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Figure 1: Top: Snapshot of an experimentally found cluster
of oil droplets in water recorded with a confocal microscope.
Bottom: Final configuration of 2,000 multidisperse particles
at the bottom of a cylinder in a computer simulation.

Abstract

We simulate the movement and agglomeration of oil droplets
in water under constraints, like confinement, using a simpli-
fied stochastic-hydrodynamic model. In the analysis of the
network created by the droplets in the agglomeration, we fo-
cus on the paths between pairs of droplets and compare the
computational results for various system sizes.

Introduction
Spatial arrangements of hard spheres are widely studied in
physics, as these systems serve as simple models for granu-

lar matter, colloidal systems, and molecular crystals (Reiss
et al., 1996; Russel et al., 1989; Mitarai and Nakanishi,
2003; Metcalfe et al., 1995; Zallen, 1998). Mostly, monodis-
perse and bidisperse systems are considered, i.e., all spheres
exhibit the same radius value or one of two different values,
but sometimes also multidisperse systems with radii chosen
from a finite set of prespecified radius values have been in-
vestigated (Müller et al., 2009; Schneider et al., 2009). Also
packings of non-spherical items for which the determination
of overlaps is more difficult, such as ellipsoids (Pfleiderer
and Schilling, 2007; Matuttis and Chen, 2014) and sphero-
cylinders, have been studied. It has, e.g., been found that a
random packing of ellipsoids with a specific aspect ratio (M
& M candies) is denser than a random packing of spheres
(Donev et al., 2004). Furthermore, arrangements of parti-
cles with long-range interactions, in confinement, and under
constraints, such as shear forces and repulsive walls, (Ricci
et al., 2007; Ochoa et al., 2006) have been investigated.

In our collaboration, we intend to develop a probabilis-
tic compiler (Flumini et al., 2020; Weyland et al., 2020) to
aid the three-dimensional agglomeration of droplets filled
with various chemicals in a specific way in order to e.g. al-
low the creation of desired macromolecules via a successive
reaction scheme (Schneider et al., 2020a,b). Neighboring
droplets can form connections, either by forming bilayers
(Li and Barrow, 2017) or by getting glued to each other
by matching pairs of single-stranded DNA (Hadorn et al.,
2012). Chemicals contained within the droplets can move
to neighboring droplets either directly, as hydrophobic com-
pounds can be exchanged between adjacent oil droplets at
the contact face, or, if the oil droplets are contained in a
hull comprised of amphiphilic molecules like phospholipids,
through pores within these bilayers. Thus, a complex bi-
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layer network is created, with the droplets being the nodes
of this graph and the existing connections being the edges
between the corresponding droplets. In such bilayer net-
works, a controlled successive reaction scheme can be ef-
fectuated to produce the intended macromolecules. Within
the scope of this paper, we present computational results for
basic simulations of a simplified agglomeration process of
a polydisperse system of droplets, mimicking experiments.
Here we want to focus on the question which influence the
density of the droplets has on the agglomeration process of
the particles and on some specific properties of the networks
created, which are of crucial importance for the gradual re-
action scheme intended. In order to focus on these questions
and to exclude effects from other experimental properties,
we simulate the droplets as hard spheres and ignore details
of the surface structure of the particles, attractive forces as
well as adhesion effects. As the extension of the bilayers
is very small and as due to their small radii (Aprin et al.,
2015), the droplets keep their spherical shape during the ex-
periments, as shown in Fig. 1, this simplified approach is
justified.

Networks can be in general analyzed

• either on an elementary level, i.e., by considering proper-
ties of the single nodes within a network, like the degree
of a node (the number of nodes a node is attached to via
edges),

• or by considering groups of nodes, e.g., by finding cliques
of nodes which are fully connected with each other within
such a group (Marino and Kirkpatrick, 2018),

• or by taking the overall network into account, e.g., by de-
termining whether the network is dominated by a large
cluster and even percolating (Stauffer and Aharony, 1994;
Stauffer, 1986; Naftaly et al., 1991),

• or by taking a local-global attitude, e.g., by investigating
the role some specific nodes play for the overall network
(Schneider and Kirkpatrick, 2005).

Often random networks are considered in which nodes are
connected with randomly selected edges (Bollobás, 2011).
But in real-world networks, like genetic networks or the
World Wide Web, the degrees of the nodes often follow
a scale-free power-law distribution (Barabási and Albert,
1999) due to the tendency that a newly added node pref-
erentially attaches itself to nodes with higher degree. In
contrast, Gaussian distributions are found for degree num-
bers in random networks. We are mainly interested in the
time evolution of the network formed by the connections
between the various droplets. In this paper, we focus on the
paths between pairs of droplets, i.e., on the question whether
paths between them exist and, if yes, how large the geodesic
distances between them are. In some applications of ar-
tificial chemistry we intend to perform on such a network

of droplets, the maximum geodesic distance determines the
maximum number of steps in the gradual chemical reaction
scheme.

Simulation Details
We consider polydisperse systems of oil droplets in water,
which are modeled as hard spheres. The radii of the parti-
cles are randomly chosen from a uniform distribution in the
range of 10 − 50µm. Initially, they are randomly placed in
a cylinder of height 4 mm and radius 1 mm without over-
laps among particles or between particles and walls. The
particles are initialized with zero velocity. As we are inter-
ested in the effect of particle density on the agglomeration
process and on the properties of the evolving networks, we
perform 100 simulations each for various numbersN of par-
ticles, with N = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300,
350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900,
950, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800,
1900, 2000, 2500, 3000, 3500, 4000, 4500, and 5000. The
presented results are averages of these 100 simulation runs.

The simulation is divided in time steps of δt = 10−5s. In
each time step, the particles are subjected to various forces:
All particles are filled with oil of the density % = 1.23kg/l,
so that they sink in water due to gravity reduced by the
buoyant force. Furthermore, the three spatial components
of the velocity vectors ~vi are subjected to random velocity
changes. Each velocity component vx,y,zi is changed inde-
pendently by a uniform random variable chosen from the
interval [−0.05|vx,y,zi |, 0.05|vx,y,zi |]. The particles are also
subjected to the Stokes friction force

~Fi,S = −6πηri~vi, (1)

with the radius ri of the particle, the current velocity ~vi,
and the viscosity η = 0.891mPas of water at 25◦C. The
concept of added mass is used (Stokes, 1851). This vir-
tual mass is the inertia added to the mass of the particle,
because an acceleration or deceleration of a body in wa-
ter must move or deflect some volume of surrounding fluid
when it moves through it. For a spherical particle with ra-
dius ri far away from other boundaries, the added mass is
given by 2

3πr
3
i %fluid, i.e., it is half of the mass of the fluid

displaced by the particle.
After the new velocities of the particles are determined in

this way, their positions are updated according to

~xi(t) = ~xi(t− δt) + ~vi(t)× δt. (2)

Due to the stochastic nature of the random velocity changes,
only this Euler scheme is suitable for the determination of
velocities and positions of the resulting stochastic differen-
tial equation of motion (Kloeden and Platen, 2013).

After the determination of these new positions, some con-
ditions are enforced: First, it is checked whether a particle
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collides or even overlaps with a boundary of the cylinder at
its new position and whether the overlap would increase if
the velocity vector of the particle remains unchanged. In
this case, the collision normal is determined and the veloc-
ity vector of the particle is updated according to the standard
collision rules with an elasticity factor of 0.9. If there is an
overlap, the position of the particle is updated in order to
resolve the overlap. Analogously, then checks for collisions
and overlaps between pairs of particles are performed and
their velocity vectors and positions are updated accordingly.
The overlaps have indeed to be eliminated as otherwise they
partially remain and can even increase over time, especially
in the regime of slow velocities.

In total, 107 time steps of duration δt = 10−5s are per-
formed during a simulation run. A simulation run thus cov-
ers in total a time span of T = 100s which is sufficient
for finishing the agglomeration process within the dimen-
sions of the cylindrical container, as the smallest particles
have a radius of at least rsmallest = 10µm in our sim-
ulations. Shorter δt and longer T would be needed for
smaller rsmallest, as δt scales with r2

smallest and T scales
with r−2

smallest due to the Stokes friction force, because of
which the sink velocity is smaller for smaller spherical par-
ticles. Thus, reducing rsmallest by e.g. a factor of 10 would
result in an increase of the number of necessary time steps
and thus of the computing time by a factor of 104. The com-
puting time for one simulation also depends on the number
N of particles in a quadratic way, i.e., T ∼ N2. For ex-
ample, it took roughly 12 hours on a standard laptop for
N = 2000 particles. The bottom part of Fig. 1 exhibits a
final configuration of a simulation containing 2000 particles.

At the end of each 1000th time step, a configuration is
recorded for the network analysis, such that we get a set of
104 stored configurations and thus of networks from each
simulation run, which are equally spaced in time with a time
delay of ∆t = 10−2s between each pair of successive con-
figurations.

Network Analysis
General Remarks
As a first step in the network analysis, we need to create a
network from a spatial configuration of droplets. For an-
swering the question whether an edge exists between a pair
(i, j) of droplets, we need to determine the distance D(i, j)
between their midpoints. Let (xi, yi, zi) be the triple of mid-
point coordinates of droplet i, then the Euclidean spatial dis-
tance between two droplets i and j is given by

D(i, j) =

√
(xi − xj)2

+ (yi − yj)2
+ (zi − zj)2

. (3)

Two droplets i and j overlap if D(i, j) is smaller than the
sum of their respective radii ri and rj . Assuming that an
edge between a pair of droplets exists if there is a not yet
completely resolved overlap between them or if they exactly

touch each other or if they get very close to each other, we
can define an N ×N adjacency matrix η with

η(i, j) =

{
1 if D(i, j)− (ri + rj) < 0.1µm
0 otherwise . (4)

This symmetric matrix η contains all information about the
network formed by the droplets. For example, the number e
of edges is given as

e =
∑
i<j

η(i, j). (5)

As η turns out to be extremely sparse, we create neighbor-
hood lists N (i) for each node i, containing all nodes to
which node i is connected by an edge:

N (i) = {j|η(i, j) = 1} (6)

The number of elements of N (i) is called the degree k(i)
of node i. Using these neighborhood lists, the computation
time for the determination of some network properties can
be significantly reduced compared to the use of the adja-
cency matrix alone.

We performed 100 simulations each for various numbers
N of particles and recorded 104 configurations from each
simulation. The results shown below are ensemble averages
over these 100 simulation runs or values derived from these
averages. Thus, each curve in the left pictures of Figs. 2,
3, 4, 5, 6, and 8 is comprised of 104 data points, which are
ensemble averages of 100 simulation runs, so that 106 net-
works had to be evaluated for each curve.

Geodesic Distances
As mentioned above, we intend to perform a gradual re-
action scheme on this network of droplets, i.e., neighbor-
ing droplets should exchange chemicals either directly at
the contact face or through pores in the bilayers, the re-
sulting intermediary reaction products serve as educts for
a next step with the next droplet connected. Thus, we are
interested in the question whether such reaction paths ex-
ist and how long they are, i.e., how many steps we can
perform gradually. Thus, in this paper, we focus on the
investigation of distances between nodes. Hereby we are
not interested in the Euclidean distance D(i, j) between the
midpoints of the droplets, as given in Eq. (3), or the mini-
mum distance of points within a pair of droplets, as given by
D(i, j) − (ri + rj), but in the minimum number of edges
one has to cross when trying to get from node i to node j on
a path comprised by the edges of the network. For example,
this distance d(i, j) between pairs (i, j) of nodes, which is
also called geodesic distance (González and Cascone, 2014),
equals 1 if η(i, j) = 1 and d(i, j) = 2 if η(i, j) = 0 but
η(i, n) = η(n, j) = 1 for at least one node n 6= i, j. If no
path from some node i to another node j can be found, one
sets d(i, j) = ∞. As η is very sparse, we use the Dijkstra
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algorithm to determine these geodesic distances (Dijkstra,
1959). Please note that the matrix d is symmetric, as we do
not apply preferential directions to our edges.

Computational Results
Growth of the Network
Mean degrees Before we investigate the existence of
paths and the lengths of geodesic distances, we have a look
at some observables describing the time evolution of the size
of the network. We start off our investigation by considering
the average degree 〈k〉 of the particles, which is usually seen
as one of the most important observables when performing
a local network analysis. But it is also related to the overall
number e of edges by the equation

N × 〈k〉 = 2e. (7)

Figure 2 shows for some selected numbers N of droplets
that the average 〈k〉 of the degrees sigmoidally increases in
time. As the inset reveals, 〈k〉 indeed increases in a double-
sigmoidal way. There is a first sigmoidal increase at short
time scales, in which first small groups, especially pairs of
droplets, are formed with some small probability. However,
we are mainly interested in the subsequent second sigmoidal
increase, as this main increase is the one in which the net-
work formation takes place. This second sigmoidal increase
is the more pronounced the larger the number N of droplets
is. We denote the final value of the degree of node i as kf (i)
and its average over all nodes as 〈kf 〉. We have a closer look
at the increase of the final mean values 〈kf 〉 of the degrees
with increasing N in the right picture in Fig. 2. While 〈kf 〉
can be nicely fitted linearly for very small N and quadrati-
cally for smallN , we find criticalities for largerN , such that
we get the overall behavior

〈kf 〉 =



c1N for N ≤ 40

c1N + c2N
2 for N ≤ 80

c3
Nα

(Ncrit,1 −N)
γ for 40 ≤ N ≤ 900

c4 tanh
(
c5 (N −Ncrit,2)

β
)

for 850 ≤ N

(8)

with the prefactors c1, . . . , c5, the critical exponents α, β,
and γ, and the critical numbers Ncrit,1 and Ncrit,2 of par-
ticles. Various fits of the functions in Eq. 8 with similar
fitting qualities result in α = 1 . . . 1.1, γ = 0.4 . . . 0.5,
β = 0.1 . . . 0.18, Ncrit,1 = 940 . . . 1000, and Ncrit,2 =
780 . . . 845. Please note that the prefactor c4 = 6 . . . 7 pro-
vides an estimate for 〈kf 〉 in the limit N → ∞. While the
values for prefactors and critical numbers of particles will
change if altering the simulation parameters, the theory of
critical phenomena decrees that the critical exponents α, β,
and γ and the form of the functions stay identical.

Cluster Numbers and Cluster Sizes Next, we would like
to have a look at a prominent example of global network

analysis, studying cluster numbers and cluster sizes. A clus-
ter is defined as a subset of nodes in which a path exists
between any pair of nodes in this subset. Please note that we
count clusters consisting of one node only also as clusters.
Figure 3 shows the sigmoidal decrease of the number Nc of
clusters, normalized by the numberN of droplets in order to
better compare the results for various N . Each curve starts
at a value of 1, as each droplet forms a cluster of its own
at the beginning. Generally, we find sigmoidal decreases of
Nc in time. With increasing N , the increase first becomes
steeper and then less steep again. The final values Nc,f for
the number of clusters, which are shown in the right picture
of Fig. 3, exhibit a very interesting behavior: the data points
can be well fitted to a parabolic function for small N . Nc,f
first increases with increasing N till N = 450 to a value
of ∼ 261.41 and decreases afterwards till N = 1400 to a
value of ∼ 17.56. This symmetry can be easily explained:
For small N , the bottom of the cylinder is gradually filled
with a two-dimensional agglomeration of droplets, forming
clusters, with increasing N . This behavior is mirrored in the
bottom area free of droplets, which is gradually split in a
first increasing number of clusters of connected free areas,
but then more and more of these free area clusters vanish.
For larger values of N , the droplets need to be stacked in
a three-dimensional way and the number of droplet clusters
fluctuates between 12.02 and 25.68.

Another quantity which needs to be considered is the size
of the largest cluster Stauffer and Aharony (1994); Stauffer
(1986); Naftaly et al. (1991), in order to find out whether one
large cluster is dominating the overall system and whether
even the whole network is percolating. For this purpose, we
measure the size Cmax of the largest cluster, i.e., the num-
ber of nodes contained in the largest cluster. The left pic-
ture in Fig. 4 shows that Cmax normalized by N increases
sigmoidally to almost 1 for N ≥ 1000. The final values
Cmax,f are shown in the right picture of Fig. 4. We find
that these final values increase almost linearly with N for
N ≥ 1000, they are only slightly smaller than N . Almost
all nodes (aside from 12-27) are part of the largest cluster.
The situation is different for smaller N , as can be nicely
seen in the inset. Here we find that the number of particles
not being part of the largest cluster first increases, then peaks
at N = 550 with a value of 468, and afterwards decreases
again. This structure is reminiscent of the parabolic shape in
the right picture of Fig. 3, but here the form of the peak is
less symmetric.

Existence of Paths
In order to better understand the results for geodesic dis-
tances, we first need to know how many paths in the net-
work exist. We count the number Np of existing paths be-
tween pairs of nodes, i.e., the number of geodesic distances
which have a finite value. Please note that while there is a
geometric restriction for the maximum value of a degree of
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Figure 2: Left: Time evolution of the average value 〈k〉 of degrees for various numbersN of particles. In the inset, the curves are
redrawn in a double-logarithmic plot. Right: Average 〈kf 〉 of final degree values vs. number N of particles: The displayed fit
function for smallN is given by f(N) = 1.2×10−3×N+1.5×10−6×N2, the fit function for intermediateN with 40 ≤ N ≤
900 by f(N) = 2.222848282×10−2× (982.95−N)−0.4597383×N1.064929, and the fit function for large N with 850 ≤ N ≤
5000 by f(N) = 6.4592928303905470× tanh(0.41066892597996169× (N − 843.03747786400800)0.14512724870611132).
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a node, which is also called the kissing number (Schneider
et al., 2022), there is no such restriction for Np. Np can take
values up to N × (N − 1)/2, for which all possible paths
between pairs of nodes exist. In Fig. 5, we have a look at the
fraction

fp =
2Np

N × (N − 1)
(9)

of existing paths. This fraction is restricted to the range from
fp = 0, for which no edge exists in the network, to fp = 1,
for which the network is connected, i.e., for which a path
exists from any node to every other node. The inset in the
left picture of Fig. 5 with the double-logarithmic plot reveals
that fp exhibits a double-sigmoidal increase over time. We
are interested in the second sigmoidal increase. The right

picture in Fig. 5 shows the final values of fp at the end of the
simulation runs for various N . Here we find again a double-
sigmoidal increase. Even for the largest values of N used,
the fraction of existing paths does not reach a value of 1 but
only of ∼ 0.99. Thus, there are either singular droplets or
very small groups of droplets which are not connected with
the remaining system. These droplets could lie at the bottom
of the cylinder without touching other droplets.

Geodesic Distances
In the next step, when intending to measure a mean geodesic
distance, we have to define how exactly we intend to mea-
sure it. The main problem here is how to take those distances
between pairs of nodes into account for which no path exists.
We defined above that d(i, j) =∞ in this case, but this defi-
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nition is not suitable for taking averages. If no path between
a pair (i, j) of nodes exist, some authors set d(i, j) to an ar-
bitrarily chosen value v ≥ N , as for an existing path, a dis-
tance can only take a value in the range 1 ≤ d(i, j) ≤ N−1.
As the results then depend strongly on the value v, we make
another choice and set

〈d〉 =


1
Np

∑
i<j

∃pathi→j

d(i, j) if e > 0

0 otherwise
. (10)

Therefore, if there is at least one edge and thus at least one
path in the network, then we take the average of the geodesic
distances of the existing paths only. Otherwise, we indicate
with a value of 0 that no path exists. But if there is exactly
one edge and thus one path in the network, then 〈d〉 = 1.
At the beginning, one will thus see a transition from 0 to

1, as the probability for the existence of a first edge in-
creases. With an increasing number of edges, also longer
distances can occur, such that the mean value increases. Fig-
ure 6 shows the computational results for 〈d〉. As already
mentioned above, we generally plot the ensemble average
over 100 simulations. The inset nicely shows the transition
whether some small network exists for small N . And also
otherwise the graphic exhibits some interesting properties
for 〈d〉 and its time evolution, the most important of them
being the intermediary maximum occurring for larger num-
bers of droplets.

If we have a look at the final values 〈df 〉 of the mean dis-
tances for various N , we find that it first increases to some
intermediate maximum, decreases again and then slightly in-
creases afterwards with increasing N , as shown in the right
picture of Fig. 6. The maximum lies in a range of N , in

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal2022/34/23/2035343/isal_a_00502.pdf by U
N

IVER
SITA D

I TR
EN

TO
 user on 31 January 2024



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.01  0.1  1  10  100

<
d
>

(t
)

t [s]

N=5000
N=4000
N=3000
N=2000
N=1000
N=500
N=250
N=100
N=50

10
-1

1

10

10
-2 1 10

2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  1000  2000  3000  4000  5000

<
d

f>

N

data points

10
-2

10
-1

10
0

10
1

10
2

10
1

10
2

10
3

Figure 6: Left: Time evolution of the mean value 〈d〉 of the geodesic distances for various numbers N of particles. In the
inset, the curves are redrawn in a double-logarithmic plot. Right: Final values 〈df 〉 for the mean value of geodesic distances for
various numbers N of particles. The inset, in which the curve is redrawn in a double-logarithmic plot, reveals a linear increase
of 〈df 〉 for small N .

which the transition from a quasi two-dimensional network
at the bottom of the cylinder to a three-dimensional network
starts to take place. (This maximum is missing in the left
picture of Fig. 6, as no curves for 500 < N < 1000 are
shown there.) Obviously, shorter paths can at first be found
by adding further droplets in the third dimension. But as the
particles have to be stacked in the third dimension even fur-
ther with further increasing N , the mean distance starts to
increase again.

Similarly, the intermediate maxima in the curves for the
largest values of N can be explained. In Fig. 7, we have a
closer look at these intermediate sharp maxima which occur
only for N ≥ 800. (Wide maxima which are higher than the
final values also occur at slightly smaller values of N .) The
larger N , the earlier the maximum occurs at a time tm:

tm ∝
1

N
(11)

For the largest values ofN considered here, the height of the
intermediate maximum increases with increasing N .

In the next step, we would like to consider the maximum
distance of the network. Here again we first have to properly
define how we intend to measure this maximum distance. In
accordance to the definition of the mean distance in Eq. (10),
we define the maximum distance as

dmax =

{
max{d(i, j)|∃ path i→ j} if e > 0

0 otherwise . (12)

Please note that when it comes to considering maximum dis-
tances, two types of maximum distances are often discrim-
inated (Boitmanis et al., 2006; Erdös et al., 1989): Other
authors first start off with determining a maximum distance
di,max for each node defined as the maximum of distances
for all paths starting at node i and ending at some other node.

Then the diameterD of a network is defined as the maximum
of these maxima,

D = max
i
di,max, (13)

and the so-called radius R of a network as the minimum of
these maxima,

R = min
i
di,max. (14)

In this sense, our maximum distance dmax corresponds to
the diameter of the network. dmax is of special interest for
us, as we need to know the maximum number of steps possi-
ble for the gradual reaction scheme which shall be governed
by the compiler we intend to develop. dmax corresponds to
or provides a good estimate for this maximum number of
steps. Contrarily, we are not interested in the radius of our
networks, as we have already seen that isolated droplets or
small isolated groups of droplets can lie at the bottom of the
cylinder. But these isolated parts, which would define R,
play no further role in our considerations.

Figure 8 shows the time evolution of the maximum dis-
tance dmax. At first glance, one sees the similarity to the
time evolution of the mean distance 〈d〉 in Fig. 6: Again
we get a double-sigmoidal increase: at first, the maximum
value increases to 1, such that we now know that only pairs
of droplets are formed in this stage, with the probability for
pair formation increasing with time and with increasing N .
The subsequent main sigmoidal increase can be analyzed as
for 〈d〉. Again we have a look at the final values for various
N , which are shown in the right picture of Fig. 8. The fi-
nal values first sharply increase till N = 700, for which an
ensemble average of the final maximal distances of 50.85 is
found. Then it decreases again till N = 1300. For large N ,
we find a slight increase of the final values of dmax.
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Figure 8: Left: Time evolution of the maximum dmax of the geodesic distances for various numbers N of particles. In the inset,
the curves are redrawn in a double-logarithmic plot. Right: Final values dmax,f for the maximum value of geodesic distances
for various numbers N of particles. The inset, in which the curve is redrawn in a double-logarithmic plot, reveals a linear
increase of dmax,f for small N .

We also find intermediate maxima again for N ≥ 800.
The time tmax,m at which dmax exhibits its intermediate
maximum is also rather the same as the time the interme-
diate maxima occur for 〈d〉 and we find again the power law

tmax,m ∝
1

N
, (15)

as shown in Fig. 9. We also find that the heights of these in-
termediate maxima increase with increasing N for large N .
Besides these sharp maxima which we get for N ≥ 800, we
also find wide intermediate maxima with fluctuating heights
for slightly smaller values of N .

Conclusion and Outlook
In this paper, we presented results of simulations for the ag-
glomeration of droplets. As we are interested in the effects

of varying numbers of particles on the agglomeration pro-
cess and on the resulting droplet networks, we study a very
simplified system, in which the droplets are represented as
hard spheres, subjected to gravity reduced by buoyancy, as
well as Stokes friction, added mass effect, random velocity
changes, and almost-elastic impacts. Connections between
these particles are virtually formed if they (almost) touch or
overlap. The particles gradually agglomerate at the bottom
of the cylindrical container. The analysis of this agglomera-
tion process shows that the results for the time evolution and
the final outcome strongly depend on the number of parti-
cles. In particular, we find two transition regimes: at small
numbers N of particles, we find an over time gradually in-
creasing number of droplets lying finally at the bottom of the
cylinder where they either stay isolated or gradually form
pairs and then some slightly larger groups with other parti-
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Figure 9: Left: Heights of intermediate maxima of dmax for N ≥ 800. Right: Times at which the intermediate maxima occur
for N ≥ 800. The fit function is given by 1.65× 103s×N−1.

cles reaching the bottom as well. When increasing N even
further, a network of droplets is created at a bottom layer of
the cylinder. During this regime, we find an increase of the
mean and maximum geodesic distances, followed by a de-
crease for larger system sizes. For very large numbers of par-
ticles, the time evolution of the observables at first more or
less reflects the final outcome for small and then intermedi-
ate numbers of particles, showing e.g. intermediate maxima
for the geodesic distances (the earlier, the larger the num-
ber of particles is), before displaying the properties of truly
three-dimensional networks of particles. As only large val-
ues of the maximum distance allow very extended gradual
reaction schemes governed by our compiler, we suspect that
it is misleading to believe that the structures optimum for
our purposes need to be three-dimensional. Instead, when
using a unary system of droplets, we should consider work-
ing with the largest cluster in a quasi two-dimensional layer
at the bottom of the cylinder, which exhibits a fractal dimen-
sion (Falconer, 2003) significantly smaller than 2.

We intend to continue our investigations by measur-
ing clustering coefficients, fractal dimensions, the locations
of droplets with differing radii, and the importance some
droplets might have for the overall network. Furthermore,
we plan to extend our investigations first to binary systems,
in which two particle types A and B are present and con-
nections can only be forged between pairs of A − B but
not A − A or B − B and then to ternary systems, in which
there are three particle types A, B, and C with connec-
tions between adjacent pairs of A−B particles but in which
the additional C-particles are unable to form any connec-
tions. Hereby we want to study the breakdown of the size
of the largest cluster with increasing density of C-particles
and find out whether there is a regime as well in which the
maximum geodesic distance between droplets increases to
suitable values. Furthermore, we want to add gluing forces
between particles to find out how they change the results.

Acknowledgements
This work has been partially financially supported by the
European Horizon 2020 project ACDC – Artificial Cells
with Distributed Cores to Decipher Protein Function under
project number 824060.

References
Aprin, L., Heymes, F., Laureta, P., Slangena, P., and Le Floch, S.

(2015). Experimental characterization of the influence of dis-
persant addition on rising oil droplets in water column. Chem-
ical Engineering Transactions, 43:2287–2292.

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in
random networks. Science, 286(5439):509–512.

Boitmanis, K., Freivalds, K., Lediņš, P., and Opmanis, R. (2006).
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González, J. A. and Cascone, M. H. (2014). Geodesic distribu-
tion in graph theory: Kullback-Leibler-Symmetric. Revista
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