, L2k, and L2k+1. If the error occurred on L2kþ1j iL, we would then
obtain the syndrome 11 from G2k . As these two cases yield distinct
syndromes, we can resolve the aforementioned ambiguity as
shown in Fig. 7b. Note that this analysis will only hold if a bit-flip
error occurs once during the checks G2k and G2kþ1.
To assess the fault-tolerance of this construction, we first consider

the possibility that single-qubit bit flip errors occurring at the physical
level can propagate to undetectable errors at level of the phase-flip
code. Consider WLOG an error of the form X⊗ I⊗ I occurring at the
level of the underlying phase-flip code. On the logical codespace
defined by the basis 0j iL ¼ ð þ þþj i þ � ��j iÞ= ffiffiffi

2
p

and
1j iL ¼ ð þ þþj i � � ��j iÞ= ffiffiffi

2
p

, this error maps 0j iL 7! 1j iL. In other
words, a physical bit-flip error propagates to a logical bit-flip error
which can be detected by our bit-flip correction code. It is easily seen
that two bit flip errors leave our code space invariant. The circuit’s
sensitivity to single qubit phase flip errors propagating to weight two
or three phase flip errors from the logical-to-physical CNOT gates is
again resolved with the fault-tolerant CNOT construction shown in
Fig. 4a.
Logical bit-flip errors occurring on the logical qubits only

propagate to the ancilla qubits and not to the data qubits. The
possibility of more than one such error occurring on the data
qubits is suppressed by higher powers of p, where p is the
probability of an error occurring.
We can again consider the situation where we dispense with

the extra qubits for the even-numbered links and correct bit-flip
errors solely based on information obtained from Gauss’s law. This
modified situation is depicted in Fig. 7a and shows how three
overlapping Gauss’s law checks can be used to detect an error on
S2kþ1j i or its adjacent links. Note that this requires only one single-
qubit error to occur on the links and qubits involved in the checks,
and so we can lessen the memory overhead required for error-
correction in this setting at the expense of a worse error tolerance

Fig. 6 Circuit for error correction of 1D Abelian LGT with dynamical fermions. Circuit for using information from Gauss’ law checks G2k and
G2kþ1 on S2k, S2k+1, and their adjacent links to correct bit-flip errors on them. Bit-flip errors on even-numbered links can be corrected using the
information obtained from one such check. Bit-flip errors on sites and odd-numbered links require information from two such checks to be
corrected. See Fig. 7b for the corresponding syndrome outcomes.

Fig. 7 Error localization for 1+1 dimensional LGTs with dynamical fermions. a Schematic illustration of how to correct any single-qubit
error on S2k+1 and its adjacent logical link qubits by 3 overlapping Gauss’s law checks. This requires that only one single-qubit error occurs
over the links and sites involved in the 3 Gauss’s law checks. b How to resolve the ambiguity in the location of a bit-flip error associated to the
syndrome 11 for G2kþ1 using the syndrome results of G2k . See Fig. 6. c How to localize the error occurring on S2kþ1j iL or its adjacent logical link
qubits L2kþ1j iL; L2kþ2j iL by overlapping Gauss’s law checks. Each error is associated with a unique syndrome, enabling error correction.
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over a larger region of the lattice. This modified approach then
requires 3(2N)+ 3(2N)= 12N qubits for a 1+1 dimensional lattice
system with 2N staggered fermions and 2N links. The correspond-
ing circuit is similar to Fig. 6, with the exception that the extra
even-numbered link qubits and intermediate classical recovery
operations in each Gj are removed and the logical qubits
S2kþ2j iL; S2kþ3j iL are present. We simply perform the parity checks
G2k ;G2kþ1;G2kþ2, store the results into 3 ancilla qubits, and use the
outcomes to correct the error that happened on
S2kþ1j iL; L2kþ1j iL; L2kþ2j iL. Figure 7c depicts the possible outcomes
from these checks and shows that we can localize the error.

Extension to two dimensions
The scheme described in the previous sections can be also
extended to higher spatial dimensions. In order to give a concrete
example we describe here how one could implement a
compressed error correcting code for a simple 2+1 dimensional
lattice gauge theory. We consider in detail the case of Z2 but the
construction can be also applied to U(1). We start from a different
form of Gauss’ law which allows for a more direct connection to
the stabilizer formalism. The Gauss’ operator at each site s= (xs, ys)
and it’s neighboring links is defined as

ĜðsÞ ¼ Zx
sZ

y
sZ

x
sþxZ

y
sþyð�1Þq̂ðsÞ; (26)

and physical states satisfy the condition

ĜðsÞ Ψj iphys ¼ Ψj iphys: (27)

In the expression Eq. (26) we use the indexing convention for
the links as displayed in Fig. 8a and the charge operator using
staggered fermions is given by

q̂ðsÞ ¼ ψyðsÞψðsÞ � 1
2

1� ð�1Þxsþys
� �

; (28)

with ψ̂
yðsÞ and ψ̂ðsÞ the fermionic creation and annihilation

operators at site s. With this definition, at even site the states
f 0j i; 1j ig indicate the absence/presence of a fermion of charge 1
while for odd sites the role is reversed and f 0j i; 1j ig represent the
presence/absence of an anti-fermion of opposite charge. In the
following we will denote fermionic sites with a red color (as in Fig.
8a) and anti-fermion sites with a green color. The convention for
the indexing of links is unaffected. The presence of static charges
at different sites is easily included by adding their contributions in
the charge at the site. In order to keep the current exposition
simple we neglected this possibility.
Using the Pauli Z operator at the site we can express the Gauss

law operator more explicitly as

ĜðsÞ ¼ ð�1ÞxsþysZx
sZ

y
sZ

x
sþxZ

y
sþyZs; (29)

Fig. 8 Error correction with Gauss’s law in 2D. a Convention for the indexing of the link variables around a fermionic site s= (xs, ys). b The
adopted bi-partition of the 2D lattice into plaquettes used for the two rounds of the error correction procedure: the first round acts on bold
links and sites (e.g., the region delimited by the dashed line) the second round acts on the light-colored links and sites and the 8 external links
attached to them (e.g., the regions delimited by dotted lines). The blue-shaded region is the patch of the 2D lattice where one-bit flip error can
occur and be corrected. c The structure of the relevant region for one round of the error correction procedure.

Fig. 9 Syndrome outcomes for error correction with Gauss’s law in 2D. a Syndrome measurements outcomes and corresponding error
location for the 12 stabilizers used on one complete plaquette. The labeling conventions follow Fig. 8c. We have excluded outcomes
corresponding to more than one error. b Syndrome measurement outcomes and corresponding error location(s) for the parity check around a
single site. Two or more errors are denoted generically as 2+.
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and we see then that physical states are eigenvectors of

Zx
sZ

y
sZ

x
sþxZ

y
sþyZs (30)

with positive eigenvalue on even sites and negative eigenvalue on
odd sites. As alluded above, this form is reminiscent of the
stabilizer formalism.
The error correcting procedure proceeds as follow: (1) we first

partition the full lattice into square plaquettes and their
neighboring links and proceed in two rounds by first considering
the plaquettes indicated with bold colors in Fig. 8b (see e.g., the
one indicated by the dashed line) and in the second round we
consider the second half of the plaquettes denoted with light
colors (for the highlighted plaquette, these correspond to those
indicated by dotted lines); (2) for each individual plaquette we
perform a sequence of parity checks. Before describing these, note
that we require an additional qubit for every pair of links denoted
as a blue curved line in the diagrams of Fig. 8c. These qubits are
used to store the parity of the two links they touch, for instance

Zx
ð1;0ÞZ

y
ð1;0Þ Φj i ¼ ZA10 Φj i; (31)

where with Φj i we denote the full state. This can be achieved by
simply applying two CNOT gates with control on the links and
target on the ancillary qubit initially set in 0j i. Then, whenever we
modify the state of a link, we correspondingly update the state of
the ancilla by applying another CNOT. These are CNOT operations
between phase-flip encoded qubits and can be done transversally.
At this point three separate parity checks are performed on each
site participating in the plaquette and its four connected links.
Starting from the site (0, 0) on the bottom left, we have the
stabilizers

Pað0;0Þ ¼ Zy
ð0;0ÞZ

x
ð0;1ÞZA00

Pbð0;0Þ ¼ Zy
ð0;0ÞZ

x
ð0;1ÞZ

y
ð1;0ÞZ

x
ð0;0ÞZð0;0Þ

Pcð0;0Þ ¼ ZA00Z
y
ð1;0ÞZ

x
ð0;0ÞZð0;0Þ;

(32)

where Z(0, 0) is the operator acting on the qubit at the site. The
parity check table for one site is reported in Fig. 9b, together with
the possible error location. We can see that only 4 outcomes
correspond to either one error or no errors. In the following
discussion on the complete plaquette we restrict our attention to
these situations only. Note however that errors on the ancillas As
can be uniquely determined by only stabilizer measurements on
sites and we could therefore detect and fix an arbitrary number of
them.
We will use the same convention for all the other sites and take

Pas to be the weight 3 stabilizer between the ancilla As and the two
links connected to it, Pbs the weight 5 stabilizer from the Gauss’ law
operator Eq. (30), and Pcs the weight 4 stabilizer obtained applying
Gauss’ law to the ancilla As, the two links not connected to it, and
the site. Accounting for the difference between the correct
eigenspace of the Gauss’law stabilizer for even (fermionic) and
odd (anti-fermionic) sites, the parity check table for a complete
plaquette is reported in Fig. 9a. Note that the last four syndrome
outcomes do not allow to uniquely localize the error as it could

have happened on either the site or the external link opposite to
the location of the ancilla As. Similarly to the construction
described above for the one dimensional case, this ambiguity
can be completely resolved by measuring one stabilizer on the
neighboring plaquettes. In particular, under the assumption that
only one error can occur in the shaded area in Fig. 8b during the
two rounds of check, it is enough to measure the Pa stabilizers on
the four highligthed sites. For completeness, we report the full
syndrome measurement table required to distinguish these cases
in Fig. 10.
The extended 2D scheme presented here uses only standard

stabilizer measurements over phase-flip encoded qubits and can
thus be implemented in a fault-tolerant way using similar
techniques to those discussed in the 1D case. The main non-
standard component of the scheme is the presence of the ancillae
As which do not store the state of another qubit but the parity of a
pair. The initial logical state can be initialized in a straightforward
way by starting the system in a physical product state and making
sure that any change performed to the state of the links
connected to a given ancilla are also applied to the latter. For
example, when implementing a hopping term which changes the
flux on one of the links, the same change has to be enacted on the
ancilla touching that link before continuing. In the Z2 case these
extended operations can be achieved with just Clifford gates as
they correspond simply to doubling the number of CNOT
required.
The total qubit count for a square system with 4NxNy sites and

8NxNy links using a standard [5, 1, 3] code, and neglecting ancillae
required for the stabilizer measurements, would be 60NxNy while
the scheme proposed in this work requires only 48NxNy qubits.
Similarly to the 1D case discussed in previous sections, the
proposed mapping has the additional benefit of allowing simpler
implementations of transversal operations. The savings afforded
by this scheme can be improved in a similar way as what we did
for the one-dimensional case: if one can tolerate a single fault in a
larger region than the one depicted in Fig. 8a, then some of the
ancilla registers As could be removed. For instance, if one extends
the region where we can tolerate one error to enclose the four
plaquettes neighboring a specific plaquette, a fault-tolerant
scheme can be devised using only half of the As registers.
The present discussion of the 2D case can serve as a guideline

to design similar error correction codes for higher dimensional
geometries by adding additional ancilla registers to store the
parity of subsets of links. Finally, extensions of the present scheme
to ZN or to U(1) with larger flux cutoffs could be constructed in
principle using the same unary encoding map proposed for the
one-dimensional case.

DISCUSSION
Error correction involves extending the original Hilbert space of
the system to a larger one and endowing the larger Hilbert space
with local symmetries that define the codespace. Stabilizers of the
codespace are in effect Gauss’ law operators of that symmetry. We

Fig. 10 Error localization for 2D Abelian LGT. Full parity check outcomes are required to uniquely localize the errors on sites or external links
opposite to the location of the As ancillas obtained using four additional Pa stabilizer measurement on neighboring sites.
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have outlined a simple fault-tolerant algorithm which exploits
local symmetries to reduce the space requirements for performing
error correction on Z2 or U(1) LGT systems with a flux cutoff of 1.
The logical qubits were concatenated within a phase flip code to
attain fault tolerance since phase flip errors commute with the
Gauss’ law of these theories.
As we have primarily investigated 1+1 dimensional systems

with a flux cutoff of 1, we outline the difficulties one encounters
when attempting to generalize these procedures to arbitrary
dimensions and flux cutoffs.
We first note that for further levels of concatenation, our

techniques incorporating Gauss’s law can only be applied at the
highest logical level where the bit-flip encoding is implemented
instead of within every other level of the concatenation. Our
approaches can conceivably be used to suppress simulation errors
resulting from the approximation of the true time-evolution via
methods such as Trotterization, but the impact of our approach on
these errors is left for future work as not all them will lead to
violations of Gauss’s law.
For arbitrary flux cutoffs and with non-dynamical matter fields

on the sites, the classical CNOT gates in Fig. 5b must be replaced
with a classically controlled version of the Ŵs operation described
in “Integrating the repetition code with Gauss’ law”. These are
controlled on the state of an appropriate site qubit and can be
implemented with adder circuits such as those described in
refs. 16,33. A fault-tolerant adder will however require non-Clifford
operations for a binary integer encoding. In principle, these can be
applied using standard techniques like state injection34 even with
our logical encoding. A more scalable solution however is to
instead use a unary integer encoding, for which a fault-tolerant
incrementer can be implemented using only Clifford gates. The
more efficient construction relying on ancilla qubits to compute
the XOR between a site and a link variable shown in Fig. 4b can
also be implemented in a straightforward way when using unary
encoding. It has been shown recently that in the context of
dynamical simulations, the cutoff only grows as polylogð1=εÞ in
many physical situations35 for a fixed error ε. Thus the scaling in
the number of qubits needed for integrating our error correction
procedures with quantum simulation of such systems in a unary
encoding is more optimal than the naive expectation of linear in
the cutoff. However, existing unary encodings require non-
stabilizer codes, so constructing generalized unary encodings
which are stabilizer codes and exploring how the constructions
given in Fig. 6 generalize to this setting is currently under
investigation.
As discussed in “Integrating the repetition code with Gauss’

law”, the construction proposed here for the 1D case using an
alternating encoding with two qubits per even link and one qubit
per odd link requires 9N qubits (excluding ancillas) for the theory
with non-dynamical fermions and for pure gauge theory. This
improvement in space complexity can also be extended to
accommodate dynamical fermions by using Gauss’ law to fix
errors on the sites and requires 15N qubits, excluding ancillas. The
2D scheme presented in “Extension to two dimensions” allows for
an even more compact encoding where only 48NxNy qubits are
required in the dynamical case and 36NxNy for the pure gauge
case for a lattice with 8NxNy links and 4NxNy sites. Such costs
cannot be attained from error-correcting individual qubits only.
Moreover, while we considered only local Gauss’s law checks,
examining the links coming in and out of larger spatial regions can
be used identify errors of Pauli weight more than 2. It would be
interesting to investigate how the present constructions can be
generalized to increase the distance of the effective bit-flip code
that LGTs provide via Gauss’s law. We also note that when
multiple logical qubits are encoded together, an even lower
physical-to-logical qubit ratio is achievable31,32. The question of
whether more efficient encodings could be found by following a
more holistic approach as opposed to those using only Gauss’ law

on local degrees of freedom like sites, links, and plaquettes is left
for future work.
Most importantly, we do not claim to encode the full

continuous gauge group, as this would violate the fact that finite
dimensional quantum systems which correct erasure have no
continuous symmetries but only a discrete subgroup thereof36. As
such, we only encode the U(1) symmetry group with a finite cutoff
approximation. The construction of error-correcting codes analo-
gous to the ones presented here for other structure groups will
therefore need to be tailored to their admissible discrete
subgroups.
We make the final observation that the loop string hadron

formalism allows the diagonalization of Gauss’ law for non-abelian
gauge theories, converting them into analogs of those in abelian
gauge theories17,37. It is expected that this will be an important
step in extending these algorithms to more complex theories
where additional commuting constraints are needed.
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