
Mathematics and Computers in Simulation 230 (2025) 193–206 

A
0
(

Contents lists available at ScienceDirect

Mathematics and Computers in Simulation

journal homepage: www.elsevier.com/locate/matcom

Original articles

A parsimonious dynamic mixture for heavy-tailed distributions✩

Marco Bee
Department of Economics and Management, University of Trento, Italy

A R T I C L E I N F O

Keywords:
Dynamic mixtures
Exponential distribution
Noisy cross-entropy
Weight function

A B S T R A C T

Dynamic mixture distributions are convenient models for highly skewed and heavy-tailed data.
However, estimation has proved to be challenging and computationally expensive. To address
this issue, we develop a more parsimonious model, based on a one-parameter weight function
given by the exponential cumulative distribution function. Parameter estimation is carried out
via maximum likelihood, approximate maximum likelihood and noisy cross-entropy. Simulation
experiments and real-data analyses suggest that approximate maximum likelihood is the best
method in terms of RMSE, albeit at a high computational cost. With respect to the version of
the dynamic mixture with weight equal to the two-parameter Cauchy cumulative distribution
function, the reduced flexibility of the present model is more than compensated by better
statistical and computational properties.

1. Introduction

Mixture distributions with dynamic weights, introduced by [1], are very flexible models for skewed and heavy-tailed data. The
density function is defined as follows:

𝑓 (𝑥;𝜽) = (1 − 𝑝(𝑥; 𝜸0))𝑓1(𝑥; 𝜸1) + 𝑝(𝑥; 𝜸0)𝑓2(𝑥; 𝜸2)
𝑍

, 𝑥 ∈ R+, (1)

where 𝑝(𝑥; 𝜸0) ∶ R → [0, 1] is a non-decreasing function, 𝑓1(𝑥; 𝜸1) and 𝑓2(𝑥; 𝜸2) are densities of absolutely continuous random variables
and 𝑍 is a normalizing constant. The vectors 𝜸𝑖 (𝑖 = 0, 1, 2) contain the parameters of the weight function 𝑝(𝑥; 𝜸0), of the body density
𝑓1(𝑥; 𝜸1) and of the tail density 𝑓2(𝑥; 𝜸2), respectively; 𝜽 = (𝜸0, 𝜸1, 𝜸2)′ ∈ 𝜣 ⊂ R𝑑 is the vector of all parameters. A natural choice
for 𝑝(𝑥; 𝜸0) is the cumulative distribution function (cdf) of some absolutely continuous random variable. Whereas (1) apparently
resembles the density of ‘‘static’’ finite mixture distributions (e.g., 2), the difference between the two families is non-negligible, and
has relevant consequences on estimation.

Models for skewed and heavy-tailed data have long been investigated in actuarial mathematics and statistical finance: see [3,4]
for overviews related to insurance analytics and operational risk measurement. More specifically, spliced distributions obtained by
joining a lognormal and a Pareto model have been proposed by [5,6]; in operational risk, quantile-based distributions, such as the
g-and-h, have been advocated for datasets with large skewness and/or kurtosis (7; 8; 9).

With respect to spliced distributions, dynamic mixtures (1) have two major advantages. First, no continuity and differentiability
constraints are necessary, since the density (1) is continuous and differentiable, as long as the component densities are. Second,
there is no threshold separating the two distributions. Since setting or estimating such a cut-off point is a non-trivial issue (see,
e.g. 10, 11 and 12 for some methods aimed at identifying the threshold in a lognormal-Pareto setup), often handled in a somewhat
subjective manner, (1) can be the building block of a more rigorous, fully unsupervised, approach. From this point of view, our
method is similar in spirit to the technique devised by [13,14], which has recently been used by [15] for modeling cyber risk.

✩ The FitDynMix R package, available on CRAN, contains codes for simulation and estimation of the lognormal-GPD dynamic mixture.
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Despite their attractive modeling properties, the usefulness of dynamic mixtures in practical applications has been limited by
enerally challenging parameter estimation since, regardless of the specification of the weight function and of the component
istributions, the normalizing constant 𝑍 cannot be evaluated in closed form.

As far as we know, all versions of (1) studied in the literature are based on the Cauchy cdf for the weight function 𝑝(𝑥; 𝜸0),
n some two-parameter density 𝑓1(𝑥; 𝜸1) for the body and on the zero-location Generalized Pareto distribution (GPD) for the
ail density 𝑓2(𝑥; 𝜸2). In this setup, two approaches to estimation have been proposed. [1] approximate the normalizing constant
ia quadrature methods and maximize numerically the resulting likelihood function. [16] uses approximate maximum likelihood

(AMLE), a computer-intensive method which only requires the ability to simulate the data-generating process. Simulation-based
comparisons suggest that the latter approach yields better results. However, while avoiding the evaluation of the likelihood, it is
computationally demanding.

Since estimation is complicated, it is worth considering whether the model can be simplified, possibly by reducing the number
of parameters to be estimated: the rationale is that it may be preferable to devise a more parsimonious model, even at the price of
giving up some flexibility, with the goal of obtaining better parameter estimates.

According to this idea, we need to assess how the complexity of the model can be reduced. As said above, (1) is typically based
on a size distribution for the body, such as the Weibull or the lognormal, and a GPD for the tail. The latter is motivated by theoretical
justifications grounded in Extreme Value Theory (EVT): hence, it is not sensible to replace it with a simpler distribution. As of the
former, any size distribution could in principle be used, but all such models are (at least) two-parameter distributions. Hence, the
most reasonable way of setting up a model with fewer parameters should be focused on the weight function.

There are two additional reasons supporting this approach. First, [1,16] find that estimating the weight function is by far more
complicated than estimating the two mixture distributions. Second, even though the estimates of the weight parameters are poor,
usually the overall fit of the distribution remains acceptable; both [1,16] note that there seem to be ‘‘compensation effects’’ between
he parameters, so that the reduced flexibility of 𝑝(𝑥; 𝜸0) is likely to be balanced by adjustments of the densities parameters.

The novelty of this paper is twofold. First, building on the preceding remarks, we propose a parsimonious model aimed at
improving parameter estimation without causing any major goodness-of-fit reduction. Specifically, we develop a five-parameter
version of the lognormal-GPD dynamic mixture, where the weight function is the exponential cdf. Second, we introduce a new
estimation approach, based on the noisy cross-entropy method, and compare it to numerical maximum likelihood and AMLE, in
terms of both statistical and computational efficiency. The analysis is carried out using simulation experiments and real data.

In addition to the lognormal-GPD, we employ the Weibull-GPD mixture. The Weibull is chosen as a possible alternative to the
ognormal because it has a different tail behavior (17, tables 3.4.2 to 3.4.4). Another reasonable replacement of the lognormal would
e the Gamma, but the Gamma and the lognormal are both in the Maximum Domain of Attraction of the Gumbel distribution, hence

we conjecture that the results for the Gamma-GPD would be quite similar to the lognormal-GPD.
The rest of the paper is organized as follows. In Section 2 we detail the dynamic mixture model and the estimation methods.

In Section 3 we describe the simulation experiments and their outcomes. In Section 4 we present two real-data examples related to
operational risk and non-life insurance. Finally, in Section 5 we discuss the main findings. Appendix reports simulation results for
the Weibull-GPD mixture.

2. Model definition and estimation methods

In (1), the weight function 𝑝(𝑥; 𝜸0) is the cdf of an absolutely continuous random variable, so that larger values of 𝑥 are sampled
with larger probabilities by the second component distribution. 𝑝(𝑥; 𝜸0) can be defined either on R or on R+, and the corresponding
difference is observed mainly near the origin: in the former case, even when 𝑥 → 0, the weight of 𝑓2(𝑥; 𝜸1) cannot be exactly 0.
On the other hand, the right-tail behavior is determined by the tail distribution in both cases, since lim𝑥→∞ 𝑝(𝑥; 𝜸0) = 1, so that
lim𝑥→∞ 𝑓 (𝑥;𝜽) = lim𝑥→∞ 𝑓2(𝑥; 𝜸2).

With parsimony in mind, we aim at reducing the number of parameters to be estimated. As regards 𝑓1 and 𝑓2, implementing
his plan is quite difficult: since the former is supposed to fit well the body of the data, some two-parameter size distribution (see,
.g., 18) should be used. As of the latter, it should be an appropriate model for the tail; thus, well-known EVT theoretical results [17]

strongly suggest to use the GPD.
In existing implementations, the weight function is defined on the whole real line. In particular, both [1,16] employ the cdf of

the Cauchy distribution, which is a location-scale family with parameters 𝜇𝑐 and 𝜏:

𝑝(𝑥;𝜇𝑐 , 𝜏) = 1
2
+ 1

𝜋
ar ct an

(𝑥 − 𝜇𝑐
𝜏

)

, 𝑥 ∈ R, 𝜇𝑐 ∈ R, 𝜏 ∈ R+. (2)

Unfortunately, both papers find that estimating the Cauchy parameters is difficult, especially as concerns 𝜏. On the other hand,
imulation experiments suggest that even poor estimates of 𝜇𝑐 and 𝜏 do not have a major impact on the goodness of fit of the
istribution. Hence, we conjecture that the decrease in flexibility caused by the use of a one-parameter weight function will be
ore than compensated, in terms of goodness-of-fit, by better estimates of the remaining parameters.

Thus, we propose a one-parameter weight function, given by the exponential cdf:

𝑝(𝑥; 𝜆) = (1 − 𝑒−𝑥∕𝜆)1𝑥≥0, 𝜆 ∈ R+. (3)

Accordingly, (1) can be rewritten as
(1 − 𝑝(𝑥; 𝜆))𝑓1(𝑥;𝜇 , 𝜎2) + 𝑝(𝑥; 𝜆)𝑓2(𝑥; 𝜉 , 𝛽) +
𝑓 (𝑥;𝜽) =

𝑍
, 𝑥 ∈ R , (4)
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Fig. 1. Cauchy and exponential weight functions.

where 𝑓1(𝑥;𝜇 , 𝜎2) and 𝑓2(𝑥; 𝜉 , 𝛽) are the pdfs of 𝑋1 ∼ Logn(𝜇 , 𝜎2) and 𝑋2 ∼ GPD(𝜉 , 0, 𝛽), respectively. As of the normalizing constant,
it is easy to show that is given by

𝑍 =∫

∞

0

[

1
√

2𝜋 𝜎 𝑥
𝑒−

1
2

(

log 𝑥−𝜇
𝜎

)2

− 1
𝛽

(

1 + 𝜉 𝑥
𝛽

)−1∕𝜉−1
]

𝑒−𝜆𝑥𝑑 𝑥. (5)

The main difference between a one- and a two-parameter weight function based on a location-scale family is the behavior near
he origin, as the latter yields dynamic mixtures where the second component has a non-negligible weight, even when 𝑥 → 0.
owever, the exponential-based weight function can approximate such a setup, since, for large values of 𝜆, the cdf is very steep
nd quickly reaches 1. To illustrate this, Fig. 1 shows the weight functions (2) and (3). Denoting with 𝑋𝜇𝑐 ,𝜏

𝑐 and 𝑋𝜆
𝑒 the Cauchy

(𝜇𝑐 , 𝜏) and the exponential (𝜆) distributions, respectively, and recalling that 𝑃 (𝑋𝜇𝑐 ,𝜏
𝑐 ≤ 𝜇𝑐 ) = 0.5, to determine an appropriate setup

for the comparison we use a root-finding procedure to find 𝜆∗(𝜇𝑐 ) ∶ 𝑃 (𝑋𝜆∗(𝜇𝑐 )
𝑒 ≤ 𝜇𝑐 ) = 0.5, so that a weight equal to 0.5 is associated

to 𝑥 = 𝜇𝑐 in both cases. Equivalently, with both weight functions observations smaller than 𝜇𝑐 are more likely to be lognormal,
whereas observations larger than 𝜇𝑐 are more likely to be GPD. The three values of 𝜇𝑐 used in Fig. 1 are 𝜇𝑐 ∈ {1, 2, 3}, with 𝜏 = 1;
the corresponding numerical values of 𝜆 in the exponential weight function are 𝜆∗(𝜇𝑐 ) ∈ {0.693, 0.347, 0.231}.

In these specific parameter combinations, the functions are comparable, even for small 𝑥. Of course, the Cauchy weight function
epends also on 𝜏: when it is larger, the weight function is flatter and converges to 1 more slowly.

Fig. 2 displays the corresponding densities, in a setup where the remaining parameters are 𝜇 = 0, 𝜎 = 1, 𝜉 = 0.25, 𝛽 = 3.5. Again,
he difference is negligible: both the shape of the density and the height of the mode are essentially the same. As expected, the

densities become indistinguishable as 𝑥 → ∞.
The dynamic mixture (1) is based on three parametric assumptions, concerning the distribution of the weight, the body and

he tail of the distribution. An alternative choice for the body is the Weibull distribution originally proposed by [1]. Since we will
mploy it in the next sections, we recall here its density and normalizing constant:

𝑓 (𝑥;𝜽) = (1 − 𝑝(𝑥; 𝜆))𝑓1(𝑥; 𝛼 , 𝜎𝑤) + 𝑝(𝑥; 𝜆)𝑓2(𝑥; 𝜉 , 𝛽)
𝑍

, 𝑥 ∈ R+, (6)

𝑍 = 1 + 1
𝜋 ∫

∞

0

[

1
𝛽

(

1 + 𝜉 𝑥
𝛽

)−1∕𝜉−1
− 𝛼 𝜎𝛼𝑤𝑥𝛼−1𝑒−(𝜎𝑤𝑥)𝛼

]

𝑒−𝜆𝑥𝑑 𝑥,

where 𝑓1(𝑥; 𝛼 , 𝜎𝑤) and 𝑓2(𝑥; 𝜉 , 𝛽) are the pdfs of 𝑋1 ∼ Weib(𝛼 , 𝜎𝑤) and 𝑋2 ∼ GPD(𝜉 , 0, 𝛽), respectively; 𝛼 and 𝜎𝑤 are the shape and
scale parameter of the Weibull, respectively.

2.1. Estimation

Broadly speaking, the methods developed in the literature for estimation of a dynamic mixture can be grouped into two
ategories: maximization of a likelihood computed via numerical evaluation of the integral (5) and simulation-based approaches.
195 
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Fig. 2. Densities based on Cauchy and exponential weights.

2.1.1. Maximum likelihood
The exact likelihood function is not available, but an approximation can be computed numerically, by first evaluating the integral

in the normalizing constant via quadrature methods and then plugging it into the likelihood function derived from (4). This can be
finally maximized using standard optimization routines.

The main difficulty with this approach is the first step. We follow the advice of [1], who rewrite the integral on [0,∞) as a
sum of 𝑛̃ integrals on disjoint intervals [𝑛 − 1, 𝑛], 𝑛 ∈ N, so that 𝐼𝑛̃ =

∑𝑛̃
𝑖=1 𝐼[𝑖−1,𝑖]. Since the integrand is a monotonically decreasing

function, a natural stopping rule is 𝑛̃ = min 𝑛 ∶ 𝐼[𝑛−1,𝑛] < 𝜖𝐼 . However, even for ‘‘small’’ values of 𝜖𝐼 , 𝐼𝑛̃ has a negative bias, which
impacts estimation precision: see [1,16] for details.

2.1.2. Approximate maximum likelihood
Approximate Maximum Likelihood Estimation (AMLE) is a simulation-based approach that only requires the ability of simulating

the distribution of interest. Hence, neither the log-likelihood function nor the normalizing constant have to be evaluated.
From the algorithmic point of view, AMLE [19] is analogous to Approximate Bayesian Computation (ABC), with a simple

estriction that makes it a frequentist approach. A step by step description is as follows.

Algorithm 1 (AMLE).

1. Obtain a sample 𝜽∗𝜖 = (𝜽∗𝜖 ,1,… ,𝜽∗𝜖 ,𝓁)′ from the approximate posterior 𝜋̂𝜖(𝜽|𝒙); 𝓁 is commonly called ABC sample size;
2. Use this sample to construct a non-parametric estimator 𝜙̂ of 𝜋̂𝜖(𝜽|𝒙);
3. Compute the maximum of 𝜙̂, 𝜽̃𝓁,𝜖 . This is an approximation of the MLE 𝜽̂.

To simulate the ABC sample mentioned at Step 1 of Algorithm 1, one exploits the ABC rejection algorithm below [20].

Algorithm 2 (ABC Rejection Algorithm).

1. Simulate 𝜽∗ from the uniform prior 𝜋(⋅);
2. Generate 𝒛 = (𝑧1,… , 𝑧𝑛)′ from 𝑓 (⋅|𝜽∗);
3. Accept 𝜽∗ with probability proportional to a normalized Markov kernel 𝐾𝜖(𝒙|𝒛); otherwise, return to Step 1.

In Bayesian ABC implementations, a non-uniform prior is used at Step 1 of Algorithm 2; the uniform prior employed here is
he reason why AMLE is a frequentist approach. Under regularity conditions, the AMLE approximation converges pointwise to the

posterior distribution. Furthermore, if 𝜋̂𝜖(⋅|𝒙) is equicontinuous, the mode of 𝜋̂𝜖(⋅|𝒙) converges to the mode of the likelihood 𝜋(⋅|𝒙);
see [19] for details.

Analogously to [16], who used AMLE for the estimation of a dynamic mixture with Cauchy-based weights, the Markov kernel
is defined on the space of the true and simulated data:

𝐾𝜖(𝒙|𝒛) ∝
{

1 if 𝜌(𝑛
0 ,

𝑛
𝜽) < 𝜖 ,
0 otherwise,
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where 𝜌 is the Cramér-von Mises distance, and 𝑛
0 and 𝑛

𝜽 are the distributions of 𝒙 and of 𝒛|𝜽, respectively. Since they are unknown,
in practice they are replaced by the corresponding empirical counterparts.

The simulation results in [16] suggest that AMLE is clearly preferable to MLE in terms of statistical efficiency. However, the
rice to pay is an heavy computational burden: with a sample size 𝑛 = 500, AMLE needs about 55 min, whereas MLE only takes
2 s. Considering that the standard errors of the estimators must be obtained via bootstrap techniques, AMLE’s computing times are
 major issue.

2.1.3. Noisy cross-entropy
Historically, the cross-entropy (CE) method was introduced by Rubinstein [21] in an importance sampling setup. Here we focus

on the version of CE for continuous optimization; see [22].
The approach is based on two steps [23]. First, the problem is randomized, i.e. the parameters are treated as random variables; we

enote the family of instrumental pdfs of the parameter vector 𝜽 by {𝑓𝜽(⋅; 𝒖); 𝒖 ∈  ⊂ R𝑘}. In a second step, the actual optimization
task is linked to the Associated Stochastic Program (ASP)

𝑠(𝛾) = 𝑃𝒖(𝓁(𝜽) ≥ 𝛾) = E𝒖(𝟏{𝓁(𝜽)≥𝛾}), (7)

where 𝛾 is an unknown parameter and 𝓁 is the target function. The probability 𝑠(𝛾) is now estimated for some 𝛾 (𝛾∗, say) close to the
aximum of 𝓁: if 𝛾∗ is large enough, {𝓁(𝜽) ≥ 𝛾∗} is a rare event. This connects the CE method for optimization and for estimation

of rare-events probabilities.
On the theoretical side, if 𝓁 is a real-valued function on a finite set, it can be shown that 𝑓𝜽(⋅) converges to the Dirac delta

density centered at 𝜽∗, where 𝜽∗ is the maximizer of 𝓁 [22, p. 132]. Equivalently, the sequence 𝜽̂(𝑡) converges to 𝜽∗ with probability
1, provided the initial variance of the distribution of 𝜽 is ‘‘sufficiently large’’, so that the whole parameter space is explored.

A generalization called noisy CE [22, Chap. 6] deals with cases where the objective function is not in closed form. In particular,
if an unbiased estimate of 𝓁(𝜽) is obtained via simulation, the noise is Monte Carlo sampling variability.

In the present setup, an unbiased estimate of the normalizing constant can be computed by estimating the integral 𝐼 as follows:

1 Simulate 𝑦1,… , 𝑦𝐵 from an instrumental random variable 𝑌 , where 𝐵 is the number of replications. The tail of the
instrumental distribution cannot be lighter than the function to be integrated, hence we take the GPD: 𝑌 ∼ 𝐺 𝑃 𝐷(𝛽𝐼 , 𝜉𝐼 ).

2 For all 𝑦𝑖, 𝑖 = 1,… , 𝐵, simulated at Step 1, evaluate the integrand in (5):

ℎ̂𝑖 =

[

1
√

2𝜋 𝜎 𝑦𝑖
𝑒−

1
2

( log 𝑦𝑖−𝜇
𝜎

)2

− 1
𝛽

(

1 + 𝜉 𝑦𝑖
𝛽

)−1∕𝜉−1
]

𝑒−𝜆𝑦𝑖 .

3 Compute 𝐼𝑀 𝐶 = 1
𝐵
∑𝐵

𝑖=1
(

ℎ̂𝑖∕𝑓𝐺 𝑃 𝐷(𝑥𝑖)
)

, where 𝑓𝐺 𝑃 𝐷 is the density of 𝑌 .

Even though basic properties of the Monte Carlo method (e.g., 24) imply that E(𝐼𝑀 𝐶 ) = 𝐼 , the log-likelihood is a non-linear function
of 𝐼 ; hence, it cannot be estimated in an unbiased manner by simply replacing 𝐼 with 𝐼𝑀 𝐶 . Nevertheless, under regularity conditions,
the estimator obtained by maximizing the simulated likelihood is asymptotically equivalent to the MLE. In particular, consistency
and asymptotic efficiency have been proved by [25].

In light of the previous remarks, the following pseudo-code describes the continuous noisy CE optimization procedure.

Algorithm 3 (Cross-Entropy for Continuous Optimization).
1 Set a starting value 𝒗(0) for the parameters of the instrumental distributions, choose numerical values for the smoothing

parameter 𝛼 ∈ [0, 1], the quantile level 1 − 𝜌 (𝜌 ∈ [0, 1]) and the number of simulated parameter values, 𝑀 .
2 Set 𝑡 = 1 and repeat steps (a)–(e) below.

(a) Simulate a sample 𝜽(𝑡)1 ,… ,𝜽(𝑡)𝑀 from the instrumental density 𝑓𝒗(⋅; 𝒗(𝑡−1)). Compute 𝓁(𝜽(𝑡)1 ),… ,𝓁(𝜽(𝑡)𝑀 ), i.e. evaluate the
log-likelihood.

(b) Compute the sample (1 − 𝜌)-quantile 𝛾̂𝑡 of 𝓁(𝜽(𝑡)1 ),… ,𝓁(𝜽(𝑡)𝑀 ).
(c) Use the same sample to solve the ASP (7). Call the solution 𝒗(𝑡).
(d) Smooth out 𝒗(𝑡): 𝒗(𝑡) = 𝛼𝒗(𝑡) + (1 − 𝛼)𝒗(𝑡−1).
(e) If a stopping criterion is satisfied, stop. Else, set 𝑡 = 𝑡 + 1 and go back to Step (a).

As can be seen, the implementation depends on some inputs. The smoothing parameter 𝛼 at Step 2(d) governs the speed of
onvergence: as it gets close to 1, the algorithm converges faster, at the cost of increasing the risk of identifying a local optimum [22,

p. 189]. The quantile level 1 − 𝜌 is related to the rarity of the event {𝓁(𝜽) ≥ 𝛾∗} (see (7)): a smaller 𝜌, i.e., a higher quantile level,
increases the rarity.

To set the numerical values of these parameters, a guideline is usually given by previous applications in the literature, possibly
integrated by small pilot simulations. A natural choice for 𝜽(0) is the vector of MLEs. As for the smoothing parameter 𝛼 and the
uantile level 1 − 𝜌, [22] suggest 𝛼 = 0.5 and 𝜌 ∈ [0.01, 0.1]. Some experiments based on these two values lead us to use 𝛼 = 0.5 and
197 
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Table 1
Case 𝜉 = 0.25. Bias and RMSE of the estimators. True parameter values: 𝜆 = 1, 𝜇 = 0, 𝜎 = 0.5, 𝜉 = 0.25,
𝛽 = 3.5. RMSEs in bold identify the minimum-RMSE estimator of each parameter across the three methods.
𝑛 𝜆 𝜇 𝜎 𝜉 𝛽

100

Bias
AMLE 0.325 0.029 0.004 0.033 −0.249
CE −0.163 −0.042 −0.036 −0.052 0.396
MLE 0.060 −0.027 −0.018 −0.064 0.437

RMSE
AMLE 0.675 0.163 0.106 0.093 0.598
CE 0.411 0.213 0.119 0.179 1.065
MLE 0.677 0.229 0.170 0.164 1.000

500

Bias
AMLE 0.182 0.014 −0.009 0.053 −0.303
CE −0.179 −0.047 −0.029 −0.022 0.190
MLE 0.022 −0.015 −0.011 −0.025 0.155

RMSE
AMLE 0.091 0.082 0.072 0.091 0.456
CE 0.266 0.086 0.065 0.083 0.489
MLE 0.330 0.095 0.085 0.072 0.449

𝜌 = 0.1, since small perturbations did not have any major impact on the estimates. 𝑀 is set to 500, since larger values did not seem
to improve accuracy.

Furthermore, a decision about the parametric model corresponding to the randomization step, i.e. the density 𝑓𝒗 at Step 2(a),
eeds to be made. The chosen distribution is normal for 𝜇, which is a real number, and lognormal for the remaining parameters,

which are non-negative1, since both distributions yield an explicit solution of the ASP [22, p. 82].
As shown by Rubinstein and Kroese [22, p. 188], the solutions of the ASP are analogous to the MLEs of the instrumental

distributions. Hence, if the instrumental distribution of the 𝑖th parameter is normal, the updating formulas are the mean and variance
f the 𝑖th elements of the samples of 𝜽 such that 𝓁(𝜽) exceeds 𝛾̂𝑡:

𝜇̂𝑖 =

∑

𝑗∶𝓁(𝜽𝑗 )> ̂𝛾𝑡 𝜃𝑖𝑗
∑𝑀

𝑗=1 1{𝓁(𝜽𝑗 )> ̂𝛾𝑡}
; 𝜎̂2𝑖 =

∑

𝑗∶𝓁(𝜽𝑗 )> ̂𝛾𝑡 𝜃2𝑖𝑗
∑𝑀

𝑗=1 1{𝓁(𝜽𝑗 )> ̂𝛾𝑡}
− 𝜇̂2

𝑖 .

Analogously, in the lognormal case, the solutions are the mean and variance of the logarithm of the 𝑖th elements of the samples of
𝜽 such that 𝓁(𝜽) exceeds 𝛾̂𝑡:

𝜇̃𝑖 =

∑

𝑗∶𝓁(𝜽𝑗 )> ̂𝛾𝑡 log 𝜃𝑖𝑗
∑𝑀

𝑗=1 1{𝓁(𝜽𝑗 )> ̂𝛾𝑡}
; 𝜎̃2𝑖 =

∑

𝑗∶𝓁(𝜽𝑗 )> ̂𝛾𝑡 (log 𝜃𝑖𝑗 )2
∑𝑀

𝑗=1 1{𝓁(𝜽𝑗 )> ̂𝛾𝑡}
− 𝜇̃2

𝑖 .

The closed-form solution of the ASP is an appealing feature of the CE method, also because it considerably eases the computational
burden [23, Sect. 2.3].

Various stopping rules have been developed in the noisy optimization case. We use the first criterion proposed by Rubinstein
and Kroese [22, p. 207]:

1. At iteration 𝑡, compute the moving average of order 𝑂 of the sample (1 − 𝜌) quantiles 𝛾̂𝑡.
2. For each 𝑡, compute the minimum 𝐵−

𝑡 and the maximum 𝐵+
𝑡 of the aforementioned moving averages over iterations

𝑡, 𝑡 + 1,… , 𝑡 + 𝑟.
3. If (𝐵+

𝑡 − 𝐵−
𝑡 )∕𝐵

−
𝑡 is smaller than a predefined tolerance 𝜖𝑂, stop; else, set 𝑡 = 𝑡 + 1 and go to Step 1.

In the rest of the paper we employ 𝑂 = 10, 𝑟 = 5 and 𝜖𝑂 = 10−4; if convergence has not been reached in 200 iterations, the
algorithm stops. No theoretical optimality result is available for this stopping rule, but some simulation-based analyses suggest that
no modification of these values significantly improves the properties of the estimators.

3. Simulation experiments

To compare the estimators obtained with the three methods in a finite-sample setup, we perform some simulation experiments.
Specifically, we sample observations from the dynamic mixture (4) with parameters 𝜆 = 1, 𝜇 = 0, 𝜎 = 0.5, 𝜉 ∈ {0.25, 0.5}, 𝛽 = 3.5,
where the two values of 𝜉 correspond to different degrees of tail heaviness. The sample size is 𝑛 ∈ {100, 500}, and the number of
replications is 𝐵 = 200. To simulate the distribution, we employ the algorithm suggested by [1] and implemented in the FitDynMix
R package. The same experiments have been carried out for the Weibull-GPD mixture; see Appendix for details.

Tables 1 and 2 show the bias and RMSE of the estimators when 𝜉 = 0.25 and 𝜉 = 0.5, respectively.
When 𝜉 = 0.25 (Table 1), AMLEs have the smallest RMSE for most parameters; the gain is more significant when 𝑛 = 100 and

for the estimators of the GPD parameters. In the 𝜉 = 0.5 case (Table 2), the advantage of AMLE is clearer, and again especially
oticeable when 𝑛 = 100.

1 In principle, the shape parameter 𝜉 of the GPD can be negative. However, a negative 𝜉 implies a finite right endpoint, which is not reasonable in a
lognormal-GPD mixture.
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Table 2
Case 𝜉 = 0.5. Bias and RMSE of the estimators. True parameter values: 𝜆 = 1, 𝜇 = 0, 𝜎 = 0.5, 𝜉 = 0.5,
𝛽 = 3.5. RMSEs in bold identify the minimum-RMSE estimator of each parameter across the three methods.
𝑛 𝜆 𝜇 𝜎 𝜉 𝛽

100

Bias
AMLE 0.177 0.039 0.013 0.000 −0.119
CE −0.044 −0.065 −0.063 0.218 0.335
MLE 0.011 −0.020 −0.008 0.160 0.706

RMSE
AMLE 0.579 0.168 0.103 0.116 0.744
CE 0.433 0.186 0.131 0.320 1.387
MLE 0.644 0.210 0.169 0.266 1.491

500

Bias
AMLE 0.047 −0.002 −0.000 −0.012 0.031
CE −0.037 −0.067 −0.058 0.272 −0.067
MLE 0.012 −0.0142 −0.010 0.222 0.197

RMSE
AMLE 0.250 0.062 0.057 0.058 0.353
CE 0.227 0.098 0.082 0.288 0.501
MLE 0.334 0.092 0.086 0.237 0.535

A comparison with the Cauchy-based setup is possible by considering the outcomes in [16], where the same simulation
experiments are carried out with the Cauchy weight function. In terms of the RMSE of the AMLE estimators of 𝜇, 𝜎, 𝜉 and 𝛽,
when 𝜉 = 0.25 the results are similar, whereas when 𝜉 = 0.5 the exponential case is slightly better. As of the MLEs, they are mostly
imilar in both parameter configurations. Even though a direct comparison between the estimates of the Cauchy parameters in the
irst case and of the exponential parameter in the second is not entirely justified, it is worth noting that the very large bias and
MSE of the MLEs in the Cauchy case with 𝑛 = 100 and 𝜉 = 0.25 are not observed in the exponential case. Also for AMLE, the
stimate of 𝜆 in the exponential setup has bias and RMSE smaller than the corresponding measures for the estimates of the Cauchy
arameters.

Fig. 3 shows the simulated distributions of the AMLEs with 𝜉 = 0.25 and 𝑛 = 100: despite the rather small sample size, the
istributions are smooth and bell-shaped.

As of the computational burden of the three estimation methods, on a Windows machine with an i7-6700 CPU 3.40 GHz, the
omputing times in seconds, when 𝑛 = 100 and 𝜉 = 0.25, are 6s for MLE, 99 s for CE and 613 s for AMLE. Also from this point of

view, the present model is preferable with respect to the Cauchy-based one, whose computing times are reported in [16].

3.1. A misspecified model

The parametric assumptions underlying (1) are not easy to verify empirically. Whereas the analysis of a mixture based on a
different weight function (Cauchy instead of exponential) has already been performed (16,26) and the GPD tail is justified by strong
theoretical reasons, the lognormal distribution of the body is difficult to assess, and not always justified by theoretical reasons.

iven this premise, it is of interest to study the fit of the lognormal-GPD model when the true 𝑓1 is actually different. According to
his remark, in this section we estimate a lognormal-GPD mixture with data simulated from the Weibull-GPD mixture (6).

The numerical values of the parameters of the weight function and of the GPD are the same used in the previous experiments:
𝜆 = 1, 𝛽 = 3.5, 𝜉 ∈ {0.25, 0.5}; 𝛼 and 𝜎𝑤 are such that the expectation and variance of the Weibull are identical to the corresponding
moments of the lognormal. This amounts to solving for 𝛼 and 𝜎𝑤 the system

⎧

⎪

⎨

⎪

⎩

𝜎𝑤𝛤
(

1 + 1
𝛼

)

= 𝑒𝜇+
𝜎2
2 ,

𝜎2𝑤

[

(

𝛤 (1 + 2
𝛼

)

−
(

𝛤
(

1 + 1
𝛼

))2
]

= (𝑒𝜎2 − 1)𝑒2𝜇+𝜎2 ,

with 𝜇 = 0 and 𝜎 = 0.5. The solution obtained by means of the nleqslv R command is (𝛼 , 𝜎𝑤) = (1.957, 1.278), which are therefore
the numerical values of the parameters employed in the simulation experiments.

Fig. 4 displays the histogram of 500 simulated values from the Weibull-GPD mixture with parameters 𝜆 = 1, 𝛼 = 1.957,
𝑤 = 1.278, 𝜉 = 0.25 and 𝛽 = 3.5, along with the true Weibull-GPD density (dashed) and the lognormal-GPD density estimated
ia CE (continuous)2. The two densities appear quite close to each other, and the estimated density seems to provide a good fit. To

assess more formally the goodness-of-fit of the misspecified distribution, we employ the Kolmogorov–Smirnov (KS) and Anderson–
Darling (AD) test. The 𝑝-values equal to 0.844 and 0.891, respectively, allow us to conclude that the approach seems quite robust
with respect to possible misspecification of 𝑓1.

2 The results obtained via AMLE are very similar and therefore omitted.
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Fig. 3. Simulated distributions of AMLEs in the setup with 𝜉 = 0.25. The dashed vertical lines denote the true parameter values.

4. Empirical analysis

4.1. Operational risk

Operational risk losses are a typical example of skewed and heavy-tailed distributions. Here we analyze losses collected in the
Business Disruption and System Failure (BDSM) business line at the Italian bank Unicredit from 2005 to 2014. The 152 observations
are displayed in Fig. 5. The distribution is skewed, with an heavy right tail: sample skewness and kurtosis are equal to 5.42 and
3.17, respectively.
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Fig. 4. Upper panel: histogram of 500 simulated observations from a Weibull-GPD mixture with parameters 𝜆 = 1, 𝛼 = 1.957, 𝜎 = 1.278, 𝜉 = 0.25 and 𝛽 = 3.5,
ith superimposed the true (Weibull-GPD) and estimated (lognormal-GPD) densities. Lower panel: zoom on the distribution tail.

Fig. 5. Operational risk data.

Tables 3 and 4 display parameter estimates, standard errors and 𝑝-values of the KS and AD test for the lognormal-GPD and the
Weibull-GPD, respectively.

The first notable outcome is that, according to the KS and AD 𝑝-values, the dynamic mixture is always an appropriate model
for the data, regardless of the estimation method and of the parametric model of the body. For comparison purposes, we have also
reported the MLEs and the 𝑝-values of the tests obtained when modeling all the data either with the lognormal or the zero-location
GPD: there is strong evidence that neither distribution is supported by the KS and AD tests.

As of AMLE and CE, the standard errors are similar for 𝜆, AMLE is better at estimating the GPD parameters, and CE is preferable
for the lognormal parameters. MLE is mostly the worst method in terms of variability.

Computing times are negligible for MLE with 𝜖𝐼 = 10−4. On a Windows machine with an i7-6700 CPU @3.40 GHz and 16Gb
RAM, AMLE takes approximately 31 min and CE 167 s.
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Table 3
Lognormal-GPD mixture: parameter estimates, standard errors and 𝑝-value of the KS and AD tests in the
operational risk example.

𝜆 𝜇 𝜎 𝜉 𝛽 KS AD

AMLE 0.320 1.190 0.259 0.610 6.642 0.312 0.239(0.110) (0.18) (0.093) (0.082) (0.665)

CE 0.463 1.046 0.145 0.729 6.705 0.173 0.110(0.149) (0.056) (0.034) (0.116) (0.907)

MLE 0.273 1.110 0.203 0.695 7.519 0.490 0.275(0.370) (0.321) (0.117) (0.132) (1.226)

Lognormal – 1.976 1.144 – – 0.004 < 0.001– (0.093) (0.097) – –

GPD – – – 0.601 7.457
< 0.001 < 0.001– – – (0.119) (0.943)

Table 4
Weibull-GPD mixture: parameter estimates, standard errors and 𝑝-value of the KS and AD tests in the
operational risk example.

𝜆 𝛼 𝜎 𝜉 𝛽 KS AD

AMLE 0.378 3.355 5.760 0.678 6.474 0.401 0.379(0.122) (0.24) (0.471) (0.097) (0.649)

CE 0.396 4.101 6.287 0.649 8.431 0.253 0.295(0.149) (0.056) (0.034) (0.116) (0.907)

Fig. 6. Estimated weight functions with the three methods in the operational risk example.

For the lognormal-GPD, the estimated weight functions are shown in Fig. 6. They are quite similar to each other. In all cases,
bservations larger than 10 are GPD with high probability. Since #{𝑥 ∶ 𝑥 < 10} = 108 and #{𝑥 ∶ 𝑥 ≥ 10} = 44, this suggests that the

body of the distribution is lognormal, but there is a non-negligible GPD tail.
Value-at-Risk estimates at levels 1 − 𝛼 ∈ {0.5, 0.9, 0.95, 0.99, 0.995} are displayed in Table 5. For comparison purposes, the VaR

computed by means of the Peaks-over-Threshold (POT) method has been reported as well. Standard errors are estimated via
non-parametric bootstrap, but are omitted for MLE, since numerical maximization of the likelihood crashed on some bootstrap
samples.

There are a few differences between the estimated VaRs obtained with the three methods, but consider that the standard errors
are quite large, partly as a consequence of the rather limited sample size and the scarcity of tail data; in particular, four observations
re larger than 200, and only two are larger than 300. Hence, it is hard to conclude that the differences are significant. In terms of
ariability, the CE-based VaR seems to be the best one, especially at the highest levels.
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Table 5
Estimated VaR and bootstrap standard errors in the operational risk example.

50% 90% 95% 99% 99.5%

Empirical 4.99 37.18 73.57 274.32 355.25
(0.64) (12.44) (30.08) (88.29) (83.94)

AMLE 4.87 32.06 53.84 163.40 251.38
(0.79) (9.78) (23.69) (155.24) (339.52)

CE 4.15 35.17 64.37 226.85 377.46
(0.87) (6.85) (15.89) (93.57) (192.06)

MLE 4.44 38.07 68.67 235.86 405.68

POT – 39.94 84.153 257.87 380.21
– (12.00) (34.62) (91.33) (319.04)

Table 6
Weibull-GPD. Estimated VaR and bootstrap standard errors in the operational
risk example.

50% 90% 95% 99% 99.5%

AMLE 5.26 34.06 52.17 151.40 234.83
(0.90) (10.56) (23.88) (144.46) (322.81)

CE 5.62 36.66 60.12 219.43 356.93
(1.13) (8.94) (22.06) (152.78) (244.99)

Fig. 7. Estimated Cauchy-based and exponential-based weight functions and corresponding densities in the operational risk example.

Table 6 shows the same risk measures obtained by fitting the Weibull-GPD mixture. The outcomes are analogous to the
lognormal-GPD in Table 5.

Finally, for the lognormal-GPD, Fig. 7 shows the estimated weight functions (upper panel) and densities (lower panel) when
using the Cauchy and exponential weight function, respectively. For the former case, the estimated parameters are taken from Bee
[16, Table 4]. Some difference can be noticed in the estimated weight functions for small values of 𝑥 (less than 10, say), but overall
the densities are very similar, except for the smallest values of 𝑥.

4.2. AON Re Belgium

The dataset analyzed in this section, available in the CASdatasets R package, contains 1823 fire losses collected by the
reinsurance broker AON Re Belgium. The histogram of the data is shown in Fig. 8 where, to improve readability, we have omitted
the 10 observations larger than 8000. The distribution is very skewed, with a maximum loss equal to 190 541, and sample skewness
and kurtosis equal to 33.93 and 1290, respectively.

Point estimates, bootstrap standard errors and 𝑝-values of the KS and AD tests are shown in Table 7.
Similarly to the previous application, the pure lognormal and pure GPD are clearly rejected. However, here also the CE-based

distribution is not accepted. The numerical values of the estimated parameters suggest that this may be due to an inaccurate estimate
of 𝜆, whose CE-based point estimate 𝜆̂𝐶 𝐸 is much larger (and has a larger standard deviation) than both 𝜆̂𝐴𝑀 𝐿𝐸 and 𝜆̂𝐶 𝐸 . When
looking at the standard errors of the estimators, AMLE is the best approach for most parameters.
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Fig. 8. Belgium reinsurance data.

Table 7
Parameter estimates, standard errors and 𝑝-value of the KS and AD tests in the AON Re Belgium
reinsurance example.

𝜆 𝜇 𝜎 𝜉 𝛽 KS AD

AMLE 0.811 1.886 0.783 1.711 5.375 0.360 0.287(0.110) (0.180) (0.093) (0.082) (0.665)

CE 5.234 2.126 0.749 1.479 8.389
< 0.001 < 0.001(1.114) (0.511) (0.097) (0.052) (0.442)

MLE 0.354 1.430 0.757 1.598 8.613 0.643 0.814(0.261) (0.383) (0.347) (0.087) (1.976)

Lognormal – 2.606 1.975 – –
< 0.001 < 0.001– (0.046) (0.041) – –

GPD – – – 1.472 8.955
< 0.001 < 0.001– – – (0.055) (0.434)

The outcomes of the CE method deserve some further comment. The large estimated value of 𝜆 results in a weight function
hat reaches 1 very quickly (see Fig. 9). Equivalently, this implies that almost all observations are GPD with high probability. Two

additional consequences are that such a mixture is not accepted by the KS and AD tests, and the point estimates and standard errors
of 𝛽 and 𝜉 are very close to the corresponding quantities in the pure GPD case. In other words, with the CE method we estimate a
GPD with almost all observations. Since CE maximizes the likelihood, it makes sense that estimates and standard errors are almost
identical to the MLEs of the pure GPD. Hence, the likely reason why the standard errors suggest that the CE method is good at
estimating 𝛽 and 𝜉 is that 𝛽𝐶 𝐸 and 𝜉𝐶 𝐸 use more observations than the corresponding AMLE and MLE estimates. Here it is crucial
to take into account the outcomes of the goodness-of-fit tests, which are the main tool for concluding that CE is not working well
in this case.

The impact of these differences is made clear by Fig. 9. The weight function estimated via CE reaches 1 very quickly, whereas
he other two functions are less steep. In all cases, the majority of the observations are GPD, since 1157 observations (i.e., 63.5%)
re larger than 5.

5. Conclusion

In this paper we have developed a parsimonious dynamic mixture model for skewed and heavy-tailed data. In particular, the
simplification lies in the use of the one-parameter exponential weight function, instead of the two-parameter Cauchy cdf used
y [1,16]. According to the outcomes of the simulation experiments, this way of proceeding results in more precise estimates of all

parameters. Two empirical applications related to operational risk and actuarial losses suggest that the data-generating process is
flexible enough to model skewed and heavy-tailed data. Similarly to the original analysis based on the Cauchy cdf, for which the
AMLE approach was the best one, also in the current setup AMLE outperforms CE and MLE, especially in the empirical applications,
but is computationally more demanding.
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Fig. 9. Estimated weight functions with the three methods in the Belgium reinsurance dataset.

Table A1
Case 𝜉 = 0.25. Bias and RMSE of the Weibull-GPD estimators. True parameter values: 𝜆 = 1, 𝛼 = 1.957,
𝜎 = 1.278, 𝜉 = 0.25, 𝛽 = 3.5. RMSEs in bold identify the minimum-RMSE estimator of each parameter
across the two methods.
𝑛 𝜆 𝛼 𝜎 𝜉 𝛽

100
Bias AMLE 0.294 −0.017 0.010 0.037 −0.188

CE −0.184 −0.026 −0.014 −0.065 0.295

RMSE AMLE 0.614 0.150 0.115 0.098 0.558
CE 0.402 0.231 0.114 0.166 1.037

500
Bias AMLE 0.201 0.021 −0.020 0.042 −0.252

CE −0.209 −0.045 −0.039 −0.012 0.234

RMSE AMLE 0.102 0.097 0.085 0.081 0.402
CE 0.304 0.076 0.077 0.059 0.550

CE performs rather well in the simulation analysis and in the first application, but considerably less well in the reinsurance
example: this may suggest that it is less robust with respect to violations of the parametric assumptions. This issue requires further
investigation.

Finally, to the best of our knowledge, identifiability of dynamic mixtures has never been proved. Hence, on the theoretical side,
his is still an open problem.
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Appendix. Simulation results for the Weibull-GPD case

The simulation experiments of Section 3 have been performed also for the Weibull-GPD distribution, which is the model originally
considered by [1]. The true values of the parameters are 𝜆 = 1, 𝛼 = 1.957, 𝜎 = 1.278, 𝜉 ∈ {0.25, 0.5}, 𝛽 = 3.5, 𝑛 ∈ {100, 500}. The
umber of replications is 𝐵 = 200. The results for AMLE and CE are displayed in Tables A1 and A2.

As can be seen from the tables, the outcomes are quite similar to the corresponding lognormal-GPD results in Tables 1 and 2:
when 𝜉 = 0.5, AMLE is preferable for most parameters, especially for 𝑛 = 100, whereas when 𝜉 = 0.25 the difference is smaller and
here is no clear winner.
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Table A2
Case 𝜉 = 0.5. Bias and RMSE of the Weibull-GPD estimators. True parameter values: 𝜆 = 1, 𝛼 = 1.957,
𝜎 = 1.278, 𝜉 = 0.5, 𝛽 = 3.5. RMSEs in bold identify the minimum-RMSE estimator of each parameter
across the two methods.
𝑛 𝜆 𝛼 𝜎 𝜉 𝛽

100
Bias AMLE 0.157 0.031 0.014 0.020 −0.087

CE −0.055 −0.071 −0.069 0.184 0.377

RMSE AMLE 0.453 0.171 0.116 0.128 0.700
CE 0.459 0.202 0.136 0.299 1.443

500
Bias AMLE 0.047 −0.009 −0.008 −0.008 0.027

CE −0.037 −0.067 −0.058 0.272 −0.067

RMSE AMLE 0.250 0.063 0.060 0.068 0.312
CE 0.218 0.096 0.086 0.274 0.479
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