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for the class of MDS-constructible Ferrers diagrams, without 
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1. Introduction

Let F be a finite field and let 1 ≤ d ≤ n and 1 ≤ k ≤ n2 be integers. Let, moreover, 
Fn×n denote the collection of n × n matrices with coefficients in F . Then the map

Fn×n × Fn×n −→ Z≥0, (A,B) �−→ rk(A−B)

defines a metric on Fn×n. An [n × n, k, d]F rank-metric code is a k-dimensional linear 
subspace C of Fn×n such that d is the minimum rank among the nonzero elements of C. 
Rank-metric codes have a long mathematical history [6,9] and have become very popular 
in the field of algebraic coding theory since the discovery of their applications to network 
coding [18]. Thanks to the work of Delsarte [6], the parameters of an [n ×n, k, d]F rank-
metric code are related by the following Singleton-like Bound:

k ≤ n(n− d + 1). (1)

Codes meeting the last bound with equality are called maximum rank distance codes
(MRDs, for short) and constructions of such codes are known over finite fields and can 
be found in [6,9].

If rank-metric codes allow for codes within the entire matrix space Fn×n, the more 
general Ferrers diagram rank-metric codes are rank-metric codes with prescribed sup-
port. These were introduced in 2009 by Etzion and Silberstein [8] motivated by the 
application of subspace codes in network coding and arise from subspace codes in a fixed 
Schubert cell. The study of Ferrers diagram rank-metric codes has been carried on since 
by various authors [2,3,7,11,13,15,16].

Let [n] = {1, . . . , n} and let D ⊆ [n]2 be a top-right justified Ferrers diagram (cf. 
Definition 2.2) outside of which the elements of the code will have entries equal to 0. A 
[D, k, d]F Ferrers diagram rank-metric code is an [n × n, k, d]F rank-metric code C such 
that if A = (ai,j) ∈ C and (x, y) ∈ [n]2 \ D, then ax,y = 0. Two immediate examples are:

(1) If D = [n]2, then a [D, k, d]F Ferrers diagram rank-metric code is the same as an 
[n × n, k, d]F rank-metric code.

(2) If D = Tn = {(i, j) : i, j ∈ [n] with i ≤ j}, then a [Tn, k, d]F Ferrers diagram rank-
metric code is an [n × n, k, d]F rank-metric code that is contained in the space of 
upper triangular n × n matrices with coefficients over F .

Adding constraints to the support of the matrices in the code clearly influences the 
relation between its intrinsic parameters. In [8], the upper bound on the dimension 
given in (1) is generalized to an explicit upper bound νmin(D, d) taking into account the 
prescribed support D; cf. (6) for the exact value of νmin(D, d). For instance:

(1) If D = [n]2, then νmin(D, d) = n(n − d + 1) recovers the bound in (1).
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(2) If D = Tn, then νmin(D, d) is equal to

νmin(Tn, d) =
n−d+1∑
i=1

i =
(
n− d + 2

2

)
= (n− d + 1)(n− d + 2)

2 .

A [D, νmin(D, d), d]F Ferrers diagram rank-metric code is called a maximum Ferrers dia-
gram code (MFD, for short): Etzion and Silberstein conjectured that these codes exist for 
every choice of d and D, and over every finite field F . This is now known as the Etzion-
Silberstein conjecture and, as of today, it is still open in its full generality. In particular 
and to the best of our knowledge, not even the case of upper triangular matrices has 
been tackled completely. The instances of existing [Tn, νmin(Tn, d), d]F MFD codes that 
are known to us and that do not impose any restriction on the field F are the following:

• The case where d = 1, which consists of all the upper triangular matrices.
• The case where d = 2, for which an MFD code is given by the subspace of upper 

triangular matrices where every diagonal sum is zero.
• The case where d = 3, which is settled by [2, Corollary 3.10].
• The case where d = n − 1, which is given by [2, Theorem 5.3] (for a constructive 

proof see [1, Section 2.4]).

All other cases are settled with the additional assumption that |F | ≥ n − 1, as shown in 
[7]. This is due to the fact that the pair (Tn, d) is MDS-constructible for every d and n; 
cf. Remark 2.13.

In this paper, we fill the gap by providing a constructive proof of the Etzion-Silberstein 
conjecture for the class of MDS-constructible Ferrers diagrams without imposing any 
condition on the field size; cf. Theorem 4.22. We do this by first proving the conjecture for 
the subclass of strictly monotone Ferrers diagrams; cf Theorem 4.10. These are Ferrers 
diagrams that do not allow for two nonempty columns to have the same number of 
elements, and include therefore the upper triangular Ferrers diagrams Tn as a special 
subclass. By adjunction, we also prove the Etzion-Silberstein conjecture for initially 
convex Ferrers diagrams; cf. Definition 4.4.

We conclude this introduction with a short account of our methods. To produce MFD 
codes for strictly monotone Ferrers diagrams, we extend Delsarte-Gabidulin construc-
tions of MRD codes, which are realized through the identification of Fn×n with a skew 
algebra L[σ], where L is an auxiliary cyclic field extension of F of degree n with Galois 
group generated by σ. In Theorem 3.4, for a given finite field F of characteristic p and 
n = pm, we determine a skew algebra representation of the space of matrices supported 
on a Ferrers diagram D ⊆ [n]2, when D is p-monotone; cf. Definition 2.22. The crucial 
properties used are that L has degree pm over F and that σ−id is a nilpotent F -linear en-
domorphism of L. We subsequently employ Theorem 3.4 to prove the Etzion-Silberstein 
conjecture for p-monotone and p-convex Ferrers diagrams over finite fields of character-
istic p and where n is a power of p; cf. Theorem 4.2. For strictly monotone (and thus 
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initially convex) Ferrers diagrams, we are able to move away from the modular case by 
showing that the property of being strictly monotone is preserved by embeddings. Fi-
nally, we further extend our results to the class of MDS-constructible Ferrers diagrams, 
relying on the combinatorial features of their diagonals.

Organization of the paper. In Section 2 we set the notation for the whole paper, prop-
erly define Ferrers diagram codes and state the Etzion-Silberstein conjecture in its full 
generality. Additionally, we define MDS-constructible and monotone Ferrers diagrams 
as well as the class of p-monotone Ferrers diagrams and their adjoints. In Section 3, we 
concentrate on the case where n = pm is a power of the characteristic p and, given a field 
extension L of F of degree n, we study the symmetries of a natural full flag in L. We 
exploit the results of Section 3 in Section 4, where we prove the Etzion-Silberstein conjec-
ture for p-monotone Ferrers diagrams over finite fields of characteristic p. As corollaries 
we derive that the Etzion-Silberstein conjecture holds true over any finite field for the 
classes of strictly monotone, initially convex, and MDS-constructible Ferrers diagrams.

Acknowledgments. Alessandro Neri is supported by the Research Foundation–Flanders 
(FWO) grant 12ZZB23N. Mima Stanojkovski is funded by the Italian program Rita Levi 
Montalcini, Edition 2020. This work was partially supported by Indam-GNSAGA (Italy). 
The authors thank René Schoof for a short proof of Proposition 3.3 and the anonymous 
referees for their helpful comments.

2. Notation and preliminaries

Let n be a positive integer and let F be a field with a cyclic Galois extension L of degree 
n. Fixing a generator σ of the Galois group Gal(L/F), the F -algebra (EndF (L), +, ◦)
can be represented as a skew group algebra (L[σ], +, ·). This is defined as the set

L[σ] =
{

n−1∑
i=0

aiσ
i : ai ∈ L

}

endowed with usual addition, while the multiplication is defined on monomials via

(aσi) · (bσj) = aσi(b)σi+j , for a, b ∈ L,

and extended by distributivity to L[σ]. The map L[σ] → EndF (L) given by

L[σ] −→ EndF (L)
n−1∑
i=0

aiσ
i �−→

(
α �−→

n−1∑
i=0

aiσ
i(α)

) (2)

is an F -algebra isomorphism as a consequence of Artin’s Theorem of linear indepen-
dence of characters. By choosing any F -basis B of L, one obtains an induced F -algebra 
isomorphism
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φB : L[σ] −→ Fn×n, (3)

where the columns of the matrix represent the images of the basis vectors, per usual 
Linear Algebra practice (in contrast with the common coding-theoretic costume of using 
row vectors). This representation lies at the heart of the most prominent constructions 
of families of optimal rank-metric codes, as we will see later in Section 2.1.

Throughout, we identify every element p(σ) ∈ L[σ] with its image in EndF (L) under 
(2): we denote its evaluation in α ∈ L by p(σ)(α). In addition, the σ-degree (or simply
degree) of a nonzero element p(σ) = a0 id +a1σ + . . . + an−1σ

n−1 ∈ L[σ] is defined in 
the usual way as

deg p(σ) = max{i ∈ {0, . . . , n− 1} : ai 	= 0}.

Artin’s theorem of linear independence of characters ensures then that, for any nonzero 
σ-polynomial p(σ) = a0 id +a1σ + . . . + an−1σ

n−1 ∈ L[σ], the following holds:

dimF (ker p(σ)) ≤ deg p(σ). (4)

This last statement can be found for instance in [12, Theorem 5], although it can also 
be derived from earlier works; see e.g. [6,14].

2.1. Ferrers diagram rank-metric codes

Rank-metric codes were first introduced by Delsarte in [6] and then reintroduced by 
Gabidulin in [9]. They have gained in popularity thanks to their application to network 
coding [18] and for further applications in distributed storage [4] and cryptography [10].

Definition 2.1. Let F be a field and k, m, n, d positive integers. An [n ×m, k, d]F rank-
metric code is a k-dimensional F -subspace C of Fn×m, where d = min{rk(A) : A ∈
C \ {0}} is called the minimum rank distance of C.

The parameters k, m, n, d of a rank-metric code depend from each other through the 
well-known Singleton-like bound, originally proved by Delsarte in [6] and reading:

k ≤ min{m(n− d + 1), n(m− d + 1)}. (5)

Codes meeting the bound of (5) with equality are called maximum rank distance codes, 
or simply MRD codes. When F admits a degree max{n, m} cyclic extension field L, 
there is a well-known construction of MRD codes for every choice of d, n, m with 1 ≤
d ≤ min{m, n}, which is due to Delsarte [6] for finite fields and to Guralnick [14] for 
general fields. Given σ a generator of Gal(L/F), this construction goes as follows.
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If n = m, then the L-subspace

L[σ]n−d =
{

n−d∑
i=0

aiσ
i : ai ∈ L

}
⊆ L[σ],

has F -dimension n(n −d +1) and can be seen as an [n ×n, n(n −d +1), d]F code, due to 
the isomorphism in (3). Furthermore, by (4) it is clear that the minimum rank distance 
of C is d, implying that L[σ]n−d is an MRD code.

If m < n, then by the last case we know that L[σ]m−d is an [n × n, n(m − d + 1), d +
n −m]F MRD code. Projecting L[σ]m−d to Fn×m by erasing any set of n −m columns, 
we then obtain an [n ×m, n(m − d + 1), d]F MRD code.

If m > n, one reduces to the previous case by interchanging the values n and m and 
transposing the matrices.

In 2009, motivated by the application of subspace codes to network coding, Etzion 
and Silberstein initiated the study of Ferrers diagram rank-metric codes [8]. These are 
rank-metric codes whose elements have entries which are identically zero outside of a 
given Ferrers diagram, and arise from subspace codes in a fixed Schubert cell.

Definition 2.2. A (top-right justified) Ferrers diagram of order n is a subset D of [n]2
satisfying the following properties:

• If (i, j) ∈ D and j′ ∈ {j, . . . , n}, then (i, j′) ∈ D.
• If (i, j) ∈ D and i′ ∈ {1, . . . , i}, then (i′, j) ∈ D.

Every Ferrers diagram D can be graphically represented as a top-right justified grid of 
dots. We will often use this representation in order to help the reader graphically catch 
the features of the Ferrers diagrams that we will deal with in this paper. For compactness, 
however, we will also identify a Ferrers diagram D with the vector (c1, . . . , cn), where 
ci ∈ {0, . . . , n} is the number of dots in the column i of the grid: in view of Definition 2.2
it then holds that 0 ≤ c1 ≤ . . . ≤ cn ≤ n.

Remark 2.3. We have already seen that, if a Ferrers diagram is given as a subset of [n]2, 
then its vector representation (c1, . . . , cn) is obtained as

cj = |{i ∈ [n] : (i, j) ∈ D}|.

Conversely, if D is given by a vector (c1, . . . , cn), then its representation as a subset of 
[n]2 is derived as

D = {(i, j) ∈ [n]2 : i ≤ cj}.

These maps are inverses to each other and we will use the two representations of a Ferrers 
diagram interchangeably.
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Example 2.4. The Ferrers diagram of order 5 given by D = (0, 1, 1, 4, 5) is graphically 
represented by the following dotted grid.

There is a natural notion of adjunction for Ferrers diagrams, which corresponds to 
the conjugate partition of an integer.

Definition 2.5. Let D be a Ferrers diagram of order n. Then, the adjoint Ferrers diagram
D� is defined as

D� = {(n + 1 − j, n + 1 − i) : (i, j) ∈ D}.

In other words, the adjoint Ferrers diagram is obtained by transposing the indices of 
the original Ferrers diagram with respect to the main antidiagonal. We remark that, if D
is a Ferrers diagram, then D� is the Ferrers diagram obtained from the reflection, with 
respect to the main antidiagonal, of the graphical representation of D. This is illustrated 
in the following example.

Example 2.6. The adjoint D� of the Ferrers diagram D = (0, 1, 1, 4, 5) from Example 2.4
is D� = (1, 2, 2, 2, 4) and is graphically represented by the following.

For a given Ferrers diagram D = (c1, . . . , cn) of order n, denote by FD the space of 
n × n matrices over F supported on D, that is,

FD = {A = (ai,j) ∈ Fn×n : i > cj implies ai,j = 0} ⊆ Fn×n.

Example 2.7. If D = (1, 2, 3, . . . , n), then FD is nothing else than the collection of upper 
triangular n × n matrices over F . In this case, D satisfies D = D�.

Definition 2.8. Let D be a Ferrers diagram of order n. A [D, k, d]F Ferrers diagram rank-
metric code is a k-dimensional F -subspace C of FD endowed with the rank distance. The 
parameter d is the minimum rank distance of C and is defined as
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d = min{rk(A) : A ∈ C, A 	= 0}.

In their seminal paper [8], Etzion and Silberstein showed the following relation between 
the parameters of a [D, k, d]F code C, relying on the classical argument that C trivially 
intersects any subspace of FD whose elements have rank at most d − 1.

Proposition 2.9 ([8, Theorem 1]). Let D = (c1, . . . , cn) be a Ferrers diagram of order n, 
and let C be a [D, k, d]F code. Then

k ≤ min
{

n−j∑
i=1

max{0, ci − d + 1 + j} : j ∈ {0, . . . , d− 1}
}
.

The quantity on the right-hand side of the bound in Proposition 2.9, which we denote

νmin(D, d) = min
{

n−j∑
i=1

max{0, ci − d + 1 + j} : j ∈ {0, . . . , d− 1}
}
, (6)

represents, informally speaking, the minimum, among all the j ∈ {0, . . . , d − 1} of the 
number of dots remaining in the Ferrers diagram D after removing the first d − j − 1
rows and the last j columns from D. From this interpretation, it is immediately clear 
that νmin(D, d) = νmin(D�, d).

To lighten the notation, in the remaining part of the paper, we will write νj(D, d)
meaning

νj(D, d) =
n−j∑
i=1

max{0, ci − d + 1 + j}

yielding in turn that νmin(D, d) = min{νj(D, d) : j ∈ {0, . . . , d − 1}}.

Example 2.10. Let D = (0, 1, 1, 4, 5) be as in Example 2.4 and set d = 3. Then

νmin(D, d) = min
{5−j∑

i=1
max{0, ci − 2 + j} : j ∈ {0, 1, 2}

}
= min{2 + 3, 3, 1 + 1} = 2,

which is the same as the minimum among the number of dots remaining after performing
the following deletions:
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In the same paper [8], the authors also conjectured that over finite fields the bound 
given in Proposition 2.9 is tight for any Ferrers diagram. This is now known as the
Etzion-Silberstein conjecture and is stated below.

Conjecture 2.11 ([8, Conjecture 1]). Let D = (c1, . . . , cn) be a Ferrers diagram of order 
n, and let d ∈ {1, . . . , n}. If F is a finite field, then there exists a [D, k, d]F code C with

k = νmin(D, d).

A code meeting the bound from Proposition 2.9 with equality is said to be a maximum 
Ferrers diagram (MFD) code. Thus, the Etzion-Silberstein conjecture (Conjecture 2.11) 
states that MFD codes exist over any finite field and for every Ferrers diagram of order n
and minimum rank distance 1 ≤ d ≤ n. Since d = 1 is a trivial instance of the problem, 
we will often directly consider d ≥ 2.

Though Conjecture 2.11 is still widely open, there is a number of cases in which it 
has been confirmed; see [15, Section 2.3] for a summary. Two main techniques have been 
used for this: the construction of MFD codes as subcodes of MRD codes and the concept 
of MDS-constructibility.

The first one allows to completely settle the case where d = 2: see for instance [8, 
Theorem 2], [11, Corollary 19]), and [2, Theorem III.1]. For d ≥ 3, the structure of MRD 
codes has been exploited in various ways for the construction of MFD codes, often with 
additional restrictions on the minimum rank d depending on the Ferrers diagram D. 
This method can already be found in Etzion and Silberstein’s seminal paper [8], and 
it has been improved and refined ever since (see e.g. [2,7,11,15,16]). A summary of the 
MRD-subcodes constructions can be found in [16, Theorem 2.8].

The second general method uses the theory of MDS codes in the Hamming metric, 
but only allows to prove Conjecture 2.11 over “large enough” finite fields and for Fer-
rers diagrams with the property of being MDS-constructible; cf. Definition 2.12. In the 
following, for i ∈ [n], let

Δn
i = {(j, j + i− 1) : j ∈ [n− i + 1]}

be the i-th diagonal of an n × n grid.

Definition 2.12. Let D ⊆ [n]2 be a Ferrers diagram of order n, and let d ∈ [n] be a 
positive integer. The pair (D, d) is MDS-constructible if

νmin(D, d) =
n∑

i=1
max{0, |D ∩ Δn

i | − d + 1}.

We remark that, since |Δn
i | = n − i + 1, for an MDS-constructible pair (D, d) one has

νmin(D, d) =
n−d+1∑

max{0, |D ∩ Δn
i | − d + 1}. (7)
i=1
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The notion of MDS-constructible pairs was introduced in [2], but it was already shown 
in [7, Theorem 7] that [D, νmin(D, d), d]F MFD codes exist (and can be explicitly con-
structed) whenever |F | ≥ max{|D∩Δn

i | − 1 : i ∈ [n]}. The rough idea is to embed MDS 
codes of length |D ∩Δn

i | and Hamming distance d into D ∩Δn
i and then take the direct 

sum of these spaces. For a detailed description of this construction we refer the reader 
to [7, Construction 1]. We remark that a similar diagonal construction for rank metric 
codes was already given in [17, Theorem 3]. Recently, existence results for MFD codes 
over some MDS-constructible pairs were derived in [13], with partial improvements on 
the field size.

Remark 2.13. It is readily seen that the upper triangular Ferrers diagrams fall into this 
category. In other words, for positive integers n and 1 ≤ d ≤ n, if

Tn = {(i, j) : i, j ∈ [n], i ≤ j}

denotes the upper-triangular n × n Ferrers diagram, then the pair (Tn, d) is MDS-
constructible.

In Section 4 we prove Conjecture 2.11 for the family of MDS-constructible Ferrers 
diagrams over any finite field. To get rid of the restriction on the field size, we exploit 
MRD-subcode constructions. The novelty of our approach is the use of an auxiliary 
extension field whose degree is a power of the characteristic.

2.2. Monotone and convex Ferrers diagrams

Two special families of Ferrers diagrams which we will focus on, are those of p-
monotone and p-convex Ferrers diagrams, where p is a prime number. We define them 
both in this section.

Definition 2.14. A Ferrers diagram D = (c1, . . . , cn) of order n is called monotone if, 
whenever i ∈ {1, . . . , n − 1} is such that 0 < ci < n, one has ci+1 > ci.

Example 2.15. The following are examples of monotone Ferrers diagrams of order n = 5.

D = (0, 0, 1, 3, 4), D = (1, 2, 4, 5, 5), D = (2, 3, 5, 5, 5), D = (0, 1, 4, 5, 5)
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Remark 2.16. Let D = (c1, . . . , cn) be a monotone Ferrers diagram of order n, and define

� = min{i : ci 	= 0} and r = max{i : ci 	= n}.

Then, for every i, j ∈ {�, � + 1, . . . , r + 1} with i < j, one has cj − ci ≥ j − i.

Remark 2.17. Let D = (c1, . . . , cn) be a monotone Ferrers diagram of order n. If i, j < n

are such that (i, j) ∈ D, then monotonicity yields (i + 1, j + 1) ∈ D.

Definition 2.18. A Ferrers diagram D = (c1, . . . , cn) of order n is called convex if, for all 
i ∈ {1, . . . , n − 1}, one has that ci+1 − ci ≤ 1.

The reader can easily verify that the empty diagram D = ∅ and the full diagram 
D = [n]2 are both monotone and convex.

Example 2.19. The following are examples of convex Ferrers diagrams of order n = 5.

D = (0, 1, 2, 2, 3), D = (2, 3, 3, 4, 5), D = (3, 3, 4, 5, 5), D = (2, 3, 3, 3, 4)

We remark that convex Ferrers diagrams are adjoints of monotone Ferrers diagrams 
and the other way around, as one can see from Example 2.15 and Example 2.19.

Definition 2.20. Let p be a prime number and let D = (c1, . . . , cn) be a Ferrers diagram 
of order n. Let h be the largest nonnegative integer with the following properties:

(1) The power ph divides n.
(2) For every i ∈ {1, . . . , n}, the power ph divides ci.
(3) If r, s ∈ {0, . . . , n − 1} are such that there exists a nonnegative integer Q with the 

property that r, s ∈ {Qph, Qph + 1, . . . , (Q + 1)ph − 1}, then cn−r = cn−s.

The number h is called the p-height of D and the p-contraction of D is the Ferrers 
diagram D(p) = (c′1, . . . , c′n/ph) of order n/ph that is defined by

c′i =
cphi

h
, i ∈ {1, . . . , n/ph}.
p
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We remark that, in the context of Definition 2.20, the value h = 0 satisfies (1), (2), 
and (3) so the p-height of D is well defined. Moreover, if D is a Ferrers diagram of order 
n of p-height h = 0, then the p-contraction of D is equal to D. Roughly speaking, as the 
following example suggests, if h is the p-height of a Ferrers diagram D, then [n]2 can 
be partitioned into blocks of size ph × ph where the intersection of D with any block is 
either full or empty.

Example 2.21. The Ferrers diagram D = (4, 4, 4, 4, 8, 8, 8, 8) of order 8 has 2-height equal 
to 2. Its 2-contraction is the Ferrers diagram D(2) = (1, 2) of order 2.

−−−−−−−−−−→2-contraction

Definition 2.22. Let p be a prime number and let D = (c1, . . . , cn) be a Ferrers diagram of 
order n. The diagram D is called p-monotone if its p-contraction is monotone. Similarly, 
D is p-convex if its p-contraction is convex.

We remark that, with this new definition, monotone Ferrers diagrams are a special 
instance of the larger family of p-monotone Ferrers diagrams.

Example 2.23. The following are examples of 2-monotone Ferrers diagrams of order 8.

D = (0, 0, 2, 2), D = (2, 2, 4, 4, 6, 6), D = (0, 0, 4, 4, 8, 8, 8, 8, 8)

The following straightforward result ensures that p-convex Ferrers diagrams and p-
monotone Ferrers diagrams are adjoint to each other.
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Lemma 2.24. Let p be a prime number and let D = (c1, . . . , cn) be a Ferrers diagram of 
order n. Then the following hold:

(1) The diagrams D and D� have the same p-height.
(2) One has (D�)(p) = (D(p))�.
(3) The diagram D is p-monotone if and only if D� is p-convex.

In the next section, we will describe a very useful representation of Ferrers diagram 
matrix spaces FD when D is p-monotone. Furthermore, by adjunction – that is, trans-
posing with respect to the antidiagonal – we automatically obtain also a representation 
of FD when D is p-convex.

The following remark generalizes Remark 2.16 to the case of p-monotone Ferrers 
diagrams.

Remark 2.25. Let D = (c1, . . . , cn) be a p-monotone Ferrers diagram of order n with 
p-height equal to h. Set � = min{i : ci 	= 0} and r = max{i : ci 	= n}. It follows from 
p-monotonicity that

� = 1 + sph and r = tph, for some s, t ∈ {0, . . . , n/ph}.

The Ferrers diagram D being p-monotone, we derive that, if a, b ∈ {s, . . . , t + 1}, then

a > b =⇒ caph − cbph ≥ (a− b)ph.

Remark 2.26. We note that, in the special case where D is a p-monotone Ferrers diagram, 
for every choice of an integer 1 ≤ d ≤ n, one has that ν0(D, d) ≥ ν1(D, d) ≥ . . . ≥
νd−1(D, d) and thus the value of νmin(D, d) can be rewritten as

νmin(D, d) = min{νj(D, d) : j ∈ {0, . . . , d− 1}} = νd−1(D, d) =
n−d+1∑
i=1

ci.

In other words, νmin(D, d) can be computed by exclusively deleting columns from the 
Ferrers diagram D. This is a direct consequence of Remark 2.25.

3. Flags and modular skew algebras

In this section we fix a prime p, a positive integer n = pm, and a field F of characteristic 
p with a cyclic Galois extension L of degree n. We fix a generator σ of Gal(L/F), and 
define σ̄ = σ − id ∈ L[σ]. Since the characteristic of the field divides the order of σ, 
resembling the classical group algebra setting, the skew algebra L[σ] is called modular. 
Note that, in this case the endomorphism σ̄ is nilpotent of order n, since

σ̄n = (σ − id)n = (σ − id)p
m

= σpm − id,
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which maps every element of L to 0. We define

Fi = ker(σ̄i), for every i ∈ {0, . . . , n}. (8)

In particular, we have that F0 = {0}, F1 = F , and Fn = L. We work under these 
assumptions until the end of the present section. The following result collects some 
immediate properties of the endomorphisms σ̄i and of the F -subspaces Fi of L.

Lemma 3.1. The following hold:

(1) The set {σ̄i : i ∈ {0, . . . , n − 1}} is an L-basis of L[σ].
(2) For each i ∈ {0, . . . , n}, one has dimF Fi = i.
(3) For each i ∈ {1, . . . , n}, one has Fi−1 ⊆ Fi.
(4) For every i, j ∈ {0, . . . , n}, one has σ̄j(Fi) = Fmax{0,i−j}.

A direct consequence of Lemma 3.1 is that F = (F0, . . . , Fn) is a full flag of the 
F -vector space L, that is, {0} = F0 ⊂ F1 ⊂ . . . ⊂ Fn−1 ⊂ Fn = L is a chain of F -vector 
spaces and the F -dimension of each quotient Fi/Fi−1 is equal to 1.

Definition 3.2. An F -basis B = (β1, . . . , βn) of L is called F-compatible if, for every index 
i ∈ {1, . . . , n}, the F -span 〈β1, . . . , βi〉F is equal to Fi.

The following result on the multiplicative behavior of the flag F will be crucial in the 
proof of Theorem 3.4.

Proposition 3.3. Let a, b, h ≥ 0 be integers satisfying ph(a + b) ≤ n. Then one has

Fpha · Fphb ⊆ Fph(a+b−1).

Proof. We work by induction on a + b. If a = 0 or b = 0, then the claim is true since 
F0 = {0}. We assume thus that a, b ≥ 1. Let x ∈ Fpha and y ∈ Fphb be arbitrary and 
write

u = σ̄ph

(x) = σph

(x) − x and v = σ̄ph

(y) = σph

(y) − y.

Lemma 3.1(4) implies that u ∈ Fph(a−1) and v ∈ Fph(b−1). We compute

σph

(xy) = σph

(x)σph

(y) = (x + u)(y + v) = xy + xv + yu + uv,

from which we derive that σ̄ph(xy) = σph(xy) − xy can be rewritten as

σ̄ph

(xy) =xv + yu + uv ∈ Fpha · Fph(b−1) + Fphb · Fph(a−1) + Fph(a−1) · Fph(b−1).
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It follows from the induction hypothesis that σ̄ph(xy) ∈ Fph(a+b−2) and thus also that 
xy ∈ Fph(a+b−1). �

Let D = (c1, . . . , cn) be a Ferrers diagram of order n = pm. Throughout we write 
L[σ; D] for the F -subspace

L[σ;D] =
n⊕

i=1
Fci σ̄

i−1 =
{

n∑
i=1

λiσ̄
i−1 : λi ∈ Fci

}

of L[σ] defined by D with respect to the flag F .

Theorem 3.4. Let D = (c1, . . . , cn) be a p-monotone Ferrers diagram of order n = pm. 
Let L be a cyclic Galois extension of F of order n, whose Galois group is generated by 
σ. Write F = (F0, . . . , Fn), where Fi is as in (8), and let B be an F-compatible F -basis 
of L. Then, the map φB in (3) maps L[σ; D] isomorphically into FD.

Proof. Since φB is injective, the F -vector space L[σ; D] is mapped to a space of the 
same F -dimension. Now, dimF (L[σ; D]) = c1 + . . . + cn = dimF (FD), so to prove that 
φB(L[σ; D]) = FD, it suffices to show that φB(L[σ; D]) ⊆ FD. Doing this is equivalent to 
proving that

f(Fi) ⊆ Fci for every f ∈ L[σ;D] and i ∈ {1, . . . , n}. (9)

We proceed thus to prove (9). To this end, let h be the p-height of D. This means that ph
divides every entry ck of D and, for every k ∈ {0, . . . , n/ph − 1}, that c1+kph = c2+kph =
. . . = c(k+1)ph . Since, for each index k, one has

F1+kph ⊂ . . . ⊂ F(k+1)ph and Fc1+kph
= . . . = Fc(k+1)ph

,

checking (9) is equivalent to checking (9) for indices i of the form i = aph with a ∈
{1, . . . n/ph}. Let thus a ∈ {1, . . . n/ph} and write i = aph. Let, moreover, f ∈ L[σ; D]: 
leveraging on linearity, we assume without loss of generality that f = λj σ̄

j−1, for some 
j ∈ {1, . . . , n} and λj ∈ Fcj . Applying the same argument as before, we assume without 
loss of generality that j = bph with b ∈ {1, . . . , n/ph}. Let s and t be as in Remark 2.25.

If b < s, then Fj = {0} and we derive trivially f(Fi) = {0} ⊆ Fci . In a dual way, if 
a > t, then Fci = L and thus we have f(Fi) ⊆ Fci . Moreover, if a ≤ b, then Lemma 3.1(4)
yields that σ̄j−1(Fi) = {0} and, once again, we get f(Fi) ⊆ Fci .

We assume now that s ≤ b < a ≤ t and write ci = cph and cj = dph. Remark 2.25
ensures that c − d ≥ a − b and so we have ph(d + a − b + 1) ≤ ph(c + 1) ≤ n. With the 
aid of Lemma 3.1(4) and Proposition 3.3 we compute

f(Fi) = λj σ̄
j−1(Fi) = λjFi−j+1 = λj(Faph−bph+1) ⊆ FdphF(a−b+1)ph ⊆ F(a−b+d)ph ,

and thus f(Fi) ⊆ F(a−b+d)ph ⊆ Fcph = Fci . �
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We conclude this section by providing a few concrete examples.

Example 3.5. Let F = F5 and n = 5. Consider the monotone Ferrers diagram D =
(1, 3, 4, 5, 5) and the space FD representing the matrices supported on D over F = F5. 
Furthermore, consider the degree 5 extension field L = F55 = F5(γ), where γ5+4γ+3 = 0. 
Let σ be the 5-Frobenius automorphism of F55 defined as σ(α) = α5 and set σ̄ = σ− id. 
Take the full flag F = (F0, F1, F2, F3, F4, F5) of F55 over F5 given by

Fi = ker(σ̄i).

It is easy to see that B = (1, γ2968, γ1531, γ1556, γ1566) is an F-compatible F5-basis of F55 . 
By Theorem 3.4, the algebra FD

5 is then isomorphic to

F55 [σ;D] = F1 id⊕F3σ̄ ⊕F4σ̄
2 ⊕F5σ̄

3 ⊕F5σ̄
4,

where the isomorphism is with respect to the chosen F5-basis B.

Example 3.6. Let F = F2 and n = 8. Let, moreover, D = T8 = (1, 2, 3, 4, 5, 6, 7, 8) and 
write FD for the space representing the upper triangular 8 × 8 matrices over F = F2. 
Furthermore, consider the degree 8 extension field L = F28 = F2(γ), where γ8 + γ4 +
γ3 + γ2 + 1 = 0. Let σ : F28 → F28 be the 2-Frobenius automorphism which is defined 
as σ(α) = α2 and let σ̄ = σ − id. As in Example 3.5 let F = (F0, . . . , F8) be the flag in 
the F2-vector space F28 given by

Fi = ker(σ̄i).

Then an F-compatible F2-basis of F28 is given by B = (1, γ170, γ136, γ204, γ222, γ38, γ143,

γ5). By Theorem 3.4, the algebra FD
2 is isomorphic to

F28 [σ;D] =
{ 8∑

i=1
λiσ̄

i−1 : λi ∈ Fi

}
,

where the isomorphism depends on the F2-basis B. Let, for instance, f = id +γ68σ̄2 ∈
F28 [σ; D]: a straightforward computation reveals that the matrix representation of f with 
respect to B is ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 0 1 0
0 1 1 1 0 1 1 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ FD
2 .
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Example 3.7. Let D = (4, 4, 4, 4, 8, 8, 8, 8) be the 2-monotone Ferrers diagram of order 
8 from Example 2.21. With the same notation used in Example 3.6, the space FD

2 is 
isomorphic to

F28 [σ;D] =
{ 8∑

i=1
λiσ̄

i−1 : λ1, λ2, λ3, λ4 ∈ F4, λ5, λ6, λ7, λ8 ∈ F8,

}
,

where the isomorphism is induced by the F2-basis B = (1, γ170, γ136, γ204, γ222, γ38, γ143,

γ5).

4. Ferrers diagram rank-metric codes

In this section we prove our main results: Theorem 4.2, Theorem 4.10, and Theo-
rem 4.22. We deal with the first two via the construction of MFD codes from Theorem 3.4, 
relying on (4). We prove the third theorem with the aid of Theorem 4.10 and Proposi-
tion 4.23.

4.1. Monotone and convex Ferrers diagrams

In this section we give a constructive proof of Conjecture 2.11 for p-monotone Ferrers 
diagrams and their adjoints over finite fields of characteristic p. To this end, we work 
under the same assumptions and use the same notation as in Section 3. For an integer 
1 ≤ d ≤ n and a Ferrers diagram D = (c1, . . . , cn) of order n = pm, we write additionally 
L[σ; D]n−d for the F -subspace

L[σ;D]n−d = L[σ]n−d ∩ L[σ;D] =
n−d⊕
i=1

Fci σ̄
i−1 =

{
n−d∑
i=1

λiσ̄
i−1 : λi ∈ Fci

}

of polynomials in L[σ; D] of degree at most n − d.

Theorem 4.1. Let F be a finite field, of characteristic p and order q, and let D =
(c1, . . . , cn) be a p-monotone Ferrers diagram of order n = pm. Let L be an exten-
sion of F of degree n and let σ be the q-Frobenius automorphism of L. Let d be an 
integer with 1 ≤ d ≤ n and write σ̄ = σ − id. Write F = (F0, . . . , Fn), where Fi is as in 
(8), and let B be an F-compatible F -basis of L. Then the map φB in (3) maps L[σ; D]n−d

isomorphically into a [D, νmin(D, d), d]F MFD code.

Proof. Thanks to Theorem 3.4, the algebra L[σ; D] maps isomorphically onto FD via 
φB. Moreover, it follows from (4) that every nonzero element of L[σ; D]n−d is mapped 
to a matrix of rank at least d. Computing the F -dimension of L[σ; D]n−d we derive from 
Lemma 3.1 and Remark 2.26 that
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dimF (L[σ;D]n−d) =
n−d∑
i=1

dimF Fci =
n−d∑
i=1

ci = νmin(D, d).

This concludes the proof. �
We derive the following result as an immediate corollary of Theorem 4.1 and 

Lemma 2.24.

Theorem 4.2. Let d, m be positive integers and let p be a prime number. Write n = pm

and let 1 ≤ d ≤ n. Then the following hold:

(1) Conjecture 2.11 holds true for p-monotone Ferrers diagrams of order n over all finite 
fields of characteristic p.

(2) Conjecture 2.11 holds true for p-convex Ferrers diagrams of order n over all finite 
fields of characteristic p.

We illustrate Theorem 4.2 with a concrete example.

Example 4.3. Let F = F5, n = 5 and d = 4. Let D = (1, 3, 4, 5, 5) be the monotone 
Ferrers diagram from Example 3.5. In this case νmin(D, 4) = 4, and Theorem 4.2 ensures 
the existence of a [D, 4, 4]F5 MFD code. A concrete example is given by:

F55 [σ;D]1 = F1 id⊕F3σ̄ = 〈id, σ̄, γ2968σ̄, γ1531σ̄〉F5 .

Using the F5-basis B = (1, γ2968, γ1531, γ1556, γ1566) of F55 given in Example 3.5, we 
obtain that the [D, 4, 4]F5 MFD code in FD

5 is the F5-subspace generated by the following 
matrices:

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 4
0 1 1 0 0
0 0 2 2 0
0 0 0 3 3
0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 0
0 1 2 1 0
0 0 3 1 3
0 0 0 1 2

⎞
⎟⎟⎟⎟⎟⎠ .

4.2. Strictly monotone and initially convex Ferrers diagrams

Among monotone Ferrers diagrams, a distinguished subfamily is given by strictly 
monotone ones, whose adjoints are the initially convex Ferrers diagrams.

Definition 4.4. A Ferrers diagram D = (c1, . . . , cn) is called strictly monotone if, when-
ever ci > 0, one has ci+1 > ci. A Ferrers diagram D = (c1, . . . , cn) is called initially 
convex if, for every i ∈ {1, . . . , n − 1}, one has c1 ≤ 1 and ci+1 − ci ≤ 1.
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It turns out that a Ferrers diagram is initially convex if and only if it is in canonical 
form in the sense of [5, Definition 3.6]. Although the two notions coincide, they appear 
in different contexts and for apparently unrelated purposes. We remark that, in contrast 
with the case of monotone and convex Ferrers diagrams, the empty diagram D = ∅ is 
strictly monotone and initially convex, while the full diagram D = [n]2 is neither (unless 
n = 1).

Definition 4.5. Let p be a prime number. A Ferrers diagram D = (c1, . . . , cn) is called
strictly p-monotone if its p-contraction is strictly monotone. A Ferrers diagram D =
(c1, . . . , cn) is called initially p-convex if its p-contraction is initially convex.

Remark 4.6. Let p be a prime number and let D be a strictly monotone Ferrers diagram. 
If D is nonempty, then the p-height of D is equal to 0 and so D(p) = D. In particular, 
strictly monotone Ferrers diagrams are strictly p-monotone for every choice of a prime 
p.

The following result is straightforward.

Lemma 4.7. Let p be a prime number. A Ferrers diagram D is strictly p-monotone if and 
only if D� is initially p-convex.

The following results ensure, up to iteration, that the property of being strictly p-
monotone is preserved via top-right embeddings of Ferrers diagrams into larger square 
grids.

Lemma 4.8. Let p be a prime number and let D = (c1, . . . , cn) be a strictly p-monotone 
Ferrers diagram of order n of p-height h. Then

D′ = ( 0 . . . , 0︸ ︷︷ ︸
ph times

, c1, . . . , cn)

is a strictly p-monotone Ferrers diagram of order n + ph and p-height h.

Observe that Lemma 4.8 is not valid if we only assume the Ferrers diagram to be 
monotone.

Theorem 4.9. Let p be a prime number and let d, n be positive integers with 1 ≤ d ≤ n. 
Then the following hold:

(1) Conjecture 2.11 holds true for strictly p-monotone Ferrers diagrams of order n over 
any finite field of characteristic p.

(2) Conjecture 2.11 holds true for initially p-convex Ferrers diagrams of order n over 
any finite field of characteristic p.
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Proof. We only prove the result for strictly p-monotone Ferrers diagrams: the one for 
initially p-convex Ferrers diagrams follows then from Lemma 4.7. Let D = (c1, . . . , cn) be 
a strictly p-monotone Ferrers diagram of p-height h. Let F be a finite field of characteristic 
p and m = min{i : pi ≥ n}. Since ph divides pm−n, iterating Lemma 4.8 precisely (pm−
n)/ph times, we embed D into a strictly p-monotone Ferrers diagram D′ = (c′1, . . . , c′pm)
of order pm, where

c′i =
{

0 if i ≤ pm − n,

ci−(pm−n) if i > pm − n.

Theorem 4.2 ensures the existence of a [D′, νmin(D′, d), d]F MFD code, which is clearly 
isometric to a [D, νmin(D, d), d]F MFD code. �

We derive the following as a direct consequence of Theorem 4.9 and Remark 4.6.

Theorem 4.10. Let d, n be positive integers with 1 ≤ d ≤ n. Then the following hold:

(1) Conjecture 2.11 holds true for strictly monotone Ferrers diagrams of order n over 
any finite field.

(2) Conjecture 2.11 holds true for initially convex Ferrers diagrams of order n over any 
finite field.

We remark that the last result holds over any finite field, in contrast with Theorem 4.2, 
which requires the characteristic p of the field to be the unique prime divisor of n.

Corollary 4.11. Conjecture 2.11 holds true for upper triangular matrices over any finite 
field.

Corollary 4.12. If p is a prime number and D is a Ferrers diagram whose p-contraction 
is upper triangular, then Conjecture 2.11 holds true over any finite field of characteristic 
p.

We observe that Corollary 4.12 partially answers an open problem from [7, 
Section VIII] asking whether MFD codes exist for Ferrers diagrams of the form 
(2, 2, 4, 4, . . . , 2r, 2r).

Example 4.13. In this example we illustrate how to construct an MFD code of upper 
triangular matrices in the smallest formerly open case over F2. For this, let n = 6 and 
d = 4 and consider the strictly monotone Ferrers diagram D = (1, 2, 3, 4, 5, 6). In this 
case, we have νmin(D, 4) = 6, and now we show how to construct a [D, 6, 4]F2 MFD code.

The smallest power of 2 which is at least n is n′ = 8, and we can extend D to the 
Ferrers diagram D′ = (0, 0, 1, 2, 3, 4, 5, 6) of order 8, which is still strictly monotone, as 
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a consequence of Lemma 4.8. Thus, we consider the degree n′ = 8 extension field of F2

given by F28 = F2(γ), where γ8 + γ4 + γ3 + γ2 + 1 = 0. As in Example 3.6, we let σ
be the 2-Frobenius automorphism of F28 , we set σ̄ = σ − id, and take the full flag F =
(F0, . . . , F8), where Fi = ker(σ̄i). The basis B = (1, γ170, γ136, γ204, γ222, γ38, γ143, γ5) is 
F-compatible, and Theorem 3.4 yields that FD

2
∼= FD′

2 is isomorphic to

F28 [σ;D′] =
8⊕

i=3
Fi−2σ̄

i−1 =
{ 8∑

i=3
λiσ̄

i−1 : λi ∈ Fi−2

}
,

where the isomorphism is defined using the F2-basis B. The [D′, 6, 4]F2 MFD code rep-
resentation in F28 [σ; D′] is then given by

F28 [σ;D′]4 = 〈σ̄2, σ̄3, γ170σ̄3, σ̄4, γ170σ̄4, γ136σ̄4〉F2 .

A straightforward computation shows that writing each element with respect to the F2-
basis B – and then taking the top-right 6 × 6 submatrices – we obtain the [D, 6, 4]F2

MFD code in FD
2 as the span of the following six matrices:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 1 0
0 1 1 1 0 1
0 0 0 0 1 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 1
0 0 1 1 1 0
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 1 1 1
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that, if we wanted to construct a [D, 6, 4]F MFD code over a finite field F of 
some other (positive) characteristic we would have to redefine n′. For instance, if we 
chose F = F3, then D would be mapped to D′ = (0, 0, 0, 1, 2, 3, 4, 5, 6), which is of order 
9 = 32, and consequently the representation of FD′

3 would become F39 [σ; D′].

Remark 4.14. As a consequence of [3, Corollary 1], if for a pair (D, d) there exists a 
maximum Ferrers diagram code over some finite field F , then such a code can be lifted 
to an MFD code over Q. In particular, Theorem 4.2 and Theorem 4.10 yield the existence 
of MFD codes over Q for p-monotone and strictly p-monotone Ferrers diagrams, and their 
adjoints.
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4.3. Extension to MDS-constructible pairs

We conclude the paper by extending Theorem 4.10 to all MDS-constructible pairs 
(D, d); cf. Proposition 4.15. We recall that, for MDS-constructible pairs Conjecture 2.11
is known to be true only over large finite fields; cf. Section 2.1. Here, we will prove it 
for every finite field. We start by showing that strictly monotone Ferrers diagrams and 
their adjoints are MDS-constructible with respect to any sensible distance.

Proposition 4.15. Let D be a strictly monotone or initially convex Ferrers diagram of 
order n. Then, for every integer 2 ≤ d ≤ n, the pair (D, d) is MDS-constructible.

Proof. We start by assuming that D is strictly monotone so, thanks to Remark 2.26, 
we have that νmin(D, d) = |D ∩ ([n] × [n − d + 1])|. Moreover, for every i ∈ [n], strict 
monotonicity implies ci ≤ i and thus D ⊆ Tn. With a slight abuse of notation identifying 
Tn−d+1 with its image in [n]2, this means that

νmin(D, d) = |D ∩ Tn−d+1|. (10)

Set R = [n] × ([n] \ [n −d +1]) and, for each i ∈ [n −d +1], write ri = |D∩Δn
i ∩Tn−d+1|. 

Assuming that ri > 0, Remark 2.17 yields that (Δn
i ∩R) ⊆ D and thus

ri = |D ∩ (Δn
i ∩ Tn−d+1)| = |D ∩ Δn

i | − |D ∩ (Δn
i ∩R)| = |D ∩ Δn

i | − d + 1. (11)

Combining (10) and (11) we finally obtain

νmin(D, d) = |D ∩ Tn−d+1| =
n−d+1∑
i=1

ri =
n−d+1∑
i=1

max{0, |D ∩ Δn
i | − d + 1},

which shows that the pair (D, d) is MDS-constructible. This also concludes the proof 
as initially convex Ferrers diagrams are adjoints of strictly monotone ones and MDS-
constructibility is preserved under adjunction. �

Observe that Proposition 4.15 is not true in general if we consider the wider classes 
of monotone or p-monotone Ferrers diagrams (and their adjoints), as the next example 
shows.

Example 4.16. In this example, for given positive integers n and 2 ≤ d ≤ n, write

νMDS(D, d) =
n−d+1∑
i=1

max{0, |D ∩ Δn
i | − d + 1}.

In the following table, we collect the values of νmin(D, d) and νMDS(D, d) for the first 
two monotone Ferrers diagrams from Example 2.15, which we label in order D1 and D2. 
Note that here n = 5 and D1 is strictly monotone, whilst D2 is not.
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d νmin(D1, d) νMDS(D1, d) νmin(D2, d) νMDS(D2, d)
2 4 4 12 10
3 1 1 7 6
4 0 0 3 3
5 0 0 1 1

Definition 4.17. Let D = (c1, . . . , cn) be a Ferrers diagram of order n, let d ∈ {2, . . . , n}
and let j ∈ {0, . . . , d − 1}. The pair (D, d) is called j-Singleton if

νmin(D, d)= νj(D, d) =
n−j∑
i=1

max{0, ci − d + 1 + j}.

Informally speaking, a pair (D, d) is j-Singleton if νmin(D, d) is obtained by counting 
the number of dots in D after removing the last j columns and the first d − j − 1 rows. 
Because of this and (6), every pair (D, d), where D is a Ferrers diagram of order n and 
2 ≤ d ≤ n, is j-Singleton for some j ∈ {0, . . . , d − 1}. It is not difficult to construct 
examples of pairs (D, d) that are j-Singleton for more than one choice of j.

Until the end of the paper, we will use the following notation. For any positive integers 
n and d with 2 ≤ d ≤ n and every j ∈ {0, . . . , d − 1}, define the following subsets of [n]2:

Sn,d,j = {(i, �) : i ∈ {d− j, . . . , n}, � ∈ [n− j]},

Tn,d,j = Sn,d,j ∩ Tn,

Ln,d,j = [n]2 \ Sn,d,j .

With the notation above, observe that, for any Ferrers diagram D of order n, one has

n−j∑
i=1

max{0, ci − d + 1 + j} = |D ∩ Sn,d,j | = |D| − |D ∩ Ln,d,j | = νj(D, d),

and hence, the value νmin(D, d) in (6) can be written as

νmin(D, d) = min {νj(D, d) : j ∈ {0, . . . , d− 1}}
= min {|D ∩ Sn,d,j | : j ∈ {0, . . . , d− 1}} .

In particular, (D, d) is j-Singleton if and only if νmin(D, d) = νj(D, d).

Example 4.18. For n = 8, d = 4 and j = 1, the figure below represents the three 
sets S8,4,1, T8,4,1 and L8,4,1 as follows. The black dots represent S8,4,1, the orange dots 
represent L8,4,1 and the dots contained in the red triangular area correspond to T8,4,1.



24 A. Neri, M. Stanojkovski / Journal of Combinatorial Theory, Series A 208 (2024) 105937
Lemma 4.19. Let D be a Ferrers diagram of order n, let d ∈ {2, . . . , n}, and let j ∈
{0, . . . , d − 1} be such that (D, d) is j-Singleton. Let D′ ⊆ D be a Ferrers diagram of 
order n with the property that D ∩ Ln,d,j = D′ ∩ Ln,d,j . Then (D′, d) is j-Singleton.

Proof. For any i ∈ {0, . . . , d − 1} we have

νmin(D, d) ≤ νi(D, d) = |D| − |D ∩ Ln,d,i| = |D′| + |D \ D′| − |D ∩ Ln,d,i|
≤ |D′| + |D \ D′| − |D′ ∩ Ln,d,i| = νi(D′, d) + |D \ D′|. (12)

On the other hand, by hypothesis (D, d) is j-Singleton, and thus we have

νmin(D, d) = νj(D, d) = |D ∩ Sn,d,j | = |D| − |D ∩ Ln,d,j | = νj(D′, d) + |D \ D′|. (13)

Combining (12) with (13), we get νmin(D′, d) = νj(D′, d). �
Lemma 4.20. Let D be a Ferrers diagram of order n and let d ∈ {2, . . . , n}, j ∈ {0, . . . , d −
1}. Assume that (D, d) is MDS-constructible and j-Singleton. Then the following hold:

(1) One has D ∩ Sn,d,j = D ∩ Tn,d,j .
(2) One has {i ∈ [n − d + 1] : |D ∩ Δn

i | ≥ d} = {i ∈ [n − d + 1] : D ∩ Δn
i ∩ Sn,d,j 	= ∅}.

(3) If i ∈ [n − d + 1] and D ∩ Δn
i ∩ Sn,d,j 	= ∅, then D ∩ Δn

i ⊇ Δn
i ∩ Ln,d,j .

Proof. Define the subsets X and Y of [n − d + 1] as

X = {i ∈ [n−d+1] : |D ∩Δn
i | ≥ d} and Y = {i ∈ [n−d+1] : D∩Δn

i ∩Sn,d,j 	= ∅}.

We claim that X ⊆ Y . To see this, let i ∈ X and note that |Δn
i ∩Sn,d,j | = n − d − i + 2. 

Since |D ∩ Δn
i | ≥ d and both Δn

i ∩ Sn,d,j and D ∩ Δn
i are contained in the set Δn

i of 
cardinality n − i + 1, they must intersect nontrivially. Since i was chosen arbitrarily, the 
claim is proven.

We proceed by first proving (1) and then (2) and (3) together.
(1) Since (D, d) is j-Singleton, we have that

νmin(D, d) = |D ∩ Sn,d,j |. (14)
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On the other hand, (D, d) is MDS-constructible and thus we have

νmin(D, d) =
∑
i∈X

(|D ∩ Δn
i | − d + 1) =

∑
i∈X

(|D ∩ Δn
i | − |Δn

i ∩ Ln,d,j |)

≤
∑
i∈X

(|D ∩ Δn
i | − |D ∩ (Δn

i ∩ Ln,d,j)|) =
∑
i∈X

(|D ∩ (Δn
i ∩ Sn,d,j)|) (15)

≤
∑
i∈Y

(|D ∩ (Δn
i ∩ Sn,d,j)|) = |D ∩ Tn,d,j |.

Combining (14) and (15), we derive that D ∩ Sn,d,j = D ∩ Tn,d,j .
(2)-(3) Thanks to the proof of (1), we know that the inequalities in (15) are in fact all 

equalities and so, for each i ∈ X we have D∩ (Δn
i ∩Ln,d,j) = Δn

i ∩Ln,d,j . Furthermore, 
by the definition of Y and using the fact that the second to last inequality in (15) is an 
equality, we deduce that Y = X and the proof is complete. �
Example 4.21. Let D = (0, 2, 2, 3, 3, 5, 6, 8) be a Ferrers diagram of order 8 and let d = 4. 
It is easy to verify that (D, 4) is MDS-constructible and j-Singleton for j = 1. We can 
see that D ∩ S8,4,1 = D ∩ T8,4,1. Moreover, for every index 2 ≤ i ≤ 5 we have that 
D ∩Δ8

i ∩ T8,4,1 	= 0 and indeed, for each such index, it holds that D∩Δ8
i ⊇ Δ8

i ∩L8,4,1.

The following is the main result of this section, which ensures in particular that 
Conjecture 2.11 holds true for every MDS-constructible pair (D, d).

Theorem 4.22. Let D be a Ferrers diagram of order n and let 2 ≤ d ≤ n be an integer. If 
(D, d) is MDS-constructible, then there exists a [D, νmin(D, d), d]F MFD code over any 
finite field F .

Before giving a proof of Theorem 4.22, we recall a useful criterion to construct MFD 
codes on a given Ferrers diagram from MFD codes on related Ferrers diagrams. This 
strategy was first adopted in the proof of [7, Theorem 7] and the explicit statement can 
be found in [2, Remarks II.12 & II.14].

Proposition 4.23. Let D be a Ferrers diagram of order n and let 2 ≤ d ≤ n be an integer.
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(1) Let D′ ⊆ D be a Ferrers diagram of order n such that νmin(D, d) = νmin(D′, d). If C
is a [D′, νmin(D′, d), d]F MFD code, then it is also a [D, νmin(D, d), d]F MFD code.

(2) Let D′ ⊇ D be a Ferrers diagram of order n such that νmin(D, d) = νmin(D′, d) −
|D′ \D|. If C is a [D′, νmin(D′, d), d]F MFD code, then C ∩FD is a [D, νmin(D, d), d]F
MFD code.

We give here the proof of Theorem 4.22 and we illustrate its steps explicitly in Ex-
ample 4.24.

Proof of Theorem 4.22. Let F be a finite field, let (D, d) be an MDS-constructible pair 
and let j ∈ {0, . . . , d − 1} be such that (D, d) is j-Singleton. Define

Y = {i ∈ [n− d + 1] : D ∩ Δn
i ∩ Sn,d,j 	= ∅}

and note that, as a consequence of (7) and Lemma 4.20(2), one has

νmin(D, d) =
n∑

i=1
max{0, |D ∩ Δn

i | − d + 1} =
n−d+1∑
i=1

max{0, |D ∩ Δn
i | − d + 1}

=
∑
i∈Y

max{0, |D ∩ Δn
i | − d + 1}.

If Y = ∅, then νmin(D, d) = 0 and there is nothing to prove. Hence, assume Y 	= ∅. By 
the definition of Y , there exists � ∈ [n − d + 1] such that Y = {i : � ≤ i ≤ n − d + 1}. 
Fix such � and define the following new Ferrers diagram

D′ = (D ∩ Sn,d,j) ∪
( n⋃

i=�

(Δn
i ∩ Ln,d,j)

)
.

By Lemma 4.20(3), for every � ≤ i ≤ n − d + 1 we have that Δn
i ∩ Ln,d,j ⊆ D while 

the same is satisfied for i ≥ n − d + 2 thanks to the fact that D is a Ferrers diagram. It 
follows in particular that D′ ⊆ D. Moreover, it also holds that

D′ ⊆ D′′ =
n⋃

i=�

Δn
i .

The Ferrers diagram D′′ is a copy of Tn−�+1 (considered as embedded into [n]2) and 
hence it is strictly monotone and (D′′, d) is j′-Singleton for every j′. In particular, it 
is j-Singleton. Furthermore, D′ and D′′ have the same intersection with Ln,d,j. Thus, 
Lemma 4.19 yields that (D′, d) is also j-Singleton. Since D′′ is strictly monotone, by 
Theorem 4.10 there exists a [D′′, νmin(D′′, d), d]F MFD code C′′, which we fix. Since 
(D′, d) and (D′′, d) are both j-Singleton and D′ ∩ Ln,d,j = D′′ ∩ Ln,d,j , we compute
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νmin(D′′, d) = |D′′ ∩ Sn,d,j | = |(D′ ∩ Sn,d,j)| + |(D′′ \ D′) ∩ Sn,d,j |
= νmin(D′, d) + |(D′′ \ D′) ∩ Sn,d,j | = νmin(D′, d) + |D′′ \ D′|.

Proposition 4.23(2) yields that C′ = C′′∩FD′ is a [D′, νmin(D′, d), d]F MFD code. Finally, 
we have

νmin(D′, d) = |D′ ∩ Sn,d,j | = |D ∩ Sn,d,j | = νmin(D, d)

and D′ ⊆ D. By Proposition 4.23(1), the code C′ is thus also a [D, νmin(D, d), d]F MFD 
code. �
Example 4.24. Let D = (0, 2, 2, 3, 3, 5, 6, 8) be the Ferrers Diagram from Example 4.21
and let F be an arbitrary finite field. In this case (D, 4) is 1-Singleton and νmin(D, 4) =
ν1(D, 4) = 9. In order to construct a [D, 9, 4]F MFD code, we follow the proof of Theo-
rem 4.22 step by step. With the terminology introduced there and as illustrated below, 
we have

Y = {i ∈ [5] : D ∩ Δn
i ∩ Sn,d,j 	= ∅} = {2, 3, 4, 5},

and

D′ = (D ∩ S8,4,1) ∪
( n⋃

i=2
(Δn

i ∩ L8,4,1)
)

= (0, 1, 2, 3, 3, 5, 6, 7).

Furthermore, we have D′′ = (0, 1, 2, 3, 4, 5, 6, 7), as given in the third picture below.

It is easy to verify that νmin(D′, 4) = νmin(D, 4) = 9 and νmin(D′′, 4) = 10 = νmin(D′, 4) +
|D′′ \ D′|. Theorem 4.10 ensures the existence of a [D′′, 10, 4]F MFD code C′′. Then, by 
Proposition 4.23(2), the code C′ = C′′ ∩ FD′ is a [D′, 9, 4]F MFD code and it is also a 
[D, 9, 4]F MFD code thanks to Proposition 4.23(1).
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