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Abstract: Organic-inorganic hybrids (OIHs) are a type of material that can be obtained using the
sol-gel process and has the advantages of organic and inorganic moieties in a single material.
Polyetheramines have been widely used in the preparation of this type of material, particularly
in combination with epoxy-based alkoxysilanes. Nevertheless, epoxyciclohexylethyltrimethoxysilane
(ECHETMS) is a promising alkoxysilane with an epoxy terminal group that is quite unexplored. In
this work, four novel OIH materials were synthesized using the sol-gel method. The OIHs were
based on Jeffamines® of different molecular weights (D-230, D-400, ED-600, and ED-900), together
with ECHETMS. The materials were characterized using multinuclear solid state NMR, FTIR, BET,
UV/Vis spectroscopy, EIS, and TGA. The influence of the Jeffamine molecular weight and the suit-
ability of these materials to act as a supporting matrix for heteroaromatic probes were assessed
and discussed. The materials show interesting properties in order to be applied in a wide range of
sensing applications.

Keywords: organic-inorganic hybrid; sol-gel; films; synthesis; characterization

1. Introduction

The sol-gel method is a synthetic process that has been used since the 19th century [1].
This method has been widely employed in the production of smart and multifunctional
materials during the past decades [2–5]. Sol-gel materials can have very different properties
due to changes in the used precursors or in the chemical conditions during the synthesis
leading to a wide range of possible applications. This process is a low-temperature pro-
cedure since it requires unexpensive equipment and low energy consumption, which are
interesting features from an industrial approach [6]. Besides that, it is a simple, low-cost
and low environmental impact process.

Sol-gel synthesis is based on the conversion of monomers into a colloidal solution (sol).
This solution can be shaped in the most suitable way, e.g., applied on a substrate or cast
in a mold with desired dimensions, which after undergoing a chemical transformation,
forms an interconnected three-dimensional network (gel) [6,7]. Several factors, such as pH,
temperature, or gelation time, can influence the final solid material. The drying phase of
the gel is the last step and depending on the temperature, the treatment allows obtaining of
xerogels, aerogels, monoliths, or fibers.

Organic-inorganic hybrids (OIHs) are materials that can be obtained using this pro-
cedure [8–10]. These OIHs can join the features of inorganic and organic parts in a single
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matrix [11]. The inorganic part of OIHs is usually based on silicon or transition metal
alkoxides, and organic moieties can change from simple carbon chains to more complex
hydrophobic organic molecules. Moreover, the commercial diversity of available precur-
sors allows to adjust the final chemical, mechanical, or optical properties of the matrices.
When compared with other methods for the development of OIHs, the sol-gel process
shows singular advantages, such as the flexibility and simplicity of the method or the
low-processing temperatures [12].

Among organic precursors used in the synthesis of OIHs are polyetheramines, organic
polymers bearing terminal amine groups that can react with different inorganic precursors.
The reaction between a polyetheramine and an alkoxysilane can yield OIHs that can be used
in the preparation of sol-gel materials, in the form of ureasilicates or aminoalcoholsilicates,
in accordance with the type of bond that is established between the two precursors used.
Jeffamines® are commercial polyetheramines widely used in the synthesis of OIHs, with D
and ED series being among the most common diamines, allowing the reaction with silanes
in a 1:2 stoichiometry [13–15]. D series Jeffamines® are generally based on a polypropylene
glycol (PPG) backbone, whereas ED series are mostly based on a polyethylene glycol
(PEG) backbone.

Amongst the most used alkoxysilanes for OIH preparation are 3-isocyanatepropyltrieth
oxysilane (3-ICPTES), 3-glycidoxypropyltrimethoxysilane (3-GPTMS), or 3-aminopropyltrie
thoxysilane (3-APTES). Epoxyciclohexylethyltrimethoxysilane (ECHETMS) is another in-
teresting alkoxysilane that can be used in the synthesis of this type of material, although
as far as the authors’ knowledge, there are not many materials reported based on such
precursor. In fact, less than a dozen publications have been reported so far on the synthesis
of OIH materials based on this precursor, with applications in the fields of coatings [16,17],
photonics [18,19], and sensors [20]. Nevertheless, this precursor can bring interesting
properties to the final sol-gel matrices mainly due to its cycloalkane nature, which brings
some rigidity to the membrane [21]. Besides that, the epoxy ring is more reactive than in
glycidoxypropyl silanes.

This work reports novel OIH material produced using the sol-gel method, based on
Jeffamines® D-230, D-400, ED-600, ED-900, and ECHETMS. The materials were successfully
synthesized and structurally characterized using multinuclear solid-state NMR and FTIR.
The dielectric properties were assessed using EIS. Thermal degradation was characterized
using TGA. UV/Vis spectroscopy was performed to study the optical properties. The
influence of the Jeffamine molecular weight (MW) and the suitability of these materials to
act as a supporting matrix for doped chemosensors was also approached.

2. Materials and Methods
2.1. Materials

Commercial reagents [2-(3,4-epoxycyclohexyl)ethyl]trimethoxysilane (ECHETMS)
(98%, Sigma-Aldrich, St. Louis, MO, USA), Jeffamines® D-230, D-400, ED-600, ED-900
(Huntsman Corporation, Pamplona, Spain), and solvent acetonitrile (ACN, Fisher Scien-
tific, Loughborough, UK) were used as received. A Millipore water purification system
(Milli-Q®, Merck KGaA, Darmstadt, Germany) was used to obtain high-purity deionized
water (resistivity > 18 MΩ cm).

2.2. Synthesis of OIH Matrices

In a glass container, the different Jeffamines® (1 mmol) were dissolved in 500 µL of
ACN. ECHETMS was then added (2 mmol—molar ratio of 1:2) and the mixture was stirred
for 20 min. After addition of 100 µL of water, a homogeneous solution was obtained. Gels
were then cast into Teflon molds, covered with Parafilm®, and kept in an oven (UNB 200,
Memmert, Buechenbach, Germany) for 15 days at 40 ◦C. The drying step is necessary to
ensure the curing of the film.
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2.3. Characterization of OIH Matrices
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR)

The OIHS were characterized using FTIR on a PerkinElmer Spectrum Two instrument
with ATR. The analysis was performed in the range of 500–4000 cm−1 with 32 scans.
Xerogels were applied directly on the ATR crystal.

2.3.2. Nuclear Magnetic Resonance (NMR)

The samples were characterized using solid-state NMR with a Bruker 400 WB spec-
trometer operating at a proton frequency of 400.13 MHz. Magic Angle Spinning (MAS)
NMR spectra were obtained with single pulse or cross polarization (CP) sequence with:
100.48 MHz, contact time 2 ms, decoupling length 5.9 µs, recycle delay: 3 s, 4 k scans—for
13C frequency; 79.48 MHz, contact time 5 ms, decoupling length 6.3 µs, recycle delay: 10 s,
5 k scans—for 29Si frequency; and for single pulse π/6, 200 s and 180 scans. Samples were
packed in 4 mm zirconia rotors that were spun at 6.5 kHz under air flow. Adamantane
and Q8M8 were used as external secondary references. According to the common 29Si
NMR notation, the Si species are labelled Tn: T represents R-SiO3 structural units and n
represents the number of bridging oxygens.

2.3.3. BET

The surface area of the OIH sol-gel materials was determined using the multi-point
Brunauer–Emmet–Teller method (BET, Quantachrome Autosorb AS-1) at −196 ◦C. Before
the analysis, the samples were outgassed in a vacuum at 140 ◦C for 4 h.

2.3.4. Electrochemical Characterization (EIS)

EIS spectra were measured in a Faraday cage, using a potentiostat/galvanostat/ZRA
(Reference 600+, Gamry Instruments, Warminster, PA, USA). EIS measurements were used
to characterize the resistance, electric permittivity, electrical conductivity, and capacitance of
OIH xerogels. The disc films were placed between two Au electrodes (10 mm diameter and
250 µm thickness) according to the procedure already described elsewhere [22]. A 10 mV
(peak-to-peak, sinusoidal) electrical potential within a frequency range from 1 × 106 Hz to
0.01 Hz (10 points per decade) was applied at open circuit potential (OCP). Nyquist plots
displayed the obtained data, fitted with Gamry ESA410 Data Acquisition software (v. 7.8.6).

2.3.5. Thermal Characterization (TGA)

OIH xerogels were characterized using TGA on a SDT Q600 system. A temperature
ramp of 15 ◦C min−1 was used between room temperature and 750 ◦C at a constant
100 mL min−1 nitrogen flux. The mass used for each sample ranged between 20 and 30 mg.

2.3.6. Optical Characterization (UV/Vis Spectroscopy)

UV–Vis transmittance spectra for the new OIH films were obtained with a Shimadzu
UV-2501 PC spectrophotometer, in the range of 200–800 nm.

3. Results and Discussion
3.1. Synthesis of Organic-Inorganic Hybrid (OIH) Films

The synthesis of the novel OIH sol-gel materials started with the dissolution of the
1 mmol of the different Jeffamines in 500 µL of ACN in a glass container. ECHETMS was
added in a molar ratio of Jeffamine 1:2 ECHETMS. The solution was then stirred for 20 min
until a homogeneous mixture was obtained. Water was added to start the hydrolysis of
the sol and 10 min later, the mixtures were casted into Teflon molds and kept in oven for
15 days at 40 ◦C. Figure 1 details the synthesis steps.

The four new materials were based on ECHETMS and Jeffamines of different molecular
weights (vide Figure 2). The hybrids were identified as ACH (Jeff. MW), with ACH standing
for the aminociclohexanol group that was formed. A(230) and A(400) matrices are based
on D-series Jeffamines D-230 and D-400, respectively, while A(600) and A(900) matrices are
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based on ED-series Jeffamines ED-600 and ED-900, respectively. The D-series Jeffamines
are diamines with a polypropylene glycol (PPG) backbone, while ED-series Jeffamines are
diamines with a predominantly polyethylene glycol (PEG) backbone. Carbon atoms were
numbered for the sake of simplicity in the analysis.
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3.2. Nuclear Magnetic Resonance (NMR)

Solid-state NMR (ssNMR) analysis was performed to structurally characterize the
novel matrices. Figure 3 shows the 13C CPMAS NMR spectra of sol-gel hybrids. The
carbons of the hybrid skeletons are identified in the spectra according to the labelling
previously proposed in Figure 2.
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Starting from the ACH(230) sample, its spectrum shows the presence of all the signals
of the two reagents (Figure S1a,b) with some modifications. In particular, the reaction
between Jeffamine and the silane causes the ECHETMS partial ring opening, proved by the
presence of two new resonances at 69 and 58 ppm (g’, h’), with respect to the original g and
h that fall in the broad resonance at about 51 ppm. The h’ chemical shift, attributable to the
C-N bond, together with the shoulder at 35 ppm, attributable to a slight downfield shift of f,
could support the reaction between the epoxide and the amino groups of the Jeffamine [23].
Moreover, the chemical shift of a at 10 ppm and the absence of a sharp peak (methoxy, i) at
50 ppm speak for fully hydrolyzed and condensed Si units of the ECHETMS.

These findings can be extended to the other samples through the comparison of
the spectra because the higher molecular weights of the Jeffamines hinder a satisfactory
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discussion of the data. In fact, for sample ACH(400), the signals from the Jeffamine moiety
are more significant, due to the higher content of this component. Finally, in the spectra of
samples ACH(600) and ACH(900), the hybrids based on ED-type Jeffamines, the signals of
the PEG units (7,8) dominate the others, as expected.

The 29Si MAS NMR spectra recorded in OIH samples are shown in Figure 4, where the
typical signals of T units (from −50 to −80 ppm) belonging to the trialkoxysilanes present
in the different samples are visible (as reported in the Experimental Section: Tn states for
trifunctional SiCO3 units and n the number of siloxane bridges). The results of the profile
fitting analysis are reported in Table 1. It appears that these OIH samples present only T2

and T3 units, whose resonances fall at −58 and −66 ppm, respectively, and a high value
of the degree of condensation (DOC), always above 94% (Table 1). This parameter was
calculated according to the following equation [24]:

DOC =

(
2T2 + 3T3

)
3
(

T2 + T3
) × 100 (1)
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Table 1. 29Si MAS NMR: chemical shifts, assignments, and relative amounts of silicon species (all
values are reported with a 95% confidence level).

OIH Sample T2 (%) T3 (%) DOC

δ (ppm) −58.3 −66.3

ACH(230) 15.4 84.6 94.9

ACH(400) 15.0 85.0 95.0

ACH(600) 14.6 85.4 95.1

ACH(900) 12.9 87.1 95.7

3.3. Fourier Transform Infrared Spectroscopy (FTIR)

Fourier Transform Infrared Spectroscopy (FTIR) was performed for the four new
materials to complement the structural characterization performed using ssNMR. Figure 5
shows the FTIR spectra for the four aminoalcohol materials. All four spectra show two
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strong bands at around 2850–2860 and 2915–2925 cm−1, characteristic of C–H stretching
vibrations [14,25–28]. These bands are typical of the organic part from the Jeffamine moiety.
The spectra of ACH(230) and ACH(400) show a small peak at around 2970 cm−1, which
is related to C–CH3 asymmetric stretch and is more significant in these two OIHs due to
the higher percentage of PPG units. Regarding C–H bending vibrations, the signals can be
found at 1450, 1375, and 1350 cm−1; the signal at 1375 cm−1 can be assigned to the C–CH3
bond, which is once again more prominent in A(230) and A(400) hybrids.
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The band at 1650–1660 cm−1 can be assigned to the C–NH–C bond bending vibration.
Together with the absence of typical epoxy signals at 3050 cm−1, this confirms the successful
reaction between the terminal amine group of Jeffamine moieties and the epoxy group of
the silane, as previously indicated by the ssNMR results. The peak at around 1250 cm−1 is
associated with C–Si bond symmetric bending [29].

The information that the signals in the 1200–1000 cm−1 range provide is essential since
it is normally independent of the organic moieties linked to silicon [30]. This region can
provide important information regarding the architecture of the siloxane skeleton of the
material [31]. All spectra show the main peak of the spectra at around 1100 cm−1, which
can be assigned to Si–O–Si stretching vibration. Another peak at 1035–1020 cm−1 appears,
with a higher contribution in the OIHs with the lowest Jeffamine MW. According to the
literature [29], with longer siloxane chains, the Si–O–Si absorption stretching vibration band
becomes broader and more complex. In fact, only cage-type materials show simple Si–O–Si
asymmetric stretching vibration bands, while other types of architectural configurations
can show complex and ambiguous bands [32]. The stretching vibrations of Si–O–Si bonds
show two different symmetric and asymmetric modes. This depends on the parallel or
antiparallel displacement of O atoms on the opposite sides of the rings, regarding the
inversion through the ring center [31]. This means the higher energy band can be assigned
to the asymmetric stretching vibration of Si–O–Si bonds, while the lower energy band
regards the symmetric stretching vibration and is not detected in cage-like structures due
to the high symmetry of the polyhedral cage. This allows us to conclude that the hybrids
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with lower MW show less symmetric or random network architectures, while higher MW
contributes to a higher symmetry in the hybrid’s architecture.

3.4. BET

N2 adsorption studies were performed for the four OIH materials. The absorption and
desorption isotherm curves are shown in Figure S2. The values obtained from these graphs
for surface area (SBET), pore volume (Vpore), and diameter (dpore), are summarized in Table 2.
Multi-point BET was used to calculate the surface area. The values ranged between 3.3 and
6.3 m2/g and do not show any correlation with the MW of the Jeffamine used. V-t method
was used to assess the presence of micropores, which were not found in any of the samples.
The BJH method found pore volume values corresponding to mesopores and a pattern is
shown, with decreasing values with the increase in the organic content of the material. Pore
volume was found to be 0.011 cc/g for ACH(230) and 0.007 cc/g for ACH(900). Regarding
pore diameter, three of the materials show a bimodal pore distribution; ACH(900) is the
material that only shows one pore size. Concerning the smaller value of pore diameter,
an increasing value appears with the increase in the MW. Thus, the OIHs with higher
organic content, with more symmetric architectures, show higher pore diameter; however,
smaller pore volume was observed. Nevertheless, these OIH materials show suitability to
be employed as a supporting matrix for doped optical chemosensors, which show generally
sizes in the range of a few nm [33].

Table 2. BET results: surface area SBET, pore volume Vpore, and diameter dpore.

OIH Sample SBET (m2 g−1) Vpore (cc g−1) dpore (nm)

ACH(230) 6.138 0.011 3.9
ACH(400) 4.572 0.009 3.9
ACH(600) 6.286 0.007 3.9
ACH(900) 3.342 0.007 4.4

3.5. Optical Analysis

UV/Vis spectroscopy was performed to assess the optical properties of the materials.
Figure 6 shows the transmittance spectra for the four new OIH materials. All spectra
show a high-transmission region between 350 and 800 nm, as expected for these types of
materials [14,15,26]. It is possible to assess that the transparency is higher in the samples
with the lower Jeffamine MW, which is according to the information already reported in the
literature for OIH materials synthesized with Jeffamine precursors [34]. At 400 nm, the four
xerogels show transmittance values of 56%, 57%, 62%, and 68%, for ACH(900), ACH(600),
ACH(400), and ACH(230), respectively. The transmittance values slightly increase with
higher wavelengths, which is also in agreement with previous reports [9,15,34,35].

The cutoff wavelength (0% transmittance) is around 250 nm for the four materials.
However, a peak at around 300 nm is visible in all spectra, being more prominent in the
OIH with higher MW. This may be explained by the presence of residual solvents that
are entrapped within the crosslinked network [34]. However, it is relevant to mention
that the presence of residual solvent within the hybrid structure does not significantly
affect the properties of the materials synthesized. Yet, no further conclusions can be drawn.
Nevertheless, the obtained results indicate that the OIHs synthesized are suitable for the
development of optical sensing materials in the visible zone, by doping optical organic
chemosensors that show signal changes in that region.
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Figure 6. Transmittance spectra of the new OIH sol-gel matrices.

3.6. Electrochemical Impedance Spectroscopy (EIS)

Electrochemical Impedance Spectroscopy (EIS) was performed to assess the dielectric
constants of the new materials. Nyquist plots illustrate the capacitive response for a broad
range of frequencies, and the extracted information (capacitance, conductivity, resistivity,
dielectric permittivity, etc.) allows us to quantify the possible degradation of an OIH sol-gel
material [36–38]. Three measurements were performed in all cases. Figure 7 shows the
Nyquist plot for the four OIHs and the equivalent electrical circuit (EEC) is included as
inset in each figure. Since in all cases, the results do not show ideal behavior (α 6= 1),
Constant Phase Elements (CPEs) were used instead of pure capacitance.
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Regarding ACH(230), the Nyquist Plot show two overlapping semicircles. Therefore,
the EEC used to fit the EIS profile contains two CPEs (CPE1 and CPE2) and two resistances
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(R1 and R2). This is related to the two time-dependent charge relaxation processes. The
sample’s total resistance (Rsample) is the sum of R1 and R2. For the other three samples, the
EEC used for the fitting shows only one resistance and one CPE. When the system shows
this behavior the impedance of a CPE can be defined as [37]:

ZCPE =
Rsample

1 +
[

Q(JW)αRsample

] (2)

Rsample, CPE, and α values, as well as the goodness of the fitting (χ2) are shown
on Table 3.

Table 3. Fitting parameters obtained for the different OIH sol-gel materials.

OIH Films Rsample/Ω cm2 CPE (Q)/S Ω−1 cm−2 α χ2

ACH(230) R1 : 1.43 × 1010 (±1.42%)
R2 : 1.79 × 1010 (±3.46%)

CPE1 : 2.83 × 10−12 (±9.23%)
CPE2 : 1.50 × 10−12 (±8.71%)

α1 : 0.969
α2 : 0.960 4.02 × 10−3

ACH(400) 3.32 × 107 (±0.52%) 1.35 × 10−12 (±1.90%) 0.965 4.18 × 10−4

ACH(600) 4.67 × 107 (±0.51%) 4.40 × 10−12 (±2.16%) 0.988 6.67 × 10−4

ACH(900) 9.27 × 104 (±0.62%) 4.46 × 10−12 (±7.26%) 0.918 8.26 × 10−5

Table 3 shows that the resistance values decrease considerably with the increase
in the Jeffamine MW. For ACH(230), the sum of the two R values yields a Rsample of
3.22 × 1010 Ω cm2, while for ACH(900), the value is 9.27 × 104 Ω cm2. CPE values are all
in the same magnitude order (10−12). The values from Table 3, were used to obtain the
effective capacitance (Ceff) by using the Brug et al. relationship [36,39,40]:

Ce f f =
[

QRsample
1−α
]1/α

(3)

The resistance (R) and capacitance (C) values were obtained using Equations (4) and (5),
respectively, with normalization to cell geometry dimensions:

R = Rsample × AAu (4)

C =
Ce f f

AAu
(5)

The relative permittivity (εr) was determined using Equation (6):

εr =

(Ce f f × dsample

ε0

)
× AAu (6)

The conductivity (σ) was determined using Equation (7):

σ =

dsample
AAu

Rsample
(7)

AAu stands for the area of the gold electrodes used on each side of the material for the
analysis and dsample stands for the thickness of each film, and ε0 stands for the vacuum
permittivity. All values are shown in Table 4.

According to Table 4, the resistance of the materials shows a decrease with the in-
crease in the Jeffamine MW. This behavior is according to the literature when this type
of polyetheramine was used in OIH synthesis [13]. Moreover, it is possible to assess that
the use of ECHETMS instead of GPTMS does not change this feature. C values are all
in the same magnitude order (pF cm2). This presents a small difference when compared
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to GPTMS-based aminoalcohols [13], which showed C values in the order of 10 pF cm2.
This may indicate that the presence of the cyclic ring from ECHETMS may reduce the
capacitance value of the final OIH. Conductivity values (σ) show the same pattern as
resistance values, with a big decrease with the increase in the MW, which is also according
to the literature [13]. Regarding εr values, the results are between 2.60 and 8.74 and no clear
pattern was found linked to the Jeffamine MW.

Table 4. Electrical and dielectric properties of the OIH samples for the new OIH.

OIH Sample log R/Ω cm2 C/pF cm2 εr −log σ/S cm−1

ACH(230) 10.40 ± 0.07 5.15 ± 0.06 8.74 ± 0.10 11.23 ± 0.04
ACH(400) 7.45 ± 0.03 1.31 ± 0.18 2.60 ± 0.35 8.21 ± 0.06
ACH(600) 7.52 ± 0.30 4.99 ± 0.64 6.09 ± 0.79 8.48 ± 0.37
ACH(900) 4.86 ± 0.04 2.08 ± 0.81 2.85 ± 1.11 5.78 ± 0.12

3.7. Thermogravimetric Analysis

Figure 8 shows TGA and DTGA traces for the four OIH matrices. Table 5 shows the 5%
weight loss temperature (T5), the temperature of the maximum rate of weight loss (Tmax),
the activation energy (EA), and char yield for the four materials, obtained by the TGA and
DTGA graphs. Below 150 ◦C, it is possible to see a small degradation process related to the
evaporation of residual water that was still entrapped within the matrix. The weight loss is
clearer in ACH(900), which is also confirmed by the T5 comparison, which decreases with
the increase in the MW and is particularly lower for ACH(900) (134 ◦C).
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Table 5. Five percent weight loss temperature (T5), the temperature of the maximum rate of weight
loss (Tmax), and char yield for the OIH films (data obtained from the TGA and DTGA traces).

OIH Sample T5 (◦C) Tmax (◦C) EA (kJ mol−1) Char Yield (%)

ACH(230) 362 397/497 419/100 30.0

ACH(400) 308 413/501 169/43 24.6

ACH(600) 307 403/493 198/18 19.3

ACH(900) 134 397/482 125/2 12.9
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The main degradation processes for the four materials occur between 350 and 550 ◦C.
These results are in agreement with the literature, that reports the major degradation pro-
cesses in amino-alcohol-based OIH materials between 350 and 500 ◦C [34,41–44]. Two degra-
dation processes can be seen in the DTGA traces around 400 ◦C and 500 ◦C, with different
percentages of each depending on the Jeffamine MW. Namely, the second degradation pro-
cess (at around 500 ◦C) is more intense for ACH(230) and decreases with the increase in the
MW. The first degradation process can be assigned to the depolymerization of the Jeffamine
moiety and condensation of residual Si–OH groups [43]. The degradation process around
500 ◦C can be related to the cleavage of Si–C bonds and to the total oxidation of the organic
components, that yields silica/carbon composites. Due to the higher organic content in
the material, the OIHs with higher Jeffamine MW show a higher contribution of the first
degradation process. This is also correlated by Char Yield values, which are associated with
the remaining silica composites and are higher in the lower MW hybrids due to the higher
inorganic content. Activation energy (EA) values were calculated through the Arrhenius
equation [45]. The results show high EA values for the first degradation process (all above
125 kJ/mol), particularly for ACH(230), which showed an EA value of 419 kJ/mol for this
degradation process. There are no significant changes on the Tmax values between the four
materials. Besides, below 300/350 ◦C the materials can be considered thermally stable.

4. Conclusions

In this work, four new OIH xerogels, produced via the sol-gel route, are reported
for the first time. These materials were successfully synthesized using the precursors
silane ECHETMS and the Jeffamines® D-230, D-400, ED-600, and ED-900. The materials
were structurally characterized using NMR and FTIR, which confirmed the successful
reactions between the precursors and the condensation of the alkoxy groups, with DOC
values above 94%. Several techniques were used to assess the suitability of these new
OIHs as a supporting matrix for doped chemosensors. BET allows the conclusion that
the size pore range of the synthesized OIHs matrices is suitable to be doped with organic
chemosensors. The UV/Vis spectroscopy showed that the reported OIHs are suitable for
the development of optical sensing materials in the visible zone. The dielectric properties
of the OIH materials were assessed using EIS, and these seem to be promising for sensing
applications. However, further studies need to be conducted according to the environment
chosen. Thermal degradation was characterized using TGA, which allows the conclusion
that these materials can only be applied in a temperature ranging from 20 ◦C to 350 ◦C. In
the end, it can be concluded that these materials showed promising properties to be used
as a supporting matrix for doped chemosensors in a wide range of applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13172429/s1, Figure S1: 13C NMR spectra of the precursors in
CDCl3 (whose resonance is a triplet at 77 ppm). (a) ECHETMS (b) D-230 (c) D-400 (d) ED-600 (e) ED-900;
Figure S2: N2 adsorption and desorption isotherm curves for the four OIH materials: (a) ACH(230);
(b) ACH(400); (c) ACH(600); (d) ACH(900).
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