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Chapter 1

Introduction

Although it is usually said that the first work in Real Geometry is due to
Harnack [Hr], who obtained an upper bound for the number of connected com-
ponents of a non-singular real algebraic curve in terms of its genus, modern Real
Algebraic Geometry was born with Tarski’s article [T], where it is proved that
a projection of a semi-algebraic set is a semi-algebraic set.

We are interested in studying what might be called the ‘inverse problem’ to
Tarski’s result. A map f := (f1,...,fn) : R™ — R" is polynomial if its com-
ponents fr € R[x] := R[xy,..., %] are polynomials. Analogously, f is regular
if its components can be represented as quotients f = Z—: of two polynomials
9k, i € R[x] such that hy never vanishes on R™.

1.1. State of the art. In the 1990 Oberwolfach reelle algebraische Geometrie
week [G] Gamboa proposed (see also Eisenbud’s survey [E, §3.IV, p.69]):

Problem 1.1. To characterize the (semi-algebraic) subsets of R™ that are either
polynomial or regular images of R™.

As specific examples of open questions he stated in Oberwolfach, we have:

1. Is the set {x?> +y? > 1} a polynomial image of R??
y

2. Is the open quadrant {x > 0, y > 0} a regular image of R??

In 2002 Fernando and Gamboa answered both these questions in [FG1]. It
constituted the starting point of the systematic study of the problem of repre-
senting semi-algebraic sets as polynomial or regular images of Euclidean spaces.
They, jointly with Ueno, have attempted to understand better polynomial and
regular images of R™ in the last two decades with the following main objectives:

e To find obstructions to be either polynomial or regular images.

e To prove (constructively) that large families of semi-algebraic sets with
piecewise linear boundary (convex polyhedra, their interiors, complements
and the interiors of their complements) are either polynomial or regular
images of Euclidean spaces.
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In [FG1, FG2, FUL, FGU2| are presented first steps to approach Problem
1.1. The most relevant one [FU1] shows that the ‘set of points at infinity’ of 8
is a connected set. In [Fel] appears a complete solution to Problem 1.1 for the
1-dimensional case, whereas in [FGU1, FGU3, FGU5, FU2, FU3, FU4, FU5,
FU6, Ul, U2] it is provided a constructive full answer for the representation as
either polynomial or regular images of the semi-algebraic sets with piecewise
linear boundary commented above [FU4, Table 1]. A survey concerning these
topics, which provides the reader a global idea of the state of the art, can be
found in [FGU4].

The rigidity of polynomial and regular maps on R™ makes really difficult to
approach Problem 1.1 in its full generality. The following example shows that
even for ‘simple’ (whatever simple means) semi-algebraic sets, we do not know
how to answer Problem 1.1.

Ezample 1.2. The semi-algebraic set § := {y?>—x? < 1} C R? is not a polynomial
image of R? (see [FG1, Rmk.1.3(2)]). It is not known whether § is a polynomial
image of R™ for some n > 3 or not. For the regular case we know that 8 is a
regular image of R? but it is not known if 8 is a regular image of R? or not.

Figure 1.1: The semi-algebraic set § = {y* — x*> < 1}.

1.2. First alternative approach. At this point there are several possible ways
to overcome the quoted difficulties. The first one is to change the polynomial
and regular maps by more flexible maps like Nash maps (smooth semi-algebraic
maps) [Fed] or regulous maps (continuous rational maps) [FFQU]. Gamboa and
Shiota proposed in 1990 to approach the following variant of Problem 1.1.

Problem 1.3. To characterize the (semi-algebraic) subsets of R™ that are Nash
images of R™.

In 1990 Shiota proposed the following conjecture in order to provide a sat-
isfactory answer to Problem 1.3.

Conjecture 1.4 (Shiota). Let 8 C R™ be a semi-algebraic set of dimension
d. Then, 8 is a Nash image of R® if and only if 8 is pure dimensional and
there exists an analytic path o : [0,1] — 8 whose image meets all connected
components of the set of reqular points of 8.

In [Fe4] Fernando provided a proof for Shiota’s conjecture as a particular case
of the following characterization of the semi-algebraic sets 8§ C R™ of dimension
d that are images of affine spaces under Nash maps.



Theorem 1.5 (Nash images [Fed, Thm.1.4]). Let § C R™ be a semi-algebraic
set of dimension d. The following assertions are equivalent:

(i) 8 is a Nash image of R.

)
(ii) 8 is connected by Nash paths.
(iii) 8 is connected by analytic paths.
(iv) 8 is pure dimensional and there exists a Nash path o : [0,1] — 8§ whose
image meets all the connected components of the set of regular points of 8.

(v) 8 is pure dimensional and there exists an analytic path « : [0,1] — 8 whose
image meets all the connected components of the set of reqular points of S.

(vi) 8 is well-welded.

The concept of well-welded semi-algebraic set will be recalled in Section 3.4.

1.3. Second alternative approach. Another possibility is to keep polynomial
or regular functions and to change the domain of definition. If we consider a
compact domain (and of course a compact image), we have more tools because
for instance Weierstrass’ polynomial approximation has an important role. The
simplest compact semi-algebraic domains one can choose are either closed unit
balls or unit spheres. In [KPS, §5.Prob.1] it is proposed the following concrete
related problem:

Problem 1.6. Let P be an arbitrary (compact) convex polygon in R2. Construct
explicit polynomials f and ¢ in R[u, v, w] such that P = (f, g)(Bs).

Sturmfels suggested Fernando and Ueno in 2018 to confront the previous
problem, taking into account their knowledge in the subject of polynomial im-
ages of affine spaces. This suggestion was the starting point for the article
[FU6], where it is made an extended study of the n-dimensional semi-algebraic
subsets of R™ that are images under a polynomial map f : R™ — R™ of the
m-dimensional closed unit ball B,,, for some m > n. A first main result in [FU6]
is a strong generalization to arbitrary dimension of Problem 1.6.

Theorem 1.7 ([FU6, Thm.1.2]). Let 8 C R™ be the union of a finite fam-
ily of n-dimensional convex (compact) polyhedra. The following assertions are
equivalent:

(i) 8 is connected by analytic paths.

(ii) There exists a polynomial map f : R™ — R™ such that f(B,) = 8.

The techniques involved to prove Theorem 1.7 are generalized in [FU6] to
show the following result. A set 8 C R™ is strictly radially convex (with respect
to a point p € Int(8)) if for each ray ¢ with origin at p, the intersection £ N §
is a segment whose relative interior is contained in Int(8). Convex sets are
particular examples of strictly radially convex sets (with respect to any of its
interior points [Be, Lem.11.2.4]).
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Theorem 1.8 ([FU6, Thm.1.3]). Let 8 C R™ be the union of a finite family
of strictly radially conver semi-algebraic sets that are polynomial images of the
closed unit ball B,,. The following assertions are equivalent:

(i) 8 is connected by analytic paths.

(ii) There exists a polynomial map f : R™TY — R™ such that f(Bmi1) = 8.

1.4. First main result. Our starting point has been to combine both alterna-
tive approaches:

(1) To work with Nash maps instead of polynomial or regular maps.

(2) To work with closed unit balls instead of affine spaces.

Our first main result in this dissertation is the characterization of the compact
semi-algebraic sets 8§ C R™ that are images of closed unit balls under Nash maps.

The statement of Theorem 1.5 does not take into account if § is compact or
not and the involved Nash maps are rarely proper if d > 2. As closed unit balls
B, are compact, the restrictions to By of Nash maps are always proper maps.

Theorem 1.9 (Compact Nash images). Let 8§ C R™ be a d-dimensional compact
semi-algebraic set. The following assertions are equivalent:

(i) There exists a Nash map f : R? — R™ such that f(B;) = 8.
(ii) 8 is connected by Nash paths.
(i) 8 is connected by analytic paths.

)

(iv) 8 is pure dimensional and there exists a Nash path « : [0,1] — 8 whose
image meets all the connected components of the set of regular points of S.

(v) 8 is pure dimensional and there exists an analytic path o : [0,1] — 8§ whose
1mage meets all the connected components of the set of reqular points of 8.

(vi) 8 is well-welded.

Chapter 3 will be dedicated to prove this theorem. We start by showing in
Section 3.1 that there exist polynomial maps RY — R? that transform:

(i) the standard sphere S? onto the unit closed ball B4 (Proposition 3.1.1),
(ii) the unit closed ball B4 onto the cylinder B4_; x[—1, 1] (Proposition 3.1.2),

(iii) the cylinder By4_1 x [—1, 1] onto the simplicial prism Ag_; x [~1, 1] (Corol-
lary 3.1.4), where

Ag_1 I:{Xlzo,...7xd_1zo, X1+"'+Xd_1§1}CRd7

(iv) the cylinder By_; x [—1,1] onto the hypercube [—1,1]? (Corollary 3.1.5).



In addition, there exist a polynomial map from the hypercube onto the unit
closed ball (Proposition 3.1.6), a polynomial map from the simplicial prism onto
the unit closed ball (Proposition 3.1.8) and a regular map from the hypercube
onto the sphere (Proposition 3.1.9). Thus, we can take indistinctly as models
to represent a compact semi-algebraic set 8§ C R™ (connected by analytic paths)
as image under Nash maps RY — R™ any of the previous semi-algebraic sets in
(i)-(iv). In fact, we will provide representations of 8§ as image under Nash maps
R?% — R™ of each of the previous models. The technicalities of the constructions
we develop in this work make the simplicial prism Agz_q x [—1,1] the most
suitable model to develop the main construction.

A main step to prove Theorem 1.9, which has interest by its own, is the
following result:

Theorem 1.10. Let T C R" be a compact checkerboard set of dimension d.
Then, there exists a Nash map f: Ag—1 % [0,1] = R™ such that

f(Ad—l X [07 ]-D =T

The concept of checkerboard set will be recalled in Section 3.5. In particular,
connected Nash manifolds Q € R™ with (divisorial) corners can be embedded
as checkerboard sets in some R™ [Fe4, Lem.8.3]. The precise definition of Nash
manifold with (divisorial) corners appears in Section 2.5.3.

In Section 3.6.1 we treat separately the 1-dimensional case and we charac-
terize 1-dimensional Nash images of closed balls in terms of their irreducibility.
The ring N (8) of Nash functions on a semi-algebraic set 8§ C R™ is a Noetherian
ring [FG3, Thm.2.9] and we say that 8 is irreducible if and only if N'(8) is an
integral domain [FG3, §3].

Proposition 1.11 (The 1-dimensional case). Let § C R" be a 1-dimensional
compact semi-algebraic set. Then 8 is a Nash image of some B, if and only if
8 is irreducible. In addition, if such is the case 8 is a Nash image of [—1,1].

1.5. Consequences of the first main result. As consequences of Theorem
1.9 we will show in Chapter 3 the following.

1.5.1. General Nash images. Once we have completely characterised the Nash
images of the closed ball, a natural question arises:

Problem 1.12. To determine all possible compact models that allow us to repre-
sent a compact semi-algebraic set § C R™ of dimension d connected by analytic
paths as a Nash image.

This question is not trivial and different classes of semi-algebraic functions
might have different answers. For instance, the family of polynomial images
of the closed ball and the one of the sphere are different. In the Nash case
we are able to provide a complete characterization of the compact models as a
consequence of Theorem 1.9 and the following result (whose proof is contained
in Section 3.7):

Theorem 1.13 (Bérchen-Schéfchen’s Theorem). Let T C R™ be any semi-
algebraic set of dimension d. Then, there exists a regular map f : R™ — R
such that f(T) = Bg.
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It is natural now to wonder if the previous result extends to pairs of general
semi-algebraic sets non necessarily compact.

Problem 1.14. To determine all possible models that allow us to represent a
semi-algebraic set § C R" of dimension d connected by analytic paths as a Nash
image.

If § € R™ is non-compact and T C R™ is compact, there exists no Nash map
f:R™ — R"™ such that f(7) = 8. In Section 3.7 we prove the following:

Theorem 1.15. Let T C R™ be a semi-algebraic set and let d > 2. Assume
that C1(T4) N'T is not compact. Then, there exists a Nash map f : R™ — R4
such that f(T) = R

Combining the previous two results with Theorem 1.9 and [Fe4, Thm.1.4]
we obtain the following satisfactory answer to Problem 1.14:

Theorem 1.16. Let § C R™ be a semi-algebraic set of dimension d > 2 con-
nected by analytic paths. For each semi-algebraic set T C R™ with d < dim(7T),
such that Cl(T.) N T is non-compact for some d < e < dim(T) in case 8 is
non-compact, there exists a Nash map [ : R™ — R™ such that f(T) = S8.

1.5.2. General surjective Nash maps between semi-algebraic sets Once estab-
lished a satisfactory classification (both for the compact and non-compact case)
of the possible models to represent semi-algebraic sets connected by analytic
paths as Nash images, a natural question at this point is to determine until
what extend we can represent general semi-algebraic sets as Nash images. Ob-
serve that the image of a semi-algebraic set connected by analytic paths under
a Nash map is connected by analytic paths. In addition, the image of an irre-
ducible semi-algebraic set under a Nash map is an irreducible semi-algebraic set
[FG3, §3.1].

Thus, obstructions to construct a surjective Nash map f : 8§ — T between ar-
bitrary semi-algebraic sets § C R™ and T C R"™concentrate on the configuration
of the intersections of pairwise different analytic path-connected components
{8i}i—; (vesp. irreducible components {87}%_,) of 8 and the configuration of
their images, which are semi-algebraic subsets T; := f(8;) of T connected by
analytic paths (resp. irreducible semi-algebraic subsets T} := f(87) of 7).

In order to soften these obstructions we will assume that each irreducible
component & of 8 is mapped onto an analytic path-connected component T;
of T and that ;_, f(7;) # @. Under this type of assumptions we propose the
following characterization (whose proof is contained in Section 3.8.3).

Theorem 1.17 (Surjective Nash maps). Let § C R™ and T C R"™ be semi-
algebraic sets, let {8F}7_, be the irreducible components of 8§ and let {T;}i_, be
a family of (non-necessarily distinct) semi-algebraic subsets of T connected by
analytic paths such that (\;_, J; # @. Denote d; := dim(8}) and assume that
the set 8:’(di) of points of 8F of dimension d; is non-compact if T; is non-compact
fori=1,...,r. Then, there exists a Nash map f :8 — T such that f(8}) =T;
fori=1,...,7rif and only if e; :== dim(T;) < dim(8}) =:d; fori=1,...,r.

1.5.8. Representation of arc-symmetric semi-algebraic sets. Arc-symmetric semi-
algebraic sets were introduced by Kurdyka in [K] and subsequently studied
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by many authors. Recall that a semi-algebraic set § C R™ is arc-symmetric
if for each analytic arc v : (—1,1) — R™ with «((—1,0)) C § it holds that
v((=1,1)) C 8. In particular arc-symmetric semi-algebraic sets are closed sub-
sets of R™. An arc-symmetric semi-algebraic set § C R™ is irreducible if it cannot
be written as the union of two proper arc-symmetric semi-algebraic subsets [K,
§2]. As a consequence of Theorem 3.2 and [K, Cor.2.8] we will show in Section
3.9.1 that a pure dimensional compact irreducible arc-symmetric semi-algebraic
set is a Nash image of B4 where d := dim(8).

Corollary 1.18. Let 8 C R™ be a pure dimensional compact irreducible arc-
symmetric semi-algebraic set of dimension d. Then 8 is a Nash image of By.

1.5.4. Elimination of inequalities. A converse problem to Tarski’s theorem is
to find an algebraic set in R™* whose projection is a given semi-algebraic
subset of R™. This is known as the problem of eliminating inequalities. Motzkin
proved in [Mo] that this problem always has a solution for £k = 1. However,
his solution is rather complicated and is generally a reducible algebraic set. In
another direction Andradas and Gamboa proved in [AG1, AG2] that if § C R"
is a closed semi-algebraic set whose Zariski closure is irreducible, then § is the
projection of an irreducible algebraic set in some R"**. In [P] Pecker provides
some improvements on both results: for the first by finding a construction of an
algebraic set in R"*! that projects onto the given semi-algebraic subset of R”,
far simpler than the original construction of Motzkin; for the second by proving
that if 8 is a locally closed semi-algebraic subset of R™ with an interior point,
then § is the projection of an irreducible algebraic subset of R"*!. In [Fed4] it
is proved that each semi-algebraic set § C R"™ is the image of a non-singular
algebraic set X C R"™* whose connected components are Nash diffeomorphic
to affine spaces (maybe of different dimensions).

In this work we improve the previous result if § is compact and we prove
that there exists an algebraic set X C R24+! where d := dim(8), that is Nash
diffeomorphic to a finite pairwise disjoint union of spheres (maybe of different
dimensions) that project onto 8. In Section 3.9.2 we show the following result
that provides a non-singular compact algebraic set with the simplest possible
topology that projects onto a compact semi-algebraic set.

Corollary 1.19. Let 8§ C R™ be a compact semi-algebraic set of dimension d.
We have:

(i) If 8 is connected by analytic paths, it is the projection of an irreducible
compact non-singular algebraic set X C R"* (for some k > 0) that has
at most two connected components Nash diffeomorphic to the sphere S.
In addition,

(1) Each connected component of X projects onto 8.
(2) There exists an automorphism of X that swaps both connected com-

ponents of X.

(ii) In general 8 is the projection of an algebraic set X C R"* (for some
k > 0) of dimension d that is Nash diffeomorphic to a finite pairwise
disjoint union (of dimension d) of spheres (maybe of different dimensions).
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Even for dimension 1, it is not possible to impose the connectedness of X
(see Lemma 3.9.5 and Example 3.9.6). Contrast the previous result with [Fe4,
Cor.1.8].

1.6. Second main result. Once we have completed a characterization of Nash
images of closed balls, a natural question at this point is to determine until what
extend we can represent semi-algebraic sets connected by analytic paths using
polynomial maps. Polynomial images of models connected by polynomial paths
(e.g. Euclidean spaces, closed balls etc.) are connected by polynomial paths. In
general, semi-algebraic sets do not contain rational paths. By [C, V] a generic
complex hypersurface Z of CP™ of degree d > 2m — 2 for m > 4 and of degree
d > 2m—1 for m = 2,3 does not contain rational curves. If 8 is a semi-algebraic
set whose Zariski closure in RP™ is a generic hypersurface of high enough degree,
then its Zariski closure Z in CP™ does not contains rational curves, so 8§ cannot
contain rational paths. This means in particular that general semi-algebraic
sets do not contain polynomial paths.

In Chapter 4 we show that if § C R™ is a closed semi-algebraic set connected
by analytic paths, then 8 is the image under a proper polynomial map of a Nash
manifold with corners of the same dimension. In fact, there exists an algebraic
set of smaller dimension such that the restriction of the polynomial map to the
Nash manifold with corners minus this algebraic set is a Nash diffeomorphism
onto its image.

Theorem 1.20. Let 8§ C R™ be a d-dimensional closed semi-algebraic set con-
nected by analytic paths. Then there exist:

(i) A d-dimensional non-singular irreducible algebraic set X C R™ and a
normal-crossings divisor Y C X.

(ii) A connected Nash manifold with corners Q C X (which is a closed subset
of X ) whose boundary 0Q hasY as its Zariski closure.

(iii) A polynomial map [ : R™ — R™ such that the restriction flo : Q — 8 is
proper and f(Q) = 8.

(iv) A closed semi-algebraic set R C 8 of dimension strictly smaller than d
such that 8 \ R and Q\ f~1(R) are Nash manifolds and the polynomial
map flovs-1(xy : Q\ fTHR) = 8\ R is a Nash diffeomorphism.

If § C R™ is a general semi-algebraic set connected by analytic paths, one
can wonder if it is possible to provide a similar result that also works for 8. As
the chosen Nash manifold with corners Q is closed in its Zariski closure and the
chosen polynomial map f : R® — R™ restricts to a proper map f|g : Q — R™,
its image § is a closed subset of R™. Thus, if 8 is not closed in R™, we should
change the type of domain and/or the type of map. The second approach
considering general Nash maps non-necessarily proper has been developed in
[Fed, Proof of Thm.1.4, §8.C.12] and it is shown that if the involved Nash map
is not necessarily proper, then there exists a Nash manifold H with smooth
boundary and a surjective Nash map f : H — 8. If one wants to keep the
properness condition, it is not possible to keep as domains Nash manifolds Q
with corners because they are locally compact and images of locally compact



subsets of R™ under proper maps are locally compact subsets of R™. Thus, we
have to change the type of involved domains and we will consider semi-algebraic
sets T C R™ whose closure is a Nash manifold with corners Q C R"™ and Q\ T is
a union of some of the strata of a suitable stratification of 0Q.

Theorem 1.21. Let 8§ C R™ be a d-dimensional semi-algebraic set connected
by analytic paths. Then there exist:

(i) A d-dimensional connected compact non-singular algebraic set M C R™
and a normal-crossings divisor Y C M.

(ii) A connected Nash quasi-manifold with corners 8* C M that is a checker-
board set and whose closure in M is a compact connected Nash manifold
with corners Q° C M whose boundary 09° has Y as its Zarsiki closure.

(iii) A Nash map f : R™ — R™ such that the restriction f|se : 8 — 8 is proper
and f(8*) = 8.

(iv) A closed semi-algebraic set R C 8 of dimension strictly smaller than d
such that 8 \ R and 8\ f~Y(R) are Nash manifolds and the Nash map
flsevs-1(®) : 8*\ fTH(R) = 8\ R is a Nash diffeomorphism.

A Nash quasi-manifold with corners is a Nash manifold with corners with
some faces erased (the precise definition is included in Section 4.3).

1.7. Third main result. The study of Nash images of closed balls took us to
work closely with Nash manifolds with corners. In two recent papers Fernando
and Ghiloni [FGh, FGh2] obtained approximations result in the semi-algebraic
and smooth settings when the target space has singularities provided it admits
‘nice’ triangulations. Motivated by their work and our study of Nash manifolds
with corners we dealt with the following problem:

Problem 1.22. Let 8 C R™ be a locally compact semi-algebraic set, let Q C R”
be a Nash manifold with (divisorial) corners and let h : 8§ — Q be a proper con-
tinuous semi-algebraic map. Does there exist a Nash map g : § — Q arbitrarily
close to h in the C° semi-algebraic topology?

In the article [FGR] Fernando, Gamboa and Ruiz proved that given a Nash
manifold Q@ C R™ with corners it is contained as a closed subset in a Nash
manifold M C R” of the same dimension and the behaviour of the Nash closure
of its boundary is the suitable one. We will show in Chapter 5 that the Nash
manifold M can be ‘folded’ to reconstruct the manifold with corners Q. That
is, there exists a surjective Nash map M — Q such that the restriction to Q
is close to the identity and preserves the stratification of the boundary 09Q.
The construction we present there, even if it requires some technicalities, is
geometrical and neat.

Theorem 1.23 (Folding Nash manifolds). Let Q C R™ be a d-dimensional Nash
manifold with corners. Then, there exist

(i) A d-dimensional Nash manifold M C R™ that contains Q as a closed
subset.
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(ii) A Nash normal-crossings divisor Y C M that is the smallest Nash subset
of M that contains 09 and satisfies QNY = 0Q.

(iii) A Nash map f : M — Q such that flo : Q — Q is a semi-algebraic
homeomorphism close to the identity map and flim o) : Int(Q) — Int(Q)
is a Nash diffeomorphism.

In addition, for each x € 09 there exist open semi-algebraic neighbourhoods
U,V C M of x equipped with Nash diffeomorphisms o : U — R® and ) : V — R
and 1 < s < d such that

Yofop t:RY—RY (x1,...,2q) = (22, 22 21, .., Ta).

This result, that has interest by its own, has remarkable consequences. In
particular, it allows us to answer Problem 1.22.

Theorem 1.24 (Nash approximation). Let 8 C R™ be a locally compact semi-
algebraic set and let Q C R™ be a Nash manifold with corners. Let h: § — Q be
a proper continuous semi-algebraic map. Then there exist Nash maps g : § — Q
arbitrarily close to h with respect to the CY semi-algebraic topology.

A second consequence of our construction is a variant of Theorem 1.20. A
similar result changing Q by a Nash manifold with boundary seems difficult to
be achieved if we want to keep that the map f is polynomial, so we will show
in Section 5.3.1 that a closed semi-algebraic set 8§ connected by analytic paths
can be ‘resolved’ by a Nash manifold with boundary, up to consider Nash maps
instead of polynomial ones.

Theorem 1.25. Let 8§ C R™ be a d-dimensional closed semi-algebraic set con-
nected by analytic paths and let € > 0. Then there exist:

(i) A d-dimensional non-singular algebraic set X C R™.

(ii) A Nash manifold with boundary H. C R™ such that the Zariski closure Z.
of 0H. is a non-singular algebraic set contained in X of dimension d — 1
and Int(H,) is a connected component of X \ Z..

(iii) A proper Nash map f : H. — 8 such that f(H.) = 8.

(iv) The restriction flsc\p-1(7.) + He \ f71(T2) = 8\ T- is a Nash diffeo-
morphism, where T, := {x € 8§ : dist(z,R) < &} for a certain closed
semi-algebraic set R C § of dimension strictly smaller than d.

In Section 5.3.2 we will also provide an alternative characterization of the
Nash images of the closed ball, taking advantage of this new technique of ‘res-
olution’ of semi-algebraic sets by Nash manifolds with boundary.

The results presented in this dissertation will be collected in the articles

[CF1] (mainly those results in Chapter 3) and [CF2] (mainly those results in
Chapters 4 and 5).
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Chapter 2

Preliminaries

2.1 Real algebraic sets

The main goal of algebraic geometry is the study of those subsets of k™ defined as
common zero sets of polynomials in k[x1, ..., x,], where & is a field. The setting
with a nicer behaviour arises when k is algebraically closed. In particular, the
case k = C has deserved major attention, and complex algebraic geometry is a
central part in mathematics. The non algebraically closed case often leads to
surprising results - at least for classical algebraic geometers (see also [FGh3)]).
The reason is that the couple ‘algebraic geometry-commutative algebra’ does not
have a happy marriage in the non algebraically closed case. In the following, K
is either R or C.

Definition 2.1.1. A subset V' C K" is called an algebraic set if it can be
represented as

V=Z2()={zxeK": p(z) =0 Vpe S},
where S C K[x] := K[xq,...,%,] is a non-empty subset.

If I is the ideal generated by a non-empty subset S C K[x], it is straight-
forward to check that Z(I) = Z(S). Hilbert’s basis theorem [AM, Thm.7.5]
asserts that K[x] is a Noetherian ring. In particular each ideal I C Kl[x] is
finitely generated, so every algebraic set V' C K" is the zero set of a finite fam-

ily of polynomials. If K = R, we can actually use a single equation by means of
a sum of squares.

Proposition 2.1.2. Let V' C R™ be an algebraic set. Then, there exists a
polynomial p € R[x] such that V = {p = 0}.

Proof. Let py,...,pr € R[x] be polynomials such that V = {p; =0,...,pr = 0}.
Then V = {p? +--- + pi = 0}, as required. O

Recall some standard facts about algebraic sets.

(i) The vanishing ideal of a subset V' C K™ is
Z(V)={feK[x]: f(x) =0 Vz e V} CK[x].

11
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(ii) Algebraic sets in K™ are the closed sets for a topology on K", called the
Zariski topology.

(iii) Given a subset V' C K" the Zariski closure V™ of V is the smallest
algebraic set V™ c K™ that contains V.

(iv) Every Zariski closed set in K™ is also closed in the standard Euclidean
topology because polynomial functions are continuous with respect to the
Euclidean topology.

(v) The Zariski topology of K" is not Hausdorff, but points are closed.

We will say that an algebraic set V' C K" is irreducible if it cannot be
decomposed as a finite union of strict algebraic subsets. That is, if V7, Vo C K™
are algebraic sets such that V' = V; U V5, then either V. =V; or V = V5. We
say that the algebraic set V is reducible if it is not irreducible. An algebraic
set V' C K" is irreducible if and only if Z(V) C K[x] is a prime ideal. In fact,
V = ViUV, with V3, V5 # V if and only if there exist f1 € Z(V1) and fo € Z(V3)
such that f1, fo ¢ I(V) and fife € I(V)

Algebraic sets admits a unique irredundant finite decomposition as the union
of its irreducible algebraic components [BR, Prop.3.1.5].

Proposition 2.1.3 (Decomposition into irreducible components). Every alge-
braic set V. C K™ can be decomposed as a finite union of irreducible algebraic
sets, called irreducible components,

V=Viu---uV,

where Vi ¢ Vj if i # j. In addition, up to reordering the indices, this decompo-
sition s unique.

The following examples show that real algebraic sets might present ‘wilder’
behaviours than complex algebraic sets.

Ezamples 2.1.4. (i) The ideal I := (x?(x> — 1) + y?) is a prime ideal of Rlx,y],
because the polynomial x?(x? — 1) + y? is irreducible, but

Z(I) :={(0,0),(1,0)} c R?

is a reducible algebraic set.

(ii) I := ((xy — 1)® + x?) C R]x, y] is a proper prime ideal, but the algebraic
set Z(I) = @.

(iii) The circle St := {x?> + y> — 1 = 0} C R? is a bounded irreducible
algebraic set.

(iv) The set Z(y? — x3 + x) C R? is an irreducible algebraic set with two
connected components. One of them is a bounded set (see Figure 2.1).

(v) The irreducible algebraic set Z(y? — x3 +x2) C R? is not connected and
one of its connected components is an isolated point (see Figure 2.1).

12
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@ -

Figure 2.1: The cubic curves y* — x* + x = 0 (left) and y* — x® + x* = 0 (right).

2.2 Semi-algebraic sets

The field of real numbers R has a (unique) ordered structure. This ordered
structure is intrinsically related to (some of) the topological properties of real
algebraic sets. This is one of the reasons (not the only one) why it is ‘natural’
to consider a larger class of sets, larger than the one of algebraic sets, described
involving both polynomial equalities and inequalities.
Examples 2.2.1. (i) Given a,b € R, the set Z(t? + at + b) C R is non-empty if
and only if a2 — 4b > 0.

(ii) A non-singular elliptic curve {y? = x®+ax+b} C R? is connected if and
only if the quantity 4a® + 27b? is positive.

A subset 8§ C R™ is called a semi-algebraic set if it can be described as
a finite boolean combination of polynomial equalities and inequalities, that is,
there exist polynomials g¢;, p;; € R[x] such that

S = U ﬂ{x eR": ¢;(z) =0, p;;(z) > 0}.

Example 2.2.2. The following sets are semi-algebraic subsets of R™.

(i) The unit closed ball B,, := {x € R™ : ||z|?> < 1}.
(ii) The unit open ball B, := {x € R" : ||z||? < 1}.
(iii) The unit sphere S*~1:= {z € R" : ||z||? = 1}.
The next theorem shows that the class of semi-algebraic sets is stable under
taking projections [BCR, Thm.2.2.1].

Theorem 2.2.3 (Tarski). Let § C R"*! be a semi-algebraic set and consider
the projection 7 : R"*1 — R™ (x1,...,2,41) — (21,...,7,) onto the first n
coordinates. Then, w(8) is a semi-algebraic subset of R™.

As a consequence of Tarski’s theorem one obtains that the family of semi-
algebraic sets is closed under usual topological operations, like taking closures
(denoted by Cl(-)) and taking interiors (denoted by Int(-)).

The next example shows that, unlike the algebraic case, not all the semi-
algebraic sets can be described without involving unions. Moreover, unions are

13
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needed to have a class of sets that includes algebraic sets and is closed under
taking projections.

Example 2.2.4. The semi-algebraic set 8§ := {x < 0} U {y > 0} C R? cannot be

described as a basic semi-algebraic set 8 = {g = 0,p1 > 0,...,px > 0}. The
germ of signs at the origin

+ |+
+ —
provides an obstruction. Note that 8 is the projection of the algebraic set

{(x+2%)(y - 2%) = 0} C B,

Motzkin showed [Mo] that given a semi-algebraic set § C R™ there exists
an algebraic set V' C R™™! such that m(V) = 8, where 7 : R**! — R" is the
projection onto the first n coordinates. Combining the result of Motzkin and
the theorem of Tarski we have: The family of semi-algebraic sets is the smallest
family of subsets of Fuclidean spaces that contains algebraic sets and is closed
under taking projections.

2.2.1. Semi-algebraic maps. Let § C R™ and T C R™ be two semi-algebraic
sets. A (non-necessarily continuous) map f : 8§ — T is semi-algebraic if its
graph, that is, the set

Lp:={(z,y) €8x T :y= f(x)} CR"™,

is a semi-algebraic set.

If the semi-algebraic map f : 8 — T is invertible, its inverse f~1 : T — § is
also semi-algebraic. As a straightforward consequence of Tarski’s theorem we
have the following;:

Corollary 2.2.5. Let § C R™", T C R™ and U C R? be semi-algebraic sets and
let f:8—T and g:T — U be semi-algebraic maps.

(i) The composition go f:8 — U is a semi-algebraic map.
(i) If A C 8 is a semi-algebraic set, then f(A) is a semi-algebraic set.

(iii) If B C T is a semi-algebraic set, then f~1(B) is a semi-algebraic set.

Let 8§ € R™ and T C R™ be semi-algebraic sets. A semi-algebraic map
f:8 = T is called a semi-algebraic homeomorphism if it is a homeomorphism
between 8 and T (with respect to the Euclidean topologies inherited respectively
from R™ and R™).

2.2.2. Regular functions on semi-algebraic sets. Let § C R™ be a semi-
algebraic set. The function f : 8 — R is called a regular function if there exist
polynomials p,q € R[x] such that {¢ = 0} NS = @ and f = p/q. A map
g :=(g1,---,9m) : & = R™ is called a regular map if its components g; are
regular functions. Note that regular maps are in particular semi-algebraic.

14
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2.2.3. Dimension of a semi-algebraic set. The dimension of an algebraic
set V' C R™ is the Krull dimension of the ring R[x]/Z(V') of polynomial functions
on V. Recall that the Krull dimension of the ring R[x]/Z(V') equals the maximal
length of chains of prime ideals p; C ... C p of R[x]/Z(V). As R[x]/Z(V) is

a quotient of R[x] its Krull dimension is smaller than or equal to the Krull
dimension of R[x], which is n (see [AM, Ex.7, pag.126]).

Definition 2.2.6. The dimension dim(8) of a semi-algebraic set 8§ C R™ is the
dimension dim(8""") of its Zariski closure 8 .

As the Euclidean topology is finer than the Zariski topology, it follows
dim(8) = dim(CI(8)). Moreover, if § C R", then dim(8) < n.

We want to compare the dimension of a semi-algebraic set with the dimension
of its image through a semi-algebraic map (see [BCR, Thm.2.8.8]).

Theorem 2.2.7. Let § C R"™ be a semi-algebraic set and let f: 8§ — R™ be a
semi-algebraic map. Then dim(f(8)) < dim(8). In particular, if f is injective,
then dim(f(8)) = dim(8).

We introduce now the notion of local dimension.

Definition 2.2.8. Let § C R" be a semi-algebraic set and = € § a point. The
local dimension of 8 at x, denoted by dim(8,.), is the minimum of the dimensions
dim(U), where U is an open semi-algebraic neighbourhood of z in 8.

Let U C 8 be an open semi-algebraic neighbourhood of x in 8§ such that
dim(8;) = dim(U). Then, for each open semi-algebraic neighbourhood V' C U

of 2 in 8 it holds dim(8,) = dim(V). Indeed, as V C U, it holds V"' ¢ U
Thus,

dim(8,) < dim(V) = dim(V"™") < dim(T"™") = dim(U) = dim(8,,).

We will say that 8 is pure dimensional if dim(8,) = dim(8) for each = € 8.

For each k < dim(8) we will indicate with 8(*) the set of points of § of dimension
k, that is, the set of points € § such that dim(S,) = k.
Examples 2.2.9. (i) Whitney’s umbrella W = {x* —zy*> = 0} C R3is a
connected and irreducible algebraic set but not pure dimensional (see Figure
2.2). Indeed, at each point p on the z-axis with z < 0 its local dimension is
dim(W,) = 1, because

Wn{z<0}={x=0,y=0,z<0}.

(ii) Cartan’s umbrella {z(x®>+y?)—x> = 0} C R3 is connected and irreducible
and it has a ‘stick’ (the line {x = 0,y = 0}) of dimension 1 (see Figure 2.2).

(iii) The surface X := {x*(1 — z?) — x* — y? = 0} C R? is not bounded but
the set X(® of points where the local dimension is 2 is bounded.

The set 8¥ of points of dimension d of a semi-algebraic set § is a semi-
algebraic subset of § (see [Fe2, §3.1]). As S is a finite set, it is always compact.
If 0 < d < dim(8), in general 8% is not closed, but if d = dim(8) the set 8® of
points of maximal dimension is a closed semi-algebraic subset of § (see [BCR,
Prop.2.8.12]). More generally if 0 < e < d, then | J{_, 8*) is a closed subset of
because the local dimension of a semi-algebraic set is an upper semi-continuous
function.
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Figure 2.2: Whitney’s (left) and Cartan’s (right) umbrellas.

2.3 Affine Nash manifolds

In this section we will recall the definition of (affine) Nash manifold and of Nash
maps between Nash manifolds. We also present (without proofs) some results
of approximation for differentiable semi-algebraic functions by Nash functions
that we need in the subsequent chapters. As main references we have used [Sh]
and [BFR].

2.3.1. Differentiable semi-algebraic functions. Let U C R" be an open
semi-algebraic set. A function f : U — R is a Nash function if it is semi-
algebraic and smooth. In fact, by [BCR, Prop.8.1.8] f is a Nash function if
and only if it is analytic and algebraic over R[xq,...,x,], that is, there exists a
polynomial P € R[xy,...,xp,t] \ {0} such that P(x, f(x)) = 0 for each z € U.
We will deepen on this in Section 2.3.3. The ring of Nash functions on U is
denoted by N (U).

Given a semi-algebraic set 8 C R™ and 1 < v < oo we say that the function
f 8 — R is semi-algebraic of class C¥ if there exist an open semi-algebraic
neighbourhood U of § and a semi-algebraic function F': U — R of class C¥ such
that F|s = f. The ring of semi-algebraic functions of class C¥ on 8 is denoted
with S¥(8). If v = oo, we call the C*> semi-algebraic functions on 8§ Nash
functions on 8 and we write N'(8) := §>°(8). We denote the ring of continuous
semi-algebraic functions on § with S%(8).

Let 8 C R™ and T C R™ be semi-algebraic sets. A map

f=0U1fm):8=7T

is an §” map if each of its components f; € §¥(8). We indicate with the symbol
S¥(8,7) the set of S¥ maps f : 8§ — T. An 8 map f € S(8,7) is an S
diffeomorphism if it is invertible and the inverse f~! € S¥(T, §).

Remark 2.3.1. If the semi-algebraic set 8 is compact, the definition of §” func-
tion and an alternative definition in Whitney’s style coincide. Indeed, if a func-
tion f : 8 — R is of class S according to our definition, it is clear that it admits
local §” extensions at any point of 8. Conversely, given z € 8§ let U, C R" be an
open neighbourhood of = (non necessarily semi-algebraic) such that there exists
an 8" local extension f, of f, that is, an & function f, : U, — R such that
felu.ns = flu.ns. For every x € 8 let V,, be an open ball centred at = such that
V.. C Ug. The set {V, N8},es is an open covering of the compact set 8, so there
exists a finite sub-covering {V,, N8, ..., V., N8}. Let {p;}*_, U{p} be a semi-
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algebraic partition of unit of class ¥ subordinated to the open semi-algebraic
covering {V,, }¥_, U{R™\ 8} of R™ (see [Sh, §I1.2]). The set V :=V,, U---UVj,
is an open semi-algebraic neighbourhood of §. Thus, the function

F=py fo, + F+papfo. V=R
is a semi-algebraic extension of f of class C”.

In the Nash setting the situation is different. Here local extendibility does
not guarantee the existence of a global extension, even if we are dealing with
compact semi-algebraic sets.

Ezample 2.3.2 ([BFG, Ex.5.10(i)]). Let 8 C R? be the compact semi-algebraic
set

S:={(x—22+y?*<1JU{+2*+y*<1}u{y=0,-1<x<1}

and define f : 8§ — R as f(z,y) := yy/22 + y2. As f is the restriction to 8§ of
a Nash function on R?\ {(0,0)} and f =0 on {y =0, —1 < x < 1}, it is clear
that f admits local Nash extensions at any point of §. By the identity principle
f does not admit a Nash extension to an open semi-algebraic neighbourhood of
8 in R2.

Figure 2.3: The semi-algebraic set 8.

2.3.2. Nash manifolds. Let § C R™ and T C R™ be semi-algebraic sets. A
map f := (f1,-.-,fm) : 8 — R™ is a Nash map if each of its components
fi € N(S). We will indicate with the symbol N(8,T) the set of Nash maps
f:8—=T. A Nash map f € N(8,7) is a Nash diffeomorphism if it is invertible
and the inverse f~! € N(7,8).

Definition 2.3.3. A semi-algebraic set M C R” is called an (affine) Nash
manifold of dimension d if it is a smooth submanifold of dimension d of (an
open subset of) R™.

Let B4(0,¢) C R? be the open ball of center the origin and radius ¢ > 0.
The map 1 : B4(0,¢) — R? defined as

1
Ve2 —lz*’

is a Nash diffeomorphism. Let M C R™ be a Nash manifold, let p € M and let
m: M — T,M be the projection into the tangent space T,M of M at p. As
7 is a local Nash diffeomorphism (because Nash functions satisfy the implicit
function theorem [BCR, Cor.2.9.8]) and composing with ¢ if needed, it holds:
A semi-algebraic set M C R™ is a Nash manifold of dimension d if and only if
every point p € M has an open semi-algebraic neighbourhood U equipped with
a Nash diffeomorphism w : U — R? that maps p to the origin. Even more, the

b(x) =
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Nash manifold M can be covered by finitely many open semi-algebraic sets of
this type [FGR, Lem.2.2].

The same argument works for Nash submanifolds of a Nash manifold. Let
N C M be a Nash submanifold of dimension e, then: For each point p € N
there exists an open semi-algebraic neighbourhood U of p in M equipped with
a Nash diffeomorphism w : U — R? that maps p to the origin and such that
UNN={u; =0,...,u4-. = 0}.

A Nash vector bundle over M is a vector bundle (&€,60, M) such that € is
an (affine) Nash manifold and the projection 6 : € — M is a Nash map. Nash
submanifolds admits Nash tubular neighbourhoods in the ambient Nash manifold
where they are embedded (see [BCR, Cor.8.9.5] and [Sh, II.6.2]).

Theorem 2.3.4 (Nash tubular neighbourhood). There exist a Nash subbundle
(€,0,N) of the trivial Nash bundle (N xR™,n, N), a strictly positive Nash func-
tion 6 on N and a Nash diffeomorphism ¢ from a semi-algebraic neighbourhood
V of N in M onto

& ={(z,y) € & |lyll < d(x)},
such that ¢|ny = (idn,0). In addition, if M is an open subset of R™ we may
assume dist(x, N) = ||z — 0(x)|| for every z € &;.

2.3.3. Algebraicity of Nash functions. Let § C R™ be a non-empty semi-
algebraic set and f : 8§ — R a semi-algebraic function. Let I'y C R"! be the
graph of f and let X := fjcar. The ideal Z(X) C R[x,t] := R[xq,...,%p,t]
is finitely generated and let hy,...,hs € Z(X) be generators. The polynomial
h := h? + --- + h? is not identically zero on § x R and satisfies h(x, f(x)) = 0
for each = € 8. In particular: Nash functions are algebraic over the ring of
polynomials R[x]. It holds the following characterization for Nash functions

(see [BCR, Prop.8.1.8]):

Proposition 2.3.5. Let U C R™ be an open semi-algebraic set. A function
f:U — R is Nash if and only if it is analytic and algebraic on U.

As a consequence of this result and the existence of Nash tubular neighbour-
hoods, we deduce: An analytic function f : U — R defined on an open connected
semi-algebraic subset U of a connected Nash manifold M C R™ is Nash if and
only if there exists a non-zero polynomial h € R[x,t] such that h(z, f(z)) =0
forallz e U.

2.3.4. Approximation of semi-algebraic maps. Let M C R™ be a Nash
manifold of dimension d. We equip §” with the §¥ semi-algebraic Whitney’s
topology (SY topology in short) [Sh, IL.1]. If v > 1, let &,...,& be semi-
algebraic tangent fields on M that span the tangent bundle of M. For every
strictly positive continuous semi-algebraic function € : M — R we denote by U,
the set of all functions g € §¥(M) such that

lg| < e ifr=0,
lgl <e and &, &, (9) <e for 1 <iy,...,ip<s,1<l<v ifv>1

These sets U, form a basis of neighbourhoods of the zero function for a topology
in S¥(M) (recall that S¥(M) is a topological ring), which does not depend on
the choice of the tangent fields if » > 1.

18



2.3. Affine Nash manifolds

Note that the obvious inclusions S¥(M) C S*(M), v > u are continuous.
Moreover, as semi-algebraic smooth functions are Nash on M (by the existence
of tubular neighbourhoods), we have N'(M) = (1, S (M). The first important
result is that the inclusion N (M) C 8¥(M) is dense.

Fact 2.3.6 ([Sh, IL.4.1]). Every S” function on M can be approzimated in the
S” topology by Nash functions.

Let N C R™ be a Nash manifold. Recall that S¥(M, N) is the space of
semi-algebraic maps f : M — N of class C¥. We consider in S8¥(M,N) the
subspace topology given by the canonical inclusion in the following product
space endowed with the product topology [Sh, Rmk.I1.1.3]:

SV(MvN) CSV(Man) :SV(M7R) Ko X ‘SV(MvR)a .f+_> (flv"wfﬂ)'

Roughly speaking, g is close to f when its components g; are close to the
components fj of f.

Fix 0 < v < +o00. Let M Cc R™, M’ C R and M" C R* be Nash manifolds
and let h: M’ — M" be an 8 map. Composing (on the left) induces the map

byt 8(M,M') — 8*(M,M"), f — ho f.

Fact 2.3.7 ([Sh, II.1.5]). The map h. is continuous with respect to the S”
topologies.

We have an analogous situation composing on the right. Composing (on the
right) induces the map

B8 (M, M) = 8 (M, M), f+ foh.

This map is non-necessarily continuous, but if h : M’ — M" is proper (this
happens for instance when M’ is compact) it holds:

Fact 2.3.8 ([Sh, IL.1.5)). If h : M’ — M" is proper, then the map h* is
continuous with respect to the S” topologies.

Another important result is that S¥ diffeomorphisms between Nash mani-
folds constitute an open set in the §” topology.

Fact 2.3.9 ([Sh, I1.1.7]). Let h : M — N be an S” diffeomorphism of Nash
manifolds. If an 8¥ map g : M — N is §¥ close enough to h, then g is also an
SV diffeomorphism, and g~—' is S¥ close to h™!.

From this and the existence of Nash tubular neighbourhoods we deduce that
for all v > 1: Fvery 8" diffeomorphism f : M — N can be approximated by
Nash diffeomorphisms. Thus, S' and Nash classifications coincide for Nash
manifolds.

The previous topologies can be extended to the set S¥(8,7T) of §” semi-
algebraic maps between two semi-algebraic sets 8§ and T if § C M is closed (see
[BFR, §2.D]). It holds that the restriction map is continuous.
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Fact 2.3.10 ([BFR, §2.D]). Let M C R™ be a Nash manifold and letS8' € 8 C M
be closed semi-algebraic sets. For any T C R™ the restriction map

SV(Sv‘I) - SV(Sla‘I), f = f|S
is continuous with respect to the 8¥ topologies.

We end this section recalling a result on absolute approximation for maps
into Nash manifolds.

Fact 2.3.11 ([BFR, Prop.2.D.3]). Let M C R™ and N C R™ be Nash manifolds
and let § C M be a closed semi-algebraic set. Every ¥ map f:8 — N can be
SY approximated by Nash maps.

2.4 Back to semi-algebraic sets

In this section we collect some results and definitions (Hironaka’s desingulariza-
tion, regular points of a semi-algebraic set, irreducible components etc.) that
we will use freely in the rest of this dissertation. We include these results here
(without proofs) in order to keep this work as much self-contained as possible.

2.4.1. Regular points and smooth points. Let Z € C" be a complex al-
gebraic set and let Z¢(Z) be the ideal of all polynomials F € C[x] such that
F(z) = 0 for each z € Z. A point z € Z is regular if the localization of the
polynomial ring C[x]/Zc(Z) at the maximal ideal 91, associated to z is a reg-
ular local ring. In this complex setting the Jacobian criterion and Hilbert’s
Nullstellensatz imply that z € Z is regular if and only if there exists an open
neighbourhood U C C" of z such that UNZ is an analytic manifold. We denote
Reg(Z) the set of regular points of Z and it is an open dense subset of Z. If Z
is irreducible, it is pure dimensional and Reg(Z) is a connected analytic mani-
fold. In case Z is not irreducible, then the connected components of Reg(Z) are
finitely many analytic manifolds (possibly of different dimensions). We denote
Sing(Z) := Z \ Reg(Z) the set of singular points of Z.

Let X C R™ be a (real) algebraic set and let Zg(X) be the ideal of all
polynomials f € R[x] such that f(x) = 0 for each z € X. A point € X is
regular if the localization of R[x]/Zr(X) at the maximal ideal m, associated to
x is a regular local ring [BCR, §3.3].

Let X C C™ be the complex algebraic set that is the zero set of the ex-
tended ideal Zgr(X)C[x]. We call X the complexification of X. The ideal Z¢(X)
coincides with the tensorized ideal Zg(X) ®r C, so X is the smallest complex
algebraic subset of C™ that contains X and

Clx)/Te(X) = (Rx]/Zr(X)) @r C.

The localization (R[x]/Zr(X))m, is a regular local ring if and only if so is its
complexification

(R[x)/Z(X))m, ©r C = (C[x]/Zc(X))on, -

Thus, the set of reqular points of X is Reg(X) = Reg(X) N X and its set of
singular points is Sing(X) := X \ Reg(X) = Sing(X) N X. The open semi-
algebraic subset Reg(X) of X is a finite union of Nash manifolds (possibly of
different dimensions).
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Let 8§ C R™ be a semi-algebraic set of dimension d. We define
Reg(8) = Inty,, ger) (8 \ Sing(8™")) and  Sing(8) := 8 \ Reg(8).

The open subset Reg(8) of 8" is a finite union of Nash manifolds (possibly
of different dimensions) and Sing(8) is a semi-algebraic set of dimension < d,
which is closed in 8. The set of points of dimension k of Reg(8) is either the
empty-set or a Nash manifold of dimension k for each &k = 0,1,...,d. If 8 is
pure dimensional, Reg(8) is a dense subset of §.

A point x € 8 is smooth if there exists an open neighbourhood U C R" of z

such that U N8 is a Nash manifold. It holds that each regular point is a smooth
point, but the converse is not always true even if § = X is a real algebraic set,
as shown in the following examples.
Examples 2.4.1. (i) [BCR, Ex.3.3.12(b)] Consider the irreducible curve X C R?
given by the equation y® + 2x%y — x* = 0 (see Figure 2.4). The set of regular
points of X is X \ {0}. As the germ Xy = {x? — y(1 + /T + y) = 0}y, it follows
by the implicit function theorem for Nash functions (see [BCR, Cor.2.9.8]) that
the origin is a smooth point of X.

Figure 2.4: The curve y* 4 2x%y — x* = 0.

(ii) [Fe4, Ex.2.1] Consider the algebraic set X := {(x*+zy?)x—y* =0} C R3.
The set of regular points of X is X \ {x = 0,y = 0}, whereas the set of smooth
points of X is X \ {x =0,y =0,z < 0} (see Figure 2.5).

To prove that the points of the open half-line {x = 0,y = 0,z < 0} are
non-smooth we proceed by contradiction. Pick a point

p:=(0,0,—a®) € {x=0,y =0,z < 0}

and assume that it is smooth. As the line {x =0,y = 0} C X, the vector (0,0, 1)
would be tangent to X at p, so the plane z = —a? would be transversal to X at
p. Thus, the intersection X N{z = —a?} should be a curve that is smooth at p,
but this is a contradiction because such curve {(x? — (ay)?)x—y* = 0,z = —a?}
has three tangent lines at p, which are those lines of equations {x — ay = 0},
{x +ay = 0} and {x = 0} inside the plane {z = —a?}. The origin cannot be a
smooth point of X because the set of smooth points of X is an open subset of X.
Consequently, the set of non-smooth points of X contains the closed half-line
{x=0,y=0,z <0}.

To finish we prove that the points of the open half-line {x =0,y = 0,z > 0}
are smooth. To that end, observe that the map

o :{(t,s) €R*: t >0} — R (s,t) = ((s* + )52, (s> + t?)s, %)
is a Nash embedding whose image is X N {z > 0}.
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Figure 2.5: X = {(x* + zy®)x — y* = 0} (figure borrowed from [Fe4, Fig.1.4]).

The set Sth(8) of smooth points of a semi-algebraic set § C R™ is by [St] a
semi-algebraic subset of R (and consequently a union of Nash submanifolds of
R™ possibly of different dimension), which contains Reg(8) (maybe as a proper
subset as it happens in Example 2.4.1), and it is open in 8. The set of points of
dimension & of Sth(8) is either the empty-set or a Nash manifold of dimension k
for each k =0,1,...,d. In particular, if 8 is pure dimensional Sth(8) is a Nash
submanifold of R™. If X is an algebraic set, Sing(X) is always an algebraic
subset of X whereas the set X \ Sth(X) of non-smooth points is in general only
a semi-algebraic subset of X (see Example 2.4.1(ii)).

2.4.2. Desingularization of real algebraic sets. Let X C Y C R” be alge-
braic sets such that Y is non-singular and has dimension d. Recall that X is a
normal-crossings divisor of Y if for each point x € X there exists a regular sys-
tem of parameters x1,...,xq for Y at x such that X is given on an open Zariski
neighbourhood of x in Y by the equation x; ---x; = 0 for some k < d. In par-
ticular, the irreducible components of X are non-singular and have codimension

linY.

Hironaka’s desingularization results [Hil] are powerful tools that we will use
fruitfully in the following sections. We recall here the results we need (see also
Kollar’s lecture notes [Ko]).

Theorem 2.4.2 (Desingularization). Let X C R"™ be an algebraic set. Then,
there exist a non-singular algebraic set X' C R™ and a proper polynomial map
f: X' — X such that

Flxns-1(sme(x)) : X"\ f7(Sing(X)) — X \ Sing X
is a diffeomorphism whose inverse map is a reqular map.

Remark 2.4.3. If X is pure dimensional, X \ Sing X is dense in X. As f is
proper, it is surjective.

Theorem 2.4.4 (Embedded desingularization). Let X C' Y C R"™ be algebraic
sets such that'Y is non-singular. Then, there exists a non-singular algebraic set
Y’ C R™ and a proper surjective polynomial map g:Y' —Y such that g=1(X)
is a normal-crossings divisor of Y' and the restriction

glyng-rx) Y\ (X) = Y\ X

is a diffeomorphism whose inverse map is a reqular map.
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2.4.3. Irreducible components of a semi-algebraic set. In classical liter-

ature a semi-algebraic set 8 C R™ is called irreducible if its Zariski closure S
is an irreducible algebraic set (see for instance [GV]). With this definition the
semi-algebraic sets

S1:={y" —x*(x+1) =0} \{(-1,0)}, 8>:={y* —x* =1}

are irreducible (see Figure 2.6). The feeling is that they ‘should be reducible’:
81 consists of two analytic branches and S5 is not connected.

AN

I\

Figure 2.6: The semi-algebraic sets 81 (left) and 82 (right).

In [FG3] Fernando and Gamboa propose the following definition of irreducibility
for semi-algebraic sets.

Definition 2.4.5. A semi-algebraic set 8 C R"™ is irreducible if its ring of Nash
functions N(8) is an integral domain.

One deduce straightforwardly the following facts concerning irreducibility.

(i) Irreducible semi-algebraic sets are connected, because the ring of Nash
functions of a disconnected semi-algebraic set is the direct sum of the
rings of Nash functions of its connected components.

(ii) The Zariski closure of an irreducible semi-algebraic set is irreducible as an
algebraic set.

(iii) Let 8,7 C R™ be semi-algebraic sets. If T C § C Cl(T) and T is irreducible,
then 8 is irreducible.

Ezample 2.4.6. The semi-algebraic set 81 := {y® —x?(x+ 1) =0} \ {(~1,0)} is
reducible (see Figure 2.6). Indeed, the Nash functions f1, fo : 8§ — R defined
as

fl(‘xay) :erx\/m, fg(l‘,y) :y—gj\/m

are not identically zero on 81, but f;fo =0 on 8;.
We introduce now the irreducible components of a semi-algebraic set.

Definition 2.4.7. A semi-algebraic set § C R™ admits a decomposition into
wrreducible components if there exist semi-algebraic sets 81,...,8, C 8 such
that:

(i) Each §; is irreducible.
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(ii) If T C 8 is an irreducible semi-algebraic set that contains 8;, then 8; = 7.
(iii) 8; ¢ Uj;éi Sj'
(v) 8= UL, ..

In [FG3, Thm.4.3, Rmk.4.4] Fernando and Gamboa present the following
result concerning the irreducible components of a semi-algebraic set.

Theorem 2.4.8. Let § C R" be a semi-algebraic set. Then, & admits a de-
composition into irreducible components and this decomposition is unique. In
addition, the irreducible components of a semi-algebraic set are closed in S.

Remark 2.4.9. If § C R™ is a semi-algebraic set and {8;}7_; is the family of its
irreducible components, then dim(8; N'§;) < min{dim(8;),dim(8;)} if ¢ # j.

For each i = 1,...,r let f; : 8 —& R be a Nash function on 8 such that
8; = {fi = 0} (see [FG3, Lem.2.4, Thm. 4.3]). As §; is irreducible, we deduce
by [FG3, Lem.3.6] that dim(8; N8;) = dim({f; = 0} N §;) < dim(8;) if i # j,
because otherwise 8; C {f; =0} =§;.

2.5 Affine Nash manifolds with corners

In this section we introduce the definition of Nash sets and of Nash manifold with
(divisorial) corners. We collect here some results (without proofs) concerning
Nash manifolds with corners and Nash normal-crossings that we will use later
in this dissertation. The main reference is [FGR].

2.5.1. Nash subsets of a Nash manifold. Let M C R™ be a Nash manifold.
Definition 2.5.1. A Nash subset X of M is a set of the form

X=Zy()={zeM:Vfel f(z) =0} C M,
where I C N(M) is an ideal of the ring of global Nash functions on M.

As the ring N (M) is Noetherian (see [BCR, 8.7.18]), the ideal I is generated
by finitely many global Nash functions fi,..., f, : M — R. Thus, the Nash set
X is the zero set of the functions fi,..., fi and in fact X is the zero set of the
single global Nash function f := fZ +--- + f2.

Of course every Nash set is a semi-algebraic set. A first example of Nash
subsets are (closed) Nash submanifolds of M.

Fact 2.5.2 ([Sh, I1.5.4]). Let N C M be a closed Nash submanifold, then N is
a Nash subset of M.

A Nash subset X C M is irreducible if whenever X = X; U X5, where X;
and X5 are Nash subsets of M, then either X = X; or X = X5. We have
the following algebraic characterization of irreducibility: X is irreducible if and
only if the Nash vanishing ideal Z(X) == {f e N(M) : flx =0} of X is a
prime ideal of the ring N(M). Indeed, X = X; U X5 with X3, Xy # X if and
only if there exist f1 € Z(X;) and fo € Z(X2) such that fi, fo ¢ Z(X) and
fifs € T(X).
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As N (M) is a Noetherian ring, it follows: Nash subsets of M have (unique)
finite decompositions into Nash irreducible components. In [FG3, §3.1] it is
proved that a Nash set is irreducible if and only if it is irreducible as a semi-
algebraic set and in [FG3, §4] it is shown that its decomposition into Nash
irreducible components coincides with its decomposition into semi-algebraic ir-
reducible components.

2.5.2. Nash normal-crossings. We introduce now the notion of Nash normal-
crossings. It has two different aspects - the local one and the global one. We
start with the local notion:

Definition 2.5.3. Let X be a Nash subset of a Nash manifold M C R". We say
that X has only normal-crossings at a point x € X if there exists an open semi-
algebraic neighbourhood U C M of x equipped with a Nash diffeomorphism
u = (u1,...,uq) : U — R% such that the germ X, := {u; ---u, = 0}, for some
1 <r <d. We say that X has only normal-crossings in V' C M if it has only
normal-crossings at each x € V N X.

The following result shows that if X has only normal-crossings in M there
exists a finite number of local charts that cover X and provide a global picture
of its local structure.

Theorem 2.5.4 ([FGR, Thm.1.6]). Let X be a Nash subset of the Nash man-
ifold M C R™. Suppose that X has only normal crossings in M. Then, X can
be covered by finitely many open semi-algebraic subsets U; of M equipped with
Nash diffeomorphisms u; := (w1, . .., uiq) : Us — RY such that

UnNX= {uil-uum ZO}

Next, we have the global version of normal-crossings:

Definition 2.5.5. Let M C R™ be a Nash manifold. A Nash normal-crossings
divisor of M is a Nash subset X C M whose irreducible components are non-
singular Nash hypersurfaces Xi,..., X, of M in general position. This means
that at every point x € X;, N---NX,; with x ¢ X; for ¢ # i) the tangent spaces
T.Xi,,...,13X;, are linearly independent in the tangent space T, M, that is,

dim(T, X;, N NTpX; ) = dim(T, M) — 7.

Let us confront the local notion with the global one. The following example
shows the differences between these two notions.

Ezample 2.5.6. Consider the irreducible algebraic set (see Figure 2.6)
X ={y* —x*(x+1) =0} C R%

(i) X is an irreducible Nash subset of R?. As it is singular at the origin,
it is not a Nash normal-crossings divisor of R2. However, X has only normal-
crossings at all points of R2.

(i) Y := X\{(—1,0)} is a Nash subset of the Nash manifold M := {x > —1}.
The Nash irreducible components of Y in M are the non-singular hypersurfaces

Vi={(z,y) eM:y—avz+1=0}, Yo:={(2,y) €M :y+ava+1=0}

which meet transversally at the origin. Thus, Y is a Nash normal-crossings
divisor of the Nash manifold M.
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2.5.3. Nash manifolds with corners. We introduce now the definition of
(Nash) manifold with corners.

Definition 2.5.7. A semi-algebraic set Q C R™ is an (affine) Nash manifold
with corners of dimension d if for each point y € Q there exist an integer
0 < k < d and an open semi-algebraic neighbourhood U of y in Q equipped
with a Nash diffeomorphism ¢ : U — {x; > 0,...,%; > 0} C R¢ that maps y to
the origin.

The set of internal points Int(Q) of Q is the set of points x € Q at which Q,
is the germ of a Nash manifold, namely Int(Q) := Sth(Q). The boundary 0Q of
Qis 99 := 9\ Int(Q) = Q\ Sth(Q). Observe that this definition coincide with
the definition of internal points and boundary of Q seen as topological manifold
with boundary.

Remark 2.5.8. In Section 3.5 we will introduce the definition of boundary 98 for
semi-algebraic sets § C R™. The definition of boundary of Nash manifolds with
corners given here does not coincide with the definition of boundary of semi-
algebraic sets given in Section 3.5, if we regard Q as a semi-algebraic set (see for
instance Example 2.4.1(i)). This (small) abuse of notation will not create any
ambiguity in the subsequent sections, as the situation will be always clear from
the context.

A Nash manifold with corners Q C R" is locally closed, hence Q is open in
its closure C1(Q). Thus, the set C' := C1(Q) \ Q is a closed semi-algebraic subset
of R™. Consequently, Q is a closed Nash submanifold with corners of the Nash
manifold R™ \ C. In [FGR] Fernando, Gamboa and Ruiz showed that Q is a
closed subset of an affine Nash manifold of the same dimension.

Theorem 2.5.9 ([FGR, Thm.1.11]). Let Q C R"™ be a Nash manifold with
corners of dimension d. There exists a d-dimensional Nash manifold M C R™
that contains Q as a closed subset and satisfies:

(i) The Nash closure Y of 0Q in M has only Nash normal-crossings in M
and QANY = 0Q.

(ii) For every x € 0Q the analytic closure of the germ 09, is Y.

(iii) M can be covered by finitely many open semi-algebraic subsets U;, for
1=1,...,r, equipped with Nash diffeomorphisms

U = (u“, e 7uid) : Uz — Rd
such that:
U, CInt(Q) or U; N Q =@, if U; does not meet 09,
U;NQ={upn >0,...,u, >0}, if U; meets 0Q (for a suitable k; > 1).

The Nash manifold M is called a Nash envelope of Q. In general it is not
guaranteed that the Nash closure Y of 0Q in M is a Nash normal-crossings
divisor of M as shown in the following example.
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Ezample 2.5.10. The teardrop is the Nash manifold with corners (see Figure
2.7) defined as
Q:={x>0,y* <x*-x'} R~

Given any open semi-algebraic neighbourhood M of Q in R? the Nash closure
of 99 in M is not a Nash normal-crossings divisor.

Figure 2.7: The teardrop.

We define now Nash manifolds with divisorial corners. For the rest of this
dissertation, unless otherwise stated: All the Nash manifolds with corners will
be Nash manifolds with divisorial corners.

Definition 2.5.11. A Nash manifold with corners Q C R" is a manifold with
divisorial corners if there exists a Nash envelope M C R”™ such that the Nash
closure of 0Q in M is a Nash normal-crossings divisor.

A facet of a Nash manifold with corners Q C R"™ is the (topological) closure in
Q of a connected component of Sth(9Q). Recall that Sth(0Q) is the set of points
x € 09 such that the germ 09, is the germ of a Nash manifold (see Section
2.4.1). As 09 is semi-algebraic, the facets are semi-algebraic and finitely many.

In [FGR] is shown the following characterization for Nash manifolds with
divisorial corners:

Theorem 2.5.12 ([FGR, Thm.1.12, Cor.6.5]). Let Q C R™ be a Nash manifold
with corners of dimension d. The following assertions are equivalent:

(i) There exists a Nash envelope M C R™ where the Nash closure of 0Q is a
Nash normal crossings divisor.

(ii) Ewery facet F of Q is contained in a Nash manifold X C R™ of dimension
d—1.

(iii) The number of facets of Q that contain every given point x € 9Q coincides
with the number of connected components of the germ Sth(9Q),.

(iv) All the facets of Q are Nash manifold with divisorial corners.

If that is the case, the Nash manifold M in (i) can be chosen such that the Nash
closure in M of every facet F of Q meets Q exactly along F.

Note that properties (iii) and (iv) are intrinsic properties of Q and do not
depend on the Nash envelope M.
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Chapter 3

Nash images of closed balls

In [Fed] Fernando completely characterised the Nash images of Euclidean spaces.
He proved the following theorem:

Theorem 3.1 (Nash images, [Fe4, Thm.1.4]). Let 8 C R™ be a semi-algebraic
set of dimension d. The following assertions are equivalent:

(i) § is a Nash image of RY.

)
(ii) 8 is connected by Nash paths.
(iii) 8 is connected by analytic paths.
)

(iv) 8 is pure dimensional and there exists a Nash path o : [0,1] — 8§ whose
image meets all the connected components of the set of regular points of S.

(v) 8 is pure dimensional and there exists an analytic path o : [0,1] — 8 whose
image meets all the connected components of the set of regular points of S.

(vi) 8 is well-welded.

The concept of well-welded semi-algebraic set will be recalled in Section 3.4.
Let B, := {x € R™ : |lz||> < 1} be the unit closed ball. In this chapter we
want to characterise the Nash images of the closed balls. That is to determine
whether a given semi-algebraic set § C R™ is a Nash image of a closed ball B,
or not. We will prove the following:

Theorem 3.2 (Compact Nash images). Let§ C R™ be a d-dimensional compact
semi-algebraic set. The following assertions are equivalent:

(i) There exists a Nash map f :R? — R™ such that f(Bg) = §.

)
(ii) 8 is connected by Nash paths.
(iii) 8 is connected by analytic paths.
)

(iv) 8 is pure dimensional and there exists a Nash path o : [0,1] — 8§ whose
image meets all the connected components of the set of regular points of S.
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(v) 8 is pure dimensional and there exists an analytic path o : [0,1] — 8§ whose
1mage meets all the connected components of the set of reqular points of 8.

(vi) 8 is well-welded.

Note that this theorem furnishes not only a characterization of the Nash
images of the closed balls, but allows us to represent the desired semi-algebraic
set as Nash image of the closed ball of smallest possible dimension. In fact, if
8 C R™ is a semi-algebraic set of dimension d that is a Nash image of the closed
ball B,,, by [BCR, Thm.2.8.8], one has d < n. Thus, by Theorem 3.2 § is a
Nash image of the closed ball B, of dimension d, which is the smallest possible
one.

3.1 Alternative compact models

The purpose of this section is to present simple alternative compact models to
represent Nash images. We want to analyse some relationships between the
models we will work with in the following sections. Most of the results of this
section are borrowed from [FU6], where Fernando and Ueno found polynomial
and regular relationships between the following compact models:

e the standard sphere S% := {z € R¥*! : ||z = 1},

e the unit closed ball By := {x € R? : ||z]|®> < 1},

the cylinder Cq:= By_1 x [—1,1],

the hypercube Qg = [—1,1]¢,

the standard simplex
Ay = {xERd ix1 20,00 20,51+ ... +x4 < 1},
e the simplicial prism Ag—1 x [—1,1].

We will include the proofs of their results in order to keep this work as much
self-contained as possible.

L

Figure 3.1: Alternative compact models.

Proposition 3.1.1. The unit closed ball By is a polynomial image of the stan-
dard sphere S®.

Proof. The proof is straightforward. In fact, it is sufficient to consider the projec-
tion R — R, (z1,...,2441) + (21,...,14) onto the first d coordinates. [
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Proposition 3.1.2 (Cylinder, [FU6, Lem.2.1]). The d-dimensional cylinder
Cq = Bg_1 x [—1,1] is a polynomial image of the closed ball By.

Proof. Define first the polynomials g(t) := t(3—4t2) and h(t) := /3 (1 — 3t?).
Denote x := (x1,...,2q), ¢’ := (z1,...,24—1) and define the polynomial maps

G:RY = RY 2= (2, 24) = (2, g(2a)),
H:R* =R z:= (2, 24) — (W(||2']))2, 4).
We claim: G(B,) C C4. Define, for each 2’ € By_1,
T i={a'} x {=d < 1-¢)1°}

and observe that

c@B)= | cu)= U xg({=1-1x1%}).

' €Bg_1 :E’E@d,l
We distinguish two cases:

() If ||| < 3. then |zq| < 1. The polynomial function g satisfies (see

Figure 3.2)
s(|-33)) o1 = L

As {a'} x [—3, 3] C o C {2’} x [-1,1], we have G(J,) = {a'} x [-1,1].

-1\ -0.5 0.5 1

Figure 3.2: Graph of the polynomial function g.

(ii) If 2 < Hx'HQ < 1, then Jpr C {2’} x [=3,%]. Define the polynomial
function (see Figure 3.3)

g*(t) =g (\/1 - t2)2 — (1 t2)(4t2 —1)%

and notice that ¢*([0,1]) = [0,1]. As g is odd and strictly increasing on
[ L 1]7 we have

G(Jar) = {2} x {xd < g"(I2'I)}

and the claim follows.
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Note that in the proof of the claim we have also obtained the following equality

_ 3 3 "
6 = {11 <3 bl <1 fu {3 < WP st | G

Now we show that H(C4) C C4. Define the polynomial function h* := th (see
Figure 3.3) and observe that h*([0, 1]) = [0, 1]. Thus, fixed a point (2/,z4) € Cq,
since ||z’|| < 1, we deduce ||h(z)2'|| = [*(||=']])| < 1, so H(z',z4) € Cy.

0.5 1 0.5 1 1.5

Figure 3.3: Graphs of the polynomial functions g* (left) and h* (right).

If we prove the equality H ({||x'||2 <3 |xal < 1}) = Cq, the result follows.
In fact using (3.1.1) and the fact that both G(B,), H(€4) C €4, we obtain

H(G(Ba)) = Ca.

To that end, note first that A* has a global maximum at ¢ = ? on [0,1] and

verifies h*(0) = 0 and h*(@) = 1. Fix a point 2’ € 9B4_; and observe that

(e

= {h*()\)x’ DA€ [0, \éﬂ} x [-1,1] = {pa’ : pe0,1]} x [-1,1],

so H ({HX/”Q < %7 |xq| < 1}) = @4, as required. ]

Lemma 3.1.3 (Standard simplex, [FU6, Lem.2.5]). The d-dimensional simplex
Ay is a polynomial image of the closed ball By.

Proof. The polynomial map f : R? — RY (21,...,24) — (23,...,22%) satisfies
f(Ba) = Aq. O

Corollary 3.1.4 (Simplicial prism, [FU6, Cor.2.8]). The d-dimensional simpli-
cial prism Ag—1 X [—1,1] is a polynomial image of the closed ball B,.

Proof. By Lemma 3.1.3 there exists a polynomial map f; : R4™! — R4 such
that f1(Bg—1) = Agq—1. By Proposition 3.1.2 there exists a polynomial map
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fo : R?T — R? such that fo(By) = By_1 x [~1,1]. If we consider the polynomial
map f:= (f1,xq)0 fo: R?¢ — R?, it satisfies

f(Ba) = (f1,%a)(Ba—1 x [-1,1]) = Ag_1 x [-1,1],
as required. O

Corollary 3.1.5 (Hypercube, [FUG6, Cor.2.9]). The hypercube Qq := [—1,1]% is
a polynomial image of the closed ball B.

Proof. We proceed by induction on the dimension d > 1. For d = 1 it holds
B, = [~1,1] = Q;. By induction hypothesis there exists a polynomial map
fi s R — RO such that f1(Bg 1) = Q4_1. By Proposition 3.1.2 there
exists a polynomial map fy : R? — R such that fo(Bg) = Bg_1 x [~1,1]. Thus
the polynomial map f := (f1,xq) o fo : R? — R? satisfies

f(Ba) = (f1,%a)(Ba—1 x [-1,1]) = Qg1 x [-1,1] = Qq,
as required. O

Proposition 3.1.6 ([FU6, Lem.2.10]). The d-dimensional closed ball By is a
polynomial image of the d-dimensional hypercube Qq := [—1,1]<.

Proof. If d = 1 we have By = Q; = [~1,1], so we assume d > 2. Consider the
non-negative univariate polynomial

o (t _ d)Q(d—l)
h(t) ==t @=1)f@n € R[t],
and observe that h(0) = h(d) = 0, whereas h(1) = 1. The derivative

2dt(t — d)2(d-1D-1
/ _
h (t) - (d _ 1)2(d—1)

is positive on (0,1) and negative on (1,d). Thus, 1 is a global maximum of h
on the interval [0,d], so 0 < h(t) <1 on [0,d].

Recall that By € Qq C B4(0,v/d) and consider the polynomial map
iR S RY 2 h(||z]?)z.
Observe that f(By) = f(B4(0,vd)) = By, so f(Q4) = By, as required. O

Lemma 3.1.7. The d-dimensional closed ball By is a polynomial image of the
d-dimensional simplex Ag.

Proof. As Ay = [0,1] and By = [~1,1], for d = 1 it is enough to consider the
polynomial function h(t) = 2t — 1. We assume now d > 2. Proceeding in
a similar way as in the proof of Proposition 3.1.6, we consider the univariate
polynomial ,

£ — 942)2(2d>~1)
? EQdQ _ 132(2d21) <

h(t) =t Rt].
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It satisfies h(0) = h(2d?) = 0 and h(1) = 1. Moreover, h has a global maximum
at t = 1 and it satisfies 0 < h(t) < 1 on the interval [0, 2d?].

Consider the simplex A/, = {x; > —1,...,x4 > =1, x1 4+ ... + x4 < Vd}.
As 2d?> > d—1+ (Vd+d—1)?, it holds By C A/, C B4(0,v/2d). Consider the
polynomial map

g:RY 5 R 2 h(||z)).
Observe that g(B4) = g(B4(0,v2d)) = By, so g(Al)) = By. Let h: RT — R?
be an affine map such that h(A;) = A/, then the polynomial map f := goh
satisfies f(Aq) = Bg, as required. O

Proposition 3.1.8. The d-dimensional closed ball Bq is a polynomial image of
the d-dimensional prism Ag_q x [—1,1].

Proof. If d = 1, we have Ag x [~1,1] = B; = [~1,1]. So we can consider the
case d > 2. By Lemma 3.1.7 there exists a polynomial map hq_; : R4~1 — R4~1
such that hq_1(Ag_1) = Bgq_1. By Corollary 3.1.5 there exists a polynomial map
Rl : R?¥1 — R4~ that maps B4 onto the hypercube Q4. By Proposition
3.1.6 there exists a polynomial map g : R? — R? such that g(Qq_; x [~1,1]) =
9(Q4) = Bg. Thus, the polynomial map f := go (h)_, o hg_1,%4) : R? — R4
satisfies f(Ag—1 x [—1,1]) = By. O

Proposition 3.1.9. The d-dimensional sphere S* C R4t is a reqular image of
the d-dimensional hypercube Q4 := [—1,1]%.

Proof. We proceed by induction on the dimension d > 1. For the 1-dimensional
case, consider first the inverse of the stereographic projection

1 2t t2—1
fo:R—=S"\{(0,1)}, t— <t2+1’t?+1>
We have fo([—1,1]) = S* N {y < 0}. Consider the polynomial map
fi:R*?=C — C=R?
(z,y) =z +yvV—1 =222 =22 —y* + 2zyv/—1 = (2? — %, 227)).
The image of [—1,1] under the regular map ¢ := fi o fo : R — R? is S’

By induction hypothesis there exists a regular map g : R1 — R? such
that g([—1,1]971) = S~ and let ¢ := (¢1,2) : R — R? be the regular map
described above, such that ¢([—1,1]) = S*. Denote 2’ := (z1,...,74-1) and
eqt1 :=(0,...,0,1) € R4, Then the regular map

FiRY = R (2! 2a) = 1 (2a)(9(2"), 0) + p2(za)earn,
satisfies f([—1,1]) = S%. O

The following remark shows that the map in Proposition 3.1.9 cannot be
taken polynomial. This implies that the family of the polynomial images of the
d-dimensional closed unit ball is a proper sub-family of the family of polynomial
images of the d-dimensional sphere (see also Proposition 3.1.1). However, the
results proved in this section show that the family of the regular images of the d-
dimensional closed unit ball and the family of the regular images of the d-sphere
are the same.
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3.2. Necessary conditions

Remark 3.1.10 ([FU6, §1.2]). There exist no non-constant polynomial maps from
the m-dimensional unit closed ball B, to the n-dimensional sphere S™.

Consider a polynomial map f := (f1,..., fnt1) : R™ — R"*! such that
f(By,) C S™ Thus, f£+---+ f2,; = 1 on the open ball B,,. By the iden-
tity principle for polynomials, we deduce that fZ + .-+ f2 41 = 1lonR™, so
deg(f1),...,deg(fns1) <0. That is, the polynomial map f is a constant map.

Let us summarize the results of this section. We have proved that the closed
ball By, the cylinder B4_1 x [—1,1], the hypercube [—1,1]¢, the simplicial prism
Ag—1 X [—1,1] and the simplex A, are polynomial image one of each others.
Moreover, each of them is a polynomial image of the sphere S¢, but the sphere
is a regular, but not a polynomial, image of the others compact models.

3.2 Necessary conditions

As the closed ball By is convex it is connected by segments, so by Nash paths.
If 8 C R™ is a semi-algebraic set and f : R? — R™ 4s a Nash map such that
f(Bg) =8, then 8 is compact and connected by Nash paths.

The fact that 8 is compact is straightforward. Fix now any two points
z,y € 8. As the Nash map f is surjective, there exist two points Z,7 € B4 such
that f(Z) = x and f(7) =y. Let o : [0,1] — B4 be a segment between T and 7.
Then foo:[0,1] — 8 is a Nash path between x and y.

Thus, we have the following necessary conditions for a semi-algebraic set
8 C R™ to be Nash image of a closed ball:

Lemma 3.2.1 (Necessary conditions). Let § C R™ be a semi-algebraic set and
f:RY— R™ a Nash map such that f(Bg) = 8, then 8 is compact and connected
by Nash paths.

Let us see now some consequences of being connected by Nash paths. We will
show that a semi-algebraic set § C R™ connected by Nash paths is irreducible
and pure dimensional.

Recall that a semi-algebraic set § is irreducible if its ring of Nash functions
N(S) is an integral domain (see Definition 2.4.5). Recall also that 8 is pure
dimensional if the dimension of the germ 8, is equal to the dimension of 8 for
each z € § (see Section 2.2.3).

Proposition 3.2.2. Let 8§ C R™ be a semi-algebraic set connected by Nash
paths. Then 8 is irreducible.

Proof. Suppose § is a reducible semi-algebraic set, that is, there exist Nash
functions f1, fo : 8 — R such that f1 fo = 0on 8 but f; and f; are not identically
zero. This implies that there exist two points x,y € 8 such that fi(z) = 0,
fa(x) # 0 and fi(y) # 0, f2(y) = 0. Consider a Nash path o : [0,1] — R
connecting x and y. As the semi-algebraic set [0, 1] is irreducible and

(fico) (faoo)=0,

we have either fjoo = 0 or fooo = 0. We may assume, without loss of generality,
that o([0,1]) C {f1 = 0}. This is a contradiction, because f1(c(1)) = f1(y) # 0.
Thus, the semi-algebraic set § is irreducible. O

35



3. Nash images of closed balls

Proposition 3.2.3. Let § C R™ be a semi-algebraic set connected by Nash
paths. Then 8 is pure dimensional.

Proof. Assume 8 is not pure dimensional. Then there exists a point y € § such
that dim8, < dim§. Let B C R" be a small open ball centred at y such that
dim(8 N B) < dim 8. Let Y be the Zariski closure of § N B and let p € R[x] be
a polynomial equation of Y (see Proposition 2.1.2). Let 2 € 8 be a point where
the local dimension is maximal, that is, dim(8,) = dim(8). The algebraic set Y’
has dimension strictly smaller than the dimension of 8, so we may assume z ¢ Y.
Consider a Nash path o : [0,1] — 8 such that 0(0) = y and o(1) = . The Nash
function po o : [0,1] — R is identically zero on an open neighbourhood of 0.
Thus, by the identity principle for Nash functions it is identically zero on [0, 1],
that is, 0([0,1]) C Y. This is a contradiction because o(1) =z and x €Y. O

In the following example we show that for a semi-algebraic set 8§ being pure
dimensional and irreducible is not enough to guarantee that 8 is connected by
Nash paths. The example is borrowed from [Fed, Ex.7.12], whereas the proof
appears in [FUG6, Ex.1.2].

Ezample 3.2.4 ([Fe4, Ex.7.12]). The irreducible and pure dimensional semi-
algebraic set (see Figure 3.4)

8 := {(4x> — y*)(4y> —x?) > 0, y > 0} C R,

is not connected by Nash paths.

Figure 3.4: The semi-algebraic set 8 (figure borrowed from [FUG, Fig.1.1])

Proof. Pick the points p; := (—1,1),p2 := (1,1) € 8 and assume that there
exists a Nash path « : [0,1] — 8 such that a(0) = p; and «(1) = pe. Consider
the closed semi-algebraic sets €1 := 8N {x < 0} and €y := 8N {x > 0}, which
satisfy 8 = €; U Cy. Both €; and €y are convex, so they are connected by
Nash paths and C; N Gy = {(0,0)}. Define Cf := {Aw: w € C;, X\ € R} for
1 =1,2. Note that SN {x <0} =€, \ {(0,0)} and SN {x >0} = C2\ {(0,0)}
are pairwise disjoint open subsets of §. We have 0 € a~1(C; \ {(0,0)}) and
1€ a1(C\ {(0,0)}), so to := inf(a=1(C2 \ {(0,0)})) > 0. As « is a (non-
constant) Nash path, ¢y € Cl(a=1(€; \ {(0,0)})) N Cl(a=1(C2 \ {(0,0)})) and
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3.3. Polynomial paths inside semi-algebraic sets

a(te) = (0,0). As a=1(€1\ {(0,0)}) and a~1(€2\ {(0,0)}) are pairwise disjoint
open subsets of [0, 1], there exists ¢ > 0 such that

a((to —&,10)) € €1\ {(0,0)} and  «((to, %o +¢)) C €2\ {(0,0)}.

The tangent direction to a((tg —e,tp+¢)) at a(tp) = (0,0) is the line generated
by the vector

0= i O Zalte) _ flimy g Sy € €A {(0,0)),
im0 € €1 {(0,0))

where k is the multiplicity of ¢ as a root of ||a|. This is a contradiction (because
Cine; ={(0,0)}), so 8 is not connected by Nash paths. O

3.3 Polynomial paths inside semi-algebraic sets

In this section we will present an improved polynomial curve selection lemma. It
will allow us to approximate continuous semi-algebraic paths inside the closure
of an open semi-algebraic set by polynomial paths, with strong control on the
derivatives. This lemma will be one of the main ingredients in our proof of
Theorem 3.2. In [Fe5, Thm.1.7] and [FU5, Thm.3.1] Fernando and Ueno have
made an extended study of polynomial and Nash paths inside the closure of
open semi-algebraic sets. For our purposes we need only a simplified version of
the results obtained there.

We endow the space C”([a, b], R) of differentiable functions of class C¥ on the
interval [a, b] with the C¥ compact-open topology. Recall that a basis of open
neighbourhoods of g € C¥([a, b],R) in this topology is constituted by the sets of
the type:

Uy . :=1{f €C"([a,b],R) : [fO — gy <e: £=0,...,v}

where € > 0 and ||h|(4,) := max{h(z) : x € [a,b]}.

One has C”([a,b],R™) = C”([a,b],R) x - -+ x C¥([a,b],R) and we endow this
space with the product topology. If X C [a,b], one defines analogously the C”
compact-open topology of the space C¥(X,R™). The following result is well-
known and its proof follows straightforwardly from [H, §2.5. Ex.10, pp. 64-65]
using standard arguments.

Lemma 3.3.1. Let U C R™ be an open set and let ¢ : U — R™ be a C* map for
some 0 < £ < v. Consider the map o, : C*([a,b],U) — C*([a,b],R™), f > @of,
where both spaces are endowed with their C* compact-open topologies. Then o,
18 continuous.

In addition, one has the following.

Lemma 3.3.2. Let X C [a,b] and consider the restriction map
p:C"([a,b],R") = C*(X,R"), f— flx,

where the spaces are endowed with their respective C¥ compact-open topologies.
Then p is continuous and if in addition X C |[a,b] is closed, then p is surjective.
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3. Nash images of closed balls

We borrow the following result from [B] that combines Weierstrass’ polyno-
mial approximation with Hermite’s interpolation on a finite set.

Lemma 3.3.3. Leta <t1 < --- <t, <b be real numbers and let f : [a,b] = R
be a C* function. Write az, == f*(t;) fori=1,...,7 and 0 < k < v. Fiz
€ > 0. Then there exists a polynomial g € R[t] such that:

(i) I1f® = g®|
(i) g®)(t;) = aiyp fori=1,...,7r and 0 < k < v.

(b <€ fork=0,...,v.

Proof. The proof is conducted in two steps:

STEP 1. There exists a polynomial h € R[t] such that |[h%) — f®)|| ., <& for
k=0,...,v.

We proceed by induction on the integer v > 0. If v = 0, the result is classical
Stone-Weierstrass’ polynomial approximation theorem. Assume the result true
for v —1 > 0 and let us check that it is also true for v.

Consider the C¥~! map f’ on the interval [a,b] and extend it as a C*~!
map to a bigger interval [a, V'] that contains [a,b] in its interior. By induction
hypothesis there exists a polynomial map hg € R[t]™ such that
€

k) _pB)) o &
|f 0 |< 1—|—(b—a)

on [d/,b] for k=0,...,v — 1. By Barrow’s rule

ﬂﬂ=ﬂ®+/fﬁﬂ&

Define

t

Mﬂ?ﬂ@+/mmwa

a

which is a polynomial of R[t]. Observe that b’ = hg, so

H £ _ o

= |s® —nfED| < <

[a,b] lab] 1+ (b—a)

for k=1,...,v. In addition,

]Ctho<s>ds«— jitf”(s)ds

/UM@—W@MS

|m—ﬂmﬂz‘

[a,b]

— x| }
[a,b]
€

<o { [ halo) = £ < 0 - 0 <

STEP 2. We show how to modify h in order to have also condition (ii).

Take polynomials P;; such that

P-(Z)(t-)z 0 ifi#jork#YE,
ik 1 ifi=jand k=¢,
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3.3. Polynomial paths inside semi-algebraic sets

fori=1,...,r and 0 < k, ¢ < v. For instance, we may take
Py = bik(t — ti)k H((t — ti)VJrl — (tj — ti)u+l)u+l
J#i
1 (=n"*
Jor b = W e

The Taylor expansion of P at t; has the form
1
Pik = E(t — ti)k + eik(t — ti)y+1 + -

for some e;;, € R, whereas the Taylor expansion of Py, at t; (for j # ¢) has the
form

Pa = (bt = 1" (0 + Dt 1)) T (5 — 07!
m#i,j
— (tm — ) (£ =)

Define

3

- (6) . ; —
M := maX{”Pik ||[a7b] : ].S'LST', ng,fgl/} and ¢ := m

Let h € R[t] be a polynomial such that ||h(*) — f(k)||[a7b] <dfork=0,...,v.

Define .
g:=h+> > ciPi

i=1 k=0

where ¢, := ajx — ¥ (t;) = fE(t;)) = hF)(t;) fori=1,...,rand k =0,...,v.
Thus,

T 17 e
gO(t;) = hO(t;) + 373" eaPi (t) = hO(t) + cjo = aze = fO(t)
i=1 k=0

fory=1,...,rand £ =0,...,v.
Observe that |cix| = [ (t;) — A (t;)] < 8, so

19 — 19|

i) < RO = F O+ 3 S el 1P o < 6+r(v+1)M6 = e,
1=1 k=0

for each £ =0, ..., v, as required. O

Lemma 3.3.4. Let § > 0 and f : [0,6] — R be a C** function. Assume
fO0) =0 for each £ =0,...,k—1, f*) >0 on [0,6] and that flio,5) is strictly
positive. Take 0 < e < min{f®|j 4, f(6)}. If g:[0,0] = R is a C*1 function
such that g9(0) =0 for £ =0,...,k—1, g®(0) = f*™(0), |f — gljp.s) < € and
|f*) — g(k)|[0’5] <, then gl(o,s) is strictly positive.

Proof. Using Taylor’s expansion, we know that g around 0 has the form
o) ()
g(t) = L0k 4 ehHlg(e) = L Ogk 4 ehtig(y),
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3. Nash images of closed balls

where 6 is a continuous map defined on an interval around 0. In particular, g > 0
for t € (0,6) close enough to 0. In addition, g*) > 0 on [0,] and g(§) > 0.

Suppose there exists t* € (0,9) such that g(¢t*) < 0. Then there exists
&o € (0,6) such that g(&y) = 0. Assume by induction on ¢ < k that there exists
0 <& < <& <& such that gv)(&;) =0 for j =0,...,¢ As g®¥(0) = 0 and
g9 (&) =0, there exist 0 < &1 < & such that gtV (&,,1) = 0. In particular,
g (&) = 0 and 0 < & < §, which contradicts the fact that g®*) > 0 on [0, d].
Consequently, g|(o,s5) > 0, as required. O

If «: [a,b] — R™ is a continuous semi-algebraic path, by [BCR, Prop.2.9.10]
there exists a finite set n(a) C [a,b] such that « is not Nash at the points of
n(a), but aljp)\n(a) is @ Nash map. We denote the Taylor expansion of degree
(>1of o at tg € [a,b] \ n(e) with T o := Zi:o Za® (to)(t —to)*.

Lemma 3.3.5 (Improved curve selection lemma). Let 8 C R™ be an open
semi-algebraic set and let {p1,...,pr} C CI(8) be any finite set of points, not
necessarily distinct. Let0 <t; < --- <t, <1landleta:[0,1] = 8U{p1,...,pr}
be a continuous semi-algebraic path such that o(t;) = p; fori = 1,...,r and
satisfies (o) N {t1,...,tr} = @ and ([0, 1]\ {t1,...,t-}) C 8. For eache >0
and each m > 0 there exists a polynomial path 8 : [0,1] = 8U{p1,...,pr} such
that: |la®) — 3| < ¢ for k = 0,...,m, T3 = T a fori =1,...,r and
B0, 1\ {t1,...,t.}) C 8.

Proof. Let § > 0 be such that I := J._,[t; — 8,4 + 6] C [0,1] \ n(a). After
making ¢ > 0 smaller if necessary, we may choose polynomials f;;,g;; € R[x]
such that:
Oé([tz - Satl)) - {fll > Oa- . '7fis > 0} C 87
a((tiati + 5]) C {gll > 07 <oy Gis > 0} - 87
Let n;j,pi;; > 1 be such that
(fijoa)(ti —t) = at™ + -,
(gij o Oz)(ti +t)= bijtp” +---,
where a;; > 0 and b;; > 0. Let ¢ := max{n;;, p;;, m} + 1 and assume, taking a
smaller § > 0 if necessary, that
nij!aij
2 )
pijlbi;
—5

(fijo a)(nij)‘[ti—é,t,-+6] >

(gij o a)(pij)|[ti—6,t,-+6] >
Define

nijlai; pijlbi;
s Jv : Ja ij O« 1_5 )
5 5 (figoa)(ti —9) (33.)
(937 0 )t + ), dist((0,1)\ 1), B\ 8) }.

0<eg ::min{

By Lemmas 3.3.1 and 3.3.2 the maps

901']' : Ce([oa 1]7Rn) — CZ([tl - 57 ti + 5]3R)7 0 ans (fl] o 7‘[t,i—6,ti+5])7
¢ij : CH([0,1]),R™) — C*([t; — 6,t; + 0], R), v — (gis ° Y[, —s,t,+5))
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3.3. Polynomial paths inside semi-algebraic sets

are continuous. Define

U = () ({7 € C0, 1, R™) = lepi; (1)) = 035() "9 ||, —5,0, 467 < €0}

i=1j=1
D)y € ChU0, 1L R™) = i (1) P9) = ¢35 (0) 9|1, —5.0,46) < €0}
i=1j=1
which is an open subset of C*([0, 1], R™). Then there exists 0 < & < gq such that
U= {y € CY[0,1],R") : |lv—allp1 <=, v —a®|; <&, k=1,...,0} C Up.

We claim: Given v € U such that Tt{a = Tf;v fori=1,...,r, we have
~([0, 1)\ {t1,...,t:}) C 8.

Asye{BeCi0,1]): ||B—al <e}and 0 < e < dist(a([0, 1]\ I),R™\ §),
we deduce dist(y([0,1] \ I),R™\ 8) > 0, so v([0,1] \ I) C 8. Thus, to prove the
claim it is enough to check:

Y([t; = 6,t:)) € {fi1 >0,..., fis >0} C8, (3.3.2)
’y((ti,ti+5]) C {gﬂ >0,...,0s > 0} cS$8 (333)
We show only (3.3.2) because the proof of (3.3.3) is analogous.
Using Taylor’s expansion, we know that v around ¢; has the form
V) =T (e —t) + (b — ) 0(t —t;) = T, alt — &) + (£ — ;) 0(t — ;)
where 6 is a continuous map defined on an interval around 0. As « is analytic
in a neighbourhood of t;, there exists a tuple of analytic series 7 € R{t}" such
that
o(t) = T, alt — t:) + (v — 1) (6 — 1),
Thus, if ¢ := 6 — 7, which is a continuous function around 0, we deduce
() —alt) = (¢ =) ¢t —t:)  ~ At —t) —ati —t) = (—1)¢(~1).
Write x := (x1,...,%5), ¥ := (y1,-..,¥n) and let z be a single variable. As the
polynomial f;;(x + zy) — fi;(x) vanishes on the real algebraic set {z = 0}, there
exists a polynomial h;; € R[x,y,z] such that
fii(x +2y) = fi; (%) + zhij(x,y,2).

As { > n;;, we deduce

fij(v(ti = ¢)) = fij(ati = t) +7(ti =) —a(ti = t))
= fis(ati = 1)) + (=1) € hij (alti — ©), (=), (-1)"t") = ayt" + -+
Consequently, (f;; 0v)®)(t;) =0 for k=0,...,n;; — 1 and
(fij o)™ (t:) = nijlai; > 0.
By Lemma 3.3.4 and (3.3.1) we obtain (f;; oy)(t; —t) > 0 for each t € (0, 0]

and j =1,...,s, that is, v(¢t) € {fi1 > 0,..., fis > 0} for each t € [t; — ¢, 1;), as
claimed.

To conclude, by Lemma 3.3.3 there exists a polynomial tuple 8 € R[t]™ such
that [|a® — ") || g 1) < efor k=0,...,¢ (that is, « € U) and o ¥ (;) = B (t;)
fori =1,...,r and k = 0,...,¢. We deduce B([0,1] \ {t1,...,t-}) C 8, as
required. O
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3. Nash images of closed balls

3.4 Well-welded semi-algebraic sets

Let o : [a,b] — R™ be a continuous semi-algebraic path and let n(o) C [a,b] be
the finite set of points at which o is not a Nash map already introduced before
Lemma 3.3.5. By [BCR, Prop.8.1.12] and after reparametrizing (if necessary),
we may assume that o is Nash at ¢ and b so n(c) C (a,b).

In his proof of the Shiota’s conjecture [Fe4] Fernando introduced the concept
of well-welded semi-algebraic sets. We recall here this definition.

Definition 3.4.1. A semi-algebraic set § C R™ is well-welded if § is pure
dimensional and for each pair of points x,y € S there exists a continuous semi-
algebraic path o : [0,1] — 8 such that ¢(0) = z, o(1) = y and n(c) C Reg(8).

As a consequence of Theorem 3.1, we have the following:

Theorem 3.4.2. Given a semi-algebraic set & C R™ the following conditions
are equivalent:

(a) 8 is connected by Nash paths.
(b) 8 is connected by analytic paths.

(c) 8 is pure dimensional and there exists a Nash path o : [0,1] — 8 that
meets all the connected components of the set of regular points of 8.

(d) 8 is pure dimensional and there exists an analytic path o :[0,1] — 8 that
meets all the connected components of the set of regular points of S.

(e) S is well-welded.

Theorem 3.1 is a very deep result, so we want to furnish an alternative proof
of the equivalence of these implications that uses ‘lighter’ results.

The implications (a)=-(b) and (c¢)=-(d) are clear. We will prove the implica-
tion (d)=-(e) in this section. Later in Section 3.5 we will prove the implications
(e)=(a), (b)=(e) and (a)=(c).

3.4.1. Analytic arcs and well-welded sets. In order to prove the implication
(d)=(e) we need the following lemma that allows us to modify an analytic arc
by a Nash arc. This lemma has been proved by Fernando [Fe4, Lem.2.9] in a
stronger version, but we only need a simplified version of his result.

Lemma 3.4.3. Let M C R™ be a connected Nash manifold, let My, My be open
semi-algebraic subsets of M and let o : (—1,1) — M; UMy U {0} be an analytic
arc such that o(0) = 0, «((0,1)) C M; and a((—1,0)) C My. Then there exist
e > 0 and a Nash arc B : (—e,e) — My U My U {0} such that 5((0,¢)) C M;
and B((—¢,0)) C M.

Proof. For simplicity we can assume M1NMy = @ and 0 & MyUM,. Let V C M
be an open semi-algebraic neighbourhood of the origin equipped with a Nash
diffeomorphism ¢ : V — R? such that ¢(0) = 0. Shrinking the domain of o, we
may assume a((—d,0)) C V for some § > 0. Denote @ := poa : (—6,5) — R
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3.4. Well-welded semi-algebraic sets

Shrinking M;, V and the domain of @, we may assume 0 &€ o(M; N'V) and
o(M; N V) ={g1; > 0,...,94 > 0} for some polynomials g;; € R[x]. Observe
that the analytic series (g;10a)(t) and (gj20@)(—t) are positive on (0, ). Thus,
there exists s > 1 large enough such that if v € R{t}? and y—a € (t)*R{t}¢, we
have (g;107)(t) > 0 and (g;207)(—t) > 0 for ¢ > O small enoughand j =1,...,¢.
Let 7o € R[t]? be a polynomial tuple such that vo — a € (t)*R{t}¢, and let
€ > 0 be such that

91(0(t)) >0, gj2(r0(-t)) >0

for 0 <t < e. The Nash arc 8:= ¢ oy : (—¢,6) = M; UMy U {0} satisfies
the required property. O

Proposition 3.4.4. Let § C R™ be a pure dimensional semi-algebraic set.
Assume there exists an analytic path « : [0,1] — 8§ whose image meets all the
connected components of Reg(8). Then § is well-welded.

Proof. Let My, ..., M, be the connected components of Reg(8). After repeating
the connected components as many time as needed, we may assume that there
exist 0 < 81 < ...< s, <1 and ey > 0 such that

a(s;) € CI(M;) N Cl(M;41) and «([s; — €0, 8:)) C My, a((s4, 8 +€0]) C Mitq.
The proof is conducted into two steps:

STEP 1. CONSTRUCTION OF NASH BRIDGES. Consider X = § . By Theorem
2.4.2 there exist a non-singular algebraic set X; and a proper regular map
f: X1 — X such that 8§ C f(X1) (because 8 is pure dimensional) and

f|X1\f*1(Sing(X)) s X1\ f_l(Sing(X)) — X \ Sing(X)

is a diffeomorphism whose inverse map is also regular.

Define T'; := a([s; — €0, 8; + €0]) and denote
Ay = CI(f~H(T; \ Sing(X)) N f~1(Ty)

and N; := f~1(M;), for i = 1,...,7. As M; C X \ Sing(X), we have that
N; C X\ f~!(Sing(X)) is a Nash manifold. After shrinking I'; if necessary,
we may assume by [Fe4, Lem.B.2] that A; is an analytic bridge between N; and
Niy1 such that A; \ | [7_; Nj = {q:} and f(g:) = a(s;) for some ¢; € X;.

We apply Lemma 3.4.3 to the Nash manifold X; and the open semi-algebraic
subsets V; and N;;1 so to find 0 < € < g9 and Nash curves o; : [—¢,¢] = X3
such that o;([—¢,0)] C N;, 0;((0,¢]) C N;y1 and 04(0) = ¢;. Thus, the Nash
arcs f3; := foo; : [—e,e] = 8 satisfy

ﬁi([—E,O)] Cc M;, Bi((O,s]) C Mi+1 and 61(0) = Ot(Si),

STEP 2. CONSTRUCTION OF THE CONTINUOUS SEMI-ALGEBRAIC PATH. As
§ is pure dimensional, 8§ = [J;_; CI(M;) N 8. Let y1,y> € 8 and assume y; €
Cl(M;) N8 and yo € CI(M;) N8 for some ¢ < j. By the Nash curve selection
lemma (see [BCR, Prop.8.1.13]) there exist Nash arcs ay, : (—1,1) — R™ such
that a1((—1,0)) C M;, as((—1,0)) C M; and ay(0) = yi for k = 1,2. For
each { =14,...,j — 1, denote up := Be(—¢) and vey1 := Be(e). As M; and M;
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3. Nash images of closed balls

are connected Nash manifolds, there exist Nash paths ~; : [0,1] — M; and
vz : [0,1] — M; such that

Us; lfk}:l,

1
0) = = —— d 1) =
1 (0) = 2 a‘“( 2> and k(1) {uj k=2

Moreover, for each ¢ < £ < j, as the Nash manifold My is connected, we can find
a Nash path 7, : [0,1] — M, such that 7¢(0) = v¢, 1¢(1) = up. The continuous
semi-algebraic path

—1
)\ = (a1|[_%70}) *’)/1 * (BZ *’l’h *Bi+1 *77i+1 E S 3 ’I’]j,l *ﬂj) *’y;l * a2|[_%70]
connects the points yy,y2 and satisfies

n(A) C {z1, 22} U{ts, ..., uj—1} U{vigr,..., v} C Reg(8),

see Figure 3.5. Consequently, 8 is well-welded, as required. O

Figure 3.5: Sketch of proof of Proposition 3.4.4 (figure inspired by [Fe4, Fig.10]).

3.5 Checkerboard sets

If § C R™ is a semi-algebraic set, we denote 98 := C1(8) \ Reg(8). Observe that
the set 08 defined here is (in general) different from the set Sing(8) := S\ Reg(8)
defined in Section 2.4.1.

A pure dimensional semi-algebraic set T C R™ is a checkerboard set if it
satisfies the following properties:

—zar ., . .
e T isa non-singular algebraic set.

aaZar . . .. —~Zar
e 0TV isa normal-crossings divisor of T

e Reg(7) is connected.

We want to show that any checkerboard set is well-welded.

Proposition 3.5.1. Let T C R™ be a checkerboard set, then T is well-welded.

Proof. As T is pure dimensional, 7 = Cl(Reg(7)) N T. Fix any two points
y1,y2 € T. By the Nash curve selection lemma (see [BCR, Prop.8.1.13]) there
exist Nash arcs ay, : (—1,1) — R™ such that a1((0,1)), a2((—1,0)) C Reg(T)
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3.5. Checkerboard sets

and ai(0) = yi for k = 1,2. As Reg(7) is a connected Nash manifold, there
exists a Nash path 7 : [0,1] — Reg(7T) such that

0= () o0 = s (D).

The continuous semi-algebraic path 8 := a4 0,47 %7 * a2|[_%70] is a path between

y1 and yo and satisfies n(8) C {z1,22} C Reg(7T). Thus, T is well-welded, as
required. O

In his proof of Shiota’s conjecture Fernando proved the following result. We
will use this result in an essential way in our proof of Theorem 3.2.

Theorem 3.5.2 ([Fe4, Thm.8.4]). Let 8 C R™ be a well-welded semi-algebraic
set of dimension d > 2 and denote X := 8™ Then there exists a checkerboard

set T C R™ of dimension d and a proper reqular map f :Y = T 5 X such
that f(T) = 8.

As the map f is proper, if the semi-algebraic set § is compact, we may assume
that also the checkerboard set T is compact (see the proof of [Fe4, Thm.8.4]).

3.5.1. 1-dimensional semi-algebraic sets. To prove Theorem 3.4.2 without
using Theorem 3.1 we will make an essential use of Theorem 3.5.2. This result
holds for semi-algebraic sets of dimension d > 2, so we treat the 1-dimensional
case separately.

Recall that a semi-algebraic set § C R™ is irreducible if its ring of Nash
functions N (8) is an integral domain (see Definition 2.4.5).

Proposition 3.5.3 (1-dimensional case). Let 8 C R™ be a semi-algebraic set
of dimension 1. The following conditions are equivalent

(a) 8 is connected by Nash paths.
(b) 8 is connected by analytic paths.

(¢) 8 is pure dimensional and there exists a Nash path o : [0,1] — 8 that
meets all the connected components of the set of reqular points of S.

(d) 8 is pure dimensional and there exists an analytic path o : [0,1] — 8 that
meets all the connected components of the set of reqular points of S.

(e) 8 is well-welded.

Proof. As dim(8) = 1, using the identity principle for analytic functions and
standard arguments, it follows: if § satisfies one of the conditions in the state-
ment, then § is irreducible. By [Fe4, Prop.1.6] if 8 is irreducible, then it is a
Nash image of R, so it verifies conditions (a), (b), (¢) and (d). In particular 8
is connected by Nash paths, so it is also well-welded and (e) holds. O
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3. Nash images of closed balls

3.5.2. Well-welded sets are connected by Nash paths. We want to show
that a well-welded semi-algebraic set is connected by Nash paths without using
Theorem 3.2. We will combine Lemma 3.3.5 and Theorem 3.5.2 in our argument.

Proposition 3.5.4. If 8 C R™ is a well-welded semi-algebraic set, then it is
connected by Nash paths.

Proof. By Proposition 3.5.3 we may assume dim$ > 2. By Theorem 3.5.2 there

exists a checkerboard set 7 C R™ and a Nash map f : Y := T 5 X =38
such that f(7) = 8.

Thus, in order to conclude, it is sufficient to show: The checkerboard set T
is connected by Nash paths. Let (Q,v) be a Nash tubular neighbourhood for
the Nash manifold Y := T C R™. As ClT) C fmr, shrinking ) if necessary,
we may assume that v admits a Nash extension to Cl(z~(T)). Fix two points
p,q € T and consider the open semi-algebraic set U := v~ !(Reg(T)) C R™. As
T is pure dimensional, p,q € Cl(Reg(7)) N T, so p,q € CI(U). By Lemma 3.3.5
there exist § > 0 and a polynomial path « : [-§,1 + §] — U U {p, ¢} such that
a(0) =p, a(l) = g and a([—6,1 + d]\ {0,1}) C U. The image v(«([0,1])) C T,
because «(0), a(1) € T. Thus, @ := voalp, : [0,1] — T is a Nash path between
p and ¢, as required. O

3.5.3. Connection by analytic paths. We want to show that a semi-algebraic
set § C R™ connected by analytic paths is well-welded, which proves the impli-
cation (b)=-(e) of Theorem 3.4.2.

Proposition 3.5.5. Let 8 C R™ be a semi-algebraic set connected by analytic
paths. Then 8 is well-welded.

Proof. The proof of Proposition 3.2.3 works in the same way if § is connected
by analytic paths. Thus, if such is the case, then 8 is pure dimensional.

By Proposition 3.5.3 we may assume dim8 > 2. Let M;,..., M, be the
connected component of Reg(8). Let xz,y € 8 and let « : [0,1] — 8 be an
analytic path such that «(0) = z and (1) = y. As 8 is pure dimensional
§ = Ui_, CI(M;) N 8. Let 4y,...,4, € {1,...,r} be the indices such that
a([0, 1))N(CL(M;,)N8) # @. Define the semi-algebraic set T := [Ji_; C1(M;,)NS.
Proceeding as in the proof of Proposition 3.4.4 we can find a continuous semi-
algebraic path 5 : [0,1] — 7 such that 8(0) = = and B(1) = y, that satisfies

n(B) C Reg(T) C Reg(8). O

3.5.4. Nash paths through Reg(8). We want to prove now that if a semi-
algebraic set 8§ C R™ is connected by Nash paths, there exists a Nash path
that meets all the connected components of Reg(8). This will complete the
last implication of Theorem 3.4.2. As in the proof of Proposition 3.5.4 we will
combine Lemma 3.3.5 and Theorem 3.5.2 in our argument.

Proposition 3.5.6. Let 8 C R™ be a semi-algebraic set connected by Nash
paths. Then 8 is pure dimensional and there exists a Nash path o : [0,1] — 8
that meets all the connected components of Reg(8).
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3.5. Checkerboard sets

Proof. Let d := dim8. By Proposition 3.5.3 we may assume d > 2. As 8 is
connected by analytic paths, by Proposition 3.5.5 8 is well-welded. By Theorem
3.5.2 there exists a checkerboard set T C R™ of dimension d and a proper regular
map f:Y =T — X := 8 guch that f(T) = 8. Let now Mj,..., M, be
the connected components of Reg(8). Fix points z; € M; and let y; € T be such

that f(y;) = ;. We claim: There exists a continuous semi-algebraic path
a:[0,1] = Reg(T) U{y1,...,yr}

and 0 <t < ...<t, <1 such that a(t;) = y; and n(a) N {t1,...,t,} = 2.

As Reg(7T) is connected by Nash paths, in order to prove the claim it is
enough to show: For each point x € T there exists a Nash arc vy : [-1,1] = T
such that v(0) = z and v([—1,1]\{0}) C Reg(T). As Reg(T) is a Nash manifold,
the claim is clear for the points z € Reg(T). Suppose now x € T\ Reg(T). As
T is pure dimensional, z € Cl(Reg(7)) N T. By the Nash curve selection lemma
(see [BCR, Prop.8.1.13]), there exists a Nash path § : [-1,1] — R™ such that
4(0) = z and o((0, 1]) C Reg(T). Thus, the Nash arc v : [-1,1] — Reg(T)U {z}
defined as v(t) := 6(t?), satisfies v(0) = .

Let (2, v) be a Nash tubular neighbourhood for the Nash manifold Y := T
and define Qg := v~!(Reg(7T)), which is an open semi-algebraic subset of R™.
By Lemma 3.3.5 we approximate the continuous semi-algebraic path « by a
polynomial path 8 : [0,1] — Q5 U {y1,...,y,} such that 8(¢;) = y;. Then the
Nash path 0 := fovof:[0,1] — 8 meets all the connected components of
Reg(8), because o(t;) = x; € M. O

3.5.5. Reduction to the case of checkerboard sets. By Theorem 3.4.2 in
order to prove Theorem 3.2 we ‘only’ need to prove the following: If § C R™
1s a compact well-welded semi-algebraic set of dimension d, then there exists a
Nash map f: R4 — R™ such that f(Bg) = 8.

We will prove Theorem 3.2 for dimension 1 in Section 3.6.1, so let us assume
dim(8) > 2. In this case Theorem 3.5.2 provides a checkerboard set T C R"
and a proper regular map f : T 8™ such that f(T) = 8. As the map f
is proper, if the semi-algebraic set § is compact, we may assume that also the
checkerboard set T is compact (see the proof of [Fe4, Thm.8.4]). Thus, we are
reduced to prove the following:

Theorem 3.5.7. Let T C R™ be a compact checkerboard set of dimension d > 2.
Then there exists a Nash map G : R — R™ such that G(Bg) = 7.

By Corollary 3.1.4, there exists a polynomial map f : R? — R? such that
f(Ba) = Ag—1 x [0,1]. Consider the inverse of the stereographic projection

0 :RY =84\ {(0,...,1)},

( )i ( 211 2xg -1+ ||x||2>
x:=(21,...,2q e ,
1+ [|]? L flf?” 14 [l?

and let 7 : R4*1 — R? the projection onto the first d coordinates. The regular
map g := mo ¢ : R? — R? satisfies g(R?) = g(By) = By. If there exists a
Nash map F' : Ag_1 x [0,1] — R”™ such that F'(Ag_q1 x [0,1]) = T, then the
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3. Nash images of closed balls

composition G := Fo fog: R? — R? is a well-defined Nash map such that
G(Bg) =T7.

Thus, in order to show Theorem 3.5.7 we can use the (more convenient)
compact model Ay_1 x [0,1] and we are reduced to show the following:

Theorem 3.5.8. Let T C R™ be a compact checkerboard set of dimension d > 2.
Then there exists a Nash map F : Ag_q x [0,1] = R™ such that

F(Ag_1 % [0,1]) = 7.

3.6 Building Nash images with bare-hands

The purpose of this section is to prove Theorem 3.5.8, which provides a com-
plete characterization of the Nash images of the closed ball. The proof is quite
involved and intricate and we begin with some preliminary results to lighten the
proof.

We will start with the 1-dimensional case, that requires a different proof.
Then we will focus on the d-dimensional case for d > 2. For the general case
we will take advantage of the fact that each checkerboard set T C R™ admits
‘nice’ triangulations. Roughly speaking, we ‘build’ T as Nash image of the prism
Ag—1 x [0,1] ‘simplex by simplex’.

To that end, we consider a suitable subset of the space of Nash maps
N(R4 R"™) and we will parametrize it (of course not in an injective way) us-
ing an open semi-algebraic set ©g of a large Fuclidean space. In this space,
a continuous semi-algebraic path o : [0,1] — ©¢ will provide us a continuous
semi-algebraic map Ag_; x [0,1] — R™ that is Nash on the horizontal slices
Ag—1 x {t}. Using the results of Section 3.3 we approximate the path o by a
Nash path in order to obtain a Nash map Agz_; x [0,1] — R™. All the construc-
tion is quite technical and requires care to guarantee that the obtained Nash
map is surjective and that the target space is exactly 7.

Given a topological manifold X with boundary we denote its relative interior
with Int(X) and its boundary X \ Int(X) with 0X.

3.6.1. The 1-dimensional case. Nash images of closed balls contained in the
real line are its compact intervals and all of them are affinely equivalent to the
interval By := [—1,1]. Nash images of closed balls contained in a circumference
are its connected compact subsets and all of them are Nash images of B;.

Ezamples 3.6.1. (i) The circumference S' := {x* + y* = 1} is a Nash image of
B,. Consider the inverse of the stereographic projection from the point (0, 1),
which is the map

2t 1t
. 1 14271 1 12
fR=S\{(0,1)}, t— <1+t2’1+t2>'

Next, we identify R? with C and the coordinates (z,y) with z++/—1y. Consider
the map

g:C—C, z:=a+V—1y— 2% = (2% — 9?) + V—1(2zy).

The image of B; under go f is S'.
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3.6. Building Nash images with bare-hands

(ii) Any connected compact proper subset 8 of S! that is not a point is a
Nash image of B because it is Nash diffeomorphic to [—1,1].

We have the following:

Proposition 3.6.2 (1-dimensional case). Let § C R" be a 1-dimensional com-
pact semi-algebraic set. Then 8 is a Nash image of some B, if and only if 8 is
irreducible. In addition, if such is the case 8 is a Nash image of [—1,1].

Proof. Assume § is irreducible. Let X be the Zariski closure of 8§ in R™ and
let X be its complexification in C". Let (Y,7) be the normalization of X
and let & be the involution of Y induced by the involution o of X that arises
from the restriction to X of the complex conjugation in C". We may assume
that Y € C™ and that & is the restriction to Y of the complex conjugation of
C™. By [FG3, Thm.3.15] and since § is irreducible, 7=1(8) has a 1-dimensional
connected component T such that 7(T) = 8. As X has dimension 1, it is a
coherent analytic set, so T C Y = YNAR™ AsY isa normal-curve, Y is a
non-singular real algebraic curve. We claim: the connected components of Y are
Nash diffeomorphic either to S' or to the real line R.

By [Sh, VI.2.1] there exist a compact affine non-singular real algebraic curve
7, a finite set F' which is empty if Y is compact and a union Y’ of some connected
components of Z \ F such that Y is Nash diffeomorphic to Y’ and CI(Y”’) is a
compact Nash curve with boundary F. As Z is a compact affine non-singular
real algebraic curve, its connected components are diffeomorphic to S', so by
[Sh, VI.2.2] the connected components of Z are in fact Nash diffeomorphic to
S!. Now, each connected component of Y is Nash diffeomorphic to an open
connected subset of S!, that is, Nash diffeomorphic either to S! or to the real
line R, as claimed.

As T is connected and 1-dimensional, it is Nash diffeomorphic to a connected
compact 1-dimensional semi-algebraic subset of either S' or R. In the latter case
T is Nash diffeomorphic to a compact interval of R. By Examples 3.6.1 the semi-
algebraic set T is a Nash image of By, so also 8§ is a Nash image of B;. The
converse follows from Proposition 3.2.2. O

3.6.2. Covering simplices with Nash maps. We start by proving some lem-
mas that will allow us to cover simplices with the images of suitable Nash maps.
Denote

Ap_q = {(/\1,...,/\n) ER™: A\ >0,...,\, >0, Zxk:1}. (3.6.1)
k=1

The boundary dA,_1 = J; (An—1 N{X; =0}).

Lemma 3.6.3. Consider an (n — 1)-dimensional simplex o C R™ of vertices
V1y-..,Un. Pick a point p € R™\ o and consider the n-dimensional simplex
o of vertices {p,v1,...,vn}. Let F : Ap_1 x [0,1] — R™ be a continuous
semi-algebraic map such that F|a,_ xjo0y @ An—1 X {0} — o is a homeo-
morphism, F(0A,—1 x (0,1)) C R"\ ¢ and F(A,_1 x {1}) = {p}. Then
Int(o) C F(Int(A,—1) x (0,1)) and & C F(A,—1 x [0,1]).
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Proof. As A,_1 x [0,1] is compact and & = Cl(Int(7)), it is enough to check:
Int(o) C F(Int(A,—1) x (0,1)).

Suppose there exists z € Int(d) \ F(A,—1 %[0, 1]). Let us construct a (contin-
uous) semi-algebraic retraction p : R™ \ {z} — 07. For each € R\ {2z} let £,
be the ray {z+tz&: t € [0,+00)}. By [Be, 11.1.2.3, 11.1.2.7] £, N 05 = {p(x)}
is a singleton and if x € 07, then p(z) = z. Define p : R*"\{z} — 07, = — p(z).
Let hi,...,h,41 € R[x] be polynomials of degree 1 such that the hyperplanes
H; := {h; = 0} contain the facets of . Assume ¢ C {h; > 0}. Note that
p(x) = z + AZ&, where ) is the smallest value u > 0 such that h;(z + pzz) = 0
for somei=1,...,n+1. As z € Int(5), we have h;(z) >0fori=1,...,n+ 1.

Thus,
— = —_ L i=1,... 1 .
\ max{ e ) yee, N+ >0

Consequently,

1
max { BOE L 1,1

—

2z,

p(x) =2+
hi(z)

so p: R™\ {z} — 07 is a continuous map such that p|gsz = idgs, that is, p is a
retraction.

Consider the continuous map F* := po F : A,_1 x [0,1] — 95. The
restriction map F*|pa,_,x[0,1]) @ O(An—1 x [0,1]) — 00 has degree 1 (as a
continuous map between spheres of dimension n — 1). Indeed, as

F*a, _ix{oy = Fla,_ix{oy 1 Ap—1 x {0} — o

is a homeomorphism, then (F*)~!(z)Nd(A,_1 x [0,1]) = (F‘An,lx{o})_l(x) is
a singleton and the restriction map F*|5a, _, x[0,1)) has degree 1.

By [H, Thm.5.1.6(b)], as F*|5(a,_, x[0,1]) admits a continuous extension to
Ap—1 x [0,1], we deduce that F*|5a,_,x[0,1)) has degree 0, which is a contra-
diction. Consequently, Int(c) C F(Int(A,_1) x (0,1)), as required. O

Given a polynomial h € R[x] of degree 1 and the hyperplane H := {h = 0}
of R™ denote the two subspaces determined by H as HT := {h > 0} and
H~ :={h < 0}. Denote also h := h — h(0). If X :={fy >0,..., fm >0} CR"
is an n-dimensional convex polyhedron, where each f; € R[x] is a polynomial of
degree 1, then Int(X) = {f1 > 0,..., fru > 0}. Thus, if Xq,...,Ks C R" are n-
dimensional convex polyhedra, then Int(K1N...NK;) = Int(Ky)N...NInt(Ky).
The following construction will be useful for the following result.

Let X C R™ be an n-dimensional convex polyhedron and let ¢ C 9K be an
(n — 1)-dimensional simplex of vertices vy,...,v,. Let p € Int(X) and let &
be the n-simplex of vertices {p,v1,...,v,}. Let Hy,..., H, be the hyperplanes
of R™ generated by the facets of ¢ that contain p, which are those facets of &
different from o and suppose v; ¢ H;. Assume that ¢ C ()7_, H J+ and consider
the convex polyhedra 8; := XN(,.; H, , (see Figure 3.6). Observe that p € §;
and Int(8;) # @ because p € Int(X) and the hyperplanes Hy, ..., H,, are affinely
independent.
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U1 g V2

Figure 3.6: The polyhedra §8; (figure inspired by [FU5, Fig.4.2]).

Lemma 3.6.4. Let X := {g1 > 0,...,95s > 0} C R™ be an n-dimensional
convex polyhedron and let o C 0K be an (n —1)-dimensional simplex of vertices
U1y.. .y On. Fizp € Int(XK) and consider the simplex & of vertices {p,v1,...,v,}.
Let H; := {h; = 0} be the hyperplanes of R™ generated by the facets of & that
contain p and assume v; ¢ H; and & C (i, H;". Let hy € R[t] be a polynomial
of degree 1 such that o C {hg = 0} and ¢ C {hg > 0}. There exist continuous
semi-algebraic paths o, : [—06,1+ 3] — K (for some § > 0) that are Nash on the

compact neighbourhood I := [—0,8]U[1—4§,146] of {0,1} and satisfy o;(0) = v;
and a;(1) =p fori=1,...,n and e > 0 such that the continuous semi-algebraic
map

Fifn g x[=0,1468] =K, (Ao Anst) = Y Niai(t)

(which is Nash on A, _1 X I) has the following property:

If G: Ap_1 x [=8,1 + 6] = R™ is another continuous semi-algebraic map
that is Nash on a neighbourhood I' C I of A,_1 x {0,1} and satisfies

o'G o'F o'G O'F

8t£()\0) 84()\0) 84()\1) 8Z<)\1>
for each A € A,y and £ =10,1,2,3, |G — F| < & and H atf - %tF <e for
£=1,2,3, theno C G(A,_1%[0,1]) C K and G(A,_1x([—d,0]U[1, 1+5’]))

for some 0 < § < § small enough.

Proof. The proof is conducted in several steps:

INITIAL PREPARATION. Let us construct the continuous semi-algebraic paths
a; : [-0,14+ 6] = K. We claim: There exist continuous semi-algebraic paths
a; : R — K such that:

) «; is Nash on I,

) ai(t) = v +t2u; + 3w+ and a;(1+t) =p—t3w+---,
ii) a;([—6,0) U (1,14 46]) C Int(a),

) @i((0,1)) C 8 :=Int(K N[, H;),
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(v) hjoai(t) = —ajt3+ -+ ifi # j and hj o (1 +t) = a;t3 + -, where
aj >0andl1<i,j <n,

(vi) hjoa;(t) = hi(vi)—i—h_;-(ui)tz —a;t3 4 where hi(v;) > 0 and h:(uz) <0,

(vii) ho o a;(t) = bt + -+ where bjy >0 and 1 <i < n,

)
)
(viii) gr o ai(t) = ci, + dirt? + - - where either ¢, > 0 or ci, = 0 and di, > 0,
(ix) groa;(14+1t) =ej + -+ where e > 0.
We construct each continuous semi-algebraic path «; piecewisely. The open
semi-algebraic set 8; defined in (iv) can be describes as

8i={g1>0,....9.>0}n [ {h; <0}

J#

720
Define u; := v;p and observe that ﬁj (u;) =0if 1 <4,j <mand i # j. Thisis so
because h;(p) = 0and h;(v;) =0if1 <4,j < nandi# j. Recall that h;(v;) >0
and h;(p) = 0, so H;(ui) < 0 for 1 <7 < n. In addition, b,y := l_io(ui) > 0,
because hg(p) > 0 and ho(v;) =0 for 1 < i < n. As gi(v;) > 0 because ¢ C K
and g (v;) + Gi(ui) = gk (v; + ui) = gr(p) > 0 because p € Int(X), we deduce
that either ¢;, := gr(vi) > 0 or ¢;x = 0 and d;x := Gr(u;) > 0.

p

g

U4

Figure 3.7: A picture of the situation.

As {l_z'l, .. ,i_in} are independent linear forms, the open semi-algebraic set
ﬂ;;l{fzj < 0} # @. Pick a non-zero vector w € (V;_;{h; < 0} and write
a; = fi_ij (w) >0 for j =1,...,n. Consider the polynomial path

a0 : R =R, t— v + t2u; + tPw.

As ho(v;) =0 and hj;(v;) =0 for 1 <4,j <nifi# j, we deduce:

In addition,
(gr © aio)(t) = gr(vi) + §k(ui)t2 + ﬁk(w)t?’ = cip + dipt? + §k(w)t3,

where either ¢;; > 0 or both ¢;; = 0 and d;; > 0.
Consider the polynomial path

i1 R =R, tp—(t—1)>w.
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3.6. Building Nash images with bare-hands

Observe that

hg o 041'1(1 + t) = ho(
hj ooz“(l +t) = h](p) —

3
~
\

for 1 <4,5 <n. As a; > 0, we have

<0 ift>0,
>0 ift<O,

>0 ift>0,

) (3.6.2)
<0 ift<O.

hjoaio(t){ if ’L#] and hj Oai1(1+t){

Denote e; := g(p) > 0 and observe that

gr o ain(1+t) = gr(p) — Ge(w)t® = eqr, — Gin(w)t®.
Let 0 < 6 < 3 be such that (hgoa;o)(t) > 0, hgo a1 (1+1t) > 0, (groaio)(t) >0
and gi o a;1(1 +t) > 0 for t € [—4,d] (recall that ho(p) > 0). Thus, by (3.6.2),
Oéio([—ts, 0)),0&,‘1((1, 1+ 5]) C Int(?f) and Oéio((o, 5]), O&il([l -9, 1)) C S;.
As 8; is a convex set and @;0(0), ;1 (1 — 0) € §;, the segment that connects
both points is contained in §;. Let

(1-0)—t

t—0
Y Oéio((S)—f— aﬂ(l—é)

ai2:[671—6]—>81‘,t’—> m

be a parametrization of such segment. Define the continuous semi-algebraic
path
;= qioli—s,6] * Qi * it [1—s144) * [0, 1 + 0] = XK,

which satisfies a;([—d,0) U (1,1+46]) C Int(7), o;((0,1)) C §; and in fact all the
required conditions (i)-(ix).

STEP 1. We have the following inclusions: ¢ C F(Ap,—1 x [0,1]) € X and
F(Ap—1 x ([-4,0)U(1,1+4])) C Int(o) C X.

Observe that F(A,—1 x (0,1)) C X because X is convex and a;((0,1)) € XK.
In addition, «;(1) = p for each ¢, so F(A, -1 x {1}) = p, and

F(Ar, A, 0) =D A,
=1

so F(An,—1 x {0}) = ¢ € X and F|a, ,xf0} is a homeomorphism. Thus,
F(An,1 X [O, 1}) c XK.

Let us analyse the restriction map Floa, ,x(0,1) @ 9Qn—1 x (0,1) — XK.
Recall that 9A,_1 = i, (An—1 N {\; = 0}).

Fix an index i = 1,...,n and write A®) := (A;,..., \—1,0, M1, ..., \n)
where >, A\; =1 and each A\; > 0 if j # i. We have Int(H; ) C R" \ 7 and
FOD, ) =" Na;(t) € Int(KX N H; ) = Int(X) NInt(H; ) CK\G  (3.6.3)
i
for t € (0,1), because if j # i each «;(t) € Int(X) NInt(H, ) and the latter is
convex. Thus, F(0A,_1x(0,1)) C X\o. By Lemma 3.6.3 0 C F(A,_1x][0,1]).
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3. Nash images of closed balls

As a;([-9,0) U (1,1 + 4]) C Int(0) and Int(o) is convex, one concludes that
F(An_1 % ([25,0) U (1,1+4])) C Ine(3).

Let us construct € > 0 such that: if G is under the hypothesis of the state-
ment, then ¢ C G(A,_1 x [0,1]) C X and G(A,_1 x ([-§,0]U[1,1+§'])) C o
for some 0 < &' < & small enough.

STEP 2. Choice of € > 0. Recall that by (3.6.3) F(\,t) € R"\ & for each
(A1) € 9A,_1 x (0,1). For each 0 < p < % define

gy 1= s min {dist(F (A, ¢),5) : (A\,t) € dA,_1 x [p,1 —p]} > 0.

Observe that if G : A,_1 x [p,1 — p] = R™ satisfies ||F — G| < ¢,, then
G((0A,—1 X [p,1 —p]) CR™\ G.

See assertions (i)-(ix) above for the definition of a;, bio, ¢ix, dix and e;;. Con-
sider
" i if ¢ > 0,
Cig = .
dir,  if ¢; = 0.

and define
€ := %min{aj,bio,c’{k,eik 2 Vi, 5k} > 0.

By hypothesis (v) and (vi):

hjoa;(t) = —a;t® + .- if i # j,
hi o 0i(t) = hi(v;) + h(u)t? — a;t® + -
hjoa;(1+1t)=at®+---

So there exists 0 < pg < 6 such that
—(hj 0 )" (—po.p0) Z €0 and (R © )" |[1-py,14p0] > E0-
As h; is a polynomial of degree 1, for i =1,...,n,

E n
%NW”MW=ZMwwwm>

for each ¢ > 0. Consequently,

83

8 3(h © F) Ay —1X[—po,po] > €0, (364)
83
@(hi 0 F)| A,y x[1=po,14po] = €0 (3.6.5)

fori=1,...,n.
For each k=1,...,s define §p:={i =1,...,n: cix # 0}. We have
= Z AiCik + Z Nidipt® + Z Nidipt® + -+
1€k €Sk 12k

Define I'y :={A € A1 N =0, i€ Fr} UFp #{L....,n}, then Ty # @
and por = min{d;, : ¢ & Fr} > 0. If Fr = {1,...,n}, define pox = 1.
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3.6. Building Nash images with bare-hands

If § # {1,...,n} and XA := (A1,...,\,) € T, then Ziggk Ai = 1 and each
Ai >0, so Zietﬁc Aidig > pok- Define
-1
4M0k

1
Vi = {/\EAn_li ZAi<Z,
€Tk
if §x 75 @,{1,...,71}, Vi = A 1 Fp =D and V}, := @ if § = {1,...,n}.
Observe that in the latter case I'y = @.
If §x # 2,{1,...,n}, then V;, # @ and if A € V},, we have Zigsk A > %, SO
Zz@zgk Nidip > %/io]c and

> Nidi

1€k

EM(,\,Q) = zn:/\idik = Z Aidik + Z Aidik
=1

2 o €3k iZ3k (3.6.6)
> —% + 32% = %Molw
therefore, ,
%(A, 0) > pon.
If § = @, then > | \; =1 and
;W%QMQM:EPMMMM>?% (3.6.7)

If §x # @, define

ik = min{(gkOF)(/\,O) = Z NiCik @ A= ()\1>~-~7)\n) S An1\Vk} > 0.

€Tk
(3.6.8)
If §x = 9, define pq := 1.
Let 0 < p < pp be such that
T 2B (A 1) > gt if (A1) € Vi x [—p, p].

Observe that F(A,—1 x [p,1 + p]) C Int(X) because Int(X) is convex and
ai([p, 1+ p]) C Int(X) fori =1,...,n, so

ef,:= g min{dist(F(A, 1), R" \Int(X)) : (X, t) € Ap_y X [p,14p]} > 0. (3.6.10)
Thus, if G : Ap—1 X [p,1 = p] = R" and ||F' — G| < ], then

G((An—1 x [p, 1+ p]) C Int(X).
Denote ef := min{eq, p1x, “* : k=1,...,s}. The maps

Uy S3 (A, g X [=p, 1+ p],R") = S*(An_1 x [=p, 1+ p],R), H +— g} 0 H,
0;:S¥(An_1 x [-p, 1+ p,R") = S3(Ap_1 x [-p, 1+ p|,R), H > hjo H
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3. Nash images of closed balls

are continuous with respect to the S topology. Let 0 < & < min{e},,e,} be
such that if ||% G|| <efor £=0,1,2,3, then

61:4

8£ 8£ 62 8/

ko F) = =g S (BR(F) = 5

Y4 Y4 Y4 6/
ko) - ;Z(hoG)‘ @) - 2o @) < o

X oa)‘ - ‘ \MG))’ < %0 (3.6.11)

for £ =0,1,2,3 and G € S*(A,,_1 X [-p,1 + p],R™). The chosen value € > 0
depends only on KX, F' and p > 0.

Let us check next: ¢ > 0 satisfies the conditions in the statement. Let
G:A,_1 %X [—p,14 p] = R™ be a continuous semi-algebraic map satisfying the
conditions in the statement. We have to prove: ¢ C G(A,—1 x [0,1]) C X and
G(Ap—1 x ([-9,0]U[1,1+§])) C T for some 0 < ¢ < 6.

STEP 3. We prove first ¢ C G(A,—1 x [0,1]) as an application of Lemma 3.6.3.
Observe that G|a,_, x{0} = F|a,_,x{0} is @ homeomorphism and G|a,_, x{1} =
F|a,_,x{1} = p- Let us show: G(0A,_1 x [0,1]) CR"\G.

As |F — G| < e < g, we have G(0A,—1 x [p,1 —p]) C R*\ 5. We fix
AD e A,y n{\ =0} and claim: G(A\D,t) € Int(H; ) = {h; < 0} for each
te(0,p]U[l—=p,1).

Denote ¢; := h;(G(\?,-)). Suppose there exists t; € (0,p] such that
(pz(to) Z 0. As

hi(FOAW,£)) = " Nj(hioa)(t) = > Aj(—ait® +--+)

J#i J#i

and F(A(® t) — G(A\W, t) € (t)*R[[t]], we have

pi(t) = hi(G =D Nj(—ait® +--0).

JFi

Thus, ¢;(t) < 0 for ¢t > 0 close to 0, so we may assume @;(tg) = 0. Consequently,
as ¢;(0) = 0, there exists by Rolle’s theorem t; € (0,tg) such that ¢(t;) = 0.
As ¢}(0) = 0, there exists t2 € (0,¢1) satisfying ¢/ (t2) = 0. As ¢} (0) = 0, there
exists t3 € (0,1t2) such that ¢}’ (t3) = 0. We have by (3.6.4) and (3.6.12)

3

) ,
g0 < ﬁ(hi o FY(AD t3)

83 .
:’atswioF)(W 3) = @l (t3)

(hio F)(A, t3)—i(h 0 G)(AD t3)

83
| =

~|oed

&
§5°7

which is a contradiction. Consequently, o;(t) < 0 for each ¢ € (0, p].

Analogously, one shows ¢;(t) < 0 for each t € [1 — p,1) and i = 1,...,n.
Thus,

n

G(0A,-1 x (0,1)) = [ G((An—1 N {A = 0}) x U{h <0} =R"\5.

i=1 i=1
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3.6. Building Nash images with bare-hands

By Lemma 3.6.3 we have ¢ C G(A,,—1 x [0, 1]).

STEP 4. We prove next: G(A,,—1 x ([-p,1+ p] \ {0})) C Int(X).
Since || — G| < e <€, (see (3.6.10) for the definition of €],), we have

G(Ap_1 X [p, 14 p]) C Int(X).
Fix k=1,...,sand let A € A,,_;. Let us check:

G\ t) € Int(K) ={¢1 > 0,...,95 >0}
for each t € [—p, p] \ {0}.

We distinguish two cases:

CasE 1. A € A,_1\ Vi. Observe that if Fx = &, then A,,_; \ Vx = &. By
(3.6.9) and (3.6.11)

lge0 G —gioFl < 55 and |gu(F(\ 1) — gu(F(A0)] < 5E,
if t € [—p, p]. By (3.6.8) we deduce
(gr 0 G)(A, 1) = (g 0 F)(A,0) + (gr 0 G) (A1) — (g o F)(A, 1)
+ (g 0 Y1) = (g5 0 F)(X,0) > puag — 555 = B3 =0

for each t € [—p, p]. Thus, gr(G(X\,t)) >0fort € [—p,p] and k =1,...,s, that
is, G(\,t) € Int(X) for t € [—p, p].

CASE 2. Vi, # @and A € V.. Then 0 < Ziesk Nicik and i Nidg > %uo;c >0
(see (3.6.6) and (3.6.7)). As

:Z)\i(gkoal Z)‘Clk+z>\ zkrt +)
i=1

IS

and F(\,t) — G(\t) € (£)*R][[t]], we have

Z)\Clk+z)\ 1kt + - )

€Tk

Define 0 := gi(G (X, +)) =iz, Aicik- Suppose there exists to € [—p, p]\{0
such that 05 (t9) < 0. As 0,(t) > 0 for ¢ close to 0, we may assume Gk( 0) =0.
By Rolle’s theorem there exists t; € (0,to) (or t1 € (t9,0)) such that 6} (t1) = 0.
As 07.(0) = 0, there exists ty € (0,t1) (or ta € (t1,0)) satisfying 0}/ (¢ ) 0. We
have by (3.6.9) and (3.6.11)

—
——

82
e < | st o P

82 7
- ’W@k o F)(\ta) — 0} (t2)

‘62 2

/
€o  Hok

gkOG)()\th) < 2 777

0
= @(gk o F)(A\ t2) — @(

which is a contradiction. Consequently, 0y (t) > 0 for each ¢ € [—p, p] \ {0} and
k=1,...,s. Thus G(\t) € Int(X) for t € [—p, p] \ {0}.
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3. Nash images of closed balls

STEP 5. Observe that
G(An—l X {0}) = F(An—l X {O}) =0 C 6'\7
G(Bnr % {1}) = F(Any x {1}) = {p} C &.

Finally, we show: G(A,—1 x ([=",0)U(1,14¢'])) C T for some 0 < §' < p < 4.
For each A := (\1,...,\,) € A,,—1 consider

F(A,t)):ZAj(hiOaj)( h OO(z +ZA ajt3_|_...)
Jj=1 J#i

As F(\t) — G(\ t) € (£)'R][[t]], we have

hi(GA ) = Ai(ha(vi) + hi(ug)t? — at® + ) + Z)\j(—ath +)
J#i
= /\l(hl(vl) —+ ﬁz(ul))tQ — Z )\j(ljt?’ + .-
j=1
Thus, h;(G(A,t)) > 0 for ¢ < 0 close enough to 0.
Pick A € A,,_1 and define

’(/)1(13) = hl(G()\,t)) — /\Z(hl(vl) + i_z'l(uz))tQ = — Zn:)\ja,jtg + -

Suppose that there exists to € [—p,0) such that ;(t9) < 0. Observe that
1;(0) = 0 and ;(t) > 0 for t < 0 close enough to 0. Thus, we may assume
¥i(to) = 0. As 1;(0) = 0, by Rolle’s theorem there exists t; € (to,0) such that
Pi(t1) = 0. As 9}(0) = 0, there exists to € (t1,0) satisfying ¢/ (t2) = 0. As
P (0) = 0, there exists t3 € (t2,0) such that ¢}’ (¢t3) = 0. Recall that by (3.6.4)

93
83(h o F)( :—62/\ a; + - < —¢gg

Thus, we have by (3.6.12)

83 3 "
e < |55 (hio F)(A t3)| = ’8 5 (hio F)(At3) — 1 (t3)'
3 3
‘683(}7, OF)()\tg) aag(h OG)(/\tS) S%a

which is a contradiction. Consequently, ;(t) > 0 for each t € [—p,0). As
hi(v;) > 0, there exists 0 < &' < p < § such that h;(v;)+t2h;(u;) > 0 on [—§,0)
fori=1,...,n. Thus, h;(G(A\,t)) >0o0n A,_1 x [-d,0) fori=1,...,n.

Let us show h;(G(A,t)) > 0 for (A\,t) € (1,1+p]and i =1,...,n. We have

n

hi(F(A1+1) =Y Aj(hioay) ZA ajt® + -
j=1
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3.6. Building Nash images with bare-hands

and we can repeat the previous argument taking ¢;(t) := h;(G(A\,1 +t). As
F\1+1t) =G\ 1+t) € (8)*R][t],

n

¢i(t) = hi(GA 1+1t) =Y Nj(hioay) Z)\ ajt® + -
j=1

Suppose that there exists to € (0, p] such that ¢;(tg) < 0. Observe that ¢;(0) =0
and ¢;(t) > 0 for ¢t > 0 close enough to 0. Thus, we may assume ¢;(to) = 0. As
¢;(0) = 0, by Rolle’s theorem, there exists ¢t1 € (0,%p) such that ¢}(t1) = 0. As
@5(0) = 0, there exists to € (0,t1) satisfying ¢ (t2) = 0. As ¢ (0) = 0, there
exists t3 € (0,t2) such that ¢}’(¢3) = 0. We have by (3.6.5) and (3.6.12)

3

Sephi o F)A 1+ t3)| =

33

go < ‘ ’ o (hio F)(A\,1+t3) — ’(/J/N(tg)’

(hi o FYA L+ 13) — == (hy 0 G)(A 1+ t3)

o3 o3
o3 a3
which is a contradiction. Thus ¢;(¢) > 0 for each t € (0, p], so h;(G(A,t)) > 0
on A,_1 x (1,14 p].

We conclude G(A,—1 x ([-0',0) U (1,14 4'])) C 7, as required. O

E
s;‘),

We will use the technical Lemma 3.6.4 to ‘cover’ simplices with Nash maps.
To that end, we approximate first the continuous semi-algebraic paths by Nash
paths. Let us check that for (close enough) approximations we obtain the desired
result.

Remark 3.6.5. For each i = 1,...,n let af : [-d,1 + 0] — K be a continuous
semi-algebraic path such that of|; is a Nash map, o is close to ay, (af]7)® is
close to (a;|7)® for £ = 1,2,3, (o)D) (0) = (o)D) (0) and( HO1) = (a)O(1)
for £ =0,1,2,3 (recall that I := [-0,6] U[1 — 4,1+ 4]).

(i) Then there exists £* > 0 and
F*: Ay x [=0,1+0] = K, (A1) — Z)\ia;*(t)
i=1
that satisfy the same conditions as € and F' in the statement of Theorem 3.6.4.

Observe that

(F = F*)(\t) = Z Ai(ei(t) — ai (1),

i=1
O'F  O'F* " ©
Z- — (o — (o)D)
for £ = 1,2,3. In addition, for £ = 0,1, 2, 3,
82 n N7 alF*
Zm =1=21A<ai><><o>= e (M 0).
(9 n aZF*
(A Z)\ ol ;)\ i(0)) (1) = (A1),



3. Nash images of closed balls

Take ¢* := § > 0 and assume that ||a; — aj|| < " and Ha(e) (@)D < e
for £ =1,2, 3 Let G: Ap—1 x [=4,1+ 8] = R™ be a continuous semi-algebraic
map that is Nash on a neighbourhood I'x Ap_1 CIxA,_qof A,y x{0,1}

and satisfies 2 (\,0) = ZL7(),0), 2 (>\ 1) = ZE2(\,1) for each A € A,_;

ott “ot?t 6tf L. Tt
and £ =0,1,2,3, |G — F*|| < &* and || atf - 885 |l < e* for £ =1,2,3. Then
‘G O'F* o'F
W()\’O)_W(A’O) ot g()‘ 0),
‘G O'F* o'F
21 =25 (01 1
a_t,g (A? ) atg (A? ) a g (A )

for each A € A,,_1 and £ =0,1,2,3, and
|G = F| <G = F|[+[|[F* = Fl| <&" +" =,
o'G  O'F o‘'G  o'r* o'F*  O'F
_ < _ _
ottt ott||, T | ott  ott ||, ott ott ||,
for £ = 1,2,3. By Theorem 3.6.4 we have that ¢ C G(A,_1 x [0,1]) C X and
G(An—1%x([—p,0]U[1,14p])) C T for some 0 < p < § small enough, as required.

<e*+e*=c¢

(ii) By (i) and Lemma 3.3.5 we may assume that each path «; : [-40,1+0] —
X in the statement of Theorem 3.6.4 is Nash on [—d,1 + §].

The following result provides sufficient conditions to guarantee that the high
order derivatives of two continuous semi-algebraic functions on R? x [—1,1]
that are Nash on a neighbourhood of a semi-algebraic set 8§ x {0} are equal at
the points of § x {0}. This provides a sufficient condition to decide when the
approximating maps satisfy the hypothesis of Lemma 3.6.4.

Lemma 3.6.6. Let § C R? be a non-empty semi-algebraic set. Let F,G :
R? x [~1,1] — R™ be two continuous semi-algebraic maps that are Nash on
a neighbourhood of 8 x {0} and suppose that there exists a Nash function X :
[—1,1] = R such that ||F —G||sx[-1,1] < [A[=1,1) and that A(t) = a1t u?(t)
where agy1 # 0 and u € R[t]]aiz is a Nash series such that uw(0) = 1. Then, for
each x € 8§ we have

oF oG
w(%o) ot 7 (2,0)
for£=0,... k.
Proof. Pick = € § and write
1 0F
F(l’,t) = Ew(m70)tz,
>0
1 0G
G(l’,t) = Ew(m70)t£
>0

Thus, we have the following inequalities in the ring R[[t]]ag of Nash series with
respect to any of its two orders (the one characterised by t > 0 and the other
one by t < 0):

£ 5 (G0 - gate0) ¢ <10 —cw

< Japsa [ fu? < Jagath ! 4o
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3.6. Building Nash images with bare-hands

Consequently, the series
1 (OF oG ¢
;;0 il (W(:r,o) - W(%@) t

is a series of order > k + 1, so

OF 0G
W(%O) - W(%O) =
for £ =0,...,k, as required. O

3.6.3. Local charts and tubular neighbourhoods. Let 7 C R™ be a com-
pact checkerboard set of dimension d > 2. The algebraic set M := T c R®
is a Nash manifold. By [FGR, Thm.1.6] the Nash normal-crossings divisor
9T © M can be covered by finitely many open semi-algebraic subset U C M
endowed with Nash diffeomorphisms vy = (u1,...,uq) : U — R? such that
UunazT™ = {uy -+ -us = 0} for some s depending on U. As T is compact, there
exist finitely many Nash diffeomorphisms ¢; : R — U; € M fori =1,...,r such
that ¢;(Ag,) C T, where A, := {x1 > 0,...,x;, > 0} C R? for some 0 < k; < d,
and {¢;(Ag,)}i—; is a finite covering for T, that is, T = |J, ¢i(Ax, ). Moreover we
may assume that, if U; noT ™" # & then U; N 9T = {uy - - ug, = 0}, where
¢; ' = (uy,...,uq). In particular, |J; ¢;(Int(Ay,)) C Reg(T) =T\ 97.

Let (€, v) be a Nash tubular neighbourhood for the Nash manifold M =T
endowed with a retraction v such that dist(z, M) = |v(z) — z|| for each z € Q
(see [BCR, Cor.8.9.5]). When T is compact, shrinking € if necessary, we may
assume Cl(v~1(7T)) is compact and v admits a Nash extension to Cl(v~1(T)).

3.6.4. Some preliminary estimations. We want to provide some estimations
in order to apply Lemma 3.6.6 later in our construction. Let x € M and y € R™
be such that z + y € 2, then

(2 +y) — =l < vz +y) = (+ )l + llyll
= dist(z +y, M) + [ly]| < llz +y — =l + [yl = 2lyll.

Let F:= {¢ : R? = R? linear} = (R%*)? and let 1, ...,%, € F. If w € R? and
A1, ..., Ay € R are such that (¢ 0 ¢1)(w) + D1y Xi(¢i 0 ;) (w) € Q, then

[o((610 1))+ 3 Aés 0 6)w)) — (1 0 ) )|
=t . (3.6.13)
< 2| Yo n@r o) w)]| <237 Inlln 0 i) (w)]|
i=1 i=1

Recall that B4(0,¢) (resp. B4(0,¢)) denotes the closed ball (resp. open ball)
of R? of centre the origin and radius ¢ > 0.

Lemma 3.6.7. Let M C R™ be a Nash manifold and consider a Nash chart
0 :=(61,...,0,) : RT — M. Let 7 : R® — R? be the projection onto the first
d coordinates and denote W := (7 o 0)(R?). Assume that W is open and that
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3. Nash images of closed balls

the map @' == w00 :R* - W is a Nash diffeomorphism. For each t > 0 there
exists a constant Ly > 0 such that |0~ (z) — 07 (y)|| < L¢llz — y|| for each
z,y € 0(Ba(0,1)).

Proof. Define f := (6441,...,0,) 00~ : W — R"¢ and observe that we have
Oo0~1: W = 0RY), 2+ (2, f(2)). Thus,
Iz = wll < (2, f(2)) = (w, f)]| = [[(§08)(2) = (608 )(w)|

for each z,w € W. Consequently, writing z = (6’c0~1)(x) and w = (0’007 1)(y),
we deduce
16" 06~ )(z) =0 007 (y)|| < |z —yl|

for each z,y € O(RY) = (G o 0'~1)(W).
By the mean value theorem there exists a constant L; > 0 such that
1071 (2) = 0" (w)]| < Lel|z — w
for each z,w € '(B4(0,t)). Thus,

167 (@) = 07 ()l = 1071 (0" 0 07) (@) = 0'7H((0" 0 07 ) ()]
S Lef|(0" 007 (@) =0 0607 (y)]| < Leflz —

for each z,y € §(B4(0,t)), as required. O

As T is compact, we may assume T C J;_; ¢;(B4(0,1)) = M. We may
also assume, using the compactness of T, that each ¢; is under the hypothesis
of Lemma 3.6.7. Define K := max{|z|| : =z € T} > 0. If w € By(0,1) and
A1, ..., A € Rare such that v((¢1091)(w)+> iy Ni(¢i0t;)(w)) € ¢1(Ba(0,1)),
then by (3.6.13) and Lemma 3.6.7 there exists L > 0 such that

or (v (@1 0 vn)(w) + im 0 4)(w)) ) = a(w)|
< (91 0 )+ XMoo v @) — (@10 vn)(w)| (3610
i=1
2L N6 0 ) )] < 2 3

3.6.5. Decomposition as a finite union of ‘simplices’. Consider the vec-
tors of the standard basis e; := (0,...,0,1,0,...,0), fori = 1,...,d, of R%. Fix
k=1,...,d and consider the convex polyhedron X, that is the convex hull of
the origin and the points

€1y.+.,€k, €41y —Ck41y-.-,€d, —€4d-

We have that the polyhedron K is a compact neighbourhood of the origin in
A = {Xl >0,...,x, > 0}, K NOAL = 0K NOAy and Int(ka) =Ky ﬂInt(Ak).
Observe that Xy is the union of the simplices A(egy1,...,&4) of vertices the
origin and the points

€1,...,€L, Ek4+1Ck+1,---5yEdCd,
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3.6. Building Nash images with bare-hands

where €p41,...,64 = 1. Let T be the collection of the proper faces of the
simplices A(€g41,--.,&4) that are contained in 0Kj. Observe that T) provides
a triangulation of 0Xj. Define

k
1
Pk '_Z2d—k+1ej

1 1 1 1
sz Fr1o T zk;l ad—hti” " Z a1 T
which belongs to Int(Xj). Observe that if k = 0 then py is the origin. For each
o € %), define 7 as the convex hull of o U {py}, which is a simplex. Observe that

%k :={0: o €%} is a triangulation of K}, such that
CNOAL, =0NK,NOAL =0 NOK, NOA, =0 NOAg,

which is either the empty set or a face of o (see Figure 3.8). Let Fj be the
collection of the simplices o € Ty, of dimension d.

We retake here the Nash atlas {¢;}7_; of M =T introduced in 3.6.3 and
we keep all the hypothesis concerning {¢;}i_; already introduced there. We
may assume that {¢;(Ky,)}7_, is a covering of the compact checkerboard set
7 introduced in 3.6.3. For each ¢ consider the finite family Fj, of simplices
of dimension d. Note that we are considering the families Fy, and Fy,, as
different families of simplices when i; # is, even if X;, = K;, as subsets of R4,
We consider all the pairs (¢;,7) where 7 € Fj,. Observe that 7 is the convex
hull of o U {py, } for some o € Ty,.

Repeating the diffeomorphisms ¢; as many times as needed and reordering
the diffeomorphisms ¢;, we may assume that {¢;(7;)}7_; is a covering of T such
that 7; is a d-dimensional simplex of R and 7; N ¢;1(atr) is either the empty
set or a proper face of ;. Let o; be the (d — 1)-dimensional face of 7; that does
not contain p; := pg,. Observe that 7, N (bf (07) C o0;. Note that p; belongs to
¢; ' (Reg(T)) because p; € Int(Ay,) C ¢; ' (Reg(T)).

€2 () €2
k=0 k=1 k=2

—eq €1 —e1 €1 —e1 €1

—e2 —e2 —e2

Figure 3.8: Triangulations Ty, of the polyhedra Ky, for d = 2.
3.6.6. Shrewd set of maps. Consider the vectors of the standard basis
e; :=(0,...,0,1,0,...,0),
fori =1,...,7, of R". Let F := {1 : R? — R? linear} = (R%*)? and write
o= (p1,...,pr) € R" and ¢ := (¢Y1,...,%,) € F". Let

T: ngr—)N(Rd Rn), HZIM ¢zo¢z)

i=1
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3. Nash images of closed balls

which is a continuous map if both spaces F and N (R? R") are endowed with
the compact-open topology. The compact-open topology of F coincides with the
topology of J induced by the Euclidean topology in the coefficients of (R%*)9.
Recall that

Ay ={M>0,...,0>0, A\ +...+ g =1} CR%

Note that an element of R%* is determined by the images of the vertices of
Ag4—1, which is a (compact) finite set.

Define ©g := {(u;9) € R" x F" : T'(11,%)(Agq_1) C v~ 1(Reg(7T))} and let us
prove that it is an open semi-algebraic set. The objects T and v were already
introduced in 3.6.3.

Proposition 3.6.8. The set ©g C R" x F" is open and semi-algebraic.

Proof. The fact that © is semi-algebraic follows by the Tarski-Seidenberg prin-
ciple (see for instance [Co, Thm.2.6]), because it can be described as

Q= {z eR" x F" : U(x)},

where U(x) is a first order formula in the language of ordered fields.

Let us show now that Oy is open. Recall that Reg(7) is an open semi-
algebraic subset of . As T is pure dimensional, Reg(T) is open in the Nash
manifold M := T . Thus v~ (Reg(7)) is an open subset of R". Consider now
the set

(F e NRLR™) : F(Ag1) C v (Reg(T)},

which is an open subset of the open-compact topology of N'(R%,R™). Thus, the
set Qg = I 1({F e N(RY,R™) : F(A,_1) C v~} (Reg(T))}) is an open subset
of R™ x F", because the map I' is continuous. O

3.6.7. Properties of ©g. For each w € R?, define the linear map
e : R — RY, (x1,...,2q) — (x1 4+ + zq)w.

Observe that 1y |{x,+...4+x,=1} s the constant map w and recall that the simplex
Ay C{x1+---+x4 =1} Let us analyse some properties of Og:

(%)
(1) If ¢i(w;) € Reg(T), then (e;;0,...,0,1,,,0,...,0) € Oq.

As T'(ey;0, .. .,o,ugi),i,o, o 0)(Ago1) = {#i(wi)} C Reg(T) € v~ 1(Reg(7)),

we have

(4)
(ei;oa"woawwivoa"wo) 6(_)O~

(2) Given 1 < i,5 < r, let w; € Int(Ay,) and z; € Int(Ag,;) be such that
qbz(wl) = ¢J(ZJ) Then

(2) (4)
(€50,...,0,%y,,0,...,0) and (e;;0,...,0,1y,,0,...,0)

belong to the same connected component of Oy.
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3.6. Building Nash images with bare-hands

Observe that
Gi(wi) = (1= )i (wi) + () = ¢;(2;) € Reg(T) C v~ " (Reg(7T))
for ¢ € [0,1]. Thus,
D(((L = £)es 4+ 10,30, .0, s 0y - 0,010, 0)) (D)

(1= )(¢i © Yu;) + t(5 © ¥2;))(Aa-1)
={(1 = )s(wi) + te(2;)} C v~ (Reg(T)),

(#) (4)
so ((1—t)e;+tey;0,...,0,14,,0,...,0,%.,,0,...,0) € O for t € [0,1]. Conse-
quently, the connected set

(1) (4)
C1 = {((1 —t)e; +te;;0,...,0,%y,,0,...,0,9.,,0,...,0) : t € [0,1]},

is contained in one of the connected components of ©g. In addition, for ¢ € [0, 1]

(4) ()
T(ei:0, .0, 0, 0,872,0, . 0)(Aary) = {ds(w:)} C v~ (Reg(T))

(@) (4
F(ej7 07 s 7071/}757111‘707 teey 071;2]'70u R 0)(Ad71) = {(bj(zj)} - V_I(Reg(‘.]'))

As Py, = t1p,, and Yy, = tihy, for t € [0, 1], we deduce

(i) ®)
(e4;0,...,0,%4,,0,...,0,t2,,,0,...,0) € Oy for t € [0, 1],

(i) @)
(e5;0,...,0,t1hy,,0,...,0,9,.,0,...,0) € Oy for t € [0,1].

Thus, the connected sets

(4) (4)
Gy := {(ei;O,...7O,wwi,0,...70,t¢zj,0,...,O) 1t e [0,1]}7
(@) (9)
€3 :={(e;;0,...,0,t)y,,0,...,0,%.,,0,...,0) : t €[0,1]}
are contained in a connected component of ©q. As

() ()
610(32 :{(ei;o,...707’wai,o,...,o, 2j707"'70)}7
(%) (€)
61063:{(ej;O,...,O,¢wi,0,...,0, @/}ZJ,O,...,O)},

we deduce C; U Gy U C3 is a connected subset of ©g contained in one of its
connected components.

We conclude that

(4) ()
(€:;0,...,0,%4,,0,...,0) € Co and (e;;0,...,0,%y,,0,...,0) € C3

belong to the same connected component of Og.
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3. Nash images of closed balls

(3) If w; € Int(Ay,) and z; € Int(Ayg,), then

(2) ()
(€:;0,...,0,%4,,0,...,0) and (e;0,...,0,9.,,0,...,0)

belong to the same connected component of ©g.

As T =Ji_; ¢i(Ax,) is connected and Int(¢;(Ay,)) is dense in ¢;(Ag, ), given
1 < 4,7 < r there exists a chain {¢;, (A;w)}j:1 such that ¢ = i, j = i, and
¢, (Int(Ag;, ) N @i,y (Int(Aki“1 )) # @ for each £. Observe that

T

U ¢l(1nt(Akq)) c Reg(“T)v

=1

see Section 3.6.3. So let us consider the case ¢;(Int(Ag,)) N ¢;(Int(Ag,)) # @.
By (2) it is enough to consider the case i = j. Observe that

thw, + (1 - t)"/}zl = wtw,;—o—(l—t)zi

for each ¢t € [0,1]. As w;, z; € Int(Ag,) and the latter is convex, we have that
tw; + (1 —t)z; € Int(Ay,) for each t € [0, 1], so

[((es;0,...,0,th,, + Ell)— )12,,0,...,0))
= ¢i(tw; + (1 = t)z;) € Reg(T) C v~ " (Reg(7)).
Thus, 4
{(ei;0,...,0,ty,, + ((11)—75)'(/)4,0,...,0) cte[0,1]} C O

is connected, so

(2) (4)
(ei;0,...,0,%,,0,...,0) and (e;0,...,0,%,,,0,...,0)
belong to the same connected component of ©.

(4) There exists a connected component © of ©g that contains the connected set
{ei} x F=1 x {ahy, : w; € Int(Ag,)} x F'=% for eachi=1,...,r.

Observe that
F((eu ¢17 e 7%‘—1, ¢um ¢i+17 sy w'r’))(Ad—l)
= ¢i(Yw,)(Ad—1) = di(w;) € Reg(T) C v~ (Reg(7)),

so {e;} x Fml x {4y, : w; € Int(Ag,)} x F'~F C O and it is a connected set,
because it is a finite product of connected sets.

(5) Let © be the connected component of Oq introduced in (4). If¢; € F
satisfies ;(Ag—1) C Ay,, then (e;;0,... ,0,1(;2, 0,...,0) € CI(O). If in addition
¥i(Ag—1) C Int(Ag,), then (e;;0,...,0, 1(22,07 ...,0)e 0.

Let w; € Int(Ag,;). Recall that by (4)

(i)
(e;0,...,0,%p,,0,...,0) €O
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3.6. Building Nash images with bare-hands

for each t € (0,1], because Ay, is an open cone, so tw; € Int(Ag,) for each
€ (0,1]. Consider the Nash path
(9
a:(0,1] = R" x F", t— (e;;0,...,0,(1 = t)h; + thy,,0,...,0).

We claim: T'(a(t))(Agq—1) C Reg(T) fort € (0,1].

This is so because tw; € Int(Ag,) and (1 — )y (Agq—1) C Ay, for ¢t € (0,1],
so (1 — ©)¢; + ;) (Ag—1) C Int(Ay,) for ¢ € (0,1]. Thus, a(t) € O for each
t € (0,1] (see (4)). As a(l) =1y, € O, we conclude 1; € C1(O).

If in addition ¥;(Ag—1) C Int(Ay,), then
(1)
(e:;0,...,0,%;,0,...,0) € O,

(%)
so (e;;0,...,0,4;,0,...,0) € ©NClO) = O.

(6)If (u;9) € CL(B0), then T(11;¢)(Ag—1) C Clv~(T)).

By the curve selection lemma (see [BCR, Thm.2.5.5]) there exists a con-
tinuous semi-algebraic path « : [0,1] — Cl(©g) such that «(0) = (u;%) and
a((0,1]) C ©¢. This means that for each t € (0, 1] one has

L(a(t))(Ag-1) € v (Reg(7)).

] = R™ is a continuous semi-algebraic path

If 2 € Ag_q, then T'(a(?))(z) : [0,1
! (7)) for each t € (0,1], so

such that T'(«(t))(z) C v~ '(Reg
P(a(0))(x) € Cl(v~ (Reg(T)) < Cl(y~4(T)).
Thus, D5 ) (Aa1) € Cl1(T)).

(7) Recall that Cl(z~1(7)) is a compact set and v admits a Nash extension to
Cl(r=(T)) (see Section 3.6.3). As v|ci,—1(3)) is proper,

v(T(p9)(Aa-1)) € v(CUv™H(T))) = CUT) = T.
(8) Let j : N(RY,R™) — N(Ay_1,R™), f+ f|a,_,, which is continuous if we

endow both spaces with the compact-open topology (see Facts 2.3.7 and 2.3.10).
Then the composition

vi0jol': CU(O) = N(Aa-1,T), (m3¢) = vo (D((159))]au)
is continuous.
(9) If B: [0,1] — C1(y) is a Nash path, then
B:[0,1] x Ag_y = T, (t,x) = v o (T(B())(x)

s a Nash map.
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3. Nash images of closed balls

3.6.8. Nash images of the closed ball. We are finally ready to prove The-
orem 3.2. As seen in Section 3.5.5 it is sufficient to prove Theorem 3.5.8. Let
us prove: Given a compact checkerboard set T C R™ of dimension d > 2, there
exists a Nash map F : Ag—1 x [0,1] = R™ such that F(Ay4—1 x [0,1]) =T

Proof of Theorem 3.5.8. We keep all the notations introduced in Sections 3.6.3,
3.6.5 and 3.6.6. We also keep all the assumptions done along these subsections.
Recall that T = (J;_, ¢i(7) C Ui_; ¢:(Ba(0,1)), where 7; is a d-dimensional
simplex such that 7; N ¢; 1(07) is either empty or a proper face of 7; contained
in a (d — 1)-dimensional face o; of 7;. If 7;N¢; 1(0T) = & we denote with o; the
facet of 7; that does not contain the origin of R¢ (this situation corresponds to
the case k = 0 in Section 3.6.5 and the origin is the point pg introduced there).
In both cases the remaining vertex p; of 7; belongs to ¢; ' (Reg(7T)) and 7; is the
convex hull of o; U {p;}, see Section 3.6.5.

Denote v;; for j = 1,...,d the vertices of o;. Let Hj; be the hyperplanes
generated by the facets of 7; that contains the vertex p; and assume v;; & H;j

and 7; C ﬂ?zl H;

Let av; : [=d,1+ 6] — R? be Nash paths satisfying the conditions of Lemma
3.6.4 (see also Remark 3.6.5(ii)). Consider the Nash path

d
Ai : [—5,1+5] —>{ez} Xy, t— <ei;0,...,O,Zaij(t)xj,O,...,O)
j=1

and observe that

@i(7i) C di(Ar,) CT ift=0,

¢i(Int(1:)) C ¢s(Int(Ag,;)) C Reg(T) ift € [-d,1+ 4]\ {0}.
Thus, A;(t) € © if t € [-0,1 + 6]\ {0} and ¢; := A4;(0) € Cl(®), see prop-
erty 3.6.7(5). Define the linear maps n; := Z;l:l a;;(=0)x; € F and & =

Zj=1 a;ij(1+90)x; € F. As ni(Ag_1),&(Ag—1) C Int(r;) C Int(Ayg,), we deduce
by property 3.6.7(5)

[(Ai(t)(Aa-1) C {

i (1)
(ei;oa"'7oag7’3707"'70)’ (ei;O,...,O,&,O,...,O) € 0.

Up to repeating the charts ¢; as many times as needed, we may assume
i(Ar,) N Pig1(Ap,y,) # @
and let ¢;(w;) = ¢ir1(2it1) € ¢i(Ak,) N Pit1(Ag,,,). Consider the Nash paths
B; :[0,1] = Oq, t = (e:;0,...,0,(1 = )& + tuw,, t1h-,,,,0,...,0),

Ci: [0, 1] — O, t— ((1 _t)ei+tei+1;0a"'aoawwwwzulvoa"'vo)a
D;: [07 1] — O, t+— (eiJrl;O,...,O,(l —t)’(/)wi,(l —t)wzHl +t77i+1,0,...,0).

(@
We have B;([0,1]) C ©¢ because B;(0) = (e;;0,...,0,&,0,...,0) € Oy and
B;((0,1]) € ©¢ by property 3.6.7(4). In addition, C;(]0,1]) C ©¢ by the proof
of property 3.6.7(2). Moreover, D;([0,1]) C ©¢ because

(i+1)
Di(].) = (eiH;O,...,0,77i+170,...70) S @0
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3.6. Building Nash images with bare-hands

and D;([0,1)) C ©¢ by property 3.6.7(4). Observe that

@
Bi(O):(ei;O,...,O,gi,O,...,O) €0

and B;([0,1]) is connected so B;([0,1]) C ©. Analogously, C;(0) = B;(1) € ©
and C;([0,1]) is connected so C;([0,1]) C ©. In addition, D;(0) = C;(1) € ©
and D;([0,1]) is connected so D;([0,1]) C ©

Fix times 0 < t; < 81 < --- < t,. < 8, < 1 and denote

(@)
Xi = Az(l) = (ei707"~707(xl+"'+Xd)pi707"'70) € 6.

Observe that (x1+...4+x4)p; is the linear map R¢ — R? that takes the constant

value p; € Int(Ag,) on the hyperplane {x; + --- + x4 = 1}. Consider the
continuous semi-algebraic path obtained concatenating the previous paths:

E:= ,%l(Ai*Bi*Ci*Di) (0,1 = 0U{¢,. .., ¢}

and assume, after reparametrizing the paths if necessary, E(t;) = ;, E;(si) = xi
1]- Let p > 0 be such that £

is Nash on

U —ptitplUlsi—p,si+pl).

By Lemma 3.3.5 we can approximate the continuous semi-algebraic path E by
a polynomial path v : [0,1] = © U {(1,...,( }, such that:

(i) v(t:) = BE(ti) = G, v/ (t:) = E'(t:), " (t:) = E"(t:) and "' (t:) = E"(t:)

foreachi=1,...,r.
(i) v(si) = E(si) = xi, 7' (si) = E'(s:),7"(s:) = E"(si) and v (si) = E"(s)
foreachi=1,...,r.

(iii) ||y = Ell, I = E'|l1, 17" = E"||r and || — E"||1 are small enough.

Write v := (p;¢1, ..., ¥,) and p:= (p1, ..., pr). As

d
Az(t) = (ei;07. .. ,07Zaij(t)xj,0,. . .,0),
j=1

we deduce by (i) and (ii) above that
Lifi=j
0if i # j,

si) = 0, pi/(t;) = p (s;) = 0 and " (t;) = pi"(s;) = 0. By Lemma
i([ti, 8i] X Ag—1) C Ay,. Consider

pi(sy) = pi(ty) = {

()
~ S
2
Nx
&

ZW o) (t,x) : [0,1] x R = R™.
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3. Nash images of closed balls

We have T'(7)({t} x Aq—1) € v 1 (Reg(T)) if t € [0,1] \ {t1,...,t}, whereas
L(y)({t:} x Ago1) = ¢(o;) € T for i =1,...,r. This means that

v(T(9)([0,1] x Ag—1)) C T. (3.6.15)
Fix i =1,...,r and denote
Aij = pim %f]..:?’
1 ifi#j.

Observe that ,\Eg‘f) (t;) = )‘z(f)(si) =0for1<4,j<r £=0,1,2,3 and each \;; is
close to zero. By (3.6.14) there exist L, K > 0 such that

57 (v (600 8)(1.2) + 3 M0 000, ) )

<2LK Y A (1))

Jj=1

By Lemmas 3.6.4 and 3.6.6, we deduce 7; C ¢; ' (v(T'(7)([ti, 5] X Ag—1))) C Ay,
because 1; C ¥;([ts, 8i] X Ag_1) C Ag,. Thus,

¢i(1i) C v (Y)([ti; 8] X Aa-1)) € ¢i(Ag,) CT

fori=1,...,r, so by (3.6.15)

r

T = ¢i(n) Cv@I x Ag_1)) € v(T()([0,1] x Ag_1)) C T.

i=1

Consequently, v(I'(7)([0,1] x Ag—1)) = T, as required. O

3.7 General Nash images.

Once we have completely characterised the Nash images of the closed ball, a
natural question arises: To determine all possible compact models that allow us
to represent a compact semi-algebraic set § C R™ of dimension d connected by
analytic paths as a Nash image. This question is not trivial, and different classes
of semi-algebraic functions might have different answers. For instance, we have
seen in Remark 3.1.10 that the family of polynomial images of the closed ball
and the one of sphere are different.

In the Nash case we are able to give a complete characterization of the
compact models. Combining Theorem 3.2 and the next result we will show
that: If § C R™ and T C R™ are two semi-algebraic sets such that § C R"
is compact, connected by analytic paths and dim(8) < dim(T), there exists a
Nash map f: R™ — R™ such that f(T) = 8. This means that we can use any
semi-algebraic set T of dimension d to represent d-dimensional compact semi-
algebraic sets connected by analytic paths as Nash images of T. For instance,
a ‘semi-algebraic Teddy bear’ can be mapped onto a ‘semi-algebraic sheep’ by
means of a Nash map and vice versa (see Figure 3.9). Denote B,,(p,¢) the
closed ball of R™ of centre p and radius € > 0.
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Figure 3.9: A sheep and a Teddy bear (figure borrowed from [FU6, Fig.1.3]).

Theorem 3.7.1 (Barchen-Schéfchen’s Theorem). Let T C R™ be any semi-
algebraic set of dimension d. Then, there exists a regular map f : R™ — R?
such that f(T) = Bg.

Proof. Let p € T be a regular point of T such that dim(T,) = d, let p + T,,T
be the affine tangent space to Reg(T) at p and let 7 : R™ — p + T,T be the
orthogonal projection of R™ onto p 4 1},T. There exist € > 0 and a compact
neighbourhood W? C Reg(T) of p such that 7|w» : WP — B, (p,e)N(p+T,T) is
a Nash diffeomorphism. For simplicity we assume that p is the origin and € = 1,
so that B,,(p,e) N (p + T,7T) is isometric to the unit closed ball B,. Consider
the inverse of the stereographic projection

@:Rd%Sd\{(O,...,l)},

z = (x Tq) < 201 2zg 1+ ||x||2>
— 1y 9dd 9o ey 3
1+ |lz|? L+ lz)*" 1+ [|l)
Let 7/ : R — R (2q,...,2441) + (21,...,74) be the projection onto the

first d coordinates and observe that 7’ o ¢ : R? — RY satisfies
(7" 0 p)(R?) = (1" 0 ) (Ba) = Ba.

After taking suitable coordinates and considering the previous regular map,
there exists a surjective regular map g : p+ 71,7 — B4 such that

9(Bm(p,e) N (p+T,7T)) = g(p + T,T) = By C R

In particular, g(A) = B, for each A such that B, (p, )N (p+T1,T) C A C p+T,7.
Thus, the composition g o 7 : R™ — R? is a regular map satisfying

(gom)(T) = g(n(T)) = g(x(W?)) = g(Bm(p,) N (p + T,,7)) = Ba,

as required. O

It is natural now to wonder if the previous result extends to pairs of general
semi-algebraic sets non necessarily compact. If § C R™ is non-compact and
T C R™ is compact, there exists no Nash map f : R™ — R” such that f(T) = 8.

Let T4 be the set of points of T of dimension d, which is a semi-algebraic set
(see [Fe2, §3.1)). If T has dimension d > 2, the semi-algebraic set Cl(T4) N T is
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3. Nash images of closed balls

not compact and 8 C R™ is connected by analytic paths with dim(8) < d, then
there exists a Nash map f : R™ — R"™ such that f(T) = 8. By Theorem 3.1 it
is enough to consider the case 8 = R¢ for d > 2.

Theorem 3.7.2. Let T C R™ be a semi-algebraic set and let d > 2. Assume
that C1(Tq) N'T is not compact. Then, there exists a Nash map f : R™ — R?
such that f(7T) = R

Proof. If m = d and T = R? there is nothing to prove. Thus, let us assume
R™\ T # @. We may assume that T, is unbounded. Otherwise, T4 is bounded
and not closed (because Cl(T4)NT is not compact), so there exists p € C1(Ty)\T.
Consider the Nash map

1
h:R™\ {p} - R™ 2+ (z,),
|z — pll

which is a Nash diffeomorphism onto its image. Observe that h(T,) C h(7T) C
R™*! is unbounded. We identify h(T) with T and h(T;) with Ty.

Consider the immersion ¢ : R™ — RP™, z — [1 : z]. As Ty is unbounded,
we may assume

(d+1)
0:...:0: 1 :0:...:0] € Clgpm (Tq).
Consider the projection
T:RP™ 5 RP? g2y :...: Zp] = (20 : 210 ...t 2
whose restriction to R™ is the projection 7 : R™ — R?, (z1,...,7,) —
(x1,...,24). As
7([0:...:0:1:0:...:0])=[0:...:0:1] € Clgpa(m(Tq)),

we deduce m(7) is not bounded. Thus, taking 7(T) instead of T we may assume
m = d, dim(T) = d and T4 unbounded.

If T = R? we are done, otherwise, we may assume after a translation that
0 ¢ 7. Consider the inversion i : R?\ {0} — R\ {0}, = Mat> Which is a Nash

involution of R?\ {0}. Thus, at this point T C R? is a semi-algebraic set of
dimension d such that 0 € Cl(T4) \ T. Observe that Reg(Ty) is an open subset
of R? adherent to the origin.

By the Nash curve selection lemma (see [BCR, Prop.8.1.13]) there exists a
Nash arc
a:=(oq,...,0q) : [0,1] = Reg(Tq) U {0}

such that «((0,1]) C Reg(T4) and «(0) = 0. After a linear change of coordinates
we may assume that a((0,1]) N {x; = 0} = @ (here we are using that d > 2).
Consider now the Nash map

g :RIN{0} = {x1 >0}, (21,...,24) — (|||, z2,...,xq).

As g|ga\ {x,—0} is a local diffeomorphism and in particular is open, g(Reg(Tq))
contains an open semi-algebraic set U C {x; > 0} adherent to the origin such
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that g(a((0,1])) C U. After substituting a by g o & and reparameterizing we
may assume o = tP, each a; is an algebraic series in the variable t and the
order of « is smaller than or equal to the order of o; for ¢ = 2,...,d. The
previous conditions hold because because the «; are algebraic Puiseux series at
the origin and the first component of go is \/a? + ... + a2 . By Lemma 3.3.5
we may assume that «; € R[t] for i = 2,...,d. We substitute T C R%\ {0} by
g(T) C {x; > 0}, which is a semi-algebraic subset of R? of dimension d such
that 0 € Cl(g(T)q) \ g(7).

Consider the Nash diffeomorphism
h:{x1 >0} — {x1 > 0},
(1,22, ..., xq) = (o1, 22 — a2(YT1),. .., xqa — aa(¥/T1))
and observe that hoa = (t,0,...,0).

Let us fix an ¢ > 0 such that (0,e] x {(0,...,0)} C h(U). Observe that
h(T) C {x1 > 0} because T C {x1 > 0}. Let
§:(0,e] = (0,400), t — dist((¢,0,...,0),R\ (U))
and let ¢ : (0,e] — (0,+00) be a Nash function such that [§ — ¢ < 4, so
% <é< %. Write 2’ := (23,...,24) and consider the open semi-algebraic set
W= {(z1,2') € (0,e) x R¥™L: ||2/||? < €2(x1)} € h(T).

Observe that £ is a Puiseux series at the origin. The map

foi (>0} = (> 0}, () o> (505
1

is a Nash involution for each ¢ > 1. Fix two positive numbers Ni, No > 0
and consider the semi-algebraic set F := { N7 + No||x’[|?> < x1}. Observe that

(y1,y") € fo(F) if and only if fy(y1,9) € F, so
1
mwzﬁwwsﬁFM—Nmﬁ
No

/ 1 d—1 ne « L 201
— : < — .
c o u{@nae (o N1> xR < }
If Ny, Na, ¢ are large enough, fo(F) C {0} UU, so F C (froh)(T) (recall that f,
is an involution). Consider the polynomial map
PR RY (21,2)) = (21 — (N7 + Nol2||?), 2)
that maps F onto {x; > 0}. Let P, : R? — {x; > 0}, (w1,2") — (2%,2').
Observe that
{x1 20} = P({x1 2 0}) = (P2 0 P1)(TF)
C (Pyo Pyo froh)(T) C Py(RY) = {x; >0},

s0 (Pyo Pyo fpoh)(T)={x1 > 0}. Denote 2" := (x3,...,24) and consider the
polynomial map

Py :RY 5 R (21, 20,2") = (22 — 22, 22129, 2)
that maps {x; > 0} to R? (again we have used here that d > 2). Consequently,
(P30 Pyo Pyo fyoh)(T) =R? as required. O

73



3. Nash images of closed balls

The following example shows that Theorem 3.7.2 is no longer true if d = 1.

Ezample 3.7.3. Let f :[0,400) — R be a non-constant Nash map and consider
its derivative f’ : [0,+00) — R. Observe that {f’ = 0} is a finite set. Define
a := max{f’ = 0} and assume that f’ is strictly positive on (a,+0o0), so f is
strictly increasing on (a, +00). This means that f([a,+00)) = [f(a),b) for some
b e RU{+0}. As f([0,a]) is a connected compact set, f([0,a]) = [e,d], so
f([0,+0)) = [e,d] U [f(a),b), which is not an open interval. Thus, f([0,+00))
is a proper subset of R.

Putting together all these results, we obtain the following characterization
for Nash images of general semi-algebraic sets.

Theorem 3.7.4. Let 8 C R" be a semi-algebraic set of dimension d > 2 con-
nected by analytic paths. For each semi-algebraic set T C R™ with d < dim(7T),
such that Cl(T.) N T is non-compact for some d < e < dim(T) in case 8 is
non-compact, there exists a Nash map [ : R™ — R™ such that f(T) = 8.

3.8 Surjective Nash maps between general semi-
algebraic sets

Once established a satisfactory classification (both for the compact and non-
compact case) of the possible models to represent semi-algebraic sets connected
by analytic paths as Nash images, a natural question at this point is to determine
until what extend we can represent general semi-algebraic sets as Nash images.
We introduce first the analytic path-connected components of a semi-algebraic
set [Fed, §9].

3.8.1. Analytic path-connected components. A semi-algebraic set § C R™
is connected by analytic paths if for each z,y € § there exists o : [0,1] — 8
analytic such that 0(0) = z and o(1) = y. Observe that if § C R™ is connected
by analytic paths and f : 8 — R™ is a Nash map, then f(8) is also connected
by analytic paths. Thus, T := {x? — zy?> = 0,z > 0}, which is image of the
polynomial map f : R? — R3, (s,t) — (st,t,s?), is connected by analytic
paths, whereas its Zarisky closure W := {x? — zy? = 0} is not because there is
no analytic path between a point in the stick {x = 0,y = 0,z < 0} and a point
in W\ {x =0,y =0}. To take advantage of the full strength of our results (in
particular Theorem 3.2) we introduce the analytic path-connected components
of a semi-algebraic set.

Definition 3.8.1. A semi-algebraic set 8 C R™ admits a decomposition into an-
alytic path-connected components if there exist semi-algebraic sets 81,...,8, C 8
such that:

(i) Each §; is connected by analytic paths.

(if) If T C § is a semi-algebraic set connected by analytic paths that contains
82’, then 81 =7.

(i) 8; ¢ Uj;éi Sj-
(iv) 8 =UL, 8.
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3.8. Surjective Nash maps between general semi-algebraic sets

In [Fe4, Thm.9.2] Fernando shows the following characterization for analytic
path-connected components of a semi-algebraic set.

Theorem 3.8.2 ([Fe4, Thm.9.2]). Let 8§ C R™ be a semi-algebraic set. Then
S admits a decomposition into analytic path-connected components and this de-
composition is unique. In addition, the analytic path-connected components of
a semi-algebraic set are closed in 8.

Ezample 3.8.3. (i) Let 8§ := {z(x? + y%) — x® = 0} C R? be Cartan’s umbrella.
The analytic path-connected components of 8 are

81:=(8\{x=0,y=0})U{0} and 83 :={x=0,y=0}.
In fact, 8; is image of R? through the analytic map

0 :R?* 5 R3, (u,v) — (ucosv,usinv,ucos’v).

(ii) Let 8 := 81 U85 U 83 C R3, where
81 :=[-1,1] x {0} x [-1,1], 83:={z=0,x> 1}, 83 :={z=0,x < —1}.

The analytic path-connected components of § are 81,85 and S3. In contrast, 8
has two irreducible components, which are $ N {y = 0} and 8 N {z = 0}.

Recall that if 87 and 83 are irreducible components of a semi-algebraic set
8§ C R™, then dim(8; N85) < min{dim(87), dim(83)} (see Remark 2.4.9). In the
case of the analytic path-connected components of § this inequality is no longer
true.

Example 3.8.4. Let W := {x? — zy? = 0} C R3 be Whitney’s umbrella. Its
analytic path-connected components are

Wy:=Wn{z>0} and Wy:={x=0,y=0}.
It holds Wiy N Wy = {x =0,y = 0,z > 0}, which has dimension 1, so
dim(Wy N Wy) = 1 = dim(Wa).
However, we have the following result:

Lemma 3.8.5. Let 8§ C R™ be a semi-algebraic set and let {S;}i_, be its family
of analytic path-connected components. Then

dim(8; N §;) < max{dim(§;),dim(8;)}
for1<i<j<r.
Proof. Tf dim(8;) < dim(S;), then
dim(8; N'§;) < dim(8;) < dim(8;) < max{dim(§;),dim(8;)}.
Suppose next e := dim(§;) = dim(8;) and dim(8; N §;) = e. Let § := 8, US§;

and observe that Sing(8p) has dimension < e — 1. Thus, there exists y €
(81N82)\Sing(8p). Let a, € 8y for k = 1,2. As each 8y, is connected by analytic
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3. Nash images of closed balls

paths, by Theorem 3.4.2 each 8§, is connected by Nash paths. Thus, there exist
Nash paths ay, : [0,1] — 8 such that ag(0) = zx, ag(l) = y. The continuous
semi-algebraic path a := aq * oy ! connects the points z1 and x5 and satisfies
n(a) C {y} C Reg(8o) (see Section 3.4 for the definition of n(a)). Consequently,
8o is well-welded, so 8q is connected by analytic paths by Theorem 3.4.2. As
8;,8; are analytic path-connected components of §, we conclude 8; = §y = §;,
which is a contradiction. Thus,

dim(8; N'§;) < e = max{dim(8;), dim(8;)},
as required. O

3.8.2. Nash interpolation. As a consequence of Theorem 3.1 and the exis-
tence of a decomposition of semi-algebraic sets into analytic path-connected
components we obtain the following interpolation result for Nash maps:

Corollary 3.8.6. Let 8§ C R™ and T C R™ be semi-algebraic sets and let
T* be an analytic path-connected component of T. Given p1,...,pr € S and
G1,---,qx € T* (non necessarily distinct), there exists a Nash map F : 8§ — T
such that F(p;) = q; for eachi=1,... k.

Proof. Let d := dim(7*). As T* is connected by analytic paths, there exists
by Theorem 3.1 a surjective Nash map f : R — T*. For each i = 1,...,k
fix s; € f~(¢;). By Lagrange’s interpolation there exists a polynomial map
g : R® — R such that g(p;) = s;. Thus, the Nash map F := fogls:8 = T
satisfies F'(p;) = ¢; for each i =1,... k. O

3.8.3. General surjective Nash maps. In view of the previous results it is
natural to wonder given arbitrary semi-algebraic sets 8§ C R™ and T C R"
whether there exists a surjective Nash map f : 8§ — T. Recall that the image of
a semi-algebraic set connected by analytic paths under a Nash map is connected
by analytic paths. In addition, the image of an irreducible semi-algebraic set
under a Nash map is an irreducible semi-algebraic set [FG3, §3.1].

Thus, obstructions to construct such a Nash map f : 8 — T concentrate
on the configuration of the intersections of pairwise different analytic path-
connected components {8;}7_, (resp. irreducible components {85}_,) of § and
the configuration of their images, which are semi-algebraic subsets T; := f(8;)
of T connected by analytic paths (resp. irreducible semi-algebraic subsets T} :=
f(83) of T). Namely, if the intersection 8;, N---N8;, (for 1 <iy <--- < <7)
is non-empty, then

f(S“ ﬂﬁSlk) Cf(S“)ﬂﬁf(SZk) C‘Iil ﬂﬁ‘J}k

and the analytic path-connected components of 8;, N---N8§;, are mapped into
analytic path-connected components of T;, N--- N T;,. Analogously, if the in-
tersection 87 N ---N S;p (for 1 < j; < --- < jp <¥) is non-empty, then

£S5 0083 ) C F(85) NN f(85:) CTjyN---NT;,

»
and the irreducible components of §; N ---N8; are mapped into irreducible
components of T, N---NT; .
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3.8. Surjective Nash maps between general semi-algebraic sets

Ezamples 3.8.7. (i) Let 8 ;== {z=0}U{x=0,y=0}U{x—z=0,y =0} CR?
and T:={z=0}U{x =0,y =0} U{x =1,y =0} C R®. We claim: There
exists no surjective Nash map f:8 — 7.

The analytic path-connected components of § are
81:={z=0}, 8&3:={x=0,y=0} and 83 :={x—z =0,y =0},

whereas the analytic path-connected components of T are T} := {z = 0}, Ty :=
{x=0,y =0} and T3 := {x = 1,y = 0}. Suppose there exists a surjective Nash
map f : 8 — 7. Using straightforward dimensional arguments f(8;) = J7 and
either f(82) = To and f(83) = T3 or f(82) = T3 and f(83) = To. However, this
is not possible because 81 N82 N 83 = {(0,0,0)}, whereas T N To N T3 = & and
f(Sl N8y N 83) C TiNTyNTs.

(ii) Let 8 ;== {y > 0} U {x =0} C R? and T := {x* — zy? = 0} C R?, which
are both irreducible. We claim: There ezists no surjective Nash map f:8 — 7.

The analytic path-connected components of § are 8; := {y > 0} and 85 :=
{x = 0}, whereas the analytic path-connected components of T are

T :={x? —zy> =0,z >0} and T := {x = 0,y = 0}.

Suppose there exists a surjective Nash map f : § — 7J. Using straightforward
dimensional arguments f(81) = T; and {x =0,y =0,z < 0} C f(82) C Ta. As
f is Nash, there exist a connected open semi-algebraic neighbourhood U C R?
and a Nash extension F': U — R3. As U is an open connected semi-algebraic
subset of R?, it is an irreducible semi-algebraic set of dimension 2. Thus, F(U)
is an irreducible semi-algebraic subset of R? of dimension < 2. In particular,
its Zariski closure is an irreducible algebraic set of dimension < 2. As f(8;) =
J7 has dimension 2 and the Zariski closure of J7 is T (which is irreducible),
we conclude that the Zariski closure of F(U) is 7. As connected open semi-
algebraic sets are connected by analytic paths (because they are connected Nash
manifolds), we deduce that Ty = f(81) C F(U) C T1, so

{x=0,y=0,2<0} C f(8) C F(U) =71,

which is a contradiction.

(iii) However, there exists a surjective Nash map f : T — 8§ where T :=
{x? —zy? =0} C R and § := {y > 0} U {x = 0} C R% Tt is enough to take
fxy,2) = (y,2).

Recall that if § € R™ has dimension d, the set 89 of points of § of dimension
d is a closed semi-algebraic subset of 8. In order to soften the obstructions
quoted at the beginning of this section we will assume that each irreducible
component &7 of § is mapped onto an analytic path-connected component T;
of T and that (,_, f(7;) # @. Under this type of assumptions we propose the
following characterization.

Theorem 3.8.8 (Surjective Nash maps). Let § C R™ and T C R" be semi-
algebraic sets, let {SF}I_, be the irreducible components of 8 and let {T;}7_, be
a family of (non-necessarily distinct) semi-algebraic subsets of T connected by
analytic paths such that (\,_, T; # @. Denote d; := dim(8}) and assume that

the set S:’(di) of points of 8} of dimension d; is non-compact if T; is non-compact
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3. Nash images of closed balls

fori=1,...,r. Then, there exists a Nash map f :8 — T such that f(8F) =T;
fori=1,...,r if and only if e; := dim(T;) < dim(8}) =:d; fori=1,...,r.

Before proving this result we need the following preliminary one.

Lemma 3.8.9. Let 8§ C R™ be a semi-algebraic set and let {8} }7_, be the family
of the irreducible components of 8 that are non-compact. Denote d; := dim(8})

and S:’(di) the set of points of 8} of dimension d;, which we assume non-compact
foreachi=1,... s. Let U be an open semi-algebraic subset of R™ that contains
8 and let X1,...,Xs be Nash subsets of U such that 8\ X; # & for each i. Up
to take a smaller U if necessary, there exist a Nash manifold M C RP, a Nash
diffeomorphism ¢ : M — U and a Nash function g; : M — R whose zero set
contains p~1(X;) and the corresponding Nash map

Gi: M — R 3 (2 gi(2), gi(2))

satisfies 0 € Gi(¢~1(8))) = Gi(go*l(S:’(d’:))) and Gi(go’l(S:’(dl))) is pure di-
mensional of dimension d; and non-compact fori=1,...,s.

Proof. We may apply the Nash diffeomorphism

T

Yo : R™ = B (0,1), 2+ ——
L+ =]

to 8§ and assume that 8 is bounded. As 8f \ X; # @, 8! is irreducible and
X; is the zero-set of a Nash function on U, we deduce by [FG3, Lem.3.6] that
dim(8; N X;) < dim(8}) = dim(S:’(di)) for each ¢ = 1,...,r. Pick a point ¢; €
874 Let Z; be the Zariski closure of (C1(8) NCL(X;))UCLS:\ 87U g},
which has dimension strictly smaller than dim(8}).

Indeed, as 87 is closed in 8 and X is closed in U, we deduce that
CI(8H)NCIX;) N8 =8 NX;,

so (CI(8F) N CI(X;)) \ CI(8F N X;) C CI(8F) \ 8F, which has dimension strictly
smaller that dim(8). Thus, CI(8}) N Cl(X}) has dimension strictly smaller
than dim(8}). In addition, C1(8f \S:’(di)) has dimension strictly smaller that
dim(8*), because dim(8} \8:’(di)) < d; = dim(8}).

As 8 (44) is hounded and non-compact and 8; (44) s closed in § (because it is
a closed subset of 87, which is a closed subset of §), there exists p; € CI(S:’(di))\S
(because otherwise CI(S:’(di)) C 8 and S:’(d"') = CI(S:’(di)) ns = CI(S:’(di))
would be compact). As p; € 8, up to replace U by U’ := U \ {p1,...,p,} and
X; by U’ N X; if necessary, we may assume p; € X;. As 8:’(di) \ Z; is dense
in S:’(di) (because S:’(di) is pure dimensional), there exists by the Nash curve
selection lemma (see [BCR, 8.1.13]) a Nash curve «; : (—1,1) — R™ such that
a;((0,1)) C Sj’(d") \ Z; and «;(0) = p;. Let Q; € R[xy,...,x%,] be a polynomial
whose zero set is Z;.

Case 1. If Q;(p;) # 0, we take a bounded Nash function g; on U whose
zero set is the union of X,; and the smallest Nash subset of U that contains
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C1(8; \S:’(d"’)). Observe that the limit lim; o+ g; 0 (t) exists and it is non-zero,
because otherwise either p; belongs to the Zariski closure of C1(8f \8:’(di)) C
={Q; = 0} or p; € CUST“" YN CIX,) € Z = {Q; = 0}, which is a
contradlctlon
Consider the Nash map G; : U — R™ 2 — (2 - gi(2),9:(x)), whose
restriction to U \ {g; = 0} is a Nash diffeomorphism between U \ {g; = O} and
G;(U) \ {0}, whose inverse is H; : G;(U) \ {0} = U\ {g; = 0}, (y,t) — L. If
Gi(S:’(di)) is compact, then lim; o+ (a; (t) - gi 0o i (t), gi o i (t)) € Gi(8; o(ds )) As

Gilgecao gm0y * S\ g = 0} = Ga(87) \ {0}

is a Nash diffeomorphism, we conclude that lim;_,o+ «;(t)-g;0a;(t) = 0 (because
pi & S:’(di)), which is a contradiction because lim;_,q+ g; o a;(t) exists and it

is non-zero. Consequently, G; (8:’((1“‘)) is non-compact. Again as the restriction
G; 55U\ (510} is a Nash diffeomorphism,

Gi(87 "N\ {0} = Gi(87 ")\ {gi = 0})

is pure dimensional of dimension d;. As ¢; € S:’(d"') N {g; = 0}, we conclude
0€ Cl(Gi(S:’(d") \ {g: = 0})), so Gi(S:’(d")) is pure dimensional of dimension
d;. In addition,

0 G(8]) =687 ) U {0} = G U (8 {gs = 0}) = G(8)).

CASE 2. If Q;(p;) = 0, we have Q;0c; € R[[t]]alg is a non-zero series. Let (Y3, ¢;)
be the blow-up of R™ at p;. The restriction ¢; : ¥; \ {¢; '(pi)} — R™ \ {p;} is
a Nash diffeomorphism and p; ¢ S U X;, so ¢, 1(8) is Nash diffeomorphic to 8
and ¢; *(X;) is Nash diffeomorphic to X;. The series

Qioai_(Qlo¢2) (¢1 Oaz)

and let (Q; o ¢l) be the strict transform of (Q; o ¢;). The order of the series
(Qiog;)* (gi)i oqy) is strictly smaller than the order of Q; o;, because we have
eliminated from (Q; o ¢;) a power of an equation of the exceptional divisor. Let
P = limy o+ (7 F o) (t). If (Qi0¢)* (p}) # 0 we have finished with this index
i. Otherwise, we repeat the previous process with the point p}. In each step
the order of the strict transform of the corresponding polynomial substituted in
the corresponding curve has strictly smaller order, so in finitely many steps we
achieve order 0 and the corresponding polynomial does not vanish at the limit
point.

After composing all the involved blow-ups (corresponding to all the indices
i=1,...,r) and taking suitable restrictions we find a Nash manifold M C RP?,
a Nash diffeomorphism ¢ : M — U and Nash functions g; : M — R such that
¢ Y(X;) C {g; = 0} and the corresponding Nash maps

Gi: M — R 2 (- gi(2), gi(z))

satisfies 0 € Gi(p™1(8})) = Gi(ga’l(S;k’(di))) and G; ( 1(s; +(di ))) is pure di-
mensional of dimension d; and non-compact for i =1, ..., s, as required. O
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We are ready to prove Theorem 3.8.8.

Proof of Theorem 3.8.8. The only if condition are straightforward. The proof
of the converse is conducted in several steps:

STEP 1. Suppose 8 is non-compact for ¢ = 1,...,s and 8] is compact for
i=s+1,...,7r. Foreachi=1,...,r let f; : 8§ = R be a Nash function on 8§
such that 8 = {f; = 0} (see [FG3, Lem.2.4, Thm. 4.3]). Let U be an open
semi-algebraic neighborhood of § in R™ to which all the Nash funcions f; extend
as Nash functions F; : U — R. Define X; := {J,,,{F; = 0} and observe that
8iNX; =8N, S; is a semi-algebraic subset of 8] of dimension strictly
smaller than d;. We distinguish two cases:

CASE 1. NON-COMPACT IRREDUCIBLE COMPONENTS. By Lemma 3.8.9 we may
assume (up to a suitable Nash diffeomorphism) that for each ¢ = 1,..., s there
exist a Nash function g; : U — R whose respective zero set {g; = 0} contains
X; and the corresponding Nash map

Gi:U—=R™ 2 (2 gi(2), gi(x))

satisfies 0 € G;(8}) = Gi(SZf’(di)) and G,(8; )) is non-compact and pure di-

mensional of dimension d; fori =1,...,s. In addition,
Gi(8) = Gi(8; U J8)) = G uUG 87)U{0} = Gi(s7).
J#i j#i
CASE 2. COMPACT IRREDUCIBLE COMPONENTS. For each i =s+1,...,r let
g € SZ’M"’) and let h; be a polynomial whose zero set is the union of {¢;} and

the Zariski closure Y; of Cl(8} \S:’(di)) Define gi = h;i[[; Fj : U — R and
observe that {g; = 0} = {¢:} U (YiN8}) U, ;. As 8] is 1rredu01ble and g;
does not vanish identically on 8}, the intersectlon {9: = O} N 8} has dimension
< d; := dim(8}). Consider the Nash map

Gi:U—=R"™ 2 (2-gi(z),9:()),

whose restriction to U \ {g; = 0} is a Nash diffeomorphism between U\ {9: =0}
and G;(U) \ {0}. Observe that G;(87) = {0} if i # j and & := Gi(8) =

Gi(Sf’(di)) is pure dimensional of dimension d;.
As G; |5* (4 >\{ —o}° (d )\{gz =0} = Gi(8; *(di) )\ {0} is a Nash diffeomor-

phism, G;(8} A(ds) I\{0} = Gi(S; ((ds )\{gl = 0}) is pure dimensional of dimension
di. As q; € 8 (di) {gi = 0}, we conclude 0 € CI(G;(S; \{g = 0})), so
Gi(8; ’(di’)) is pure dimensional of dimension d;. In addition,

0e (8 ™)) = Gy U {0} = G(8; U (8; N {g: = 0})) = G(8Y).
Moreover,

Gi(8) = Gy(8; U8 = Gi(sy) U Ga(s; 8;)U{0} = Gy(8;")

JFi j#i
fori=s+1,...,7
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3.8. Surjective Nash maps between general semi-algebraic sets

STEP 2. Define 8} := G;(8) for i =1,...,r and
G:8 =R gy (Gyi(2),...,Gp(x)).

Observe that
G(87) ={0} x --- x {0} ngx {0} x -+ x {0}
and G(8) = U;_, G(8}). In addition, G(8}) N G(85) ={(0,...,0)} if i # j.
We distinguish two cases:
Casg 1. If 8 is non-compact, 8. is non-compact. By Theorem 3.7.2 there

exists a Nash map H; : R™*T! — R% such that H;(8]) = R%. We may assume
in addition H;(0) = 0.

CAsE 2. If §; is compact, also 8/ is compact and there exists by Theorem 3.7.1
a Nash map H; : R™*! — R% such that H;(8}) = Bg,. Following the proof of
Theorem 3.7.1 the reader can check that we may assume H;(0) = 0.

STEP 3. Let g € (), T; and assume ¢ is the origin of R". Let F; : R% — R™
be a Nash map such that F;(Bg,) = T; for i = 1,...,s and F;(R%) = T; for
i=s+1,...,r. We may assume in addition F;(0) =0 for i = 1,...,r. We have

Fi(Bag)=T; ifj=i,

(Fy0oH;0G;)(8;) = {Fz({o}) ={0} ifj#i.

Define E; = R% if 8! is non-compact (i = 1,...,s) and E; = By, if 8, is
compact (i = s+ 1,...,r). Observe that
((F1oHy,...,FL. 0 H.)oG)(8;) = (F1oH10Gy,...,F.0H.0G,)(8)
= (FyoHy)({0}) x ... x (Fi_1 0 H;_1)({0}) x (F; o H;)(8})
X (Fi41 0 Hi+1)({0}) x ... x (F, o H,)({0})
=F({0}) x ... x F;_1({0}) x Fi(E;) x Fix1({0}) x ... x F.({0})

()
={0} x--- x {0} x T; x {0} x --- x {0}.
Thus, if
F::Z(FioHioGi):S—VJ',

i=1

we have FI(8;) =T; fori=1,...,7,s0

F(8)=F (U 8) = U F(8;)

i=1 i=1

I
-
=
I
2

as required. O

Recall that the analytic path-connected components of 8 are irreducible
semi-algebraic sets. Thus, each of them is contained in an irreducible component
of §. If 8§} is the irreducible component of 8 that contains §; for ¢ = 1,...,r
it may happen that 87 = 8} for some i # j or 8] # 8} whereas 8; C 87 and
8; ¢85
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3. Nash images of closed balls

Ezamples 3.8.10. (i) Define 8§ := 8; U 83 U 83 C R? where §; = {x > 1},
89 :={y =0} and 83 := {x < —1}. Observe that 81, 83 and 83 are the analytic
path-connected components of 8, whereas & is irreducible. Thus, 8] = 85 = 83.

(i) Define 8 := 8; U 85 C R? where
81:={x=0,y >0} and 83:={y <0,z =0}.

Observe that 8; and 8, are the analytic path-connected components of §,
whereas 87 = 81 U {x = 0,z = 0} and 8 = S; U {x = 0,z = 0} are the
irreducible components of S.

Remarks 3.8.11. (i) Let 8 C R™ be a semi-algebraic set and let {8;}7_; be the
analytic path-connected components of 8. Let 87 be the irreducible component
of 8 that contains §; for ¢ = 1,...,r and assume 8} # 8;‘ forl1 <i<j<r.
Denote d; := dim(8}). We claim:

(1) {8;}7_; is the collection of the irreducible components of 8.
(2) S:’(di) =8;fori=1,...,r.
As 8 =18 Cc Ui, 8 C 8, we deduce that {8}}7_,; is the collection of
the irreducible components of 8, because 87 # 87 if i # j. Thus, (1) holds.
Let us check that (2). To that end, we prove first: dim(8; N 8}) < dim(8})
if j# 1.
Otherwise, there exists 8; with j # ¢ such that dim(8; N 8}) = dim(8}), so

each Nash function that vanishes identically on 87 vanishes also identically on
87. Thus, 87 C 8} and ¢ = j, which is a contradiction.

Consequently,
S\[Js;csr\Us;cs\Usi =8\ S
J#i JFi J#i J#i
and 8;\U,4; 8; = 87\, 8; is non-empty and has dimension d;. As §; is pure
dimensional of dimension d; and |J ki 87 N 8; has dimension < d;, we deduce
that §; \ Uj# §; is dense in §;. In addition, & C S:’(d"') (because §; is pure

dimensional of dimension d;) and 8:’(di) \ Uj 8 is dense in S:"(di). As

*,(d; *
sPIN s esiv s =8\ s,
i i i
we conclude taking closures in 8 that 8:’(di) = 8; (because both S:’(d"’) and §;
are closed in 8).
(ii) Observe that Theorems 3.7.1 and 3.7.2 are particular cases of Theorem

3.8.8 when T is connected by analytic paths.

As a straightforward consequence of Theorem 3.8.8 and Remark 3.8.11(i),
we have the following:

Corollary 3.8.12. Let 8 C R™ and T C R™ be semi-algebraic sets, let {8;}r_,
be the family of analytic path-connected components of & and let 8 be the ir-
reducible component of 8 that contains 8; for i = 1,...,r. Assume 8; # 8§

82
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for1 <i<j<vr. Let {T;};_; be a family of (non-necessarily distinct) semi-
algebraic subsets of T connected by analytic paths and assume (),_, T; # ©.
Then, there exists a Nash map f : 8 — T such that f(8;) =T; fori=1,...,r
if and only if e; = dim(T;) < dim(8;) =: d; and T; is compact in case 8; is
compact fori=1,...,7r.

3.9 Two consequences

In this section we present two remarkable consequences of Theorem 3.2. The first
one about representation of pure dimensional compact irreducible arc-symmetric
semi-algebraic sets as Nash images of closed balls. As a second consequence
we show that a compact semi-algebraic set is the projection of a non-singular
compact algebraic set with the simplest possible topology (a disjoint union of
spheres).

3.9.1. Representation of arc-symmetric compact semi-algebraic sets.
Arc-symmetric semi-algebraic sets were introduced by Kurdyka in [K] and sub-
sequently studied by many authors. Recall that a semi-algebraic set 8 C R™ is
arc-symmetric if for each analytic arc v : (—1,1) — R™ with v((—1,0)) C § it
holds that v((—1,1)) C 8. In particular arc-symmetric semi-algebraic sets are
closed subsets of R™. An arc-symmetric semi-algebraic set 8 C R" is irreducible
if it cannot be written as the union of two proper arc-symmetric semi-algebraic
subsets [K, §2]. An arc-symmetric semi-algebraic set 8 C R™ irreducible as
semi-algebraic set (in the sense of Definition 2.4.5) is not necessarily irreducible
as arc-symmetric set (in the sense of [K, §2]), as shown in the following example.

Example 3.9.1. Let X := {z(x? + y?) — x3 = 0} C R3 be Cartan’s umbrella.
As X is an irreducible real analytic set, the ring A/(X) is an integral domain.
Thus, X is irreducible as semi-algebraic set. Let us show that X is reducible
ﬁ. For each analytic arc
v = (71,72) : (=1,1) = R? the composition f o~ is analytic. As f is regular on
R2\ {0}, we may assume v(0) = 0. Denote ordg(7;) the order of vanishing of ~;
at 0 for ¢ € {1,2}. As 3ordo(y1) > 2min{ordg(y1),0rdo(y2)}, the composition
f o~y is analytic, as required.

as arc-symmetric set. We claim: Let f(z,y) :=

We can write

2 2 3 2 2 x*
z(x*+y)—x*=(x"+y )(z X2—|—y2>'
Let X; := {z — f(x,y) = 0} and let v : (—1,1) — R? be an analytic arc such
that v(—1,0) C X;. As (z— f(x,y)) o~y is analytic, by the identity principle for
analytic functions we deduce v(—1,1) C X;. Thus, the semi-algebraic set X; is
arc-symmetric. As X = X; U Xy, where X5 := {x? +y% = 0}, we conclude that
X is a reducible arc-symmetric set.

It follows from Theorem 3.2 and [K, Cor.2.8] that a pure dimensional com-
pact irreducible arc-symmetric semi-algebraic set is a Nash image of B, where
d := dim(8).

Corollary 3.9.2. Let 8 C R" be a pure dimensional compact irreducible arc-
symmetric semi-algebraic set of dimension d. Then § is a Nash image of By.
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3. Nash images of closed balls

Proof. Let X be the Zariski closure of § and let « : X — X be a resolution
of the singularities of X (see Theorem 2.4.2). Assume X C RP and 7 is the
restriction to X of a polynomial map II : R? — R". By [K, Thm.2.6] applied
to the irreducible arc-symmetric set 8 there exists a connected component E
of X such that 7(E) = Cl(Reg(8)) = 8 (recall that 8 is pure dimensional and
compact). As 7 is proper and 8 is compact, also E is compact (because it is
a closed subset of the compact set 771(8)). Thus, E is a connected compact
Nash manifold. By Theorem 3.2 there exists a Nash map fy : R — RP such
that fo(By) = E. Consequently, the Nash map f := 7w o fy : R? — R” satisfies
f(Ba) = 7(fo(Ba)) = 7(E) = 8, as required. O

3.9.2. Elimination of inequalities. A converse problem to Tarski’s theorem
is to find an algebraic set in R™*t* whose projection is a given semi-algebraic
subset of R™. This is known as the problem of eliminating inequalities. Motzkin
proved in [Mo] that this problem always has a solution for ¥ = 1. However,
his solution is rather complicated and is generally a reducible algebraic set. In
another direction Andradas and Gamboa proved in [AG1, AG2] that if § C R”
is a closed semi-algebraic set whose Zariski closure is irreducible, then 8 is the
projection of an irreducible algebraic set in some R"™*. In [P] Pecker gives
some improvements on both results: for the first by finding a construction of an
algebraic set in R"*! that projects onto the given semi-algebraic subset of R”,
far simpler than the original construction of Motzkin; for the second by proving
that if 8 is a locally closed semi-algebraic subset of R™ with an interior point,
then 8§ is the projection of an irreducible algebraic subset of R™*1. In [Fe4] it is
proved that each semi-algebraic set § C R™ is the projection of a non-singular
algebraic set X C R"™* whose connected components are Nash diffeomorphic
to affine spaces (maybe of different dimensions). Here we improve the previous
result if 8 is compact and we prove that there exists an algebraic set X C R24+1,
where d := dim(8), that is Nash diffeomorphic to a finite pairwise disjoint union
of spheres (maybe of different dimensions) that project onto 8. To guarantee
that X C R?¥*! we use implicitly in the last part of the proof the weak version
of the Whitney’s immersion theorem.

Corollary 3.9.3. Let 8 C R" be a compact semi-algebraic set of dimension d.
We have:

(i) If 8 is connected by analytic paths, it is the projection of an irreducible
compact non-singular algebraic set X C R"** (for some k > 0) that has at
most two connected components Nash diffeomorphic to the d-dimensional
sphere S%. In addition,

(1) Each connected component of X projects onto S.

(2) There exists an automorphism of X that swaps both connected com-
ponents of X.

(ii) In general 8 is the projection of an algebraic set X C R™* (for some
k > 0) of dimension d that is Nash diffeomorphic to a finite pairwise
disjoint union of spheres (maybe of different dimensions).

Even for dimension 1, it is not possible to impose the connectedness of X
(see Lemma 3.9.5 and Example 3.9.6). Contrast the previous result with [Fe4,
Cor.1.8].
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To prove Corollary 3.9.3 we recall first the following well-known separation
result, that we include here for the sake of completeness.

Lemma 3.9.4 (Separation). Let 81,82 C R™ be semi-algebraic sets such that
81 1is compact, S is closed and 81 N 8g = &. Then, there exists f € R[x] such
that 81 C {f <0} and 82 C {f > 0}.

Proof. We may assume 8; C B,,(0, %) Let g : R — R be a continuous function
such that 81 C {g < 0} and 83 C {g > 0}. Let

e := dist(81, 82) := min{dist(x1,z2) : x1 € 81,22 € 82} > 0.

By Weierstrass’ approximation theorem there exists a polynomial f, € R[x] such
that

= €
max{|g(z) — fo(x)]: € B,(0,1)} < 3
By [BCR, Prop.2.6.2] there exists a constant ¢ > 0 and m > 1 such that
[fo(2)] < e(1+[|l=]*)™

on R™. Thus, |fo(z)| < 2™¢||z]|*™ on R™ \ B,(0,1). Denote ¢’ := 2™c and let
k > m be such that 2% < £. Define f := fo + ¢/||x||** € R[x]. The reader can
check that 8; C {f < 0} and 82 C {f > 0}, as required. O

Proof of Corollary 3.9.3. (i) By Theorem 3.2 and Proposition 3.1.1 there exists
a Nash map f : R¥! — R™ such that f(S?) = 8. By Artin-Mazur’s description
of Nash maps [BCR, Thm.8.4.4] there exist s > 1 and a non-singular irreducible
algebraic set Z C R4+ of dimension d, a connected component M of Z
and a Nash diffeomorphism ¢ : S — M such that the following diagram is

commutative.
7 S RIFLNR® xRS =R™

M 2

I

s¢ ! R"
)

We denote the projection of R4 x R™ x R® onto the first space R**! with 7,
and the projection of Rt! x R™ x R® onto the second space R™ with my. Write
m:=d+1+n+s. As M is compact, there exists by Lemma 3.9.4 a polynomial
f:R™ — R such that M = Z N {f > 0}. Observe that M is the projection of
the algebraic set

Yi={(z2,t) € ZxR: f(2)t? —1=0}

under 7 : R™ x R — R™, (z,t) — z. Fix e = £1 and let M. := Y N {et > 0}.
Consider the Nash diffeomorphism

e : M =M, z+— (m,e;(x))
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3. Nash images of closed balls

whose inverse map is the restriction to M. of the projection .

Observe that {M}cc—1,1} is the collection of the connected components of
Y. As 71(M.) = M and using the diagram above, we deduce

(3 0 T)(M) = m2(M) = ( o m) (M) = F(S*) = .

In addition, each M, is Nash diffeomorphic to S% and for ¢ # &’ the polynomial
map

¢ :R" xR —=>R" xR, (z,t) — (z,—t)

induces an involution of Y such that ¢(M.) = M. As Z is non-singular, also
Y is non-singular. Let X be the irreducible component of Y that contains M.

Then k := d+ s+ 2 and the non-singular algebraic set X satisfy the require-
ments in the statement.

In addition, X has at most two connected components and each of them is
Nash diffeomorphic to S?. Thus, X is Nash diffeomorphic to S x {1, s}, where
s = 1,2 is the number of connected components of X.

(ii) Let 81,...,8, be the (compact) analytic path-connected components of
8, which satisfy 8 = JI_; 8;. By (i) there exist m > 1 and for each i = 1,...,r
a non-singular algebraic set X; C R™ that is Nash diffeomorphic to a disjoint
union of at most two spheres of R*! (each of them isometric to S% where
d; := dim(8;) < d = dim(8)) and satisfies 7(X;) = 8;, where

7:R" X R™" 5 R, (z,y) =z

is the projection onto the first n coordinates. Consider the pairwise disjoint
union X :=| |I_, X; x {i} C R™*! and the projection

7 R x R™TI xR = R”, (z,9,t) — 2.

Then X is a non-singular algebraic set, which is Nash diffeomorphic to a finite
pairwise disjoint union of spheres of dimension < d and satisfies 7(X) = 8, as
required. O

The following lemma together with the subsequent example shows that
Corollary 3.9.3 is somehow sharp.

Lemma 3.9.5. Let Z C R™ be a non-singular irreducible algebraic set and let
M one of its connected components of mazrimal dimension d. Suppose that there
ezists an irreducible algebraic set Y C RP of dimension d and a rational map
@ : RP —-» R™ such that |y : Y — M is bijective. Then M is the unique
connected component of Z of dimension d.

Proof. Let Y C CP be the complexification of Y and let Z C C be the com-
plexification of Z. Observe that }77 Z are irreducible algebraic sets of (complex)
dimension d. Consider the rational map ¢ : CP --» C™ that extends . As
oY) =M C Z C Z, the Zariski closure of ¢(Y) in C™ is contained in Z. As M
has (real) dimension d and Z is an irreducible algebraic set of C™ of (complex)
dimension d, we deduce that Z is the Zariski closure of p(Y). Asp:CP -5 C™
is continuous for the Zariski topology, Y is the Zariski closure of Y and Z is the
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Zariski closure of p(Y) = @(Y), we conclude 3(Y) C Z and the Zariski closure
of $(Y) is Z. Thus, Py : Y --» Z is a dominant rational map. Denote M (Y)
the field of meromorphic functions on ¥ and M(Z ) the field of meromorphic
functions on Z. The map

G M(Z) = MY), frsfo

is a homomorphism of fields of the same transcendence degree d over C. Con-
sequently, M(Y) is an algebraic extension of M(Z) of finite degree m. By [Ha,
Prop.7.16] the number of points in a general fiber of ¢ is equal to m. As M has
(real) dimension d, there exists a point p € M such that the fiber $~!(p) has
exactly m points. As Y is a (real) algebraic set, YNRP =Y. As @ is a real
rational map and ¢|y : Y — M is bijective, we conclude that m is odd, because
if 2€ Y\Y and $(z) =p, then 2 € Y \ Y and $(2) = p.

Suppose Z has another connected component M’ of dimension d. Then
there exists ¢ € M/ such that »~!(q) has exactly m points. As Y NRP =Y and
@(Y) =M, we conclude that 3~1(¢) C Y\ Y. As ¢ € Z = ZNR", we deduce
that if z € 7 1(q), also z € ¢~ 1(q). Thus, $~!(g) consists of an even number
of elements, which is a contradiction because m is odd. Consequently, M is the
unique connected component of Z of dimension d, as required. O

Example 3.9.6. Let X = {y?> = —(x — 1)(x — 2)(x + 1)} C R? which is an
irreducible non-singular cubic with two connected components of dimension 1,
one is bounded (that we denote C7) and the other one is unbounded (that we
denote C3). Consider the polynomial x, which satisfies X N {x > 0} = C; and
XN{x<0}=0Cy Let Y :={(x,y,2) € X xR: 222 —1 =0} C R3, which has
exactly two connected componentes M; :=Y N{z > 0} and My :=Y N{z < 0}
and both have dimension 1.

~
Y

Ch

Figure 3.10: The cubic curve y* = —(x — 1)(x — 2)(x + 1).

Suppose there exists an algebraic set Z C RP of dimension 1 and a polynomial
map ¢ : R? — R3 such that ¢|z : Z — My is bijective. Let 7 : R® —
R?, (z,y,2) — (z,y), which satisfies 7|y, : My — Cj is bijective. Thus, the
composition o f : R? — R? is a polynomial map that satisfies 7|z : Z — Cj is
bijective, but this contradicts Lemma 3.9.5. Consequently, there does not exist
the couple (¢, Z).

The previous example suggests that in Corollary 3.9.3(i) two connected com-
ponents Nash diffeomorphic to S* are needed in many cases.
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Chapter 4

Resolution of semi-algebraic
sets connected by analytic
paths

Once achieved a complete characterization of Nash images of closed balls in The-
orem 3.1, a natural question at this point is to determine until what extend we
can represent semi-algebraic sets connected by analytic paths using polynomial
maps. Polynomial images of models connected by polynomial paths (e.g. Eu-
clidean spaces, closed balls etc.) are connected by polynomial paths. In general,
semi-algebraic sets do not contain rational paths. By [C, V] a generic complex
hypersurface Z of CP™ of degree d > 2m —2 for m > 4 and of degree d > 2m—1
for m = 2,3 does not contain rational curves. If § is a semi-algebraic set whose
Zariski closure in RP™ is a generic hypersurface of high enough degree, then its
Zariski closure Z in CP™ does not contains rational curves, so 8§ cannot contain
rational paths. This means in particular that general semi-algebraic sets do not
contain polynomial paths.

If § € R™ is a closed semi-algebraic set connected by analytic paths, we
show that § is the image under a proper polynomial map of a Nash manifold
with corners of the same dimension. In fact, there exists an algebraic set of
smaller dimension such that the restriction of the polynomial map to the Nash
manifold with corners minus this algebraic set is a Nash diffeomorphism onto
its image.

Theorem 4.1. Let § C R™ be a d-dimensional closed semi-algebraic set con-
nected by analytic paths. Then there exist:

(i) A d-dimensional non-singular irreducible algebraic set X C R™ and a
normal-crossings diwisor Y C X.

(ii) A connected Nash manifold with corners Q C X (which is a closed subset
of X ) whose boundary 0Q has Y as its Zariski closure.

(iii) A polynomial map f : R™ — R™ such that the restriction flo : Q — 8 is
proper and f(Q) = 8.
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(iv) A closed semi-algebraic set R C 8 of dimension strictly smaller than d
such that 8 \ R and Q\ f~1(R) are Nash manifolds and the polynomial
map flovs-1(x) : Q\ fTH(R) = 8\ R is a Nash diffeomorphism.

If 8 € R™ is a general semi-algebraic set connected by analytic paths, one
can wonder if it is possible to provide a similar result that also works for §. As
the chosen Nash manifold with corners Q is closed in its Zariski closure and the
chosen polynomial map f : R® — R™ restricts to a proper map f|g : Q — R™,
its image 8§ is a closed subset of R™. Thus, if 8 is not closed in R™, we should
change the type of domain and/or the type of map. The second approach
considering general Nash maps non-necessarily proper has been developed in
[Fed, Proof of Thm.1.4, §8.C.12] and it is shown that if the involved Nash map
is not necessarily proper, then there exists a Nash manifold H with smooth
boundary and a surjective Nash map f : H — 8. If one wants to keep the
properness condition, it is not possible to keep as domains Nash manifolds Q
with corners because they are locally compact and images of locally compact
subset of R™ under proper maps are locally compact subsets of R". Thus, we
have to change the type of involved domains and we will consider semi-algebraic
sets T C R™ whose closure is a Nash manifold with corners Q C R™ and Q\ T
is a union of some of the strata of the a suitable stratification of 9Q. A Nash
quasi-manifold with corners is a Nash manifold with corners with some faces
erased (the precise definition is included in Section 4.3).

Theorem 4.2. Let § C R™ be a d-dimensional semi-algebraic set connected by
analytic paths. Then there exist:

(i) A d-dimensional connected compact non-singular algebraic set M C R™
and a normal-crossings divisor Y C M.

(ii) A connected Nash quasi-manifold with corners 8* C M that is a checker-
board set and whose closure in M is a compact connected Nash manifold
with corners Q° C M whose boundary 09° has Y as its Zarsiki closure.

(iii) A Nash map f : R™ — R™ such that the restriction f|se : 8 — 8 is proper
and f(8°®) = 8.

(iv) A closed semi-algebraic set R C 8 of dimension strictly smaller than d
such that 8 \ R and 8° \ f~Y(R) are Nash manifolds and the Nash map
flsevs-1(w) : 8°\ fTH(R) = 8\ R is a Nash diffeomorphism.

4.1 Drilling blow-up

In [Fed] Fernando introduced the concept of drilling blow-up of a Nash manifold
M with center a closed Nash submanifold N. We refer the reader to [S, Hi2]
for the oriented blow-up of a real analytic space with center a closed subspace,
which is the counterpart of the construction of Fernando in the real analytic
setting. In [HPV, §5] appears a presentation of the oriented blow-up in the
analytic case closer to the drilling blow-up described by Fernando. The authors
consider there the case of the oriented blow-up of a real analytic manifold M
with center a closed real analytic submanifold N whose vanishing ideal inside
M is finitely generated (this happens for instance if N is compact). In [Fe3, §3]
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it is presented a similar construction in the semi-algebraic setting, which is used
to ‘appropriately embed’ semi-algebraic sets in Euclidean space. In this section
we will describe the construction made by Fernando [Fe4, §5] of the drilling
blow-up with the main properties. We add some results that we need in the
following sections.

4.1.1. Local structure of the drilling blow-up. Let M C R™ be a Nash
manifold of dimension d and let N C M be a closed Nash submanifold of
dimension e. As we are interested in the local structure, assume that there
exists a Nash diffeomorphism u := (uy,...,ugq) : M — R? such that

N:{ueH:O,...,ud:O}.

Denote ¢ := u~! : R = R® x R¥~¢ — M. Let (ot1,...,¢q : RY = R¥ be Nash
maps such that the vectors (.4+1(y,0),...,a(y,0) are linearly independent for
each y € R®. Write z € R97¢ as 2z := (241, ...,2q4). Consider the Nash maps

P Rd =R x Rdie — Rk? (ya Z) = Ce-‘rl(ya Z)Ze—l-l + ...+ Cd(y,z)zd,
¢: RO xR xS 5 RY, (y,p,w) = ey (y, pw)wers + -+ + Caly, pw)wy
and assume that ¢(y, z) = 0 if and only if 2 = 0. Consider the projections
6 : RT=R® x R™¢ 5 R, (y,2) =,
0y : RT=R® x R™¢ = RT¢) (y,2) — 2.
Consider the (well-defined) Nash map:

Py, p,w) )

PR xR xS 5 M xS¥ (y, p,w) (7/’(yapw)7 160y, o )|

Fact 4.1.1. Fiz ¢ = £+ and denote

The closure ]\Aj6 in M x SF~1 of the set

. := {<¢(y,z),em> eM xS 24 0}

18 a Nash manifold with boundary such that:
(i) M, C im(®).

(ii) The restriction of ® to R® x I, x ST=°~1 induces a Nash diffeomorphism
between R® x I, x ST=¢~1 and M.. Consequently,

OM, = ®(R® x {0} x S¢¢1)

and T, = Int(M,) = ®(R® x (I. \ {0}) x Sd—¢-1).

91



4. Resolution of semi-algebraic sets connected by analytic paths

Fact 4.1.2. Denote R := 8]\7_,_ = OM_ and M = ]TL_ UM_ = I'yuRul_.
Then ® induces a Nash _diffeomorphism between R® x R x Sé=e=1 and Z/W\, which
is the Nash closure of M, and M_ in M x S¥=1. In addition, the Nash map
o: M xSF1 - M x SF1 (a,b) — (a,—b) induces a Nash involution on M
without fized points such that 0(M+) = M_ and O(y, —p, —w) = (c0P)(y, p,w)
for each (y, p,w) € R® x R x §4=¢~1,

Fact 4.1.3. Consider the projection w : M x S¥=1 — M onto the first factor
and denote 7. := m|57 . Then

(i) m is proper, (M) = M and R = 7-*(N).
r. :Te = M\ N is a Nash diffeomorphism.

(ii) The restriction .

(iii) For each q € N it holds 7 (q) = {q} x S¢=¢~" where SI=¢~1 is the sphere
of dimension d—e—1 obtained when intersecting the sphere S¥~1 with the
linear subspace L, generated by (Cex1 0 w)(q),- .-, (Caouw)(q).

R® x [0, 400) x §*7¢71 R¢

(Y, p,w) ¥

Figure 4.1: Local structure of the drilling blow-up ZTL. of M of center N (figure
borrowed from [Fe4, Fig.3]).

Denote 7 := 7|5; and consider the commutative diagram.

RExRx St — 2o M (y,p,w) —> B(y, p,w)
uoﬁo@l l% I —V|V (411)
R? = M (y, pw) =<—— ¥ (y, pw)

As a consequence, we have: The Nash maps w. and T have local representations
(1., 2a) = (T1,. Tey T 1, Teqt1Teq 2, - - - s Tet 184)

in an open neighbourhood of each point p € R. In addition, dﬂ'p(Tp]/W\) Z TrpyN-

Proof ([Fe4, 5.A.5]). After a change of coordinates in R® x R x S¥~¢~1 we may

assume that p € R is the image of the point (0,0,(1,0,...,0)). Consider the

local parametrization around (0,0, (1,0,...,0)) of the set R® x R x S?=¢~! given
by

n:R*xRxB =R xR xS
(yvpvv = (v€+27' .. ,Ud)) = (y,P, ( V 1- ||,U||2’U))
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4.1. Drilling blow-up

where B is the open ball of center the origin and radius 1 in R*¢~1. It holds
uomo®on:RxRxB =R (y,p,0) — (y,p/1— |[v]|2, pv).
Consider the Nash diffeomorphism

fiROXRXB R (3,0,0) = (3, 0v/T— 0P, =),

V1= ol?

whose inverse is

/
f! ‘R - R x R x B, (y,p',v") — (y,p’ 14+ ||v']|2, 117)

V142
The Nash map
7 i=uomo®ono fTL:RT 5 R (y,p,0) — (y,p,p'v').
represents 7 locally around p and the restriction
e =1 |gep0y + {ep” 2 0} = RY, (y, 0/, 0') = (y, 0, 00").

represents 7. locally around p.

To prove that d7rp(Tp]\//T) ¢ Tr(m N, it is enough to show dm((R?) ¢ u(N).
It holds, dmj(ect1) = ect1 € u(N), as required. O

Remarks 4.1.4. Denote g := uo7 o ® and

9+ = gIRe x[0,+00) xSd—e—1 = UO T4 O ‘I’\Rex[o,Jroo)xsd—e—l-

Consider the Nash normal-crossings divisor Z := {y..1---y4 = 0} C R%. Con-
sider coordinates (wey1, ..., wgq) in R¥~¢ and the sphere

sd—et = {w(23+1 +... 4w =1}
(i) Write Z := {yr =0} for k =e+1,...,d and observe that

g1 (Zy) = (R x {0} x ST ") U (R® x R x (S ¢~ n {w;, = 0})),
971 (Z1) = (R® x {0} x ST 1) U (R® x [0, +00) x (S**7' N {ux = 0}))

fork=e+1,...,d. Thus,

g 1(Z) = (R® x {0} x sS4~ Hyu (R€ x R x (S=¢71 1 {wp = 0})),

971(2) = (R® x {0} x S *"Hu (R® x [0, 400) x (ST=¢71 N {w, = 0}))

are Nash normal-crossings divisors.
(ii) Let € := (€e41,. .-, €q4) where ¢, = £1 and denote
Qe := {€e+1Ye+1 >0,..., €dyd = 0}

93



4. Resolution of semi-algebraic sets connected by analytic paths

Write —€ := (—€eq1,...,—€4). We have:
Cl(g:1(2c\ 2)) =R® x {p > 0} x (ST N {ecr1Wer1 > 0,...,eqwg > 0}).

Consequently,
Clg7(2\ 2)) N Cl(g; ' (Q-c\ 2)) = 2.

More generally, if

!
€= (€cqlree s €ms€mils - €d)y € = (€ctly s €m, —Emyls---, —€d)
where e < m < d, then

QN9 ={ect1Yer1 >0, ., €m¥m =0, Yimy1 =0,...,y4 = 0},

which has dimension e 4+ (d — e) — (d — m) = m. In addition,

Cl(g5"(9:\ 2)) N Cllg3" (2w \ 2))
=R x {p >0} x (S N{ecriwer1 > 0,. .., €mim > 0,wmi1 =0,...,95=0}),
which has dimension e+ 1+ (d—e—1—(d—m)) = m.

(iii) Let Y7, Y5 be intersections of dimension e 4 1 of irreducible components
of Z that contain N. We may assume Y7 = {y.41 =0,...,y4-1 =0} and Y5 =
{Fet1 =0,...,74-2 =0,y =0}, 50 Y1 NYy = {ye41 =0,...,y4 = 0} = N.
Thus,

g7 (Y1) = (R® x {0} x §77°7)

U(R® x Rx (ST N {weyr =0,...,wq—1 = 0})),
951 (V1) = (B® x {0} x §%=¢~)

U (R® x [0, +00) x (SN {wery =0,...,wq_1 = 0})),
g7 (Y2) = (R x {0} x §77¢71)

U(R® xR x (ST N {wey1 =0,...,wg_2 = 0,wg = 0})),

g7 (Y2) = (R x {0} x §T7¢71)

U (R x [0, +00) x (SN {wer1 =0,...,w4_2 = 0,ug = 0})).

As the intersection

st n {We+1 =0,...,wqg_1 = 0} n {We+1 =0,...,wqg2 = 0,wg = 0}
is empty, we conclude that the intersection
g (Y1) NClg~ (Y1 \ N)) g~ (Y2) N Cl(g~' (Y2 \ N))

of the strict transforms of Y7, Y, under g is also empty. Analogously, the inter-
section

g5 (Y1) N Clg" (Y1 \ N)) N gy (Y2) N Cl(g ' (Y2 \ NV))

of the strict transforms of Y7, Y5 under g4 is empty. O

We analyze next all we know about the local structure of drilling blow-up
when N has dimension d — 1.
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4.1. Drilling blow-up

Fact 4.1.5. Assume N has dimension e = d — 1. The Nash diffeomorphism
wi= (up,...,uq) : M — R? satisfies N = {ug = 0}. Recall that
p=u:RIZRTI xR M
and (g : R? — RF is a Nash map that does not vanish and define the Nash map
- - *p)
ORI xR x {£1} = M x S¥L, (y,p,£1) s (1/)(y, ip),iL).
l[Caly, £p)l

Fix ¢ = + and denote

I . [0,400) ife=+,
(00,0 ife=—.

The closure M, in M x S¥=1 of the set

I := {(w(y,z),eQM) eM xSkt 2 0}

is a Nash manifold with boundary such that:
(i) M, C im(®).

(ii) The restriction of ® to R x I, x {+£1} induces a Nash diffeomorphism
between R4~ x I x {#1} and M.. Consequently,

OM, = DR x {0} x {*1})

and I, = Int(M,) = (R4 x (I, \ {0}) x {£1}).

Denote R := 8M+ = OM_ and M = ]T/ﬁ UM_ = Iy URUT_. Then
® induces a Nash diffeomorphism between R¥~! x R x {£1} and M, which is
the Nash closure of ]Ti:r and M_ in M x S¥1. In addition, the Nash map
o« M xS*1 = M x S*1 (a,b) — (a,—b) induces a Nash involution on M
without fixed points such that a(]\7+) = M_ and Oy, —p, £1) = (00®)(y, p, F1)
for each (y,p, £1) € R¥71 x R x {£1}.

Consider the projection 7 : M x S¥~! — M onto the first factor and denote
e := 7|57 . Then

(i) m. is proper, m(M,) = M and R = 7 ().

(ii) The restriction 7 |p, : Te = M \ N is a Nash diffeomorphism.

(iii) For each ¢ € N it holds 7 1(q) = {q} x {i%h that is, each

point ¢ € N has exactly two preimages under 7.

Denote 7 := 7|57 and consider the commutative diagram.

&

Rd_l xR x {il} - Y~ M (yv P il) S CI)(y7 P il)

wion| L | |

IR

IR
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4. Resolution of semi-algebraic sets connected by analytic paths

As a consequence, we have: The Nash maps m. and T have local representations
(x1,...,2q) — (T1,...,2q)
in an open neighbourhood of each point p € R. In addition, dﬂp(Tp]\//f) Z TrpyN.

4.1.2. Global definition. Let M C R™ be a d-dimensional Nash manifold and
N C M a closed e-dimensional Nash submanifold. Let fi,..., fr € N(M) be a
finite system of generators of the ideal Z(IN) of Nash functions on M vanishing
identically on N. Consider the Nash map

(fi(z), ..., fu(@))

. k=1 :
F:M\N—S", H||(f1(;zc)7...,fk(x))H

We have:
Fact 4.1.6. Fiz e = +. The closure Me in M x S¥=1 of the graph
Ie:={(z,eF(z)) e M xS*1: 2 € M\ N}

is a ]\Eajsh manifold with boundary. Denote R := 8@+ = 8;]\Z_ and M =
MyUM_ =T, URUT _, which is the Nash closure of My and M_ in M x SF~!
if M is connected. In addition, M is a Nash manifold and the Nash map

o: M xSt M xSF1 (a,b) — (a, —b)
induces a Nash involution on M without fized points that maps MJF onto M-_.

Fact 4.1.7. Consider the projection m : M x SE=1 — M onto the first factor.
Denote 7. := 7|37 and 7 := 7|5;. We have:

(i) . is proper, me(M,) = M and R = 7 L(N).

(i) The restriction we|r, : T'e — M \ N is a Nash diffeomorphism.

(iii) Consider the Nash map f = (f1,..., fr) : M — RF (whose coordinates
generate Z(N)). Fiz ¢ € N and let E; be any complementary linear
subspace of TyN in T,M. Then m='(q) = {q} x nge’l, where nge’l
denotes the sphere of dimension d— e — 1 obtained when intersecting SF~1
with the (d — e)-dimensional linear subspace dgyf(Ey). In case e =d —1,
each g € N has ezactly two preimages under .

(iv) The Nash maps w. and T have local representations of the type
(1., 2q) = (T1,. - Te, Tt 1y Teq 1T et 2, - - - s Lo 184)

in an open neighbourhood of each point p € R. In case e = d — 1 the
previous local representations are (x1,...,xq) = (z1,...,2q). In addition,

dmp (T, M) & T N.

Fact 4.1.8. Up to Nash diffeomorphisms compatible with the respective projec-
tions, the pairs (Me,7.) and (M, 7) do not depend on the generators fi,..., fx
of Z(N). Moreover, such Nash diffeomorphisms are unique.
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4.1. Drilling blow-up

Definition 4.1.9. The pair (M+, 74 ) is the drilling blow-up of the Nash man-
ifold M with center the closed Nash submanifold N C M and (M,7) is the
twisted Nash double of (M4, 7).

Remark 4.1.10. Let N C M’ C M be Nash manifolds such that NV, M" are closed
in M. Let (M,,my) is the drilling blow-up of M with center N and let (M, 7T)
be the twisted Nash double of (M, 7). Denote M'* := Cl(r ' (M’ \ N)) and
M’ := Cl(w(M'\ N)). Then (M"*, 7y |pr+) is the drilling blow-up of M’ with
center N and (M'®,7|ppe) is the twisted Nash double of (M"™ 7y |pp).

In fact, a finite system of generators fi,..., fr € N(M’) of the ideal Z(N)

can be obtained considering a finite system of generators g1, ..., gx € N (M) of
the ideal Z(IN) by defining f; := g;|m for j=1,... k.

4.1.3. Alternative description of the drilling blow-up. Fernando extended
the construction in diagram (4.1.1) to an open semi-algebraic neighbourhood of
the center N of the drilling blow-up of M (see [Fe4, 5.C]). This construction

gives a global picture of the drilling blow-up (M, 74 ) and justifies the first part
of the name (see also Figure 4.2).

Let M C R™ be a Nash manifold of dimension d and let N C M be a closed
Nash submanifold of dimension e. Let (M, 7) be the twisted Nash double of the
drilling blow-up (M4, 7) of M with center N.

Lemma 4.1.11. Let Uy C M and Uy C M be respective open semi-algebraic
neighbourhoods of N and R := 7=*(N). Then there exist Nash tubular neigh-
bourhoods (V1,01) of N in Uy and (Va,02) of R in Uy such that 7(Va) = Vi and

Va is the Nash double of a collar of R in M.

Theorem 4.1.12 (Alternative description of the drilling blow-up). Let M C R™
be a Nash manifold, let N C M be a closed Nash submanifold and let U be an
open semi-algebraic neighbourhood of N in M. Then there exist a Nash tubular
neighbourhood (V,0) of N in U such that M\V is a Nash manifold with boundary

OV and a Nash diffeomorphism g: M\ V — ]/\\4;.

4.1.4. Relationship between drilling blow-up and classical blow-up.
Let M C R™ be a Nash manifold of dimension d and let N C M be a closed Nash
submanifold of dimension e. Let fi,..., fr € N (M) be a system of generators
of the ideal Z(N). Define

o= {(x, (fr(x): ... : fru(2)) € M x RPF=1 . € M\ N}.

The closure B(M, N) of T" in M x RP*~! together with the restriction 7’ to
B(M, N) of the projection M x RP¥=1 — M is the classical blow-up of M with
center N.

Corollary 4.1.13. Let (]/\/[\, T) be the twisted Nash double of the drilling blow-up
(My,7y). Let o : M — M, (a,b) — (a,—b) be the involution of M without
fixed points. Consider the Nash map

0: M xSk M xRP*! (p,q) — (p,[q])

and its restriction 0 : M — B(M,N). We have
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4. Resolution of semi-algebraic sets connected by analytic paths

R x R x S¢—¢~!

(ya P w) \_J

Figure 4.2: Full picture of the drilling blow-up M, of M with center N (figure
borrowed from [Fed, Fig.4]).

(i) O(M) = B(M,N), foo =0, 7' 00 =7 and 0~(a, b)) = {(a,b), (a, —b)}
for each (a, [b]) € B(M,N).

(ii) 6 is an unramified two to one Nash covering of B(M,N).

4.1.5. Algebraic description of drilling blow-up. Let us analyse an enough
general situation for which we can guarantee that the drilling blow-up is a
constructible set and its twisted (Nash) double an algebraic set. Let X C R"™
be a non-singular d-dimensional algebraic set and let Y C X be a non-singular
e-dimensional algebraic subset. Let f1,..., f» € R[x] be a system of generators
of the ideal Z(Y') of polynomials vanishing identically on Y. Then )?+ is the
(topological) closure of

Ty =4 (zu) € (X\Y) xS 1ok, 77 W)_L
c={ewemiy s

ufi(z) + -+ up fr(x) > O}
in X x S"1. In addition, X is the (topological) closure of

r:%%mem\wxglzmgmﬂjjﬁaﬂz%

or equivalently the union of the irreducible components of the algebraic set

%aMEXx§4:¢<&b 8 ;@921}

different from Y x S"~! and it holds )Z'Jr =Xn {urfi + -+ urfr > 0}. Thus,
the Zariski closure of X is a union of irreducible components of X.

98



4.2. Resolution of closed checkerboard sets

4.2 Resolution of closed checkerboard sets

If 8§ € R™ is a semi-algebraic set, we denote 98 := CI(8) \ Reg(8). Recall
(see Section 3.5) that a pure dimensional semi-algebraic set T C R™ is called a
checkerboard set if it satisfies the following properties:

~2ar ., . .
e T is a non-singular algebraic set.

Aaalar ., . .. ~Zar
e 0T " isa normal-crossings divisor of T

e Reg(7) is connected.

In [Fe4] Fernando proved Theorem 3.5.2. Even if it is not explicitly quoted
in the statement of [Fe4, Thm.8.4] he actually proved more. So, looking at his
proof, we can reformulate the statement of Theorem 3.5.2 in the following way
(recall that by Theorem 3.4.2 a semi-algebraic set 8§ is well-welded if and only
if it is connected by analytic paths):

Theorem 4.2.1. Let 8§ C R™ be a semi-algebraic set connected by analytic paths
of dimension d > 2 and denote X := 8™ Then there exists a checkerboard set
T C R™ of dimension d and a proper polynomial map f : Y = T 50X
such that f(T) = 8 and the restriction flg : T — 8 is also proper. Moreover,
there exists a semi-algebraic set R C 8§ of dimension strictly smaller than d
such that f~Y(R) ¢ 8T, 8\ R and T\ f~*(R) are Nash manifolds and
flrg-1@) : T\ fHR) — 8\ R is a Nash diffeomorphism.

4.2.1. Closed checkerboard sets. Thus, in order to prove Theorem 4.1, we
are reduced to the case when T C R" is a closed checkerboard set. We need
some preliminary notations and results on checkerboard sets.

Given a non-singular algebraic set X C R"™ of dimension d and a normal-
crossings divisor Z C X, we denote, for 1 < ¢ < d,

Singy(Z) := Z,
Sing,(Z) := Sing(Sing,_,(2)).

Observe that if Sing,(Z) # @, then dim(Sing,(Z)) = d — ¢ — 1. In addition, if
Sing,(Z) = @, then Sing;,(Z) = @ for k > £. In particular, Sing,(Z) = @.

Let T C R™ be a closed checkerboard set and denote X := T . For each
point & € T there exists a coordinate system (uy,...,uq) of the Nash manifold
X at z and an integer 0 < r, < d such that either 9T, = {uy---u,, = 0}, if
ry > 1 or z € Reg(T) =T\ 07 if r, = 0. We denote with e, := e, (T) < r, the
number of indices 1 < i < r, such that the germ T, \ {w; = 0}, is disconnected.
If r, <1, then e, = 0.

Lemma 4.2.2. e, = 0 if and only if T, is the germ at x of a Nash manifold
with corners.

Proof. The if implication is clear because after changing the sign of some of the
variables if necessary, we may assume either = € Reg(T) or

T, ={w >0,...,u,, >0},
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4. Resolution of semi-algebraic sets connected by analytic paths

for some 1 <7, <d, so e, =0.

Conversely, if e, = 0, then after changing the sign of some of the variables
if necessary, we may assume either € Reg(T) or T, C {u; >0,...,u,, > 0},
for some 1 <r, <d. As

T, \ 0T = Reg(T), \ 0T

is an open and closed germ, T \%’in is a union of connected components of
{uy---u,, # 0}, contained in {u; >0,...,u,, > 0},, so

T\ 0T ={u; >0,...,u,, >0},

As T, is closed and pure dimensional and dim(87T, ) < dim(T,), we conclude
T, ={u; >0,...,u,, >0}, is the germ at x of a Nash manifold with corners,
as required. O]

It follows from the previous statement: A closed checkerboard set is a Nash
manifold with corners if and only if e, (T) =0 for each x € 7.

Lemma 4.2.3. Let T C R” be a closed checkerboard set. Then e, # 1, for each
x € 07.

Proof. Let X = T . For each z € T there exists an open semi-algebraic set
U C X equipped with a Nash diffeomorphism u := (uy,...,uq) : U — R? and
an integer 1 < r, < d such that u(z) = 0 and 9T, = {u; ---u,, = 0},.
Suppose that e, > 1 for some = € 0T. As e, # 0, then r, > 2, because
otherwise T, is the germ of a Nash manifold with boundary and e, = 0. Up to
rename the variables if necessary, we may assume T\ {u; = 0}, is disconnected.
Suppose that for each 2 < ¢ < r,, the germ T, \ {u; = 0}, is connected. After
changing the signs of some of the variables if necessary, we may assume

Tr C{uz >0,...,u,, >0},.

Proceeding as in the proof of Lemma 4.2.2, as T, \ 0T, = Reg(T), \ 0T,
is an open and closed germ, T, \877;[1 is a union of connected components of
{uy -+ u,, # 0}, contained in {uy >0,...,u,, > 0},. As T, is closed and pure
dimensional and dim(87,, ) < dim(7,), we have only two possibilities:

e 7, ={u >0,...,u., >0}, (up to changing the sign of the germ u; if
necessary),
e T, ={uw>0,...,u., >0},
In the first case e, = 0, which contradicts the fact that T, \ {u; = 0}, is
disconnected, whereas in the second case {u; = 0}, ¢ 87T, which contradicts

the fact that 97 = {u;---u,, = 0},. Thus, there exists 2 < i < r, such that
Tz \ {u; = 0}, is disconnected, so e, > 2 as required. O

We show next that the function e(7T) is a semi-algebraic function.
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Lemma 4.2.4 (Semi-algebricity of e(T)). Let T C R™ be a d-dimensional closed
checkerboard set and let 0 < e < d. The set

Tei={xeT:e,=¢}

1s a semi-algebraic set and Ty is an open subset of T. In addition, if Z is the
Zariski closure of 0T and C' is a connected component of Sing,(Z) \ Sing,,,(2)
for some 0 < £ <d—1, then e(T) is constant on C.

Proof. The boundary 07 is a closed semi-algebraic subset of the Nash manifold
X :=T™. For each x € 9T there exists a coordinate system (uy, ..., uq) of X
at  and an integer 1 < r, < d such that 9T, = {u;---u,, = 0},. By [FGR,
Prop.4.4, Prop.4.6] there exist finitely many open semi-algebraic sets {U;}7_,
equipped with Nash diffeomorphism u; := (u;1, ..., uiq) : U; — R? and integers
r; > 1 such that W’in = {ui1 -, =0}, for all z € TNU,.

Fixie {l,...,s} and J C {1,...,7;}. Reordering the variables if necessary,

we may assume J = {1,...,m} for some 1 < m < r;. Let V be a connected
component of U; \ {un41---u,, = 0}. After changing the signs of some of
the variables if necessary, we may assume V := {u;my1 > 0,...,u;, > 0}.

Consider the semi-algebraic set T/ := TN U; NV and the projection
T RE=R™ x R&“™ 5 R™

onto the first m coordinates. We take coordinates (z1,...,z,,) on R™ and
(Tmi1,s---,xq) on R™™, Denote

A= {Zimy1 >0,...,%x4, >0} C RI—™,

As u; (T N U;) is the union of connected components of R4 \ {x;...x,, = 0},
there exist €;.1,...,¢;% € {—1,1}" such that

k
ui(‘J'ﬁ Ul) = U{Elplxl > O7 N ,Eip”X” > O}
p=1

where €, 1= (€ipy, . - -, Eip,. ). Consequently,

k
= U{Elplxl > 07~~~7€iprixri > Oaxm+1 > Oa”'vxri > 0}
p=1

Observe that
{Elplxl > 07 s »Eiprixri > 07Xm+1 > 07 cee Xpy > 0}
{51p1X1 Z 0, - €ippXm Z O,Xm_;,_l Z O7 e Xy Z 0},

if €ippyy =+ = Eip,, = 1,
&, otherwhise.

Thus,

wi(T') = U femx =0, i, %m 2 0,%m41 20, %, >0}

pe{l,....k}
(si:ﬂm+1 r€ipy; ):(1"--11)

= WZ(Ul(T/)) X Az
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4. Resolution of semi-algebraic sets connected by analytic paths

Ifz e {uy1=0,...,9m =0}NVNT, then e,(T) = eo(m;(u;(TNU;NV))) and in
particular e, (7) is constant on {u;; =0,...,wm = 0,4 m+1 > 0,..., 0, > 0}.
Aseach x € TNU; N{u;1 ...u;, = 0} belongs to a set of the type

fuij = 0,5 € J}U{eiuy; > 0,5 ¢ J}

where J = {1,...,7;} and ¢;; € {—1,1}, the function e(7T) provides a semi-
algebraic partition of 9T NU; for each i = 1,...,s. In particular, each set T, is
semi-algebraic. As the condition ‘to be a Nash manifold with corners’ is a local
open condition, we deduce T is an open semi-algebraic subset of 7.

We have proved above that if Z] := {u;; - - u;, = 0} and C} is a connected
component of Sing,(Z]) \ Sing,,,(Z;) for some 0 < ¢ < d — 1, then e(7) is
constant on C’. That means that if C' is a connected component of Sing,(Z) \
Sing,,1(Z), there exists a finite semi-algebraic open covering W¢ of C' such
that e(T) is constant on each semi-algebraic open subset of the covering. If
z,y € C, there exists Wy,..., W, € W¢ such that € Wy, y € W, and
WinWi1 # @ forj=1,...,9—1. Ase(7)|w, is constant we deduce recursively
that e, (T) = e, (7T), as required. O

We show next that the function e(7T) is upper semi-continuous.

Lemma 4.2.5 (Upper semi-continuity of e(T)). Let T C R? be a d-dimensional
closed checkerboard set and let © € 0T. Then e > ey, for each y € T close
enough to x.

Proof. Let k be the maximum of the values e > 0 such that x € CI(T.). It
is enough to check that e, > k. Consider the Nash manifold X := T and
let U C X be an open semi-algebraic neighbourhood of x equipped with a
Nash diffeomorphism u = (ug,...,uq) : U — R? such that u(z) = 0 and
Wzn ={u - -u, =0};. U e, <k, we may assume T, C {up >0,...,uqy > 0},.
Shrinking U if necessary, we have

TNU C {uk >0,...,uq9 ZO}
Thus, e, < k for each y € U, which is a contradiction because x € C1(T3). O

Remark 4.2.6. As e(T) is upper semi-continuous, the set J,~, T is a closed
subset of 9T for each 1 < e < d. B

4.2.2. Closed checkerboard sets and drilling blow-up. We want to study
now how the quantity e, (7) changes after performing a drilling blow-up. We
show the following;:

Lemma 4.2.7. Let § C R™ be a d-dimensional closed checkerboard set. Denote
X =8 and Z := 98" Let Z1,..., 2y be the irreducible components of Z
andY an irreducible component of Z1N---NZy for some 2 < £ < r. Let (X,7) be
the twisted Nash double of the drilling blow-up ()~(77r+) of X with centerY . Let
T := Cl(n " (8\Y)) = 7 (8)NCL(n; (8\Y)) be the strict transform of S. Then
T is d-dimensional closed checkerboard set, e,(T) < e, (,)(8) for each y € 0T
and ey(T) < ex, ()(8) for each y € 0T N 711 (Y) such that Sri(y) \ Zimy(y) 18
not connected fori=1,... 4.
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4.2. Resolution of closed checkerboard sets

Proof. As ¢ > 2, we have dim(Y) < d — 2, so Reg(8) \ YV is connected because
Reg(8) is a connected Nash manifold of dimension d. As 8§ and T are both pure
dimensional, we have

71 (Reg(8) \ Y) C Reg(T) € Cl(n (8\Y)) = Cl(r; "' (Reg(8) \ V).

Thus, Reg(T) is connected and T is a checkerboard set, because: it is closed,
T"=Xisa non-singular algebraic set and the Zariski closure of 97 is a union

of irreducible components of %’%%Zar), which is a normal-crossings divisor by
Remarks 4.1.4 and 4.1.10.

As 7r+\55\ﬁ;1(y) DX\ 771 (Y) — X \ Y is a Nash diffeomorphism, it holds
ey(T) = ex, () (8) for each y € 0T\ 7' (Y). Let us see what happens at the
points of 9T N7 (V). Fix apoint y € 0T N7 " (Y) and denote z := 1 (y) € Y.

Assume that the irreducible components of Z that contain x are Zq,..., Z,
for some 2 < ¢ <7’ <r. Let U C X be an open semi-algebraic neighbourhood
of x equipped with a Nash diffeomorphism u := (uy, ..., uq) : U — R such that

wZNU)={u-ur =0} and w(YNU)={u; =0,...,u, =0}

Write e := dim(Y) = d — £ and assume that e,(8) = & < r. Reordering the
variables and changing their signs if necessary, we may assume

SNU C{u1 >0,...,upn >0,u41 >0,...,us >0} (4.2.1)

for some 0 < m < £ and £ < s < r’ and both m and s are maximal satisfying
(4.2.1). If m = 0, then

SNU C{up41 >0,...,us >0},

whereas if s = ¢, then SNU C {u; > 0,...,u, > 0}. As e;(8) = k, we have
k= (¢ —m)+ (r' —s). By Remarks 4.1.4 we can choose coordinates in X such
that 74 behaves (with the already taken coordinates in X) as the Nash map

gy : [0,400) x ST X R 5 R, (p,w, 2) — (pw, 2),

where w 1= (wy,...,wy) and 2z := (2¢41,...,24) € R® = R¥"*. We have

g (wW(ZNU)) = {pfr - wzpsr -z =0, W+ g =1,

97 (w(Y NU)) = {plwr---we =0, wi+ - +wp =1}
and
g7 (w@NU\Y)) C{p>0,w1 >0,...,90 >0, 2041 >0,...,25 >0, wi+--Fw; = 1}.
If m =0, then SNU C {up41 > 0,...,us > 0} and

97 (wNUN\Y)) C{p>0,2041>0,...,2, >0, uj + +w; =1}.

Thus, ey(T) <l —1+71" —s=k—1 <k = e,(8) for each y € g~ (x). The
condition m = 0 means that 8, \ Z; , is not connected for i =1,...,¢.

We assume in the following m > 1. Observe that 8, \ Z; ; is not connected
for i =m+1,...,0. Let us show e,(T) < e,(8) for each y € g~*(z). It may
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4. Resolution of semi-algebraic sets connected by analytic paths

happen that for some y € g~!(x) the previous inequality is strict even if 8, \ Z; »
is connected for the indices i = 1,...,m. If some w;(y) # 0, this variable
has no relevance in the description of T locally around y and w; behaves as

£/ 1=20, w?. Analogously, if some z;(y) # 0, this variable has no relevance

in the description of T locally around y. As wi + --- + w7 = 1, there exists an
index 1 < ¢ < £ such that w;(y) # 0:

Case 1. If 1 <4 < m, we may assume ¢ = m. Thus, w,,(y) > 0 and w,,, =

/ 1 . .
/1= w2. Thus, we consider coordinates

(Py Wy e e oy Wi 1y Wb Ly - e s WOy 201y - -y Zdl)
and ey (T) <l—(m—1+1)+ (" —0)—(s—0) =l —m)+ (1" —s) =k = e,(8).

CaAst 2. If m+1 < i < ¢, we may assume ¢ = £. Thus, w(y) # 0 and

/ —1 . .
wp=14/1— ijl w2. Thus, we consider coordinates

(Py W1y ey Wo—1, 2041, -y Zd)
and
e)(T) S 1+ (0—1) = (m+1)+ (' =) — (s — )
=U-m)+ (' —s)—1=k—1<k=e(8),
as required. O

4.2.3. Closed checkerboard sets and Nash manifolds with corners. We
are ready to prove Theorem 4.1. After the previous preparation (in particular
Theorem 4.2.1) we are reduced to the case when 8 is a d-dimensional closed
checkerboard set.

Proof of Theorem 4.1. Let us construct the Nash manifold with corners Q first.

Let 8 C R™ be a d-dimensional closed checkerboard set and denote Xp :=8 .
Let Z := 88" and let Z1,. .. , Z be its irreducible components. Define

e :=max{e,(8): = € 98}.

If e = 0, we conclude by Lemma 4.2.2 that § is already a Nash manifold with
corners. Otherwise, by Lemma 4.2.3 e > 2. By Remark 4.2.6 8. is a closed
subset of 08. By Lemma 4.2.4 §. is a union of connected components of the
semi-algebraic sets Sing,(Z) \ Sing,,(Z) for 1 < ¢ < d —1 (recall that e > 2).

Pick a point x € 8. and assume that Zi,...,Z. are the irreducible com-
ponents of Z such that the germ 8, \ Z; , is not connected for i = 1,...,e.
Then, there exists an open semi-algebraic neighbourhood U C X of = equipped
with a Nash diffeomorphism u := (ug,...,us) : U — R? such that u(z) = 0,
ZﬂU:{uy--uT:O}, ZZﬂU:{uZ:0} and

SNU C {uet1 >0,...,u. > 0}.

Thus, {u1 = 0,...,uc = 0,ucy; > 0,...,u, > 0} C 8. By Lemma 4.2.5 the
connected component € of (Z; N --- N Z.) \ Uj_.,, Zi that contains {u; =
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4.2. Resolution of closed checkerboard sets

0,...,u = 0,ue41 > 0,...,u, > 0} is contained in 8.. Thus, the Zariski

closure of € is the irreducible component of Z; N--- N Z, that contains x. As

we can repeat the previous argument for each z € 8., we conclude that the

Zariski closure of 8. is a union of irreducible components of the algebraic set
e

Ui icycttn Mi=1 Zis-

In addition, for each = € 8. there exists irreducible components Z;,, ..., Z;,
of Z such that the germ 8, \ Z;, , is not connected for j = 1,...,e. We proceed
by double induction on e and the number m of irreducible components of 8.

Let W be an irreducible component of the Zariski closure of 8.. Let ()A(o, )

be the twisted Nash double of the drilling blow-up ()20, my) of Xy with center
W, which is by Section 4.1.5 an algebraic set. Let

T o= Clry 8\ W) = 73 (8) N Ul (8 \ W)

be the strict transform of 8 (recall that § is closed). As § is pure dimensional
and 8, C 88™ has dimension strictly smaller, § \ W is dense in 8 so

7 () = 7 (CUa (5 \ W) = Cllm (718 \ TV))) = CU(S\ W) = 5,

because m : )~(0 — Xy is proper and surjective. By Lemma 4.2.7 7 is a
checkerboard set, e, (T) < er, ,)(8) for each y € 9T and e,(T) < e, (,)(8)
for each y € 9T N ﬂf_l(W) such that 8 () \ Zi, x,(y) 13 not connected for
j=1,... e

If max{e(T), : y € 0T} < e, by induction hypothesis the statement holds
for T so it also holds for 8. If max{e(7T), : y € 0T} = e, the Zariski closure of
T, is contained in CL(F(S.”" \ W)) and it has m — 1 irreducible components.
As by Lemma 4.2.2 e = 0 if and only if T is a Nash manifold with corners, our
inductive argument is consistent. Thus, by induction hypothesis the statement
holds for 7 so it also holds for 8.

Let Q C R™ be the Nash manifold with corners obtained by our inductive
process. We have constructed the manifold Q, starting from 8§, with a finite

number of drilling blow-ups. Namely, we have constructed a finite number of
tuples {7, (Xg,, m4.4), (Xg,, )}, where:

~ Szar . v =~ :
e Jp =8, Xy, =Xo=8 , my0:=1idx,, Xg, := Xo and 7y :=idyx,.

. (Xg' 11> T4,i+1) is the drilling blow-up of the irreducible algebraic manifold
T with center a (suitable) irreducible algebraic submanifold W of far.

(2

. ()?qi+1 ,Tit+1) is the twisted Nash double of ()?ryi+1 ST it1)-

o i1 = CI(WI}HI(‘J} \ W;)) is the strict transform of T; and
Tit1(Tig1) = 701 (Tigr) = T

« T, —0Q.

By Section 4.1.5 far is an irreducible component of the algebraic set )A(ry In
particular Q™ ¢ Xg,. As by Lemma 4.2.7 the Nash manifold with corners
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4. Resolution of semi-algebraic sets connected by analytic paths

Q is a checkerboard set, X := Q™" is a d-dimensional non-singular irreducible
——=zar

algebraic set and Y := 0Q " is a normal-crossings divisor of X. Thus, (i) and

(ii) hold.

Consider the polynomial map f := 7s0...07 : )A(qs — Xo. By Fact 4.1.7(i),
f: )/qu — Xy is composition of proper maps, so it is proper. Moreover, as 8 is
closed and Q is obtained from § after a finite number of drilling blow-ups taking
strict transforms in each step, Q is a closed subset of X. Thus, the restriction
fla : Q@ = Xy is proper. In addition, as 11 (Tix1) =T; for i =0,...,5s — 1, we
conclude that f(Q) = 8.

Let us show (iv). The semi-algebraic set R := f(8Q) U (SNDS") C 8 is
closed, because both 8§ and 98 are closed and f(09Q) is closed as f is proper
and 9Q is closed. As both 9Q and § N 98™" have dimension not greater than
d—1, we have dimR < d — 1 < d. The semi-algebraic sets 8 \ R and Q\ f~}(R)
are Nash manifolds, because 8 \ R is an open semi-algebraic subset of the Nash
manifold Reg(8) and Q\ f~!(R) is an open semi-algebraic subset of the Nash
manifold Int(Q). Looking at the procedure developed to construct the Nash
manifold with corners Q starting from the checkerboard set Ty = 8 using drilling
blow-ups and taking into account the nature of the centre W; of each step that
is contained in 87‘3'12-” and satisfies w;_li+1(Wi) N Ti11 C 0T;41, we conclude
flovs-1®y : Q\ f7H(R) — 8\ R is a Nash diffeomorphism (see Facts 4.1.6 and
4.1.7(ii)), as required. O

flo

Figure 4.3: Resolution of the closed checkerboard set 8 (right) by the Nash manifold
with corners Q (left).

Remark 4.2.8. As we have considered in each step of the inductive procedure
in the proof of Theorem 4.1 the Zariski closure of T; ., instead of T; ¢,, it may
happen that f(09) ¢ 8N 98" and we have to add it in R. If we change in
the statement of Theorem 4.1 polynomial maps by Nash maps, then it holds

~aZar

f(09) c 8$NdS™ and R =8N as™.

4.3 Resolution of general checkerboard sets

If § C R™ is a general semi-algebraic set connected by analytic paths, one can
wonder if it is possible to provide a similar result to Theorem 4.1 that also
works for §. As the chosen Nash manifold with corners Q is closed in its Zariski
closure and the chosen polynomial map f : R™ — R™ restricts to a proper map
fla : Q@ = R™, its image 8 is a closed subset of R™. Thus, if 8 is not closed

106



4.3. Resolution of general checkerboard sets

in R™, we should change the type of domain and/or the type of map. The
second approach considering general Nash maps non-necessarily proper has been
developed in [Fe4, Proof of Thm.1.4, §8.C.12] and it is shown that if the involved
Nash map is not necessarily proper, then there exists a Nash manifold H with
smooth boundary and a surjective Nash map f : H — 8. If one wants to keep
the properness condition, it is not possible to keep as domains Nash manifolds
Q with corners because they are locally compact and images of locally compact
subset of R™ under proper maps are locally compact subsets of R”. Thus, we
have to change the type of involved domains and we will consider semi-algebraic
sets T C R™ whose closure is a Nash manifold with corners Q C R™ and Q \ T is
a union of some of the strata of the a suitable stratification of Q. Let us recall
the definition of (Nash) stratification of a semi-algebraic set.

Definition 4.3.1. Let 8§ C R™ be a semi-algebraic set. A (Nash) stratification
of 8 is a finite partition {84}aca of 8, where each 8, is a connected Nash
submanifold of R™ and the following property is satisfied: if 8, N Cl(8g) # @
and a # B, then 8§, C Cl(83) and dim(8,) < dim(8g). The 8, are called the
strata of the stratification and if d := dim(8,), then 8, is a d-stratum.

Note that the condition dim(8,) < dim(8z) follows from [BCR, Prop.2.8.13]
because 8§, C CI(83) \ 8g.

Given a d-dimensional semi-algebraic set § C R™, we consider the following
partition of 8. Recall that Sth(8) is the set of points x € § at which the germ
8, is the germ of a Nash manifold (see Section 2.4.1). Define I'; := Sth(8) and
I := Sth(8\ Uf;ll I';) for k > 2. Let s > 1 be the largest index k such that
'y # @. For each k > 1 let T'yp (for £ = 1,...,7) be the connected components
of I',. The collection

(’5(8) ::{sz: 1§k§s,1§€§rk}
is a partition of §. We say that a semi-algebraic set T C 8 is compatible with

&(8) if it is the union of some of the I'g,.
Ezamples 4.3.2. (i) The semi-algebraic partition &(8) of a semi-algebraic set is
not in general a stratification of §. Consider for instance the semi-algebraic set
§:={y*—x*=0}N({z>0}U{z <0,y >0}) C R Then

Mp={y’—x*=0,y>0}, T2 :={y* —x* =0,y <0,z > 0},

F21 = {XZO,YZO}

and 6(8) = {Fll,F127F21}. Observe that Fgl n Cl(Flg), but Fgl ¢ Cl(Flg)
Thus, &(8) is not a stratification of 8.

(ii) If M C R™ is a d-dimensional Nash manifold and X C M is a normal-
crossings divisor, then &(X) is a stratification of X.

It is enough to consider local models, that is, X := {x; ---x, = 0} C R% In
fact, we may assume r = d, because X =Y x R?~" where

Yi={x1--x =0} CR"

The semi-algebraic partition &(X) of X is the collection of semi-algebraic sets
Ty = {x1%10,...,%q %4 0} where x; € {<,=,>} and one of the *; values =.
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4. Resolution of semi-algebraic sets connected by analytic paths

The closure of each I'y is a union of finitely many I'y, and consequently &(X) is
a stratification of X.

In this case Sth(X) = Reg(X) and Sth(Sing,(X)) = Reg(Sing,(X)) for each
(> 1.

(iii) Let M C R™ be a Nash manifold such that Reg(M) =M, X C M is a
normal-crossings divisor and § the closure of a union of connected components
of M\ X. Then &(8) is a stratification of § and &(X) is compatible with
08 = 8\ Reg(8) and SN X.

Also in this case it is enough to consider local models and we may assume
X ={x1-%x =0} C R?. Again we suppose r = d, because X = Y x R?"

where Y := {x1 ---x, = 0} CR". Thus, 8 := [J_cz Qe, where € := (e1,...,€4),

Q. :={e1x1 > 0,...,e4%xq > 0}

and § C {-1,1}%. The semi-algebraic partition &(8) of § is a collection of
the type {x;, *i, 0,...,%;, #;, 0} where 0 < ¢ <d, 1 <i; <--- <ip <dand
*;, € {<,=,>} for k = 1,...,£. The closure of each I'y is a union of finitely
many 'y, so &(8) is a stratification of 8. Observe that 98 = 8 \ Reg(8) and
8N X are unions of finitely many of the sets {x;, *;, 0,...,%;, *;, 0} with the
condition that some of the %;, is equal to =, that is, all of them belong to &(X)
and &(X) is compatible with 98 = 8 \ Reg(8).

In this case Sth(8) = Reg(8) and Sth(9‘S) = Reg(d*S), where 98§ :=
0(9°~18) for each ¢ > 2. This is so because 98 C Sing(X) and 9*S C Sing,(X)
for each ¢ > 2.

(iv) If Q € R™ is a d-dimensional Nash manifold with corners, &(Q) is a
stratification of Q.

It is enough to apply Theorem 2.5.12 and (iii).

A subset T C R” is a Nash quasi-manifold with corners if Q := CI(7) is a
Nash manifold with corners and Q\ 7 is a union of elements of the stratification
&(09).

We are ready to prove Theorem 4.2. That is, we show that if § C R™ is a
d-dimensional semi-algebraic set connected by analytic paths, then there exist:

(i) A d-dimensional connected compact non-singular algebraic set M C R"™
and a normal-crossings divisor Y C M.

(ii) A connected Nash quasi-manifold with corners 8* C M that is a checker-
board set and whose closure in M is a compact connected Nash manifold
with corners Q®° C M whose boundary 9dQ® has Y as its Zarsiki closure.

(iii) A Nash map f : R™ — R™ such that the restriction f|ge : 8* — 8 is
proper and f(8°) =38.

(iv) A closed semi-algebraic set R C 8§ of dimension strictly smaller than d
such that § \ R and 8°\ f~!(R) are Nash manifolds and the Nash map
flsevs-1(w) : 8°\ f7H(R) = 8\ R is a Nash diffeomorphism.

Proof of Theorem 4.2. The proof is conducted in several steps and subsequent
reductions:
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4.3. Resolution of general checkerboard sets

STEP 1. INITIAL PREPARATION. We embed R™ in RP™ and the latter in
RY for N large enough, so we can suppose 8 is in addition bounded, so CI(8)
is compact, and the Zariski closure of 8§ is compact. By Theorem 4.2.1 we
may assume that § C R™ is a checkerboard set, whose Zariski closure X is
a d-dimensional non-singular compact algebraic subset of R™. In particular,
Reg(8) is connected.

Let Z; be the Zariski closure of CI(8) \ Reg(8), which is a normal crossing
divisor of the Zariski closure X of § (and has dimension d — 1). We construct
next a semi-algebraic partition of C1(8) as a finite union of Nash manifolds of
different dimensions compatible with T; := CI(S) \ § and T2 := § \ Reg(8).
Observe that 77 and Ty are disjoint semi-algebraic sets, they have dimensions
< d—1 and 98 := CI(8) \ Reg(8) = 71 U Ts.

T2

T1

Figure 4.4: A bounded checkerboard set § (left) and 8§ with the sets T (blue) and Ts
(red) coloured (right).

Let N7 be the union of the connected components of Reg(T71) U Reg(T2) of
dimension d — 1. Note that the connected components of dimension d — 1 of
Reg(7T1) U Reg(T2) are in general different from the connected components of
dimension d — 1 of Reg(d8). As dim(T; \ Reg(7;)) < d — 2, the semi-algebraic
set 08 \ N7 has dimension < d — 2. Let Zy be the Zariski closure of 08 \ Nj.
Each connected component of the Nash manifold Ny := 98 \ Zo = Ny \ Z3 has
dimension d —1 and it is contained in either T or T5. In addition, 98\ Nj C Z5
has dimension < d — 2 and CI(N7) C 98.

Let us construct recursively pairwise disjoint semi-algebraic sets N}, that
are either Nash manifolds of dimension d — k, whose connected components are
contained in either T7 or T3, or the empty set and algebraic sets Zj of dimension
< d — k such that N]; C Zy, NllcmZk+1 =9, Zyy1 C Zy, 88\(N{UUN,’€) C
Zi+1 and CI(N}) C 08\ (N{ U ---UNj]_;).

Suppose we have constructed the Nash manifolds N{,..., N;_; and the al-
gebraic sets Z1, ..., Z satisfying the required conditions and let us construct
N/ and Zj4+1. Let Ni be the union of the connected components of dimension
d—k of Reg(T1 N Z;,) UReg(T2N Zi) or the empty set if dim((Z; NCI(8))\8) <
d—Fk. As dim((7; N Z) \ Reg(T; N Zk)) < d — (k + 1), the semi-algebraic set
08\ (N{U---UN;_,UN}) C 98NZ}\ Ni, has dimension < d—(k+1). Let Z;11 be
the Zariski closure of 08\ (N{U- - -UN;,_,;UN}), which has dimension < d—(k+1).
In case N = @, then dim(Z;) < d — k and Zy; = Z,. Each connected com-
ponent of the Nash manifold Nj, := 98\ (N{U---UN]_; U Zy11) = Ny \ Z1
has dimension d — k£ and it is contained in either T; or J,. In addition,
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4. Resolution of semi-algebraic sets connected by analytic paths

I8\ (N{U---UNJ) C Zg41, so it has dimension < d — (k + 1).

As Zy C Zy it t < k and N;N Zyyy = @ for £ < k, we deduce N; N Z, = &
if ¢ <k, so CI(N},) C Zj, does not meet N{ U---UNj_,, so

CI(N;) C 98\ (N{U---UNj_,).

Thus, we have constructed the Nash manifolds N}, of dimension d — k (or the
emptyset) and the algebraic sets Zj, of dimension < d— k satisfying the required
conditions for k =1,...,d — 1. In particular,

CUNE) \ Ny C O8N\ (N{ U+~ UNp) C Zjy

for k=1,...,d (and Zg41 := 9).

Define the algebraic set Ty := Z4_j, which has dimension < k, and the
Nash manifold My, := N/_,, which is either empty or has dimension k, for
k=0,...,d—1. The algebraic set T}, is the Zariski closure of the Nash manifold
My, if My, # @. If My # @, then M is a finite set and My = Ty. Otherwise,
if m is the least k such that My # &, then M, is a (finite) union of connected
components of T}, of dimension m and M} = @ for 0 < k < m.

Observe that dlm(Tk) <d-k, T, C Tyy1, My C Ty, Mp N1y = @,
Cl(Mk) \ My C Mol --- U My_1 CTk_1. In addition,

Cl8)NTy, =8N Zg—r, = (Reg(8) N Zy—r) U (8N Zy_y)
=N, ,U---UNj=MyU---U My,
(CUS)\8) NT), = (Mo N T1) -+ U (M, NTy),
SNTp=(MyNTo) UL (MpNTs),

where M, N T; is the union of the connected components of the Nash manifold
M, contained in T; for ¢ = 1,2. Observe that M, = (M, NT7) U (M, N T3).

STEP 2. INITIAL ALGEBRAIC RESOLUTION PROCEDURE. Let gy : Xg — X
be the blowing-up of X of center Ty and let Ey := g, 1(To) be the exceptional
divisor of go. Recall that go|x,\ £, : Xo\ £o — X \ Tp is a Nash diffeomorphism
whose inverse map is a regular map and Xj is a non-singular (compact) algebraic
set. Denote Ty; := g *(T3) N Cl(gy *(T; \ To)) the strict transform of T; under
go, which is an algebraic set of the same dimension as T; and denote Y7 := Ty .
Observe that no Tp; is contained in the algebraic set Ey for ¢ > 1. In particular,
dim(Ty; N Ep) < dim(Tp;) for each 4 > 1 and no irreducible component of Y7 is
contained in Ey. We desingularize next Fy U Y7.

By Theorem 2.4.4 there exists a non-singular (compact) algebraic set X; and
a proper surjective polynomial map ¢; : X7 — X such that F; := gl_l(Eo uYy)
is a normal-crossings divisor of X; and the restriction

gl|X1\E1 ZXl \E1 —)Xo\(E()UYl)

is a Nash diffeomorphism whose inverse map is a regular map. In fact, g; is
a composition of finitely many blowing-ups whose non-singular centers have
dimension < min{dim(Y7),d — 2}. Denote

Ty = g7 (To:) N Clgy ' (Toi \ (Eo U Y1)))
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the strict transform of Ty;, which is an algebraic set of the same dimension as
T; and denote Y5 := T15. Observe that no T7; is contained in the algebraic set
E, for ¢ > 2. In particular, dim(Ty; N Ey) < dim(T3;) for each ¢ > 2 and no
irreducible component of Y5 is contained in F;. We desingularize next F; U Y5.

We proceed recursively and in the step k£ < d — 1 we find by Theorem 2.4.4
a non-singular (compact) algebraic set X and a proper surjective polynomial
map gr : Xx — Xg_1 such that Fy := gk_l(Ek,l U Y%) is a normal-crossings
divisor of X and the restriction gr|x,\g, @ X& \ Ex = Xip—1\ (Er-1 U Yz)
is a Nash diffeomorphism whose inverse map is a regular map. In fact, g is
a composition of finitely many blowing-ups whose non-singular centers have
dimension < min{dim(Y%),d — 2}. Denote

Tri = g7 " (Ti—1,0) N Cl(gp, " (Th—1.: \ (Br—1 UYy)))

the strict transform of Tj_; ;, which is an algebraic set of the same dimension
as T; and let Y41 := Tj r+1. Observe that no Tj; is contained in the algebraic
set Ey for i > k+ 1. In particular, dim(Ty; N Ey) < dim(Ty;) for each i > k+1
and no irreducible component of Yy is contained in Ey. Observe that Y; = &
(because Ty = &, 80 Ty—14 = @) and Eg1 = (goo -+ 0 ga—1) (Tu—1) is a
normal-crossing divisor.

STEP 3. PROPERTIES OF THE STRICT TRANSFORM. For each k =0,...,d —1
the polynomial map g : Xy — Xg—1 (where X_; := X) is the composition
of finitely many blow-ups whose centers have dimensions < d — 2. Recall that
the blow-up b : V. — V of a d-dimensional non-singular algebraic set V with
center a non-singular algebraic subset W of dimension < d — 2 provides a Nash
diffeomorphism blg, -1y © V \ 071 (W) — V \ W. As the image of a semi-
algebraic set of dimension < d — 2 is a semi-algebraic set of dimension < d — 2,
we conclude that there exists a semi-algebraic set Rxy_1 C Xi_1 of dimension
< d — 2 such that gk|Xk\g,§1(Rk,1) : Xk \ gr " (Rr—1) = Xg—1\ Rk—1 is a Nash
diffeomorphism. Substituting Ry by its Zariski closure we may assume Ry is an
algebraic set.

Consider the composition g := ggo---0ggq_1 : Xq—1 — X. Let R be the

Zariski closure of R_; U UZ;?)(QO o---0gr)(Rk), which is an algebraic set of
dimension < d — 2. The restriction g|x, ,\g-1(r) : Xa—1 \ g '(R) = X \Risa
Nash diffeomorphism.

Define 8* := g=1(8) N Cl(g~(8) \ E4_1) the strict transform of § under g
and 8y, == g; "(8x—1) N Cl(g;, " (Sk—1) \ Ex) the strict transform of 8_; under
gr for k=0,...,d— 1, where §_; := 8. We claim: 8" = §4.

Let us prove by induction on ¢ that
8; :=(gpo---o gg)_l(S) NCl((goo---o0 gg)_l(S) \ Er)
equals 8y for each ¢ = 0,...,d — 1. If { = 0, then 8§ = §p. Suppose the
result true for ¢ — 1, that is, 8;_; = 8,1 and let us check 8§ = §,. Denote
he_1:=gpo---0gp_1. We have
8¢ =(g00--090)  (8)NCl((goo--09¢) ' (8) \ Er)
= g; ' (hi1(8)) N Cllg; * (hi21(8)) \ Ex)
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4. Resolution of semi-algebraic sets connected by analytic paths

is the strict transform of i, ', (8) under g,. It holds
Si—1= hZ—ll ()N Cl(hZ—l1 (8)\ Ee—1)

and recall that E, = g, ' (E,—1 UY).

The strict transform of §;_; under g, is

9¢ 1 (87-1) N Clg; 1(Si-1) \ Ee) = g7 M (hy 24(8)) Mgy H(CL(RL, () \ Eev)
NCI((g;  (h !, (8)) \ Ee) N (g7 M (Cl(hy 1 (8) \ Ev—1) \ Ev))

As h[jl (8)\ Ev—1 C Cl(h[jl(S) \ E¢—1) and g[l(Eg,l) C E,, we deduce

90 (2 () \ Ee € g7 H(CU(h; 1 (8) \ Ee-1).
Consequently,

Cl(g, " (h11(8)) \ Ee) C g7 M (CU(R 1 (8)\ Ee-1)),
90 (g2, (8)) \ Ee € g; M (Cl(hy 1 (8) \ Ey—1)) \ Er.
Thus,

Cl(gz " (he1(8)) \ Ee) N (g7 ' (CUR,(8) \ Ee—1) \ Ex)) = Clg; ' (hy~1(8)) \ Ex),
Cllgy ' (hi21(8)) \ Be) N g (CU 21 (8) \ Er-1)) = Cllgy " (hy 1 (8)) \ Ee).

We conclude
901 (87-1) N Clgy 1 (87-1) \ Br) = gy ' (hy11(8)) N Cllg,  (hy11(8)) \ Ex) = 8}

As by induction hypothesis 8;_; = 8;_1, we have

8i = 97 (80-1) N Clg; 1 (Se—1) \ Ee) = 8¢,

as claimed.

We prove next: Reg(8*) is a connected d-dimensional Nash manifold and
contains g~ 1 (Reg(8) \ R) as connected dense open semi-algebraic subset.

As Reg(8) is a connected Nash manifold and dim(R) < d—2, also Reg(8)\ R
is a connected Nash manifold. As the restriction

9lxang-1(m) i Xa—1 \g ' (R) = X\ R

is a Nash diffeomorphism, ¢~!(Reg(8) \ R) is a connected Nash manifold. As
dim(R) < d—2, § is pure dimensional of dimension d and Reg(8) is dense in 8, we
deduce Reg(8)\ R is a dense open semi-algebraic subset of §, so g~!(Reg(8) \ R)
is a dense open semi-algebraic subset of g71(8 \ R). As dim(E;_1) = d — 1,
g Y (R) C E4_1 and g~ (8 \ R) is pure dimensional of dimension d, we deduce
that g7 (Reg(8))\ Eq_1 = g *(Reg(8)\ R)\ E4_1 is a dense open semi-algebraic
subset of g7 1(8) \ E4_1, so

Cl(g™" (Reg(8) \ R) \ Ea—1) = Cl(g~" (Reg(8)) \ Ea—1)

— Cllg(5) \ Ea). (#3.1)
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4.3. Resolution of general checkerboard sets

As g7 1(Reg(8) \ R) is a d-dimensional Nash manifold and dim(E;_1) =d — 1,
we deduce that g~ (Reg(8) \ R) \ E4_1 is dense in g~!(Reg(8) \ R), so

Cl(g™ " (Reg(8) \ R)) = Cl(g™" (Reg(8) \ R) \ Eg-1)-
Consequently,
97 (Reg(8) \ R) = g~ (Reg(8) \ R) N Cl(g™" (Reg(8) \ R) \ Ea—1) C 8".

As § is connected by analytic paths, we deduce by [Fed, Lem.7.16] that also
8* is connected by analytic paths, so in particular §* is pure dimensional (of
dimension d). Thus,

S*\Eq_1 =g *(8)\ Eq_s (4.3.2)

is a dense open semi-algebraic subset of 8*. As g~!(Reg(8) \ R) is a dense
open semi-algebraic subset of g71(8 \ R) and g~ !(R) C E4_1, we deduce that
g 1(Reg(8)\ R) is a dense open semi-algebraic subset of 8*. As g~!(Reg(8)\ R)
is a d-dimensional connected Nash manifold, g~*(Reg(8) \ R) C Reg(8*), so
Reg(8*) is connected because it contains a dense connected subset.

Let us prove: 98* C E4_1.
It holds 98 = C1(8) \ Reg(8) € Uj{ Ty and

~1(08) = g7 (CL(8) \ Reg(8 Ug Ty)

Recall that Tj; is the strict transform of Tj_;; under g; for i > k, Y}, is the
Zariski closure of Ty_1, Ep = g,;l(Ek,l UYg) for kK > 1 and Ey = gal(To).
Thus,

(goo-++0gk—1)""(Tk) C Th—14 U Ep_1 C Yy UEy_1,

o (goo--oge)  (Tk) C g ' (Y U Ex_1) = Ej, and
g (Ti) = (900 0ga1)""(Tx) C Eq—1

for each k =0,...,d — 1. Thus,
d—1
~1(08) = g7 (C1(S) \ Reg(8)) € | J 97 (Th) C Eu1. (4.3.3)
k=0

We deduce using that g~ !(Reg(8) \ R) C Reg(8*)

CI(8") \ Ba_1 € Cl(g=4(8)) N Cl(g™1(8) \ Ea1) \ Fu1
=Cl(g~"(8)) \ Ea—1 C g~ (CK(8)) \ Ea—1
= (97 (Reg(8)) \ Ea—1) U (g~ (88) \ Eq_1))
=g "(Reg(8)) \ Ba—1 C g~ '(Reg(8) \ R) C Reg(8"),

so 08* = C1(8*) \ Reg(8*) C Eq_1.

Define T_; := @. Let EX | be the Zariski closure of g~ (T} \ Tj—1) for
k =0,...,d — 1, which is the union of the irreducible components of g=!(T%)
that are non contained in ¢g=!(Ty_1). We have Eg_; = z;é E§—1 and each
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4. Resolution of semi-algebraic sets connected by analytic paths

irreducible component of F;_; is an irreducible component of E§71 for exactly
one k = 0,...,d — 1. Conversely, each irreducible component of E(’j_l is an

irreducible component of F;_;. If H is an irreducible component of Efjfl, then
g(H) C Ty and g(H) ¢ Ty if ¢ < k. As

8 \Ei1=9 "(8)\ Ea-1 =9 '(Reg(8)) \ Ea—1 = g~ "(CI(8)) \ Eq—
is an open and closed subset of X4_1 \ Eq_1, it is a union of connected compo-
nents of Xy_1\ Eq_1.

Let 7 := CI(8*) \ 8* and T3 := 8* \ Reg(8*). Let us check: ¢(T7) C T; for
i=1,2.

Recall that by (4.3.1) and (4.3.3) we have
Cllg™"(8) \ Ea-1) = Cl(g~(CL(8)) \ Eq-1) = Cl(g~ " (Reg(8)) \ Ea-1).

As § is connected by analytic paths, C1(8) is also connected by analytic paths
[Fe4, Lem.7.4]. Thus, the strict transform C1(8)* of C1(8) under g is connected
by analytic paths [Fed4, Lem.7.16], so it is pure dimensional of dimension d.
Thus,

CLS)" \ Eqy = g~ (CL8)) \ Eg_1 = g~ (8)\ Eq_y C 8" C CI(8Y)

is a dense subset of CI(8)*. As CI(8)* is a closed set that contains 8*, we
conclude C1(8*) = C1(8)* is the strict transform under g of C1(8). Consequently,
Tt = CI(8)\8° = ¢~ (C1(8)\8) NCllg1(8)\ Ea1) € g~ (T1), 50 9(T7) C T

In addition, the strict transform Reg(8)* of Reg(8) under g is
9" (Reg(8)) N Cl(g™" (Reg(8)) \ Eq-1),

As g7 !(Reg(8)) is pure dimensional of dimension d, because it is an open
semi-algebraic subset of X;_1, and E;_; has dimension d — 1, we deduce that
g 1 (Reg(8)) \ Eq_1 is dense in g~1(Reg(8)), so Reg(8)* = g~ (Reg(8)) is an
open semi-algebraic subset of X4_1. Thus, Reg(8)* C Reg(8*) and

T: = 8%\ Reg(8*) C 8"\ Reg(S)*
=97 (8\ Reg(8)) N Cl(g~(8) \ Ea—1) C g~ '(T2),

so g(73) C Ta.

Next, let W € &(98*) and let L be the Zariski closure of W. As W is a
connected Nash manifold, L is an irreducible algebraic set. Observe that L is
an irreducible component of Singj(Ed,l) for some j > 1 and W is a connected
component of Reg(Sing;(F4-1)). Let k > 0 be such that g(L) C Tj, but

g(L) ¢ Tx—y. Then L C ES | for £ >k, but L ¢ S0 BY | = g7 (Th_1).

Observe that W is a connected component of L\ g=(T}_1), because
LN Sing(Sing;(Ea—1)) = LN g~ (Tx—1)

(recall that L C EY | for £ > k). Then g(W) C 98 N T} \ Tx—1 = My is
connected. As each connected component of M}, is contained in either T; or T,
we deduce either g(W) C Ty or g(W) C To. If WNTF # @, then W C T7,
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4.3. Resolution of general checkerboard sets

because otherwise also W N T} # & for j € {1,2} \ {i} and g(W) meets T; and
T2, which is a contradiction because g(W) is contained in either T; or T3. Thus,
W is contained in either J7 or J73.

Consequently, &(F4_1) is compatible with J5 and T3, that is, these sets
are unions of elements of &(Eyz_1). As Cl(8*) is the closure of a union of
connected components of Xg_1 \ Egq_1, then T35 := CI(8*) \ Reg(Cl(8*)) is a
(d — 1)-dimensional semi-algebraic subset contained in E4;—;. In fact, using
local coordinates one realizes that both T35 and Cl(8*) N E4—; are unions of
elements of &(E;_1) (see Examples 4.3.2(iii)). Thus,

T3 NT; = (CIS™) \ §7) N (CI(87) \ Reg(CI(S7))
— CI(8") \ (8" UReg(CI(")))
— (CI(S") N Ea_1) \ (5" UReg(CL(8))) N Eq1)

is a union of elements of &(Eq_1), so (8* UReg(CL(8*))) N E4_1 is also a union
of elements of &(E4_1). Thus,

T} = Reg(CI(8%)) \ §* = (8" UReg(CI(8))) N Ea-1) \ T2
is a union of elements of G(Ey_1).

Let Z be the Zariski closure of 98* := CI(8*) \ Reg(8*) in the non-singular
(compact) algebraic set $**. We have proved the following: Z is a normal-
crossings divisor of Xgq_1 = §Zar, 8* is a checkerboard set and the semi-algebraic
sets

T7 = CL(8")\ 8, T5 := 8"\ Reg(8™), T3 := CL(8¥) \ Reg(CL(8%)),
T NT; = CL8™) \ (8F UReg(CL(8))) and T := Reg(CL(8)) \ 8"
are unions of elements of the stratification &(Z).

The Zariski closure of 8* is X 31, which is a non-singular (compact) algebraic
set, the Zariski closure of 08* is a union of connected components of E;_1, which
is a normal-crossings divisor of Xy_;. As 8* is the strict transform of § under
g and § is pure dimensional of dimension d, the restriction g|g- : 8* — S is a
proper surjective map. Take R := g(E4—_1)N8, which has dimension < d—1 and
observe that g|g«\4-1(x) : 8" \g 1 (R) — 8\ R is a Nash diffeomorphism, because
g|Xd—1\Ed—1 : del\Edfl — X\Tdfl. As 8* \g_l(fR) = 8* \Ed,1 C 8* \88* is
a Nash manifold, so its image 8 \ R under g|x, ,\g,_, is also a Nash manifold.
Thus, it only remains to modify the construction to achieve that C1(8*) is a
Nash manifold with corners.

We assume that the initial situation is the one quoted above concerning 8*.
For the sake of simplicity we reset all the previous notations above to continue
the proof.

STEP 4. FIRST DRILLING RESOLUTION PROCEDURE. Thus, we may assume in
the following: 8 is a checkerboard set (and in particular Reg(8) is a connected
Nash manifold), CI(8) is compact, the Zarsiki closure X of 8 is a non-singular
(compact) algebraic set, the Zarsiki closure Z of C1(8) \ Reg(8) is a normal
crossing divisor of X, the semi-algebraic sets

Ty :=CI(8)\ S, Ta:=8\ Reg(8), T3 := CI(8) \ Reg(CI(8)),
T1NTs=CLS8) \ (8 UReg(CL(8))) and Ty := Reg(CL(8)) \ 8

115



4. Resolution of semi-algebraic sets connected by analytic paths

are unions of elements of the stratification &(Z).
By Theorem 4.1 applied to C1(8) there exist:

(i) A d-dimensional non-singular irreducible algebraic set X’ and a normal-
crossings divisor Z' C X'.

(ii) A connected Nash manifold with corners Q C X’ (which is a closed subset
of X') whose boundary 9Q has Z’ as its Zariski closure.

(iii) A polynomial map g : R™ — R™ such that the restriction g|q : @ — CI(8)
is proper and ¢(Q) = CI(8).

(iv) A closed semi-algebraic set R C CI(8) of dimension strictly smaller than d
such that C1(8)\ R and Q\ g~ (R) are Nash manifolds and the polynomial
map glo\g-1(x) : 2\ g7 (R) — CI(8) \ R is a Nash diffeomorphism.

Let 8% := g~ 1(8) N Cl(g~1(8) \ R) be the strict transform of § under g. By the
properties of the drilling blow-up and specially Remarks 4.1.4 (one can almost
reproduce the procedure already developed in Step 3 taking into the proof of
Theorem 4.1 applied to C1(8)) in addition the semi-algebraic sets

TE = C1(8*) \ 8, T% := 8* \ Reg(8*), T% := C1(8*) \ Reg(C(8*)),
TEATE = CLS™) \ (8* UReg(CL(8*))) and T := Reg(CL(8*)) \ 8*

are unions of elements of the stratification &(Z’). If Reg(Cl(8*)) = Reg(8*),
then T5 = CI(8*) \ Reg(8*) = 98" and T4 = @. Thus, 8" is a quasi Nash
manifolds with corners. Consequently, to continue we suppose Reg(Cl1(8*)) #
Reg(8*). This means that T # &, because otherwise Reg(Cl(8*)) C 8* and
consequently Reg(CL(8*)) = Reg(8*) (because Reg(Cl(8*)) is an open semi-
algebraic subset of X’ contained in 8* that contains Reg(8*)).

STEP 5. SECOND DRILLING RESOLUTION PROCEDURE. We assume in the
following that: 8 is a checkerboard set (and in particular Reg(8) is a connected
Nash manifold), Q := CI(8) is a compact Nash manifold with corners, the Zarsiki
closure X of 8 is a non-singular (compact) algebraic set, the Zarsiki closure Z
of Q\ Reg(8) is a normal crossing divisor of X, the semi-algebraic sets

T : =9\ 8, T2 :=38\ Reg(8), T3 := 9\ Reg(Q),
T1NT3 =2\ (8UReg(Q)) and T, := Reg(Q) \ S # &

are unions of elements of the stratification &(Z). Let us prove: We may assume
in addition Reg(Ty) is a pure dimensional semi-algebraic set of dimension d— 1

and 0Ty = Cl(T4) \ Reg(T4) C 0Q.

As T4 is a union of elements of the stratification &(Z), then Cl(Ty) is also a
union of elements of the stratification &(Z). If T, has dimension < d—2, then it
is contained in Sing(Z) and Cl(T4) NReg(Q) # &. Otherwise, T4 has dimension
d — 1 and let My be the union of the connected components of Reg(Ty) of
dimension d — 1. Observe that both My and C1(Ty) \ My are unions of elements
of the stratification &(Z). Define

(5) = C1(T4) N Reg(Q) if dim(Ty) < d — 2,
T (CH(TL) \ M) NReg(Q) if dim(Ty) =d —1,
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which is empty if and only if dim(T,) = d — 1 and C1(Ty4) \ My C 09. As
T4 = Reg(Q) \ 8, this means that Reg(Ts) = My is a pure dimensional semi-
algebraic set of dimension d—1. Our purpose it to develop a procedure to reduce
to this case.

Let Y be the Zariski closure of A(8), which is a union of irreducible compo-
nents of Sing,(Z) for £ = 1,...,d — 1, maybe of different dimensions. Let e be
the dimension of Y and let Y,_; be the union of Sing,(Y") and the irreducible
components of Y of dimension e — k for k = 0,...,e. Let £ := ¢(8) < e be
the minimum value k such that Y, = @ and m := m(8) the number of irre-
ducible components of Y,. Observe that Yy is a pure dimensional non-singular
(compact) algebraic set. We proceed by double induction on ¢ and m.

Let W be an irreducible component of Y. Let ()A( ,7) be the twisted Nash
double of the drilling blow-up (X, 7 ) of X with center W, which is by Section
4.1.5 an algebraic set. Let

Q" =7 1(Q NCYm N (Q\ W)

be the strict transform of Q. As Q is pure dimensional and Y, C Z has dimension
strictly smaller, Q \ W is dense in Q, so 74 (Q*) = Q, because 7y : X — X is
proper and surjective. By Lemma 4.2.7 Q* is a checkerboard set and a Nash
manifold with corners such that 7 '(W) N Q* C 99*. Let 8 := 7' (8§) N
Cl(7;'(8 \ W)) be the strict transform of 8§*, which keep the same properties
required to 8 (to check this fact one proceeds similarly as we have done in Steps
3 and 4). Observe that A(8*) = 7' (A(S) \ W), so m(8*) = m(8) — 1 and

o> 48 Em(8) =1,
48 {— 08) if m(8) > 1.

Observe that my|s- : 8% — 8§ is a surjective proper polynomial map and if
R := 08 U W, the restriction s\ i(®) - 8\ 77;1(92) — 8\ R is a Nash
diffeomorphism. We proceed inductively and after finitely many steps we may
assume A(8) = @.

STEP 6. FINAL DRILLING RESOLUTION PROCEDURE. We assume in the follow-
ing that: 8 is a checkerboard set (and in particular Reg(8) is a connected Nash
manifold), Q := CI(8) is a compact Nash manifold with corners, the Zarsiki
closure X of 8 is a non-singular (compact) algebraic set, the Zarsiki closure Z
of Q\ Reg(8) is a normal crossing divisor of X, the semi-algebraic sets

T1:=0Q\8, T2:=8\Reg(8), T5:= 2\ Reg(Q),
T1NT3 =09\ (SUReg(Q)) and Ty := Reg(Q) \ S # @

are unions of elements of the stratification &(Z). In addition, Reg(Ty) is a pure
dimensional semi-algebraic set of dimension d — 1 and

874 = 01(74) \Reg(‘h) C 09.

In order to finish we will take advantage of Fact 4.1.5. Until this step all
the involved maps are polynomials, however in this step as we will perform the
drilling blow-up of a Nash submanifold of dimension d — 1, we have to proceed
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4. Resolution of semi-algebraic sets connected by analytic paths

with care in order to not disconnect the regular locus of 8. We prove first that
Reg(T4) = T4. As Ty = Reg(Q) \ 8 C Reg(Q) and 0Ty = C1(T4) \ Reg(T4) C 0Q,
we deduce Ty N 90T, C Reg(Q) NIQ = &, so Ty = Reg(Ty). Thus, Reg(Ty) is
a union of elements of the stratification &(Z). Consequently, each connected
component C of Reg(Ty) is a union of elements of the stratification &(Z). In
particular, if C; and Cy are connected components of Reg(Ty), then Cl(Cy) N
Cy = @, because if x € Cl(C1) N Cy, then x has no neighbourhood in T, Nash
diffeomorphic to a Nash manifold. Let Cy, ..., C,, be the connected components
of Reg(T4). As Reg(C;) = C;, we have

8Ty = C1(T,) \ Reg(Ty) = CI ( U C’,») \(Ja =)\ =Jac.
i=1 i=1 i=1 i=1
We claim: CI(C;) N CLC;) = @ if i # j.
Assume CI(C1) N CI(Cs) # @. As CI(C;) NC; = @ if i # j, we deduce

CI(C1) N CI(Cy) = (CLCL) \ C1) N (CL(CL) \ Ca) = AC, N AC C Q.

Pick z € C1(Cy) N Cl(Cs) and let U C X be an open semi-algebraic neighbour-
hood of x such that Z N U has coordinates {x; ---x, = 0}. We may assume
ANU ={x1>0,...,x, >0} forsome 1 <s<r—2 C;NU C {x,—1 =0} and
ConU C {x, = 0} (recall that Cy,Cy C Reg(Q) and &(Z) is compatible with
C1,C9). As &(Z) is compatible with C; and Cy, we may assume

{x1>0,...,% >0,%541 >0,...,%-2>0,%x._1 =0,%, >0} C CI(Cy) N,
{Xl Z O7 ey Xg Z O,Xs+1 K1 O,XT_Q *pr_2 O,Xr_l *p_1 O, Xy = 0} C Cl(C’l) N U7

where *; € {>, <} for j =s+1,...,r — 1. Thus,
{Xl ZO,...,XS ZO,XSJ,_I :0,...,){7»:0} C Cl(Cl)ﬂCl(C’g)ﬂU

S
coanU = U{}q >0,...,%xs > 0,%; = 0},
i=1
which is a contradiction. Consequently, C1(Cy) N Cl(Cs) = @, as claimed.
Let T’ be a stratum of &(Z) contained in Q such that I' is not contained in
Cl(C;). We prove next: If the Zariski closure of T is contained in the Zariski

closure of C;, then CI(T')NCI(C;) = @. As T is not contained in C1(C;) and the
stratification &(Z) is compatible with C;, we have CI(I') N C; = &, so

CI(T") N CI(Cy) = CIT) N (CI(C;) \ C;) = CUT) N AC;.

Suppose CI(I") N CL(C;) # @, pick z € CI(I") N CL(C;) and let U C X be an open
semi-algebraic neighbourhood of = such that ZNU has coordinates {x; - - -x, =
0}. We may assume QNU = {x3 > 0,...,x; > 0} for some 1 < s <r—1
and C; NU C {x, = 0}. As the Zariski closures of I" is contained in the Zariski
closure of C; and x € CI(T') N C1(C;) N U, we deduce CI(T')NU C {x, = 0}. In
addition, 0C; NU Cc 09NU = U;_1{x1 > 0,...,xs > 0,x; = 0}. As &(2) is
compatible with C; and 9C; C 09, we deduce

CiNU={x; >0,...,x > 0,%x, =0} = Reg(Q) NU N {x,, =0},
ClC)NU ={x1>0,...,x,>0,x, =0} =9nNUN{x, =0},
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4.3. Resolution of general checkerboard sets

so ClI(I)NU c AnU n{x, =0} = Cl(C;) N U, which is a contradiction. Thus,
CI(T") N ClC;) = @.

For each connected component C; of Reg(Ty) the Zariski closure of C; is
the irreducible component Z; of Z that contains C;. The semi-algebraic set
Z;NQ\ CI(C;) is a union of elements of &(Z) and it is closed, because otherwise
there exists a stratum I’ of &(Z) contained in Q such that I' ¢ CI(C;) but
CI(T")NCL(C;) # @, which is a contradiction. Consider the closed semi-algebraic
set

K; = (Z;nQ\ CI(Cy)) u | ] CuCy)
JFi
and observe that K; N Cl(C;) = @. As both semi-algebraic sets are compact
and disjoint,

1
€= amin{dist(Ki,Cl(Ci)) ci=1,...,m}>0.

Define U; := {z € Z; : dist(z, Cl(C};)) < e}. We claim: N :=J!", U; is a closed
Nash submanifold of the Nash manifold M = X \ J,_,(Cl(U;) \U;), Q C M
and QNN =2, CI(C;) = C(Ty). It is clear that N is a closed subset of M.
As each U; is an open semi-algebraic subset of the Nash manifold Z;, to prove
that N C M is a Nash manifold, it is enough to show that Cl(U;) N Cl(U;) = @
if 4 # j. If there exists z € C1(U;) N Cl(U;), then

dist(C1(C;), C1(C;)) < dist(z, CI(C})) + dist(x, C1(C}))
< 2e < dist(K;, CI(C;)) < dist(ClC;), CL(C})),

which is a contradiction. Consequently, the semi-algebraic sets Cl(U;) for i =
1,...,m are pairwise disjoint. We check next: Q C M. Suppose there exists
because CI(C;) C U;. As z € Cl(U;) and = € Z; N Q\ CI(C;), we have

dist(x, Cl(C;)) < e <

1
< S §dlst(K“Cl(Cl))
<

1 1
5 diSt(Zi na \ Cl(Cz), Cl(CZ» S 5 diSt(.’E, Cl(Cl)>7
which is a contradiction. Consequently, Q N (C1(U;) \ U;) = @ for each i =
1,...,m. Thus, Q C X \U,_,(Cl(U;)\U;) = M. To prove that QNN = CI(Ty),
it is enough to check: QN U; = Cl(C;) or, equivalently, Q N (U; \ CI(C})) = @.
If 2 € N (U; \ CI(C;)) C Z;, then z € U; and = € Z; N Q\ CI(C;), which is a
contradiction as we have seen in the previous paragraph. Thus, QNN = CI(Ty),
as claimed.

As 0Ty C 09, we have Cl(T4) N Reg(Q) = Reg(T4) N Reg(Q), so CL(T4) N
Reg(Q) = T4 NReg(Q). As T4 = Reg(Q)\ S,

Reg(Q) \ C1(T4) = Reg(Q)\ Ty =8N Reg(Q) C 8

is an open semi-algebraic subset of X contained in 8, so 8 N Reg(Q) C Reg(8).
As Reg(8) € §NReg(Q), we conclude

Reg(8) = Reg(Q) \ C1(T4) = Reg(Q) \ N.
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4. Resolution of semi-algebraic sets connected by analytic paths

In general, N is not an algebraic set and its Zariski closure Y is not an option
because Reg(Q) \ Y might be disconnected (see Example 4.3.3). Thus, in the
following the involved drilling blow-up needs to be a Nash map. Let (]\//.7 ,T) be
the twisted Nash double of the drilling blow-up (M ,m+) of M := X with center
N, which is by Section 4.1.2 a Nash manifold. In addition, as 7 : M — M is
proper and surjective and M is compact, also M is compact. We have denoted
X by M in order to stress that M is a compact Nash manifold, which is not
in general a non-singular algebraic set (but only one of its compact connected

components). Let
Q* :=7.(Q) NClx " (Q\ N))

be the strict transform of Q. As Q is pure dimensional and N C Z has dimension
strictly smaller, Q \ N is dense in Q, so 71 (Q°®) = Q, because 1 : M — M is
proper and surjective. By Remarks 4.1.4 and Fact 4.1.5 Q°® is a Nash manifold
with corners such that 7, '(N) N Q® C 0Q°. Observe that Q°* \ 7 '(N) =
771 (Q\ N) is Nash diffeomorphic to Q \ N. Thus,

Sth(Q%) = Sth(r7"(2\ N)) = 77} (Reg(2\ N))
— 77 (Reg(Q) \ V) = 77" (Reg(8)),

so Sth(Q*®) is connected, because 7T+|M\ﬂ71(N) : M\?T;I(N) — M\ N is a Nash
+

diffeomorphism. Let 8* := 7' (8) N Cl(7 ;" (S\ N)) be the strict transform of 8,
which keeps the same properties required to 8 (to check this fact one proceeds
similarly as we have done in Steps 3, 4 and 5) if one changes the operator Reg(+)
by the operator Sth(-) in each case. In addition,

Sth($*) C Sth(Q*) = 77" (Reg(8)) C Sth(S*)

(because Reg(8) € M \ N), so Sth(8®) = Sth(Q®). Observe that mi|gs :
8* — 8 is a surjective proper Nash map and if R := 8\ Reg(8), the restric-
tion W+|5.\WI1(R) . 8° \774:1(9%) — 8\ R is a Nash diffeomorphism, as required.

Recall that by [AK, Thm.1.1] the pair constituted by a compact Nash mani-
fold and a Nash normal-crossing divisor is diffeomorphic to a pair constituted by
a non-singular compact algebraic set and a normal-crossing divisor and the pre-
vious diffeomorphism preserves Nash irreducible components of the correspond-
ing Nash normal-crossing divisors. By the proof of the approximation results
[BFR, Thm.1.7 & Prop.8.2] modified to fit our situation (we have to substitute
Efroymson’s approximation result [Sh, Thm.I1.4.1] for differentiable semialge-
braic functions on a Nash manifold by Nash functions by Stone-Weierstrass
aproximation for differentiable functions on differentiable manifolds by polyno-
mial functions) we may assume that the previous diffeomorphism is in addition
a Nash diffeomorphism.

Using the previous fact and [Fed4, Lem.8.3 & Lem.C.1] we may assume in
addition (using a suitable Nash embedding of M in some affine space) that the
quasi Nash manifold with corners 8° is a checkerboard set, the Nash manifold
with corners Q® = CI1(8°) is a checkerboard set, the Zariski closure X* of 8° is
a connected compact non-singular irreducible algebraic set, the Zariski closure
Z*® of

08°® = Q°® \ Reg(8°®) = Q° \ Reg(Q*) = 0Q°
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4.3. Resolution of general checkerboard sets

is a normal-crossings divisor of X*® and the stratification &(Z*) is compatible
with 8¢\ Reg(8°®). O

flse

Figure 4.5: Resolution of the checkerboard set 8§ (right) by the quasi Nash manifold
with corners 8° (left).

Example 4.3.3. Let X := {x3 + - +x2 =1} C R" and let
§:=XnNn{x2< i} \ {xn-2 <0,%x,-1 =0},

which is a checkerboard set whose Zariski closure is X. The algebraic set X
is the (n — 1)-dimensional unit sphere, so it is compact and non-singular. The
closure C1(8) = XN{x2 < 1} is a compact Nash manifold with corners. Observe
that Reg(8) =8N {x2 < 1}, so

CL(S) \Reg(8) = (X N{x2 = 1HU (X N{xy2 <0,x,_1 =0} N {x2 < 1}).
The Zariski closure of CI(8) \ Reg(8) is
Z:=XN{x, =HUu X n{x,=-1HUXN{xn_1 =0}),

which is a normal-crossings divisor of X. Denote Q := CI(8). The semi-algebraic
sets
T1:=9\8=XN{x,2<0,x,_1 =0} N {x3 < 1},
Ty =8\ Reg(8) = X N{x; =1} \ {xn_2 <0,x,_1 =0},
T3: =0\ Reg(Q) = X N{x; =1},
T1NT3 =0\ (8UReg(Q) =X N{x) =1} N{xn2<0,%,-1 =0},
Ty :=Reg(Q\8=XN{xp2<0,x,1 =0} \{x2 =1} # 2

are unions of elements of the stratification &(Z). In addition, Reg(Ty) is a pure
dimensional semi-algebraic set of dimension d — 1 and

9Ty = CU(T4) \ Reg(Ts) = X N{x) = 1} N {xp_2 < 0,x,_1 = 0} C Q.
Thus, we are under the hypothesis of STEP 6 of the Proof of Theorem 4.2. We

can take as N := X N {x,_2 < 0,%,-1 = 0}, but we can not take its Zariski
closure X N {x,_1 = 0}, because it disconnects Reg(8).
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Chapter 5

Folding Nash manifolds

In the article [FGR] Fernando, Gamboa and Ruiz proved that given a Nash
manifold Q@ C R™ with corners it is contained as a closed subset in a Nash
manifold M C R” of the same dimension and the behaviour of the Nash closure
of its boundary is the suitable one. The main purpose of this chapter is to
show that the Nash manifold M can be ‘folded’ to reconstruct the manifold
with corners Q. That is, there exists a surjective Nash map M — Q such
that the restriction to Q is close to the identity and preserves the stratification
of the boundary 99Q. The construction we present, even if it requires some
technicalities, is geometrical and neat. This construction, that has interest by its
own, has remarkable consequences. A first consequence is that this construction
provides an approximation result for (proper) continuous semi-algebraic maps
by Nash maps, when the target space is a Nash manifold with corners.

A second consequence of our construction is a variant of Theorem 4.1. A
similar result changing Q by a Nash manifold with boundary seems difficult to be
achieved if we want to keep that the map f is polynomial, so we will show that
a closed semi-algebraic set 8§ connected by analytic paths can be ‘resolved’ by a
Nash manifold with boundary, up to consider Nash maps instead of polynomial
ones. Moreover, we will provide an alternative characterization of the Nash
images of the closed ball, taking advantage of this new technique of ‘resolution’
of semi-algebraic sets by Nash manifolds with boundary.

5.1 Folding boundaries to construct Nash man-
ifolds with corners.

In this section we deal with the main construction of this chapter. We show
how to ‘fold’ the Nash manifold M to reconstruct the manifold with corners
Q C M. We will use some of the standard tools for manifold with boundary
(boundary equations, doubling, collars etc.). These standard constructions have
been done, for the Nash category, by Shiota [Sh, Ch.VI] in the compact case and
by Fernando [Fe4, §4] in the general case. We adapt their proofs (especially those
of Fernando) in order to obtain constructions compatible with an assigned Nash
normal-crossings divisor. Eventually, we show that our construction is canonical
and does not depend on the order of the ‘foldings along the facets of Q’.
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5. Folding Nash manifolds

5.1.1. Compatible Nash retractions. Let M C R™ be a connected Nash
manifold of dimension d and let Y C M be a Nash normal-crossings divisor.
For each ¢ > 2 define inductively

Sing, (Y) := SingV,
Sing,(Y') := Sing,_, (Sing(Y")).

In order to lighten the exposition, we write Sing,(Y") := Y and Sing_,(Y) := M.
The irreducible components of Sing,(Y") are Nash manifolds for each £ > 1 such
that Sing,(Y) # @. In fact, if Yy 1,...,Ye s, are the irreducible components of
Sing,(Y), then
Sing,y,(Y) = U(Yéz NYe;).
i#j

If Sing,(Y') # @, then dim(Sing,(Y)) =d — ¢ — 1.

For each ¢ > 1 we have Sing,(Y) C Sing,_;(Y), so there exists an r > 0
such that Sing,(Y') # @, but Sing,,,(Y) = &, whereas Sing,(Y") # @ for each
0 <t <r. Let Z be an irreducible component of Sing,(Y").

Definition 5.1.1. A Nash retraction p : W — Z, where W C M is an open
semi-algebraic neighbourhood of Z, is compatible with Y if

pY,N W) =YiNZ,
for each irreducible component Y; of Y such that Y; N Z # @.

In [FGh, Prop. 4.1] Fernando and Ghiloni proved the following result, which
is a powerful tool to make constructions compatible with an assigned Nash
normal-crossings divisor. We will take advantage of this result in the rest of the
chapter.

Proposition 5.1.2 (Compatible Nash retractions, [FGh, Prop. 4.1]). There
exist an open semi-algebraic neighbourhood W C M of Z and a Nash retraction
p: W — Z that is compatible with Y. In addition

pXNW)=XnN2Z,
for each irreducible component X of Sing,(Y') such that X N Z # & and ¢ > 1.

5.1.2. Compatible Nash collars. Nash collars for Nash manifolds with non-
empty boundary have been constructed by Shiota [Sh, VI.1.6] in the compact
case and by Fernando [Fe4, Lem.4.2] in the general case. For our purposes we
need to adapt these constructions in order to make the collars compatible with
a Nash normal-crossings divisor Y that contains 0H.

Let M C R™ be a Nash manifold and let Y C M be a Nash normal-crossings
divisor.

Proposition 5.1.3 (Compatible Nash collars). Let Y7 be an irreducible com-
ponent of Y and let p : W — Y71 be a Nash retraction compatible with Y7 such
that p(X NW) = X NZ for each irreducible component X of Sing,(Y') such that
XNZ#@ and € > 1. Let h be a Nash function on W such that {h =0} =Y
and dzh : T,M — R is surjective for all x € Y1. Then there exist an open
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5.1. Folding boundaries to construct Nash manifolds with corners.

semi-algebraic neighbourhood V.C W of Y1 and a strictly positive Nash function
e : Y1 — R such that the Nash map ¢ = (p, %) :V = Y) x(—1,1) is a Nash
diffeomorphism and

W(ZNV)=(ZNY1) x (~1,1)

for each irreducible component Z of Sing,(Y') such that Z ¢ Y1 and ZNY; # &
and £ > 0.

Proof. We show first: Define ¢ := (p,h) : W — Y1 x R. Then the derivative
dyd = (dep,dzh) : T,M — T,Y1 X R is an isomorphism for all x € Y;. As
dim(7T, M) = dim(7, Y1 x R), it is enough to show: d,¢ is surjective.

As ¢|y, = (idy,,0), we have d,d|1, v, = (idr,v;,0), so T, Y1 x {0} C im(d, ).
In addition d,h : T, M — R is surjective, so there exists v € T, M such that
dzh(v) = 1. Thus, d,¢(v) = (dzp(v),1) and d, ¢ is surjective.

Let W .= {& € W : d,¢ is an isomorphism}, which is an open semi-
algebraic neighbourhood of Y;. Thus, ¢|ws : W — Y7 x R is an open map
and ¢(W') is an open semi-algebraic neighbourhood of Y7 x {0} in Y; x R.
As ¢lwr : W — ¢(W’) is a local homeomorphism and ¢|y; = (idy,;,0) is a
homeomorphism (onto its image), there exist by [BFR, Lem.9.2] open semi-
algebraic neighbourhoods W” C W’ of Y1 and U C Y7 xR of ¥; x {0} such that
dlwr : W — U is a semi-algebraic homeomorphism.

Consider the strictly positive, continuous semi-algebraic map
d:Y1 — (0,400), x> dist((z,0), (Y1 x R)\ U).

By [Sh, I1.4.1] there exists a strictly positive Nash function € on Y; such that
%(5 < e < J. Consider the open semi-algebraic neighbourhood

U:={(z,t) eY1 xR: |t| <e(x)} CU

of Y1 x {0} and define V := (¢|w~) "1 (U’). The restriction ¢|y : V — U’ is a
Nash diffeomorphism. Consequently,

p: V=Y x(=1,1), z— (p(x)jf(};((i))))

is a Nash diffeomorphism (as it is the composition of ¢|y with a Nash diffeo-
morphism).

Let ¢ > 0 and let Z be an irreducible component of Sing,(Y") such that
Z ¢ Yy and ZNY; # @. By Proposition 5.1.2 p(ZNV) = ZNY, so

W(ZNV)C(ZNY7) % (—1,1).

As Y is a Nash normal-crossings divisor, Z N Y7 is a Nash manifold, so its
connected components C; are Nash manifolds (all of the same dimension e — 1
where e = dim(Z), because Z ¢ Y7). Thus, C; x (—1,1) are closed connected
Nash submanifolds of Y7 x (—1,1) of dimension e.

Let Z; be an irreducible component of Z NV such that C; C Z; NY;. As
Z; is connected, also p(Z;) C Z NY; is connected, so it is contained in one of
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5. Folding Nash manifolds

the connected components of ZNY;. As C; C Z; NY; C p(Z;) is a connected
component of ZNY7, we deduce p(Z;) = Z;NY7; = C;. Then ¢(Z;) C C;x(—1,1)
is a Nash subset of Y7 x (—1,1) of dimension e. By the identity principle, we
conclude ¢(Z;) = C; x (=1, 1) because C; x (—1,1) is an irreducible Nash subset
of Y1 x (—1,1) of dimension e. Consequently, o(ZNV)=(ZNY1) x(—1,1), as
required. O

5.1.3. Nash equations for boundary components. Recall that (see Section
2.5.3) a semi-algebraic set Q C R™ is a Nash manifold with corners of dimension
d if for each point y € Q there exist an integer 0 < k < d and an open semi-
algebraic neighbourhood U C Q of y equipped with a Nash diffeomorphism

¢:U = {x1>0,...,%, >0} C R%

Recall that we consider only Nash manifolds with divisorial corners (see
Section 2.5.3). Let Q C R™ be a Nash manifold with corners of dimension
d > 2. By [FGR, Thm.1.11, 1.12] there exists a d-dimensional Nash manifold
M C R", called a Nash envelope of Q, that contains Q as a closed subset and
satisfies:

(i) The Nash closure Y of 0Q in M is a Nash normal-crossings divisor of M
and QNY = 0Q.

(ii) For every x € 99 the analytic closure of the germ 09, is Y;.

(iii) For each irreducible component Y; of Y the intersection Q NY; is a facet
of Q.

(iv) M can be covered by finitely many open semi-algebraic subsets U;, for
i=1,...,7, equipped with Nash diffeomorphisms

U; = (’LLZ'h . ,’U,id) :U; — Rd
such that:
U CcInt(Q)or U; NQ =9 if U; does not meet 0Q,
UiNQ={uj >0,...,u, >0} if U; meets 9Q (for a suitable k; > 1).

The following result allows us to build suitable Nash equations for the facets
of Q. The proof is strongly inspired on the proof of [Fe4, Lem.4.3].

Lemma 5.1.4 (Nash equations for the faces). Let Y1 an irreducible component
of the Nash normal-crossings divisor Y (which is the Nash closure of 0Q in
the Nash envelope M ). Then, after shrinking M is necessary, there exists a
Nash function hy : M — R such that Y1 = {hy = 0} and d hy : T,M — R is
surjective for each x € Yi. In addition, Hy := hi*([0,+00)) is a Nash manifold
with boundary Y, that contains Q as a closed subset.

Proof. The proof is conducted in several steps:

STEP 1. We construct first an S? semi-algebraic function h} on M such that
Y1 C {h} = 0} and d hj(v) > 0 for each = € Y1 N Q and each non-zero vector
v € T, M pointing ‘inside Q’.
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5.1. Folding boundaries to construct Nash manifolds with corners.

Assume that Y; meets U; exactly for ¢« = 1,...,s for some s < r. We
reorder the variables u;; in order to guarantee that Y1 NU; = {u;; = 0} and
QNU; C {uig >0} fori=1,...,s Let {0;}:7] : M — [0,1] be an S? partition
of unity subordinated to the ﬁnlte covering {U;}7_1 UUsq1 := {M \ Y1} of M
and consider the §? function hj := >0, 6;u;1. It holds Vi C {h} = 0}.

Fixx € Y1NQ and let v € T, M be a non-zero vector pointing ‘inside Q’, that
is, dyui (v) > 0if x € U;. We have u;1(x) =0fori=1,...,s and « & Usy1, SO

dhi =Y un(2)da0; + Y Oi(x)douin = Y 0i(x)dytiin

zcU; xeU; xeU;
s dghi(v) = Y 0i(x)dpuin(v) > 0
xzcU;
because Y oy 0i(x) =1, 0;(x) > 0 and dyuii(v) > 0 if x € Us.

STEP 2. By [BFR, Prop.8.2] there exists a Nash function h} on M close to h}
in the 82 topology such that Y; C {h} = 0} and d,.h)(v) > 0 for each z € Y1 NQ
and each non-zero vector v € T, M pointing ‘inside Q. We claim: there exists
an open semi-algebraic neighbourhood W C M of Y1 N Q such that

Int(Q) NW C {h} >0}NW

and {hy =0} NW =Y.

Pick a point z € Y7 and assume x € U;. As h} vanishes identically at
Y1, we may write h}|y, = uii1a1 where a1 is a Nash function on U;. Pick
y € Y1 NU; N Q and observe that dyh| = a1(y)dyui1. Let v € TyM be a non-
zero vector pointing ‘inside Q’. As dyui1(v) > 0 and dyh(v) > 0, we deduce
a1(y) > 0. Define Wy := {a; > 0} C U; and notice that Y1 N U; N Q C W,
Int(Q) N Wy C {h} > 0} N Wy and {h} = 0} NW; = Yy N W;. Construct
analogously Ws, ..., Wy and observe that W := Ule W, satisfies the required
properties.

Substitute M by M \ (Y1 \ W), which is an open semi-algebraic subset of
M that contains Q as a closed subset. Substitute Y by the Nash closure of 9Q
in the new M and Y7 by the irreducible component of the new Y that contains
the facet Y7 N Q.

STEP 3. Next, we construct hy. If W = M, it is enough to set hy := hj.
Suppose W # M. Let gg be a (continuous) semi-algebraic function whose value
is 1 on Y; and —1 on M \ W. Let ¢ be a Nash approximation of ¢ such that

le — 0| < 3. Then
1 if Y
@)y 2, L TE
Thus, {¢ > 0} C W is an open semi-algebraic neighbourhood of Y7 in M. By
[Sh, I1.5.3] Y7 is a Nash subset of M. Let f be a Nash equation of Y; in M.

Substituting f by 2+f2 we may assume that f is non-negative and f(x) =1 if
e(x) = 0. Consider the (continuous) semi-algebraic function on M given by

! if e(x) > 0,
o) = {1 if e(x) < 0.



5. Folding Nash manifolds

Let g be a Nash function on M such that § < g (see [BCR, Prop.2.6.2], after
embedding M in R"*! as a closed subset). Consider the Nash function

hy =R + f2g* (R +1)

and let us prove that it satisfies the required conditions.
STEP 4. We claim: hy is positive on Int(Q).

Let € Int(Q). If Af(x) > 0, then hy(x) > 0. If hi(z) < 0, then x ¢ W
(because Int(Q) N W C {h} > 0} NW). Thus, e(x) < 0 and

hi(x) = Wy (2) + g* () f (@) (hf () +1)

> hi(x) + fA(x)(hE(x) + 1) = W (x) + hj(z) +1 > 0.

b
f2(x)

STEP 5. It holds: There exists an open semi-algebraic neighbourhood W' C W
of Y1 such that {hy = 0} N W' =Yy, Imt(Q)NW’' C {h1 > 0} N W' and the
differential d hq : T, M — R is surjective for all x € Y7.

Recall that W = (Ji_; W;. We have seen in Step 2 that there exists a Nash
function ay on Uy such that hf|y, = u11a1 and Y1NU; C Wy :={a; > 0}. As f
vanishes identically at Y7, we deduce f|y, = u11b; where b; is a Nash function
on U;. Consequently,

hilo, = unan + g%l  uiy b7 (ufaf + 1) = win (a1 + ¢° v, unbi (uiyaf + 1))
and d;hy, = a1 (x)dzui; = d b} for € Yy NU;. Define
Wi = {a1 + ¢*|v,unb?(u?,a3 + 1) > 0} N Wy,
which is an open semi-algebraic subset of M. We have Y1 NU; C W] and
Int(Q) N Wy C {hy >0} NW7.

Construct analogously W3, ..., W! and observe that the open semi-algebraic
subset W’ := [J;_, W/ C M is an open neighbourhood of Y; that satisfies
{1 =0}nW =Y, mt(QNW C {hy >0} NW and d,h : T,M — R is
surjective for all z € Y7.

Consequently, M’ := {hy > 0} U W’ and hq|p satisfy all the required
conditions. O

Remark 5.1.5. Let H C R™ be a d-dimensional Nash manifold with non-empty
boundary 0H and M C R™ a Nash manifold that contains H as a closed subset.
In this case, the previous lemma provides a Nash equation for the boundary 0H.
That is, up to shrink M if necessary, there exists a Nash function h : M — R
such that

(i) OH = {h =0},
(ii) Int(H) = {h > 0},
(i) dyh: T, H — R is surjective for all x € OH.
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5.1. Folding boundaries to construct Nash manifolds with corners.

Let Y7,...,Y; the irreducible components of Y. As an immediate conse-
quence of the previous lemma, we have the following:

Corollary 5.1.6. After shrinking the manifold M if necessary, there exist Nash
functions h; : M — R such that Y; = {h; = 0}, dzh; : T,M — R is surjective
for each x €Y; and

5.1.4. Nash doubles. Doubling a smooth manifold with boundary is a very
standard tool in differential topology. The Nash construction has been treated
by Shiota [Sh, VI.2.1] in the compact case and by Fernando [Fe4, 4.B.1] in the
general case.

Let H C R™ be a d-dimensional Nash manifold with non-empty boundary
OH and let h: M — R be a Nash equation for H (as in Remark 5.1.5).

Proposition 5.1.7 (Nash double). The semi-algebraic set
D(H) :={(z,t) € HxR: t* — h(x) = 0} C R™!
is a Nash manifold of dimension d that contains OH x {0} as the Nash subset
{t =0}.
Proof. As H={x € M : h(z) > 0}, we can describe D(H) as the Nash subset
D(H)={(z,t) e M xR: t* —h(x) =0} C M xR,

so it is enough to check that D(H) is smooth. We consider the Nash function
f:M xR — R, defined as f(x,t) =t — h(z). It holds D(H) = f~1(0). The
differential of f at (x,t) € M x R is dy4)f = 2t — dyh, that is surjective for
each (z,t) (we are using Lemma 5.1.4 when ¢t = 0). Thus 0 € R is a regular
value for the Nash function f, so D(H) is a smooth Nash subset of dimension

d of M x R. The last part of the statement is clear. O
H+ /\t
DU N9l x {0}
H_’,/"//// ,// Td

Figure 5.1: Nash double of H (figure borrowed from [Fe4, Fig.3]).

Consider now the projection 7 : D(H) — H, (z,t) — x, that is a surjective
Nash map. Fix ¢ = £ and denote H. := D(H) N {et > 0}. We have the
following:
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5. Folding Nash manifolds

Proposition 5.1.8. The map 7 : D(H) — H verifies the following properties.

(i) The restriction ©e := 7|g. : He — H is a semi-algebraic homeomorphism
and the restriction 7|p(ayn{et>o0y : D(H) N {et > 0} — Int(H) is a Nash
diffeomorphism.

(ii) 7(z,0) =z for all (x,0) € OH x {0} = D(H) n {t = 0}.
(iii) 7 has local representations (y1,...,ya) = (¥3,v2,---,Y4) at each point of
D(H) N {t = 0}.
(iv) m is open and proper.
Proof. (i) Observe that H. is the graph of the continuous semi-algebraic map
evhon H,so w.: H. — H is a semi-algebraic homeomorphism.
The intersection D(H) N {et > 0} is the graph of the strictly positive Nash
function ev/h on Int(H). Consequently
7T|D(H)ﬁ{et>0} : D(H) N {€t > 0} — Int(H)

is Nash diffeomorphism.
Statement (ii) is clear.

(iii) Let us first construct local coordinates at the points of D(H) N {t = 0}.
Pick a point 2o € OH and let U C M be an open semi-algebraic neighbourhood
of xy equipped with a Nash diffeomorphism

wi=(uy,...,ug): U — (=1,1) x R

such that u(zg) = 0 and UNH = {u; > 0}. We may assume, after shrinking U
if necessary and modifying suitably w and h, that u; = h|y. This is so because
{u; >0} ={h >0}, {us =0} ={h=0}NU and d,u,d,h : T, M — R are both
surjective for each € {h =0} N U, so u1/h is a strictly positive Nash function
on a neighbourhood of {h =0} NU. Observe that V := (UNH) x R is an open
semi-algebraic subset of H x R and

W :=DH)NV ={(z,£\/h(z)): x€¢ UNH}

is an open semi-algebraic neighbourhood of (x,0) in D(H). Consider the Nash
map

u' = (uh, . uh) W= (=1,1) x R (2,8) = (t ua(@), .. ug(x)
and let us check that it is a Nash diffeomorphism. As
(uhy .., ul)) (W) = (ug,...,ug)(UNH) =R

we have u/(W) = (—1,1) x R¥™1, s0 v’ is surjective.
Pick (xl,tl), (.732,152) € W such that u'(a:1,t1) = u/(xz,tz). Then t; = ta, SO

’U,l(SCl) = h(l‘l) = t% = t% = h(l‘g) = Ul(xg)

and u(x1) = u(x2). As u is injective, we have x1 = x2, so (x1,t1) = (z2,t2).
Thus, v is injective.
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5.1. Folding boundaries to construct Nash manifolds with corners.

Denote u™! := ¢ := (¢1,...,¢m). The inverse of v’ is the Nash map
C: (=L XRTN S W, (6y) = (6 ys, - 9a) = (0(82,9), ).
The differential of ¢ at a point (t,') € (—1,1) x R4~ is

2t%(t27y/) %(tz,y’) %(tQ,y/)
9 Tn. Obm . . Odm .
Qt%yl(t{ y/) 8(1;2 (t27 y,) ce (f?(ﬁ’ y/)

and it has rank d. Consequently, v’ is a Nash diffeomorphism.

Let us see how is the local representation of 7w at (t,y') € D(H) N {t = 0} if
we use suitable coordinates. We have

(-1, xR S WS HAU S (—1,1) x R* 2,
(t,y) — (8%, 9), 1) = (%) = (1,0,
as required.

(iv) We prove first that = is open. Let A C D(H) be an open set and let
A. := AN H,, which is an open subset of H,. As 7. : H. — H is a semi-algebraic
homeomorphism, 7(A,) is an open subset of H. Thus, 7(A) = 7(A1) Ur(A_)
is an open subset of H and 7 is open.

To show that 7 is proper, pick K C H compact and observe that
7 H(K) = (m) THE) U (m-) THE).

As each 7. : H. — H is a semi-algebraic homeomorphism, (7.)~!(K) is compact
for e = £, so 77 1(K) is a compact subset of D(H) and 7 is proper as required.
O

5.1.5. Folding one boundary component. Let M C R™ be a d-dimensional
Nash manifold that contains H as a closed subset and assume that 0H is a
Nash subset of M. Let Y be a Nash normal-crossings divisor of M, such that
OH 1is a union of irreducible components of Y. Let Y7,...,Y, be the irreducible
components of Y that meet OH but are not contained in 0H. Let h : M — R be
a Nash equation of 0H. Observe that h; := h|y, is a Nash equation of Y; N0H
such that Int(H) NY; = {h; > 0}, and d,h; : T,Y; — R is surjective for all
xz € Y;NOH. Thus, Y; N H is a Nash manifold with boundary Y; N dH that is
contained in Y; as a closed subset. In addition

D(Y;NnH)={(z,t) € (Y;NH) xR : t* —hi(z) =0} = D(H) N (Y; x R),
is the Nash double of Y; N H. Define H, := D(H) N {et > 0}, for e = +.

We want to show that there exists a Nash embedding of M into D(H), that
maps the Nash normal-crossings divisor Y into D(Y’) component-wise. We need
the following technical lemma.

Lemma 5.1.9. Let k > 1 and 0 < a < 1. Consider the C2F semi-algebraic
function f, := (1 — (t/a)?*)%t + (1 — (1 — (t/a)?*)?*)/t. Then f, is positive
semidefinite [0, a], it is strictly increasing on [0, a], the Taylor polynomial of f,
att = 0 of degree 2k is t whereas the Taylor polynomial of f, at t = a of degree
2k — 1 is that of V/t at t = a. In addition, f.(t) </t on [0,1].
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0.5 0.5

Figure 5.2: Graphs of f, for a = 3 and k = 2 (left) and k = 6 (right).

Proof. Write f := f, to light notations. Using Newton’s binomial we have
2%k

f=§;(?)PD%ZYMt—Z;(?)PD%ZYM¢E

so the Taylor polynomial of f at ¢ = 0 of degree 2k is t. In particular, f is a
C?* semi-algebraic function. In addition,

f=0= 01+ (t/a) = 1)) e+ (1 - (1~ 1+ (t/a) - 1)*")*)Ve
and using Newton’s binomial we have
t 2 (2K 2k /t -1 *
f=f—g;g<;<ﬁ&—g )@—ﬁ%
so the Taylor polynomial of f at ¢t = a of degree 2k — 1 is that of v/t at ¢t = a.

Define o := (1 — (t/a)?)?* and observe that o(0) = 1, o(a) = 0 and both
o, 1 — o are positive semidefinite on [0, a]. Thus, f = ot + (1 — o)/t is positive
semidefinite on [0,a]. As 0 < a < 1, it holds vt —t > 0 on (0,a), so the
derivative

f = (t—ﬁ)o’+(1—a)%+a

1
= (Vt — t)4k* (1 — (t/a)**)* 1t /a)* "1 (1/a) + (1 — 0)—=
(Ve —£)4k*(1 — (t/a)*")** 1 (t/a)?* 7 (1/a) + ( )2\/5
is strictly positive on (0,a) and f is strictly increasing on [0, a]. Finally, ast < v/t
on [0, 1] we deduce that f = ot + (1 — o)/t < v/t on [0, 1], as required. O

+o

We are ready to prove the embedding theorem. Note that, as a straightfor-
ward consequence of this result, we obtain: The Nash manifold with boundary
H is Nash diffeomorphic to H., for e = +.

Theorem 5.1.10 (Embedding). After shrinking M if necessary, there exists a
Nash embedding ¢ : M — D(H) that maps H onto Hy andY; into D(Y; N H).
In addition, ¢log = idom, @|lm is close to (m|m, )™, ¢(z) is close to p(x) for
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5.1. Folding boundaries to construct Nash manifolds with corners.

each x € M\ H, where p is a Nash retraction compatible with Y and there exists
an open semi-algebraic neighbourhood W C M of OH such that

Plciwyun : CUW)U H — D(H)
1S proper.

Proof. The proof is constructed in several steps.
STEP 1. We construct first suitable semi-algebraic neighbourhoods U C M of
OH and V C D(H) of 0H x {0}.

Let U C M be an open semi-algebraic neighbourhood of 0H equipped with
a Nash retraction p : U — 0H compatible with Y (see Proposition 5.1.2). We
may assume that U does not meet the irreducible components of Y that do not
meet OH. Define the Nash map ¢ := (p,h) : U = 0H x R. By Proposition
5.1.3 we may assume, after shrinking U if necessary, that there exists a strictly
positive Nash function € : 9H — (0,1) such that

p(U) ={(y,s) € 0H xR : [s] < e(y)},
o(UNH)=A{(y,s) €e0H xR : 0<s<e(y},

and ¢ : U — ¢(U) is a Nash diffeomorphism such that
p(ZNnU) ={(y,s) € (ZNOH) xR : [s] <e(y)}
for each irreducible component Z of Sing,(Y’) such that ZNOoH # @, Z ¢ 0H

and ¢ > 0. Define V := 7= 1(U N H).

STEP 2. Let V' := {(y,t) € OH xR : [t| < \/e(y)}. We want to prove: The
Nash map
Y:V = 0H xR, (z,t) = (p(x),t)

is a Nash diffeomorphism onto its image V', such that

W(ZNUNH) = {(y.t) € (ZNIH) xR : 0 <t < \/2(y)}

for each irreducible component Z of Sing,(Y) such that ZNOH # &, Z ¢ OH
and £ > 0.

(1) ¢ is injective. If (x1,t1), (x2,t2) € V satisfy ¥(x1,t1) = ¥(x2,t2), then
p(1) = plz) and
Then we have ¢(x1) = p(x2), so 1 = z3. Thus (z1,t1) = (z2,t2).

(2) ¥(V) = V'. Fix a point (x,t) € V. Then, by definition, z € U and
p(z) = (p(z),h(z)) € p(U), so t* = h(z) < e(p(x)) and ¢(z,t) € V'. Con-
versely, fix a point (y,t) € V'. As (y,t?) € o(U), there exists a point x € U
such that p(z) = (p(z), h(z)) = (y,t?). As 2 € U and h(z) = t* > 0, we have
x€UNH,so (z,t) € Vand (y,t) = (p(x),t) = Y(x,t) € (V).

(3) The differential d+p : T.D(H) — T,;)H xR is an isomorphism for each
z € V. Write z := (z,t) and notice that

T.D(H) ={(v,r) € T, H xR : dh(v) — 2tr =0}
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5. Folding Nash manifolds
and dz (v, 1) = (dgp(v),r). If t # 0,

0(0.1) = (daplo). (1))

As dyp = (dyp,d,h) is an isomorphism, also d.t is an isomorphism. If ¢ = 0,
that is z = (z,0) € 0H x R, then

T.D(H) = {(v,r) € ToH x R : dyh(v) = 0} = T,0H x R
and d,y(v,r) = (v,1) because plog = idgm. So d,v is an isomorphism also in

this case.

(4) Let Z be an irreducible component of Sing,(Y) such that Z N OH # @,
Z ¢ OH and £ > 0. Then

WZNUNH)={(y,t) €(ZNOH) xR : 0 <t < +\/2(y)}.

By Proposition 5.1.2 we have p(ZNU) = Z N OH. Thus,

W(ZNUNH) C{(y,t) €(ZNOH) xR : 0 <t < \/e(y)}-

To prove that the previous inclusion is in fact an equality it is enough to proceed
similarly to the end of the proof of Proposition 5.1.3.

STEP 3. Let a : 0H — R be a strictly positive Nash function such that a < e.
For e = +, define

H®:=H\¢* ({(y,s)eaHxR : |s|<“(4‘y)}> C H\U,
H? :=H \y! ({(y,s)é@HxR D sl < c;(y)}) C HN\V.

The restriction Wae == 7|gs : H? — H* is a Nash diffeomorphism for e = +.

Indeed wge is clearly injective. Let x € H®. As x € Int(H), we have h(x) > 0
and write ¢ := ey/h(z). It holds that (z,t) € D(H) and 7(z,t) = . We want
to check that (x,t) € H?. If # € U, then (x,t) € H.\V C H?. If z € U, then
P(z,t) = (p(x),t). As x € H®, it holds

M<h(x) SO M<W:et
— ) 2 - :

4

Consequently, (z,t) € H? and w,. is surjective. In addition, by Proposition
5.1.8(i) d wee = d,7 is an isomorphism for each z € H? C D(H) N {et > 0}.
Consequently wg, is a Nash diffeomorphism.

STEP 4. We want to construct now a semi-algebraic embedding ¢, : M — D(H)
of class C?*=1 for k > 1 arbitrarily large. Substitute M by H U U and define

(y, ) if s <0,
Fo: OH xR = OH xR, (y,5) = § (¥, fay(5)) H0<s<a(y),

(y:v/5) if a(y) <,
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5.1. Folding boundaries to construct Nash manifolds with corners.

where f,(,) is the C?* semi-algebraic function introduced in Lemma 5.1.9 and
we choose k large enough. Denote

U= pU) ={(y,s) € 9H xR |s| < e(y)},
V' =(V) ={(y,t) € H x R : |t| < \/e(y)} (already introduced in Step 2).

The open semi-algebraic set F,(U’) is contained in V', because if —e(y) <
—s < 0, then —/e(y) < —v/s < —s < 0 (recall that 0 < ¢(y) < 1) and
0 < fa(s) <V/sif0<s <a(y) <1

The map F, is a S**~! diffeomorphism because Ja) 1 [0,a(y)] — [0, \/a(y)]
is by Lemma 5.1.9 a S?* diffeomorphism such that the Taylor polynomial of
degree 2k at t = 0 is t and the Taylor polynomial of f, of degree 2k — 1 at
t = a(y) is that of \/t.

Define

-1 i
. Way (2) ifz e M\U=H\UCH®,
¢G,M—>D(H),xH{(¢_1OFao¢)(x) ifzeU.

It holds that ¢, is a S?*~1 diffeomorphism onto its image ¢,(M), whose S2¢~1
inverse is

-1, Wa+(Y) ify € ¢ (M)\V C HE,
Pa: GalM) = M,z {(90‘1 oF toy)(y) ifyeV.

In addition, it satisfies:

® ¢po(H) = Hy and ¢q|om = idon.

e ¢,(M) is an open semi-algebraic subset of D(H), because D(H) \ H®
is an open semi-algebraic subset of ¢,(H) = HT, ¢|y : U — U’ and
Yy V. — V' are Nash diffeomorphisms and F,(U’) C V' is an open
semi-algebraic set.

e 6.(Y;) C D(Y; N H) = D(H) N (Y; x R).

It only remains to show that if a is small enough, then ¢ g is close to (w|q, ).

Observe that ' := or|m, oo~ (y, s) = (y,/s). Let n : M — R be a strictly
positive continuous semi-algebraic function and let us choose a to guarantee that
|¢aler—(m|m, )| < nlm. Infact, as ¢, ¢ are Nash diffeomorphisms, it is enough
to check: If b : o(U) — R is a strictly positive semi-algebraic function, there
exists a strictly positive semi-algebraic function a : 0H — R such that a < €
and ||Fa|<p(U) 77T/H < b.

As F, coincides with 7’ outside {(y,s) € O0H xR : s € [0,e(y))}, we will
find a < 2¢ < 1. Let us work on K := {(y,s) € 0H xR : s € [0,2¢(y)]}. The
projection w1 : K — OH is open, closed and surjective. The semi-algebraic map
m is surjective because OH x {0} C K. Let us show that it is open.

Let A C K be an open set and let yo € m1(A). Let sg € [0, 3e(yo)] be such
that (yo,s0) € A. As A is open, there exists £ > 0 and B C 9H open such
that yo € B and (B X [s9 — &,80 + &]) N K C A. In particular, (yo,s) € A
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5. Folding Nash manifolds

and 71(yo,s) = yo for each s € [sg — &, %5(y0)]. Changing sqg by sg — £ we
may assume sg € [0, 3¢ (yo)] Let ¢ be such that so + & < 3e(yp). As e is
continuous and s + & < 2&(yo), we may assume that 3e(B) C [so + &', +00).
Thus, B X (sg—&',s0+¢&') C K and AN (B x (sg —&',s0+¢&")) C K is an open
subset of OH X (sg — &', s0 + &').

Let us show that 7, is in fact proper. Let C' C OH be a compact set and let
A := max 3¢|c. Then 77 '(C) C C x [0, A], which is a compact set, so 7~ (C)
is also compact and m; is in particular closed.

By [FG4, Const.3.1] the function

a:0H =R, y— %min{b(y,s)2 ;8 € [O, Ze(y)}}

is strictly positive, continuous and semi-algebraic. As the last component of F,
is strictly increasing on [0, a(y)] and f,(a(y)) = v/a(y), we have
1Fa(y, s) = (. Vs)]l
_ J0o<b(y,s) if a(y) <s < fe(y),
1Fal5) = V5] = V5 — fals) < V5 < Valg) < b(y,s) 0 < s < aly).

In addition, if —a(y) < s < 0,

1Fa(y: )= (@opoe™)(y, s)| = lI(y, ) = (4, 0)]| = —s < aly) < Valy) <b(y,s).

We have used that a < 2¢(y) < 1.

STEP 5. Let us see now how to obtain the desired Nash embedding. Recall
that Y7,...,Y, are the irreducible components of Y that meet H but are not
contained in 0H. Consider the Nash normal-crossings divisor

Y = U Y, C M.
i=1
Let Yiy41,...,Ys be the irreducible components of Y that do not meet 0H and
recall that Uﬂ UJ 41 Y =9, s0

Palus_, v, = Tl Hus_, Ly s
By [BFR, Thm.1.6, Thm 1.7], up to take k big enough, we can approximate the
restriction ¢4ly : Y — D(H) by a Nash map ¢ : Y — D(H) such that

-1
¢|3I{UUJ i1 Y (7T|H+) |3HUU;:7«+1Yj

and <$|7 .Y — D(H) satisfies ¢(Y;) C D(Y; N H). By [BFR, Prop.8.2] we can

extend gto a global Nash map ¢ : M — D(H), that is, up to take k big enough,
close to ¢, in the C! semi-algebraic topology. Thus by [Sh, IT.1.7] the map ¢ is
a Nash embedding.

STEP 6. We show: There exists an open semi-algebraic neighbourhood W C M
of 0H such that ¢|cywyum : CLUW)UH — D(H) is proper. Once this is done we
conclude as it is straightforward to see that, up to take a smaller semi-algebraic
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5.1. Folding boundaries to construct Nash manifolds with corners.

function a > 0 if necessary, the Nash embedding ¢ : M — D(H) defined in Step
5 satisfies all the other required properties.

As ¢(M) is open in D(H), the set C':= D(H) \ ¢(M) is a closed subset of
D(H) that does not intersect OH. Let V be an open semi-algebraic neighbour-
hood of OH in ¢(M) such that CI(V) N C = @. The set W := ¢~ (V) is an
open semi-algebraic neighbourhood of 0H in M such that 7(Cl(W)) = CL(V)
because ¢ : M — ¢(M) is a semi-algebraic homeomorphism. The restriction
dlawyun : CLW) U H — D(H) satisfies ¢(CI(W) U H) = CI(V) U H be-
cause ¢(Cl(W)) = CI(V) and ¢(H) = Hy. As CI(V)U Hy is closed in D(H),
if K C D(H) is compact then the set K N (CI(V) U Hy) is compact. The
map ¢|ciwyun : Cl(W)U H — D(H) is a semi-algebraic homeomorphism, so
¢ (K N (CV) U Hy)) is a compact set. We conclude that the restriction
élaywyum : CW) U H — D(H) is proper, as required. O

As an immediate consequence of this embedding theorem, we have the fol-
lowing:

Corollary 5.1.11. The composition f :=mo¢: M — H is a Nash map with
the following properties:

(i) fYi) CY; fori=1,...,r.

(ii) f|u is a semi-algebraic homeomorphism close to idy. Moreover fling(m)
is a Nash diffeomorphism and f|og = idam.

(iii) flanng : M\ H = H is a Nash embedding close to p|pp\ g -

(iv) At each point x € OH the map f has a local presentation of the type
(ylv s 7yd) — (yfa Y2, - .- 7yd)'

(v) There exists an open semi-algebraic neighbourhood V-.C M of OH, such
that f|civyum is a proper Nash map.

Proof. Statements (i), (ii) and (iii) follow from Theorem 5.1.10, whereas state-
ment (iv) is a consequence of Proposition 5.1.8(iii). To prove (v) we use that 7
is proper (see Proposition 5.1.8(v)) and that ¢ is proper on Cl(V)) U H where
V C M is a small semi-algebraic neighbourhood of 0H in M. O

5.1.6. Folding all the boundary components. Now we have all the ingredi-
ents to prove the main result of this chapter. We want to ‘fold” a (small enough)
Nash envelope M of Q to construct Q from M. That is, we want to construct
a surjective Nash map f : M — Q close to the identity when restricted to Q
and with ‘nice’ properties. We start with a technical lemma to construct local
models:

Lemma 5.1.12. Consider the Nash map
0 : R R (z1,...,2q9) = (22, 20,...,24)
and let 1y, 1o : R — R? be Nash diffeomorphisms such that
vi{x; = 0}) = {x; = 0},
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5. Folding Nash manifolds

forj=1,...,5 and i =1,2. Then there exist Nash functions f; : R? = R each
one strictly positive around {x; = 0} and a Nash map g : R? — RY™* such that
9lirizo,...x.=0} : {x1 = 0,...,x5 = 0} = R¥"* is a Nash diffeomorphism and

Poopoth = ((x1f1)%, %2 2, Xsfs, 9).

Proof. As $u({x = 0})
wi‘{xlzo,...,xSZO} . {Xl -
diffeomorphism. Thus

= {x; = 0} and ¥, is a Nash diffeomorphism, then
0,...,xs = 0} = {x3 = 0,...,x5 = 0} is a Nash

w2°‘?°¢1|{m:0,m,xs:0} A{x1=0,...,%, =0} > {x; =0,...,x, =0}

is a Nash diffeomorphism. Let m : RY — R (z1,...,2,) = (Tsi1,---,Tn)
and let g := m o9 0w o ;. We have

9|{X1:0,...,x5:0} {x1=0,...,x, =0} — R4S
is a Nash diffeomorphism and 9s0p01)1 = (g1, ..., ¢s, g) for some Nash functions
gi : R4 = R. As ¢;({x; = 0}) = {x; = 0}, its jth component v;; is divisible

by x; thus, there exists a Nash function h;; : R? — R that is strictly positive
around {x; = 0} such that ¢;; = x;h;; fori =1,2 and j =1,...,s. Thus,

Yropot =
(Wi1ho1 (Y1, 12, - - ¥1a), Yrzhoo (Y1, iz, . ¥1a), -+ Yrshas (Vi1 Yz, ., P1a), 9)
= ((x1h11)?ha1 (Y11, P12, - - -, P14), X2hazhoo (Y11, Y12, - . o, P1a), - - -
o xehashas (Vi Y2, - Y1a), 9).

It is enough to take fi := hi1y/ho1 (V3 Y12, ..., 14) and
fi = haghoj(¥i1, ¥, - - 1a)
forj=2,...,s. =

Theorem 5.1.13 (Folding Nash manifolds). Let Q C R™ be a d-dimensional
Nash manifold with corners. Then, there exist

(i) A d-dimensional Nash manifold M C R™ that contains Q as a closed
subset.

(i1) A Nash normal-crossings divisor Y C M that is the smallest Nash subset
of M that contains 09 and satisfies QNY = 0Q.

(iii) A Nash map f : M — Q such that flo : Q = Q is a semi-algebraic
homeomorphism close to the identity map and f|mg) : Int(Q) — Int(Q)
is a Nash diffeomorphism.

In addition, for each x € 0Q there exist open semi-algebraic neighbourhoods
U,V C M of x equipped with Nash diffeomorphisms o : U — R? and : V — R
and 1 < s <d such that

Yofop 1 :RY 5 R (xq,...,24) — (z1,..., 22, 2ty .., Ta)-
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5.1. Folding boundaries to construct Nash manifolds with corners.

Proof. Let M be a Nash envelope of Q and let Yi,...,Y; be the irreducible
components of the Nash closure Y of 0Q in M (see Section 5.1.3). By Lemma
5.1.4 there exist, after shrinking M if necessary, Nash equations h; : M — R of Y;
such that d h; : T, M — R is surjective for each z € Y; and H; := h;l([O, +00))
is a Nash manifold with boundary whose boundary is Y; foreachi =1,...,¢. By
Corollary 5.1.11 we have for each index ¢ a proper Nash map f; : Cl(M) — H;
such that:

(i) fi(Y;)CcY;forj=1,...,0and f;

v, = idy;,
(ii) film, : H; — H; is a semi-algebraic homeomorphism close to the identity

map, whose restriction f;|p (s, : Int(H;) — Int(H;) is a Nash diffeomor-
phism and fi|on, = idam,,

(iii) filang, © M\ H; — Int(H;) is a semi-algebraic embedding close to
pilav\m, + M\ H; — 0H;,

(iv) fi has local representations (y1,...,%a) — (Y3,92,--.,ya) at each point
T €Y;.

Let {Cy }x be the connected components of M \Y such that CI(Cy)NH; = &
for some i =1,...,0. As Q= H;N...N Hy, we deduce that M \ | J,_, C1(Cy)
is an open semi-algebraic neighbourhood of Q in M. Let us substitute M by
M = M\ J,Cl(Cy) and Y by Y N M’. Observe that now the connected
components of M \ 'Y satisfy C1(C) N H; # @ for each i =1,...,¢.

Consider the proper Nash map f := fpo---0 f; : CI(M) — CI(M). Let us
check that f satisfies the following properties:

(1) f(Y;) CY;foreachi=1,...,¢

(2) fla : Q — Qis a semi-algebraic homeomorphism close to the identity map,
whose restriction f|me(o) : Int(Q) — Int(Q) is a Nash diffeomorphism,

3) f(CI(M)) =9,

(4) f has local representations (y1,.-.,%a) = (Y3, ., Y%, Ys+1,---,Yd) at each
point & € 9Q. The integer s > 1 depends on the point z and corresponds
to the number of irreducible components of Y that passes through =x.

Property (1) follows straightforwardly from (i). To prove (2) we show first:
fi(Q) = Q and fi(Int(Q)) = Int(Q) for ¢ = 1,...,£. Once this is done, as
Q=H,N---NHy filg, : Hi — H; is a semi-algebraic homomorphism close
to the identity map for each i and fi|me(m,) @ Int(H;) — Int(H;) is a Nash
diffeomorphism, we deduce that f|g : Q — Q is a semi-algebraic homeomorphism
close to the identity map and its restriction f|in(o) : Int(Q) — Int(Q) is a Nash
diffeomorphism.

As f; is proper and Q = Cl(Int(Q)), we have

fi(Q) = fi(Cl(Int(Q))) = C1(fi(Int(Q)))

so it is enough to prove f;(Int(Q)) = Int(Q).
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5. Folding Nash manifolds

As the map filme(m,) @ Int(H;) — Int(H;) is a Nash diffeomorphism and
Int(Q) C Int(H;), we have f;(Int(Q)) C Int(H;). As f;(Y;) C Y, we deduce
fi(Y;NInt(H;)) is a closed Nash submanifold of the Nash manifold Y; NInt(H;)
and both have the same dimension. Consequently, the image of each connected
component of f;(Y; NInt(H;)) is a connected component of ¥; NInt(H;). As f;
is close to the identity map f;(D) = D for each connected component of ¥; N
Int(H;). Thus, f;(Y;NInt(H;)) = Y;NInt(H;) and f;(Y NInt(H;)) = Y NInt(H;).
Observe that Int(Q) is a union of connected components of Int(H;) \ Y because
QNY =09. Again as fi|mes,) : Int(H;) — Int(H;) is a Nash diffeomorphism,
fi(Int(Q)) is also a union of connected components of Int(H;) \ Y. As fi|me(o)
is close to the identity map, f;(C) = C for each connected component of Int(Q).
In particular, f;(Int(Q)) = Int(Q), as claimed.

Next, we prove (3). Let us show: f;(H;) C H; for each i,j. Once this is
proved, we have f;(H;) C H; N H; for each i,j (because f;(Cl(M)) C H;) and:

f(CUM)) = (feo---o fi)(CUM)) = (feo o f2)(Hh)
C(feo---ofs)(HHNHy)C---CHN---NHy=09,

as f(Q) = Q, we conclude f(Cl(M)) = Q.

For simplicity we prove fo(H1) C Hy. As fo is continuous, it is enough to
prove: fo(Int(H; N Hz)) C Int(H; N Hy) and fo(Int(Hy) \ Hz) C Int(Hy). For
the first part, it is enough to consider the Nash manifold with corners H; N Hy
and to proceed analogously as above with f; and Q.

As falam, + M\ Ho — Int(Hs) is a Nash embedding and f>(Y1) C Y3, we
deduce that each connected component C of Int(H;) \ Hs is mapped under f;
into a connected component of Int(Hz) \ Y1. Let C be a connected component
of Int(H1) \ Ho € M\ (1 UYs). As M\ Yy = (M \ Hs) UInt(Hz) and
Int(H;) = H1\Y1, we deduce that Int(Hy)\ Hs is open and closed in M\ (Y;UY3),
so C is a connected component of M \ (Y7 UY3).

If CI(C) NYs # &, we pick a point € CI(C) N (Yz \ Y1). This is possible
because C'is a connected component of M\ (Y;UY3) and YUY is a Nash normal-
crossings divisor. Let V be a semi-algebraic neighbourhood of z in M with
compact closure K that does not meet ¥;. As x € CI(C) and C C Int(Hy), we
deduce V' C Int(H1). As pa(x) = x € Int(Hy), and fo|pp g, : M\ Hy — Int(Ho)
is close to pa|ap\p, : M\ Ha — OHs, we may assume fo(K) C Int(H;). Thus,
f2(C) meets Int(Hy). As f2(C) is a connected component of Int(Hz) \ H; and
Int(H;y) NInt(Hy) is open and closed in Int(Hj) \ Y7, we deduce that

f2(C) C Int(Hy) NInt(Hs) C Int(Hy).

Suppose now Cl(C)NY, = &. As CN Hy = &, we deduce that

CI(C)N Hy = Cl(C) N (Yo UInt(Hsy)) = CL(C) N Int(Ho)
= Cl(C' NInt(Hz)) NInt(Hs) C CI(C' N Hy) = 2.
Observe that C is the closure in M \ (Y7 U Y3) of some connected components

of M \'Y, which is a contradiction because by construction all the connected
components of M \' Y meet Hy. Thus CI(C)NY, # @.
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5.1. Folding boundaries to construct Nash manifolds with corners.

So, it holds f2(C') C Int(H;) for each connected component C of Int(Hy)\ Hs.
Consequently, fo(Int(Hy) \ H2) C Int(H).

Finally, we prove (4). Pick a point € 9Q and assume that z belongs exactly
to Y1,...,Ys. Recall that the analytic closure of 9Q, is Y; , U--- U Y, , and
there exists an open semi-algebraic neighbourhood U C M of = equipped with
a Nash diffeomorphism u : U — R? such that u(z) = 0, u(Y; NU) = {x; = 0}
and u(QNU) ={x; >0,...,x, > 0}.

Observe that 7 := uo fou™ =nz0---on; where 1, := uo frou™' : RY — R4
is either a Nash diffeomorphism or a Nash map that has local representations
(W1,--9a) = (¥2,92,.--,y4) at each point x € Y. We may assume that
this local representations preserve the local representations of Y7,...,Y,. Note
that Y7, ...,Ys correspond to coordinates hyperplanes in these coordinates. By
Lemma 5.1.12 we may assume that n = g5 0--- 007 is a composition of Nash
maps of the type o,, : R* = R?,

(:1713 o 7xd) = (xlflma o e 7xm—1fm—1,M7xzn 72nm7xm+1fm+1,7ru e 7Isfsmagm)

where f;, : R? — R is a Nash function that does not vanish around {x; = 0}
and g,, : R? — RI~* satisfies Iml{xi=0,...x.=0} 1 {x1 =0,...,x, = 0} — Ré—s
is a Nash diffeomorphism. Thus, there exist Nash functions f; : R — R
that does not vanish around {x; = 0} and a Nash map g : R? — R?~* such
that glrx,—o0,...x.=0} : {x1 = 0,...,%xs = 0} — R9~% is a Nash diffeomorphism
satisfying

n:RY 5 RY (21,...,24) — (22f2,...,22f% g).

Observe that the map
Y :RTSRY (21,...,20) = (x1f1, ..., T fs, 9)

is a Nash diffeomorphism around the origin, because the determinant of its
Jacobian matrix

Jy(z) = 0 L@ | o0
0 0 | Jg(x)

does not vanish at the origin. Thus, after shrinking the open semi-algebraic
neighbourhood U C M of  we may assume that there exists a Nash diffeomor-
phism ¢ : R — R? such that 1) o0 ¢ = idga. As 7 = 6 o 1), where

0:RT 5 RY, (z1,...,2q) — (22, 22 201, ..., 2a),
we deduce that 1o ¢ =6, so f has local representation

(ylv"wyd)}_} (y%?"'7y§7y8+17"'ayd)

at € 909. Recall that s > 1 corresponds to the number of irreducible compo-
nents of Y that passes through z, as required. ]
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5. Folding Nash manifolds

5.1.7. A ‘canonical’ folding. Let Q C R™ be a Nash manifold with corners
and let M be a Nash envelope of Q such that the Nash closure Y of 0Q is a Nash
normal-crossings divisor of M and QNY = 09. Let Y7,...,Y, be the irreducible
components of Y and h; : M — R a Nash equations of ¥; for i =1,...,¢ as in
Lemma 5.1.4. We can consider the following two constructions.

DOUBLING AFTER DOUBLING. By Lemma 5.1.4 the sets H; := h; ([0, +00))
are Nash manifolds with boundary Y;, that contain Q as a closed subset. Write
(see Corollary 5.1.6):

Q=HiNn..NHy={x e M:hi(x) >0,...,h(z) >0} C M CR",
and let (D(Hy),m ) be the Nash double of H;. Let

Qq: :Wfl(Hg)ﬂ...ﬁﬁfl(Hg)
={(z,t1) € M X R: t] — hi(z) = 0, ha(x) > 0,...,he(z) > 0} C D(H,) c R*,

which is a Nash manifolds with corners. It is described as intersection of ¢ — 1
Nash manifolds with boundary, which are 7 (Hs), ..., 7 '(H,). By Theorem
5.1.10 there exists a Nash embedding ¢, : M — D(H;) such that ¢ (Hy) = Hy4
and My := ¢1(M) is an open semi-algebraic subset of D(H;) that contains
Qy N M; as a closed subset. In addition ¢y, = idy, if we identify Y; with
Y1 x {0}, ¢1(Y;) C D(Y;NHy) fori=2,...,¢0 and ¢1|pg, : Hi — Hi4 is close to
(71| #,, )7t We claim: ¢1(Q) = Q) N Hy4.

To that end we prove that ¢ (H; N H;) = Hiy Ny H(H;) for i = 2,... L.
As ¢y : M — M, is a Nash diffeomorphism it is enough to check

¢1(Int(Hy) NInt(H;)) = Int(Hy4 ) Ny H(Int(H;)).

Observe that Int(H;)NInt(H;) is a union of connected component of M\ (Y1UY>).
In addition ¢1(Y1) = Y1 x {0} and ¢1(Y;) € D(Y; N Hy), so

$1(Y; NInt(Hy)) € D(Y; N H;) N Int(H;y).

As O1lme(r,) - Int(Hy) — Int(Hpy) is a Nash diffeomorphism we deduce that
¢1(Y; N Int(H;)) is a closed Nash submanifold of the Nash manifold D(Y; N
Hy)NInt(Hq4) of the same dimension. As ¢ is close to (m1|m,,+) "', both Nash
manifolds have the same number of connected components and

¢1(Y1 NInt(Hy)) = D(Y; N Hy) N Int(Hqy).

Note that Int(H; )Ny *(H;) is a union of connected components of Tnt(H )\
D(Y; N Hy). As m is close to (7T1|H1+)_1 we conclude that ¢; establish a bijec-
tion between the connected components of Int(H;) NInt(H;) and the connected
components of Int(H, ) Ny *(H;), so that

é1(Int(Hy) NInt(H;)) = Int(Hy ) Nyt (H;).
At this point we have the Nash manifold N! := D(H;), the Nash manifolds
with boundary Hyy and H} := 7y *(H;) for i = 2,...,¢ whose boundaries are

respectively Y1 = 0Hy, D(Yo N Hy), ..., D(Ye N Hy). Recall that

Y ':=YUuDYoNH)U...UDY, N H)
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5.1. Folding boundaries to construct Nash manifolds with corners.

is a Nash normal-crossings divisor of D(H;) and that

Q' =0 NnHy =Hi NH;N...NH;}

={(z,t1) € M x R: ] — hq(z) = 0,t1 > 0,ha(x) > 0,..., he(z) > 0} C D(H:),
is a Nash manifold with corners. The Nash closure of 9Q! is Y and M; =
¢1(M) is an open semi-algebraic neighbourhood of Q' in D(H;). In addition

¢1(H;NHy) = H' N Hyy. Let us check: The Nash map hl : D(Hy) — R defined
as hi(z,t1) := ha(z) is a Nash equation of D(Yo N Hy) in D(Hy) such that

d(w,tl)h% : T($7t1)D(H1) — R,
18 surjective.
It is clear that
1) EM xR :t2 — hy(x) =0, hy(x) = 0}
1) €Yy xR : 2 — hy(z) = 0},

D(Y> N Hy) = {(
{(

so hy = 0 is a Nash equation of D(Yo N Hy) in D(H;). The tangent space of
D(H;y) at a point (z,t1) is

T, t
z,t

T(x,tl)D(Hl) = {(’U,S) ceT,MxR: dwhl(v) —2t1s = 0}

and d(; 1,h3(v, ) = dyha(v). Let us check that it is surjective.
CASE 1: t1 #0. As Ty 4 D(Hy) = {(v,5) € TuM xR : dyhy(v) —2t15 = 0} we
pick a vector v € T, M such that d hs(v) # 0 and (v, M) € Tzt D(H1).

2t
We have,
dyhi(v
A,y (v, 2;( )) = dyha(v) # 0.

CASE 2: t; = 0. We have T, 0)D(H1) = {(v,s) € ToM x R : d hi(v) = 0}. As
Y1 UY5 is a normal-crossings divisor, we have that d,h; and d, hy are linearly
independent, so there exists v € T, M such that d,he(v) # 0 and d,h;(v) = 0.
Pick (v,0) € T(,,0)D(H1) such that

d(z,tl)h%(vao) = dmh%(v) 7& 0.

Thus, in both cases d(m’tl)h% : Tiz,t,)D(H1) — R is surjective and hi satisfies
the required properties.

Observe that the same happens with A3, ..., h}. In addition,
hi:D(Hy) =R, (z,t) >t
is a Nash equation of Y7 x {0} in D(H;). Observe that
Tiw0)D(H1) = {(v,5) € T M x R: dyhi(v) =0} =T, Y3

and d(z’t)h% 1T, Y1 X R = R, (v,s) — s is surjective.
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5. Folding Nash manifolds

We construct next the double of H3 (with respect to hl) which is a Nash
manifold with boundary Y3' = D(Y2NH;) contained in D(H;) as a closed subset.
Thus, at this point we have the Nash manifold

N?:=D(H;) = {(z,t1,t2) € (M xR) x R: 3 — hy(x) = 0,15 — hi(x,t;) = 0}

=A{
= {(Qi,tl,tz) e M x R2 : t% — hl(l‘) = O,tg — hg(&?) = 0}

and the projection 7 : D(H2) — H2. We have also the Nash manifolds with
boundary

H}? =7y (Hiy), Hy =75 ' (HY), ..., H? :== w3 *(H})
and H3 := Hj, . Consider also the Nash manifold with corners
Q?:= H?n...NnH}.

The boundary of Hj is Y3' x {0} and the boundary of H? for i = 1,3,...,0 is
Y? := D(Y;' N H)) where Y{! := Y7 x {0}. By theorem 5.1.10 there exists a
Nash embedding ¢ : M; — D(H2) that maps the Nash manifold with corners
Q! = H{ n...N H} onto the Nash manifold with corners Q> = HZ N ... N H}
(where H? = Hyy), see the claim above concerning ¢, : M — Mj, that maps
Q onto Q'. Observe also that Y2 := Y2 U...UY}? is a Nash normal-crossings
divisor of D(H3) and it is the Nash closure of 992 in N2 := D(H3). Note also
that
hi: N? =R, (z,t1,t2) — hi(z,t1)

is a Nash equation of Y2 fot i = 1,3,...,/ such that
ity 02007 Tt 1) N2 = R

is surjective for each (z,t1,t2) € Y;2. In addition, h3 : N? — R, (x,t1,t2) > t2
is a Nash equation of Y32 := Y3} x {0} such that

d(ﬂc,thO)hg : T(%tho)Nz = T(%tl)Y—Ql xR — R, (’U, S1, 82) —> So

is surjective. The proofs of all these facts are similar to the ones included in the
first step and the concrete details are left to the reader.

We proceed recursively with H3, ..., Hj. In the last step, we have the Nash
manifold

NY:=D(HY) = {(z,t) € M xR : 3 — hy(2) = 0,...,t7 — hy(z) = 0}

the projection my : D(Hf_l) — Hf_l and the Nash manifolds with boundary
Hf =7, (H Y fori=1,..., —1 and Hf = Hf;l. The boundary of H/ is
V=D 'nH, ™) and Q¢ := H{N...NH{ is a Nash manifold with corners.

By Theorem 5.1.10 and proceeding similarly to the first step, there exists a
Nash embedding ¢y : M;_; — D(Hffl) such that ¢,(Q°"!) = Qf and M*¢ =
é¢(M,_1) is an open semi-algebraic neighbourhood of Q¢ in N*.

Let Y/ := DY/ 'nH ") fori=1,...., — 1 and Y/ := Y/7" x {0}. Tt
holds that

he: NY = R, (z,t) = b N a,t, . te 1)

144



5.1. Folding boundaries to construct Nash manifolds with corners.

is a Nash equation of Y¥ in N¢ such that d(m)hf : T(x,t)NZ — R is surjective

for each (z,t) € Y and i = 1,...,£ — 1. In addition, h} : N* = R, (z,t) — t,
is a Nash equation of Yf such that

d(wytlv-”:tl—ho)h‘z : T($7t1,...7tg,1,0)NZ — R
is surjective. We have Y* :=[J/_, Y/ is the Nash closure of Q¢ in N*.
Define
D(Q):= N = {(z,t) € Q x R" : £ — hy(2) =0,...,t2 — he(z) = 0}

and m ;= mpo...om : D(Q) — Q. Define also g; : D(Q) — R, (z,t) — t;,
which satisfies {g; = 0} = Y;* and d(z,4)9i : T(z,1)D(Q) — R is surjective for each
(z,t) € Y;and ¢ := ¢po...0¢; : M — M’ which is a Nash diffeomorphism
that maps Q :={hy > 0,...,hy > 0} onto

Qf ={(z,t) e M xR : 2 — hy(z) = 0,...,t2 — hy(z) = 0,t; >0,...,t, >0}
= {(z,t) € D(Q) xR : t; > 0,...,t, > 0}.

In addition,

e D(Q) = {(z,t) € M xR* : 2 — hy(z) = 0,...,t2 — hy(x) = 0}, which
only depends on Q and hq,...,hy, which are unique up to multiplication
by strictly positive Nash function on Q.

e 7:D(Q) — Q, (x,t) — x.
e Tg,: Q% — Q is a semi-algebraic homeomorphism.

® 7|0t : Int(Q*) — Q is a Nash diffeomorphism.

DOUBLING EVERYTHING TOGETHER. Thus, we can ‘double’ all the irreducible
components of 99 at the same time. Let us check alternatively that D(Q) is a
Nash manifold. As

D(Q) = {(z,t) e M x R® : 12 — hy(2) =0,...,12 — hy(z) =0} € M x R,
it is enough to check that D(Q) is smooth. Consider the Nash map
f:M xRS RE (2,t) = (82 — hi(z),...,t2 — he(z)),

where t := (t1,...,t;) and note that D(Q) = f~1(0). Fixed a point (z,t) € D(Q)
the differential of f at (x,t) is:
diz ) f : Tz (M x Rl) =T,M x R 5 R?,

(v,8) = (2t181 — dzph1(v), ..., 2tesp — dyhe(v)),

where s := (s1,...,8¢). If t; # 0 for each index 4 the differential is surjective
because
S1 S¢
d 0,—,...,— | =
(:c,t)f< 32t17 72t€) (sla 782)
for each s = (s1,...,8,) € R
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5. Folding Nash manifolds

Assume now that there exist » > 1 indices such that ¢; = 0. Up to reorder
the variables, we suppose that t; = ... =t,. = 0 whereas t,41 # 0,...,t; # 0.
As Y is a Nash normal-crossings divisor, the tangent spaces

T.Y1 = ker(d,h),...,T,Y, = ker(dh,) C T, M
are in general position. By Lemma 5.1.4 the differentials

dph, ... dphy : ToM — R,

are all surjective for each z € Y1 N...NY,. Note that hi(z) =... = h.(z) =0
because (z,t) € D(Q), so x € Y1 N...NY,. As {dyh1,...,dsh,} are linearly
independent for each index ¢ = 1,...,r, there exists a vector v; € T, M such

that dyh;(v;) = 1, whereas d h;(v;) = 0 for j # 4. Thus, also in this case the
differential d(, ;) f is surjective because given the vectors

si=(0,... 05" >oiq Sidaheg1(v;) LB Sy sidghe(v;) R
2try1 2ty

vVi=—8101 —...— Sv. €T, M,

it holds d(y 4 f(v,8) = (1,...,8¢) for each s = (s1,...,50) € RE.

We deduce that 0 € R’ is a regular value for the Nash map f, so D(Q) is a
smooth Nash submanifold of M x R¢ of dimension d.

Observe that D(Q) depends only on Q and on the Nash functions hy, ..., hy
that are unique up to multiplication by strictly positive Nash functions on M.
Observe that D(Q) is a Nash envelope of Q° = D(Q) N {t; > 0,...,t, > 0}. In
fact, if ¢ : Q — Qf is a Nash diffeomorphism there exist a Nash envelope M’ ¢ M
of Q, a Nash envelope N C D(Q) of Q% and a unique Nash diffeomorphism
®: M’ — N that extends ¢ to M’ (see [FGR, Thm.1.3]). The uniqueness of ®
follows from the identity principle.

Remark 5.1.14. The Nash manifold D(Q) does not depend on the order we do

the doublings with respect to the boundaries Y7, ..., Y., because at the end the
result is (D(Q), 7) and

e D(Q)={(z,t) € QxR : 13 —hy(2) =0,...,t2 — hy(z) = 0},

e 7:D(Q) — Q, (z,t) — x,

e Q' =D(Q)N{t; >0,...,t, >0} is Nash diffeomorphic to Q.

We will see in the following sections some remarkable consequences of Theo-
rem 5.1.13 and the construction made in this section. Here we present a simple
example. It is well-known that the compact orientable surface of genus g admits

a Nash model. We show in the following example how to deduce straightfor-
wardly by our construction this fact.

Example 5.1.15. Let P, C R? be a convex polygon with n edges. As P, is
convex, there exist polynomials hy, ..., h, € R[x,y] of degree 1 such that

P, ={h1>0,... h, >0}.
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5.1. Folding boundaries to construct Nash manifolds with corners.

Fix 2+ 2(1 — (-=1)") < s < n and let J := {J;};_; be a partition of the set
{1,...,n} such that

Pon{hi=0}N{h; =0} =0 (5.1.1)

for each i, j € Ji, with i # j. For each k = 1,..., s define the polynomial h;, :=
[l;cs, hi- As the partition J satisfies (5.1.1), it holds that P, is a connected
component of the semialgebraic set {x € R? : hy, () > 0,...,hys (z) > 0}.
Thus,

Dy(Pn) :=={(z,t) € Py xR®: t2 —hy (x) =0,...,t> —hy (z) =0} C R¥"2

is a connected compact Nash surface, which is in addition a connected compo-
nent of the (maybe singular) algebraic set

Xom ={(x,t) eR* xR : t] —hy,(x) =0,..., 12 — hy, (x) = 0} C R*2.

We claim: D4(P,) C Reg(Xs p)-
Pick (z,t) € Dy(P,,) and consider the Jacobian matrix

2, 0 - 0 Zaz (2) Z‘% (z)
0 2ty --- 0 %2 (g %2 (g
Jsvn(z,t) = 8}{1. ) 8}(2. ( )
0 0 2, G(a) Ge(a)

has rank < s. As (z,t) € Ds(P,), then = € P,, and there exists at most two
indices k, ¢ such that x € {hy, = 0,h;, = 0}. If such is the case, the vectors

(3;("1"' (x), 86};‘]2’“ () and (8824 (2), 8{92]2‘ (z)) are linearly independent. If there
oh,

exists only one index k such that « € {hy, = 0}, the vector (agx"lk (), g5 (@)

is non-zero because the partition J satisfies (5.1.1). As t2 — hy,(z) = 0 for
k=1,...,s, the matrix J, ,(x,t) has rank s, so (z,t) € Reg(Xs ), as claimed.

As Dg(?P,) is obtained recursively by doubling orientable Nash manifolds
with boundary, D(P,) is an orientable Nash surface. By the (smooth) clas-
sification of surfaces (see for instance [H, Ch.9]) D;(P,) is diffeomorphic to a
connected sum of g tori and the genus g completely characterize its diffeomor-
phism class.

For each € := (g1, ...,¢5) € {—1,1}° the set
DS(:PH) N {Eltl Z 0, e ,Ests Z 0}

is Nash diffeomorphic to P,,. Thus, Ds(P,) is obtained (topologically) by glue-
ing 2% copies of P, one for each choice of ¢ € {—1,1}*. The polygon P,, has
a (natural) structure of CW complex with n vertices, n edges and 1 face. This
CW complex structure induces a CW complex structure on Dg(P,,) with 2572
vertices (because each vertex belongs exactly to 4 polygons of the CW complex),
2571n edges (because each edge belongs exactly to 2 polygons of the CW com-
plex) and 2° faces. We deduce that D;(P,,) is diffeomorphic to the connected
sum of 2°73(n — 4) + 1 tori, whenever the number 2°73(n — 4) + 1 is a non-
negative integer. In particular, the compact orientable surface of genus g > 1 is
diffeomorphic to the Nash surfaces Da(Pag12) C R* and D3(P,43) C R®. Note
that the genus g of the surface Ds(P,,) depends both on n and s (see Table 5.1).
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5. Folding Nash manifolds

s=2]s=3|s=4]|s=5]|s=6|s=7
n=3 - 0 - - - -
n=4 1 1 1 - — —
n=>5 - 2 3 5 - -
n==~6 2 3 5 9 17 -
n="7T - 4 7 13 25 49

Table 5.1: The genus of the Nash surface Ds(P,) for n < 7.
5.2 Approximation for manifolds with corners

Approximation of classes of functions by sub-classes of nicer functions is an
important tool in many areas of mathematics. In particular, in geometry the
possibility of approximating a certain class of functions by a dense (with respect
to suitable topologies) sub-class with a better behaviour, allows (often) a deeper
and better understanding of many situations.

A celebrated example, with uncountable applications, is the Whitney’s ap-
proximation theorem [W] for continuous maps whose target space is a C" sub-
manifold M of R™, for r € NU{oo}. Whitney approximation theorem has been
extended in many directions, like the case of manifolds with boundary (using
partitions of unit and collars). Recently Fernando and Ghiloni [FGh2] proved
new results of approximation in Whitney’s style when the target space has sin-
gularities, under the hypothesis that it admits some ‘nice’ triangulations. For
example, as an application of their (much more general) results, it is possible to
prove that every continuous map between a locally compact set X C R™ and a
smooth manifold with corners (not necessarily divisorial corners) Q C R", can
be approximated by a smooth map.

There are several and relevant results on approximation also in the semi-
algebraic setting. Efoymson [Ef] showed that every continuous semi-algebraic
function can be approximated by a Nash function on Nash manifolds. Shiota
improved this result (see [Sh]) in many directions. He proved relative versions
and results with (a strong) control on the derivatives of the approximation.
Recently approximation techniques have been developed in the case where the
target space has singularities. In [BFR] Baro, Fernando and Ruiz obtained
results when the target space is a Nash set with monomial singularities (un-
der some regularity assumptions on the involved maps). In another direction,
Fernando and Ghiloni [FGh] proved results on differentiable approximation of
continuous semi-algebraic maps, when the target space admits ‘nice’ triangula-
tions. The techniques developed by Fernando and Ghiloni, make an essential use
of partitions of unity, thus their results do not extend to Nash approximation.

One of the main tools in approximation is the existence of (suitable) tubular

neighbourhood (together with the corresponding retractions). When the target
space has singularities, we cannot take advantage of tubular neighbourhoods
and retractions, as it is shown in the following example.
Ezample 5.2.1 ([FGh, 1.10]). There exists no C! retractions from a neighbour-
hood U of X := {xy = 0} C R? onto X. Suppose that p: U — X is a C!
retraction. As p is the identity on X, we have that dyp = idgz. Thus, by the
implicit function theorem, p is a local C! diffeomorphism at the origin, which is
a contradiction.
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5.2. Approximation for manifolds with corners

5.2.1. Nash approximation. When one wants to approximate continuous
semi-algebraic functions by Nash functions often technical difficulties arise. The
rigidity of the Nash class and their algebraic nature prevents us from using the
standard tools in approximation theory, such as partitions of unity, integration
of vector fields etc. When the target space has singularities, the lack of the ex-
istence of retractions complicates even more the situation. Consequently, when
we deal with Nash functions we have (often) to develop ad hoc techniques and
constructions.

Using Theorem 5.1.13 we are able to prove that Nash approximation is pos-
sible for proper semi-algebraic continuous maps when the target space is a Nash
manifold with corners.

Theorem 5.2.2 (Nash approximation). Let 8§ C R™ be a locally compact semi-
algebraic set and let Q C R™ be a Nash manifold with corners. Let h : § — Q be
a proper continuous semi-algebraic map. Then there exist Nash maps g : 8§ — Q
arbitrarily close to h with respect to the C° semi-algebraic topology.

Proof. By [DK] there exist an open semi-algebraic neighbourhood U C R™ of
8 (in which § is closed) and a semi-algebraic retraction v : U — 8. Consider
the continuous semi-algebraic function H := hov : U — Q. Let M C R” be a
d-dimensional Nash manifold that contains Q as a closed subset. By Theorem
5.1.13 there exists (after shrinking M if necessary) a Nash map f : M — Q
such that f|o : Q — Q is a semi-algebraic homeomorphism close to the identity
map and fli(g) : Int(Q) — Int(Q) is a Nash diffeomorphism. Let g9 : § — R
be a strictly positive continuous semi-algebraic function and let € : U — R be
a strictly positive continuous semi-algebraic extension of €y to U. As the map
fe : SO(U, M) — S8°(U,Q), H ~ fo H is continuous [Sh, II.1.5], there exists
0 : U — Rsuch that if G € S(U, M) and |G- H| < 0, then ||foG— foH|| < 5.
As the map h* : 8°(Q,Q) — S8°(8,Q), ¢ — ¢ o h is continuous by [Sh, IL.1.5],
because h is proper and f is close to idg, we may assume that

||h—foh||:||ionh—foh||<¥.

Let G : U — M be a Nash map such that |G—H|| < 0,s0 || foG—foH| < 5.
As H|s = h, we deduce
6‘5 €|3

£ o Gls = bl < If o Gls = f o Hisll + If oh = bl < 2 + 2 = els = o0,

as required. O

When approximation results are achieved a natural question is whether it is
possible to approximate also homotopies.

Question 5.2.2. Let § C R™ be a semi-algebraic set and let Q C R™ be a Nash
manifold with corners. Given two Nash maps f,g : 8§ — Q that are homotopic
through a continuous semi-algebraic homotopy F : 8§ x [0,1] — Q, are they Nash
homotopic?

The previous question is open. The difficulty lies in the fact that, in order
to approximate the continuous semi-algebraic homotopy F : 8 x [0,1] — Q by
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5. Folding Nash manifolds

a Nash one, we need have to approximate relatively to the semi-algebraic set
8 x {0,1}. So far, the techniques we developed seem not to be extendible to
relative approximation.

5.2.3. Smooth approximation. In [FGh2, Cor.1.10] Fernando and Ghiloni
showed that, if the target space is a smooth manifold with corners (non nec-
essarily divisorial corners), continuous maps can be approximated by smooth
maps. The construction we made in this chapter and in particular Theorem
5.1.13, holds also in the smooth case if Q is a smooth manifold with divisorial
corners. So, at the cost of (much) more restrictive hypothesis, we obtain an
alternative and more direct proof of this result.

Unlike the Nash case, when working with the smooth category, we can take
advantage of many and useful tools proper of this category. That allows us to go
further in the smooth case and prove an approximation result for homotopies,
that is, we answer positively to Question 5.2.2 in the smooth setting.

Let Q C R™ be a smooth d-dimensional manifold with corners (not necessar-
ily divisorial corners). For each 2 € 9Q consider a smooth chart

by Uy — RVF = {x1 >20,...,x, >0} CR",
with ¢, (z) = 0. On R™* we can consider the pointing ‘inside’ vector field

7] 0

Vii=m —+ . 4 —
k 8x1+ +6Xk’

and its pullback V,, := ¢%(Vx) on U,, that is a vector field on U, pointing
‘inside U,’. Let {U,;};er be a locally finite refinement in Q of the open covering
{Us}ueoa U{Q\ 99} (recall that Q is paracompact). For each i € I satisfying
U, ¢ Q\ 09 let x; € 99 be such that U; C U,, and define

Vo {0, if U; € Q\ 99,

Ve, lu;,  otherwise.

Let {p;}icr be a smooth partition of unity subordinated to the open covering
{U; }icr. We can glue together the local vector fields V; obtaining a global vector

field
V= sz‘/%
il
pointing ‘inside Q’.
We want to integrate pointing ‘inside’ vector fields on manifolds with corners.
We start with compact sets: Given any compact set K C Q and a pointing
‘inside’ vector field V, there exists an € > 0 and a (well-known) smooth map

exp: K x [0,e) = Q, (z,t) — exp(tV)(x),

called exponential map, such that exp(0)(x) = = for each x € K and the curve
t — exp(tV)(x) is the unique integral curve of V' through x for t = 0.

The uniqueness of integral curves follows from the uniqueness theorem for
ordinary differential equations (see [Le, Thm.17.9]) using standard arguments
(see for instance the proof of [Le, Thm.17.8]). Fix a point y € K. Let U be
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5.2. Approximation for manifolds with corners

an open neighbourhood of y in K and ¢ : U — R™F a local chart such that
¢(y) = 0. In order to prove the local existence of the exponential map for the
vector field V' in Q, by the uniqueness of integral curves it is sufficient to show
the local existence of the exponential map for the vector field (¢~1)*(V) in R™*
(because the uniqueness of integral curves implies the invariance by changing
of coordinates). As R™* is closed in R"™, using smooth partition of unity we
can extend the vector field (¢=1)*(V) to a vector field defined on an open
neighbourhood W C R™ of R™*. By the existence and smoothness theorem
for ordinary differential equations (see [Le, Thm.17.9]) there exists € > 0 such
that the map

exp’ : W x (—€,€) = R™, (2,t) — exp(t(¢p~1)*V)(z),

is smooth and well-defined. As V' is a vector field pointing ‘inside Q’, the vector
field (¢~1)*V points ‘inside R™*’, so the restriction exp’ |rnk x[0,e) takes values
in R™*. In particular,

€Xp ‘UX[O,E) :U x [076) —Q,

because exp(tV)(z) = ¢~ L(exp(t(¢~1)*(V))(¢(z)) for each (z,t) € U x [0,¢).
As K is compact, there exists € > 0 that verifies the required conditions (see
also [Me, Cor.1.13.1]).

Let now {K,},;cs be a locally finite covering of Q made of compact sets,
such that {Int K;},c s is still a locally finite covering of Q. Let €; > 0 be a

positive number such that the exponential map is defined on K; x [0,¢;) and
exp(K; x (0,¢5)) C Int(Q). Define the function

e: Q> R, z—inf{g; : z € K;}.

As the covering {Kj};ecs is locally finite, this function is strictly positive and
takes only finitely many values on a (small) neighbourhood of each point. Thus,
using a smooth partition of unity, there exists a smooth function € : Q — R such
that 0 < € < . Consider the smooth map

H:9x[0,1] = Q, (z,t) = H(z,t) := exp(e(z)tV)(x). (5.2.1)
For each ¢ € [0,1] the map H(—,t) is a diffeomorphism onto its image (see [Le,
Lem.17.2, Thm.17.8]) and H(Q x (0,1]) C Int Q.

Let X C R™ be a locally compact set. We want to show: Every continuous
map f € C°(X,Q) is homotopic to a smooth map g € C*(X,Q). We need
the following well-known result whose proof follows straightforwardly from [H,
Ex.10, pp.64-65] using standard arguments.

Lemma 5.2.3. Let X C R” and Y C R™ be locally compact sets and let
f:Y =Y be a continuous map. Then the map

[ C(X,Y) - CY(X,Y), g foug,
18 continuous with respect to the compact-open topology.

Proposition 5.2.4. Let X C R™ be a locally compact set, Q C R™ be a d-
dimensional smooth manifold with corners (not necessarily divisorial corners)

and f : X — Q a continuous map. Then f is homotopic to a smooth map
g: X — Q.
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5. Folding Nash manifolds

Proof. By [FGh2, Cor.1.10] the space C°(X, Q) is dense in C*>° (X, Q) with respect
to the compact-open topology. So in order to conclude it is sufficient to prove
that: If f,g € C°%(X,Q) are close enough, with respect to the compact-open
topology, then they are homotopic.

It is well known (see for instance [H, Thm.5.1]), that there exists a strictly
positive continuous function € : Int @ — R+, such that, if we consider the open
neighbourhood in R™ of Int Q, defined as

(Int Q). := {y € R" : ||z — y|| < e(z) for some z € Int Q},

then

(i) each y € (Int Q). admits a unique closest point 7(y) € IntQ, namely,
d(y, Int Q) = |ly — 7 (y)l|;

(ii) the map 7 : (Int Q). — Int Q is smooth.

Consider now the map H defined in (5.2.1) and H; : Q — Int(Q), = — H(z,1).
By Lemma 5.2.3 the map (H;). : C°(X,Q) — C°%(X,Q), f+ Hjo f is contin-
uous, so the maps Hy o f,Hy og: X — Int Q can be taken as close as needed,
because we can take f close enough to g. Thus, we may assume

[1H1(f () = Hi(g(2))]| < e(Hi(g(x))),
for all z € Int Q. Then for each ¢ € [0,1] we have
(1—t)Hy(f(z)) + tHi(g(z)) C (Int Q)..
Thus the map, F : X x [0,1] — Int Q given by
F(z,t) == n((1 - t)Hi(f(2)) + tHi(g(2))),

is a well defined homotopy between Hyof and Hyjog. The map G : X x[0,1] — Q
defined as

H(f(x),3t), if 0<t<i
G(z,t) == { F(z,3t — 1), if L<t<?2
is the desired homotopy between f and g. O

We show next that, in the smooth setting homotopies can be approximated
by smooth homotopies if the target space is a smooth manifold with corners.

Theorem 5.2.5 (Differential homotopy). Let X C R™ be a locally compact set
and let Q C R™ be a d-dimensional smooth manifold with corners (not necessarily
divisorial corners). Let f1, fa : X — Q be two homotopic smooth maps. Then
f1, f2 are homotopic trough a smooth homotopy.

Proof. Let Hy := H(—,1), where H : Q% [0,1] — Q is the map defined in (5.2.1)
and let F': X x [0,1] — Q be a homotopy between f; and fo. Then the map
HioF : X x[0,1] — Int Q is a homotopy between H; o f1 and Hj o fo. As Int Q
is a smooth manifold, there exists a smooth homotopy G : X x [0,1] — IntQ
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5.3. An alternative construction of Nash images of closed balls

between Hj o f; and Hj o fa. Let g : [0,1] — [0, 1] be a smooth function that is
identically 0 in a neighbourhood of 0 and identically 1 on a neighbourhood of
1. The smooth map F : X x [0,1] — Q defined as

H(fi(z), u(31)), if0<t<s,
F(z,t) == G(z, u(3t — 1)), if 1<t<2
H(f(x),1—p(3t—2)), if2<t<l,

is a smooth homotopy between f; and fs, as required. O

5.3 An alternative construction of Nash images
of closed balls

The purpose of this section is to prove an alternative version to Theorem 4.1.
We will show how to ‘resolve’ a semi-algebraic set connected by analytic paths
by a Nash manifold with boundary. At the end of the section we will provide
an alternative construction of Nash images of the closed ball, as a consequence
of this resolution of semi-algebraic sets.

5.3.1. Resolution by Nash manifolds with boundary. A similar result to
Theorem 4.1 changing the Nash manifold with corners Q by Nash manifolds
with boundary seems difficult to be achieved if we want to keep the map f
is polynomial and that the semi-algebraic set R has dimension strictly smaller
than the dimension of 8. We propose the following statement:

Theorem 5.3.1. Let 8 C R™ be a d-dimensional closed semi-algebraic set con-
nected by analytic paths and let € > 0. Then there exist:

(i) A d-dimensional non-singular algebraic set X C R™.

(ii) A Nash manifold with boundary H. C R™ such that the Zariski closure
Z. of O0H. is a non-singular algebraic set Z. C X of dimension d —1 and
Int(H.) is a connected component of X \ Z..

(iii) A proper Nash map [ : H. — 8 such that f(H.) =S.

(iv) The restriction flac\p-1(7.y + He \ f71(T2) = 8\ T is a Nash diffeo-
morphism, where T := {x € § : dist(z,R) < e} for a certain closed
semi-algebraic set R C & of dimension strictly smaller than d.

Proof. By Theorem 4.1 we may assume that § = Q C R™ is a Nash manifold
with corners. Recall that X := Q™" c R" is a non-singular algebraic set. Using
the stereographic projection and Hironaka’s desingularization (Theorem 2.4.2),
we may assume in addition that X is compact (see also [Sh, 1.5.11]). Fix £ > 0
and let M C X be the set of points z € X such that dist(x,Q) < e, which is
a Nash manifold. By [FGR, Thm.1.11, 1.12] we may assume, up to eventually

take a smaller ¢, in addition:

e The Nash closure Y of 9Q in M is a Nash normal-crossings divisor of M
and QNY = 0Q.
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5. Folding Nash manifolds

e For every z € 9Q the analytic closure of the germ 09, is Y.

By [Sh, VI.2.1] and its proof there exists a C! function g : M — R such
that M is diffeomorphic to g=1((0,+00)) and H := g~1([0, +00)) is a compact
manifold with boundary that contains Q in its interior. We may assume in
addition that the differential d,g : T, M — R is surjective for each z € g=*(0)
(see Lemma 5.1.4). Let G : X — R be a C! extension of g to X such that
G71(0) = g71(0). Let F : X — R be a polynomial approximation of G in the
C' compact-open topology. As G is strictly positive on the compact set Q, we
may assume F is strictly positive on Q, so F~1(0) ¢ M \ Q. In addition, as we
consider a C! approximation, we may assume d,F : T, X — R is surjective for
each x € F71(0). Thus, . := F71([0,+00)) C M is a compact Nash manifold
with (non-singular) boundary Z. := F~1(0), which is a non-singular algebraic
subset of X of dimension d — 1.

By Theorem 5.1.13 there exists a Nash map h : M — Q such that h(M) =
h(Q) = Q and h|ge_\p-1(7.) : He \ A1 (T2) — Q\ T. is a Nash diffeomorphism,
where T, := {x € Q: dist(z,09) < &}. O

5.3.2. An alternative proof of Theorem 3.2 In order to give an alterna-
tive proof of Theorem 3.2 based on Theorem 5.3.1 we need some preliminary
results. We start with the following Lemma that extends [Fe4, Lem.2.8] to Nash
manifolds with non-empty boundary.

Lemma 5.3.2. Let Hy C R™ and Hy C R™ be Nash manifolds with (non-
singular) boundary. Let f : Hy — Hy be a semi-algebraic homeomorphism.
Then every continuous semi-algebraic map g : Hy — Hs close to f, such that
g(0H1) C OH,, is surjective.

Proof. As f : Hi — H is a semi-algebraic homeomorphism, f(0H;) = 0Hs
(use invariance of domain). Consider the Nash doubles (D(H;), ;) and

Hi,e = D(HZ) N {Et > 0},

where € = +. Recall that m, : H; . — H; is a semi-algebraic homeomorphism.
As f(0H;) = OHs, the map

F: D(H,) — D(Hy), (z,t) — (m2) ' o fom(z,t)
is well-defined and semi-algebraic for ¢ = 4. Observe that F' is bijective and
F~': D(Hy) — D(Hy), (y,8) > (m1) "t o o mac(y, s).
Let us check: F' is continuous. Once this is done, the same proof shows that

F~1is continuous, so f is a semi-algebraic homeomorphism.

As F is continuous on both Hy y, Hy _ and 71 |g, . nm,. = milom, = idom,,
we conclude by the pasting lemma that F' is continuous on D(Hj).

Let g : Hy — Hs be a continuous semi-algebraic map. If g(0H;) C 0Ha, the
map
G : D(Hy) — D(Hy), (z,t) — (m2) o gome(x,t)

is well-defined, continuous and semi-algebraic for ¢ = +. The proof is analogous
to the one for F.
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By [Fed, Lem.2.8] there exists a strictly positive continuous semi-algebraic
function ¢ : D(H;) — R such that if |G — F|| < ¢, then G is surjective.

For € = 4, consider the strictly positive continuous semi-algebraic functions
Ee ::5o7r1_51 :Hi - R

and e* = min{e;,e_}. Let § : H; — R be a strictly positive continuous semi-
algebraic function such that if f,¢g : H; — Hy are continuous semi-algebraic
maps such that ||g — f| < &, then ||(m2) o f — (mae) Lo g|| < & fore =+
(see [Sh, IL.1.5]). Thus, ||(m2¢) "t o fome — (mae) "L ogome| < e*om < e for
e = +. Consequently, |F'— G|| < e, so G is surjective. Following the definition
of G, we conclude that g is also surjective, as required. O

Let us prove that: If § C R™ is a compact semi-algebraic set connected by
analytic paths of dimension d > 2, then there exists a Nash map f : R? — R™
such that f(Bg) =8 .

By Theorem 5.3.1 we may assume that H := § is a connected compact Nash
manifold with smooth boundary. Let M := D(H) be the Nash double of H
and consider the surjective Nash map 7 : D(H) — H introduced in Proposition
5.1.8. Observe that M is a connected compact Nash manifold. Thus, we may
assume that M := § is a connected compact Nash manifold. Let {U;}7_; be
a finite covering of M equipped with Nash diffeomorphisms u; : U; — R such
that M = Uﬁlugl(Ad) where Ay :={x1 >0,...,x4 >0, x3+---+x4 <1}.
Define

A= {x1>-2,...,%¢> -2, 21+ +x4 < d+ 1}

and observe that Ay C By C Al. Let 1 : R? — R? be an affine isomorphism
such that ¥(Aq) = A/

Lemma 5.3.3. Let 0 C R4 be the (d — 1)-simplex
c:={x1>0,...,%-1 >0, 23+ +x4-1 < 1}.

Then the surjective Nash map f : o x [0,1] = AL, (z,t) — ¥(((1 — t)z,1))
restricts to a Nash diffeomorphism fls 0,1y : 0% [0,1) = A\ {¥((0,...,0,1))}.

Proof. As 1) is an affine isomorphism such that (Ag) = A, it is enough to
prove that the surjective Nash map o x [0,1] = Ag, (z,t) — ((1—t)z,t) restricts
to a Nash diffeomorphism

w0 x[0,1) = Ag\ {(0,...,0,1)}.

This is straightforward, because the Nash map

@:Ag\{(0,...,0,1)} = o x[0,1), (1,...,24) — <1f1xd7,..7 fj;d,xd)

is the inverse of ¢. O

We are now ready to give an alternative proof of Theorem 3.2.
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Proof of Theorem 3.2. Let us construct a surjective continuous semi-algebraic
function

s T

hiox[0,2r —1] = M= Ju; ' (Ag) = [ Ju; ' (Ba) = | ui H(A))

i=1 i=1 i=1
that is Nash on o x (|J!_,(2(i — 1),2(i — 1) + 1) and satisfies
u; ' (Ba) C h(Ag x (2(i —1),2(i — 1) + 1)),

foreachi=1,...,7.

Let f: 0 x [0,1] — A/, be the surjective Nash map introduced in Lemma
5.3.3 and define

hitox [2(0—1),2(i — 1) + 1] = u; (AL, (2,t) = u; *(f(z,t —2(i — 1)),

which is a surjective Nash map whose restriction to o x {2(¢—1) 41} is constant
and it is restriction to o x [2(¢ —1),2(¢ — 1) + 1) is a Nash diffeomorphism onto
its image. Write {p;} := h;(c x {2(¢ — 1) +1}). Let by, ..., by be the vertices of
A/, different from (0, ...,0,1). Define 4 :=1— 21 —--- — x4—1 and consider
the continuous semi-algebraic map

giiox [A4+26-1)+1,2(i—1) +2] - R%,
d

(z,1) Hu;jl(zxibﬂ (t—L1—23i—1) —1)).

i=1

Let a; : [2(: —1)+1, 5 +2(i — 1) + 1] — M be a continuous semi-algebraic map
such that a;(2(i —1)+1) = p; and oy (2 +2(i — 1) +1) = u;rll(O). Consider the
continuous semi-algebraic map

giiox 20 —1)+ 1,3 +2(i — 1)+ 1] = M, (z,t) — a(t).

Define h: o x [0,2r — 1] = M, as

hi(z,t) if (x,t) € o x [2(i — 1),2(i — 1) + 1],
(2.8) gi(w,t) if (z,t) €0 x[2(6—1)+1,5+2(i—1)+1],
’ gi(z,t) if (z,t) €0 x [3+2(i—1)+1,2(i — 1) + 2],
he(z,t) if (z,t) € 0 x [2(r — 1),2r — 1]
fori =1,...,7 — 1. Observe that h is a continuous semi-algebraic map such

that for each i =1,...,7:

e the restriction h|yy(2(i—1),2(i—1)41) is @ Nash diffeomorphism onto its im-
age.

o hiox [2(i —1),2(i — 1) +1]) = u; ' (A]).
o u; H(By) C h(o x (2(i —1),2(i — 1) + 1)).

We conclude that the restriction of i to o x (J;_;(2(i —1),2(i — 1) + 1) is Nash
and surjective, because M = |JI* | u; ' (Bg). Let H : RY — M be a continuous
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semi-algebraic extension of h to R%. Define X; := |J;_, (u; o h;) "1 (9B,), which
is a Nash subset of

Q= Int(o) x O(Q(z‘ —1),2(i— 1) +1),

=1

and observe that H is Nash on the open semi-algebraic set ). By [Sh, I11.5.2]
there exists a Nash maps F : R* — M close to H such that

Fluon-10%4) = Hlw,on)-16%.,)

fori=1,...,r. By Lemma 5.3.2 the restriction F‘(uiohi)*l(id) is surjective for
i=1,...,r. Thus,

m

M= Ju;"(Ba) C F(o x [0,2r —1]) C M,
i=1
so F(o x [0,2r — 1]) = M, as required. O
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