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Abstract

The study of experimental recording of dynamical systems often consists in the

analysis of signals produced by that system. Time series analysis consists of a

wide range of methodologies ultimately aiming at characterizing the signals and,

eventually, gaining insights on the underlying processes that govern the evolution

of the system.

A standard way to tackle this issue is spectrum analysis, which uses Fourier

or Laplace transforms to convert time-domain data into a more useful frequency

space. These analytical methods allow to highlight periodic patterns in the sig-

nal and to reveal essential characteristics of linear systems. Most experimental

signals, however, exhibit strange and apparently unpredictable behavior which

require more sophisticated analytical tools in order to gain insights into the na-

ture of the underlying processes generating those signals. This is the case when

nonlinearity enters into the dynamics of a system. Nonlinearity gives rise to un-

expected and fascinating behavior, among which the emergence of deterministic

chaos. In the last decades, chaos theory has become a thriving field of research for

its potential to explain complex and seemingly inexplicable natural phenomena.

The peculiarity of chaotic systems is that, despite being created by determin-

istic principles, their evolution shows unpredictable behavior and a lack of reg-

ularity. These characteristics make standard techniques, like spectrum analysis,

ineffective when trying to study said systems. Furthermore, the irregular behav-

ior gives the appearance of these signals being governed by stochastic processes,

even more so when dealing with experimental signals that are inevitably affected

by noise.

Nonlinear time series analysis comprises a set of methods which aim at over-

coming the strange and irregular evolution of these systems, by measuring some

characteristic invariant quantities that describe the nature of the underlying dy-

namics. Among those quantities, the most notable are possibly the Lyapunov ex-

ponents, that quantify the unpredictability of the system, and measure of dimen-

sion, like correlation dimension, that unravel the peculiar geometry of a chaotic
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system’s state space. These methods are ultimately analytical techniques, which

can often be exactly estimated in the case of simulated systems, where the differ-

ential equations governing the system’s evolution are known, but can nonetheless

prove difficult or even impossible to compute on experimental recordings.

A different approach to signal analysis is provided by information theory. De-

spite being initially developed in the context of communication theory, by the

seminal work of Claude Shannon in 1948, information theory has since become a

multidisciplinary field, finding applications in biology and neuroscience, as well

as in social sciences and economics. From the physical point of view, the most

phenomenal contribution from Shannon’s work was to discover that entropy is

a measure of information and that computing the entropy of a sequence, or a

signal, can answer to the question of how much information is contained in the

sequence. Or, alternatively, considering the source, i.e. the system, that generates

the sequence, entropy gives an estimate of how much information the source is

able to produce. Information theory comprehends a set of techniques which can

be applied to study, among others, dynamical systems, offering a complementary

framework to the standard signal analysis techniques. The concept of entropy,

however, was not new in physics, since it had actually been defined first in the

deeply physical context of heat exchange in thermodynamics in the 19th century.

Half a century later, in the context of statistical mechanics, Boltzmann reveals

the probabilistic nature of entropy, expressing it in terms of statistical proper-

ties of the particles’ motion in a thermodynamic system. A first link between

entropy and the dynamical evolution of a system is made. In the coming years,

following Shannon’s works, the concept of entropy has been further developed

through the works of, to only cite a few, Von Neumann and Kolmogorov, being

used as a tool for computer science and complexity theory. It is in particular in

Kolmogorov’s work, that information theory and entropy are revisited from an

algorithmic perspective: given an input sequence and a universal Turing machine,

Kolmogorov found that the length of the shortest set of instructions, i.e. the pro-

gram, that enables the machine to compute the input sequence was related to the

sequence’s entropy. This definition of the complexity of a sequence already gives
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hint of the differences between random and deterministic signals, in the fact that

a truly random sequence would require as many instructions for the machine as

the size of the input sequence to compute, as there is no other option than pro-

gramming the machine to copy the sequence point by point. On the other hand,

a sequence generated by a deterministic system would simply require knowing

the rules governing its evolution, for example the equations of motion in the case

of a dynamical system. It is therefore through the work of Kolmogorov, and also

independently by Sinai, that entropy is directly applied to the study of dynamical

systems and, in particular, deterministic chaos. The so-called Kolmogorov-Sinai

entropy, in fact, is a well-established measure of how complex and unpredictable

a dynamical system can be, based on the analysis of trajectories in its state space.

In the last decades, the use of information theory on signal analysis has con-

tributed to the elaboration of many entropy-based measures, such as sample en-

tropy, transfer entropy, mutual information and permutation entropy, among oth-

ers. These quantities allow to characterize not only single dynamical systems, but

also highlight the correlations between systems and even more complex interac-

tions like synchronization and chaos transfer. The wide spectrum of applications

of these methods, as well as the need for theoretical studies to provide them a

sound mathematical background, make information theory still a thriving topic

of research.

In this thesis, I will approach the use of information theory on dynamical

systems starting from fundamental issues, such as estimating the uncertainty of

Shannon’s entropy measures on a sequence of data, in the case of an underly-

ing memoryless stochastic process. This result, beside giving insights on sensitive

and still-unsolved aspects when using entropy-based measures, provides a rela-

tion between the maximum uncertainty on Shannon’s entropy estimations and

the size of the available sequences, thus serving as a practical rule for experiment

design. Furthermore, I will investigate the relation between entropy and some

characteristic quantities in nonlinear time series analysis, namely Lyapunov ex-

ponents. Some examples of this analysis on recordings of a nonlinear chaotic

system are also provided. Finally, I will discuss other entropy-based measures,
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among themmutual information, and how they compare to analytical techniques

aimed at characterizing nonlinear correlations between experimental recordings.

In particular, the complementarity between information-theoretical tools and an-

alytical ones is shown on experimental data from the field of neuroscience, namely

magnetoencefalography and electroencephalography recordings, as well as mete-

orological data.
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Chapter 1

Introduction

The motion of objects is among the first topics studied in Physics, from obser-

vation of celestial objects in ancient Greece and later by Galileo and Newton up

to modern physics with the theory of quantum mechanics. Beside the mechani-

cal aspects, the concept of a dynamical system broadened to involve any system

that "moves", in the sense that it evolves with time. This eventually surpassed the

limits of physical systems, and the theory of dynamical systems now involves a

multitude of fields, including physiology, climate science and even social studies

and economics.

The techniques used to study dynamical systems are therefore general and

do not necessarily make assumptions on the nature of the underlying process

generating the dynamics. These techniques stem not only from Physics, but from

several branches of mathematics, including statistics and information theory.

Studying a dynamical system ultimately consists in trying to characterize its

evolution, recognizing possible patterns and most importantly estimating funda-

mental invariant quantities that govern its behaviour. In other words, understand-

ing the essential properties of the dynamics governing the system.

Since many dynamical systems have been observed to exhibit irregular be-

haviour, a particular interest has been taken into nonlinear phenomena. Among

these, the emergence of chaos has gained a particular interest, as a possible way to

describe the underlying dynamics of the systems under study when the assump-

tion of a purely stochastic behaviour was found insufficient.

The evolution of theoretical dynamical system often unfolds in amulti-dimensional

space, known as the state space. For theoretical systems, when differential equa-

tions governing the evolution are known and can be solved by numerical integra-
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Chapter 1 Introduction

tion, finding the evolution invariants in order to characterize the evolution is often

possible by means of analytical methods proper of dynamical systems theory.

Alas, in experiments, knowledge of the evolution differential equations is miss-

ing and dedicated tools are required to recover information about the underlying

nature of the systems under study. Also, full access to a system’s state space is

not always available, but just a scalar signal originating from the system may be

available, after measuring sampled points of the signal. Therefore signal analysis

is critical for experimental research of such systems.

Time series analysis is possibly the most widespread approach to deal with ex-

perimental signals, and comprises a set of methods that ultimately try to grasp

fundamental properties of the system’s dynamics. These properties will make up

the starting point for the theoretical modeling, with the ultimate goal of recover-

ing, if possible, the equations governing the system’s evolution.

Among the most widespread methods of time series analysis, spectral analysis

by using Fourier or Laplace transforms are often used to convert time-domain data

into the frequency space, which allows for important properties of linear systems

to be shown. Unfortunately, these methods prove to be inefficient in the case of

nonlinear, and chaotic, systems. The basic requirement of linearity, i.e. that small

differences in the cause lead to small differences in their effects, is not valid in the

case of chaotic regimes.

Although being created by deterministic principles, chaos is a dynamical state

marked by unpredictability and lack of regularity. Signals created by chaotic dy-

namical systems are irregular, sensible to initial conditions, difficult to predict and

their evolution within the system’s state space can exhibit strange properties. Due

to these characteristics, misclassification of chaotic signals as stochastic occurs

when inappropriate tools, like linear methods, are used. The recognition and clas-

sification of chaos need the evaluation of dynamical invariants that quantify the

complicated aspects of the evolution of a chaotic system. Lyapunov exponents,

for example, serve as a predictability indicators, while quantities like attractor’s

dimensions reveal the strange geometry of a chaotic system’s state space.

The identification of chaos as a possible dynamical domain for nonlinear sys-
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tems gave way to search for chaotic behavior in experimental recordings. Chaotic

behavior, therefore, is often searched in several fields like climate science, social

science, neurology, and even economics. Detection of a chaotic regime, as opposed

to a stochastic one, would reveal the presence of determinism in a system, as well

as provide a starting point for predicting the system’s future states.

In the next sections, a mathematical definition of a dynamical system will be

given, as well as a brief overview of the most widely used method of nonlinear

time series analysis.

From dynamical systems to time series

A dynamical system D evolving in time can be described by a set of vectors s(t)

in a state space S ⊂ Rd, where d is the dimension of the system. We can define a

time-evolution operator T such that the state of the system at a later time can be

written as:

s(t + dt) = Tdt[s(t)].

Typically, the trajectories of a chaotic system, provided long enough observa-

tions, will converge to the subset S , in which the evolution is contained, and that

is called an attractor, meaning that it “attracts” the trajectories.

In theoretical systems, the description of the evolution operator T is known,

i.e. a set of differential equations (or discrete difference equations) is provided.

As an example, we will use the equations of the Röessler attractor [1], a widely

used theoretical chaotic model. The Röessler attractor is a a three-dimensional

systems, so the vector s(t) = {x(t), y(t), z(t)}. The differential equations describing

its dynamics are:

dx
dt
= −y − z

dy
dt
= x + a y

dz
dt
= b + z (x − c) .

(1.1)

A common choice of parameters is a = 0.3, b = 0.2, c = 5.7, which we will

use as a standard to provide examples of applications of nonlinear analysis tools.
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Chapter 1 Introduction

Figure 1.1 shows the state space of the Rössler attractor, obtained by integration

of Eqs. (1.1) by Runge–Kutta Prince–Dormand (8, 9) method [2].

a)

x
y

z

b)

x

y

z

Figure 1.1: State space evolution (a) of a Rössler attractor and time series of its

components (b)

In the case of experimental systems, the space state vectors s(t) are most often

not available, but a single scalar sequence s(t) is available. This signal is the result

of a measuring process that can be described as s(t) = M[s(t)], whereM is the

measuring function. The signal s(t) is then digitally sampled so that only a discrete

sequence of sampled points remains available. By defining as T the sampling

period, we can write the sampled sequence as x[n] = s(nT ).

We are going now to describe tools from nonlinear time series analysis that,

starting from the sequence x[n] defined above, try to recover dynamical invari-

ants that can characterize the underlying nature of the system’s evolution. In

particular, we are interested in tools that may give evidence of chaotic behaviour.

Complexity in nonlinear time series analysis

The methods we are going to describe are indicators of a system degree of com-

plexity. In general, having a higher-degree of complexity indicates that the system

has a more disordered and irregular dynamic. Chaotic systems usually show an
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1.0

intermediate level of complexity: despite their evolution is irregular and unpre-

dictable, they are still controlled by deterministic rules. Periodic systems have

low-level complexity, while a higher-level complexity represents less regular rules

governing the dynamics, as in the case of purely stochastic processes.

Quantify the complexity of time series data using methods derived from non-

linear dynamics, usually requires to reconstruct the dynamic system states based

on the phase-space. Reconstruction of the phase-space from a scalar sequence is

performed by means of embedding, as proven by Taken. One example of embed-

ding, namely time-delay embedding, consists in constructing vectors x so that:

x(i) = {x(i), x(i − τ), x(i − 2τ), . . . , x(i − (m − 1)τ)} ,

where (m, τ) are respectively the dimension and the time-lag parameters of the

embedding. An example of time-delayed embedding of the x-component from

the Rössler attractor is shown in Figure1.2. The choice of optimal parameters for

the embedding procedure is not a trivial subject: despite some general criteria

are present in literature, new methods addressing this issue are still an important

topic of research [3].

Provided that phase-state reconstruction has been properly obtained, the ex-

ploration of the attractor properties can be performed bymeasuring the invariants

of the system’s evolution. In terms of exploring attractor properties, themajor cat-

egories of attractor invariants commonly used to test complexity out of the system

states are Lyapunov exponents and fractal dimensions.

Lyapunov exponent investigates how system states change over time in terms

of the exponential divergence (or convergence) of initially close trajectories. The

growing rate of separation between nearby trajectories is a clear evidence of the

system’s sensitivity to initial conditions. A positive Lyapunov exponent, for ex-

ample, indicates the exponential divergence of nearby trajectories; a negative one

indicates the exponential convergence of trajectories; and a zero value indicates

that expanding and contracting dynamics are in balance. Given a trajectory xi(t)

and its nearest neighbour x̃i(t), so that the two trajectories are arbitrary close at
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Figure 1.2: Two-dimensional time-delay embedding of a Rössler attractor.

t = t0, the Lyapunov exponent λi can be described by:

λi = lim
t→∞

1
t

ln
d(t)
d(t0)

, (1.2)

where d(t) = ∥xi(t)− x̃i(t)∥ is the distance between the trajectories at a given time

t.

In theoretical systems, Lyapunov exponents can be derived by analytical meth-

ods out of the differential equations governing the evolution. One commonly used

method, therefore known as the standard method was proposed by Benettin [4, 5].

In general, we talk about the Lyapunov spectrum, since the number of exponents

is equal to the dimension of the system space state. For experimental data, given

an m-dimensional phase-space reconstruction, m Lyapunov exponents exist, but

the main variations are described by the largest exponent: this means not only

that the largest exponent is the one bearing the most information regarding the

system’s evolution, but also that it’s the one most easily measurable out of the

reconstructed phase-space, particularly when the size of the available samples se-
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quence is limited. Some algorithms also exist to compute the whole Lyapunov

spectrum out of nonlinear experimental signals[6, 7], but while they coincide on

evaluation of the mximum Lyapunov exponent (MLE), the results on the others

exponents may vary as they depend on the algorithms’ parameters [8].

A theoretical definition of Lyapunov exponents came with Pesin, but a mathe-

matical formulation suitable for computation came later with Wolf et al. [9]. Nu-

merous modification and adjustments have been made since, for instance, Rosen-

stein et al. [10] created a much faster and simpler version to decrease computing

complexity and successfully guarantee trustworthy values even for small-sized

datasets and later on a more reliable version was provided by Gao and Zheng [11,

12, 13] to compute MLE out of embedded time series. Finally, Kowalik and El-

bert [14] proposed a modified version to compute the MLE in a time-dependent

way.

The dimensional complexity of phase space can also be estimated using differ-

ent fractal dimensions from fractal theory. Hausdorff [15] first offered a precise

theoretic definition of dimension. A geometric object’s dimension indicates how

large it is in space, and the dimension of the attractor in phase space may indi-

cate how many degrees of freedom (or how complex) the system is. Particularly, a

larger dimension of the attractor denotes a system’s increased spatial extensive-

ness, or complexity of the time series under study. Different fractal dimensions

have been introduced to study dimensional complexity, among these correlation

dimension [16], box-counting dimension [17] and Rényi dimensions [18] areworth

mentioning.

As an example, we will give the definition of correlation dimension, possibly

the most used among fractal dimensions. First let us define as di, j = ∥xi − x j∥ the

distance between two arbitrary vectors in the reconstructed m-dimensional phase

space. Then the correlation integral C(m, r) can be written as:

C(m, r) =
2
∑

i< jΘ(r − di, j)
(N − (m − 1)τ) (N − (m − 1)τ − 1)

, (1.3)

where Θ is the Heaviside function and r a threshold distance. The correlation
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dimension is then:

Cm = lim
r→0

ln C(m, r)
ln r

.

From this definition, we can see how correlation dimension, and fractal dimen-

sions in general, try to capture the spatial complexity of the system in terms of

scaling exponents of the distribution of distances between phase space vectors.

Some alternative methods have been proposed to compute correlation dimen-

sion, which do not require to compute directly the correlation integral in Eq.(1.3).

Among these, one method exploits the asymptotic behaviour of the divergence

exponent Λ(t, d0) for t → ∞ [19]. The divergence exponent, as we will discuss

more in detail in Chapter 4, can be written as Λ(t, d0) = ⟨ln
(
di, j(t)/d0

)
⟩ computed

at different values of the initial distance d0.

Finally, a qualitative analysis of a system complexity can be performed by

several useful diagrams, which offer a vivid representation of the system states.

Some examples are phase portraits [20], Poincare sections [21], and recurrence

plots (RP) [22].

Poincarè sections are made by selecting a plane in the state space, or in the

reconstructed phase space, and plotting the points in which the attractor’s tra-

jectories cross into the selected plane. Usual choices of planes consist in putting

one of the variables equal to a constant values. A different, but still widely used

version of Poincarè sections, is shown in Figure 1.3. This diagram was made by

plotting consecutive maxima of the x-component (Xn, Xn+1) of the Rössler attrac-

tor, that ultimately corresponds to selecting the plane where dx/dt = 0 and the

second derivative is negative. This example shows clearly the deterministic nature

of the Rössler attractor: despite the apparently irregular evolution of the trajec-

tories and the lack of periodicity, the consecutive maxima of the x-component

follow a regular pattern.

Applications of nonlinear analysis methods

As we discussed in the previous sections, nonlinear systems have gained a lot of

interest particularly because of their irregular behaviour, which so often is found

in real systems.
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Figure 1.3: Poincarè diagram of consecutive maxima of the x-component of the

Rössler attractor.

One of the first experimental evidences of chaotic behaviour were found in

optical systems, in particular concerning lasers. Ikeda [23] presented one of the

earliest articles on chaos in optical systems in 1979, discussing a model of light in

ring cavities, which showed evidence of “optical turbulence” [24] that eventually

leads to chaotic behavior. Many experiments using pulsed lasers [25], as well as

frequency-modulated [26], and gain-modulated [27] lasers, corroborated these

theoretical predictions. Evidence of chaotic behaviour were also found in lasers

with feedbackmechanisms [28, 29], among which it is worthmentioning the work

of Arecchi et al. [30, 31] on CO2 lasers. From the latter, a set of equations was

recently derived that makes up a Minimal Universal Model for chaos, which will

be described inmore detail in Chapter 4. Among other evidences of chaos in lasers,

some systems [32, 33] were found to be described by equations similar to a Lorenz

system [34], thus providing an experimentally proven equivalence.
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Beside optical systems, electronic circuits were identified as ideal systems to

study chaotic regimes. The first observations of chaos in electronics were made in

the early 1980s, when one of themost famous chaotic circuits was implemented by

Chua [35, 36]. The relative easiness for electronic circuits to be customized makes

them an efficient instrument for generating different chaotic regimes [37, 38], as

well as simulating theoretical models [39, 40]. Recently, an implementation of

the Minimal Universal Model was made on an electronic platform, using analog

components as well as digital ones to tune the model’s parameters in a fast and

repeatable way [41]. Furthermore, the cheap cost and scalability of electronic se-

tups allows to investigate chaotic behavior arising from interaction of multiple

systems, as in the case of network structures [42] and for the study of synchro-

nization phenomena [43, 44, 45].

Beside experimental evidence of chaos on controlled systems like the ones

mentioned above, there are several fields, beside physics, where the methods dis-

cussed in the previous section have been applied to evaluate complexity. Among

these, economics, life science, geophysics and climate science, may be the most

common application areas of nonlinear dynamics approaches.

The study of the application of methods derived from nonlinear dynamics to

economics has become a popular topic over the last 20 years; a seminal work is

provided by Brock and Sayers [46], in which tests are conducted for the presence

of low-dimensional deterministic chaos in U.S. macroeconomic data, such as the

unemployment rate, GNP, and industrial production. More recently, recurrence

plots were used to analyze various stock indexes in global stock markets [47], and

a complex behaviour was discovered in Hong Kong’s stock market by means of

correlation dimension and Lyapunov exponents. Barkoulas et al. [48] examined

the chaotic properties of oil market indeces, using the correlation dimension, Lya-

punov exponents, and recurrence plots.

In earth science, Ponyavin [49] applied nonlinear analysis to study geomag-

netic and climate records for sunspot counts, revealing a more intense solar activ-

ity in the last 60 years. Other studies suggested that irregular oscillations in the

number of sunspots, may be created by chaotic dynamics [50] and have a self-
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similar structure [51]. The sunspot number, on the other hand, was demonstrated

to be well represented by a relaxation oscillator model with stochastic perturba-

tions [52], defying the assertion of chaos.

In geophysics, the idea of an underlying deterministic nature prompted the

use of nonlinear time series analysis techniques in this field [53], with the aim of

finding a deterministic, and therefore predictable, behaviour: chaos was claimed

to be present in critical events like seismic activity [54, 55, 56] and volcanic erup-

tions [57], aswell as sea level oscillations [58]. Nonetheless, several studies showed

that earthquakesmay be represented by stochastic processes [59], proving the dif-

ficulty of reaching a definitive result on this topic.

Climate science is another central field where researches expect to find chaotic

regimes at certain conditions and dimensional scales. After all, the well-known

Lorenz system is a model of atmospheric convection [60]. Nonlinear analytical

approaches have thus been used to investigate atmospheric data [61, 62], with the

goal of improving forecasts. Analysis of wind recordings [63, 64] yielded promising

results for chaos identification in meteorological data. Likewise, several questions

have been raised about the proper application of nonlinear analytical techniques

to climate data, as well as the interpretation of the results [65, 66]. In many cir-

cumstances, such as for daily temperature sequences, using stochastic modeling

proves to be sufficient to correctly extract system features [67].

For what regards life sciences, nonlinear analysis methods find a wide range of

applications in the study of the human heart and the brain. As an example, Yilmaz

and Güler [68] were able to find two indices useful in diagnosing internal carotid

artery stenosis, through the estimation of correlation dimension and MLE on the

blood flow of healthy subjects and patients. Some groundbreaking works have

been conducted by Rapp et al. [69], who addressed spontaneous brain activity in

the motor cortex of a monkey using chaotic modeling.

For what regards human brain signals, electroencephalography (EEG) or mag-

netoencephalography (MEG) are frequently used to record electromagnetic sig-

nals from the brain cortex. Brain recordings display irregular evolutions, prompt-

ing interest from neuroscientist to find evidence of chaotic regimes [70]. Babloy-
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antz et al. [71] were the first to measure chaos in human brain EEG sleep record-

ings. Thomasson et al. [72] later analyzed epileptic EEG activity and the re-

sults showed substantial transients in pre-ictal activity recordings. Other stud-

ies are present on the possibility of predicting epileptic seizures using nonlinear

approaches [73]. Some evidences were found of “brain attractor” increasing its

dimensionality at the occurrence of epileptic seizures [74, 75].

Nonetheless, some studies compared nonlinear techniques with other mea-

sures, including linear ones, finding that linear measures can have performances

similar to nonlinear ones in EEG data analysis [76]. Similarly, McSharry et al. [77]

proposed that some linear approaches are able to identify pre-ictal transitions,

as efficiently as nonlinear methods, suggesting that a combination of linear and

nonlinear methods would be a useful way for accurate seizure prediction. In con-

clusion, despite several evidences of a chaotic nature in the brain systems [78, 79]

as well as to model activity of single neurons [80, 81], it has been pointed out

that the algorithms used to identify chaos were frequently misused, showing the

necessity for the creation of new nonlinear metrics to estimate the complexity

of those systems, rather than necessarily proving the presence of deterministic

chaos [82].

In the next Chapter 2, we are going to present the framework of Informa-

tion Theory and discuss Shannon entropy, as well as other information-theoretical

tools applied to dynamical systems and time series in general.

Despite it’s wide use, entropy estimations, in particular Shannon entropy, still

has some unresolved issues in what regards estimating it’s variance when an en-

tropy estimator is used on a set of real data. This will be the topic of Chapter 3.

Since Information Theory focuses on estimating the amount of information in

a given set of possible outcomes, methods stemming from this framework provide

a different approach with respect to the nonlinear analytical tools we discussed in

this chapter, which evidently stem from dynamical systems theory. In Chapter 4,

based on a fundamental theorem establishing a link between dynamical invariants

and entropy, we are going to employ some novel methods to study this relation.

These methods will be applied to a newly developed model of chaos.
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Nonetheless, some similarities, or even equivalence, between entropy and dy-

namical invariants of chaos theory are known and will be addressed in Chapter 4.

Finally, in Chapter 5 we are going to provide a comparison between a metric

from Information Theory, namely mutual information, and a recently developed

measure that combines linear correlation metrics with nonlinear analytical ele-

ments provided by surrogate data generation for significance estimation. These

methods will be used to address correlation between brain signal recordings as

well as wind recordings.
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Chapter 2

Entropies and dynamical systems

After a brief introduction on some basic concepts regarding dynamical systems

theory and time series analysis, in this Chapter, the topic of entropy and the con-

nection between Information Theory and dynamical systems is discussed. The

seminal work of Claude Shannon, in 1948[83], addresses for the first time the

problem of communication in mathematical terms, trying to answer to the ques-

tions: how much information is contained in a message; how can the message

be efficiently encoded; what is the maximal communication rate over a channel.

After this, many scientist have further expanded the fields of Information Theory.

Just to mention a few, Von Neumann, Turing and Kolmogorov, famous for their

work in computer science and algorithmic theory.

In this Chapter, I will first start by discussing Shannon’s entropy, as it was de-

scribed in his paper A mathematical theory of communication. Then I will proceed

with some fundamental definitions in Information Theory, that will be necessary

for the next chapters. Later, I will give a brief overlook of how, from Shannon en-

tropy, other measures of entropy have been developed up to Kolmogorov-Sinai en-

tropy, possibly the most important measure of complexity for dynamical systems.

I will also present the main problem of Kolmogorov-Sinai entropy that makes it

impractical to compute directly, especially on experimental data.

Finally, I will give some definitions of entropies commonly used in real sig-

nal analysis, namely Sample Entropy, Approximate Entropy and Permutation En-

tropy, as well as Mutual Information when information among multiple systems

is studied.
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Chapter 2 Entropies and dynamical systems

2.1. Information

Before going into formal definitions and equations, let’s spend a few words on

the core concepts discussed in this chapter, in a more informal and intuitive way.

The topics we are going to discuss are the basis of Information Theory and, later

on, some tools that originate from Information Theory that can be used in a wide

range of other applications, among which the analysis of nonlinear systems. We

should therefore face upfront some fundamental questions: the first questions will

be what information is; the second, closely related to the first one, is what entropy

is; the third and final question will be why those concepts are so important for our

purpose, namely the study of nonlinear systems.

Information is something that we deal with everyday, we can see many man-

ifestation of it, especially if we think about technological applications. Yet if we

had to give a clear definition of it, the task would not be so trivial at all. A popu-

lar ways to describe information is as removed uncertainty, meaning that gaining

information about something, for example the outcome of some event, removes

some or all of the uncertainty that wemay have about that outcome. Let’s use this

last description and assume that information does in fact do what we just said:

removing uncertainty about the outcome of an event. We’ll use this to try and out-

line some of the properties of information that are required for such description

to be true.

Let’s suppose the event we are talking about is the toss of a coin. First of all we

notice that we need a set of possible outcomes. In our case, the possible outcomes

are just two, either head or tail. We also require to represent the information,

possibly being able to measure it and quantify it in some units. The universal unit

of measure for information is the binary digit, or bit, widely known for its use in

every electronical or informatic device. If we use the binary system representation

of a bit, this can assume either the value 0 or 1.

Let’s go back to our coin. It is of course straightforward to see that either

we call it head or tail, or 0 or 1, both cases have the same uncertainty. Therefore

reducing the uncertainty over one coin toss, corresponds to gaining an amount
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2.1 Information

of information of one bit. We will go back on the mathematical calculations of

this later in the chapter, but let’s focus now on another important aspect of this

last step we made: for all practical purposes, we just made an encoding of the

outcome of our coin toss into a binary code of 0s and 1s. This may seem trivial,

but it gives us the opportunity to notice something else of what information is,

or actually what it isn’t. Information is not knowledge. If instead of a coin toss,

we used the outcome of a football match, or even some statistical distributions of

elements in a certain set, we could just as easily encode those into a binary code

and then compute its information content in bits. Information concerns data, the

representation of some events, or statistical distributions, but it doesn’t necessar-

ily corresponds to knowledge of the physical process of coin tossing, or football

games and so on.

We got some understanding of what is information, we can therefore move on

to the second question and try to understand what entropy is. For this, we can

use what we just discussed about information and specifically the fact that infor-

mation can be measured. As we are going to see more in detail later, entropy is the

expectation value of the amount of information of some given process. As before,

the nature of said process can be as general as possible, either the statistical dis-

tribution of some property over a set of elements, or the probability distribution

of outcomes of some event, or the set of words in a transmitted message. Further-

more, entropy can be seen as a measure of variability of the elements in a given

set. But we will come back on this later, in a more proper way.

Lastly, let’s try to see why information is so useful and important for the study

of physical systems. An intuitive way to answer this, is provided by the german

physicist Rolf Landauer, whoworked at IBM,whowrote that “Information is phys-

ical”. We can try to look at this sentence in two ways and I believe they provide

the answer to our question. The first way is to notice that information requires

physical systems, namely bits. The unit blocks of information are in the end phys-

ical systems: either the state of some electronic support, or the emission or not

of a photon, or even the firing or rest state of a neuron, bits of information ulti-

mately require a physical support. The second way, that answers our question, is
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Chapter 2 Entropies and dynamical systems

looking at Landauer’s quote in the opposite direction: everything physical con-

tains information. Be it again the emission of a photon, or the switching on and

off of an electronical component, neurons firing or the sequence of a DNA string,

all physical processes do contain information that can be encoded in bits. Those

physical processes, those bits, can be studied with the use of Information Theory.

2.2. Shannon entropy

With the introduction to Information Theory given in the previous section, we can

now approach Shannon’s definition of entropy in a more rigorous way. Claude

Shannon first published this results in 1948, in his work A mathematical theory of

communication. The title already clears out what kind of applications he had in

mind when he gave the definition of entropy and laid the ground for what became

Information Theory.

In this section, we are going to describe Shannon’s Entropy in the same context

of communication, as long with some theorems and other quantities that were

present in Shannon’s work. Nonetheless, as mentioned in the previous section,

these concepts are quite general and not at all tied to the field of communication.

But we will discuss the generality of his results and the wide range of applications

that Shannon’s work found in the following years in the next sections, where

we will finally introduce the link between Information Theory and Dynamical

Systems Theory.

Let’s then suppose that we have a message and we want to transmit it. As we

mentioned in the previous section, it is convenient to encode this message into

bits that can be implemented on physical supports made up of two possible states

for each bit, namely 0 and 1. One of the fundamental question that Shannon tried

to answer to is, given a message, what is the most efficient way to encode it, i.e.

how can we encode it using the least amount of bits necessary. First of all, we

should decompose the message in its most basic elements, namely letters. Let’s

make clear that an optimal encoding will depend on the specific message we want

to trasmit: we will have to examine the frequency, or the a priori probability (if
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2.2 Shannon entropy

that is known), in which letters appear in the message and try to optimize the

encoding on these premises. Of course nothing prevents us from wanting to find

an optimal encoding for the entire English language, which is in fact one of the

example Shannon examines in his paper, so that we already have a way of coding

whatever message in English we may want to. For example, a possible way would

be the standard ASCII coding: each letter, or any character, can be mapped into a

sequence of 7 bits.

But let’s focus just on our simple message and try to describe how to get an

optimal encoding for this message only. As we mentioned, we need to find the

frequencies pi with which each letter appears. Intuitively, we can see that an

efficient encoding would use short sequences of bits for those letters that more

often occur and will need to be transmitted many times over, and instead use

longer sequences for letters that more rarely come up. We will henceforth refer to

sequences of bits encoding a letter as words, which should not be confused with

English words making up our message.

Then the average amount of bits per letter used in our code can be easily com-

puted as an expectation value, summing the length of each word weighted by the

frequency of the corresponding encoded letter, namely
∑

i pi li, where with li we

express the length of the word encoding the i-th letter. The most striking result of

Shannonwas that an optimal encoding for a givenmessage can be found. Further-

more, the average amount of bits/letter for such encoding is exactly the Shannon’s

entropy of the message, defined as:

H2 =
∑

i

pi log2
1
pi
= −

∑
i

pi log2 pi ,

where the 2-subscript means that we are encoding in sequences of binary digits,

or bits. We will henceforth omit the subscripts to ease the notation.

It is straightforward to see that the lengths of the words used to encode each

letter depend on the frequencies with which they occur, namely as − log pi. This

quantity is also known as the Shannon information.

To understand more about this, it is best to move from the case of transmitting

message to the more general and helpful scenario of a random variable X and the

25



Chapter 2 Entropies and dynamical systems

set of its possible n outcomes {x1, x2, . . . , xn}. Just as with the letters of a mes-

sage, we can define as p(xi) the probability that the random variable X = xi and

consequently compute the Shannon entropy of X as H(X) = −
∑N

i=1 p(xi) log p(xi).

Than the Shannon information − log p(xi) of a certain outcome gives us a sense

of how much uncertainty we remove by discovering the outcome: the lower the

probability p(xi), the more surprised we are to find that such a rare event has

occurred.

In this sense, as we also mentioned in the previous section, the entropy is a

measure of the average information of a given process.

It is useful to mention the case of a uniformly distributed random variable:

given n possible outcomes it follows that p(xi) = 1
n . The Shannon information of a

certain outcome is simply log(n) and, as expected, it’s the same for all outcomes,

meaning that witnessing any outcome carries the same amount of information.

The Shannon entropy in this case is easily computable as H(X) = 1
n

∑n
i log(n) =

log(n), which corresponds with the Shannon information.

2.3. Joint entropy, conditional entropy and other defini-
tions

Now that we’ve established Shannon’s entropy for a given random variable, let’s

look at some additional relevant entropies that can be simply calculated using

probability theory. Some of these entropies will be important in the following

sections regarding application on time series, while others are included to provide

a comprehensive picture of the principles of information theory.

As shown in the previous section, Shannon Entropy can be easily applied to

the case of a random variable X, where its probability distribution p(x) is known.

I am going to expand this concept to the case where multiple random variables

are available, each with its own probability distribution.

Let the Joint Entropy be defined as:

H(X1, X2, . . . Xn) = −
∑

x1,x2...xn

p(x1, x2, . . . xn) log p(x1, x2, . . . xn) ,
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2.3 Joint entropy, conditional entropy and other definitions

where p(x1, x2, . . . xn) is the joint probability distribution of the variables {X1, . . . , Xn},

and the sum is carried on all possible joint outcomes of the n random variables. For

clarity, let’s point out that the subscripts on xi here do not enumerate the possible

outcomes of a single random variable X, but generically represent the outcomes

of the i-th random variable Xi.

Using as a test the case of X1, X2 . . . , Xn being independent and identically

distributed random variables, it’s easy to show that the joint entropy of n random

variables will just be equal to nH(x), where H(x) is the Shannon entropy of one

single random variable.

The dependence of one random variable from the outcome of another is de-

scribed by the conditional probability distribution. More precisely, given two ran-

dom variables X1 and X2, the probability of observing the value x1 for the first

variable, once the outcome x2 of the second variable has been measured, can be

written as p(x1|x2). We can write:

p(x1, x2) = p(x1|x2) p(x2), (2.1)

which links the joint probability to the conditional probability: the probability

of the joint events x1, x2 to occur is the product of the probability of x1 to oc-

cur knowing that x2 occurred, times the probability of x2 occurring in first place.

Considering again the case where the random variables are independent, it is clear

that p(x1|x2) = p(x1), meaning that the probability of getting the outcome x1 has

no dependence on the outcome of the random variable X2.

Let’s now define the Conditional Entropy as:

H(X1|X2) = −
∑

x2

p(x2)H(X1|X2 = x2) .

The last term can be explicitly rewritten as:

H(X1|X2 = x2) =
∑

x1

p(x1|x2) log p(x1|x2) ,

which allows to write Conditional Entropy in terms of the joint probability distri-

bution, as:

H(X1|X2) = −
∑
x1,x2

p(x1, x2) log
p(x1, x2)

p(x2)
= H(x1, x2) − H(x2) (2.2)
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where we made use two times of Eq.(2.1). In other words, the conditional entropy

H(X1|X2) tells us how much uncertainty we have left on X1 after the uncertainty

of X2 has been removed.

It is worth noticing that if X1 and X2 are independent random variables, then

H(X1, X2) = H(X1) + H(X2) and H(X1|X2) = H(X1), meaning that finding the

outcome of X2 does not tell us anything about X1.

In order to quantify a sort of distance between two probability density func-

tions, we can use the Kullback-Leibler divergence that can be written as:

DKL(p1|p2) =
∑
x1,x2

p1(x) log
p1(x)
p2(x)

.

The Kullback-Leibler divergence is always non-negative, but it’s not technically a

distance metric since it is not symmetryc, i.e. DKL(p1|p2) , DKL(p2|p1). One way

to understand it’s meaning is to consider it as a measure of how many extra bits

we would require if we were to use a coding optimized on the random variable X2

to code samples from X1. It may be clear from this description that in general DKL

would not be symmetric.

Another useful measure of information between two random variables is Mu-

tual Information (MI). This metric is symmetric and can be written as:

I(X1, X2) =
∑
x1,x2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
.

From this definition, it is clear to find that MI corresponds to the sum of the

Shannon entropies of both individual variables minus their joint entropy, namely

I(X1, X2) = H(X1) + H(X2) − H(X1, X2) and the symmetry of MI is evident. The

meaning of MI can better be understood by writing it in another form: using the

definition of conditional entropy we gave in Eq.(2.2), we can write:

I(X1, X2) = H(X1) − H(X1|X2) ,

which, due to the symmetry of MI, is equal if we swap X1 and X2. It is clear from

this last form that mutual information counts the amount of information gained

on one variable by knowing the other. Mutual information may be employed as
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2.4 Kolmogorov-Sinai entropy and the partitioning problem

a measure of correlation between two signals, as we will see in further detail in

Chapter 5.

Finally, we are going to introduce the concept of entropy rate. This concept

can be explained in two ways. The first is to consider entropy rate as an average

of joint entropy per symbol: if we consider a stochastic process {X1, X2, . . . , Xn},

then the entropy rate of this process can be written as:

H(X) = lim
n→∞

H(X1, X2, . . . , Xn)
n

. (2.3)

An alternativeway, is to consider entropy rate as the amount of informationwe

get by sampling the variable Xn once all the previous variables have been sampled,

i.e. the asymptotic value of condition entropy, namely:

H′(X) = lim
n→∞

H(Xn|Xn−1, Xn−2, . . . , X1) .

Considering again the case when the Xi are independent identical random vari-

ables, the two forms of entropy rate correspond and are equal to the Shannon

entropy of a generic variable H(Xi).

Beside stochastic processed, entropy rate is widely used for dynamical systems

as it measures the amount of information that the system generates at each new

step of its evolution. In the next section, we are going to discuss what is possibly

the most fundamental entropy measure on dynamical systems, which is actually

a dynamical invariant and corresponds to the system entropy rate.

2.4. Kolmogorov-Sinai entropy and the partitioningprob-
lem

Kolmogorov-Sinai entropy (KSE) is a fundamental concept in the field of dynami-

cal systems theory, providing a quantitativemeasure of the complexity and unpre-

dictability of dynamical behavior. It was introduced by the Russian mathemati-

cian Andrey Kolmogorov and Israeli mathematician Yakov G. Sinai in the 1950s

as a way to quantify the rate of information production or entropy generation

in dynamical systems. KSE has since found widespread applications in various
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fields, including physics, information theory, computer science, and complex sys-

tems analysis. As alreadymentioned in the abstract of this thesis, several concepts

developed throughout the last centuries have converged into the formulation of

KSE. Starting from the first evidences of irregular behavior, in the sense of non-

periodic trajectories, from the study of celestial mechanics, to stochastic motion

of particles in statistical mechanics. The different approaches used to tackle these

issues — from the techniques of dynamical systems theory regarding dynamical

invariants of systems defying the notion of periodic and regular motion, to sta-

tistical tools and ergodic theory to approach the study of gas particles — find a

place as necessary steps towards the concept of complexity that KSE attempts to

quantify.

The turning point comes with information theory, which addresses a different

type of dynamical systems, but most of all uses a different approach in trying to

quantify the amount of information that the evolution of such system generates

at each new step. Finally, the revisitation of information theory by Von Neumann,

Turing and the same Kolmogorov in terms of algorithmic theory, and therefore in

the sense of the complexity of outlining a set of instructions needed for a computer

to reproduce a dynamical system, put the final mark on the topic.

In this sense, KSE acts as a “conceptual bridge” [84] between different fields

that find in complexity a common denominator.

KSE is a measure of the average rate of entropy production in a dynamical

system. Its definition is based on the concept of partitions that are subsets of the

state space of a dynamical system. Let’s consider a dynamical system, evolving

in the phase space S and a time evolution map T : S → S that maps a state into

the next state.

A partition P of S is a collection of disjoint subsets, or cells, Ai, that cover the

entire phase space, i.e. S =
⋃

Ai. Each cell Ai in the partition represents a distinct

set of initial conditions that lead to similar dynamical behaviors or states under

the action of the map T , in other words the points from each cell Ai can generate

similar trajectories in the phase space, described by the dynamical invariants of

the system.
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Based on the partition P, we can define the Kolmogorov-Sinai entropy HKS as

the average rate of entropy production per unit time in the system, given by the

formula:

HKS = limN→∞
1
N

log B(N) ,

where N is the number of iterations of the map T and B(N) is the total number

of cells in the partition visited by the system after N iterations.

The crucial issue in evaluating KSE is the partitioning of the phase space. We

can describe the partition cells Ai as an hypercube in the phase space, namely

with volume ϵD, where D is the dimension of the phase space. Then KSE can be

expressed in an alternative form that makes clearer the correspondence of KSE

with an entropy rate and highlights the issue of finding a suitable partition, es-

pecially in the case of evaluation on real data. By defining the set of random

variables {X1, X2, . . . , XN}, where the outcomes of X1 corresponds to selecting the

cell where the trajectory is at the time step t = τ, the outcome of X2 to the cell at

time t = 2τ and so on, we can write KSE as:

HKS = − lim
τ→0

lim
ϵ→0

lim
N→∞

1
Nτ

∑
x1,x2,...xN

p(X1, X2, . . . Xn) log(p(X1, X2, . . . XN)) ,

where p(X1, X2, . . . , Xn) is the joint probability of finding the trajectory in the cell

x1 at time t = τ, in x2 at t = 2τ and so on.

From this form, and by the definition of entropy rate given in Eq. (2.3), KSE

corresponds to the entropy rate of a joint distribution that essentially maps a

trajectory of the system. In addition, this entropy rate is computed for finer and

finer refinements of the partitioning, namely the hypercube size ϵ, and with finer

temporal resolution as τ→ ∞.

In Chapter 1, upon introducing deterministic chaos, we discussed that these

systems are crucially dependent on the initial conditions and that arbitrarily small

differences in the initial state will eventually evolve in larger and larger distances

among the resulting trajectories. This behavior is described by means of the Lya-

punov exponents, a dynamical invariant that quantifies the rate at which the two

trajectories grow apart. Nonetheless, these systems are deterministic: if we were

to know with absolute precision the initial state of a trajectory, for a theoretical
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systemwhere no noise perturbations are present, wewould be able to recreate that

exact trajectory by iterating the time evolution operator T . Given these premises,

an interesting point of view to understand the concept of KSE, in terms of the

amount of information generated at each time step, is to consider how much new

information we acquire on the initial state at every new evolution step.

Let’s suppose we have a partitioning of the state space and a trajectory made

of the union of the cells containing the states visited by the trajectory itself. We

want to knowwith as much precision as possible the initial state of this trajectory,

which we will refer to as the original trajectory. At first, the resolution we can get

on determining the initial state is set by the size of the cell that contains it. We now

consider a secondary trajectory, with the initial state arbitrarily close to the initial

state of the original trajectory so that it falls in the same cell. We evolve the two

trajectories in time and, for a certain number of steps, their new states end up in

the same cells. Since the distance between the two trajectories grows over time,

at some point, the two trajectories will end up in different cells and grow even

further apart at each new step. This information translates into knowing always

more precisely the initial state of the original trajectory: it is basically a prediction

problem where we can tune the secondary trajectory initial state in order to make

it coincide to the original trajectory for an increasing number of steps. The link

between the KSE in terms of rate of information generated by the system and the

trajectories divergence rate given by Lyapunov exponents is evident.

Despite how fascinating this concept appears, it is evident how difficult it is

to apply KSE estimates on real data. Furthermore, only generating partitions al-

low for a correct estimation of KSE, while generic partitions provide only a lower

bound [85].

This is a critical issue in nonlinear systems analysis and, as we are going to

discuss in the next sections of this chapter, it is one that has prompted interest

in other entropy measures, for example permutation entropy, due to the fact that

these may provide an alternative indirect way of estimating Kolmogorov-Sinai

entropy.
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2.5 Entropies on time series

2.5. Entropies on time series

In this section, we will go over some of the entropy metrics that are widely used to

analyze time series. The ones discussed here are only examples of how information-

theoretical methods may be used on time series, but the list is far from exhaustive:

there is a huge number of metrics derived from information theory that take the

name of entropy, a comprehensive list is provided by Ribeiro et al. [86] in a review

that, quite understandably, is titled “The entropy universe”.

The selection chosen here consists of two common entropy metrics that orig-

inate from KSE, namely approximate entropy and its improved version, sample

entropy. Finally, we will introduce permutation entropy, which combines an intu-

itive and easy to compute definition, with an interesting connection to KSE.

2.5.1. Approximate and sample entropy

Due to the impossibility of computing KSE, one of the first alternative measures

proposed to give a similar estimation of complexity was approximate entropy. This

measure, derived from KSE, was introduced by Pincus in 1991 [87] and it was

applied to classify both chaotic and stochastic systems, proving to be effective

even with a limited size of data. Its formulation has some similarities with the

correlation integral we discussed in Chapter 1: after performing an m-dimensional

embedding to reconstruct the phase space from the input scalar sequence, we

compute Cr
m(i) as:

Cr
m(i) =

1
N − m + 1

N−m+1∑
j=1

Θ(di j − r) ,

where Θ(x) is the Heaviside function, r is a threshold value and di, j is the dis-

tance between two vectors xi and x j in the embedded space, defined as di, j =

maxk=1,...,m |(x(i + k − 1) − x( j + k − 1)|. We then take the average of the natural

logarithm of Cr
m(i) over all i:

Φr
m =

1
N − m + 1

N−m+1∑
i=1

ln Cr
m(i) ,

and finally compute the approximate entropy as:

HAp(m, r) = Φr
m − Φ

r
m+1 .

33



Chapter 2 Entropies and dynamical systems

Nevertheless, approximate entropy has some drawbacks as lack of consistency,

high dependability on data length, overestimation of probabilities due to self-

matches and resulting in lower estimation than expected for small-sized datasets.

These shortcomings were highlighted by Richman and Moorman [88] when

they introduced an improved version of approximate entropy, namely sample en-

tropy. Sample entropy essentially removes self-matches from approximate en-

tropy, therefore also reducing the computation time as compared to approximate

entropy.

Sample entropy requires the same parameters r and of course m. We first

define the quantities Br
m(i) as:

Br
m(i) =

1
N − m − 1

N−m∑
j=1, j,i

Θ(di j − r) ,

and its average Br
m =

∑N−m
i Br

m(i)
N−m , then sample entropy becomes:

HS = − ln
Br

m+1

Br
m
.

Several other entropies have been developed from approximate and sample

entropy, one example are fuzzy entropies where the Heaviside function is replaced

with smoother functions, for example sigmoids.

Some applications of thesemetrics involve studies on stockmarkets [89], heart

beat rate [87, 88] and EEG signals [90], as well as earth science [91], just to men-

tion a few.

2.5.2. Permutation entropy

Permutation entropy (PE) is an entropy measure used to quantify the complexity

or irregularity of time series data. PE is a non-linear and non-parametric measure

that characterizes the disorder or randomness of a time series by analyzing the

ordinal patterns of the data.

Permutation entropy was first introduced by Bandt and Pompe in 2002 [92]

as a measure to assess the complexity of time series data without making any

assumptions about the underlying dynamics. Since then, it has gained a lot of
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interest as a measure of complexity for its intuitiveness, relatively easy computa-

tion and invariance with respect to scaling. PE is based on the concept of ordinal

patterns, which represent the relative ranking of values within a window of data

points in a time series. The idea is to transform the original time series into a

sequence of symbols based on the ranking of values of neighbouring points, and

then compute the entropy (formally, a Shannon entropy) of the symbols distribu-

tion.

Let’s denote a sequence as X = {x1, x2, ..., xN}, where xi represents the i-th

point in the sequence, and N is the length of the sequence. The ordinal pattern

of a window of length m is defined as the ranking of the values in that window.

In other words, the ordinal pattern is a sequence of m integers that represents

the order of the values within the window. It follows that the number of possible

patterns corresponds to the number of possible permutations, i.e. m!, hence the

name of permutation entropy.

An example can help clarify this concept: assuming m = 3, the possible ordinal

patterns are Π = {π1 = [1, 2, 3], π2 = [1, 3, 2], π3 = [2, 1, 3], π4 = [2, 3, 1], π5 =

[3, 1, 2], π6 = [3, 2, 1]}. A possible mapping of these patterns, or symbols, onto the

ranking of the sequence values is for example:

[1, 2, 3]→ x1 < x2 < x3

[1, 3, 2]→ x1 < x3 < x2

[2, 1, 3]→ x2 < x1 < x3

. . . .

Figure 2.1 gives a graphical representation of how a pattern in a sequence ranking

is mapped into a symbol.

Based on the occurrence of symbols, we can construct a histogram of the oc-

currences of each symbol. Finally, permutation entropy is defined as:

HΠ(m) = −
m!∑
i=1

Ni log Ni ,

where Ni is the number of occurrences of the i-th symbol. The equivalence of the

formulation of permutation entropy and Shannon entropy is evident.
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Figure 2.1: Visual representation of a pattern in a sequence and it’s corresponding

symbol.

As mentioned earlier in this chapter, one of the main reasons for the wide

interest in permutation entropy is that the rate of permutation entropy growth

is asymptotically equivalent to the Kolmogorov-Sinai entropy. The permutation

entropy rate hΠ can be computed as a derivative, namely:

hΠ = lim
m→∞

HΠ(m + 1) − HΠ(m)
T

, (2.4)

where T is the sequence sampling period.

A drawback of this approach is that the number of symbols of permutation en-

tropy increases asm!, i.e. the number of possible permutations ofm elements. This

causes an high computational cost, counterbalancing the easiness of the permu-

tation entropy algorithm, and furthermore a proper estimation of the occurrence

histogram on a support as large as m! requires an increasingly higher number of

available data points to be correctly estimated.

In Chapter 4, we discuss this matter in more detail, as well as a recently de-

veloped method proposing a correction to permutation entropy that makes its

entropy rate converge faster to the value of KSE.
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Chapter 3

Uncertainty of Shannon Entropy

In the previous chapter, an introduction of Information Theory was given and

some of the most commonly used tools for time series analysis have been de-

scribed. Despite such a widespread application of entropy evaluation in many

different fields, a proper analysis of the uncertainty of such estimations is often

lacking. Assessing the reliability of an entropy estimator, in terms of its bias and

variance, is not a trivial task and in general requires knowledge of the a priori

probability distribution.

In this chapter, the estimation of the variance of the so-called plug-in estimator

of Shannon Entropy will be discussed, in the case of an underlying multinomial

distribution. The demonstration of the results obtained will require quite a long

and tedious mathematical description. Therefore, in order to make the reading

more fluid, the details will be discussed in the Appendix A.

We will instead focus on the calculation of the maximum entropy variance,

which in turn can be easily obtained from the number of points available and the

support size of the possible outcomes. These results, as it will be argued later,

allow to make up a simple rule of thumb to fix the required number of samples in

order to obtain entropy estimates within a certain level of confidence. The results

discussed in this chapter were published in 2021 [93].

3.1. Evaluation of Shannon entropy on real data: the
plug-in estimator and the variance estimator

We will consider to have a set of N discrete samples of an experimental record-

ing of some system’s time evolution. We will define as M the size of the support,

namely the number of different states visited by the system. The a priori probabil-
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ity of the number of visits for each state is usually unknown, therefore only sample

probabilities can be evaluated as rate of visits, from the N available samples.

Let si be the probability with which the i-th state is visited. Then the system

Shannon Entropy is:

H = −
M∑

i=1

si ln si .

We consider that the support size M of the probability distribution {si} is such

that si > 0 for each value of i = 1, . . . ,M.

We take into account the N available successive system evolution steps and

the M-dimensional set ĵi of the number of visits to each of the M states, such that∑M
i=1 ĵi = N and { ji} is distributed as amultinomial distribution. Then the observed

rate p̂i is computed as p̂i = ĵi/N. The plug-in estimator of Shannon Entropy Ĥ is

defined as:

Ĥ = −
M∑

i=1

p̂i ln p̂i .

The plug-in estimator reliability can be evaluated in terms of its bias and vari-

ance. The bias term is known as the Miller-Madow correction [94, 95, 96] and is

known to be equal to −(M − 1)/(2N). Keeping in mind that the entropy is the

expectation value of the Shannon Information Ii ≡ − ln si, as discussed in Sec.2.2,

it follows that the variance parameter can be written as:

Λ0 = E(I2
i ) − E(Ii)2

=

M∑
i=1

si ln2 si −

 M∑
i=1

si ln si

2

,
(3.1)

which can also be rewritten as Λ0 =
∑M

i=1 si (H + ln si)2, making clear that Λ0 ≥ 0,

except in the case of si being uniformly distributed.

As found by Basharin [94] and Harris [96], the entropy variance for the multi-

nomial case is then:

σ2
Ĥ
=
Λ0

N
+ O

(
1

N
3
2

)
,

Knowledge of the parameter Λ0 is therefore needed in order to estimate the

Shannon Entropy plug-in estimator variance. Using Eq. (3.1) we can thus define
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3.2 The maximum Shannon Entropy uncertainty

an estimator Λ̂0 of the variance parameter as:

Λ̂0 =

M∑
i=1

(
p̂i ln2 p̂i

)
− Ĥ2 .

For this estimator as well, the corresponding reliability requires the evaluation

of its bias and variance. This can be done by considering the asymptotic behaviour

of Λ̂0 for N → ∞. It can be proven that asymptotically the variance parameter

estimator behaves as a normal distribution:

Λ̂0 ∼ N

(
Λ0 +

γ

N
,
Γ

N

)
as N → ∞ .

The demonstration of this property is discussed in Appendix A. Let’s notice that

the estimator converges to the variance parameter with bias and variance terms of

order N−1. The two parameters γ and Γ are defined in Appendix A, but it should be

noticed that they do depend on the knowledge of the a priori distribution {si} and

higher orders moments of the distribution of single-state Shannon Information Ii.

Evaluating the variance of the Shannon Entropy estimator seems then an in-

escapable loop where the a priori distribution is in any case required to draw any

conclusion. Nonetheless, it is possible to circumvent this issue when evaluating

the maximum value of Λ0, as discussed in the next section.

3.2. The maximum Shannon Entropy uncertainty

Let’s first define as D the probability M-simplex such that:

D = {r ∈ RM |

M∑
i=1

ri = 1, ri ≥ 0 ∀i} .

Considering x lnn x = 0 for x = 0 and ∀n ∈ N, both H and Λ0 are continuous

on the simplex D. Therefore, due to Weierstrass extreme value theorem [97] and

the theorem of necessary conditions for extreme values [98], the maximums ofΛ0

(or H) can either be on stationary points within D or on the boundary ∂D.

We will first start considering the case when the stationary point are within

D. Since the probabilities {si} must satisfy the constraint
∑M

i=1 si = 1, we only

have M − 1 independent variables, since we can always write one as a function
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Chapter 3 Uncertainty of Shannon Entropy

of the others. Let’s the choose to write sM = 1 −
∑M−1

i=1 si. We now have to write

out the partial derivative of Λ0 with respect to the remaining M − 1 independent

variable and solve for it to be zero. Before going into the derivation, it may be

helpful to write out explicitly the derivatives of sM and H with respect to si (with

1 ≤ i ≤ M − 1) in order to make the reading more clear.

∂sM

∂si
=

∂

∂si

1 − M−1∑
i=1

si

 = −1 ,

∂H
∂si
=

∂

∂si

− M−1∑
i=1

si ln si − sM ln sM

 = ln sM − ln si .

(3.2)

Using the definition in Eq. (3.1) and the partial derivatives found above, we

can write the partial derivative of Λ0 as:

∂Λ0

∂si
= (ln si − ln sM) (ln si + ln sM + 2 + 2H) . (3.3)

We now impose the partial derivative to be zero ∀i, thus it easily follows that

we have two possible conditions for si:

si = p0 ≡ sM

si = q0 ≡
1
sM

exp(−2−2H) .
(3.4)

These two must be mutually exclusive. If they were simultaneously valid, then

all si would be equal to each other, furthermore the first condition would require

them to be all equal to sM : we would then have a uniform distribution giving

H = ln M. But the second condition being simultaneously valid would give sM =

1
sM

exp(−2−2H), resulting in H = 1 + ln M.

We must then have a mixed situation where some of the si satisfy the first

condition while the remaining ones satisfy the second condition. We can define as

k the number of si = p0, while the remaining (M−k) satisfy si = q0. Since, trivially,

sM always satisfies the first condition, then 1 ≤ k ≤ M − 1, where we exclude the

case of a uniform distribution with k = M. For the uniform distribution, it is in

fact known that Λ0 = 0 [96]. It then follows that also 1 ≤ (M − k) ≤ M − 1. We
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3.2 The maximum Shannon Entropy uncertainty

thus can write a set of three equations:

H = −kp0 ln p0 − (M − k)q0 ln q0

q0 =
1 − kp0

M − k

2 + 2H = − ln p0 − ln q0 ,

(3.5)

where the first is the equation of the Shannon entropy from its definition, the

second equation comes from the requirement that the probabilities sum up to one

and the third equation corresponds to Eq. (3.4). By substituting the expression of

H from the first equation and replacing it in the last equation, with some algebra,

we can rewrite this set of equations as:

(1 − 2kp0) ln
1 − kp0

kp0
= 2 + (1 − 2kp0) ln

M − k
k

. (3.6)

We then have a single equation in the variables H, p0, q0, while we consider M

and k to be fixed parameters.

We can now define the variable v ≡ 2kp0 − 1. Since we are considering the

solutions within the simplex D, it must hold that 0 < kp0 < 1, therefore we get

|v| < 1. By defining the function:

f (v) ≡ v ln
1 + v
1 − v

, (3.7)

we can rewrite Eq. (3.6) into:

f (v) = 2 − v ln
M − k

k
, (3.8)

where we used the equalities:

p0 = (1 + v)/2k

q0 = (1 − v)/2(M − k) .
(3.9)

By rewriting f (v) = v ln(1 + v)− v ln(1 − v), it is straightforward to notice that

f (v) = f (−v). This function is also always positive with the exception of the origin,

since f (0) = 0. The first derivative is:

f ′(v) =
f (v)
v
+

2v
1 − v2 .
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Chapter 3 Uncertainty of Shannon Entropy

Since both terms of the derivative have the same sign as v, it follows that f (v)

is monotonically increasing for v > 0 and decreasing for v < 0, resulting in the

function diverging to+∞ for v = ±1 and v = 0 being the only minimum. Figure 3.1

shows the behaviour of f (v) in red. The second member of Eq. (3.8), given M and k

as fixed parameters, results in a set of straight lines going through the point (0, 2).

These lines are also shown in Fig. 3.1, in the case of M = 7 with 1 ≤ k ≤ 6.

0

2

4

-1 0 1

∼ ∼

v

k = 1

k = 6

-v1,1 v1,2

Figure 3.1: Graphical representation of Eq. (3.8). The red, solid line corresponds to

the graph of the function f (v) defined in Eq. (3.7). The straight-lines correspond

to the right-hand term of Eq. (3.8) in the case M = 7 and for different values of the

parameter k. The blue dots mark the intersection of f (v) with the straight-line in

the case k = 1, as well as the two abscissae −ṽk,1, ṽk,2.

Reproduced from Phys. Rev. E 104, 024220 (2021), with the permission of APS Pub-

lishing.

For a fixed M, all the intersections of f (v) with the set of straight lines given

by the parameter k are therefore roots of Eq. (3.3) and thus stationary points for
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3.2 The maximum Shannon Entropy uncertainty

Λ0: we will define these points as ṽk. By using the expression for Λ0 in Eq. (3.1)

we get:

Λ0 = k
(
p0 ln2 p0

)
+ (M − k)

(
q0 ln2 q0

)
− H2

= (kp0 − k2 p2
0) ln2 p0 +

[
(M − k)kq0 − (M − k)2q2

0

]
ln2 q0

− 2k(M − k) ln q0 ln p0 ,

(3.10)

where we expanded H as in the first of Eqs. (3.5). Using the fact that ṽ is a root of

f (v) and manipulating Eqs. (3.9), we get the following equations:

ṽ ln
M − k

k
= 2

ṽ ln
1 + ṽ
1 − ṽ

= 0

1 + ṽ
2
= kp0

1 − ṽ
2
= (M − k)q0 .

Equation (3.10) then becomes:

Λ0 =
1
4

(
1 − ṽ2

) (
ln

p0

q0

)2

=
1
4

(
1 − ṽ2

) (
ln

1 + ṽ
1 − ṽ

+ ln
M − k

k

)2

=
1
4

(
1 − ṽ2

) (2
ṽ

)2

=
1
ṽ2

k

− 1 .

(3.11)

Therefore, for each value of k we have two possible roots: ṽk,1 and ṽk,2 and in

order to find the value of k giving the maximum value Λ0, we need to select the

smallest ṽk.

We can notice that, for each value of k, the two roots ṽk,1 and ṽk,2 are one

negative and one positive. We are going to define −ṽk,1 as the negative solution

and ṽk,2 as the positive one. We also observe from Eq. (3.8) that ṽk,1 = ṽM−k,2,

so we can limit the analysis to the cases where k < M/2 and the term ln M−k
k is

non-negative.

Then by putting −ṽk,1 and −ṽk,2 in Eq. (3.8) and subtracting them, we get:

f (−ṽk,1) − f (−ṽk,2) = (ṽk,1 + ṽk,2) ln
M − k

k
≥ 0 ,
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which, since f (v) = f (−v) and f (v) has positive derivative for v > 0, implies that

ṽk,1 > ṽk,2. Therefore, ṽk,2 is the smallest root we were searching, providing the

maximum value of Λ0.

In order to find the probability distribution giving the maximum entropy un-

certainty, we must study the behaviour of ṽk,2 at different k. We can do this by

considering the variation of ṽk,2 when k increases by one. Since M−k
k > M−k−1

k+1 , it

follows that:
2 − f

(
ṽk,2

)
ṽk,2

>
2 − f

(
ṽk+1,2

)
ṽk+1,2

,

and therefore:
2

ṽk,2
−

2
ṽk+1,2

>
f
(
ṽk,2

)
ṽk,2

−
f
(
ṽk+1,2

)
ṽk+1,2

.

If we assume ṽk,2 ⩾ ṽk+1,2, than the left-hand term of the previous inequality

would be non-positive, where instead the right-hand term would be non-negative

(due to the fact that the function f (v)/v = ln 1+v
1−v is monotonically increasing if 0 <

v < 1), which leads up to a contradiction. Therefore, it follows that ṽk,2 < ṽk+1,2.

Consequently, ṽ1,2 provides the minimum absolute value of a root of Eq. (3.8) and

thus, via Eq. (3.11), the maximum value of Λ0 for a given M, when considering the

interior of the simplex D.

By the same argument, it follows that increasing M leads to a decrease of ṽ1,2

and thus to an increase of Λ0,max. This corollary is important in order to discuss

the behavior of the variance parameter Λ0 on the boundary of the probability

simplex.

It should finally be noted that for k = 1 we have a single outlier among the

set of probabilities {si}, with value sM , namely the one that was chosen as depen-

dent on all the others. Since the dependent probability can be selected arbitrar-

ily among the M possible choices, the number of equivalent maxima of Λ0 is M,

namely any state i could be the outlier and result in the same value of Λ0.

We proceed now to the situation when the maxima ofΛ0 occurr on the bound-

ary of the M-simplex. By noticing that the boundary ∂D of the M-simplex D is the

union of M boundary facets, with each facet defined by a single s j, with 1 ⩽ j ⩽ M,

set to zero, it follows that such boundary corresponds to a lower-dimensional sim-
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3.3 Maximum entropy uncertainty and its distributions

plex, namely a (M − 1)-simplex.

By the initial assumption that the support size of the probability distribution

is M, we could promptly disregard this situation. Nevertheless, assuming that the

si values can be arbitrarily small, makes it valuable to discuss also this situation.

Because each facet corresponds to a simplex, the procedure applied for the

interior of the M-simplex can be iteratively applied. First, in the interior of the

j-th facet, the maximum of Λ0 will be 1/ṽ′21,2 − 1, where ṽ′1,2 is the positive root

of Eq. (3.8) when k = 1 and M is replaced by M − 1. Second, the boundary of the

j-th facet has to be considered as a (M − 2)-dimensional set of (M − 2)-simplexes,

and so on. By re-iterating the procedure, we end up with a set of two-dimensional

simplexes where only a pair (si, s j) of probabilities is nonzero: in this case the

boundaries are the point-like vertices of a segment, where Λ0 = 0.

By means of the argument discussed above, consisting in the proof that in-

creasing M results in an increase of Λ0, it follows that on a two-dimensional sim-

plex the maximum Λ0 is obtained on a stationary point in the interior of the two-

dimensional simplex D, namely 1/ṽ2
1,2 − 1, and not on the facet corresponding to

either si or s j being zero.

3.3. Maximumentropy uncertainty and its distributions

The results of the analysis in the previous section show that themaximum entropy

uncertainty in the multinomial case occurs when the distribution of the probabil-

ities {si | i ∈ [1, M]} has a single outlier equal to p0, while the other probabilities

are uniformly distributed and equal to q0.

We can then write Eq. (3.8) for k = 1, as:

f (v) = 2 − v ln(M − 1) , (3.12)

and write as ṽ its root.

The outlier value p0 is then:

p0 =
1 + ṽ

2
. (3.13)
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By replacing f (v) with the first term of its Taylor expansion, namely 2v2, we

can approximately solve Equation (3.12) that becomes a second-degree equation

with positive solution:

ṽ ≈

√
ln2(M − 1)

16
+ 1 −

ln(M − 1)
4

. (3.14)

.

For large M values, the previous equation can be approximated as ṽ ∼ 2/ ln(M).

Furthermore, the approximations improvewith increasingly higher M, correspond-

ing to smaller ṽ. In Figure 3.2, we show the plots of p0, Λ0,max as a function of the

dimension M. It can be noticed that already for M ≳ 10, the approximations pro-

vide a good matching with the analytical solution.

For asymptotical values M → ∞, we obtain:

Λ0,max �
ln2(M)

4
. (3.15)

The outlier value p0 then tends to 1/2. Since the outlier value could be any of the

M possible choices for the dependent si, we then have M equivalent distributions

providing the maximum Λ0.

In Figure 3.3, we show the case of M = 3.

It is important to notice that, in the case of a distribution that maximizes Λ0,

the parameter Γ determining the variance of the estimator Λ̂0, shown in Equa-

tion Eq. (3.2), vanishes [93]. A similar situation occurs for the Shannon entropy

plug-in estimator in the case of a uniform distribution: it is well-know that in

this case entropy reaches its maximum value of ln M, while Λ0, the parameter

quantifying the entropy estimator variance, vanishes.

3.4. Final remarks

The results discussed in this chapter show that a reliable estimator of Shannon

entropy variance allows to determine a maximum uncertainty in entropy esti-

mation, in the case of multinomial distributions. This result though has three

requirements.
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Figure 3.2: Maximum variance parameter Λ0,max as a function of the support size

M: (red, solid line) exact computation; (red, dashed line) evaluation via Eq. (3.11)

by using the approximated value for ṽ given by Eq. (3.14); (black, dash-dotted line)

approximation described by Eq. (3.15) and valid for M ≳ 100. Outlier probability

p0 as a function of the support size M: (blue, solid line) exact computation; (blue,

dashed line) evaluation via Eq. (3.13) by using the approximated value for ṽ given

by Eq. (3.14).

Reproduced from Phys. Rev. E 104, 024220 (2021), with the permission of APS Pub-

lishing.

The first is to know the support size M. In the case of experimental data, the

value of M is not usually known but ultimately depends in the method used to

partition the values of the data being analyzed. The issue of choosing a method

for partitioning is a non-trivial one and can drastically influence the outcomes

of entropy estimates. For this reason, some improved estimators of entropy have

been developed, avoiding the partitioning problem of the plug-in estimator. More

details on this are discussed in Chapter 5, regarding the estimation of mutual
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Figure 3.3: (a) Color map of the variance parameter Λ0 on the probability simplex

in the case M = 3. Three points, located at one coordinate being equal to p0 � 0.88

and the other two equal to q0 � 0.06, provide the maximum value of Λ0, namely

Λ0,max � 0.762. The curve placed on the plane πs0,s1 represents the plot of Λ0 on

the simplex facet corresponding to s2 = 0. (b) Color map of Shannon entropy H

on the probability simplex in the case M = 3. The maximum value occurs in the

center, where s0 = s1 = s2 = 1/3 andΛ0 vanishes. No additional stationary points

are present (which is true at any dimension).

Reproduced from Phys. Rev. E 104, 024220 (2021), with the permission of APS Pub-

lishing.

information.

The second requirement, as mentioned several times throughout this chapter,

is that data are sampled from a memoryless multinomial distribution. This means

that the outcome of each state is independent from the previous state. It appears

clear that, in the context of dynamical systems, moreso for deterministic chaos,
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this is not a valid assumption. As a first approach, when no insight is available

about the underlying nature of the process generating the data under study, as-

suming the data to follow a multinomial distribution is a reasonable, despite raw,

initial assumption. Nonetheless, a proper analysis, in terms of Shannon entropy,

of data from a deterministic source eludes the case discussed in this chapter. It

is worth noticing that Markov chains provide a valuable approximation of de-

terministic system’s evolution. A recent work [99], based on a revisited form of

the central theorem for Markov chains [100], discusses a method to compute the

uncertainty of entropy estimations in the case of an underlying regular Markov

chain process, using a similar approach to the one used in this chapter, and de-

scribed in more detail in Appendix A. Nonetheless, this latter method requires the

knowledge of the Markov chain process, or at least an estimate of the matrix of

transition rates from one state to the other.

The third and weaker requirement is that in order to visit all the M states

making up the distribution support, the number N of trials has to exceed M, so

that N > M >
√

M. Provided this condition, the upper bound to entropy variance

described in this chapter turns out to be smaller, and thus more accurate, than

the one derived by Antos and Kontoyiannis [101], namely (ln N)/
√

N.
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Chapter 4

Lyapunov Exponents and Entropy

In Chapter 1 we already gave the definition of Lyapunov exponents: in simple

words, they estimate the rate of growth of the distance between two initially

close trajectories. Lyapunov exponents are the mathematical version of what is

commonly known as the “butterfly effect”, a concept first used by Lorenz in 1962,

which highlights the critical dependency of chaotic dynamics on initial conditions.

By considering the state space of a dynamic system, or the reconstructed

phase space of an experimental signal, as divided into arbitrary small cells by

some partitioning, we can imagine two trajectories that at some initial time are

close enough to be contained in the same cell. Lyapunov exponents quantify the

rate at which, after a certain amount of time, the two trajectories will start to

diverge and therefore be contained in separate and further apart cells.

From this point of view, it is not so difficult to grasp that Lyapunov expo-

nents may have some similarities with what we defined as the Kolmogorov-Sinai

entropy (or metric entropy, or topological entropy) in Chapter 2. It was in fact

proven by Pesin [102], that the two concepts are equivalent. More precisely, he

found that:

HKS =
∑

i |Λi>0

Λi ,

so that the KSE is equal to the sum of positive Lyapunov exponents of the system.

Nonetheless, as we discussed in Chapter 2, direct computations of KSE are

difficult to perform on experimental data. We could therefore use the Lyapunov

spectrum to get an estimate of KSE, as we will do in this chapter, by using the

so-called standard method [4, 5, 103] to compute the Lyapunov exponents. Un-

fortunately, the complete Lyapunov spectrum is equally difficult to obtain when

no knowledge of the differential equations describing the system’s evolution is
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Chapter 4 Lyapunov Exponents and Entropy

available. In addition, methods to estimate Lyapunov spectrum out of scalar se-

quences, using for example embedding for phase space reconstruction, are reliable

for the computation of the maximum exponent but can produce unexpected re-

sults when computing the whole spectrum.

An interesting approach would be to use other entropy metrics, for example

permutation entropy rate, that asymptotically is said to coincide to KSE and there-

fore to the sum of positive Lyapunov exponents [104].

Not surprisingly, there are some drawbacks also with this approach, since it

requires to compute PE asymptotically, i.e. for an infinite window m. This poses

some computational problems as well as finite-size issues when applied on a lim-

ited real set of data.

In this Chapter, we will try some of this approaches using as a test-bench the

Minimal Universal Model (µ-Model) for chaos [105].

4.1. Minimal Universal Model for chaos

The µ-Model was developed byMeucci et al. [105] by revisiting themodel of a laser

with feedback in order to provide the minimal amount of nonlinearities needed

to exhibit a chaotic behaviour. The model clearly originates from laser physics,

specifically from CO2 lasers [30, 31], but tuning the values of its parameters, it

can be generalized to produce different nonlinear regimes that can model differ-

ent phenomena, like neuron dynamics [70, 106, 107], electronics, opto-electronics

and possibly population dynamics [108, 109, 110, 111] and epidemiological mod-

els [112]. In this sense, the model is referred to as a Minimal Universal Model for

chaos.

The µ-Model is a three-dimensional model, where each variable corresponds

to a physical quantity in its originating context of laser physics: the variable x cor-

responds to laser intensity, y corresponds to population inversion and z represents

the feedback strength.

The system of differential equations, in its dimensionless form, of the µ-Model
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4.1 Minimal Universal Model for chaos

is:

dx
dτ
= −ε1x

(
1 + k1z2 − p0y

)
,

dy
dτ
= −y − xy + 1 ,

dz
dτ
= −ε2 (z − B0 + B1x) .

(4.1)

Some of these parameters are considered fixed and take values given by the

time scales of the processes involved in CO2 laser, namely the decay rates of laser

pulses and population inversion, and the feedback usual time scale [105]. We

therefore set ε1 = 200, ε2 = 6, k1 = 12, B1 = 0.555. For this choice of parameters,

the dynamics of the system is given by the interaction of three variables that

vary with very different time scales: namely the laser intensity x is the fastest

variable, the population inversion y is the slowest and the feedback z operates at

intermediate frequencies between the former two.

The two controlling parameters p0 and B0, correspond to the pump and bias

and can be tuned to change the system dynamics [105, 41]. Here we will set

p0 = 1.208 and use two values of B0, which, as discussed in Ref. [105], are both

chaotic but show different kinds of evolution. The values are namely B0 = 0.124

(for what will be referred as system 1) and B0 = 0.1246 (system 2).

We computed time series of the µ-Model by integration of the differential

equations (4.1) via Runge–Kutta Prince–Dormand (8, 9) method [2], with sam-

pling period of T = 0.1 (≈ 1/10 of the main oscillations period) and a total size

N ≈ 106, so that finite-size corrections in entropy evaluations are negligible. Fig-

ures 4.1 and 4.2 show the state space of the two attractors for the parameters

chosen above.

53



Chapter 4 Lyapunov Exponents and Entropy

z

a)

x
y

z

b)

x

y

z

t

Figure 4.1: State space evolution (a) of the µ-Model attractor, system 1, and time

series of its components (b). The parameter B0 is here set to 0.124.
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Figure 4.2: State space evolution (a) of the µ-Model attractor, system 2, and time

series of its components (b). The parameter B0 is here set to 0.1246.

4.2. Permutation entropy rate

We already discussed in Chapter 2 that the permutation entropy rate converges

to Kolmogorov-Sinai entropy in the asymptotic limit of the window m going to

infinity. Permutation entropy rate hΠ can be computed according to Eq. (2.4). In
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4.3 Permutation entropy rate of the µ-Model

this section, we are also proposing one other possible method of computing the

rate of permutation entropy. Namely, we use a corrected version of permutation

entropy, recently proposed by Politi [113], whose rate has been shown to converge

faster to KSE.

In this recent work, the entropy KP is computed as:

KP(m) = HΠ(m) + D ⟨lnσ(m)⟩ , (4.2)

where HΠ(m) is the standard permutation entropy of window m, D is the sys-

tem dimension (here computed by means of Kaplan-Yorke conjecture [114]). The

meaning of σ(m) requires a longer explanation.

Given the permutation entropy window m, for each symbol πi and each oc-

currence of the given symbol (if any), it will correspond a given segment {xNi( j)},

where j is the position of each point of the segment, going from 1 to the segment

length m, and Ni is the number of occurrences of the symbol πi. Then σi( j) is

the standard deviation of the points {xNi( j)} over the Ni segments of the given

symbol. The reason for the additional term D ⟨lnσ(m)⟩ is explained in detail in

Ref. [113], but to give a simple explanation we can consider the symbols of win-

dow m as a partitioning of the system into the permutation “cells”, where each

cell is a symbol πi. Then ⟨lnσ(m)⟩ corresponds to the average cell size, being a

measure of the dispersion among the different trajectories falling into a given

symbol/cell πi. Furthermore, we take the average only of the term j = m since in

this case we have the maximum value ofσ( j), and therefore of its logarithm [113].

In Ref. [113], it is argued that the trajectories dispersion scales asσ(m) ≈ m−γ, and

the term D ⟨lnσ(m)⟩ in Eq.(4.2) consists in a finite-size correction that improves

the asymptotic convergence of the rate kP to KSE, where the rate is computed as

kP = limm→∞ (KP(m + 1) − KP(m)) /T , similarly to Eq. (2.4).

In Figure 4.4, we show the behaviour of ⟨lnσ(m)⟩ for the two µ-Model sys-

tems under study, which partially confirmswhat expected fromwhatwe discussed

above.

In particular, the power-law decrease σ(m) ≈ m−γ seems to only appear for

values of m ⩾ 15.
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Figure 4.3: ⟨lnσ(m)⟩ as a function of the permutation entropy window m, for sys-

tem 1 (red) and system 2 (blue). In both cases, the logarithmic scale shows a linear

behaviour as described in Ref. [113], but only for higher values of m, namely for

m ⩾ 15.

4.3. Permutation entropy rate of the µ-Model

We show here the results of computing the standard permutation entropy rate hΠ

and the corrected version kP, discussed in the previous section.

In system 1, we can see that the standard permutation entropy rate converges

quite slowly and does not reach the asymptotic value of hKS within the considered

range of window m. The corrected permutation entropy, instead, despite having

more abrupt fluctuations, does converge more rapidly to hKS .

This approach shows to work more effectively in the case of the first system,

while in the second system, the standard permutation entropy rate outperforms

the corrected permutation entropy, reaching the value of hKS with an overestima-

tion of ≈ 23% within the considered window m.

The poorer performance of the corrected permutation entropy rate kP on the

second system could be due to the nature of the system evolution, which as shown

in Fig. 4.2, exhibits abrupt spikes in all three of its coordinates, while system 1

has a more smooth behaviour. For the sake of comparison with Ref. [113], it

should be mentioned that the chaotic attractor used in that work is a Rössler
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Figure 4.4: Entropy rates as a function of the window m, for system 1 (a) and

system 2 (b). The dotted black line corresponds to the Kolmogorov-Sinai entropy;

red lines correspond to the standard permutation entropy rate and green lines to

the corrected permutation entropy rate [113].

attractor, namely the x-coordinate of the attractor. As we showed in Fig. 1.1 of

Chapter 1, the Rössler system x-component does have a smooth evolution, while

the z-component shows a spiking behaviour. This may suggest that the method

used in this chapter may be less efficient on spiking time series, where dedicated

methods for testing nonlinearity are recommended [115, 116].

4.4. Final remarks

In this chapter, we have discussed the relation between the Lyapunov spectrum of

a chaotic system and its information evaluated by means of dynamical entropies.

While in theory the identity of Pesin clearly reveals how Lyapunov exponents

and Kolmogorov-Sinai entropy are two strictly connected concepts, and actually

equivalent, we argued in previous chapters that KSE is hardly directly computed.

In most cases, as well as in this chapter, the most efficient approach to estimate

KSE is through the Lyapunov spectrum.

Nevertheless, knowledge of the Lyapunov spectrum is not generally available

for real time series, therefore the need to find a reliable alternative method, pos-

57



Chapter 4 Lyapunov Exponents and Entropy

sibly based on entropy, to evaluate KSE is a fundamental issue. Here we showed

the application of two approaches, based on permutation entropy, on a newly de-

veloped, and therefore unconventional, chaotic model.

This model has the advantage of being tunable by means of few parameters to

exhibit different behaviours, whichmake it a promising candidate tomodel several

natural phenomena, from neural spiking to social dynamics [105]. Furthermore,

an electronic implementation was developed recently [41], by making use of op-

erational amplifiers, signal multipliers and digitally controlled potentiometer, to

solve the system’s differential equations. The whole setup was made on a custom

printed circuit board and using integrated circuit components, allowing reduced

electronic noise and repeatable conditions. The board also had dedicated ports to

allow remote control of the potentiometer, necessary to tune the parameters B0

and p0, via an FPGA, which in turn was controlled by a computer through LAN

network. An oscilloscope, connected to the computer via USB, was employed to

measure the output signals. This setup allows for a fast and completely remote-

controlled acquisition procedure, making it easy to automate and perform data

collection and analysis in one single pipeline. Furthermore, the reduced dimen-

sion and relatively low cost, allow to easily scale up this implementation in order

to make multiple units of the MUM model and have them coupled. This could

then prompt the experimental study of interactions in chaotic network structures,

including for example synchronization phenomena.

Nonetheless, the results shown in this chapter are far from satisfactory. The

problem of finding a reliable proxy for KSE, especially when studying continuous-

time chaotic systems, is still an open and fundamental issue in nonlinear time

series analysis.
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Chapter 5

Mutual information and CTO for
correlation analysis

The discovery and characterisation of network structures that arise inside a par-

ticular system is a critical subject in nonlinear research. Taking on this problem

requires assessing the relationships between system nodes, a process that may

be accomplished using a variety of metrics, each with its own set of benefits and

drawbacks. A common strategy is to discover significant values of correlation

estimators between experimental time series generated by elements, or nodes,

in order to assess the existence of an underlying network structure [117]. This

approach is common in a variety of fields, like climate science [118, 119, 120]

and brain connectivity [121, 122]. Functional networks are studied in this lat-

ter context using functional magnetic resonance imaging (fMRI) [123], electroen-

cephalography (EEG) [124], or magnetoencephalography (MEG)[125, 126], which

produce multivariate recordings that allow reconstruction of brain activity in dif-

ferent brain regions. Assessing the degree of connectivity is also important for in-

vestigating the nonlinear dynamics of synchronization processes that contribute

to the formation of a network [127].

Different connection measures might be used depending on the type of in-

teraction that is theorized to generate the link. The sample Pearson correlation

coefficient between two sequences, for example, assesses the mutual degree of

linear, non-directed correlation [117]. In more general circumstances, more so-

phisticated connection measures, such as Spearman’s and Kendall’s correlation

coefficients can detect nonlinear relationships. Furthermore, measurements like

transfer entropy [128] and Granger causality [129, 130, 131] are intended to dis-

cern the direction of connectivity as well as its strength. Finally, metrics that op-
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erate in the frequency domain, such as coherence [132, 133] and methods derived

from this last one [134, 135, 132], phase synchronization [136], and wavelet-based

envelope correlation [136], are frequently used [121], particularly in the field of

neuroimaging [137].

Mutual information, initially suggested by Shannon in 1948, is regarded as a

valuable technique for detecting linear, and possibly nonlinear [138, 139], correla-

tions among themetrics that measure amplitude-related correlations, particularly

due to the relative simplicity of implementation.

Recently, a method for identifying links was presented [140] that evaluates the

relevance of zero-delay cross-correlation between pairs of time series via surrogate

data creation [141]. The approach determines the shortest observation period,

known as the correlation time scale of observability (CTO), required to detect a

significant cross-correlation.

In this chapter, we examine the relationship between this last metric and mu-

tual information by evaluating both metrics on large sets of data extracted from

three experimental contexts: human brainmagnetoencephalography, human brain

electroencephalography, and small-scale regional surface wind measurements. A

power-law describes this connection effectively. A basic noise and signal model is

used in a theoretical model that explains these findings, yielding the equation:

ÎW1−γ ≈ η∗ · c ln(N) , (5.1)

where Î and W are the sample Mutual Information and CTO, respectively; η∗ is

an efficiency parameter required for the CTO algorithm (described in the next

section), N is the size of the available sequences and γ and c are costants to be

fitted on the experimental data. The demonstration of this last equation, and a

more detailed description of its parameters, is discussed in Appendix A.

These results were published in 2021 [142] and demonstrate that the combi-

nation of this metric and mutual information may be used as a powerful tool to

detect and quantify connectivity relationships in a variety of experimental sce-

narios.
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5.1 Correlation time-scale of observability (CTO)

5.1. Correlation time-scale of observability (CTO)

The CTOmethod computes a cross-correlation time scale of observability W from

a pair of sequences. The approach is thoroughly discussed in the study where it

was initially introduced [140], as well as in two papers where it was applied to

MEG recordings [143, 144]. A C++ implementation has also been released as an

open-source software package [145, 146].

The first step of the CTO method consists in computing the Pearson cross-

correlation coefficient on running windows of varying widths w. Given a pair of

nodes and their corresponding sequences of size N and sampled with period T ,

the sample Pearson cross-correlation coefficient r(k,w) is computed on a mov-

ing window of width w and centered at time tk. The window width takes the

values mw0, where w0 is a “base window” and m is an integer number running

between 1 and M. The moving windows’s center point moves between t1 =
Mw0

2

and tK = N T − Mw0
2 , incremented at each step by the base window w0. It should be

noted that the number of windows, K, is the same independently of the window

width. Therefore, at small values of window width, for example at the minimum

value w0, the initial and last segments of the time series, each long (M−1)w0
2 , are dis-

carded. This should be considered when choosing the values of M and w0, which

ultimately set the minimum and maximum window width to be used. A reason-

able choice is to ensure that the segments discarded using short windows are at

least one order of magnitude less than the whole time series. Furthermore, the

base window width w0 should be set based on the time series sampling period,

making sure that an adequate number of sampled points is present in a window

of width w0. To simplify the notation, we will henceforth refer to the time index

k instead of the explicit time value tk, with k taking all the integers values from 1

to K.

Given k and w, the corresponding element of the cross-correlation diagram,

r(k,w), is then linked to a p-value using a surrogate-based technique [141]. Surro-

gate generation is an efficient strategy for estimating statistical significance when

the underlying null-hypothesis distribution is unknown and must be derived from
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data. To calculate the p-value, an iterative amplitude-adjusted Fourier transform

(IAAFT) technique is used to construct a collection of m pairs of surrogate se-

quences from a given original pair. A surrogate sequence generated through IAAFT

essentially consists in a sequence with approximately the same power spectrum

(or autocorrelation, by means of the Wiener-Kinchin theorem) and amplitude

distribution. Nonetheless, a surrogate sequence has a purely stochastic nature:

IAAFT ultimately performs a random reshuffle of the input data, with the power

spectrum and amplitude constraints mentioned earlier. This method therefore

provides a set of synthetic stochastic data that can be used as a comparison to

test the null hypothesis of the two original sequences being uncorrelated. From

the original pair of sequences, out of each sequence independently the IAAFT al-

gorithm is used to generate a set of surrogate sequences. These are then paired,

one surrogate sequence from each of the two original ones, in order to make a

surrogate pair.

Out of each pair of surrogate sequences, a surrogate cross-correlation diagram

ri(k,w) is computed, where i = 1, . . . ,m is the index enumerating each surrogate

pair. Finally, the original cross-correlation diagram element r(k,w) is ranked in

ascending order among the m corresponding surrogate elements ri(k,w): at this

point, a p-value can be obtained simply by dividing the rank number by the total

number of pairs m [140]. The resulting collection of p(k,w) p-values is henceforth

referred to as the p-value diagram.

The CTO method’s second step consists in reducing the two-dimensional in-

formation contained inside a p-value diagram to a one-dimensional efficiency

function η(w) of the window width w. This function is defined as the fraction of

windows of width w whose p-value is smaller than a certain significance thresh-

old α, here set to 0.05. Considering that the total number of windows, at a given

width, is K, we can write the efficiency function as:

η(w) =
# (k ∈ 1, . . . ,K | p(k,w) ⩽ α)

K
,

where with # we denote counting every k that meets the p-value condition.

The last step consists in selecting the minimum window width W , if any, such
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that η(w) > η∗, where η∗ is a threshold value. If such condition is fulfilled, the value

W will correspond to the time scale of observability of the correlation between the

two input sequences, or in other words to the link between the two selected nodes

generating the sequences.

Figure 5.1 shows a graphic summary of the method’s results: (a) and (b) show

the p-value diagram in the case where a link is not found (a) and in the case

where a link is found (b). For the latter case, the dotted green line marks the value

of w such that a fraction η∗ of windows shows a significant correlation, i.e. p-

value less than α. Finally, in (c), the efficiency functions are shown: by increasing

the window width w, the event in red eventually reaches the threshold value η∗,

meaning that a link between the two considered nodes exists, while in blue the

spurious event is shown, where the efficiency function never reaches the threshold

and therefore the link is deemed not to exist.

In Perinelli et al. [140], a discussion is present about how this procedure skims

out spurious events: if a correlation is found at small windows due to a spuri-

ous event, once the window width is increased the spurious correlation will be

averaged over larger and larger portions of uncorrelated noise, effectively reduc-

ing the overall correlation and the p-value given by surrogate-based significance

estimation. Therefore, the p-value diagram, as shown in Figure 5.1(a), will not

have a funnel-like structure and reach the efficiency threshold necessary for the

link to be assessed. This previous case assumes that the spurious events have

low signal-to-noise ratio. As discussed in Appendix A, a single delta-like event

with high signal-to-noise ratio would in fact generate a funnel-like structure in

the p-value diagram. Nonetheless, a single spurious event would trigger a slowly

increasing efficiency function, resulting in a high value of time scale of observ-

ability W . Therefore, suitably setting the efficiency threshold could prove useful

to skim this kind of events.

To further understand the meaning of W , consider that its value is an estimate

of the window width such that the chance of detecting a statistically significant

cross-correlation along the sequences in a window of that width equals η∗. In the

limit situation η∗ = 1, for example, W refers to the window width for which all
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(a) (b)

W

(c)

(a)

(b)

p(w,tk)p(w,tk)

Figure 5.1: Scheme of the CTO algorithm: in (a) the p-value diagram is shown

in the case of spurious correlation events; (b) shows the p-value diagram in case

of significantly correlated nodes, with the green dotted line showing the window

width value w where a number of windows η∗ shows significant correlation; in (c)

the efficiency function η(w) for the detected link (red) and the spurious correla-

tion event (blue) are shown. The black lines highlight the value W for which the

threshold efficiency η∗ is reached.

windows along the sequences display a significant cross-correlation. Crucially,

the higher the threshold is set, the more constringent the requirement for the

existence of a link. Therefore, the threshold can be used to tune the sensitivity of

the method: when the threshold is raised, only stronger links are detected, while

lowering it allows for the detection of weaker ones.

Aside from indicating the presence of a link, the time scale W measures its

strength: the more correlated the two sequences, the shorter the window width

W required to detect a significant cross-correlation. Therefore the inverse of the
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time scale of observability,W−1 makes up ameasure of connectivity strength [144],

which will be used as a comparison with MI.

It is worth noting that, while the Pearson cross-correlation coefficient is a lin-

ear measure, the running-window approach combined with the surrogate-based

significance evaluation can prove useful in detecting behaviors typical of nonlin-

ear dynamics, such as intermittency or nonstationarity. In the case of intermittent

behavior, differently from a forward application of the cross-correlation coefficient

on the two whole sequences, the CTO algorithm can be more efficient when in-

termittency causes shared events to take place in a limited fraction of the time

spanned by the time series: as shown in Fig. 5.1(b), a funnel-like structure can

be easily triggered by significant events taking place in a short amount of time.

Nonetheless, the intermittent behaviour may cause an increased value of W , thus

a weaker connectivity, which should be taken into account when setting the effi-

ciency threshold. In general, the flexibility given by the CTO algorithm in terms

of temporal resolution (by tuning the base window width w0 and the maximum

width Mw0) and connectivity strength (by tuning efficiency threshold) can prove

useful in extracting valuable information in a wide range of situations, involving

those given by the presence of nonlinear effects on the time series.

5.2. Mutual information

The sequences {xt, yt} can be seen as a realization of a bivariate random variable

(X,Y), with joint density pX,Y(x, y) and marginal densities pX(x), pY(y), respec-

tively. We already gave the definition of mutual information in Chapter 2 and we

discussed that MI can be rewritten in a more practical form as:

I(X,Y) = −H(X,Y) + H(X) + H(Y) ,

where H(X,Y) is the joint Shannon entropy and H(X) and H(Y) the Shannon

entropies of the two single random variables X and Y .

Computing MI therefore consists in evaluating the marginal sample Shannon

entropies Ĥ(X), Ĥ(Y) and the joint sample Shannon entropy ̂H(X,Y), where the
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hat denotes that these are sample estimations and therefore affected by uncer-

tainties due to noise in the sequences {xt, yt} and finite-size effects.

Themethod used here to evaluate the sample Shannon entropies is the Kozachenko-

Leonenko k-nearest-neighbor estimator [147], which is consistently used as a bench-

mark [148, 149], despite being computationally cumbersome.

The Kozachenko-Leonenko estimator for the marginal sample entropies Ĥ(X),

Ĥ(Y) can be written as:

Ĥ(X) = ψ(N) − ψ(k) + ln(2) +
1
N

N∑
i=1

ln (εi) ,

where ψ is the digamma function, k is the selected nearest neighbor’s rank, and

εi is the k-th distance in ascending order within the set {|xi − x j|}, where i is fixed

and j takes on all the values between 1 and N, except j = i.

Similarly, the estimator for the sample joint entropy becomes:

Ĥ(X,Y) = ψ(N) − ψ(k) + ln(π) +
2
N

N∑
i=1

ln (εi) ,

where εi is k-th distance now in ascending order within the set {di j}, with di j being

the euclidean distance between the points (xi, yi) and (x j, y j), again with i being

fixed and j ranging from 1 to N, with the exception of j = i.

For sufficiently smooth distributions, the estimator value is independent of the

nearest neighbor’s rank k. Here, k is set to be 20 [142]. A more detailed discus-

sion on the Kozachenko-Leonenko method is present in several works, including

Lombardi & Pant [150], and Delattre & Fournier [151]).

Another standard approach for MI estimation [138] consists in the plug-in

estimator:

Î(X,Y) =
Mx∑
i=1

My∑
j=1

Pxy(i, j) ln
[

Pxy(i, j)
Px(i)Py( j)

]
. (5.2)

where the sample joint probability distribution is evaluated as a two-dimensional

histogram Pxy(i, j) out of the two sequences {xt}, {yt}. The indexes i, j identify

the rectangular bins used to partition the joint distribution support [152, 153]:

Concurrently, two marginal distributions histograms Px(i), Py( j) are made to es-

timate the marginal distributions pX(x), pY(y), respectively. The estimate Î(X,Y)
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converges to I(X,Y) in the limit N → ∞ [138]. This estimator would be relatively

easy to compute but its accuracy strongly depends on the bin partitioning, which

proves to be a non-trivial choice [154].

5.3. Experimental dataset

Both methods considered in the present work, namely MI and CTO, are applied to

pairs of scalar sequences, henceforth referred to as {xt}, {yt}, where t is an integer

between 1 and N. Each sequence, sampled with a sampling period T , is produced

by a node, i.e. a point-like location within the space region encompassed by the

system of interest. If the system contains ν nodes, the number of possible links to

analyze is ν(ν − 1)/2.

Three sets of experimental recordings are analyzed to investigate the rela-

tionship between MI and CTO. The first two datasets correspond to electromag-

netic recordings of human brain activity in resting state, one acquired by means

of magnetoencephalography and one by means of electroencephalography. In

both cases, power sequences are reconstructed for a given set of source locations,

or nodes, within the brain. The third dataset concerns surface wind speed data

recorded by meteorological stations—and thus nodes—in the Province of Trento.

5.3.1. MEG recordings

Magnetoencephalography (MEG) is a powerful non-invasive tool that allows to

capture the dynamic electrical activity of the brain with unparalleled precision.

MEG is a neuroimaging technique that measures the magnetic fields generated

by the electrical activity of the neurons in the brain. MEG recordings are collected

via superconducting quantum interference devices (SQUIDs) that are able to de-

tect the weak magnetic fields generated by brain activity. SQUIDs are capable of

measuring magnetic fields at the order of femto-Tesla, making MEG an extremely

sensitive technique for capturing electrical dynamics of the brain.

The use of MEG in neuroscience research has grown exponentially in recent

years due to its unique advantages. One of the key strengths of MEG is the
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ability to provide millisecond-level temporal resolution, allowing to capture rapid

changes in brain activity that occur during various cognitive processes, such as

perception, attention and memory. This temporal precision is crucial for under-

standing real-time dynamics of the brain and unraveling the sequence of events

that occur during different cognitive tasks.

Another advantage ofMEG is its ability to directlymeasure themagnetic fields

produced by neural currents that are highly localized and specific to the underly-

ing brain activity. Unlike other neuroimaging techniques such as functional mag-

netic resonance imaging (fMRI) that rely on changes in blood flow as a proxy for

brain activity, MEG provides a direct measure of the electrical activity of neurons.

This makes MEG highly sensitive to the actual neural processes that occur in the

brain and allows for more precise localization of brain activity.

Due to the possibility of mapping the brain activity during the execution of

functional tasks, it’s possible to identify the brain regions that are involved in

specific cognitive processes. This can be used to gain insight about the functional

organization of the brain and establish the existence of neural networks involved

in language processing, motor control, and sensory perception.

MEG recording typically involves placing the subject’s head inside a highly

shielded room to minimize interference from external magnetic fields. The partic-

ipant wears a helmet-like device that contains the SQUIDs, connected to a data

acquisition system. During the acquisition, the participant may be asked to per-

form a specific task or engage in a cognitive process, or stay in a relaxed state,

commonly referred as resting state. Processing the recorded data involves sophis-

ticated algorithms and statistical techniques in order to reconstruct the spatio-

temporal dynamics of brain activity. The final outcome of this preprocessing con-

sists in temporal recordings associated with voxels, small volumes that make up a

mapping of the brain cortex.

Here we useMEG recordings collected from the CamCan public database [155,

156]. The dataset is made up of recordings from 20 healthy subjects with age

of 18-28 years. The recordings were aquired with the subjects in resting state

and with eyes closed. For each subject, brain activity is reconstructed at 72 brain
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locations uniformly distributed on the cortex. The details of the preprocessing

procedure to reconstruct brain activity is described in Castelluzzo et al. [144]. For

each node, a recording sampled at 250 Hz with a duration between 180 and 240

seconds is available. The final dataset therefore consists in 72 · 71/2 = 2556 pairs

of sequences available for each subjects, making up a total of 51120 pairs.
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Figure 5.2: (a) Sample joint histogram of W−1, Î built out of MEG recordings. The

color scale identifies the bin occupation. (b) Average MI ⟨Î⟩ as a function of W−1

computed along each column of the joint histogram in (a), i.e. for fixed values of

W−1. The errorbars correspond to the standard error s
⟨Î⟩ of ⟨Î⟩. The dashed line

corresponds to the value of ⟨Î⟩ computed for all the pairs of sequences that do not

provide a finite W value.

Reproduced from Chaos 31, 073106 (2021), with the permission of AIP Publishing.

In Figure 5.2 we show the joint histogram of Î and W−1, evaluated by setting

the threshold efficiency η∗ to 0.5. The number of bins for the continuous variable

Î was computed by using the Freedman-Diaconis rule [157, 158]. The binning of

W−1 is instead determined by discrete values of W , that as mentioned in Sec. 5.1

can take on values being multiples of the base window width w0.

Due to a total of 36462 pairs that did not exhibit a link, according to the CTO

algorithm, and therefore did not produce a finite value of W , the histogram is

made up of 14704 points. The existence of a relationship betweeen W−1 and Î

appears evident. The average value of the MI estimator ⟨Î⟩, and the related uncer-

tainty estimated as the standard error s
⟨Î⟩, was then considered for each available
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discrete value of W , as shown in Figure 5.2 (b).
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Figure 5.3: Average MI ⟨Î⟩ as a function of W−1 evaluated out of MEG recordings.

The errorbars correspond to the standard error s
⟨Î⟩ of ⟨Î⟩. The orange, magenta

and blue points correspond to evaluations of W carried out by setting the effi-

ciency threshold η∗ to 0.5, 0.75 and 0.9, respectively. The dashed, horizontal lines

correspond to the values of ⟨Î⟩ computed for all the pairs of sequences that do

not provide a finite W (the color key is the same as for the data points). The three

dash-dotted lines correspond to the fits of the linear parts of the log-log plots. The

fit procedure is discussed in Ref. [142].

Reproduced from Chaos 31, 073106 (2021), with the permission of AIP Publishing.

In Fig. 5.3, we show ⟨Î⟩ vs. W−1 at different values of the threshold η∗, namely

(0.5, 0.75, 0.9). Using more conservative threshold values causes an increased

number of discarded pairs due to the absence of a link, namely 41831 and 44347

for the threholds η∗ = 0.75 and η∗ = 0.9 respectively.

Nonetheless, the resulting plots show the existence of a power-law relation-
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ship between the two quantities estimating the connectivity strenght. Further-

more, the effects of changing the efficiency threshold seems to cause a parallel

shift in the log-log scale, which gives hints of the parameter η∗ acting as a multi-

plying factor in the function binding ⟨Î⟩ to W−1.

5.3.2. EEG recordings

Electroencephalography (EEG) is a non-invasive neurophysiological technique that

has been widely used to study brain activity. It measures the electrical activity of

the brain providing valuable insights into brain function and dysfunction. EEG has

been a fundamental tool in neuroscience research, clinical practice, and various

applications, such as diagnosing epilepsy, studying sleep patterns, and assessing

cognitive processes.

EEG recordings essentiallymeasures electrical signals produced by synchronous

firing of neurons, by means of electrodes placed on the scalp. The electrical activ-

ity is measured as a series of waves with specific frequency bands associated with

different brain states and can provide insights into various aspects of brain func-

tioning. The source of the electrical brain signals is the postsynaptic potentials of

cortical neurons. When a large number of neurons fire synchronously, they gen-

erate an electrical field that can be detected by the electrodes. EEG measures the

voltage difference between two or more electrodes, resulting in time series known

as an EEG waveform.

The dataset used here was collected from the LEMON public database [159,

160]. A total of 30 healthy subjects between 20-35 years of age has been selected,

with recordings carried out in resting state with closed eyes. For each subject, we

reconstructed the brain activity within the so-called alpha band, namely between

8 Hz and 14 Hz, from 30 brain locations uniformly distributed on the cortex. A

more detailed description of the required EEG preprocessing is discussed in Per-

inelli et al. [142].

For each of the 30 brain locations, three segments are sampled at 250 Hz, with

a duration of 60 s each. The total amount of pairs of sequences analyzed therefore

corresponds to 30 · 29/2 = 435 for each subject, for a total of 39150 pairs.
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The average ⟨Î⟩, and the related standard error s
⟨Î⟩, for each value of W−1, com-

puted following a similar procedure as the one discussed in the previous section, is

shown in Fig. 5.4. Again, we performed the analysis on three values of η∗, namely

0.5, 0.75, 0.9. For each threshold the number of links that were discarded due to

the absence of a detectable link is 10895, 17917, 23087, respectively.
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Figure 5.4: Average MI ⟨Î⟩ as a function of W−1 evaluated out of EEG recordings in

the alpha frequency band. The errorbars correspond to the standard error s
⟨Î⟩ of

⟨Î⟩. The orange, magenta and blue points correspond to evaluations of W carried

out by setting the efficiency threshold η∗ to 0.5, 0.75 and 0.9, respectively. The

dashed, horizontal lines correspond to the values of ⟨Î⟩ computed for all the pairs

of sequences that do not provide a finite W (the color key is the same as for the

data points). The three dash-dotted lines correspond to the fits of the linear parts

of the log-log plots. The fit procedure is discussed in Ref. [142].

Reproduced from Chaos 31, 073106 (2021), with the permission of AIP Publishing.

Figure 5.4 shows a behaviour similar to the one found in the previous section
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for MEG data, with the data hinting at a power-law relationship with multiplying

factor depending on the selected efficiency threshold.

5.3.3. Surface wind speed recordings

The wind recordings dataset was collected from the public weather database of

the Province of Trento [161], Italy. The selected data refer to 30 weather stations

and, for each station, 4 wind recordings were selected. Each recording covers 120

days, namely the first 120 days of each year from 2015 to 2018, sampled with a

period of 600 s. Due to occasional sensors malfunctioning and environmental is-

sues affecting the weather stations, a preprocessing has been performed to recover

missing data by means of linear interpolation of the neighboring available points.

In any case, the occurrence rate of missing data amounts to less than 1% and,

occasionally, occuring for consecutive points in the recordings. The final dataset

then amounts to 435 pairs of nodes and, considering 4 recordings for each weather

station, to a total of 1740 pairs in the whole dataset.

Following the precedure applied toMEG and EEG recordings, Figure 5.5 shows

the average ⟨Î⟩ and the related standard error s
⟨Î⟩ for each value of W−1. The

same values for the threshold have used, namely 0.5, 0.75, 0.9 with a number of

discarded pairs equal to 499, 1150 and 1513, respectively.

The plot in Fig. 5.5 shows an increased dispersion in the values of ⟨Î⟩ with

respect to MEG and EEG recordings, particularly to those points corresponding to

lower values of W−1. Nevertheless, the same features emerging from the analysis

on the two brain activity recordings are evident from this analysis.

5.4. Final remarks

The analysis shown in this chapter allow to draw some meaningful conclusions

from the comparison of MI with the CTO method.

The first interesting aspect is validating further the reliability of the CTO

method. This method was only recently developed and has been mainly applied

to the study on brain networks, specifically out of EEG and MEG recordings. Pro-
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Figure 5.5: AverageMI ⟨Î⟩ as a function ofW−1 evaluated out of surface wind speed

recordings. The errorbars correspond to the standard error s
⟨Î⟩ of ⟨Î⟩. The orange,

magenta and blue points correspond to evaluations of W carried out by setting

the efficiency threshold η∗ to 0.5, 0.75 and 0.9, respectively. The dashed, horizontal

lines correspond to the values of ⟨Î⟩ computed for all the pairs of sequences that

do not provide a finite W (the color key is the same as for the data points). The

three dash-dotted lines correspond to the fits of the linear parts of the log-log

plots. The fit procedure is discussed in Ref. [142].

Reproduced from Chaos 31, 073106 (2021), with the permission of AIP Publishing.

viding a comparison with an established and widely used metric as mutual in-

formation, and the evident and repeated occurrence of a power-law relationship

between these two metrics on heterogeneous experimental data, allows to reli-

ably apply the CTO method to contexts other than neuroscience. Furthermore,

the theoretical model proposed to explain this empirical power-law relationship,

discussed in Appendix A, allows to gain some insights into the nature of the cor-
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relation of the system under study, in terms of the parameters making up the

theoretical model. This model describes the signals as a sum of delta-like corre-

lation events summed to a noise component. Therefore, it should be noted that

such a model works in describing the experimental evidences shown in this chap-

ter with the assumption that correlation events are independent and sparse, so

that the funnel-like structures occurring in the cross-correlation diagram and the

p-value diagrams (as shown in Fig. 5.1) do not overlap.

The second conclusion is the complementarity between MI and CTO. First in

terms of resolution: by construction, the CTOmethod provides a higher resolution

at small values of connectivity strength, due to the uniformly distributed values

of W that, as already discussed, take on values being multiples of the base win-

dow width w0. By the evidence of the analysis shown here, MI appears instead

to provide a more limited range of outcomes for weakly-linked nodes. Consider-

ing also the issue of spurious events, CTO algorithm’s parameter could be tuned

to detect spurious correlations and, due to its higher resolution at weaker con-

nectivity, it could prove useful in characterizing these events which, as previously

discussed in Section 5.1, are expected to result in weaker connections in terms of

W−1. Conversely, while MI would prove more robust against few spurious events

(provided their duration is short compared to the time series), it does not pro-

vide any additional information on these events. In addition, MI lacks an absolute

interpretation when the outcome is significantly different from 0. A comparison

between multiple pairs by means of MI allows to draw conclusions in terms of

which pairs are more correlated than other pairs. This makes MI more suitable

to quantify differences in connectivity, more than absolute connectivity on a sin-

gle pair. CTO instead, providing an outcome with the dimension of time, is more

adapt to be employed as an absolute connectivity metric.

Finally, it should bementioned that CTO appears to bemore conservative than

MI. In Perinelli et al. [142], the twometrics are in fact tested on synthetic surrogate

data that are therefore non-significantly correlated by means of the CTO method

(see Section 5.1). Nonetheless, the spurious correlations occurring solely due to

the stochastic nature of surrogate data, produce significantly non-zero values of
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MI.
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Conclusions

The use of techniques stemming from Information Theory on the analysis of time

series has gained a lot of interest in the last decades. Several metrics based on the

concept of entropy have been developed and adapted to a wide range of fields,

from economics, neuroscience, physiology and earth sciences.

As we discussed in Chapter 2, the work of several scientist in the last century,

starting from the seminal work by Shannon, has eventually led to find the link

between entropy and the intrinsic complexity of dynamical systems. Therefore,

beside being able to quantify the variability of a sequence of data, entropy metrics

provide interesting insights into recognizing evidences of deterministic chaotic

behaviour in a system’s evolution.

Despite their wide use, entropy measures still require a solid mathematical

background to properly characterize their behaviour on real data. For example, in

Chapter 3 we discuss a recent result regarding the estimation of the Shannon en-

tropy variance. A proper evaluation of this last quantity is well-known in some sit-

uations, but even for the relatively simple case of data sampled from an underlying

multinomial memoryless distribution, such an estimation was lacking. Our work

proves the reliability of a plug-in entropy variance estimator. Despite a proper

evaluation, in general, requires to know the a priori distribution of the sampled

data, namely higher-order moments of the Shannon Information, we were able to

study the case in which a distribution gives out the maximum entropy variance

and thusmake up a practical rule of thumb to link the number of required samples

to the wanted accuracy on entropy estimations.

In Chapter 4, we showed how permutation entropy has gained significant in-
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terest for its potential to estimate Kolmogorov-Sinai entropy, despite being simple

and intuitive. Nonetheless, most of the works on this topic involve time-discrete

dynamics, while few attempts have been tried on continuous systems. Several

recent works have studied the reliability of estimating KSE rate through permu-

tation entropy by means of some corrective terms or modifications of the original

formula of PE from Bandt and Pompe. Nonetheless, at least for the approach we

considered, some issues are still present. As an example, we have found some

evidences suggesting that in the case of signals with abrupt spikes one of these

methods performs worst than the standard permutation entropy.

Finally, in the last chapter, we discussed an interesting comparison of mutual

information with a recently developed correlation algorithm. This result does not

aim at proving the validity of mutual information to study signal correlations:

this in fact is already well-established and finds several applications, especially

in neuroscience. Rather, it gives an interesting insight on the complementarity of

the CTO method and MI, suggesting that the use of both techniques on the same

dataset can uncover more interesting properties than each of the two methods

alone.

Information-theoretical techniques then provide an alternative and comple-

mentary set of tools to other approaches from nonlinear time series analysis. The

main advantage of the former, being that no further knowledge of the system’s

properties are required, since entropy metrics are usually non-parametric. On the

contrary, as we discussed in Chapter 1, the application of nonlinear time series

analysis methods can easily turn out to produce conflicting results when these

are not applied in a conscious way.
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sequences, the available algorithms for the generation of surrogate data can become

cumbersome and computationally demanding. In this work, we present a new method
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by nonlinear systems, spike trains are a class of sequences requiring algorithms for sur-

rogate generation that are typically more sophisticated and computationally demand-

ing than methods developed for continuous signals. Although algorithms to specif-

ically generate surrogate spike trains exist, the availability of open-source, portable

implementations is still incomplete. In this paper, we introduce the SpiSeMe (Spike

Sequence Mime) software package that implements four algorithms for the generation

of surrogate data out of spike trains and more generally out of any sequence of dis-

crete events. The purpose of the package is to provide a unified and portable toolbox
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flected in the topology of a network and, ultimately, on the dependence of connectivity
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on geometric distance. This issue, though rarely addressed, is crucial in neuroscience,

where physical links between brain regions are associated with a metabolic cost. In

this work we investigate brain connectivity—estimated by means of a recently devel-

oped method that evaluates time scales of cross-correlation observability—and its de-

pendence on geometric distance by analyzing resting state magnetoencephalographic

recordings collected from a large set of healthy subjects. We identify three regimes of

distance each showing a specific behavior of connectivity. This identification makes up

a new tool to study the mechanisms underlying network formation and sustainment,

with possible applications to the investigation of neuroscientific issues, such as aging

and neurodegenerative diseases.

• A Novel Hybrid Microdosimeter for Radiation Field Characteriza-
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In microdosimetry, lineal energies y are calculated from energy depositions ϵ inside the

microdosimeter divided by the mean chord length, whose value is based on geometrical

assumptions on both the detector and the radiation field. This work presents an innova-

tive two-stages hybrid detector (HDM: hybrid detector for microdosimetry) composed

by a tissue equivalent proportional counter and a silicon tracker made of 4 low gain

avalanche diode. This design provides a direct measurement of energy deposition in

tissue as well as particles tracking with a submillimeter lateral spatial resolution. The

data collected by the detector allow to obtain the real track length traversed by each

particle in the tissue equivalent proportional counter and thus estimates microdosime-

try spectra without the mean chord length approximation. Using Geant4 toolkit, we

investigated HDM performances in terms of detection and tracking efficiencies when

placed in water and exposed to protons and carbon ions in the therapeutic energy

range. The results indicate that the mean chord length approximation underestimate
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particles with short track, which often are characterized by a high energy deposition

and thus can be biologically relevant. Tracking efficiency depends on the low gain

avalanche diode configurations: 34 strips sensors have a higher detection efficiency

but lower spatial resolution than 71 strips sensors. Further studies will be performed

both with Geant4 and experimentally to optimize the detector design on the bases of

the radiation field of interest.The main purpose of HDM is to improve the assessment

of the radiation biological effectiveness via microdosimetric measurements, exploiting

a new definition of the lineal energy (yT ), defined as the energy deposition ϵ inside the

microdosimeter divided by the real track length of the particle.

• Relationship betweenmutual information and cross-correlation time

scale of observability as measures of connectivity strength, A. Per-

inelli, M. Castelluzzo, D. Tabarelli, V. Mazza and L. Ricci, Chaos 31 (2021),

073106, doi:10.1063/5.0053857

The task of identifying and characterizing network structures out of experimentally ob-

served time series is tackled by implementing different solutions, ranging from entropy-

based techniques to the evaluation of the significance of observed correlation estima-

tors. Among the metrics that belong to the first class, mutual information is of ma-

jor importance due to the relative simplicity of implementation and its relying on the

crucial concept of entropy. With regard to the second class, a method that allows

us to assess the connectivity strength of a link in terms of a time scale of its observ-

ability via the significance estimate of measured cross correlation was recently shown

to provide a reliable tool to study network structures. In this paper, we investigate

the relationship between this last metric and mutual information by simultaneously

assessing both metrics on large sets of data extracted from three experimental con-

texts, human brain magnetoencephalography, human brain electroencephalography,

and surface wind measurements carried out on a small regional scale, as well as on

simulated coupled, auto-regressive processes. We show that the relationship is well

described by a power law and provide a theoretical explanation based on a simple

noise and signal model. Besides further upholding the reliability of cross-correlation

time scale of observability, the results show that the combined use of this metric and
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mutual information can be used as a valuable tool to identify and characterize con-

nectivity links in a wide range of experimental contexts.

• Estimating the variance of Shannon entropy, L. Ricci, A. Perinelli and

M. Castelluzzo, Phys. Rev. E. 104 (2021), 024220, doi:10.1103/PhysRevE.104.024220

The statistical analysis of data stemming from dynamical systems, including, but not

limited to, time series, routinely relies on the estimation of information theoretical

quantities, most notably Shannon entropy. To this purpose, possibly themost widespread

tool is provided by the so-called plug-in estimator, whose statistical properties in terms

of bias and variance were investigated since the first decade after the publication of

Shannon’s seminal works. In the case of an underlying multinomial distribution, while

the bias can be evaluated by knowing support and data set size, variance is far more

elusive. The aim of the present work is to investigate, in the multinomial case, the

statistical properties of an estimator of a parameter that describes the variance of the

plug-in estimator of Shannon entropy. We then exactly determine the probability dis-

tributions that maximize that parameter. The results presented here allow one to set

upper limits to the uncertainty of entropy assessments under the hypothesis of mem-

oryless underlying stochastic processes.

• Experimental evidence of chaos generated by a Minimal Universal

OscillatorModel, L. Ricci, A. Perinelli, M. Castelluzzo, S. Euzzor, R.Meucci,

Int. J. Bifurcation andChaos 31 (2021), 2150205, doi:10.1142/S0218127421502059

Detection of chaos in experimental data is a crucial issue in nonlinear science. His-

torically, one of the first evidences of a chaotic behavior in experimental recordings

came from laser physics. In a recent work, a Minimal Universal Model of chaos was

developed by revisiting the model of laser with feedback, and a first electronic imple-

mentation was discussed. Here, we propose an upgraded electronic implementation

of the Minimal Universal Model, which allows for a precise and reproducible analy-

sis of the model’s parameters space. As a marker of a possible chaotic behavior the

variability of the spiking activity that characterizes one of the system’s coordinates

was used. Relying on a numerical characterization of the relationship between spiking
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activity and maximum Lyapunov exponent at different parameter combinations, sev-

eral potentially chaotic settings were selected. The analysis via divergence exponent

method of experimental time series acquired by using those settings confirmed a ro-

bust chaotic behavior and provided values of the maximum Lyapunov exponent that

are in very good agreement with the theoretical predictions. The results of this work

further uphold the reliability of the Minimal Universal Model. In addition, the up-

graded electronic implementation provides an easily controllable setup that allows for

further developments aiming at coupling multiple chaotic systems and investigating

synchronization processes.

• Experimental Implementation of a LaserModelwithCavity LossMod-

ulation, M. Castelluzzo, M. Cescato, L. Ricci, R. Meucci, A. Perinelli, 2022

IEEE Workshop on Complexity in Engineering (COMPENG) (2022), COM-

PENG2022

Experimental evidence of chaos and generalized multistability in a laser model with

cavity loss modulation was first found in 1982, and recently revisited in a theoretical

framework. Here we propose and investigate an electronic implementation of such laser

model. Although a chaotic behavior has not been observed yet, the analysis provides

insights in the difficulties of an experimental implementation of the model. These dif-

ficulties appear to be mainly due to the laser intensity, indeed a non-negative quantity,

being simulated by a voltage, which can take on both positive and negative values.

• Identification ofmiRNAs regulatingMAPTexpression and their anal-

ysis in plasmaof patientswith dementia, P. Piscopo,M.Grasso, V.Manzini,

A. Zeni, M. Castelluzzo, F. Fontana, G. Talarico, A. E. Castellano, R. Riv-

abene, A. Crestini, G. Bruno, L. Ricci, M. A. Denti, Frontiers in Molecular

Neuroscience 16 (2023), doi:10.3389/fnmol.2023.1127163

Background: Dementia is one of the most common diseases in elderly people and

hundreds of thousand new cases per year of Alzheimer’s disease (AD) are estimated.

While the recent decade has seen significant advances in the development of novel

biomarkers to identify dementias at their early stage, a great effort has been recently

made to identify biomarkers able to improve differential diagnosis. However, only
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few potential candidates, mainly detectable in cerebrospinal fluid (CSF), have been

described so far. Methods: We searched for miRNAs regulating MAPT translation. We

employed a capture technology able to find the miRNAs directly bound to the MAPT

transcript in cell lines. Afterwards, we evaluated the levels of these miRNAs in plasma

samples from FTD (n = 42) and AD patients (n = 33) and relative healthy controls

(HCs) (n = 42) by using qRT-PCR. Results: Firstly, we found all miRNAs that interact

with the MAPT transcript. Ten miRNAs have been selected to verify their effect on Tau

levels increasing or reducing miRNA levels by using cell transfections with plasmids

expressing the miRNAs genes or LNA antagomiRs. Following the results obtained, miR-

92a-3p, miR-320a and miR-320b were selected to analyse their levels in plasma samples

of patients with FTD and AD respect to HCs. The analysis showed that the miR-92a-

1-3p was under-expressed in both AD and FTD compared to HCs. Moreover, miR-320a

was upregulated in FTD vs. AD patients, particularly in men when we stratified by sex.

Respect to HC, the only difference is showed in men with AD who have reduced levels

of this miRNA. Instead, miR-320b is up-regulated in both dementias, but only patients

with FTDmaintain this trend in both genders. Conclusions: Our results seem to identify

miR-92a-3p and miR-320a as possible good biomarkers to discriminate AD from HC,

while miR-320b to discriminate FTD from HC, particularly in males. Combining three

miRNAs improves the accuracy only in females, particularly for differential diagnosis

(FTD vs. AD) and to distinguish FTD from HC.
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Statistical properties of the plug-in

estimator of the Shannon entropy

variance parameter

Let’s write out the plug-in estimator of the variance parameter Λ0, evaluated out

of the rate histogram { p̂i} as

Λ̂0
(
p̂1, . . . p̂M

)
=

M∑
i=1

(
p̂i ln2 p̂i

)
− Ĥ2 . (1)

The quantity Λ̂0 is a sample statistic, therefore it is necessary to assess its reliabil-

ity in terms of bias and variance. This can be done by determining the asymptotic

behavior of Λ̂0 as N → ∞. We define, for each i, ζi ≡
(
p̂i − si

) √
N, then the rates

can be written as:

p̂i = si +
ζi
√

N
.

It follows:

Λ̂0 =

M∑
i=1

[(
si +

ζi
√

N

)
ln2

(
si +

ζi
√

N

)]

−

 M∑
i=1

(
si +

ζi
√

N

)
ln

(
si +

ζi
√

N

)2

.
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The previous expression can be expanded in terms of order N−n/2, with n ∈ N, as:

Λ̂0 = Λ0 +
1
√

N

M∑
i=1

ζi

[
ℓ2

i + 2(1 + H)ℓi

]
+

1
N

 M∑
i=1

(
1 + H + ℓi

si
ζ2

i

)
−

M∑
i=1

M∑
j=1

(
ζiζ jℓiℓ j

)
+ O

(
1

N3/2

)
,

where we defined ℓi ≡ ln si and the identity
∑M

i=1 ζi = 0, following from the con-

straint
∑M

i=1 p̂i = 1.

Wewrite asGδΛ̂0
(t) themoment generating function of the residual δΛ̂0 ≡ Λ̂0 − Λ0,

where t is a real variable defined in a neighborhood of the origin. By the definition

of moment generating function, it holds that:

GδΛ̂0
(t) = E

(
et δΛ̂0

)
.

We can then expand the exponential et δΛ̂0 as:

et δΛ̂0 = 1 +
t
√

N

M∑
i=1

ζi

[
ℓ2

i + 2(1 + H)ℓi

]
+

t
N

 M∑
i=1

(
1 + H + ℓi

si
ζ2

i

)
−

M∑
i=1

M∑
j=1

(
ζiζ jℓiℓ j

)
+

t2

2N

M∑
i=1

M∑
j=1

ζiζ j

[
ℓ2

i + 2(1 + H)ℓi

] [
ℓ2

j + 2(1 + H)ℓ j

]
+ O

(
1

N3/2

)
.

Knowing that the starting vector of the system’s evolution is chosen randomly

out of the distribution {si}, the expected value of each ζi is given byE (ζi) = O (1/N) [99],

therefore the term proportional to t/
√

N is absorbed within the term O
(
N−3/2

)
. In

addition [99], one has E
(
ζiζ j

)
= χi, j + O

(
N−1/2

)
, where χi, j = δi, jsi − sis j is the co-

variance matrix of rates being distributed according to a multinomial distribution,
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with δi, j being the Kronecker delta. It follows:

GδΛ̂0
(t) =

t
N

 M∑
i=1

(
1 + H + ℓi

si
χi,i

)
−

M∑
i=1

M∑
j=1

(
χi, jℓiℓ j

)
+

t2

2N

M∑
i=1

M∑
j=1

χi, j

[
ℓ2

i + 2(1 + H)ℓi

] [
ℓ2

j + 2(1 + H)ℓ j

]
+ O

(
1

N3/2

)
. (2)

We nowdefine the coefficients of t/N and t2/(2N) in Eq. (2) as γ and Γ, respectively:

γ ≡

M∑
i=1

(
1 + H + ℓi

si
χi,i

)
−

M∑
i=1

M∑
j=1

(
χi, jℓiℓ j

)
,

Γ ≡

M∑
i=1

M∑
j=1

χi, j

[
ℓ2

i + 2(1 + H)ℓi

] [
ℓ2

j + 2(1 + H)ℓ j

]
.

We can then rewrite Equation (2) as:

GδΛ̂0
(t) =

t
N
γ +

t2

2N
Γ + O

(
1

N3/2

)
. (3)

It is worth noting that, being χ positive semi-definite, from the definition of Γ we

get Γ ⩾ 0.

From the properties of the moment generating function, we get that the coef-

ficient of t in this last equation corresponds to the expected value of δΛ̂0, i.e. of

Λ̂0 − Λ0:

µδΛ̂0
= µΛ̂0

− Λ0 =
γ

N
+ O

(
1

N3/2

)
. (4)

Also, because the square of this last term is of order N−2, the coefficient of t2/2 in

Eq. (3) directly provides the variance of δΛ̂0 and thus of Λ̂0:

σ2
Λ̂0
= σ2

δΛ̂0
=
Γ

N
+ O

(
1

N3/2

)
. (5)

Equations (4), (5) provide the bias and the variance of the plug-in estimator Λ̂0 of

the variance parameter Λ0, respectively.

Besides these results, Eq. (3) can be further exploited: starting from it, the

moment generating function of the random variable w ≡
(
δΛ̂0 −

γ

N

) √
N is given

by:

Gw(t) = exp
(
t2

2
Γ

)
+ O

(
1

N1/2

)
,
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where t is a real variable defined in a neighborhood of the origin. This expres-

sion shows that, provided that Γ is non-vanishing, w is asymptotically normally

distributed with zero mean and variance Γ. It is therefore possible to formulate a

central limit theorem for the plug-in estimator Λ̂0 of the variance parameter Λ0:

Λ̂0 ∼ N

(
Λ0 +

γ

N
,
Γ

N

)
as N → ∞ .

We then found that the plug-in estimator Λ̂0 from Eq. (1) is asymptotically

normal and a consistent estimator of the variance parameter Λ0, given that its

population mean and variance both depend on N−1.
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A theoretical signal and noise

model for MI and CTO relationship

The results discussed in Chapter 5 prove that the inverse time scale of observabil-

ity W−1 and the MI Î are proportional to each other and their relationship follows

a power law. Remarkably, this relationship does not seem to depend on the sys-

tem of interest, at least for the three cases discussed (and an additional case of

synthetic auto-regressive data, discussed in Ref. [142]. In this section, we will try

to provide a theoretic model able to explain the empirical results in Chapter 5.

A possible explanation of the relationship between W−1 and Î relies on the

interpretation of each one of these two quantities in terms of effective number of

shared events occurring in the two sequences. We consider a simple noise-and-

signal model where two sequences {xt}, {yt} are given by two independent white

noise sources and share a single delta-like signal, as follows:

xt = ut + Sδt,t0 ,

yt = vt + Sδt,t0 ,
(6)

where ut, vt are independent and identically distributed standard normal random

variables, with equal power distribution, and δt,t0 is the Kronecker delta. The posi-

tive real number S is the amplitude of the shared delta-like signal. We define as N

the length of the two sequences. Although the model relies on delta-like signals,

its validity can be extended to more realistic shared events, such as in the case of

oscillatory activity typical of brain recordings, by expressing the finite duration of

these events as a sum of delta-like signals, as discussed below.
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Modeling of Î

We first consider the expected MI I0(X,Y) in the case of no shared event. Assum-

ing the underlying variables to be normally distributed, I0(X,Y) can be directly

estimated by using the expression [154] I = −1
2 ln

(
1 − r2

)
, with r being the coef-

ficient of correlation between the two variables that, for sufficiently large values

of N, is given by (N − 1)−1. We thus get:

Î0(X,Y) ≈
1

2N
.

To study now the effects of delta-like events, it is convenient to consider the

expression of the plug-in estimator of Eq. (5.2), assuming that a suitable partition

of the support was carried out. Then the definition of MI from Eq. (5.2) can be

rewritten as:

Î(X,Y) = −Ĥ(X,Y) + Ĥ(X) + Ĥ(Y) ,

where Ĥ(X,Y) is the sample joint Shannon entropy, and Ĥ(X), Ĥ(Y) are the sam-

ple Shannon entropies of the marginal distributions Px(i), Py( j). These entropies

can then be written as:

Ĥ(X) = −
Mx∑
i=1

Px(i) ln [Px(i)] ,

Ĥ(Y) = −
My∑
j=1

Py( j) ln
[
Py( j)

]
,

Ĥ(X,Y) = −
Mx∑
i=1

My∑
j=1

Pxy(i, j) ln
[
Pxy(i, j)

]
.

We will consider the datasets to be sufficiently large, so that bias corrections,

like Miller-Madow [95, 94, 96, 162] can be neglected. Furthermore, we can neglect

other bias terms assuming that the access to each bin is essentially memoryless,

i.e. the observed histograms are essentially realizations of multinomial distribu-

tions [99, 100].

We suppose that, in the absence of the delta-like signal, the amplitude pair

(ut0 , vt0) falls in the joint histogram bin (i1, j1). If S is so small that the perturbed

amplitude pair (ut0+S, vt0+S) still belongs to the same bin, nothing changes. How-

ever, for sufficiently large S, the occupation of the former bin (i1, j1) is decreased
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by 1/N, also considering the normalization of each bin occupation by N. Instead,

considering the amplitude pair (ut0 + S, vt0 + S) to fall in bin (i2, j2), the normal-

ized occupation of this latter bin is increased by 1/N. We call N1 = NPxy(i1, j1)

the occupation of the bin (i1, j1) and N2 = NPxy(i2, j2) the occupation of the bin

(i2, j2), both evaluated in the case of no delta-like event.

We now consider the contribution toMI from the joint entropy−Ĥ(X,Y) when

a transition from bin (i1, j1) to bin (i2, j2) occurs due to an event. The change in

MI can be written as:

−δĤ(X,Y) =
[
N1 − 1

N
ln

(
N1 − 1

N

)
+

N2 + 1
N

ln
(

N2 + 1
N

)]
−

[N1

N
ln

(N1

N

)
+

N2

N
ln

(N2

N

)]
.

We can now consider two regimes, based on the values of N1 and N2.

In the first one we consider N1 and N2 to be sufficiently larger than 1. Then

the Taylor expansion of the last expression provides:

−δĤ(X,Y) ≈
1
N

ln
(

N2

N1

)
.

Similarly, for the two marginal entropies we get:

δĤ(X) ≈
1
N

ln
(

Nx;1

Nx;2

)
, δĤ(Y) ≈

1
N

ln
(

Ny;1

Ny;2

)
,

where Nx;1 = NPx(i1), Nx;2 = NPx(i2) and Ny;1 = NPy( j1), Ny;2 = NPy( j2). Sum-

ming the three contributions, we get the resulting MI of a single delta-like event

shared by two noisy sequences:

δÎ(X,Y) ≈
1
N

[
ln

(
Nx;1Ny;1

N1

)
− ln

(
Nx;2Ny;2

N2

)]
. (7)

Assuming that the delta-like event will lead, on average, to transitions to less

occupied bins, the term δÎ(X,Y) is on average positive. By also assuming the bins

to be roughly uniformly populated, we can write N1 ≈ N/(MxMy), Nx;1 ≈ N/(Mx),

Ny;1 ≈ N/(My). Therefore we get:

ln
(

Nx;1Ny;1

N1

)
≈ ln N .
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Similarly, also the term ln
(Nx;2Ny;2

N2

)
is of order ln N. Therefore, the total variation

of MI due to the delta-like event as given by Eq. (7) is expected to be of order

ln(N)/N.

The second case instead corresponds to the signal amplitude S overcoming

the noise level. Therefore, N2 can be considered to be void without the occurrence

of a delta-like event. Instead, we can still assume that N1 is still sufficiently larger

than 1. Then Equation (7) becomes:

δÎ(X,Y) ≈
1
N

[
ln

(
Nx;1Ny;1

N1

)
− ln (N)

]
.

By the same reasoning applied to the first case, we conclude that also for the

second case the variation of MI due to the delta-like event is of order ln(N)/N.

By writing Î = Î0 + δÎ, and considering sufficiently large values of N, the

expected MI between two sequences sharing a single, delta-like event, with signal

amplitude overcoming the noise level, can be written as:

Î(X,Y) ≈ a
ln(N)

N
, (8)

where a is a constant [142].

We will now address more realistic events that cover a finite time τ. These can

be written as the sum of time-correlated delta-like events. The time correlation,

nonetheless, does not play an important role. What matters is the fact that the

amplitudes of the single delta-like components fall within different bins of the Pxy

joint histogram, so that they can be assumed to be amplitude-uncorrelated. Then,

since an event of duration τ corresponds to the sum of τ/T delta-like events, with

T the sampling period of the sequence, also the expectedMI for such event will be

the right-hand term of Eq. (8) multiplied times a factor τ/T . Finally, we consider

a number n0 of independent and effective shared events occurring in the time

span NT of the sequences, where by effective we mean that the signal amplitude

overcomes the noise level. Than MI is given by:

Î(X,Y) ≈ a
n0τ ln(N)

NT
. (9)
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Modeling of W−1

We consider a delta-like event having a sufficiently large signal-to-noise ratio to

generate a “funnel-like structure” [140] in the cross-correlation and p-value dia-

grams, as shown in Fig. 1. Such structures are not instead generated by spurious

correlations, as we also mentioned in Section 5.1.

Given a window width w, the number of available running windows of that

width that contain the shared peak is w/w0, where w0 is the duration of the base

window, as explained in Sec. 5.1.

We can then write the efficiency η(w) =w/Kw0, where we define as K the num-

ber of runningwindows having the samew. The efficiency η(w) reaches the thresh-

old η∗ at the window width W = Kw0η
∗, namely the time scale of observability. In

the case of two shared delta-like events with non-overlapping funnel structures,

as we show in Fig. 1 (c), the threshold η∗ is reached two times faster by increasing

the window width, thus halving the time scale of observability W . Therefore, for

a number n of independent events generating non-overlapping funnel-like struc-

tures, we can write nW ≈ Kwoη
∗.

The number of events n is proportional to n0, i.e. the number of indepen-

dent and effective shared events of Eq. (9). Furthermore, n is dependent on W : as

shown in Figs. 1 (a),(b), we can observe that, the lower w, the larger the number of

significant cross-correlation values that originate from funnel-like structures and

eventually fade out due to a lower signal-to-noise ratio [140].

We can assume a power-law distribution for n = n(W), namely n = n0 (W/W0)−γ,

where W0 is a time constant that corresponds to the window width at which

n = n0. We can thus write:

W1−γ ≈
Kwoη

∗

n0Wγ
0

,

where the exponent γ has to be positive and less than one to ensure a decrease of

n in the case of an increasing W .

From the properties of the CTO algorithm [140], we also have that Kw0 =

NT − wmax, where wmax is the maximum window width analyzed. Typically, wmax

is one order of magnitude smaller than NT . Therefore the ratio Kw0/(NT ) is ap-
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Figure 1: (a) p-value diagram built out of a pair of Gaussian white noise sequences

sharing a single delta-like event. The window width w is reported in units of the

sampling period. (b) The red line corresponds to the efficiency function η(w) built

out of the diagram in (a). For sufficiently large w values, the function η(w) grows

linearly with w as η(w) = w/K (black, dashed line). The windowwidth W at which

η(w) overcomes the efficiency threshold η∗ = 0.3 (dotted line) is also highlighted.

(c) p value diagram built out of a pair of Gaussian white noise sequences sharing

two delta-like events. (d) Efficiency function η(w) built out of the diagram in (c).

The slope of the linear part is twice the slope of the linear section of efficiency vs.

window width in panel (b).

Reproduced from Chaos 31, 073106 (2021), with the permission of AIP Publishing.

proximately one, which allows to rewrite the previous equation as:

W1−γ ≈ η∗
NT

n0Wγ
0

. (10)
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By combining this latter equation with Eq. (9), we can finally write:

ÎW1−γ ≈ η∗ · c ln(N) , (11)

where c = aτ/Wγ
0 is a constant.

This last expression is the same we reported at the beginning of Chapter 5.

The values of c and γ can be found on experimental data by fitting Equation (5.1).

In Ref. [142], the values found for the experimental data considered in Chapter 5

are reported.
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