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Chapter 1

Introduction

Although it is usually said that the first work in Real Geometry is due to
Harnack [Hr], who obtained an upper bound for the number of connected com-
ponents of a non-singular real algebraic curve in terms of its genus, modern Real
Algebraic Geometry was born with Tarski’s article [T], where it is proved that
a projection of a semi-algebraic set is a semi-algebraic set.

We are interested in studying what might be called the ‘inverse problem’ to
Tarski’s result. A map f := (f1, . . . , fn) : Rm → Rn is polynomial if its com-
ponents fk ∈ R[x] := R[x1, . . . , xm] are polynomials. Analogously, f is regular
if its components can be represented as quotients fk = gk

hk
of two polynomials

gk, hk ∈ R[x] such that hk never vanishes on Rm.

1.1. State of the art. In the 1990 Oberwolfach reelle algebraische Geometrie
week [G] Gamboa proposed (see also Eisenbud’s survey [E, §3.IV, p.69]):

Problem 1.1. To characterize the (semi-algebraic) subsets of Rn that are either
polynomial or regular images of Rm.

As specific examples of open questions he stated in Oberwolfach, we have:

1. Is the set {x2 + y2 > 1} a polynomial image of R2?

2. Is the open quadrant {x > 0, y > 0} a regular image of R2?

In 2002 Fernando and Gamboa answered both these questions in [FG1]. It
constituted the starting point of the systematic study of the problem of repre-
senting semi-algebraic sets as polynomial or regular images of Euclidean spaces.
They, jointly with Ueno, have attempted to understand better polynomial and
regular images of Rm in the last two decades with the following main objectives:

� To find obstructions to be either polynomial or regular images.

� To prove (constructively) that large families of semi-algebraic sets with
piecewise linear boundary (convex polyhedra, their interiors, complements
and the interiors of their complements) are either polynomial or regular
images of Euclidean spaces.
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1. Introduction

In [FG1, FG2, FU1, FGU2] are presented first steps to approach Problem
1.1. The most relevant one [FU1] shows that the ‘set of points at infinity’ of S
is a connected set. In [Fe1] appears a complete solution to Problem 1.1 for the
1-dimensional case, whereas in [FGU1, FGU3, FGU5, FU2, FU3, FU4, FU5,
FU6, U1, U2] it is provided a constructive full answer for the representation as
either polynomial or regular images of the semi-algebraic sets with piecewise
linear boundary commented above [FU4, Table 1]. A survey concerning these
topics, which provides the reader a global idea of the state of the art, can be
found in [FGU4].

The rigidity of polynomial and regular maps on Rm makes really difficult to
approach Problem 1.1 in its full generality. The following example shows that
even for ‘simple’ (whatever simple means) semi-algebraic sets, we do not know
how to answer Problem 1.1.

Example 1.2. The semi-algebraic set S := {y2−x2 < 1} ⊂ R2 is not a polynomial
image of R2 (see [FG1, Rmk.1.3(2)]). It is not known whether S is a polynomial
image of Rn for some n ≥ 3 or not. For the regular case we know that S is a
regular image of R3 but it is not known if S is a regular image of R2 or not.

Figure 1.1: The semi-algebraic set S = {y2 − x2 < 1}.

1.2. First alternative approach. At this point there are several possible ways
to overcome the quoted difficulties. The first one is to change the polynomial
and regular maps by more flexible maps like Nash maps (smooth semi-algebraic
maps) [Fe4] or regulous maps (continuous rational maps) [FFQU]. Gamboa and
Shiota proposed in 1990 to approach the following variant of Problem 1.1.

Problem 1.3. To characterize the (semi-algebraic) subsets of Rn that are Nash
images of Rm.

In 1990 Shiota proposed the following conjecture in order to provide a sat-
isfactory answer to Problem 1.3.

Conjecture 1.4 (Shiota). Let S ⊂ Rn be a semi-algebraic set of dimension
d. Then, S is a Nash image of Rd if and only if S is pure dimensional and
there exists an analytic path α : [0, 1] → S whose image meets all connected
components of the set of regular points of S.

In [Fe4] Fernando provided a proof for Shiota’s conjecture as a particular case
of the following characterization of the semi-algebraic sets S ⊂ Rn of dimension
d that are images of affine spaces under Nash maps.
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Theorem 1.5 (Nash images [Fe4, Thm.1.4]). Let S ⊂ Rn be a semi-algebraic
set of dimension d. The following assertions are equivalent:

(i) S is a Nash image of Rd.

(ii) S is connected by Nash paths.

(iii) S is connected by analytic paths.

(iv) S is pure dimensional and there exists a Nash path α : [0, 1] → S whose
image meets all the connected components of the set of regular points of S.

(v) S is pure dimensional and there exists an analytic path α : [0, 1]→ S whose
image meets all the connected components of the set of regular points of S.

(vi) S is well-welded.

The concept of well-welded semi-algebraic set will be recalled in Section 3.4.

1.3. Second alternative approach. Another possibility is to keep polynomial
or regular functions and to change the domain of definition. If we consider a
compact domain (and of course a compact image), we have more tools because
for instance Weierstrass’ polynomial approximation has an important role. The
simplest compact semi-algebraic domains one can choose are either closed unit
balls or unit spheres. In [KPS, §5.Prob.1] it is proposed the following concrete
related problem:

Problem 1.6. Let P be an arbitrary (compact) convex polygon in R2. Construct
explicit polynomials f and g in R[u, v, w] such that P = (f, g)(B3).

Sturmfels suggested Fernando and Ueno in 2018 to confront the previous
problem, taking into account their knowledge in the subject of polynomial im-
ages of affine spaces. This suggestion was the starting point for the article
[FU6], where it is made an extended study of the n-dimensional semi-algebraic
subsets of Rn that are images under a polynomial map f : Rm → Rn of the
m-dimensional closed unit ball Bm for some m ≥ n. A first main result in [FU6]
is a strong generalization to arbitrary dimension of Problem 1.6.

Theorem 1.7 ([FU6, Thm.1.2]). Let S ⊂ Rn be the union of a finite fam-
ily of n-dimensional convex (compact) polyhedra. The following assertions are
equivalent:

(i) S is connected by analytic paths.

(ii) There exists a polynomial map f : Rn → Rn such that f(Bn) = S.

The techniques involved to prove Theorem 1.7 are generalized in [FU6] to
show the following result. A set S ⊂ Rn is strictly radially convex (with respect
to a point p ∈ Int(S)) if for each ray ` with origin at p, the intersection ` ∩ S

is a segment whose relative interior is contained in Int(S). Convex sets are
particular examples of strictly radially convex sets (with respect to any of its
interior points [Be, Lem.11.2.4]).
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1. Introduction

Theorem 1.8 ([FU6, Thm.1.3]). Let S ⊂ Rn be the union of a finite family
of strictly radially convex semi-algebraic sets that are polynomial images of the
closed unit ball Bm. The following assertions are equivalent:

(i) S is connected by analytic paths.

(ii) There exists a polynomial map f : Rm+1 → Rn such that f(Bm+1) = S.

1.4. First main result. Our starting point has been to combine both alterna-
tive approaches:

(1) To work with Nash maps instead of polynomial or regular maps.

(2) To work with closed unit balls instead of affine spaces.

Our first main result in this dissertation is the characterization of the compact
semi-algebraic sets S ⊂ Rn that are images of closed unit balls under Nash maps.

The statement of Theorem 1.5 does not take into account if S is compact or
not and the involved Nash maps are rarely proper if d ≥ 2. As closed unit balls
Bd are compact, the restrictions to Bd of Nash maps are always proper maps.

Theorem 1.9 (Compact Nash images). Let S ⊂ Rn be a d-dimensional compact
semi-algebraic set. The following assertions are equivalent:

(i) There exists a Nash map f : Rd → Rn such that f(Bd) = S.

(ii) S is connected by Nash paths.

(iii) S is connected by analytic paths.

(iv) S is pure dimensional and there exists a Nash path α : [0, 1] → S whose
image meets all the connected components of the set of regular points of S.

(v) S is pure dimensional and there exists an analytic path α : [0, 1]→ S whose
image meets all the connected components of the set of regular points of S.

(vi) S is well-welded.

Chapter 3 will be dedicated to prove this theorem. We start by showing in
Section 3.1 that there exist polynomial maps Rd → Rd that transform:

(i) the standard sphere Sd onto the unit closed ball Bd (Proposition 3.1.1),

(ii) the unit closed ball Bd onto the cylinder Bd−1×[−1, 1] (Proposition 3.1.2),

(iii) the cylinder Bd−1× [−1, 1] onto the simplicial prism ∆d−1× [−1, 1] (Corol-
lary 3.1.4), where

∆d−1 := {x1 ≥ 0, . . . , xd−1 ≥ 0, x1 + · · ·+ xd−1 ≤ 1} ⊂ Rd,

(iv) the cylinder Bd−1 × [−1, 1] onto the hypercube [−1, 1]d (Corollary 3.1.5).
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In addition, there exist a polynomial map from the hypercube onto the unit
closed ball (Proposition 3.1.6), a polynomial map from the simplicial prism onto
the unit closed ball (Proposition 3.1.8) and a regular map from the hypercube
onto the sphere (Proposition 3.1.9). Thus, we can take indistinctly as models
to represent a compact semi-algebraic set S ⊂ Rn (connected by analytic paths)
as image under Nash maps Rd → Rn any of the previous semi-algebraic sets in
(i)-(iv). In fact, we will provide representations of S as image under Nash maps
Rd → Rn of each of the previous models. The technicalities of the constructions
we develop in this work make the simplicial prism ∆d−1 × [−1, 1] the most
suitable model to develop the main construction.

A main step to prove Theorem 1.9, which has interest by its own, is the
following result:

Theorem 1.10. Let T ⊂ Rn be a compact checkerboard set of dimension d.
Then, there exists a Nash map f : ∆d−1 × [0, 1]→ Rn such that

f(∆d−1 × [0, 1]) = T.

The concept of checkerboard set will be recalled in Section 3.5. In particular,
connected Nash manifolds Q ⊂ Rn with (divisorial) corners can be embedded
as checkerboard sets in some Rm [Fe4, Lem.8.3]. The precise definition of Nash
manifold with (divisorial) corners appears in Section 2.5.3.

In Section 3.6.1 we treat separately the 1-dimensional case and we charac-
terize 1-dimensional Nash images of closed balls in terms of their irreducibility.
The ring N (S) of Nash functions on a semi-algebraic set S ⊂ Rn is a Noetherian
ring [FG3, Thm.2.9] and we say that S is irreducible if and only if N (S) is an
integral domain [FG3, §3].

Proposition 1.11 (The 1-dimensional case). Let S ⊂ Rn be a 1-dimensional
compact semi-algebraic set. Then S is a Nash image of some Bm if and only if
S is irreducible. In addition, if such is the case S is a Nash image of [−1, 1].

1.5. Consequences of the first main result. As consequences of Theorem
1.9 we will show in Chapter 3 the following.

1.5.1. General Nash images. Once we have completely characterised the Nash
images of the closed ball, a natural question arises:

Problem 1.12. To determine all possible compact models that allow us to repre-
sent a compact semi-algebraic set S ⊂ Rn of dimension d connected by analytic
paths as a Nash image.

This question is not trivial and different classes of semi-algebraic functions
might have different answers. For instance, the family of polynomial images
of the closed ball and the one of the sphere are different. In the Nash case
we are able to provide a complete characterization of the compact models as a
consequence of Theorem 1.9 and the following result (whose proof is contained
in Section 3.7):

Theorem 1.13 (Bärchen-Schäfchen’s Theorem). Let T ⊂ Rm be any semi-
algebraic set of dimension d. Then, there exists a regular map f : Rm → Rd
such that f(T) = Bd.
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1. Introduction

It is natural now to wonder if the previous result extends to pairs of general
semi-algebraic sets non necessarily compact.

Problem 1.14. To determine all possible models that allow us to represent a
semi-algebraic set S ⊂ Rn of dimension d connected by analytic paths as a Nash
image.

If S ⊂ Rn is non-compact and T ⊂ Rm is compact, there exists no Nash map
f : Rm → Rn such that f(T) = S. In Section 3.7 we prove the following:

Theorem 1.15. Let T ⊂ Rm be a semi-algebraic set and let d ≥ 2. Assume
that Cl(Td) ∩ T is not compact. Then, there exists a Nash map f : Rm → Rd
such that f(T) = Rd.

Combining the previous two results with Theorem 1.9 and [Fe4, Thm.1.4]
we obtain the following satisfactory answer to Problem 1.14:

Theorem 1.16. Let S ⊂ Rn be a semi-algebraic set of dimension d ≥ 2 con-
nected by analytic paths. For each semi-algebraic set T ⊂ Rm with d ≤ dim(T),
such that Cl(Te) ∩ T is non-compact for some d ≤ e ≤ dim(T) in case S is
non-compact, there exists a Nash map f : Rm → Rn such that f(T) = S.

1.5.2. General surjective Nash maps between semi-algebraic sets Once estab-
lished a satisfactory classification (both for the compact and non-compact case)
of the possible models to represent semi-algebraic sets connected by analytic
paths as Nash images, a natural question at this point is to determine until
what extend we can represent general semi-algebraic sets as Nash images. Ob-
serve that the image of a semi-algebraic set connected by analytic paths under
a Nash map is connected by analytic paths. In addition, the image of an irre-
ducible semi-algebraic set under a Nash map is an irreducible semi-algebraic set
[FG3, §3.1].

Thus, obstructions to construct a surjective Nash map f : S→ T between ar-
bitrary semi-algebraic sets S ⊂ Rm and T ⊂ Rnconcentrate on the configuration
of the intersections of pairwise different analytic path-connected components
{Si}ri=1 (resp. irreducible components {S∗j}`j=1) of S and the configuration of
their images, which are semi-algebraic subsets Ti := f(Si) of T connected by
analytic paths (resp. irreducible semi-algebraic subsets T∗j := f(S∗j ) of T).

In order to soften these obstructions we will assume that each irreducible
component S∗i of S is mapped onto an analytic path-connected component Ti
of T and that

⋂r
i=1 f(Ti) 6= ∅. Under this type of assumptions we propose the

following characterization (whose proof is contained in Section 3.8.3).

Theorem 1.17 (Surjective Nash maps). Let S ⊂ Rm and T ⊂ Rn be semi-
algebraic sets, let {S∗i }ri=1 be the irreducible components of S and let {Ti}ri=1 be
a family of (non-necessarily distinct) semi-algebraic subsets of T connected by
analytic paths such that

⋂r
i=1 Ti 6= ∅. Denote di := dim(S∗i ) and assume that

the set S
∗,(di)
i of points of S∗i of dimension di is non-compact if Ti is non-compact

for i = 1, . . . , r. Then, there exists a Nash map f : S→ T such that f(S∗i ) = Ti
for i = 1, . . . , r if and only if ei := dim(Ti) ≤ dim(S∗i ) =: di for i = 1, . . . , r.

1.5.3. Representation of arc-symmetric semi-algebraic sets. Arc-symmetric semi-
algebraic sets were introduced by Kurdyka in [K] and subsequently studied
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by many authors. Recall that a semi-algebraic set S ⊂ Rn is arc-symmetric
if for each analytic arc γ : (−1, 1) → Rn with γ((−1, 0)) ⊂ S it holds that
γ((−1, 1)) ⊂ S. In particular arc-symmetric semi-algebraic sets are closed sub-
sets of Rn. An arc-symmetric semi-algebraic set S ⊂ Rn is irreducible if it cannot
be written as the union of two proper arc-symmetric semi-algebraic subsets [K,
§2]. As a consequence of Theorem 3.2 and [K, Cor.2.8] we will show in Section
3.9.1 that a pure dimensional compact irreducible arc-symmetric semi-algebraic
set is a Nash image of Bd where d := dim(S).

Corollary 1.18. Let S ⊂ Rn be a pure dimensional compact irreducible arc-
symmetric semi-algebraic set of dimension d. Then S is a Nash image of Bd.

1.5.4. Elimination of inequalities. A converse problem to Tarski’s theorem is

to find an algebraic set in Rn+k whose projection is a given semi-algebraic
subset of Rn. This is known as the problem of eliminating inequalities. Motzkin
proved in [Mo] that this problem always has a solution for k = 1. However,
his solution is rather complicated and is generally a reducible algebraic set. In
another direction Andradas and Gamboa proved in [AG1, AG2] that if S ⊂ Rn
is a closed semi-algebraic set whose Zariski closure is irreducible, then S is the
projection of an irreducible algebraic set in some Rn+k. In [P] Pecker provides
some improvements on both results: for the first by finding a construction of an
algebraic set in Rn+1 that projects onto the given semi-algebraic subset of Rn,
far simpler than the original construction of Motzkin; for the second by proving
that if S is a locally closed semi-algebraic subset of Rn with an interior point,
then S is the projection of an irreducible algebraic subset of Rn+1. In [Fe4] it
is proved that each semi-algebraic set S ⊂ Rn is the image of a non-singular
algebraic set X ⊂ Rn+k whose connected components are Nash diffeomorphic
to affine spaces (maybe of different dimensions).

In this work we improve the previous result if S is compact and we prove
that there exists an algebraic set X ⊂ R2d+1, where d := dim(S), that is Nash
diffeomorphic to a finite pairwise disjoint union of spheres (maybe of different
dimensions) that project onto S. In Section 3.9.2 we show the following result
that provides a non-singular compact algebraic set with the simplest possible
topology that projects onto a compact semi-algebraic set.

Corollary 1.19. Let S ⊂ Rn be a compact semi-algebraic set of dimension d.
We have:

(i) If S is connected by analytic paths, it is the projection of an irreducible
compact non-singular algebraic set X ⊂ Rn+k (for some k ≥ 0) that has
at most two connected components Nash diffeomorphic to the sphere Sd.
In addition,

(1) Each connected component of X projects onto S.

(2) There exists an automorphism of X that swaps both connected com-
ponents of X.

(ii) In general S is the projection of an algebraic set X ⊂ Rn+k (for some
k ≥ 0) of dimension d that is Nash diffeomorphic to a finite pairwise
disjoint union (of dimension d) of spheres (maybe of different dimensions).
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1. Introduction

Even for dimension 1, it is not possible to impose the connectedness of X
(see Lemma 3.9.5 and Example 3.9.6). Contrast the previous result with [Fe4,
Cor.1.8].

1.6. Second main result. Once we have completed a characterization of Nash
images of closed balls, a natural question at this point is to determine until what
extend we can represent semi-algebraic sets connected by analytic paths using
polynomial maps. Polynomial images of models connected by polynomial paths
(e.g. Euclidean spaces, closed balls etc.) are connected by polynomial paths. In
general, semi-algebraic sets do not contain rational paths. By [C, V] a generic
complex hypersurface Z of CPm of degree d ≥ 2m− 2 for m ≥ 4 and of degree
d ≥ 2m−1 for m = 2, 3 does not contain rational curves. If S is a semi-algebraic
set whose Zariski closure in RPm is a generic hypersurface of high enough degree,
then its Zariski closure Z in CPm does not contains rational curves, so S cannot
contain rational paths. This means in particular that general semi-algebraic
sets do not contain polynomial paths.

In Chapter 4 we show that if S ⊂ Rm is a closed semi-algebraic set connected
by analytic paths, then S is the image under a proper polynomial map of a Nash
manifold with corners of the same dimension. In fact, there exists an algebraic
set of smaller dimension such that the restriction of the polynomial map to the
Nash manifold with corners minus this algebraic set is a Nash diffeomorphism
onto its image.

Theorem 1.20. Let S ⊂ Rm be a d-dimensional closed semi-algebraic set con-
nected by analytic paths. Then there exist:

(i) A d-dimensional non-singular irreducible algebraic set X ⊂ Rn and a
normal-crossings divisor Y ⊂ X.

(ii) A connected Nash manifold with corners Q ⊂ X (which is a closed subset
of X) whose boundary ∂Q has Y as its Zariski closure.

(iii) A polynomial map f : Rn → Rm such that the restriction f |Q : Q → S is
proper and f(Q) = S.

(iv) A closed semi-algebraic set R ⊂ S of dimension strictly smaller than d
such that S \ R and Q \ f−1(R) are Nash manifolds and the polynomial
map f |Q\f−1(R) : Q \ f−1(R)→ S \ R is a Nash diffeomorphism.

If S ⊂ Rm is a general semi-algebraic set connected by analytic paths, one
can wonder if it is possible to provide a similar result that also works for S. As
the chosen Nash manifold with corners Q is closed in its Zariski closure and the
chosen polynomial map f : Rn → Rm restricts to a proper map f |Q : Q→ Rm,
its image S is a closed subset of Rm. Thus, if S is not closed in Rm, we should
change the type of domain and/or the type of map. The second approach
considering general Nash maps non-necessarily proper has been developed in
[Fe4, Proof of Thm.1.4, §8.C.12] and it is shown that if the involved Nash map
is not necessarily proper, then there exists a Nash manifold H with smooth
boundary and a surjective Nash map f : H → S. If one wants to keep the
properness condition, it is not possible to keep as domains Nash manifolds Q

with corners because they are locally compact and images of locally compact
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subsets of Rn under proper maps are locally compact subsets of Rm. Thus, we
have to change the type of involved domains and we will consider semi-algebraic
sets T ⊂ Rn whose closure is a Nash manifold with corners Q ⊂ Rn and Q \ T is
a union of some of the strata of a suitable stratification of ∂Q.

Theorem 1.21. Let S ⊂ Rm be a d-dimensional semi-algebraic set connected
by analytic paths. Then there exist:

(i) A d-dimensional connected compact non-singular algebraic set M ⊂ Rn
and a normal-crossings divisor Y ⊂M .

(ii) A connected Nash quasi-manifold with corners S• ⊂M that is a checker-
board set and whose closure in M is a compact connected Nash manifold
with corners Q• ⊂M whose boundary ∂Q• has Y as its Zarsiki closure.

(iii) A Nash map f : Rn → Rm such that the restriction f |S• : S• → S is proper
and f(S•) = S.

(iv) A closed semi-algebraic set R ⊂ S of dimension strictly smaller than d
such that S \ R and S• \ f−1(R) are Nash manifolds and the Nash map
f |S•\f−1(R) : S• \ f−1(R)→ S \ R is a Nash diffeomorphism.

A Nash quasi-manifold with corners is a Nash manifold with corners with
some faces erased (the precise definition is included in Section 4.3).

1.7. Third main result. The study of Nash images of closed balls took us to
work closely with Nash manifolds with corners. In two recent papers Fernando
and Ghiloni [FGh, FGh2] obtained approximations result in the semi-algebraic
and smooth settings when the target space has singularities provided it admits
‘nice’ triangulations. Motivated by their work and our study of Nash manifolds
with corners we dealt with the following problem:

Problem 1.22. Let S ⊂ Rm be a locally compact semi-algebraic set, let Q ⊂ Rn
be a Nash manifold with (divisorial) corners and let h : S→ Q be a proper con-
tinuous semi-algebraic map. Does there exist a Nash map g : S→ Q arbitrarily
close to h in the C0 semi-algebraic topology?

In the article [FGR] Fernando, Gamboa and Ruiz proved that given a Nash
manifold Q ⊂ Rn with corners it is contained as a closed subset in a Nash
manifold M ⊂ Rn of the same dimension and the behaviour of the Nash closure
of its boundary is the suitable one. We will show in Chapter 5 that the Nash
manifold M can be ‘folded’ to reconstruct the manifold with corners Q. That
is, there exists a surjective Nash map M → Q such that the restriction to Q

is close to the identity and preserves the stratification of the boundary ∂Q.
The construction we present there, even if it requires some technicalities, is
geometrical and neat.

Theorem 1.23 (Folding Nash manifolds). Let Q ⊂ Rn be a d-dimensional Nash
manifold with corners. Then, there exist

(i) A d-dimensional Nash manifold M ⊂ Rn that contains Q as a closed
subset.

9



1. Introduction

(ii) A Nash normal-crossings divisor Y ⊂M that is the smallest Nash subset
of M that contains ∂Q and satisfies Q ∩ Y = ∂Q.

(iii) A Nash map f : M → Q such that f |Q : Q → Q is a semi-algebraic
homeomorphism close to the identity map and f |Int(Q) : Int(Q) → Int(Q)
is a Nash diffeomorphism.

In addition, for each x ∈ ∂Q there exist open semi-algebraic neighbourhoods
U, V ⊂M of x equipped with Nash diffeomorphisms ϕ : U → Rd and ψ : V → Rd
and 1 ≤ s ≤ d such that

ψ ◦ f ◦ ϕ−1 : Rd → Rd, (x1, . . . , xd) 7→ (x2
1, . . . , x

2
s, xs+1, . . . , xd).

This result, that has interest by its own, has remarkable consequences. In
particular, it allows us to answer Problem 1.22.

Theorem 1.24 (Nash approximation). Let S ⊂ Rm be a locally compact semi-
algebraic set and let Q ⊂ Rn be a Nash manifold with corners. Let h : S→ Q be
a proper continuous semi-algebraic map. Then there exist Nash maps g : S→ Q

arbitrarily close to h with respect to the C0 semi-algebraic topology.

A second consequence of our construction is a variant of Theorem 1.20. A
similar result changing Q by a Nash manifold with boundary seems difficult to
be achieved if we want to keep that the map f is polynomial, so we will show
in Section 5.3.1 that a closed semi-algebraic set S connected by analytic paths
can be ‘resolved’ by a Nash manifold with boundary, up to consider Nash maps
instead of polynomial ones.

Theorem 1.25. Let S ⊂ Rn be a d-dimensional closed semi-algebraic set con-
nected by analytic paths and let ε > 0. Then there exist:

(i) A d-dimensional non-singular algebraic set X ⊂ Rm.

(ii) A Nash manifold with boundary Hε ⊂ Rm such that the Zariski closure Zε
of ∂Hε is a non-singular algebraic set contained in X of dimension d− 1
and Int(Hε) is a connected component of X \ Zε.

(iii) A proper Nash map f : Hε → S such that f(Hε) = S.

(iv) The restriction f |Hε\f−1(Tε) : Hε \ f−1(Tε) → S \ Tε is a Nash diffeo-
morphism, where Tε := {x ∈ S : dist(x,R) ≤ ε} for a certain closed
semi-algebraic set R ⊂ S of dimension strictly smaller than d.

In Section 5.3.2 we will also provide an alternative characterization of the
Nash images of the closed ball, taking advantage of this new technique of ‘res-
olution’ of semi-algebraic sets by Nash manifolds with boundary.

The results presented in this dissertation will be collected in the articles
[CF1] (mainly those results in Chapter 3) and [CF2] (mainly those results in
Chapters 4 and 5).
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Chapter 2

Preliminaries

2.1 Real algebraic sets

The main goal of algebraic geometry is the study of those subsets of kn defined as
common zero sets of polynomials in k[x1, . . . , xn], where k is a field. The setting
with a nicer behaviour arises when k is algebraically closed. In particular, the
case k = C has deserved major attention, and complex algebraic geometry is a
central part in mathematics. The non algebraically closed case often leads to
surprising results - at least for classical algebraic geometers (see also [FGh3]).
The reason is that the couple ‘algebraic geometry-commutative algebra’ does not
have a happy marriage in the non algebraically closed case. In the following, K
is either R or C.

Definition 2.1.1. A subset V ⊂ Kn is called an algebraic set if it can be
represented as

V = Z(S) := {x ∈ Kn : p(x) = 0 ∀p ∈ S},

where S ⊂ K[x] := K[x1, . . . , xn] is a non-empty subset.

If I is the ideal generated by a non-empty subset S ⊂ K[x], it is straight-
forward to check that Z(I) = Z(S). Hilbert’s basis theorem [AM, Thm.7.5]
asserts that K[x] is a Noetherian ring. In particular each ideal I ⊂ K[x] is
finitely generated, so every algebraic set V ⊂ Kn is the zero set of a finite fam-
ily of polynomials. If K = R, we can actually use a single equation by means of
a sum of squares.

Proposition 2.1.2. Let V ⊂ Rn be an algebraic set. Then, there exists a
polynomial p ∈ R[x] such that V = {p = 0}.

Proof. Let p1, . . . , pk ∈ R[x] be polynomials such that V = {p1 = 0, . . . , pk = 0}.
Then V = {p2

1 + · · ·+ p2
k = 0}, as required.

Recall some standard facts about algebraic sets.

(i) The vanishing ideal of a subset V ⊂ Kn is

I(V ) := {f ∈ K[x] : f(x) = 0 ∀x ∈ V } ⊂ K[x].

11



2. Preliminaries

(ii) Algebraic sets in Kn are the closed sets for a topology on Kn, called the
Zariski topology.

(iii) Given a subset V ⊂ Kn the Zariski closure V
zar

of V is the smallest
algebraic set V

zar ⊂ Kn that contains V .

(iv) Every Zariski closed set in Kn is also closed in the standard Euclidean
topology because polynomial functions are continuous with respect to the
Euclidean topology.

(v) The Zariski topology of Kn is not Hausdorff, but points are closed.

We will say that an algebraic set V ⊂ Kn is irreducible if it cannot be
decomposed as a finite union of strict algebraic subsets. That is, if V1, V2 ⊂ Kn
are algebraic sets such that V = V1 ∪ V2, then either V = V1 or V = V2. We
say that the algebraic set V is reducible if it is not irreducible. An algebraic
set V ⊂ Kn is irreducible if and only if I(V ) ⊂ K[x] is a prime ideal. In fact,
V = V1∪V2 with V1, V2 6= V if and only if there exist f1 ∈ I(V1) and f2 ∈ I(V2)
such that f1, f2 /∈ I(V ) and f1f2 ∈ I(V ).

Algebraic sets admits a unique irredundant finite decomposition as the union
of its irreducible algebraic components [BR, Prop.3.1.5].

Proposition 2.1.3 (Decomposition into irreducible components). Every alge-
braic set V ⊂ Kn can be decomposed as a finite union of irreducible algebraic
sets, called irreducible components,

V = V1 ∪ · · · ∪ Vk,

where Vi 6⊂ Vj if i 6= j. In addition, up to reordering the indices, this decompo-
sition is unique.

The following examples show that real algebraic sets might present ‘wilder’
behaviours than complex algebraic sets.

Examples 2.1.4. (i) The ideal I := (x2(x2 − 1) + y2) is a prime ideal of R[x, y],
because the polynomial x2(x2 − 1) + y2 is irreducible, but

Z(I) := {(0, 0), (1, 0)} ⊂ R2

is a reducible algebraic set.

(ii) I := ((xy− 1)2 + x2) ⊂ R[x, y] is a proper prime ideal, but the algebraic
set Z(I) = ∅.

(iii) The circle S1 := {x2 + y2 − 1 = 0} ⊂ R2 is a bounded irreducible
algebraic set.

(iv) The set Z(y2 − x3 + x) ⊂ R2 is an irreducible algebraic set with two
connected components. One of them is a bounded set (see Figure 2.1).

(v) The irreducible algebraic set Z(y2 − x3 + x2) ⊂ R2 is not connected and
one of its connected components is an isolated point (see Figure 2.1).

12



2.2. Semi-algebraic sets

�

Figure 2.1: The cubic curves y2 − x3 + x = 0 (left) and y2 − x3 + x2 = 0 (right).

2.2 Semi-algebraic sets

The field of real numbers R has a (unique) ordered structure. This ordered
structure is intrinsically related to (some of) the topological properties of real
algebraic sets. This is one of the reasons (not the only one) why it is ‘natural’
to consider a larger class of sets, larger than the one of algebraic sets, described
involving both polynomial equalities and inequalities.

Examples 2.2.1. (i) Given a, b ∈ R, the set Z(t2 + at + b) ⊂ R is non-empty if
and only if a2 − 4b ≥ 0.

(ii) A non-singular elliptic curve {y2 = x3 +ax+ b} ⊂ R2 is connected if and
only if the quantity 4a3 + 27b2 is positive.

A subset S ⊂ Rn is called a semi-algebraic set if it can be described as
a finite boolean combination of polynomial equalities and inequalities, that is,
there exist polynomials qi, pij ∈ R[x] such that

S =

s⋃
i=1

ri⋂
j=1

{x ∈ Rn : qi(x) = 0, pij(x) > 0}.

Example 2.2.2. The following sets are semi-algebraic subsets of Rn.

(i) The unit closed ball Bn := {x ∈ Rn : ‖x‖2 ≤ 1}.

(ii) The unit open ball Bn := {x ∈ Rn : ‖x‖2 < 1}.

(iii) The unit sphere Sn−1 := {x ∈ Rn : ‖x‖2 = 1}.

The next theorem shows that the class of semi-algebraic sets is stable under
taking projections [BCR, Thm.2.2.1].

Theorem 2.2.3 (Tarski). Let S ⊂ Rn+1 be a semi-algebraic set and consider
the projection π : Rn+1 → Rn, (x1, . . . , xn+1) 7→ (x1, . . . , xn) onto the first n
coordinates. Then, π(S) is a semi-algebraic subset of Rn.

As a consequence of Tarski’s theorem one obtains that the family of semi-
algebraic sets is closed under usual topological operations, like taking closures
(denoted by Cl(·)) and taking interiors (denoted by Int(·)).

The next example shows that, unlike the algebraic case, not all the semi-
algebraic sets can be described without involving unions. Moreover, unions are

13



2. Preliminaries

needed to have a class of sets that includes algebraic sets and is closed under
taking projections.

Example 2.2.4. The semi-algebraic set S := {x ≤ 0} ∪ {y ≥ 0} ⊂ R2 cannot be
described as a basic semi-algebraic set S = {g = 0, p1 > 0, . . . , pk > 0}. The
germ of signs at the origin

+ +
+ –

provides an obstruction. Note that S is the projection of the algebraic set

{(x + z2)(y− z2) = 0} ⊂ R3.

Motzkin showed [Mo] that given a semi-algebraic set S ⊂ Rn there exists
an algebraic set V ⊂ Rn+1 such that π(V ) = S, where π : Rn+1 → Rn is the
projection onto the first n coordinates. Combining the result of Motzkin and
the theorem of Tarski we have: The family of semi-algebraic sets is the smallest
family of subsets of Euclidean spaces that contains algebraic sets and is closed
under taking projections.

2.2.1. Semi-algebraic maps. Let S ⊂ Rn and T ⊂ Rm be two semi-algebraic
sets. A (non-necessarily continuous) map f : S → T is semi-algebraic if its
graph, that is, the set

Γf := {(x, y) ∈ S× T : y = f(x)} ⊂ Rn+m,

is a semi-algebraic set.

If the semi-algebraic map f : S → T is invertible, its inverse f−1 : T → S is
also semi-algebraic. As a straightforward consequence of Tarski’s theorem we
have the following:

Corollary 2.2.5. Let S ⊂ Rn, T ⊂ Rm and U ⊂ Rp be semi-algebraic sets and
let f : S→ T and g : T → U be semi-algebraic maps.

(i) The composition g ◦ f : S→ U is a semi-algebraic map.

(ii) If A ⊂ S is a semi-algebraic set, then f(A) is a semi-algebraic set.

(iii) If B ⊂ T is a semi-algebraic set, then f−1(B) is a semi-algebraic set.

Let S ⊂ Rn and T ⊂ Rm be semi-algebraic sets. A semi-algebraic map
f : S → T is called a semi-algebraic homeomorphism if it is a homeomorphism
between S and T (with respect to the Euclidean topologies inherited respectively
from Rn and Rm).

2.2.2. Regular functions on semi-algebraic sets. Let S ⊂ Rn be a semi-
algebraic set. The function f : S → R is called a regular function if there exist
polynomials p, q ∈ R[x] such that {q = 0} ∩ S = ∅ and f = p/q. A map
g := (g1, . . . , gm) : S → Rm is called a regular map if its components gi are
regular functions. Note that regular maps are in particular semi-algebraic.

14



2.2. Semi-algebraic sets

2.2.3. Dimension of a semi-algebraic set. The dimension of an algebraic
set V ⊂ Rn is the Krull dimension of the ring R[x]/I(V ) of polynomial functions
on V . Recall that the Krull dimension of the ring R[x]/I(V ) equals the maximal
length of chains of prime ideals p1 ( . . . ( pk of R[x]/I(V ). As R[x]/I(V ) is
a quotient of R[x] its Krull dimension is smaller than or equal to the Krull
dimension of R[x], which is n (see [AM, Ex.7, pag.126]).

Definition 2.2.6. The dimension dim(S) of a semi-algebraic set S ⊂ Rn is the

dimension dim(S
zar

) of its Zariski closure S
zar

.

As the Euclidean topology is finer than the Zariski topology, it follows
dim(S) = dim(Cl(S)). Moreover, if S ⊂ Rn, then dim(S) ≤ n.

We want to compare the dimension of a semi-algebraic set with the dimension
of its image through a semi-algebraic map (see [BCR, Thm.2.8.8]).

Theorem 2.2.7. Let S ⊂ Rn be a semi-algebraic set and let f : S → Rm be a
semi-algebraic map. Then dim(f(S)) ≤ dim(S). In particular, if f is injective,
then dim(f(S)) = dim(S).

We introduce now the notion of local dimension.

Definition 2.2.8. Let S ⊂ Rn be a semi-algebraic set and x ∈ S a point. The
local dimension of S at x, denoted by dim(Sx), is the minimum of the dimensions
dim(U), where U is an open semi-algebraic neighbourhood of x in S.

Let U ⊂ S be an open semi-algebraic neighbourhood of x in S such that
dim(Sx) = dim(U). Then, for each open semi-algebraic neighbourhood V ⊂ U
of x in S it holds dim(Sx) = dim(V ). Indeed, as V ⊂ U , it holds V

zar ⊂ U
zar

.
Thus,

dim(Sx) ≤ dim(V ) = dim(V
zar

) ≤ dim(U
zar

) = dim(U) = dim(Sx).

We will say that S is pure dimensional if dim(Sx) = dim(S) for each x ∈ S.
For each k ≤ dim(S) we will indicate with S(k) the set of points of S of dimension
k, that is, the set of points x ∈ S such that dim(Sx) = k.

Examples 2.2.9. (i) Whitney’s umbrella W := {x2 − zy2 = 0} ⊂ R3 is a
connected and irreducible algebraic set but not pure dimensional (see Figure
2.2). Indeed, at each point p on the z-axis with z < 0 its local dimension is
dim(Wp) = 1, because

W ∩ {z < 0} = {x = 0, y = 0, z < 0}.

(ii) Cartan’s umbrella {z(x2+y2)−x3 = 0} ⊂ R3 is connected and irreducible
and it has a ‘stick’ (the line {x = 0, y = 0}) of dimension 1 (see Figure 2.2).

(iii) The surface X := {x2(1− z2)− x4 − y2 = 0} ⊂ R3 is not bounded but
the set X(2) of points where the local dimension is 2 is bounded.

The set S(d) of points of dimension d of a semi-algebraic set S is a semi-
algebraic subset of S (see [Fe2, §3.1]). As S(0) is a finite set, it is always compact.
If 0 < d < dim(S), in general S(d) is not closed, but if d = dim(S) the set S(d) of
points of maximal dimension is a closed semi-algebraic subset of S (see [BCR,

Prop.2.8.12]). More generally if 0 ≤ e ≤ d, then
⋃d
k=e S

(k) is a closed subset of S
because the local dimension of a semi-algebraic set is an upper semi-continuous
function.
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2. Preliminaries

Figure 2.2: Whitney’s (left) and Cartan’s (right) umbrellas.

2.3 Affine Nash manifolds

In this section we will recall the definition of (affine) Nash manifold and of Nash
maps between Nash manifolds. We also present (without proofs) some results
of approximation for differentiable semi-algebraic functions by Nash functions
that we need in the subsequent chapters. As main references we have used [Sh]
and [BFR].

2.3.1. Differentiable semi-algebraic functions. Let U ⊂ Rn be an open
semi-algebraic set. A function f : U → R is a Nash function if it is semi-
algebraic and smooth. In fact, by [BCR, Prop.8.1.8] f is a Nash function if
and only if it is analytic and algebraic over R[x1, . . . , xn], that is, there exists a
polynomial P ∈ R[x1, . . . , xn, t] \ {0} such that P (x, f(x)) = 0 for each x ∈ U .
We will deepen on this in Section 2.3.3. The ring of Nash functions on U is
denoted by N (U).

Given a semi-algebraic set S ⊂ Rn and 1 ≤ ν ≤ ∞ we say that the function
f : S → R is semi-algebraic of class Cν if there exist an open semi-algebraic
neighbourhood U of S and a semi-algebraic function F : U → R of class Cν such
that F |S = f . The ring of semi-algebraic functions of class Cν on S is denoted
with Sν(S). If ν = ∞, we call the C∞ semi-algebraic functions on S Nash
functions on S and we write N (S) := S∞(S). We denote the ring of continuous
semi-algebraic functions on S with S0(S).

Let S ⊂ Rn and T ⊂ Rm be semi-algebraic sets. A map

f := (f1, . . . , fm) : S→ T

is an Sν map if each of its components fi ∈ Sν(S). We indicate with the symbol
Sν(S,T) the set of Sν maps f : S → T. An Sν map f ∈ Sν(S,T) is an Sν
diffeomorphism if it is invertible and the inverse f−1 ∈ Sν(T, S).

Remark 2.3.1. If the semi-algebraic set S is compact, the definition of Sν func-
tion and an alternative definition in Whitney’s style coincide. Indeed, if a func-
tion f : S→ R is of class Sν according to our definition, it is clear that it admits
local Sν extensions at any point of S. Conversely, given x ∈ S let Ux ⊂ Rn be an
open neighbourhood of x (non necessarily semi-algebraic) such that there exists
an Sν local extension fx of f , that is, an Sν function fx : Ux → R such that
fx|Ux∩S = f |Ux∩S. For every x ∈ S let Vx be an open ball centred at x such that
Vx ⊂ Ux. The set {Vx∩S}x∈S is an open covering of the compact set S, so there
exists a finite sub-covering {Vx1 ∩ S, . . . , Vxk ∩ S}. Let {ρi}ki=1 ∪ {ρ} be a semi-
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2.3. Affine Nash manifolds

algebraic partition of unit of class Sν subordinated to the open semi-algebraic
covering {Vxi}ki=1∪{Rn \S} of Rn (see [Sh, §II.2]). The set V := Vx1

∪ · · ·∪Vxk
is an open semi-algebraic neighbourhood of S. Thus, the function

F := ρx1
fx1

+ · · ·+ ρxkfxk : V → R,

is a semi-algebraic extension of f of class Cν .

In the Nash setting the situation is different. Here local extendibility does
not guarantee the existence of a global extension, even if we are dealing with
compact semi-algebraic sets.

Example 2.3.2 ([BFG, Ex.5.10(i)]). Let S ⊂ R2 be the compact semi-algebraic
set

S := {(x− 2)2 + y2 ≤ 1} ∪ {(x + 2)2 + y2 ≤ 1} ∪ {y = 0, −1 ≤ x ≤ 1}

and define f : S → R as f(x, y) := y
√
x2 + y2. As f is the restriction to S of

a Nash function on R2 \ {(0, 0)} and f ≡ 0 on {y = 0, −1 ≤ x ≤ 1}, it is clear
that f admits local Nash extensions at any point of S. By the identity principle
f does not admit a Nash extension to an open semi-algebraic neighbourhood of
S in R2.

•

Figure 2.3: The semi-algebraic set S.

2.3.2. Nash manifolds. Let S ⊂ Rn and T ⊂ Rm be semi-algebraic sets. A
map f := (f1, . . . , fm) : S → Rm is a Nash map if each of its components
fi ∈ N (S). We will indicate with the symbol N (S,T) the set of Nash maps
f : S→ T. A Nash map f ∈ N (S,T) is a Nash diffeomorphism if it is invertible
and the inverse f−1 ∈ N (T, S).

Definition 2.3.3. A semi-algebraic set M ⊂ Rn is called an (affine) Nash
manifold of dimension d if it is a smooth submanifold of dimension d of (an
open subset of) Rn.

Let Bd(0, ε) ⊂ Rd be the open ball of center the origin and radius ε > 0.
The map ψ : Bd(0, ε)→ Rd defined as

ψ(x) :=
1√

ε2 − ‖x‖2
,

is a Nash diffeomorphism. Let M ⊂ Rn be a Nash manifold, let p ∈M and let
π : M → TpM be the projection into the tangent space TpM of M at p. As
π is a local Nash diffeomorphism (because Nash functions satisfy the implicit
function theorem [BCR, Cor.2.9.8]) and composing with ψ if needed, it holds:
A semi-algebraic set M ⊂ Rn is a Nash manifold of dimension d if and only if
every point p ∈ M has an open semi-algebraic neighbourhood U equipped with
a Nash diffeomorphism u : U → Rd that maps p to the origin. Even more, the
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Nash manifold M can be covered by finitely many open semi-algebraic sets of
this type [FGR, Lem.2.2].

The same argument works for Nash submanifolds of a Nash manifold. Let
N ⊂ M be a Nash submanifold of dimension e, then: For each point p ∈ N
there exists an open semi-algebraic neighbourhood U of p in M equipped with
a Nash diffeomorphism u : U → Rd that maps p to the origin and such that
U ∩N = {u1 = 0, . . . , ud−e = 0}.

A Nash vector bundle over M is a vector bundle (E, θ,M) such that E is
an (affine) Nash manifold and the projection θ : E → M is a Nash map. Nash
submanifolds admits Nash tubular neighbourhoods in the ambient Nash manifold
where they are embedded (see [BCR, Cor.8.9.5] and [Sh, II.6.2]).

Theorem 2.3.4 (Nash tubular neighbourhood). There exist a Nash subbundle
(E, θ,N) of the trivial Nash bundle (N×Rn, η,N), a strictly positive Nash func-
tion δ on N and a Nash diffeomorphism ϕ from a semi-algebraic neighbourhood
V of N in M onto

Eδ := {(x, y) ∈ E : ‖y‖ < δ(x)},
such that ϕ|N = (idN , 0). In addition, if M is an open subset of Rn we may
assume dist(x,N) = ‖x− θ(x)‖ for every x ∈ Eδ.

2.3.3. Algebraicity of Nash functions. Let S ⊂ Rn be a non-empty semi-
algebraic set and f : S → R a semi-algebraic function. Let Γf ⊂ Rn+1 be the

graph of f and let X := Γ
zar

f . The ideal I(X) ⊂ R[x, t] := R[x1, . . . , xn, t]
is finitely generated and let h1, . . . , hs ∈ I(X) be generators. The polynomial
h := h2

1 + · · · + h2
s is not identically zero on S × R and satisfies h(x, f(x)) = 0

for each x ∈ S. In particular: Nash functions are algebraic over the ring of
polynomials R[x]. It holds the following characterization for Nash functions
(see [BCR, Prop.8.1.8]):

Proposition 2.3.5. Let U ⊂ Rn be an open semi-algebraic set. A function
f : U → R is Nash if and only if it is analytic and algebraic on U .

As a consequence of this result and the existence of Nash tubular neighbour-
hoods, we deduce: An analytic function f : U → R defined on an open connected
semi-algebraic subset U of a connected Nash manifold M ⊂ Rn is Nash if and
only if there exists a non-zero polynomial h ∈ R[x, t] such that h(x, f(x)) = 0
for all x ∈ U .

2.3.4. Approximation of semi-algebraic maps. Let M ⊂ Rm be a Nash
manifold of dimension d. We equip Sν with the Sν semi-algebraic Whitney’s
topology (Sν topology in short) [Sh, II.1]. If ν ≥ 1, let ξ1, . . . , ξs be semi-
algebraic tangent fields on M that span the tangent bundle of M . For every
strictly positive continuous semi-algebraic function ε : M → R we denote by Uε
the set of all functions g ∈ Sν(M) such that{
|g| < ε if ν = 0,

|g| < ε and |ξi1 · · · ξi`(g)| < ε for 1 ≤ i1, . . . , i` ≤ s, 1 ≤ ` ≤ ν if ν ≥ 1.

These sets Uε form a basis of neighbourhoods of the zero function for a topology
in Sν(M) (recall that Sν(M) is a topological ring), which does not depend on
the choice of the tangent fields if r ≥ 1.
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Note that the obvious inclusions Sν(M) ⊂ Sµ(M), ν > µ are continuous.
Moreover, as semi-algebraic smooth functions are Nash on M (by the existence
of tubular neighbourhoods), we have N (M) =

⋂
ν Sν(M). The first important

result is that the inclusion N (M) ⊂ Sν(M) is dense.

Fact 2.3.6 ([Sh, II.4.1]). Every Sν function on M can be approximated in the
Sν topology by Nash functions.

Let N ⊂ Rn be a Nash manifold. Recall that Sν(M,N) is the space of
semi-algebraic maps f : M → N of class Cν . We consider in Sν(M,N) the
subspace topology given by the canonical inclusion in the following product
space endowed with the product topology [Sh, Rmk.II.1.3]:

Sν(M,N) ⊂ Sν(M,Rn) = Sν(M,R)× · · · × Sν(M,R), f 7→ (f1, . . . , fn).

Roughly speaking, g is close to f when its components gk are close to the
components fk of f .

Fix 0 ≤ ν ≤ +∞. Let M ⊂ Rm, M ′ ⊂ Rn and M ′′ ⊂ Rk be Nash manifolds
and let h : M ′ →M ′′ be an Sν map. Composing (on the left) induces the map

h∗ : Sν(M,M ′)→ Sν(M,M ′′), f 7→ h ◦ f.

Fact 2.3.7 ([Sh, II.1.5]). The map h∗ is continuous with respect to the Sν
topologies.

We have an analogous situation composing on the right. Composing (on the
right) induces the map

h∗ : Sν(M ′′,M)→ Sν(M ′,M), f 7→ f ◦ h.

This map is non-necessarily continuous, but if h : M ′ → M ′′ is proper (this
happens for instance when M ′ is compact) it holds:

Fact 2.3.8 ([Sh, II.1.5]). If h : M ′ → M ′′ is proper, then the map h∗ is
continuous with respect to the Sν topologies.

Another important result is that Sν diffeomorphisms between Nash mani-
folds constitute an open set in the Sν topology.

Fact 2.3.9 ([Sh, II.1.7]). Let h : M → N be an Sν diffeomorphism of Nash
manifolds. If an Sν map g : M → N is Sν close enough to h, then g is also an
Sν diffeomorphism, and g−1 is Sν close to h−1.

From this and the existence of Nash tubular neighbourhoods we deduce that
for all ν ≥ 1: Every Sν diffeomorphism f : M → N can be approximated by
Nash diffeomorphisms. Thus, S1 and Nash classifications coincide for Nash
manifolds.

The previous topologies can be extended to the set Sν(S,T) of Sν semi-
algebraic maps between two semi-algebraic sets S and T if S ⊂M is closed (see
[BFR, §2.D]). It holds that the restriction map is continuous.
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Fact 2.3.10 ([BFR, §2.D]). Let M ⊂ Rn be a Nash manifold and let S′ ⊂ S ⊂M
be closed semi-algebraic sets. For any T ⊂ Rm the restriction map

Sν(S,T)→ Sν(S′,T), f 7→ f |S
is continuous with respect to the Sν topologies.

We end this section recalling a result on absolute approximation for maps
into Nash manifolds.

Fact 2.3.11 ([BFR, Prop.2.D.3]). Let M ⊂ Rm and N ⊂ Rn be Nash manifolds
and let S ⊂ M be a closed semi-algebraic set. Every Sν map f : S→ N can be
Sν approximated by Nash maps.

2.4 Back to semi-algebraic sets

In this section we collect some results and definitions (Hironaka’s desingulariza-
tion, regular points of a semi-algebraic set, irreducible components etc.) that
we will use freely in the rest of this dissertation. We include these results here
(without proofs) in order to keep this work as much self-contained as possible.

2.4.1. Regular points and smooth points. Let Z ⊂ Cn be a complex al-
gebraic set and let IC(Z) be the ideal of all polynomials F ∈ C[x] such that
F (z) = 0 for each z ∈ Z. A point z ∈ Z is regular if the localization of the
polynomial ring C[x]/IC(Z) at the maximal ideal Mz associated to z is a reg-
ular local ring. In this complex setting the Jacobian criterion and Hilbert’s
Nullstellensatz imply that z ∈ Z is regular if and only if there exists an open
neighbourhood U ⊂ Cn of z such that U ∩Z is an analytic manifold. We denote
Reg(Z) the set of regular points of Z and it is an open dense subset of Z. If Z
is irreducible, it is pure dimensional and Reg(Z) is a connected analytic mani-
fold. In case Z is not irreducible, then the connected components of Reg(Z) are
finitely many analytic manifolds (possibly of different dimensions). We denote
Sing(Z) := Z \ Reg(Z) the set of singular points of Z.

Let X ⊂ Rn be a (real) algebraic set and let IR(X) be the ideal of all
polynomials f ∈ R[x] such that f(x) = 0 for each x ∈ X. A point x ∈ X is
regular if the localization of R[x]/IR(X) at the maximal ideal mx associated to
x is a regular local ring [BCR, §3.3].

Let X̃ ⊂ Cn be the complex algebraic set that is the zero set of the ex-
tended ideal IR(X)C[x]. We call X̃ the complexification of X. The ideal IC(X̃)

coincides with the tensorized ideal IR(X) ⊗R C, so X̃ is the smallest complex
algebraic subset of Cn that contains X and

C[x]/IC(X̃) ∼= (R[x]/IR(X))⊗R C.

The localization (R[x]/IR(X))mx is a regular local ring if and only if so is its
complexification

(R[x]/IR(X))mx ⊗R C ∼= (C[x]/IC(X̃))Mx
.

Thus, the set of regular points of X is Reg(X) = Reg(X̃) ∩ X and its set of

singular points is Sing(X) := X \ Reg(X) = Sing(X̃) ∩ X. The open semi-
algebraic subset Reg(X) of X is a finite union of Nash manifolds (possibly of
different dimensions).
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Let S ⊂ Rn be a semi-algebraic set of dimension d. We define

Reg(S) := IntReg(S
zar

)(S \ Sing(S
zar

)) and Sing(S) := S \ Reg(S).

The open subset Reg(S) of S
zar

is a finite union of Nash manifolds (possibly
of different dimensions) and Sing(S) is a semi-algebraic set of dimension < d,
which is closed in S. The set of points of dimension k of Reg(S) is either the
empty-set or a Nash manifold of dimension k for each k = 0, 1, . . . , d. If S is
pure dimensional, Reg(S) is a dense subset of S.

A point x ∈ S is smooth if there exists an open neighbourhood U ⊂ Rn of x
such that U ∩S is a Nash manifold. It holds that each regular point is a smooth
point, but the converse is not always true even if S = X is a real algebraic set,
as shown in the following examples.

Examples 2.4.1. (i) [BCR, Ex.3.3.12(b)] Consider the irreducible curve X ⊂ R2

given by the equation y3 + 2x2y − x4 = 0 (see Figure 2.4). The set of regular
points of X is X \ {0}. As the germ X0 = {x2− y(1 +

√
1 + y) = 0}0, it follows

by the implicit function theorem for Nash functions (see [BCR, Cor.2.9.8]) that
the origin is a smooth point of X.

Figure 2.4: The curve y3 + 2x2y− x4 = 0.

(ii) [Fe4, Ex.2.1] Consider the algebraic set X := {(x2+zy2)x−y4 = 0} ⊂ R3.
The set of regular points of X is X \ {x = 0, y = 0}, whereas the set of smooth
points of X is X \ {x = 0, y = 0, z ≤ 0} (see Figure 2.5).

To prove that the points of the open half-line {x = 0, y = 0, z < 0} are
non-smooth we proceed by contradiction. Pick a point

p := (0, 0,−a2) ∈ {x = 0, y = 0, z < 0}

and assume that it is smooth. As the line {x = 0, y = 0} ⊂ X, the vector (0, 0, 1)
would be tangent to X at p, so the plane z = −a2 would be transversal to X at
p. Thus, the intersection X ∩ {z = −a2} should be a curve that is smooth at p,
but this is a contradiction because such curve {(x2− (ay)2)x−y4 = 0, z = −a2}
has three tangent lines at p, which are those lines of equations {x − ay = 0},
{x + ay = 0} and {x = 0} inside the plane {z = −a2}. The origin cannot be a
smooth point of X because the set of smooth points of X is an open subset of X.
Consequently, the set of non-smooth points of X contains the closed half-line
{x = 0, y = 0, z ≤ 0}.

To finish we prove that the points of the open half-line {x = 0, y = 0, z > 0}
are smooth. To that end, observe that the map

ϕ : {(t, s) ∈ R2 : t > 0} → R3, (s, t) 7→ ((s2 + t2)s2, (s2 + t2)s, t2)

is a Nash embedding whose image is X ∩ {z > 0}.
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Figure 2.5: X = {(x2 + zy2)x− y4 = 0} (figure borrowed from [Fe4, Fig.1.4]).

The set Sth(S) of smooth points of a semi-algebraic set S ⊂ Rn is by [St] a
semi-algebraic subset of Rn (and consequently a union of Nash submanifolds of
Rn possibly of different dimension), which contains Reg(S) (maybe as a proper
subset as it happens in Example 2.4.1), and it is open in S. The set of points of
dimension k of Sth(S) is either the empty-set or a Nash manifold of dimension k
for each k = 0, 1, . . . , d. In particular, if S is pure dimensional Sth(S) is a Nash
submanifold of Rn. If X is an algebraic set, Sing(X) is always an algebraic
subset of X whereas the set X \Sth(X) of non-smooth points is in general only
a semi-algebraic subset of X (see Example 2.4.1(ii)).

2.4.2. Desingularization of real algebraic sets. Let X ⊂ Y ⊂ Rn be alge-
braic sets such that Y is non-singular and has dimension d. Recall that X is a
normal-crossings divisor of Y if for each point x ∈ X there exists a regular sys-
tem of parameters x1, . . . , xd for Y at x such that X is given on an open Zariski
neighbourhood of x in Y by the equation x1 · · · xk = 0 for some k ≤ d. In par-
ticular, the irreducible components of X are non-singular and have codimension
1 in Y .

Hironaka’s desingularization results [Hi1] are powerful tools that we will use
fruitfully in the following sections. We recall here the results we need (see also
Kollár’s lecture notes [Ko]).

Theorem 2.4.2 (Desingularization). Let X ⊂ Rn be an algebraic set. Then,
there exist a non-singular algebraic set X ′ ⊂ Rm and a proper polynomial map
f : X ′ → X such that

f |X′\f−1(Sing(X)) : X ′ \ f−1(Sing(X))→ X \ SingX

is a diffeomorphism whose inverse map is a regular map.

Remark 2.4.3. If X is pure dimensional, X \ SingX is dense in X. As f is
proper, it is surjective.

Theorem 2.4.4 (Embedded desingularization). Let X ⊂ Y ⊂ Rn be algebraic
sets such that Y is non-singular. Then, there exists a non-singular algebraic set
Y ′ ⊂ Rm and a proper surjective polynomial map g : Y ′ → Y such that g−1(X)
is a normal-crossings divisor of Y ′ and the restriction

g|Y ′\g−1(X) : Y ′ \ g−1(X)→ Y \X

is a diffeomorphism whose inverse map is a regular map.
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2.4.3. Irreducible components of a semi-algebraic set. In classical liter-

ature a semi-algebraic set S ⊂ Rn is called irreducible if its Zariski closure S
zar

is an irreducible algebraic set (see for instance [GV]). With this definition the
semi-algebraic sets

S1 := {y2 − x2(x + 1) = 0} \ {(−1, 0)}, S2 := {y2 − x2 = 1}

are irreducible (see Figure 2.6). The feeling is that they ‘should be reducible’:
S1 consists of two analytic branches and S2 is not connected.

•◦

Figure 2.6: The semi-algebraic sets S1 (left) and S2 (right).

In [FG3] Fernando and Gamboa propose the following definition of irreducibility
for semi-algebraic sets.

Definition 2.4.5. A semi-algebraic set S ⊂ Rn is irreducible if its ring of Nash
functions N (S) is an integral domain.

One deduce straightforwardly the following facts concerning irreducibility.

(i) Irreducible semi-algebraic sets are connected, because the ring of Nash
functions of a disconnected semi-algebraic set is the direct sum of the
rings of Nash functions of its connected components.

(ii) The Zariski closure of an irreducible semi-algebraic set is irreducible as an
algebraic set.

(iii) Let S,T ⊂ Rn be semi-algebraic sets. If T ⊂ S ⊂ Cl(T) and T is irreducible,
then S is irreducible.

Example 2.4.6. The semi-algebraic set S1 := {y2 − x2(x+ 1) = 0} \ {(−1, 0)} is
reducible (see Figure 2.6). Indeed, the Nash functions f1, f2 : S1 → R defined
as

f1(x, y) = y + x
√
x+ 1, f2(x, y) = y − x

√
x+ 1

are not identically zero on S1, but f1f2 ≡ 0 on S1.

We introduce now the irreducible components of a semi-algebraic set.

Definition 2.4.7. A semi-algebraic set S ⊂ Rn admits a decomposition into
irreducible components if there exist semi-algebraic sets S1, . . . , Sr ⊂ S such
that:

(i) Each Si is irreducible.
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(ii) If T ⊂ S is an irreducible semi-algebraic set that contains Si, then Si = T.

(iii) Si 6⊂
⋃
j 6=i Sj .

(iv) S =
⋃r
i=1 Si.

In [FG3, Thm.4.3, Rmk.4.4] Fernando and Gamboa present the following
result concerning the irreducible components of a semi-algebraic set.

Theorem 2.4.8. Let S ⊂ Rn be a semi-algebraic set. Then, S admits a de-
composition into irreducible components and this decomposition is unique. In
addition, the irreducible components of a semi-algebraic set are closed in S.

Remark 2.4.9. If S ⊂ Rn is a semi-algebraic set and {Si}ri=1 is the family of its
irreducible components, then dim(Si ∩ Sj) < min{dim(Si),dim(Sj)} if i 6= j.

For each i = 1, . . . , r let fi : S → R be a Nash function on S such that
Si = {fi = 0} (see [FG3, Lem.2.4, Thm. 4.3]). As Si is irreducible, we deduce
by [FG3, Lem.3.6] that dim(Sj ∩ Si) = dim({fj = 0} ∩ Si) < dim(Si) if i 6= j,
because otherwise Si ⊂ {fj = 0} = Sj .

2.5 Affine Nash manifolds with corners

In this section we introduce the definition of Nash sets and of Nash manifold with
(divisorial) corners. We collect here some results (without proofs) concerning
Nash manifolds with corners and Nash normal-crossings that we will use later
in this dissertation. The main reference is [FGR].

2.5.1. Nash subsets of a Nash manifold. Let M ⊂ Rn be a Nash manifold.

Definition 2.5.1. A Nash subset X of M is a set of the form

X = ZM (I) := {x ∈M : ∀f ∈ I f(x) = 0} ⊂M,

where I ⊂ N (M) is an ideal of the ring of global Nash functions on M .

As the ring N (M) is Noetherian (see [BCR, 8.7.18]), the ideal I is generated
by finitely many global Nash functions f1, . . . , fr : M → R. Thus, the Nash set
X is the zero set of the functions f1, . . . , fr and in fact X is the zero set of the
single global Nash function f := f2

1 + · · ·+ f2
r .

Of course every Nash set is a semi-algebraic set. A first example of Nash
subsets are (closed) Nash submanifolds of M .

Fact 2.5.2 ([Sh, II.5.4]). Let N ⊂M be a closed Nash submanifold, then N is
a Nash subset of M .

A Nash subset X ⊂ M is irreducible if whenever X = X1 ∪ X2, where X1

and X2 are Nash subsets of M , then either X = X1 or X = X2. We have
the following algebraic characterization of irreducibility: X is irreducible if and
only if the Nash vanishing ideal I(X) := {f ∈ N (M) : f |X ≡ 0} of X is a
prime ideal of the ring N (M). Indeed, X = X1 ∪X2 with X1, X2 6= X if and
only if there exist f1 ∈ I(X1) and f2 ∈ I(X2) such that f1, f2 /∈ I(X) and
f1f2 ∈ I(X).
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As N (M) is a Noetherian ring, it follows: Nash subsets of M have (unique)
finite decompositions into Nash irreducible components. In [FG3, §3.1] it is
proved that a Nash set is irreducible if and only if it is irreducible as a semi-
algebraic set and in [FG3, §4] it is shown that its decomposition into Nash
irreducible components coincides with its decomposition into semi-algebraic ir-
reducible components.

2.5.2. Nash normal-crossings. We introduce now the notion of Nash normal-
crossings. It has two different aspects - the local one and the global one. We
start with the local notion:

Definition 2.5.3. Let X be a Nash subset of a Nash manifold M ⊂ Rn. We say
that X has only normal-crossings at a point x ∈ X if there exists an open semi-
algebraic neighbourhood U ⊂ M of x equipped with a Nash diffeomorphism
u := (u1, . . . , ud) : U → Rd such that the germ Xx := {u1 · · · ur = 0}x for some
1 ≤ r ≤ d. We say that X has only normal-crossings in V ⊂ M if it has only
normal-crossings at each x ∈ V ∩X.

The following result shows that if X has only normal-crossings in M there
exists a finite number of local charts that cover X and provide a global picture
of its local structure.

Theorem 2.5.4 ([FGR, Thm.1.6]). Let X be a Nash subset of the Nash man-
ifold M ⊂ Rn. Suppose that X has only normal crossings in M . Then, X can
be covered by finitely many open semi-algebraic subsets Ui of M equipped with
Nash diffeomorphisms ui := (ui1, . . . , uid) : Ui → Rd such that

Ui ∩X = {ui1 · · · uiri = 0}.

Next, we have the global version of normal-crossings:

Definition 2.5.5. Let M ⊂ Rn be a Nash manifold. A Nash normal-crossings
divisor of M is a Nash subset X ⊂ M whose irreducible components are non-
singular Nash hypersurfaces X1, . . . , Xp of M in general position. This means
that at every point x ∈ Xi1 ∩· · ·∩Xir with x 6∈ Xi for i 6= ik the tangent spaces
TxXi1 , . . . , TxXir are linearly independent in the tangent space TxM , that is,

dim(TxXi1 ∩ · · · ∩ TxXir ) = dim(TxM)− r.

Let us confront the local notion with the global one. The following example
shows the differences between these two notions.

Example 2.5.6. Consider the irreducible algebraic set (see Figure 2.6)

X := {y2 − x2(x + 1) = 0} ⊂ R2.

(i) X is an irreducible Nash subset of R2. As it is singular at the origin,
it is not a Nash normal-crossings divisor of R2. However, X has only normal-
crossings at all points of R2.

(ii) Y := X\{(−1, 0)} is a Nash subset of the Nash manifold M := {x > −1}.
The Nash irreducible components of Y in M are the non-singular hypersurfaces

Y1 := {(x, y) ∈M : y − x
√
x+ 1 = 0}, Y2 := {(x, y) ∈M : y + x

√
x+ 1 = 0}

which meet transversally at the origin. Thus, Y is a Nash normal-crossings
divisor of the Nash manifold M .
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2.5.3. Nash manifolds with corners. We introduce now the definition of
(Nash) manifold with corners.

Definition 2.5.7. A semi-algebraic set Q ⊂ Rn is an (affine) Nash manifold
with corners of dimension d if for each point y ∈ Q there exist an integer
0 ≤ k ≤ d and an open semi-algebraic neighbourhood U of y in Q equipped
with a Nash diffeomorphism φ : U → {x1 ≥ 0, . . . , xk ≥ 0} ⊂ Rd that maps y to
the origin.

The set of internal points Int(Q) of Q is the set of points x ∈ Q at which Qx
is the germ of a Nash manifold, namely Int(Q) := Sth(Q). The boundary ∂Q of
Q is ∂Q := Q \ Int(Q) = Q \ Sth(Q). Observe that this definition coincide with
the definition of internal points and boundary of Q seen as topological manifold
with boundary.

Remark 2.5.8. In Section 3.5 we will introduce the definition of boundary ∂S for
semi-algebraic sets S ⊂ Rn. The definition of boundary of Nash manifolds with
corners given here does not coincide with the definition of boundary of semi-
algebraic sets given in Section 3.5, if we regard Q as a semi-algebraic set (see for
instance Example 2.4.1(i)). This (small) abuse of notation will not create any
ambiguity in the subsequent sections, as the situation will be always clear from
the context.

A Nash manifold with corners Q ⊂ Rn is locally closed, hence Q is open in
its closure Cl(Q). Thus, the set C := Cl(Q) \Q is a closed semi-algebraic subset
of Rn. Consequently, Q is a closed Nash submanifold with corners of the Nash
manifold Rn \ C. In [FGR] Fernando, Gamboa and Ruiz showed that Q is a
closed subset of an affine Nash manifold of the same dimension.

Theorem 2.5.9 ([FGR, Thm.1.11]). Let Q ⊂ Rn be a Nash manifold with
corners of dimension d. There exists a d-dimensional Nash manifold M ⊂ Rn
that contains Q as a closed subset and satisfies:

(i) The Nash closure Y of ∂Q in M has only Nash normal-crossings in M
and Q ∩ Y = ∂Q.

(ii) For every x ∈ ∂Q the analytic closure of the germ ∂Qx is Yx.

(iii) M can be covered by finitely many open semi-algebraic subsets Ui, for
i = 1, . . . , r, equipped with Nash diffeomorphisms

ui := (ui1, . . . , uid) : Ui → Rd

such that:{
Ui ⊂ Int(Q) or Ui ∩ Q = ∅, if Ui does not meet ∂Q,

Ui ∩ Q = {ui1 ≥ 0, . . . , uiki ≥ 0}, if Ui meets ∂Q (for a suitable ki ≥ 1).

The Nash manifold M is called a Nash envelope of Q. In general it is not
guaranteed that the Nash closure Y of ∂Q in M is a Nash normal-crossings
divisor of M as shown in the following example.
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Example 2.5.10. The teardrop is the Nash manifold with corners (see Figure
2.7) defined as

Q := {x ≥ 0, y2 ≤ x2 − x4} ⊂ R2.

Given any open semi-algebraic neighbourhood M of Q in R2 the Nash closure
of ∂Q in M is not a Nash normal-crossings divisor.

Figure 2.7: The teardrop.

We define now Nash manifolds with divisorial corners. For the rest of this
dissertation, unless otherwise stated: All the Nash manifolds with corners will
be Nash manifolds with divisorial corners.

Definition 2.5.11. A Nash manifold with corners Q ⊂ Rn is a manifold with
divisorial corners if there exists a Nash envelope M ⊂ Rn such that the Nash
closure of ∂Q in M is a Nash normal-crossings divisor.

A facet of a Nash manifold with corners Q ⊂ Rn is the (topological) closure in
Q of a connected component of Sth(∂Q). Recall that Sth(∂Q) is the set of points
x ∈ ∂Q such that the germ ∂Qx is the germ of a Nash manifold (see Section
2.4.1). As ∂Q is semi-algebraic, the facets are semi-algebraic and finitely many.

In [FGR] is shown the following characterization for Nash manifolds with
divisorial corners:

Theorem 2.5.12 ([FGR, Thm.1.12, Cor.6.5]). Let Q ⊂ Rn be a Nash manifold
with corners of dimension d. The following assertions are equivalent:

(i) There exists a Nash envelope M ⊂ Rn where the Nash closure of ∂Q is a
Nash normal crossings divisor.

(ii) Every facet F of Q is contained in a Nash manifold X ⊂ Rn of dimension
d− 1.

(iii) The number of facets of Q that contain every given point x ∈ ∂Q coincides
with the number of connected components of the germ Sth(∂Q)x.

(iv) All the facets of Q are Nash manifold with divisorial corners.

If that is the case, the Nash manifold M in (i) can be chosen such that the Nash
closure in M of every facet F of Q meets Q exactly along F.

Note that properties (iii) and (iv) are intrinsic properties of Q and do not
depend on the Nash envelope M .
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Chapter 3

Nash images of closed balls

In [Fe4] Fernando completely characterised the Nash images of Euclidean spaces.
He proved the following theorem:

Theorem 3.1 (Nash images, [Fe4, Thm.1.4]). Let S ⊂ Rm be a semi-algebraic
set of dimension d. The following assertions are equivalent:

(i) S is a Nash image of Rd.

(ii) S is connected by Nash paths.

(iii) S is connected by analytic paths.

(iv) S is pure dimensional and there exists a Nash path α : [0, 1] → S whose
image meets all the connected components of the set of regular points of S.

(v) S is pure dimensional and there exists an analytic path α : [0, 1]→ S whose
image meets all the connected components of the set of regular points of S.

(vi) S is well-welded.

The concept of well-welded semi-algebraic set will be recalled in Section 3.4.
Let Bn := {x ∈ Rn : ‖x‖2 ≤ 1} be the unit closed ball. In this chapter we
want to characterise the Nash images of the closed balls. That is to determine
whether a given semi-algebraic set S ⊂ Rm is a Nash image of a closed ball Bn
or not. We will prove the following:

Theorem 3.2 (Compact Nash images). Let S ⊂ Rm be a d-dimensional compact
semi-algebraic set. The following assertions are equivalent:

(i) There exists a Nash map f : Rd → Rm such that f(Bd) = S.

(ii) S is connected by Nash paths.

(iii) S is connected by analytic paths.

(iv) S is pure dimensional and there exists a Nash path α : [0, 1] → S whose
image meets all the connected components of the set of regular points of S.
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(v) S is pure dimensional and there exists an analytic path α : [0, 1]→ S whose
image meets all the connected components of the set of regular points of S.

(vi) S is well-welded.

Note that this theorem furnishes not only a characterization of the Nash
images of the closed balls, but allows us to represent the desired semi-algebraic
set as Nash image of the closed ball of smallest possible dimension. In fact, if
S ⊂ Rm is a semi-algebraic set of dimension d that is a Nash image of the closed
ball Bn, by [BCR, Thm.2.8.8], one has d ≤ n. Thus, by Theorem 3.2 S is a
Nash image of the closed ball Bd of dimension d, which is the smallest possible
one.

3.1 Alternative compact models

The purpose of this section is to present simple alternative compact models to
represent Nash images. We want to analyse some relationships between the
models we will work with in the following sections. Most of the results of this
section are borrowed from [FU6], where Fernando and Ueno found polynomial
and regular relationships between the following compact models:

� the standard sphere Sd := {x ∈ Rd+1 : ‖x‖2 = 1},

� the unit closed ball Bd := {x ∈ Rd : ‖x‖2 ≤ 1},

� the cylinder Cd := Bd−1 × [−1, 1],

� the hypercube Qd := [−1, 1]d,

� the standard simplex

∆d := {x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0, x1 + . . .+ xd ≤ 1},

� the simplicial prism ∆d−1 × [−1, 1].

We will include the proofs of their results in order to keep this work as much
self-contained as possible.

Figure 3.1: Alternative compact models.

Proposition 3.1.1. The unit closed ball Bd is a polynomial image of the stan-
dard sphere Sd.

Proof. The proof is straightforward. In fact, it is sufficient to consider the projec-
tion Rd+1 → Rd, (x1, . . . , xd+1) 7→ (x1, . . . , xd) onto the first d coordinates.
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Proposition 3.1.2 (Cylinder, [FU6, Lem.2.1]). The d-dimensional cylinder
Cd := Bd−1 × [−1, 1] is a polynomial image of the closed ball Bd.

Proof. Define first the polynomials g(t) := t(3−4t2) and h(t) :=
√

3
(
1− 4

9t
2
)
.

Denote x := (x1, . . . , xd), x
′ := (x1, . . . , xd−1) and define the polynomial maps

G : Rd → Rd, x := (x′, xd) 7→ (x′, g(xd)),

H : Rd → Rd, x := (x′, xd) 7→ (h(‖x′‖)x′, xd).

We claim: G(Bd) ⊂ Cd. Define, for each x′ ∈ Bd−1,

Ix′ := {x′} ×
{
x2
d ≤ 1− ‖x′‖2

}
and observe that

G(Bd) =
⋃

x′∈Bd−1

G(Ix′) =
⋃

x′∈Bd−1

{x′} × g
({

x2
d ≤ 1− ‖x′‖2

})
.

We distinguish two cases:

(i) If ‖x′‖2 ≤ 3
4 , then |xd| ≤ 1

2 . The polynomial function g satisfies (see
Figure 3.2)

g

([
−1

2
,

1

2

])
= g([−1, 1]) = [−1, 1].

As {x′} ×
[
− 1

2 ,
1
2

]
⊂ Ix′ ⊂ {x′} × [−1, 1], we have G(Ix′) = {x′} × [−1, 1].

0.5-0.5 1-1

1

-1

•

• •

•

Figure 3.2: Graph of the polynomial function g.

(ii) If 3
4 ≤ ‖x

′‖2 ≤ 1, then Ix′ ⊂ {x′} ×
[
− 1

2 ,
1
2

]
. Define the polynomial

function (see Figure 3.3)

g∗(t) := g
(√

1− t2
)2

= (1− t2)(4t2 − 1)2.

and notice that g∗([0, 1]) = [0, 1]. As g is odd and strictly increasing on[
− 1

2 ,
1
2

]
, we have

G(Ix′) = {x′} × {x2
d ≤ g∗(‖x′‖)}

and the claim follows.
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Note that in the proof of the claim we have also obtained the following equality

G(Bd) =

{
‖x′‖2 ≤ 3

4
, |xd| ≤ 1

}
∪
{

3

4
≤ ‖x′‖2 ≤ 1, x2

d ≤ g∗(‖x′‖)
}
. (3.1.1)

Now we show that H(Cd) ⊂ Cd. Define the polynomial function h∗ := th (see
Figure 3.3) and observe that h∗([0, 1]) = [0, 1]. Thus, fixed a point (x′, xd) ∈ Cd,
since ‖x′‖ ≤ 1, we deduce ‖h(x′)x′‖ = |h∗(‖x′‖)| ≤ 1, so H(x′, xd) ∈ Cd.

0.5

1

1

•

0.5

1

1 1.5

• •

Figure 3.3: Graphs of the polynomial functions g∗ (left) and h∗ (right).

If we prove the equality H
({
‖x′‖2 ≤ 3

4 , |xd| ≤ 1
})

= Cd, the result follows.

In fact using (3.1.1) and the fact that both G(Bd), H(Cd) ⊂ Cd, we obtain

H(G(Bd)) = Cd.

To that end, note first that h∗ has a global maximum at t =
√

3
2 on [0, 1] and

verifies h∗(0) = 0 and h∗(
√

3
2 ) = 1. Fix a point x′ ∈ ∂Bd−1 and observe that

H

({
λx′ : λ ∈

[
0,

√
3

2

]}
× [−1, 1]

)

=

{
h∗(λ)x′ : λ ∈

[
0,

√
3

2

]}
× [−1, 1] = {µx′ : µ ∈ [0, 1]} × [−1, 1],

so H
({
‖x′‖2 ≤ 3

4 , |xd| ≤ 1
})

= Cd, as required.

Lemma 3.1.3 (Standard simplex, [FU6, Lem.2.5]). The d-dimensional simplex
∆d is a polynomial image of the closed ball Bd.

Proof. The polynomial map f : Rd → Rd, (x1, . . . , xd) 7→ (x2
1, . . . , x

2
d) satisfies

f(Bd) = ∆d.

Corollary 3.1.4 (Simplicial prism, [FU6, Cor.2.8]). The d-dimensional simpli-
cial prism ∆d−1 × [−1, 1] is a polynomial image of the closed ball Bd.

Proof. By Lemma 3.1.3 there exists a polynomial map f1 : Rd−1 → Rd−1 such
that f1(Bd−1) = ∆d−1. By Proposition 3.1.2 there exists a polynomial map
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3.1. Alternative compact models

f0 : Rd → Rd such that f0(Bd) = Bd−1 × [−1, 1]. If we consider the polynomial
map f := (f1, xd) ◦ f0 : Rd → Rd, it satisfies

f(Bd) = (f1, xd)(Bd−1 × [−1, 1]) = ∆d−1 × [−1, 1],

as required.

Corollary 3.1.5 (Hypercube, [FU6, Cor.2.9]). The hypercube Qd := [−1, 1]d is
a polynomial image of the closed ball Bd.

Proof. We proceed by induction on the dimension d ≥ 1. For d = 1 it holds
B1 = [−1, 1] = Q1. By induction hypothesis there exists a polynomial map
f1 : Rd−1 → Rd−1 such that f1(Bd−1) = Qd−1. By Proposition 3.1.2 there
exists a polynomial map f0 : Rd → Rd such that f0(Bd) = Bd−1× [−1, 1]. Thus
the polynomial map f := (f1, xd) ◦ f0 : Rd → Rd satisfies

f(Bd) = (f1, xd)(Bd−1 × [−1, 1]) = Qd−1 × [−1, 1] = Qd,

as required.

Proposition 3.1.6 ([FU6, Lem.2.10]). The d-dimensional closed ball Bd is a
polynomial image of the d-dimensional hypercube Qd := [−1, 1]d.

Proof. If d = 1 we have B1 = Q1 = [−1, 1], so we assume d ≥ 2. Consider the
non-negative univariate polynomial

h(t) := t2 (t− d)2(d−1)

(d− 1)2(d−1)
∈ R[t],

and observe that h(0) = h(d) = 0, whereas h(1) = 1. The derivative

h′(t) =
2dt(t− d)2(d−1)−1

(d− 1)2(d−1)
(t− 1)

is positive on (0, 1) and negative on (1, d). Thus, 1 is a global maximum of h
on the interval [0, d], so 0 ≤ h(t) ≤ 1 on [0, d].

Recall that Bd ⊂ Qd ⊂ Bd(0,
√
d) and consider the polynomial map

f : Rd → Rd, x 7→ h(‖x‖2)x.

Observe that f(Bd) = f(Bd(0,
√
d)) = Bd, so f(Qd) = Bd, as required.

Lemma 3.1.7. The d-dimensional closed ball Bd is a polynomial image of the
d-dimensional simplex ∆d.

Proof. As ∆1 = [0, 1] and B1 = [−1, 1], for d = 1 it is enough to consider the
polynomial function h(t) = 2t − 1. We assume now d ≥ 2. Proceeding in
a similar way as in the proof of Proposition 3.1.6, we consider the univariate
polynomial

h(t) := t2 (t− 2d2)2(2d2−1)

(2d2 − 1)2(2d2−1)
∈ R[t].
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3. Nash images of closed balls

It satisfies h(0) = h(2d2) = 0 and h(1) = 1. Moreover, h has a global maximum
at t = 1 and it satisfies 0 ≤ h(t) ≤ 1 on the interval [0, 2d2].

Consider the simplex ∆′d := {x1 ≥ −1, . . . , xd ≥ −1, x1 + . . . + xd ≤
√
d}.

As 2d2 > d− 1 + (
√
d+ d− 1)2, it holds Bd ⊂ ∆′d ⊂ Bd(0,

√
2d). Consider the

polynomial map
g : Rd → Rd, x 7→ h(‖x‖2)x.

Observe that g(Bd) = g(Bd(0,
√

2d)) = Bd, so g(∆′d) = Bd. Let h : Rd → Rd
be an affine map such that h(∆d) = ∆′d, then the polynomial map f := g ◦ h
satisfies f(∆d) = Bd, as required.

Proposition 3.1.8. The d-dimensional closed ball Bd is a polynomial image of
the d-dimensional prism ∆d−1 × [−1, 1].

Proof. If d = 1, we have ∆0 × [−1, 1] = B1 = [−1, 1]. So we can consider the
case d ≥ 2. By Lemma 3.1.7 there exists a polynomial map hd−1 : Rd−1 → Rd−1

such that hd−1(∆d−1) = Bd−1. By Corollary 3.1.5 there exists a polynomial map
h′d−1 : Rd−1 → Rd−1 that maps Bd−1 onto the hypercube Qd−1. By Proposition

3.1.6 there exists a polynomial map g : Rd → Rd such that g(Qd−1 × [−1, 1]) =
g(Qd) = Bd. Thus, the polynomial map f := g ◦ (h′d−1 ◦ hd−1, xd) : Rd → Rd

satisfies f(∆d−1 × [−1, 1]) = Bd.

Proposition 3.1.9. The d-dimensional sphere Sd ⊂ Rd+1 is a regular image of
the d-dimensional hypercube Qd := [−1, 1]d.

Proof. We proceed by induction on the dimension d ≥ 1. For the 1-dimensional
case, consider first the inverse of the stereographic projection

f0 : R→ S1 \ {(0, 1)}, t 7→
(

2t

t2 + 1
,
t2 − 1

t2 + 1

)
.

We have f0([−1, 1]) = S1 ∩ {y ≤ 0}. Consider the polynomial map

f1 : R2 ≡ C→ C ≡ R2,

(x, y) ≡ x+ y
√
−1 =: z 7→ z2 = x2 − y2 + 2xy

√
−1 ≡ (x2 − y2, 2xy).

The image of [−1, 1] under the regular map ϕ := f1 ◦ f0 : R→ R2 is S1.

By induction hypothesis there exists a regular map g : Rd−1 → Rd such
that g([−1, 1]d−1) = Sd−1 and let ϕ := (ϕ1, ϕ2) : R → R2 be the regular map
described above, such that ϕ([−1, 1]) = S1. Denote x′ := (x1, . . . , xd−1) and
ed+1 := (0, . . . , 0, 1) ∈ Rd+1. Then the regular map

f : Rd → Rd+1, (x′, xd) 7→ ϕ1(xd)(g(x′), 0) + ϕ2(xd)ed+1,

satisfies f([−1, 1]d) = Sd.

The following remark shows that the map in Proposition 3.1.9 cannot be
taken polynomial. This implies that the family of the polynomial images of the
d-dimensional closed unit ball is a proper sub-family of the family of polynomial
images of the d-dimensional sphere (see also Proposition 3.1.1). However, the
results proved in this section show that the family of the regular images of the d-
dimensional closed unit ball and the family of the regular images of the d-sphere
are the same.
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3.2. Necessary conditions

Remark 3.1.10 ([FU6, §1.2]). There exist no non-constant polynomial maps from
the m-dimensional unit closed ball Bm to the n-dimensional sphere Sn.

Consider a polynomial map f := (f1, . . . , fn+1) : Rm → Rn+1 such that
f(Bm) ⊂ Sn. Thus, f2

1 + · · · + f2
n+1 = 1 on the open ball Bm. By the iden-

tity principle for polynomials, we deduce that f2
1 + · · · + f2

n+1 = 1 on Rm, so
deg(f1), . . . ,deg(fn+1) ≤ 0. That is, the polynomial map f is a constant map.

Let us summarize the results of this section. We have proved that the closed
ball Bd, the cylinder Bd−1× [−1, 1], the hypercube [−1, 1]d, the simplicial prism
∆d−1 × [−1, 1] and the simplex ∆d are polynomial image one of each others.
Moreover, each of them is a polynomial image of the sphere Sd, but the sphere
is a regular, but not a polynomial, image of the others compact models.

3.2 Necessary conditions

As the closed ball Bd is convex it is connected by segments, so by Nash paths.
If S ⊂ Rm is a semi-algebraic set and f : Rd → Rm is a Nash map such that
f(Bd) = S, then S is compact and connected by Nash paths.

The fact that S is compact is straightforward. Fix now any two points
x, y ∈ S. As the Nash map f is surjective, there exist two points x, y ∈ Bd such
that f(x) = x and f(y) = y. Let σ : [0, 1]→ Bd be a segment between x and y.
Then f ◦ σ : [0, 1]→ S is a Nash path between x and y.

Thus, we have the following necessary conditions for a semi-algebraic set
S ⊂ Rm to be Nash image of a closed ball:

Lemma 3.2.1 (Necessary conditions). Let S ⊂ Rm be a semi-algebraic set and
f : Rd → Rm a Nash map such that f(Bd) = S, then S is compact and connected
by Nash paths.

Let us see now some consequences of being connected by Nash paths. We will
show that a semi-algebraic set S ⊂ Rm connected by Nash paths is irreducible
and pure dimensional.

Recall that a semi-algebraic set S is irreducible if its ring of Nash functions
N (S) is an integral domain (see Definition 2.4.5). Recall also that S is pure
dimensional if the dimension of the germ Sx is equal to the dimension of S for
each x ∈ S (see Section 2.2.3).

Proposition 3.2.2. Let S ⊂ Rm be a semi-algebraic set connected by Nash
paths. Then S is irreducible.

Proof. Suppose S is a reducible semi-algebraic set, that is, there exist Nash
functions f1, f2 : S→ R such that f1f2 ≡ 0 on S but f1 and f2 are not identically
zero. This implies that there exist two points x, y ∈ S such that f1(x) = 0,
f2(x) 6= 0 and f1(y) 6= 0, f2(y) = 0. Consider a Nash path σ : [0, 1] → R
connecting x and y. As the semi-algebraic set [0, 1] is irreducible and

(f1 ◦ σ) · (f2 ◦ σ) ≡ 0,

we have either f1◦σ ≡ 0 or f2◦σ ≡ 0. We may assume, without loss of generality,
that σ([0, 1]) ⊂ {f1 = 0}. This is a contradiction, because f1(σ(1)) = f1(y) 6= 0.
Thus, the semi-algebraic set S is irreducible.
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3. Nash images of closed balls

Proposition 3.2.3. Let S ⊂ Rn be a semi-algebraic set connected by Nash
paths. Then S is pure dimensional.

Proof. Assume S is not pure dimensional. Then there exists a point y ∈ S such
that dim Sy < dim S. Let B ⊂ Rn be a small open ball centred at y such that
dim(S ∩ B) < dim S. Let Y be the Zariski closure of S ∩ B and let p ∈ R[x] be
a polynomial equation of Y (see Proposition 2.1.2). Let x ∈ S be a point where
the local dimension is maximal, that is, dim(Sx) = dim(S). The algebraic set Y
has dimension strictly smaller than the dimension of S, so we may assume x 6∈ Y .
Consider a Nash path σ : [0, 1]→ S such that σ(0) = y and σ(1) = x. The Nash
function p ◦ σ : [0, 1] → R is identically zero on an open neighbourhood of 0.
Thus, by the identity principle for Nash functions it is identically zero on [0, 1],
that is, σ([0, 1]) ⊂ Y . This is a contradiction because σ(1) = x and x 6∈ Y .

In the following example we show that for a semi-algebraic set S being pure
dimensional and irreducible is not enough to guarantee that S is connected by
Nash paths. The example is borrowed from [Fe4, Ex.7.12], whereas the proof
appears in [FU6, Ex.1.2].

Example 3.2.4 ([Fe4, Ex.7.12]). The irreducible and pure dimensional semi-
algebraic set (see Figure 3.4)

S := {(4x2 − y2)(4y2 − x2) ≥ 0, y ≥ 0} ⊂ R2,

is not connected by Nash paths.

(1, 1)(−1, 1)

C1 C2

S

Figure 3.4: The semi-algebraic set S (figure borrowed from [FU6, Fig.1.1])

Proof. Pick the points p1 := (−1, 1), p2 := (1, 1) ∈ S and assume that there
exists a Nash path α : [0, 1] → S such that α(0) = p1 and α(1) = p2. Consider
the closed semi-algebraic sets C1 := S ∩ {x ≤ 0} and C2 := S ∩ {x ≥ 0}, which
satisfy S = C1 ∪ C2. Both C1 and C2 are convex, so they are connected by
Nash paths and C1 ∩ C2 = {(0, 0)}. Define C∗i := {λw : w ∈ Ci, λ ∈ R} for
i = 1, 2. Note that S ∩ {x < 0} = C1 \ {(0, 0)} and S ∩ {x > 0} = C2 \ {(0, 0)}
are pairwise disjoint open subsets of S. We have 0 ∈ α−1(C1 \ {(0, 0)}) and
1 ∈ α−1(C2 \ {(0, 0)}), so t0 := inf(α−1(C2 \ {(0, 0)})) > 0. As α is a (non-
constant) Nash path, t0 ∈ Cl(α−1(C1 \ {(0, 0)})) ∩ Cl(α−1(C2 \ {(0, 0)})) and
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3.3. Polynomial paths inside semi-algebraic sets

α(t0) = (0, 0). As α−1(C1 \ {(0, 0)}) and α−1(C2 \ {(0, 0)}) are pairwise disjoint
open subsets of [0, 1], there exists ε > 0 such that

α((t0 − ε, t0)) ⊂ C1 \ {(0, 0)} and α((t0, t0 + ε)) ⊂ C2 \ {(0, 0)}.

The tangent direction to α((t0−ε, t0 +ε)) at α(t0) = (0, 0) is the line generated
by the vector

w = lim
t→t0

α(t)− α(t0)

(t− t0)k
=

{
limt→t+0

α(t)−(0,0)
(t−t0)k

∈ C∗1 \ {(0, 0)},
limt→t−0

α(t)−(0,0)
(t−t0)k

∈ C∗2 \ {(0, 0)},

where k is the multiplicity of t0 as a root of ‖α‖. This is a contradiction (because
C∗1 ∩ C∗2 = {(0, 0)}), so S is not connected by Nash paths.

3.3 Polynomial paths inside semi-algebraic sets

In this section we will present an improved polynomial curve selection lemma. It
will allow us to approximate continuous semi-algebraic paths inside the closure
of an open semi-algebraic set by polynomial paths, with strong control on the
derivatives. This lemma will be one of the main ingredients in our proof of
Theorem 3.2. In [Fe5, Thm.1.7] and [FU5, Thm.3.1] Fernando and Ueno have
made an extended study of polynomial and Nash paths inside the closure of
open semi-algebraic sets. For our purposes we need only a simplified version of
the results obtained there.

We endow the space Cν([a, b],R) of differentiable functions of class Cν on the
interval [a, b] with the Cν compact-open topology. Recall that a basis of open
neighbourhoods of g ∈ Cν([a, b],R) in this topology is constituted by the sets of
the type:

Uνg,ε := {f ∈ Cν([a, b],R) : ‖f (`) − g(`)‖[a,b] < ε : ` = 0, . . . , ν}

where ε > 0 and ‖h‖[a,b] := max{h(x) : x ∈ [a, b]}.
One has Cν([a, b],Rn) = Cν([a, b],R) × · · · × Cν([a, b],R) and we endow this

space with the product topology. If X ⊂ [a, b], one defines analogously the Cν
compact-open topology of the space Cν(X,Rn). The following result is well-
known and its proof follows straightforwardly from [H, §2.5. Ex.10, pp. 64-65]
using standard arguments.

Lemma 3.3.1. Let U ⊂ Rn be an open set and let ϕ : U → Rm be a C` map for
some 0 ≤ ` ≤ ν. Consider the map ϕ∗ : Cν([a, b], U)→ C`([a, b],Rm), f 7→ ϕ◦f ,
where both spaces are endowed with their C` compact-open topologies. Then ϕ∗
is continuous.

In addition, one has the following.

Lemma 3.3.2. Let X ⊂ [a, b] and consider the restriction map

ρ : Cν([a, b],Rn)→ Cν(X,Rn), f 7→ f |X ,

where the spaces are endowed with their respective Cν compact-open topologies.
Then ρ is continuous and if in addition X ⊂ [a, b] is closed, then ρ is surjective.
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3. Nash images of closed balls

We borrow the following result from [B] that combines Weierstrass’ polyno-
mial approximation with Hermite’s interpolation on a finite set.

Lemma 3.3.3. Let a < t1 < · · · < tr < b be real numbers and let f : [a, b]→ R
be a Cν function. Write aik := f (k)(ti) for i = 1, . . . , r and 0 ≤ k ≤ ν. Fix
ε > 0. Then there exists a polynomial g ∈ R[t] such that:

(i) ‖f (k) − g(k)‖[a,b] < ε for k = 0, . . . , ν.

(ii) g(k)(ti) = aik for i = 1, . . . , r and 0 ≤ k ≤ ν.

Proof. The proof is conducted in two steps:

Step 1. There exists a polynomial h ∈ R[t] such that ‖h(k) − f (k)‖[a,b] < ε for
k = 0, . . . , ν .

We proceed by induction on the integer ν ≥ 0. If ν = 0, the result is classical
Stone-Weierstrass’ polynomial approximation theorem. Assume the result true
for ν − 1 ≥ 0 and let us check that it is also true for ν.

Consider the Cν−1 map f ′ on the interval [a, b] and extend it as a Cν−1

map to a bigger interval [a′, b′] that contains [a, b] in its interior. By induction
hypothesis there exists a polynomial map h0 ∈ R[t]n such that

|f (k+1) − h(k)
0 | <

ε

1 + (b− a)

on [a′, b′] for k = 0, . . . , ν − 1. By Barrow’s rule

f(t) = f(a) +

∫ t

a

f ′(s)ds.

Define

h(t) := f(a) +

∫ t

a

h0(s)ds,

which is a polynomial of R[t]. Observe that h′ = h0, so∥∥∥f (k) − h(k)
∥∥∥

[a,b]
=
∥∥∥f (k) − h(k−1)

0

∥∥∥
[a,b]

<
ε

1 + (b− a)
< ε

for k = 1, . . . , ν. In addition,

‖h− f‖[a,b] =

∥∥∥∥∫ t

a

h0(s)ds−
∫ t

a

f ′(s)ds

∥∥∥∥
[a,b]

= max
[a,b]

{∣∣∣∣∫ t

a

(h0(s)− f ′(s))ds
∣∣∣∣}

≤ max
[a,b]

{∫ t

a

|h0(s)− f ′(s)|ds
}
< (b− a)

ε

1 + (b− a)
< ε.

Step 2. We show how to modify h in order to have also condition (ii).

Take polynomials Pik such that

P
(`)
ik (tj) =

{
0 if i 6= j or k 6= `,

1 if i = j and k = `,
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3.3. Polynomial paths inside semi-algebraic sets

for i = 1, . . . , r and 0 ≤ k, ` ≤ ν. For instance, we may take

Pik := bik(t− ti)
k
∏
j 6=i

((t− ti)ν+1 − (tj − ti)ν+1)ν+1

for bik := 1
k!

(−1)ν+1∏
j 6=i(tj−ti)(ν+1)2

.

The Taylor expansion of Pik at ti has the form

Pik =
1

k!
(t− ti)k + eik(t− ti)ν+1 + · · ·

for some eik ∈ R, whereas the Taylor expansion of Pik at tj (for j 6= i) has the
form

Pik =
(
bik(tj − ti)k((ν + 1)(tj − ti)ν)ν+1

∏
m6=i,j

((tj − ti)ν+1

− (tm − ti)ν+1)ν+1
)

(t− tj)ν+1 + · · · .

Define

M := max{‖P (`)
ik ‖[a,b] : 1 ≤ i ≤ r, 0 ≤ k, ` ≤ ν} and δ :=

ε

1 + r(ν + 1)M
.

Let h ∈ R[t] be a polynomial such that ‖h(k) − f (k)‖[a,b] < δ for k = 0, . . . , ν.
Define

g := h+

r∑
i=1

ν∑
k=0

cikPik

where cik := aik − h(k)(ti) = f (k)(ti)− h(k)(ti) for i = 1, . . . , r and k = 0, . . . , ν.
Thus,

g(`)(tj) = h(`)(tj) +

r∑
i=1

ν∑
k=0

cikP
(`)
ik (tj) = h(`)(tj) + cj` = aj` = f (`)(tj)

for j = 1, . . . , r and ` = 0, . . . , ν.

Observe that |cik| = |f (k)(ti)− h(k)(ti)| < δ, so

‖g(`)−f (`)‖[a,b] ≤ ‖h(`)−f (`)‖[a,b] +
r∑
i=1

ν∑
k=0

|cik|‖P (`)
ik ‖[a,b] < δ+r(ν+1)Mδ = ε,

for each ` = 0, . . . , ν, as required.

Lemma 3.3.4. Let δ > 0 and f : [0, δ] → R be a Ck+1 function. Assume
f (`)(0) = 0 for each ` = 0, . . . , k− 1, f (k) > 0 on [0, δ] and that f |(0,δ] is strictly

positive. Take 0 < ε < min{f (k)|[0,δ], f(δ)}. If g : [0, δ]→ R is a Ck+1 function

such that g(`)(0) = 0 for ` = 0, . . . , k − 1, g(k)(0) = f (k)(0), |f − g|[0,δ] < ε and

|f (k) − g(k)|[0,δ] < ε, then g|(0,δ] is strictly positive.

Proof. Using Taylor’s expansion, we know that g around 0 has the form

g(t) = g(k)(0)
k! tk + tk+1θ(t) = f(k)(0)

k! tk + tk+1θ(t),
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3. Nash images of closed balls

where θ is a continuous map defined on an interval around 0. In particular, g > 0
for t ∈ (0, δ) close enough to 0. In addition, g(k) > 0 on [0, δ] and g(δ) > 0.

Suppose there exists t∗ ∈ (0, δ) such that g(t∗) ≤ 0. Then there exists
ξ0 ∈ (0, δ) such that g(ξ0) = 0. Assume by induction on ` < k that there exists
0 < ξ` < · · · < ξ0 < δ such that g(j)(ξj) = 0 for j = 0, . . . , `. As g(`)(0) = 0 and
g(`)(ξ`) = 0, there exist 0 < ξ`+1 < ξ` such that g(`+1)(ξ`+1) = 0. In particular,
g(k)(ξk) = 0 and 0 < ξk < δ, which contradicts the fact that g(k) > 0 on [0, δ].
Consequently, g|(0,δ] > 0, as required.

If α : [a, b]→ Rn is a continuous semi-algebraic path, by [BCR, Prop.2.9.10]
there exists a finite set η(α) ⊂ [a, b] such that α is not Nash at the points of
η(α), but α|[a,b]\η(α) is a Nash map. We denote the Taylor expansion of degree

` ≥ 1 of α at t0 ∈ [a, b] \ η(α) with T `t0α :=
∑`
k=0

1
`!α

(k)(t0)(t− t0)k.

Lemma 3.3.5 (Improved curve selection lemma). Let S ⊂ Rn be an open
semi-algebraic set and let {p1, . . . , pr} ⊂ Cl(S) be any finite set of points, not
necessarily distinct. Let 0 < t1 < · · · < tr < 1 and let α : [0, 1]→ S∪{p1, . . . , pr}
be a continuous semi-algebraic path such that α(ti) = pi for i = 1, . . . , r and
satisfies η(α) ∩ {t1, . . . , tr} = ∅ and α([0, 1] \ {t1, . . . , tr}) ⊂ S. For each ε > 0
and each m ≥ 0 there exists a polynomial path β : [0, 1]→ S ∪ {p1, . . . , pr} such
that: ‖α(k) − β(k)‖ < ε for k = 0, . . . ,m, Tmti β = Tmti α for i = 1, . . . , r and
β([0, 1] \ {t1, . . . , tr}) ⊂ S.

Proof. Let δ > 0 be such that I :=
⋃r
i=1[ti − δ, ti + δ] ⊂ [0, 1] \ η(α). After

making δ > 0 smaller if necessary, we may choose polynomials fij , gij ∈ R[x]
such that:

α([ti − δ, ti)) ⊂ {fi1 > 0, . . . , fis > 0} ⊂ S,

α((ti, ti + δ]) ⊂ {gi1 > 0, . . . , gis > 0} ⊂ S,

Let nij , pij ≥ 1 be such that

(fij ◦ α)(ti − t) = aijt
nij + · · · ,

(gij ◦ α)(ti + t) = bijt
pij + · · · ,

where aij > 0 and bij > 0. Let ` := max{nij , pij ,m}+ 1 and assume, taking a
smaller δ > 0 if necessary, that

(fij ◦ α)(nij)|[ti−δ,ti+δ] >
nij !aij

2
,

(gij ◦ α)(pij)|[ti−δ,ti+δ] >
pij !bij

2
.

Define

0 < ε0 := min
{nij !aij

2
,
pij !bij

2
, (fij ◦ α)(ti − δ),

(gij ◦ α)(ti + δ), dist(α([0, 1] \ I),Rn \ S)
}
.

(3.3.1)

By Lemmas 3.3.1 and 3.3.2 the maps

ϕij : C`([0, 1],Rn)→ C`([ti − δ, ti + δ],R), γ 7→ (fij ◦ γ|[ti−δ,ti+δ]),
φij : C`([0, 1],Rn)→ C`([ti − δ, ti + δ],R), γ 7→ (gij ◦ γ|[ti−δ,ti+δ])
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3.3. Polynomial paths inside semi-algebraic sets

are continuous. Define

U0 :=

r⋂
i=1

s⋂
j=1

{γ ∈ C`([0, 1],Rn) : ‖ϕij(γ)(nij) − ϕij(α)(nij)‖[ti−δ,ti+δ] < ε0}

∩
r⋂
i=1

s⋂
j=1

{γ ∈ C`([0, 1],Rn) : ‖φij(γ)(pij) − φij(α)(pij)‖[ti−δ,ti+δ] < ε0},

which is an open subset of C`([0, 1],Rn). Then there exists 0 < ε < ε0 such that

U := {γ ∈ C`([0, 1],Rn) : ‖γ−α‖[0,1] < ε, ‖γ(k)−α(k)‖I < ε, k = 1, . . . , `} ⊂ U0.

We claim: Given γ ∈ U such that T `tiα = T `tiγ for i = 1, . . . , r, we have
γ([0, 1] \ {t1, . . . , tr}) ⊂ S.

As γ ∈ {β ∈ C`([0, 1]) : ‖β − α‖ < ε} and 0 < ε < dist(α([0, 1] \ I),Rn \ S),
we deduce dist(γ([0, 1] \ I),Rn \ S) > 0, so γ([0, 1] \ I) ⊂ S. Thus, to prove the
claim it is enough to check:

γ([ti − δ, ti)) ⊂ {fi1 > 0, . . . , fis > 0} ⊂ S, (3.3.2)

γ((ti, ti + δ]) ⊂ {gi1 > 0, . . . , gis > 0} ⊂ S (3.3.3)

We show only (3.3.2) because the proof of (3.3.3) is analogous.

Using Taylor’s expansion, we know that γ around ti has the form

γ(t) = T `−1
ti γ(t− ti) + (t− ti)`θ(t− ti) = T `−1

ti α(t− ti) + (t− ti)`θ(t− ti)
where θ is a continuous map defined on an interval around 0. As α is analytic
in a neighbourhood of ti, there exists a tuple of analytic series τ ∈ R{t}n such
that

α(t) = T `−1
ti α(t− ti) + (t− ti)`τ(t− ti).

Thus, if ζ := θ − τ , which is a continuous function around 0, we deduce

γ(t)− α(t) = (t− ti)`ζ(t− ti)  γ(ti − t)− α(ti − t) = (−t)`ζ(−t).

Write x := (x1, . . . , xn), y := (y1, . . . , yn) and let z be a single variable. As the
polynomial fij(x+ zy)− fij(x) vanishes on the real algebraic set {z = 0}, there
exists a polynomial hij ∈ R[x, y, z] such that

fij(x + zy) = fij(x) + zhij(x, y, z).

As ` > nij , we deduce

fij(γ(ti − t)) = fij(α(ti − t) + γ(ti − t)− α(ti − t))

= fij(α(ti − t)) + (−1)`t`hij(α(ti − t), ζ(−t), (−1)`t`) = aijt
nij + · · · .

Consequently, (fij ◦ γ)(k)(ti) = 0 for k = 0, . . . , nij − 1 and

(fij ◦ γ)(nij)(ti) = nij ! aij > 0.

By Lemma 3.3.4 and (3.3.1) we obtain (fij ◦ γ)(ti − t) > 0 for each t ∈ (0, δ]
and j = 1, . . . , s, that is, γ(t) ∈ {fi1 > 0, . . . , fis > 0} for each t ∈ [ti − δ, ti), as
claimed.

To conclude, by Lemma 3.3.3 there exists a polynomial tuple β ∈ R[t]n such
that ‖α(k)−β(k)‖[0,1] < ε for k = 0, . . . , ` (that is, α ∈ U) and α(k)(ti) = β(k)(ti)
for i = 1, . . . , r and k = 0, . . . , `. We deduce β([0, 1] \ {t1, . . . , tr}) ⊂ S, as
required.
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3. Nash images of closed balls

3.4 Well-welded semi-algebraic sets

Let σ : [a, b]→ Rm be a continuous semi-algebraic path and let η(σ) ⊂ [a, b] be
the finite set of points at which σ is not a Nash map already introduced before
Lemma 3.3.5. By [BCR, Prop.8.1.12] and after reparametrizing (if necessary),
we may assume that σ is Nash at a and b so η(σ) ⊂ (a, b).

In his proof of the Shiota’s conjecture [Fe4] Fernando introduced the concept
of well-welded semi-algebraic sets. We recall here this definition.

Definition 3.4.1. A semi-algebraic set S ⊂ Rm is well-welded if S is pure
dimensional and for each pair of points x, y ∈ S there exists a continuous semi-
algebraic path σ : [0, 1]→ S such that σ(0) = x, σ(1) = y and η(σ) ⊂ Reg(S).

As a consequence of Theorem 3.1, we have the following:

Theorem 3.4.2. Given a semi-algebraic set S ⊂ Rm the following conditions
are equivalent:

(a) S is connected by Nash paths.

(b) S is connected by analytic paths.

(c) S is pure dimensional and there exists a Nash path σ : [0, 1] → S that
meets all the connected components of the set of regular points of S.

(d) S is pure dimensional and there exists an analytic path σ : [0, 1]→ S that
meets all the connected components of the set of regular points of S.

(e) S is well-welded.

Theorem 3.1 is a very deep result, so we want to furnish an alternative proof
of the equivalence of these implications that uses ‘lighter’ results.

The implications (a)⇒(b) and (c)⇒(d) are clear. We will prove the implica-
tion (d)⇒(e) in this section. Later in Section 3.5 we will prove the implications
(e)⇒(a), (b)⇒(e) and (a)⇒(c).

3.4.1. Analytic arcs and well-welded sets. In order to prove the implication
(d)⇒(e) we need the following lemma that allows us to modify an analytic arc
by a Nash arc. This lemma has been proved by Fernando [Fe4, Lem.2.9] in a
stronger version, but we only need a simplified version of his result.

Lemma 3.4.3. Let M ⊂ Rm be a connected Nash manifold, let M1,M2 be open
semi-algebraic subsets of M and let α : (−1, 1)→M1 ∪M2 ∪ {0} be an analytic
arc such that α(0) = 0, α((0, 1)) ⊂ M1 and α((−1, 0)) ⊂ M2. Then there exist
ε > 0 and a Nash arc β : (−ε, ε) → M1 ∪M2 ∪ {0} such that β((0, ε)) ⊂ M1

and β((−ε, 0)) ⊂M2.

Proof. For simplicity we can assume M1∩M2 = ∅ and 0 6∈M1∪M2. Let V ⊂M
be an open semi-algebraic neighbourhood of the origin equipped with a Nash
diffeomorphism ϕ : V → Rd such that ϕ(0) = 0. Shrinking the domain of α, we
may assume α((−δ, δ)) ⊂ V for some δ > 0. Denote α̂ := ϕ ◦ α : (−δ, δ)→ Rd.
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3.4. Well-welded semi-algebraic sets

Shrinking Mi, V and the domain of α̂, we may assume 0 6∈ ϕ(Mi ∩ V ) and
ϕ(Mi ∩ V ) = {g1i > 0, . . . , g`i > 0} for some polynomials gji ∈ R[x]. Observe
that the analytic series (gj1◦α̂)(t) and (gj2◦α̂)(−t) are positive on (0, δ). Thus,
there exists s ≥ 1 large enough such that if γ ∈ R{t}d and γ−α̂ ∈ (t)sR{t}d, we
have (gj1◦γ)(t) > 0 and (gj2◦γ)(−t) > 0 for t > 0 small enough and j = 1, . . . , `.
Let γ0 ∈ R[t]d be a polynomial tuple such that γ0 − α̂ ∈ (t)sR{t}d, and let
ε > 0 be such that

gj1(γ0(t)) > 0, gj2(γ0(−t)) > 0

for 0 < t < ε. The Nash arc β := ϕ−1 ◦ γ0 : (−ε, ε) → M1 ∪M2 ∪ {0} satisfies
the required property.

Proposition 3.4.4. Let S ⊂ Rm be a pure dimensional semi-algebraic set.
Assume there exists an analytic path α : [0, 1] → S whose image meets all the
connected components of Reg(S). Then S is well-welded.

Proof. Let M1, . . . ,Mr be the connected components of Reg(S). After repeating
the connected components as many time as needed, we may assume that there
exist 0 < s1 < . . . < sr < 1 and ε0 > 0 such that

α(si) ∈ Cl(Mi) ∩ Cl(Mi+1) and α([si − ε0, si)) ⊂Mi, α((si, si + ε0]) ⊂Mi+1.

The proof is conducted into two steps:

Step 1. Construction of Nash bridges. Consider X = S
zar

. By Theorem
2.4.2 there exist a non-singular algebraic set X1 and a proper regular map
f : X1 → X such that S ⊂ f(X1) (because S is pure dimensional) and

f |X1\f−1(Sing(X)) : X1 \ f−1(Sing(X))→ X \ Sing(X)

is a diffeomorphism whose inverse map is also regular.

Define Γi := α([si − ε0, si + ε0]) and denote

Λi := Cl(f−1(Γi \ Sing(X)) ∩ f−1(Γi)

and Ni := f−1(Mi), for i = 1, . . . , r. As Mi ⊂ X \ Sing(X), we have that
Ni ⊂ X1 \ f−1(Sing(X)) is a Nash manifold. After shrinking Γi if necessary,
we may assume by [Fe4, Lem.B.2] that Λi is an analytic bridge between Ni and
Ni+1 such that Λi \

⊔r
j=1Nj = {qi} and f(qi) = α(si) for some qi ∈ X1.

We apply Lemma 3.4.3 to the Nash manifold X1 and the open semi-algebraic
subsets Ni and Ni+1 so to find 0 < ε < ε0 and Nash curves σi : [−ε, ε] → X1

such that σi([−ε, 0)] ⊂ Ni, σi((0, ε]) ⊂ Ni+1 and σi(0) = qi. Thus, the Nash
arcs βi := f ◦ σi : [−ε, ε]→ S satisfy

βi([−ε, 0)] ⊂Mi, βi((0, ε]) ⊂Mi+1 and βi(0) = α(si),

Step 2. Construction of the continuous semi-algebraic path. As
S is pure dimensional, S =

⋃r
i=1 Cl(Mi) ∩ S. Let y1, y2 ∈ S and assume y1 ∈

Cl(Mi) ∩ S and y2 ∈ Cl(Mj) ∩ S for some i < j. By the Nash curve selection
lemma (see [BCR, Prop.8.1.13]) there exist Nash arcs αk : (−1, 1) → Rm such
that α1((−1, 0)) ⊂ Mi, α2((−1, 0)) ⊂ Mj and αk(0) = yk for k = 1, 2. For
each ` = i, . . . , j − 1, denote u` := β`(−ε) and v`+1 := β`(ε). As Mi and Mj
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3. Nash images of closed balls

are connected Nash manifolds, there exist Nash paths γ1 : [0, 1] → Mi and
γ2 : [0, 1]→Mj such that

γk(0) = zk := αk

(
−1

2

)
and γk(1) =

{
ui if k = 1,

vj if k = 2.

Moreover, for each i < ` < j, as the Nash manifold M` is connected, we can find
a Nash path η` : [0, 1] → M` such that η`(0) = v`, η`(1) = u`. The continuous
semi-algebraic path

λ =
(
α1|[− 1

2 ,0]

)−1

∗ γ1 ∗ (βi ∗ ηi ∗ βi+1 ∗ ηi+1 ∗ . . . ∗ ηj−1 ∗ βj) ∗ γ−1
2 ∗ α2|[− 1

2 ,0]

connects the points y1, y2 and satisfies

η(λ) ⊂ {z1, z2} ∪ {ui, . . . , uj−1} ∪ {vi+1, . . . , vj} ⊂ Reg(S),

see Figure 3.5. Consequently, S is well-welded, as required.

Mi

Mi+1 Mj−1

Mj

Γi Γj−1

y1 y2z1 z2

vj

uj−1vj−1vi+1 ui+1

ui

Figure 3.5: Sketch of proof of Proposition 3.4.4 (figure inspired by [Fe4, Fig.10]).

3.5 Checkerboard sets

If S ⊂ Rm is a semi-algebraic set, we denote ∂S := Cl(S)\Reg(S). Observe that
the set ∂S defined here is (in general) different from the set Sing(S) := S\Reg(S)
defined in Section 2.4.1.

A pure dimensional semi-algebraic set T ⊂ Rn is a checkerboard set if it
satisfies the following properties:

� T
zar

is a non-singular algebraic set.

� ∂T
zar

is a normal-crossings divisor of T
zar

.

� Reg(T) is connected.

We want to show that any checkerboard set is well-welded.

Proposition 3.5.1. Let T ⊂ Rn be a checkerboard set, then T is well-welded.

Proof. As T is pure dimensional, T = Cl(Reg(T)) ∩ T. Fix any two points
y1, y2 ∈ T. By the Nash curve selection lemma (see [BCR, Prop.8.1.13]) there
exist Nash arcs αk : (−1, 1) → Rn such that α1((0, 1)), α2((−1, 0)) ⊂ Reg(T)
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3.5. Checkerboard sets

and αk(0) = yk for k = 1, 2. As Reg(T) is a connected Nash manifold, there
exists a Nash path γ : [0, 1]→ Reg(T) such that

γ(0) = z1 := α1

(
1

2

)
, γ(1) = z2 := α2

(
−1

2

)
.

The continuous semi-algebraic path β := α1|[0, 12 ] ∗γ ∗α2|[− 1
2 ,0] is a path between

y1 and y2 and satisfies η(β) ⊂ {z1, z2} ⊂ Reg(T). Thus, T is well-welded, as
required.

In his proof of Shiota’s conjecture Fernando proved the following result. We
will use this result in an essential way in our proof of Theorem 3.2.

Theorem 3.5.2 ([Fe4, Thm.8.4]). Let S ⊂ Rm be a well-welded semi-algebraic

set of dimension d ≥ 2 and denote X := S
zar

. Then there exists a checkerboard
set T ⊂ Rn of dimension d and a proper regular map f : Y := T

zar → X such
that f(T) = S.

As the map f is proper, if the semi-algebraic set S is compact, we may assume
that also the checkerboard set T is compact (see the proof of [Fe4, Thm.8.4]).

3.5.1. 1-dimensional semi-algebraic sets. To prove Theorem 3.4.2 without
using Theorem 3.1 we will make an essential use of Theorem 3.5.2. This result
holds for semi-algebraic sets of dimension d ≥ 2, so we treat the 1-dimensional
case separately.

Recall that a semi-algebraic set S ⊂ Rm is irreducible if its ring of Nash
functions N (S) is an integral domain (see Definition 2.4.5).

Proposition 3.5.3 (1-dimensional case). Let S ⊂ Rm be a semi-algebraic set
of dimension 1. The following conditions are equivalent

(a) S is connected by Nash paths.

(b) S is connected by analytic paths.

(c) S is pure dimensional and there exists a Nash path σ : [0, 1] → S that
meets all the connected components of the set of regular points of S.

(d) S is pure dimensional and there exists an analytic path σ : [0, 1]→ S that
meets all the connected components of the set of regular points of S.

(e) S is well-welded.

Proof. As dim(S) = 1, using the identity principle for analytic functions and
standard arguments, it follows: if S satisfies one of the conditions in the state-
ment, then S is irreducible. By [Fe4, Prop.1.6] if S is irreducible, then it is a
Nash image of R, so it verifies conditions (a), (b), (c) and (d). In particular S

is connected by Nash paths, so it is also well-welded and (e) holds.
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3.5.2. Well-welded sets are connected by Nash paths. We want to show
that a well-welded semi-algebraic set is connected by Nash paths without using
Theorem 3.2. We will combine Lemma 3.3.5 and Theorem 3.5.2 in our argument.

Proposition 3.5.4. If S ⊂ Rm is a well-welded semi-algebraic set, then it is
connected by Nash paths.

Proof. By Proposition 3.5.3 we may assume dim S ≥ 2. By Theorem 3.5.2 there
exists a checkerboard set T ⊂ Rn and a Nash map f : Y := T

zar → X := S
zar

such that f(T) = S.

Thus, in order to conclude, it is sufficient to show: The checkerboard set T

is connected by Nash paths. Let (Ω, ν) be a Nash tubular neighbourhood for

the Nash manifold Y := T
zar ⊂ Rm. As Cl(T) ⊂ T

zar
, shrinking Ω if necessary,

we may assume that ν admits a Nash extension to Cl(ν−1(T)). Fix two points
p, q ∈ T and consider the open semi-algebraic set U := ν−1(Reg(T)) ⊂ Rn. As
T is pure dimensional, p, q ∈ Cl(Reg(T)) ∩ T, so p, q ∈ Cl(U). By Lemma 3.3.5
there exist δ > 0 and a polynomial path α : [−δ, 1 + δ] → U ∪ {p, q} such that
α(0) = p, α(1) = q and α([−δ, 1 + δ] \ {0, 1}) ⊂ U. The image ν(α([0, 1])) ⊂ T,
because α(0), α(1) ∈ T. Thus, α̂ := ν ◦α|[0,1] : [0, 1]→ T is a Nash path between
p and q, as required.

3.5.3. Connection by analytic paths. We want to show that a semi-algebraic
set S ⊂ Rm connected by analytic paths is well-welded, which proves the impli-
cation (b)⇒(e) of Theorem 3.4.2.

Proposition 3.5.5. Let S ⊂ Rm be a semi-algebraic set connected by analytic
paths. Then S is well-welded.

Proof. The proof of Proposition 3.2.3 works in the same way if S is connected
by analytic paths. Thus, if such is the case, then S is pure dimensional.

By Proposition 3.5.3 we may assume dim S ≥ 2. Let M1, . . . ,Mr be the
connected component of Reg(S). Let x, y ∈ S and let α : [0, 1] → S be an
analytic path such that α(0) = x and α(1) = y. As S is pure dimensional
S =

⋃r
i=1 Cl(Mi) ∩ S. Let i1, . . . , ik ∈ {1, . . . , r} be the indices such that

α([0, 1])∩(Cl(Mij )∩S) 6= ∅. Define the semi-algebraic set T :=
⋃k
j=1 Cl(Mij )∩S.

Proceeding as in the proof of Proposition 3.4.4 we can find a continuous semi-
algebraic path β : [0, 1] → T such that β(0) = x and β(1) = y, that satisfies
η(β) ⊂ Reg(T) ⊂ Reg(S).

3.5.4. Nash paths through Reg(S). We want to prove now that if a semi-
algebraic set S ⊂ Rm is connected by Nash paths, there exists a Nash path
that meets all the connected components of Reg(S). This will complete the
last implication of Theorem 3.4.2. As in the proof of Proposition 3.5.4 we will
combine Lemma 3.3.5 and Theorem 3.5.2 in our argument.

Proposition 3.5.6. Let S ⊂ Rm be a semi-algebraic set connected by Nash
paths. Then S is pure dimensional and there exists a Nash path σ : [0, 1] → S

that meets all the connected components of Reg(S).
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Proof. Let d := dim S. By Proposition 3.5.3 we may assume d ≥ 2. As S is
connected by analytic paths, by Proposition 3.5.5 S is well-welded. By Theorem
3.5.2 there exists a checkerboard set T ⊂ Rn of dimension d and a proper regular
map f : Y := T

zar → X := Szar such that f(T) = S. Let now M1, . . . ,Mr be
the connected components of Reg(S). Fix points xi ∈Mi and let yi ∈ T be such
that f(yi) = xi. We claim: There exists a continuous semi-algebraic path

α : [0, 1]→ Reg(T) ∪ {y1, . . . , yr}

and 0 < t1 < . . . < tr < 1 such that α(ti) = yi and η(α) ∩ {t1, . . . , tr} = ∅.

As Reg(T) is connected by Nash paths, in order to prove the claim it is
enough to show: For each point x ∈ T there exists a Nash arc γ : [−1, 1] → T

such that γ(0) = x and γ([−1, 1]\{0}) ⊂ Reg(T). As Reg(T) is a Nash manifold,
the claim is clear for the points x ∈ Reg(T). Suppose now x ∈ T \ Reg(T). As
T is pure dimensional, x ∈ Cl(Reg(T)) ∩ T. By the Nash curve selection lemma
(see [BCR, Prop.8.1.13]), there exists a Nash path δ : [−1, 1] → Rn such that
δ(0) = x and σ((0, 1]) ⊂ Reg(T). Thus, the Nash arc γ : [−1, 1]→ Reg(T)∪{x}
defined as γ(t) := δ(t2), satisfies γ(0) = x.

Let (Ω, ν) be a Nash tubular neighbourhood for the Nash manifold Y := T
zar

and define ΩT := ν−1(Reg(T)), which is an open semi-algebraic subset of Rn.
By Lemma 3.3.5 we approximate the continuous semi-algebraic path α by a
polynomial path β : [0, 1] → ΩT ∪ {y1, . . . , yr} such that β(ti) = yi. Then the
Nash path σ := f ◦ ν ◦ β : [0, 1] → S meets all the connected components of
Reg(S), because σ(ti) = xi ∈Mi.

3.5.5. Reduction to the case of checkerboard sets. By Theorem 3.4.2 in
order to prove Theorem 3.2 we ‘only’ need to prove the following: If S ⊂ Rm
is a compact well-welded semi-algebraic set of dimension d, then there exists a
Nash map f : Rd → Rm such that f(Bd) = S.

We will prove Theorem 3.2 for dimension 1 in Section 3.6.1, so let us assume
dim(S) ≥ 2. In this case Theorem 3.5.2 provides a checkerboard set T ⊂ Rn
and a proper regular map f : T

zar → S
zar

such that f(T) = S. As the map f
is proper, if the semi-algebraic set S is compact, we may assume that also the
checkerboard set T is compact (see the proof of [Fe4, Thm.8.4]). Thus, we are
reduced to prove the following:

Theorem 3.5.7. Let T ⊂ Rn be a compact checkerboard set of dimension d ≥ 2.
Then there exists a Nash map G : Rd → Rn such that G(Bd) = T.

By Corollary 3.1.4, there exists a polynomial map f : Rd → Rd such that
f(Bd) = ∆d−1 × [0, 1]. Consider the inverse of the stereographic projection

ϕ : Rd → Sd \ {(0, . . . , 1)},

x := (x1, . . . , xd) 7→
(

2x1

1 + ‖x‖2
, . . . ,

2xd
1 + ‖x‖2

,
−1 + ‖x‖2

1 + ‖x‖2

)
and let π : Rd+1 → Rd the projection onto the first d coordinates. The regular
map g := π ◦ ϕ : Rd → Rd satisfies g(Rd) = g(Bd) = Bd. If there exists a
Nash map F : ∆d−1 × [0, 1] → Rn such that F (∆d−1 × [0, 1]) = T, then the
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composition G := F ◦ f ◦ g : Rd → Rd is a well-defined Nash map such that
G(Bd) = T.

Thus, in order to show Theorem 3.5.7 we can use the (more convenient)
compact model ∆d−1 × [0, 1] and we are reduced to show the following:

Theorem 3.5.8. Let T ⊂ Rn be a compact checkerboard set of dimension d ≥ 2.
Then there exists a Nash map F : ∆d−1 × [0, 1]→ Rn such that

F (∆d−1 × [0, 1]) = T.

3.6 Building Nash images with bare-hands

The purpose of this section is to prove Theorem 3.5.8, which provides a com-
plete characterization of the Nash images of the closed ball. The proof is quite
involved and intricate and we begin with some preliminary results to lighten the
proof.

We will start with the 1-dimensional case, that requires a different proof.
Then we will focus on the d-dimensional case for d ≥ 2. For the general case
we will take advantage of the fact that each checkerboard set T ⊂ Rn admits
‘nice’ triangulations. Roughly speaking, we ‘build’ T as Nash image of the prism
∆d−1 × [0, 1] ‘simplex by simplex’.

To that end, we consider a suitable subset of the space of Nash maps
N (Rd,Rn) and we will parametrize it (of course not in an injective way) us-
ing an open semi-algebraic set Θ0 of a large Euclidean space. In this space,
a continuous semi-algebraic path σ : [0, 1] → Θ0 will provide us a continuous
semi-algebraic map ∆d−1 × [0, 1] → Rn that is Nash on the horizontal slices
∆d−1 × {t}. Using the results of Section 3.3 we approximate the path σ by a
Nash path in order to obtain a Nash map ∆d−1× [0, 1]→ Rn. All the construc-
tion is quite technical and requires care to guarantee that the obtained Nash
map is surjective and that the target space is exactly T.

Given a topological manifold X with boundary we denote its relative interior
with Int(X) and its boundary X \ Int(X) with ∂X.

3.6.1. The 1-dimensional case. Nash images of closed balls contained in the
real line are its compact intervals and all of them are affinely equivalent to the
interval B1 := [−1, 1]. Nash images of closed balls contained in a circumference
are its connected compact subsets and all of them are Nash images of B1.

Examples 3.6.1. (i) The circumference S1 := {x2 + y2 = 1} is a Nash image of
B1. Consider the inverse of the stereographic projection from the point (0, 1),
which is the map

f : R→ S1 \ {(0, 1)}, t 7→
(

2t

1 + t2
,

1− t2

1 + t2

)
.

Next, we identify R2 with C and the coordinates (x, y) with x+
√
−1y. Consider

the map

g : C→ C, z := x+
√
−1y 7→ z2 = (x2 − y2) +

√
−1(2xy).

The image of B1 under g ◦ f is S1.
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(ii) Any connected compact proper subset S of S1 that is not a point is a
Nash image of B1 because it is Nash diffeomorphic to [−1, 1].

We have the following:

Proposition 3.6.2 (1-dimensional case). Let S ⊂ Rn be a 1-dimensional com-
pact semi-algebraic set. Then S is a Nash image of some Bm if and only if S is
irreducible. In addition, if such is the case S is a Nash image of [−1, 1].

Proof. Assume S is irreducible. Let X be the Zariski closure of S in Rn and
let X̃ be its complexification in Cn. Let (Ỹ , π) be the normalization of X̃

and let σ̂ be the involution of Ỹ induced by the involution σ of X̃ that arises
from the restriction to X̃ of the complex conjugation in Cn. We may assume
that Ỹ ⊂ Cm and that σ̂ is the restriction to Ỹ of the complex conjugation of
Cm. By [FG3, Thm.3.15] and since S is irreducible, π−1(S) has a 1-dimensional
connected component T such that π(T) = S. As X has dimension 1, it is a

coherent analytic set, so T ⊂ Y := Ỹ ∩ Rm. As Ỹ is a normal-curve, Y is a
non-singular real algebraic curve. We claim: the connected components of Y are
Nash diffeomorphic either to S1 or to the real line R.

By [Sh, VI.2.1] there exist a compact affine non-singular real algebraic curve
Z, a finite set F which is empty if Y is compact and a union Y ′ of some connected
components of Z \ F such that Y is Nash diffeomorphic to Y ′ and Cl(Y ′) is a
compact Nash curve with boundary F . As Z is a compact affine non-singular
real algebraic curve, its connected components are diffeomorphic to S1, so by
[Sh, VI.2.2] the connected components of Z are in fact Nash diffeomorphic to
S1. Now, each connected component of Y is Nash diffeomorphic to an open
connected subset of S1, that is, Nash diffeomorphic either to S1 or to the real
line R, as claimed.

As T is connected and 1-dimensional, it is Nash diffeomorphic to a connected
compact 1-dimensional semi-algebraic subset of either S1 or R. In the latter case
T is Nash diffeomorphic to a compact interval of R. By Examples 3.6.1 the semi-
algebraic set T is a Nash image of B1, so also S is a Nash image of B1. The
converse follows from Proposition 3.2.2.

3.6.2. Covering simplices with Nash maps. We start by proving some lem-
mas that will allow us to cover simplices with the images of suitable Nash maps.
Denote

∆n−1 :=

{
(λ1, . . . , λn) ∈ Rn : λ1 ≥ 0, . . . , λn ≥ 0,

n∑
k=1

λk = 1

}
. (3.6.1)

The boundary ∂∆n−1 =
⋃n
i=1 (∆n−1 ∩ {λi = 0}).

Lemma 3.6.3. Consider an (n − 1)-dimensional simplex σ ⊂ Rn of vertices
v1, . . . , vn. Pick a point p ∈ Rn \ σ and consider the n-dimensional simplex
σ̂ of vertices {p, v1, . . . , vn}. Let F : ∆n−1 × [0, 1] → Rn be a continuous
semi-algebraic map such that F |∆n−1×{0} : ∆n−1 × {0} → σ is a homeo-
morphism, F (∂∆n−1 × (0, 1)) ⊂ Rn \ σ̂ and F (∆n−1 × {1}) = {p}. Then
Int(σ̂) ⊂ F (Int(∆n−1)× (0, 1)) and σ̂ ⊂ F (∆n−1 × [0, 1]).
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Proof. As ∆n−1 × [0, 1] is compact and σ̂ = Cl(Int(σ̂)), it is enough to check:
Int(σ̂) ⊂ F (Int(∆n−1)× (0, 1)).

Suppose there exists z ∈ Int(σ̂)\F (∆n−1×[0, 1]). Let us construct a (contin-
uous) semi-algebraic retraction ρ : Rn \ {z} → ∂σ̂. For each x ∈ Rn \ {z} let `x
be the ray {z + t ~zx : t ∈ [0,+∞)}. By [Be, 11.1.2.3, 11.1.2.7] `x ∩ ∂σ̂ = {ρ(x)}
is a singleton and if x ∈ ∂σ̂, then ρ(x) = x. Define ρ : Rn \{z} → ∂σ̂, x 7→ ρ(x).
Let h1, . . . , hn+1 ∈ R[x] be polynomials of degree 1 such that the hyperplanes
Hi := {hi = 0} contain the facets of σ̂. Assume σ̂ ⊂ {hi ≥ 0}. Note that
ρ(x) = z + λ ~zx, where λ is the smallest value µ > 0 such that hi(z + µzx) = 0
for some i = 1, . . . , n+ 1. As z ∈ Int(σ̂), we have hi(z) > 0 for i = 1, . . . , n+ 1.
Thus,

1

λ
= max

{
hi(z)− hi(x)

hi(z)
: i = 1, . . . , n+ 1

}
> 0.

Consequently,

ρ(x) = z +
1

max
{
hi(z)−hi(x)

hi(z)
: i = 1, . . . , n+ 1

} ~zx,
so ρ : Rn \ {z} → ∂σ̂ is a continuous map such that ρ|∂σ̂ = id∂σ̂, that is, ρ is a
retraction.

Consider the continuous map F ∗ := ρ ◦ F : ∆n−1 × [0, 1] → ∂σ̂. The
restriction map F ∗|∂(∆n−1×[0,1]) : ∂(∆n−1 × [0, 1]) → ∂σ̂ has degree 1 (as a
continuous map between spheres of dimension n− 1). Indeed, as

F ∗|∆n−1×{0} = F |∆n−1×{0} : ∆n−1 × {0} → σ

is a homeomorphism, then (F ∗)−1(x)∩∂(∆n−1× [0, 1]) = (F |∆n−1×{0})
−1(x) is

a singleton and the restriction map F ∗|∂(∆n−1×[0,1]) has degree 1.

By [H, Thm.5.1.6(b)], as F ∗|∂(∆n−1×[0,1]) admits a continuous extension to
∆n−1 × [0, 1], we deduce that F ∗|∂(∆n−1×[0,1]) has degree 0, which is a contra-
diction. Consequently, Int(σ̂) ⊂ F (Int(∆n−1)× (0, 1)), as required.

Given a polynomial h ∈ R[x] of degree 1 and the hyperplane H := {h = 0}
of Rn denote the two subspaces determined by H as H+ := {h ≥ 0} and

H− := {h ≤ 0}. Denote also ~h := h− h(0). If K := {f1 ≥ 0, . . . , fm ≥ 0} ⊂ Rn
is an n-dimensional convex polyhedron, where each fi ∈ R[x] is a polynomial of
degree 1, then Int(K) = {f1 > 0, . . . , fm > 0}. Thus, if K1, . . . ,Ks ⊂ Rn are n-
dimensional convex polyhedra, then Int(K1∩ . . .∩Ks) = Int(K1)∩ . . .∩ Int(Ks).
The following construction will be useful for the following result.

Let K ⊂ Rn be an n-dimensional convex polyhedron and let σ ⊂ ∂K be an
(n − 1)-dimensional simplex of vertices v1, . . . , vn. Let p ∈ Int(K) and let σ̂
be the n-simplex of vertices {p, v1, . . . , vn}. Let H1, . . . ,Hn be the hyperplanes
of Rn generated by the facets of σ̂ that contain p, which are those facets of σ̂
different from σ and suppose vi 6∈ Hi. Assume that σ̂ ⊂

⋂n
j=1H

+
j and consider

the convex polyhedra Sj := K∩
⋂
` 6=j H

−
` , (see Figure 3.6). Observe that p ∈ Sj

and Int(Sj) 6= ∅ because p ∈ Int(K) and the hyperplanes H1, . . . ,Hn are affinely
independent.
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�

v1 v2σ

σ̂

p

K

S1

S2

Figure 3.6: The polyhedra Sj (figure inspired by [FU5, Fig.4.2]).

Lemma 3.6.4. Let K := {g1 ≥ 0, . . . , gs ≥ 0} ⊂ Rn be an n-dimensional
convex polyhedron and let σ ⊂ ∂K be an (n− 1)-dimensional simplex of vertices
v1, . . . , vn. Fix p ∈ Int(K) and consider the simplex σ̂ of vertices {p, v1, . . . , vn}.
Let Hi := {hi = 0} be the hyperplanes of Rn generated by the facets of σ̂ that
contain p and assume vi 6∈ Hi and σ̂ ⊂

⋂n
i=1H

+
i . Let h0 ∈ R[t] be a polynomial

of degree 1 such that σ ⊂ {h0 = 0} and σ̂ ⊂ {h0 ≥ 0}. There exist continuous
semi-algebraic paths αi : [−δ, 1 + δ]→ K (for some δ > 0) that are Nash on the
compact neighbourhood I := [−δ, δ]∪ [1−δ, 1+δ] of {0, 1} and satisfy αi(0) = vi
and αi(1) = p for i = 1, . . . , n and ε > 0 such that the continuous semi-algebraic
map

F : ∆n−1 × [−δ, 1 + δ]→ K, (λ1, . . . , λn, t) 7→
n∑
i=1

λiαi(t),

(which is Nash on ∆n−1 × I) has the following property:

If G : ∆n−1 × [−δ, 1 + δ] → Rn is another continuous semi-algebraic map
that is Nash on a neighbourhood I ′ ⊂ I of ∆n−1 × {0, 1} and satisfies

∂`G

∂t`
(λ, 0) =

∂`F

∂t`
(λ, 0),

∂`G

∂t`
(λ, 1) =

∂`F

∂t`
(λ, 1)

for each λ ∈ ∆n−1 and ` = 0, 1, 2, 3, ‖G − F‖ < ε and
∥∥∥∂`G∂t` − ∂`F

∂t`

∥∥∥
I′
< ε for

` = 1, 2, 3, then σ̂ ⊂ G(∆n−1×[0, 1]) ⊂ K and G(∆n−1×([−δ′, 0]∪[1, 1+δ′])) ⊂ σ̂
for some 0 < δ′ < δ small enough.

Proof. The proof is conducted in several steps:

Initial preparation. Let us construct the continuous semi-algebraic paths
αi : [−δ, 1 + δ] → K. We claim: There exist continuous semi-algebraic paths
αi : R→ K such that:

(i) αi is Nash on I,

(ii) αi(t) = vi + t2ui + t3w + · · · and αi(1 + t) = p− t3w + · · · ,

(iii) αi([−δ, 0) ∪ (1, 1 + δ]) ⊂ Int(σ̂),

(iv) αi((0, 1)) ⊂ Si := Int(K ∩
⋂
j 6=iH

−
j ),
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(v) hj ◦ αi(t) = −ajt3 + · · · if i 6= j and hj ◦ αi(1 + t) = ajt
3 + · · · , where

aj > 0 and 1 ≤ i, j ≤ n,

(vi) hi ◦αi(t) = hi(vi)+ ~hi(ui)t
2−ait3 + · · · where hi(vi) > 0 and ~hi(ui) < 0,

(vii) h0 ◦ αi(t) = bi0t
2 + · · · where bi0 > 0 and 1 ≤ i ≤ n,

(viii) gk ◦ αi(t) = cik + dikt
2 + · · · where either cik > 0 or cik = 0 and dik > 0,

(ix) gk ◦ αi(1 + t) = eik + · · · where eik > 0.

We construct each continuous semi-algebraic path αi piecewisely. The open
semi-algebraic set Si defined in (iv) can be describes as

Si = {g1 > 0, . . . , gs > 0} ∩
⋂
j 6=i
j 6=0

{hj < 0}.

Define ui := ~vip and observe that ~hj(ui) = 0 if 1 ≤ i, j ≤ n and i 6= j. This is so
because hj(p) = 0 and hj(vi) = 0 if 1 ≤ i, j ≤ n and i 6= j. Recall that hi(vi) > 0

and hi(p) = 0, so ~hi(ui) < 0 for 1 ≤ i ≤ n. In addition, bi0 := ~h0(ui) > 0,
because h0(p) > 0 and h0(vi) = 0 for 1 ≤ i ≤ n. As gk(vi) ≥ 0 because σ̂ ⊂ K

and gk(vi) + ~gk(ui) = gk(vi + ui) = gk(p) > 0 because p ∈ Int(K), we deduce
that either cik := gk(vi) > 0 or cik = 0 and dik := ~gk(ui) > 0.

•
vi

•
vj

•
p

ui
uj

σ

σ̂

Figure 3.7: A picture of the situation.

As {~h1, . . . ,~hn} are independent linear forms, the open semi-algebraic set⋂n
j=1{~hj < 0} 6= ∅. Pick a non-zero vector w ∈

⋂n
j=1{~hj < 0} and write

aj := −~hj(w) > 0 for j = 1, . . . , n. Consider the polynomial path

αi0 : R→ Rn, t 7→ vi + t2ui + t3w.

As h0(vi) = 0 and hj(vi) = 0 for 1 ≤ i, j ≤ n if i 6= j, we deduce:

(h0 ◦ αi0)(t) = h0(vi) + ~h0(ui)t
2 + ~h0(w)t3 = bi0t

2 + ~h0(w)t3.

(hj ◦ αi0)(t) = hj(vi) + ~hj(ui)t
2 + ~hj(w)t3 = ~hj(w)t3 = −ajt3 if i 6= j,

(hi ◦ αi0)(t) = hi(vi) + ~hi(ui)t
2 + ~hi(w)t3 = hi(vi) + ~hi(ui)t

2 − ait3.

In addition,

(gk ◦ αi0)(t) = gk(vi) + ~gk(ui)t
2 + ~gk(w)t3 = cik + dikt

2 + ~gk(w)t3,

where either cik > 0 or both cik = 0 and dik > 0.

Consider the polynomial path

αi1 : R→ Rn, t 7→ p− (t− 1)3w.
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Observe that

h0 ◦ αi1(1 + t) = h0(p)− ~h0(w)t3,

hj ◦ αi1(1 + t) = hj(p)− ~hj(w)t3 = ajt
3

for 1 ≤ i, j ≤ n. As aj > 0, we have

hj ◦αi0(t)

{
< 0 if t > 0,

> 0 if t < 0,
if i 6= j and hj ◦αi1(1+ t)

{
> 0 if t > 0,

< 0 if t < 0.
(3.6.2)

Denote eik := gk(p) > 0 and observe that

gk ◦ αi1(1 + t) = gk(p)− ~gk(w)t3 = eik − ~gk(w)t3.

Let 0 < δ < 1
2 be such that (h0 ◦αi0)(t) > 0, h0 ◦αi1(1+ t) > 0, (gk ◦αi0)(t) > 0

and gk ◦ αi1(1 + t) > 0 for t ∈ [−δ, δ] (recall that h0(p) > 0). Thus, by (3.6.2),
αi0([−δ, 0)), αi1((1, 1 + δ]) ⊂ Int(σ̂) and αi0((0, δ]), αi1([1− δ, 1)) ⊂ Si.

As Si is a convex set and αi0(δ), αi1(1− δ) ∈ Si, the segment that connects
both points is contained in Si. Let

αi2 : [δ, 1− δ]→ Si, t 7→
(1− δ)− t

1− 2δ
αi0(δ) +

t− δ
1− 2δ

αi1(1− δ)

be a parametrization of such segment. Define the continuous semi-algebraic
path

αi := αi0|[−δ,δ] ∗ αi2 ∗ αi1|[1−δ,1+δ] : [−δ, 1 + δ]→ K,

which satisfies αi([−δ, 0)∪ (1, 1 + δ]) ⊂ Int(σ̂), αi((0, 1)) ⊂ Si and in fact all the
required conditions (i)-(ix).

Step 1. We have the following inclusions: σ̂ ⊂ F (∆n−1 × [0, 1]) ⊂ K and
F (∆n−1 × ([−δ, 0) ∪ (1, 1 + δ])) ⊂ Int(σ̂) ⊂ K.

Observe that F (∆n−1× (0, 1)) ⊂ K because K is convex and αi((0, 1)) ∈ K.
In addition, αi(1) = p for each i, so F (∆n−1 × {1}) = p, and

F (λ1, . . . , λn, 0) =

n∑
i=1

λivi,

so F (∆n−1 × {0}) = σ ⊂ K and F |∆n−1×{0} is a homeomorphism. Thus,
F (∆n−1 × [0, 1]) ⊂ K.

Let us analyse the restriction map F |∂∆n−1×(0,1) : ∂∆n−1 × (0, 1) → K.
Recall that ∂∆n−1 =

⋃n
i=1(∆n−1 ∩ {λi = 0}).

Fix an index i = 1, . . . , n and write λ(i) := (λ1, . . . , λi−1, 0, λi−1, . . . , λn)
where

∑
j 6=i λj = 1 and each λj ≥ 0 if j 6= i. We have Int(H−i ) ⊂ Rn \ σ̂ and

F (λ(i), t) =
∑
j 6=i

λjαj(t) ∈ Int(K ∩H−i ) = Int(K) ∩ Int(H−i ) ⊂ K \ σ̂ (3.6.3)

for t ∈ (0, 1), because if j 6= i each αj(t) ∈ Int(K) ∩ Int(H−i ) and the latter is
convex. Thus, F (∂∆n−1×(0, 1)) ⊂ K\σ̂. By Lemma 3.6.3 σ̂ ⊂ F (∆n−1×[0, 1]).
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As αi([−δ, 0) ∪ (1, 1 + δ]) ⊂ Int(σ̂) and Int(σ̂) is convex, one concludes that
F (∆n−1 × ([−δ, 0) ∪ (1, 1 + δ])) ⊂ Int(σ̂).

Let us construct ε > 0 such that: if G is under the hypothesis of the state-
ment, then σ̂ ⊂ G(∆n−1 × [0, 1]) ⊂ K and G(∆n−1 × ([−δ′, 0] ∪ [1, 1 + δ′])) ⊂ σ̂
for some 0 < δ′ < δ small enough.

Step 2. Choice of ε > 0. Recall that by (3.6.3) F (λ, t) ∈ Rn \ σ̂ for each
(λ, t) ∈ ∂∆n−1 × (0, 1). For each 0 < ρ < 1

2 define

ερ := 1
2 min {dist(F (λ, t), σ̂) : (λ, t) ∈ ∂∆n−1 × [ρ, 1− ρ]} > 0.

Observe that if G : ∆n−1 × [ρ, 1 − ρ] → Rn satisfies ‖F − G‖ < ερ, then
G((∂∆n−1 × [ρ, 1− ρ]) ⊂ Rn \ σ̂.

See assertions (i)-(ix) above for the definition of aj , bi0, cik, dik and eik. Con-
sider

c∗ik :=

{
cik if cik > 0,

dik if cik = 0.

and define
ε0 := 1

2 min{aj , bi0, c∗ik, eik : ∀ i, j, k} > 0.

By hypothesis (v) and (vi):

hj ◦ αi(t) = −ajt3 + · · · if i 6= j,

hi ◦ αi(t) = hi(vi) + ~hi(ui)t
2 − ait3 + · · · ,

hj ◦ αi(1 + t) = ajt
3 + · · · .

So there exists 0 < ρ0 < δ such that

−(hj ◦ αi)′′′|[−ρ0,ρ0] ≥ ε0 and (hj ◦ αi)′′′|[1−ρ0,1+ρ0] ≥ ε0.

As hi is a polynomial of degree 1, for i = 1, . . . , n,

∂`

∂t`
((hi ◦ F )(λ, t)) =

n∑
j=1

λj(hi ◦ αj)(`)(t)

for each ` ≥ 0. Consequently,

− ∂3

∂t3
(hi ◦ F )|∆n−1×[−ρ0,ρ0] ≥ ε0, (3.6.4)

∂3

∂t3
(hi ◦ F )|∆n−1×[1−ρ0,1+ρ0] ≥ ε0 (3.6.5)

for i = 1, . . . , n.

For each k = 1, . . . , s define Fk := {i = 1, . . . , n : cik 6= 0}. We have

gk(F (λ, t)) =
∑
i∈Fk

λicik +
∑
i∈Fk

λidikt
2 +

∑
i 6∈Fk

λidikt
2 + · · ·

Define Γk := {λ ∈ ∆n−1 : λi = 0, i ∈ Fk}. If Fk 6= {1, . . . , n}, then Γk 6= ∅
and µ0k := min{dik : i 6∈ Fk} > 0. If Fk = {1, . . . , n}, define µ0k := 1.
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If Fk 6= {1, . . . , n} and λ := (λ1, . . . , λn) ∈ Γk, then
∑
i6∈Fk λi = 1 and each

λi ≥ 0, so
∑
i 6∈Fk λidik ≥ µ0k. Define

Vk :=

{
λ ∈ ∆n−1 :

∑
i∈Fk

λi <
1

4
,

∣∣∣∣∣∑
i∈Fk

λidik

∣∣∣∣∣ < 1

4
µ0k

}

if Fk 6= ∅, {1, . . . , n}, Vk := ∆n−1 if Fk = ∅ and Vk := ∅ if Fk = {1, . . . , n}.
Observe that in the latter case Γk = ∅.

If Fk 6= ∅, {1, . . . , n}, then Vk 6= ∅ and if λ ∈ Vk, we have
∑
i6∈Fk λi >

3
4 , so∑

i6∈Fk λidik >
3
4µ0k and

1

2

∂2(gk ◦ F )

∂t2
(λ, 0) =

n∑
i=1

λidik =
∑
i∈Fk

λidik +
∑
i6∈Fk

λidik

> −µ0k

4
+

3µ0k

4
=

1

2
µ0k,

(3.6.6)

therefore,
∂2(gk ◦ F )

∂t2
(λ, 0) > µ0k.

If Fk = ∅, then
∑n
i=1 λi = 1 and

1

2

∂2(gk ◦ F )

∂t2
(λ, 0) =

n∑
i=1

λidik ≥ µ0k >
1

2
µ0k. (3.6.7)

If Fk 6= ∅, define

µ1k := min

{
(gk ◦ F )(λ, 0) =

∑
i∈Fk

λicik : λ := (λ1, . . . , λn) ∈ ∆n−1 \ Vk

}
> 0.

(3.6.8)
If Fk = ∅, define µ1k := 1.

Let 0 < ρ < ρ0 be such that{
|gk(F (λ, t))− gk(F (λ, 0))| < µ1k

2 if (λ, t) ∈ (∆n−1 \ Vk)× [−ρ, ρ],
∂2(gk◦F )
∂t2 (λ, t) > µ0k

2 if (λ, t) ∈ Vk × [−ρ, ρ].
(3.6.9)

Observe that F (∆n−1 × [ρ, 1 + ρ]) ⊂ Int(K) because Int(K) is convex and
αi([ρ, 1 + ρ]) ⊂ Int(K) for i = 1, . . . , n, so

ε′ρ := 1
2 min{dist(F (λ, t),Rn \Int(K)) : (λ, t) ∈ ∆n−1× [ρ, 1+ρ]} > 0. (3.6.10)

Thus, if G : ∆n−1 × [ρ, 1− ρ]→ Rn and ‖F −G‖ < ε′ρ, then

G((∆n−1 × [ρ, 1 + ρ]) ⊂ Int(K).

Denote ε′0 := min{ε0, µ1k,
µ0k

2 : k = 1, . . . , s}. The maps

Ψk : S3(∆n−1 × [−ρ, 1 + ρ],Rn)→ S3(∆n−1 × [−ρ, 1 + ρ],R), H 7→ gk ◦H,
Θi : S3(∆n−1 × [−ρ, 1 + ρ],Rn)→ S3(∆n−1 × [−ρ, 1 + ρ],R), H 7→ hi ◦H

55



3. Nash images of closed balls

are continuous with respect to the S3 topology. Let 0 < ε < min{ε′ρ, ερ} be

such that if ‖ ∂
`

∂t`
F − ∂`

∂t`
G‖ < ε for ` = 0, 1, 2, 3, then∣∣∣∣ ∂`∂t` (gk ◦ F )− ∂`

∂t`
(gk ◦G)

∣∣∣∣ =

∣∣∣∣ ∂`∂t` (Ψk(F ))− ∂`

∂t`
(Ψk(G))

∣∣∣∣ < ε′0
2
, (3.6.11)∣∣∣∣ ∂`∂t` (hi ◦ F )− ∂`

∂t`
(hi ◦G)

∣∣∣∣ =

∣∣∣∣ ∂`∂t` (Θi(F ))− ∂`

∂t`
(Θi(G))

∣∣∣∣ < ε′0
2

(3.6.12)

for ` = 0, 1, 2, 3 and G ∈ S3(∆n−1 × [−ρ, 1 + ρ],Rn). The chosen value ε > 0
depends only on K, F and ρ > 0.

Let us check next: ε > 0 satisfies the conditions in the statement. Let
G : ∆n−1 × [−ρ, 1 + ρ]→ Rn be a continuous semi-algebraic map satisfying the
conditions in the statement. We have to prove: σ̂ ⊂ G(∆n−1 × [0, 1]) ⊂ K and
G(∆n−1 × ([−δ′, 0] ∪ [1, 1 + δ′])) ⊂ σ̂ for some 0 < δ′ < δ.

Step 3. We prove first σ̂ ⊂ G(∆n−1× [0, 1]) as an application of Lemma 3.6.3.
Observe that G|∆n−1×{0} = F |∆n−1×{0} is a homeomorphism and G|∆n−1×{1} =
F |∆n−1×{1} = p. Let us show: G(∂∆n−1 × [0, 1]) ⊂ Rn \ σ̂.

As ‖F − G‖ < ε ≤ ερ, we have G(∂∆n−1 × [ρ, 1 − ρ]) ⊂ Rn \ σ̂. We fix
λ(i) ∈ ∆n−1 ∩ {λi = 0} and claim: G(λ(i), t) ∈ Int(H−i ) = {hi < 0} for each
t ∈ (0, ρ] ∪ [1− ρ, 1).

Denote ϕi := hi(G(λ(i), ·)). Suppose there exists t0 ∈ (0, ρ] such that
ϕi(t0) ≥ 0. As

hi(F (λ(i), t)) =
∑
j 6=i

λj(hi ◦ αj)(t) =
∑
j 6=i

λj(−ait3 + · · · )

and F (λ(i), t)−G(λ(i), t) ∈ (t)4R[[t]], we have

ϕi(t) = hi(G(λ(i), t)) =
∑
j 6=i

λj(−ait3 + · · · ).

Thus, ϕi(t) < 0 for t > 0 close to 0, so we may assume ϕi(t0) = 0. Consequently,
as ϕi(0) = 0, there exists by Rolle’s theorem t1 ∈ (0, t0) such that ϕ′i(t1) = 0.
As ϕ′i(0) = 0, there exists t2 ∈ (0, t1) satisfying ϕ′′i (t2) = 0. As ϕ′′i (0) = 0, there
exists t3 ∈ (0, t2) such that ϕ′′′i (t3) = 0. We have by (3.6.4) and (3.6.12)

ε0 ≤
∣∣∣∣ ∂3

∂t3
(hi ◦ F )(λ(i), t3)

∣∣∣∣ =

∣∣∣∣ ∂3

∂t3
(hi ◦ F )(λ(i), t3)− ϕ′′′i (t3)

∣∣∣∣
=

∣∣∣∣ ∂3

∂t3
(hi ◦ F )(λ(i), t3)− ∂3

∂t3
(hi ◦G)(λ(i), t3)

∣∣∣∣ ≤ ε0

2
,

which is a contradiction. Consequently, ϕi(t) < 0 for each t ∈ (0, ρ].

Analogously, one shows ϕi(t) < 0 for each t ∈ [1 − ρ, 1) and i = 1, . . . , n.
Thus,

G(∂∆n−1 × (0, 1)) =

n⋃
i=1

G((∆n−1 ∩ {λi = 0})× (0, 1)) ⊂
n⋃
i=1

{hi < 0} = Rn \ σ̂.
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By Lemma 3.6.3 we have σ̂ ⊂ G(∆n−1 × [0, 1]).

Step 4. We prove next: G(∆n−1 × ([−ρ, 1 + ρ] \ {0})) ⊂ Int(K).

Since ‖F −G‖ < ε ≤ ε′ρ (see (3.6.10) for the definition of ε′ρ), we have

G(∆n−1 × [ρ, 1 + ρ]) ⊂ Int(K).

Fix k = 1, . . . , s and let λ ∈ ∆n−1. Let us check:

G(λ, t) ∈ Int(K) = {g1 > 0, . . . , gs > 0}

for each t ∈ [−ρ, ρ] \ {0}.
We distinguish two cases:

Case 1. λ ∈ ∆n−1 \ Vk. Observe that if Fk = ∅, then ∆n−1 \ Vk = ∅. By
(3.6.9) and (3.6.11)

|gk ◦G− gk ◦ F | <
µ1k

2
and |gk(F (λ, t))− gk(F (λ, 0))| < µ1k

2
,

if t ∈ [−ρ, ρ]. By (3.6.8) we deduce

(gk ◦G)(λ, t) = (gk ◦ F )(λ, 0) + (gk ◦G)(λ, t)− (gk ◦ F )(λ, t)

+ (gk ◦ F )(λ, t)− (gk ◦ F )(λ, 0) > µ1k −
µ1k

2
− µ1k

2
= 0

for each t ∈ [−ρ, ρ]. Thus, gk(G(λ, t)) > 0 for t ∈ [−ρ, ρ] and k = 1, . . . , s, that
is, G(λ, t) ∈ Int(K) for t ∈ [−ρ, ρ].

Case 2. Vk 6= ∅ and λ ∈ Vk. Then 0 ≤
∑
i∈Fk λicik and

∑n
i=1 λidik ≥

1
2µ0k > 0

(see (3.6.6) and (3.6.7)). As

gk(F (λ, t)) =

n∑
i=1

λi(gk ◦ αi)(t) =
∑
i∈Fk

λicik +

n∑
i=1

λi(dikt
2 + · · · )

and F (λ, t)−G(λ, t) ∈ (t)4R[[t]], we have

gk(G(λ, t)) =
∑
i∈Fk

λicik +

n∑
i=1

λi(dikt
2 + · · · ).

Define θk := gk(G(λ, ·))−
∑
i∈Fk λicik. Suppose there exists t0 ∈ [−ρ, ρ]\{0}

such that θk(t0) ≤ 0. As θk(t) > 0 for t close to 0, we may assume θk(t0) = 0.
By Rolle’s theorem there exists t1 ∈ (0, t0) (or t1 ∈ (t0, 0)) such that θ′k(t1) = 0.
As θ′k(0) = 0, there exists t2 ∈ (0, t1) (or t2 ∈ (t1, 0)) satisfying θ′′k(t2) = 0. We
have by (3.6.9) and (3.6.11)

µ0k

2
≤
∣∣∣∣ ∂2

∂t2
(gk ◦ F )(λ, t2)

∣∣∣∣ =

∣∣∣∣ ∂2

∂t2
(gk ◦ F )(λ, t2)− θ′′k(t2)

∣∣∣∣
=

∣∣∣∣ ∂2

∂t2
(gk ◦ F )(λ, t2)− ∂2

∂t2
(gk ◦G)(λ, t2)

∣∣∣∣ < ε′0
2
≤ µ0k

4
,

which is a contradiction. Consequently, θk(t) > 0 for each t ∈ [−ρ, ρ] \ {0} and
k = 1, . . . , s. Thus G(λ, t) ∈ Int(K) for t ∈ [−ρ, ρ] \ {0}.
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Step 5. Observe that

G(∆n−1 × {0}) = F (∆n−1 × {0}) = σ ⊂ σ̂,
G(∆n−1 × {1}) = F (∆n−1 × {1}) = {p} ⊂ σ̂.

Finally, we show: G(∆n−1× ([−δ′, 0)∪ (1, 1+δ′])) ⊂ σ̂ for some 0 < δ′ ≤ ρ < δ.

For each λ := (λ1, . . . , λn) ∈ ∆n−1 consider

hi(F (λ, t)) =

n∑
j=1

λj(hi ◦ αj)(t) = (hi ◦ αi)(t) +
∑
j 6=i

λj(−ajt3 + · · · )

As F (λ, t)−G(λ, t) ∈ (t)4R[[t]], we have

hi(G(λ, t)) = λi(hi(vi) + ~hi(ui)t
2 − ait3 + · · · ) +

∑
j 6=i

λj(−ajt3 + · · · )

= λi(hi(vi) + ~hi(ui))t
2 −

n∑
j=1

λjajt
3 + · · · .

Thus, hi(G(λ, t)) > 0 for t < 0 close enough to 0.

Pick λ ∈ ∆n−1 and define

ψi(t) := hi(G(λ, t))− λi(hi(vi) + ~hi(ui))t
2 = −

n∑
j=1

λjajt
3 + · · · .

Suppose that there exists t0 ∈ [−ρ, 0) such that ψi(t0) ≤ 0. Observe that
ψi(0) = 0 and ψi(t) > 0 for t < 0 close enough to 0. Thus, we may assume
ψi(t0) = 0. As ψi(0) = 0, by Rolle’s theorem there exists t1 ∈ (t0, 0) such that
ψ′i(t1) = 0. As ψ′i(0) = 0, there exists t2 ∈ (t1, 0) satisfying ψ′′i (t2) = 0. As
ψ′′i (0) = 0, there exists t3 ∈ (t2, 0) such that ψ′′′i (t3) = 0. Recall that by (3.6.4)

∂3

∂t3
(hi ◦ F )(λ, t) = −6

n∑
j=1

λjaj + · · · ≤ −ε0

Thus, we have by (3.6.12)

ε0 ≤
∣∣∣∣ ∂3

∂t3
(hi ◦ F )(λ, t3)

∣∣∣∣ =

∣∣∣∣ ∂3

∂t3
(hi ◦ F )(λ, t3)− ψ′′′i (t3)

∣∣∣∣
=

∣∣∣∣ ∂3

∂t3
(hi ◦ F )(λ, t3)− ∂3

∂t3
(hi ◦G)(λ, t3)

∣∣∣∣ ≤ ε0

2
,

which is a contradiction. Consequently, ψi(t) > 0 for each t ∈ [−ρ, 0). As

hi(vi) > 0, there exists 0 < δ′ ≤ ρ < δ such that hi(vi)+t2~hi(ui) > 0 on [−δ′, 0)
for i = 1, . . . , n. Thus, hi(G(λ, t)) > 0 on ∆n−1 × [−δ′, 0) for i = 1, . . . , n.

Let us show hi(G(λ, t)) > 0 for (λ, t) ∈ (1, 1 + ρ] and i = 1, . . . , n. We have

hi(F (λ, 1 + t)) =

n∑
j=1

λj(hi ◦ αj) =

n∑
j=1

λjajt
3 + · · ·
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and we can repeat the previous argument taking φi(t) := hi(G(λ, 1 + t). As
F (λ, 1 + t)−G(λ, 1 + t) ∈ (t)4R[[t]],

φi(t) = hi(G(λ, 1 + t) =

n∑
j=1

λj(hi ◦ αj) =

n∑
j=1

λjajt
3 + · · · .

Suppose that there exists t0 ∈ (0, ρ] such that φi(t0) ≤ 0. Observe that φi(0) = 0
and φi(t) > 0 for t > 0 close enough to 0. Thus, we may assume φi(t0) = 0. As
φi(0) = 0, by Rolle’s theorem, there exists t1 ∈ (0, t0) such that φ′i(t1) = 0. As
φ′i(0) = 0, there exists t2 ∈ (0, t1) satisfying φ′′i (t2) = 0. As ψ′′i (0) = 0, there
exists t3 ∈ (0, t2) such that φ′′′i (t3) = 0. We have by (3.6.5) and (3.6.12)

ε0 ≤
∣∣∣∣ ∂3

∂t3
(hi ◦ F )(λ, 1 + t3)

∣∣∣∣ =

∣∣∣∣ ∂3

∂t3
(hi ◦ F )(λ, 1 + t3)− ψ′′′i (t3)

∣∣∣∣
=

∣∣∣∣ ∂3

∂t3
(hi ◦ F )(λ, 1 + t3)− ∂3

∂t3
(hi ◦G)(λ, 1 + t3)

∣∣∣∣ ≤ ε0

2
,

which is a contradiction. Thus φi(t) > 0 for each t ∈ (0, ρ], so hi(G(λ, t)) > 0
on ∆n−1 × (1, 1 + ρ].

We conclude G(∆n−1 × ([−δ′, 0) ∪ (1, 1 + δ′])) ⊂ σ̂, as required.

We will use the technical Lemma 3.6.4 to ‘cover’ simplices with Nash maps.
To that end, we approximate first the continuous semi-algebraic paths by Nash
paths. Let us check that for (close enough) approximations we obtain the desired
result.

Remark 3.6.5. For each i = 1, . . . , n let α∗i : [−δ, 1 + δ] → K be a continuous
semi-algebraic path such that α∗i |I is a Nash map, α∗i is close to αi, (α∗i |I)(`) is
close to (αi|I)(`) for ` = 1, 2, 3, (α∗i )

(`)(0) = (αi)
(`)(0) and (α∗i )

(`)(1) = (αi)
(`)(1)

for ` = 0, 1, 2, 3 (recall that I := [−δ, δ] ∪ [1− δ, 1 + δ]).

(i) Then there exists ε∗ > 0 and

F ∗ : ∆n−1 × [−δ, 1 + δ]→ K, (λ, t) 7→
n∑
i=1

λiα
∗
i (t)

that satisfy the same conditions as ε and F in the statement of Theorem 3.6.4.

Observe that

(F − F ∗)(λ, t) =

n∑
i=1

λi(αi(t)− α∗i (t)),(
∂`F

∂t`
− ∂`F ∗

∂t`

)
(λ, t) =

n∑
i=1

λi(α
(`)
i (t)− (α∗i )

(`)(t))

for ` = 1, 2, 3. In addition, for ` = 0, 1, 2, 3,

∂`F

∂t`
(λ, 0) =

n∑
i=1

λiα
(`)
i (0) =

n∑
i=1

λi(α
∗
i )

(`)(0) =
∂`F ∗

∂t`
(λ, 0),

∂`F

∂t`
(λ, 1) =

n∑
i=1

λiα
(`)
i (1) =

n∑
i=1

λi(α
∗
i )

(`)(1) =
∂`F ∗

∂t`
(λ, 1).
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Take ε∗ := ε
2 > 0 and assume that ‖αi − α∗i ‖ < ε∗ and ‖α(`)

i − (α∗i )
(`)‖I < ε∗

for ` = 1, 2, 3. Let G : ∆n−1 × [−δ, 1 + δ]→ Rn be a continuous semi-algebraic
map that is Nash on a neighbourhood I ′ ×∆n−1 ⊂ I ×∆n−1 of ∆n−1 × {0, 1}
and satisfies ∂`G

∂t`
(λ, 0) = ∂`F∗

∂t`
(λ, 0), ∂`G

∂t`
(λ, 1) = ∂`F∗

∂t`
(λ, 1) for each λ ∈ ∆n−1

and ` = 0, 1, 2, 3, ‖G− F ∗‖ < ε∗ and ‖∂
`G
∂t`
− ∂`F∗

∂t`
‖I′ < ε∗ for ` = 1, 2, 3. Then

∂`G

∂t`
(λ, 0) =

∂`F ∗

∂t`
(λ, 0) =

∂`F

∂t`
(λ, 0),

∂`G

∂t`
(λ, 1) =

∂`F ∗

∂t`
(λ, 1) =

∂`F

∂t`
(λ, 1)

for each λ ∈ ∆n−1 and ` = 0, 1, 2, 3, and

‖G− F‖ ≤ ‖G− F ∗‖+ ‖F ∗ − F‖ < ε∗ + ε∗ = ε,∥∥∥∥∂`G∂t` − ∂`F

∂t`

∥∥∥∥
I′
≤
∥∥∥∥∂`G∂t` − ∂`F ∗

∂t`

∥∥∥∥
I′

+

∥∥∥∥∂`F ∗∂t`
− ∂`F

∂t`

∥∥∥∥
I′
< ε∗ + ε∗ = ε

for ` = 1, 2, 3. By Theorem 3.6.4 we have that σ̂ ⊂ G(∆n−1 × [0, 1]) ⊂ K and
G(∆n−1×([−ρ, 0]∪[1, 1+ρ])) ⊂ σ̂ for some 0 < ρ < δ small enough, as required.

(ii) By (i) and Lemma 3.3.5 we may assume that each path αi : [−δ, 1+δ]→
K in the statement of Theorem 3.6.4 is Nash on [−δ, 1 + δ].

The following result provides sufficient conditions to guarantee that the high
order derivatives of two continuous semi-algebraic functions on Rd × [−1, 1]
that are Nash on a neighbourhood of a semi-algebraic set S× {0} are equal at
the points of S × {0}. This provides a sufficient condition to decide when the
approximating maps satisfy the hypothesis of Lemma 3.6.4.

Lemma 3.6.6. Let S ⊂ Rd be a non-empty semi-algebraic set. Let F,G :
Rd × [−1, 1] → Rm be two continuous semi-algebraic maps that are Nash on
a neighbourhood of S × {0} and suppose that there exists a Nash function λ :
[−1, 1]→ R such that ‖F−G‖S×[−1,1] < |λ|[−1,1] and that λ(t) = ak+1t

k+1u2(t)
where ak+1 6= 0 and u ∈ R[[t]]alg is a Nash series such that u(0) = 1. Then, for
each x ∈ S we have

∂F

∂t`
(x, 0) =

∂G

∂t`
(x, 0)

for ` = 0, . . . , k.

Proof. Pick x ∈ S and write

F (x, t) :=
∑
`≥0

1

`!

∂F

∂t`
(x, 0)t`,

G(x, t) :=
∑
`≥0

1

`!

∂G

∂t`
(x, 0)t`.

Thus, we have the following inequalities in the ring R[[t]]alg of Nash series with
respect to any of its two orders (the one characterised by t > 0 and the other
one by t < 0):∥∥∥∑

`≥0

1

`!

(
∂F

∂t`
(x, 0)− ∂G

∂t`
(x, 0)

)
t`
∥∥∥ ≤ ‖F (x, t)−G(x, t)‖

≤ |ak+1||tk+1|u2 ≤ |ak+1t
k+1 + · · · |.
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Consequently, the series∑
`≥0

1

`!

(
∂F

∂t`
(x, 0)− ∂G

∂t`
(x, 0)

)
t`

is a series of order ≥ k + 1, so

∂F

∂t`
(x, 0)− ∂G

∂t`
(x, 0) = 0

for ` = 0, . . . , k, as required.

3.6.3. Local charts and tubular neighbourhoods. Let T ⊂ Rn be a com-

pact checkerboard set of dimension d ≥ 2. The algebraic set M := T
zar ⊂ Rn

is a Nash manifold. By [FGR, Thm.1.6] the Nash normal-crossings divisor

∂T
zar ⊂M can be covered by finitely many open semi-algebraic subset U ⊂M

endowed with Nash diffeomorphisms ψU := (u1, . . . , ud) : U → Rd such that

U ∩ ∂Tzar
= {u1 · · ·us = 0} for some s depending on U . As T is compact, there

exist finitely many Nash diffeomorphisms φi : Rd → Ui ⊂M for i = 1, . . . , r such
that φi(Λki) ⊂ T, where Λki := {x1 ≥ 0, . . . , xki ≥ 0} ⊂ Rd for some 0 ≤ ki ≤ d,
and {φi(Λki)}ri=1 is a finite covering for T, that is, T =

⋃
i φi(Λki). Moreover we

may assume that, if Ui ∩ ∂T
zar 6= ∅ then Ui ∩ ∂T

zar
= {u1 · · ·uki = 0}, where

φ−1
i := (u1, . . . , ud). In particular,

⋃
i φi(Int(Λki)) ⊂ Reg(T) = T \ ∂T.

Let (Ω, ν) be a Nash tubular neighbourhood for the Nash manifoldM := T
zar

endowed with a retraction ν such that dist(z,M) = ‖ν(z) − z‖ for each z ∈ Ω
(see [BCR, Cor.8.9.5]). When T is compact, shrinking Ω if necessary, we may
assume Cl(ν−1(T)) is compact and ν admits a Nash extension to Cl(ν−1(T)).

3.6.4. Some preliminary estimations. We want to provide some estimations
in order to apply Lemma 3.6.6 later in our construction. Let x ∈M and y ∈ Rn
be such that x+ y ∈ Ω, then

‖ν(x+ y)− x‖ ≤ ‖ν(x+ y)− (x+ y)‖+ ‖y‖
= dist(x+ y,M) + ‖y‖ ≤ ‖x+ y − x‖+ ‖y‖ = 2‖y‖.

Let F := {ψ : Rd → Rd linear} ≡ (Rd,∗)d and let ψ1, . . . , ψr ∈ F. If w ∈ Rd and
λ1, . . . , λr ∈ R are such that (φ1 ◦ ψ1)(w) +

∑r
i=1 λi(φi ◦ ψi)(w) ∈ Ω, then

∥∥∥ν((φ1 ◦ ψ1)(w) +

r∑
i=1

λi(φi ◦ ψi)(w)
)
− (φ1 ◦ ψ1)(w)

∥∥∥
≤ 2
∥∥∥ r∑
i=1

λi(φi ◦ ψi)(w)
∥∥∥ ≤ 2

r∑
i=1

|λi|‖(φi ◦ ψi)(w)‖.
(3.6.13)

Recall that Bd(0, ε) (resp. Bd(0, ε)) denotes the closed ball (resp. open ball)
of Rd of centre the origin and radius ε > 0.

Lemma 3.6.7. Let M ⊂ Rn be a Nash manifold and consider a Nash chart
θ := (θ1, . . . , θn) : Rd → M . Let π : Rn → Rd be the projection onto the first
d coordinates and denote W := (π ◦ θ)(Rd). Assume that W is open and that
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3. Nash images of closed balls

the map θ′ := π ◦ θ : Rd → W is a Nash diffeomorphism. For each t > 0 there
exists a constant Lt > 0 such that ‖θ−1(x) − θ−1(y)‖ ≤ Lt‖x − y‖ for each
x, y ∈ θ(Bd(0, t)).

Proof. Define f := (θd+1, . . . , θn) ◦ θ′−1 : W → Rn−d and observe that we have
θ ◦ θ′−1 : W → θ(Rd), z 7→ (z, f(z)). Thus,

‖z − w‖ ≤ ‖(z, f(z))− (w, f(w))‖ = ‖(θ ◦ θ′−1)(z)− (θ ◦ θ′−1)(w)‖

for each z, w ∈W . Consequently, writing z = (θ′◦θ−1)(x) and w = (θ′◦θ−1)(y),
we deduce

‖(θ′ ◦ θ−1)(x)− θ′ ◦ θ−1(y)‖ ≤ ‖x− y‖
for each x, y ∈ θ(Rd) = (θ ◦ θ′−1)(W ).

By the mean value theorem there exists a constant Lt > 0 such that

‖θ′−1(z)− θ′−1(w)‖ ≤ Lt‖z − w‖

for each z, w ∈ θ′(Bd(0, t)). Thus,

‖θ−1(x)− θ−1(y)‖ = ‖θ′−1((θ′ ◦ θ−1)(x))− θ′−1((θ′ ◦ θ−1)(y))‖
≤ Lt‖(θ′ ◦ θ−1)(x)− θ′ ◦ θ−1(y)‖ ≤ Lt‖x− y‖

for each x, y ∈ θ(Bd(0, t)), as required.

As T is compact, we may assume T ⊂
⋃r
i=1 φi(Bd(0, 1)) = M . We may

also assume, using the compactness of T, that each φi is under the hypothesis
of Lemma 3.6.7. Define K := max{‖x‖ : x ∈ T} > 0. If w ∈ Bd(0, 1) and
λ1, . . . , λr ∈ R are such that ν((φ1◦ψ1)(w)+

∑r
i=1 λi(φi◦ψi)(w)) ∈ φ1(Bd(0, 1)),

then by (3.6.13) and Lemma 3.6.7 there exists L > 0 such that∥∥∥φ−1
1

(
ν
(

(φ1 ◦ ψ1)(w) +

r∑
i=1

λi(φi ◦ ψi)(w)
))
− ψ1(w)

∥∥∥
≤ L

∥∥∥ν((φ1 ◦ ψ1)(w) +

r∑
i=1

λi(φi ◦ ψi)(w)
)
− (φ1 ◦ ψ1)(w)

∥∥∥ (3.6.14)

≤ 2L

r∑
i=1

|λi|‖(φi ◦ ψi)(w)‖ ≤ 2LK

r∑
i=1

|λi|.

3.6.5. Decomposition as a finite union of ‘simplices’. Consider the vec-

tors of the standard basis ei := (0, . . . , 0, 1, 0, . . . , 0), for i = 1, . . . , d, of Rd. Fix
k = 1, . . . , d and consider the convex polyhedron Kk that is the convex hull of
the origin and the points

e1, . . . , ek, ek+1,−ek+1, . . . , ed,−ed.

We have that the polyhedron Kk is a compact neighbourhood of the origin in
Λk = {x1 ≥ 0, . . . , xk ≥ 0}, Kk∩∂Λk = ∂Kk∩∂Λk and Int(Kk) = Kk∩ Int(Λk).
Observe that Kk is the union of the simplices ∆(εk+1, . . . , εd) of vertices the
origin and the points

e1, . . . , ek, εk+1ek+1, . . . , εded,
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3.6. Building Nash images with bare-hands

where εk+1, . . . , εd = ±1. Let Tk be the collection of the proper faces of the
simplices ∆(εk+1, . . . , εd) that are contained in ∂Kk. Observe that Tk provides
a triangulation of ∂Kk. Define

pk :=

k∑
j=1

1

2d− k + 1
ej

=

k∑
j=1

1

2d− k + 1
ej +

d∑
j=k+1

1

2d− k + 1
ej +

d∑
j=k+1

1

2d− k + 1
(−ej) +

1

2d− k + 1
0,

which belongs to Int(Kk). Observe that if k = 0 then p0 is the origin. For each
σ ∈ Tk define σ̂ as the convex hull of σ∪{pk}, which is a simplex. Observe that

T̂k := {σ̂ : σ ∈ Tk} is a triangulation of Kk such that

σ̂ ∩ ∂Λk = σ̂ ∩Kk ∩ ∂Λk = σ̂ ∩ ∂Kk ∩ ∂Λk = σ ∩ ∂Λk,

which is either the empty set or a face of σ (see Figure 3.8). Let Fk be the

collection of the simplices σ̂ ∈ T̂k of dimension d.

We retake here the Nash atlas {φi}ri=1 of M = T
zar

introduced in 3.6.3 and
we keep all the hypothesis concerning {φi}ri=1 already introduced there. We
may assume that {φi(Kki)}ri=1 is a covering of the compact checkerboard set
T introduced in 3.6.3. For each i consider the finite family Fki of simplices
of dimension d. Note that we are considering the families Fki1 and Fki2 as

different families of simplices when i1 6= i2, even if Ki1 = Ki2 as subsets of Rd.
We consider all the pairs (φi, τ) where τ ∈ Fki . Observe that τ is the convex
hull of σ ∪ {pki} for some σ ∈ Tki .

Repeating the diffeomorphisms φi as many times as needed and reordering
the diffeomorphisms φi, we may assume that {φi(τi)}ri=1 is a covering of T such
that τi is a d-dimensional simplex of Rd and τi ∩ φ−1

i (∂T) is either the empty
set or a proper face of τi. Let σi be the (d− 1)-dimensional face of τi that does
not contain pi := pki . Observe that τi ∩ φ−1

i (∂T) ⊂ σi. Note that pi belongs to
φ−1
i (Reg(T)) because pi ∈ Int(Λki) ⊂ φ−1

i (Reg(T)).

−e2

e1−e1

e2

e1−e1

k = 0

−e2

e1−e1

e2
k = 1

−e2

e1−e1

e2
k = 2

Figure 3.8: Triangulations T̂k of the polyhedra Kk for d = 2.

3.6.6. Shrewd set of maps. Consider the vectors of the standard basis

ei := (0, . . . , 0, 1, 0, . . . , 0),

for i = 1, . . . , r, of Rr. Let F := {ψ : Rd → Rd linear} ≡ (Rd,∗)d and write
µ := (µ1, . . . , µr) ∈ Rr and ψ := (ψ1, . . . , ψr) ∈ Fr. Let

Γ : Rr × Fr → N (Rd,Rn), (µ;ψ) 7→
r∑
i=1

µi(φi ◦ ψi),
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3. Nash images of closed balls

which is a continuous map if both spaces F and N (Rd,Rn) are endowed with
the compact-open topology. The compact-open topology of F coincides with the
topology of F induced by the Euclidean topology in the coefficients of (Rd,∗)d.
Recall that

∆d−1 := {λ1 ≥ 0, . . . , λd ≥ 0, λ1 + . . .+ λd = 1} ⊂ Rd.

Note that an element of Rd,∗ is determined by the images of the vertices of
∆d−1, which is a (compact) finite set.

Define Θ0 := {(µ;ψ) ∈ Rr × Fr : Γ(µ, ψ)(∆d−1) ⊂ ν−1(Reg(T))} and let us
prove that it is an open semi-algebraic set. The objects T and ν were already
introduced in 3.6.3.

Proposition 3.6.8. The set Θ0 ⊂ Rr × Fr is open and semi-algebraic.

Proof. The fact that Θ0 is semi-algebraic follows by the Tarski-Seidenberg prin-
ciple (see for instance [Co, Thm.2.6]), because it can be described as

Θ0 = {x ∈ Rr × Fr : Ψ(x)},

where Ψ(x) is a first order formula in the language of ordered fields.

Let us show now that Θ0 is open. Recall that Reg(T) is an open semi-
algebraic subset of T. As T is pure dimensional, Reg(T) is open in the Nash

manifold M := T
zar

. Thus ν−1(Reg(T)) is an open subset of Rn. Consider now
the set

{F ∈ N (Rd,Rn) : F (∆d−1) ⊂ ν−1(Reg(T))},

which is an open subset of the open-compact topology of N (Rd,Rn). Thus, the
set Θ0 = Γ−1({F ∈ N (Rd,Rn) : F (∆n−1) ⊂ ν−1(Reg(T))}) is an open subset
of Rr × Fr, because the map Γ is continuous.

3.6.7. Properties of Θ0. For each w ∈ Rd, define the linear map

ψw : Rd → Rd, (x1, . . . , xd) 7→ (x1 + · · ·+ xd)w.

Observe that ψw|{x1+···+xd=1} is the constant map w and recall that the simplex
∆d−1 ⊂ {x1 + · · ·+ xd = 1}. Let us analyse some properties of Θ0:

(1) If φi(wi) ∈ Reg(T), then (ei; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0) ∈ Θ0.

As Γ(ei; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0)(∆d−1) = {φi(wi)} ⊂ Reg(T) ⊂ ν−1(Reg(T)),
we have

(ei; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0) ∈ Θ0.

(2) Given 1 ≤ i, j ≤ r, let wi ∈ Int(Λki) and zj ∈ Int(Λkj ) be such that
φi(wi) = φj(zj). Then

(ei; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0) and (ej ; 0, . . . , 0,
(j)

ψwj , 0, . . . , 0)

belong to the same connected component of Θ0.
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3.6. Building Nash images with bare-hands

Observe that

φi(wi) = (1− t)φi(wi) + tφj(zj) = φj(zj) ∈ Reg(T) ⊂ ν−1(Reg(T))

for t ∈ [0, 1]. Thus,

Γ(((1− t)ei + tej ; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0,
(j)

ψzj , 0, . . . , 0))(∆d−1)

= ((1− t)(φi ◦ ψwi) + t(φj ◦ ψzj ))(∆d−1)

= {(1− t)φi(wi) + tφj(zj)} ⊂ ν−1(Reg(T)),

so ((1− t)ei + tej ; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0,
(j)

ψzj , 0, . . . , 0) ∈ Θ0 for t ∈ [0, 1]. Conse-
quently, the connected set

C1 := {((1− t)ei + tej ; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0,
(j)

ψzj , 0, . . . , 0) : t ∈ [0, 1]},

is contained in one of the connected components of Θ0. In addition, for t ∈ [0, 1]

Γ(ei; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0,
(j)

ψtzj , 0, . . . , 0)(∆d−1) = {φi(wi)} ⊂ ν−1(Reg(T))

Γ(ej ; 0, . . . , 0,
(i)

ψtwi , 0, . . . , 0,
(j)

ψzj , 0, . . . , 0)(∆d−1) = {φj(zj)} ⊂ ν−1(Reg(T))

As ψtzj = tψzj and ψtwi = tψwi for t ∈ [0, 1], we deduce

(ei; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0,
(j)

tψzj , 0, . . . , 0) ∈ Θ0 for t ∈ [0, 1],

(ej ; 0, . . . , 0,
(i)

tψwi , 0, . . . , 0,
(j)

ψzj , 0, . . . , 0) ∈ Θ0 for t ∈ [0, 1].

Thus, the connected sets

C2 := {(ei; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0,
(j)

tψzj , 0, . . . , 0) : t ∈ [0, 1]},

C3 := {(ej ; 0, . . . , 0,
(i)

tψwi , 0, . . . , 0,
(j)

ψzj , 0, . . . , 0) : t ∈ [0, 1]}

are contained in a connected component of Θ0. As

C1 ∩ C2 = {(ei; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0,
(j)

ψ zj , 0, . . . , 0)},

C1 ∩ C3 = {(ej ; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0,
(j)

ψ zj , 0, . . . , 0)},

we deduce C1 ∪ C2 ∪ C3 is a connected subset of Θ0 contained in one of its
connected components.

We conclude that

(ei; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0) ∈ C2 and (ej ; 0, . . . , 0,
(j)

ψwj , 0, . . . , 0) ∈ C3

belong to the same connected component of Θ0.
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3. Nash images of closed balls

(3) If wi ∈ Int(Λki) and zj ∈ Int(Λkj ), then

(ei; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0) and (ej ; 0, . . . , 0,
(j)

ψzj , 0, . . . , 0)

belong to the same connected component of Θ0.

As T =
⋃r
i=1 φi(Λki) is connected and Int(φi(Λki)) is dense in φi(Λki), given

1 ≤ i, j ≤ r there exists a chain {φi`(Λki` )}
s
`=1 such that i = i1, j = is and

φi`(Int(Λki` )) ∩ φi`+1
(Int(Λki`+1

)) 6= ∅ for each `. Observe that

r⋃
i=1

φi(Int(Λki)) ⊂ Reg(T),

see Section 3.6.3. So let us consider the case φi(Int(Λki)) ∩ φj(Int(Λkj )) 6= ∅.
By (2) it is enough to consider the case i = j. Observe that

tψwi + (1− t)ψzi = ψtwi+(1−t)zi

for each t ∈ [0, 1]. As wi, zi ∈ Int(Λki) and the latter is convex, we have that
twi + (1− t)zi ∈ Int(Λki) for each t ∈ [0, 1], so

Γ((ei; 0, . . . , 0,
(i)

tψwi + (1− t)ψzi , 0, . . . , 0))

= φi(twi + (1− t)zi) ∈ Reg(T) ⊂ ν−1(Reg(T)).

Thus,

{(ei; 0, . . . , 0,
(i)

tψwi + (1− t)ψzi , 0, . . . , 0) : t ∈ [0, 1]} ⊂ Θ0

is connected, so

(ei; 0, . . . , 0,
(i)

ψwi , 0, . . . , 0) and (ei; 0, . . . , 0,
(i)

ψzi , 0, . . . , 0)

belong to the same connected component of Θ0.

(4) There exists a connected component Θ of Θ0 that contains the connected set
{ei} × Fi−1 × {ψwi : wi ∈ Int(Λki)} × Fr−i for each i = 1, . . . , r.

Observe that

Γ((ei;ψ1, . . . , ψi−1, ψwi , ψi+1, . . . , ψr))(∆d−1)

= φi(ψwi)(∆d−1) = φi(wi) ∈ Reg(T) ⊂ ν−1(Reg(T)),

so {ei} × Fi−1 × {ψwi : wi ∈ Int(Λki)} × Fr−i ⊂ Θ0 and it is a connected set,
because it is a finite product of connected sets.

(5) Let Θ be the connected component of Θ0 introduced in (4). If ψi ∈ F

satisfies ψi(∆d−1) ⊂ Λki , then (ei; 0, . . . , 0,
(i)

ψi, 0, . . . , 0) ∈ Cl(Θ). If in addition

ψi(∆d−1) ⊂ Int(Λki), then (ei; 0, . . . , 0,
(i)

ψi, 0, . . . , 0) ∈ Θ.

Let wi ∈ Int(Λki). Recall that by (4)

(ei; 0, . . . , 0,
(i)

ψtwi , 0, . . . , 0) ∈ Θ
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3.6. Building Nash images with bare-hands

for each t ∈ (0, 1], because Λki is an open cone, so twi ∈ Int(Λki) for each
t ∈ (0, 1]. Consider the Nash path

α : (0, 1]→ Rr × Fr, t 7→ (ei; 0, . . . , 0,
(i)

(1− t)ψi + tψwi , 0, . . . , 0).

We claim: Γ(α(t))(∆d−1) ⊂ Reg(T) for t ∈ (0, 1].

This is so because twi ∈ Int(Λki) and (1 − t)ψi(∆d−1) ⊂ Λki for t ∈ (0, 1],
so ((1 − t)ψi + tψwi)(∆d−1) ⊂ Int(Λki) for t ∈ (0, 1]. Thus, α(t) ∈ Θ0 for each
t ∈ (0, 1] (see (4)). As α(1) = ψwi ∈ Θ, we conclude ψi ∈ Cl(Θ).

If in addition ψi(∆d−1) ⊂ Int(Λki), then

(ei; 0, . . . , 0,
(i)

ψi, 0, . . . , 0) ∈ Θ0,

so (ei; 0, . . . , 0,
(i)

ψi, 0, . . . , 0) ∈ Θ0 ∩ Cl(Θ) = Θ.

(6)If (µ;ψ) ∈ Cl(Θ0), then Γ(µ;ψ)(∆d−1) ⊂ Cl(ν−1(T)).

By the curve selection lemma (see [BCR, Thm.2.5.5]) there exists a con-
tinuous semi-algebraic path α : [0, 1] → Cl(Θ0) such that α(0) = (µ;ψ) and
α((0, 1]) ⊂ Θ0. This means that for each t ∈ (0, 1] one has

Γ(α(t))(∆d−1) ⊂ ν−1(Reg(T)).

If x ∈ ∆d−1, then Γ(α(t))(x) : [0, 1] → Rn is a continuous semi-algebraic path
such that Γ(α(t))(x) ⊂ ν−1(Reg(T)) for each t ∈ (0, 1], so

Γ(α(0))(x) ∈ Cl(ν−1(Reg(T))) ⊂ Cl(ν−1(T)).

Thus, Γ(µ;ψ)(∆d−1) ⊂ Cl(ν−1(T)).

(7) Recall that Cl(ν−1(T)) is a compact set and ν admits a Nash extension to
Cl(ν−1(T)) (see Section 3.6.3). As ν|Cl(ν−1(T)) is proper,

ν(Γ(µ;ψ)(∆d−1)) ⊂ ν(Cl(ν−1(T))) = Cl(T) = T.

(8) Let j : N (Rd,Rn) → N (∆d−1,Rn), f 7→ f |∆n−1
, which is continuous if we

endow both spaces with the compact-open topology (see Facts 2.3.7 and 2.3.10).
Then the composition

ν∗ ◦ j ◦ Γ : Cl(Θ)→ N (∆d−1,T), (µ;ψ) 7→ ν ◦ (Γ((µ;ψ))|∆d−1
)

is continuous.

(9) If β : [0, 1]→ Cl(Θ0) is a Nash path, then

B : [0, 1]×∆d−1 → T, (t, x) 7→ ν ◦ (Γ(β(t))(x)

is a Nash map.
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3.6.8. Nash images of the closed ball. We are finally ready to prove The-
orem 3.2. As seen in Section 3.5.5 it is sufficient to prove Theorem 3.5.8. Let
us prove: Given a compact checkerboard set T ⊂ Rn of dimension d ≥ 2, there
exists a Nash map F : ∆d−1 × [0, 1]→ Rn such that F (∆d−1 × [0, 1]) = T.

Proof of Theorem 3.5.8. We keep all the notations introduced in Sections 3.6.3,
3.6.5 and 3.6.6. We also keep all the assumptions done along these subsections.
Recall that T =

⋃r
i=1 φi(τi) ⊂

⋃r
i=1 φi(Bd(0, 1)), where τi is a d-dimensional

simplex such that τi ∩ φ−1
i (∂T) is either empty or a proper face of τi contained

in a (d−1)-dimensional face σi of τi. If τi∩φ−1
i (∂T) = ∅ we denote with σi the

facet of τi that does not contain the origin of Rd (this situation corresponds to
the case k = 0 in Section 3.6.5 and the origin is the point p0 introduced there).
In both cases the remaining vertex pi of τi belongs to φ−1

i (Reg(T)) and τi is the
convex hull of σi ∪ {pi}, see Section 3.6.5.

Denote vij for j = 1, . . . , d the vertices of σi. Let Hik be the hyperplanes
generated by the facets of τi that contains the vertex pi and assume vij 6∈ Hij

and τi ⊂
⋂d
j=1H

+
ij .

Let αij : [−δ, 1 + δ]→ Rd be Nash paths satisfying the conditions of Lemma
3.6.4 (see also Remark 3.6.5(ii)). Consider the Nash path

Ai : [−δ, 1 + δ]→ {ei} × Fr, t 7→
(
ei; 0, . . . , 0,

d∑
j=1

αij(t)xj , 0, . . . , 0

)
and observe that

Γ(Ai(t))(∆d−1) ⊂

{
φi(τi) ⊂ φi(Λki) ⊂ T if t = 0,

φi(Int(τi)) ⊂ φi(Int(Λki)) ⊂ Reg(T) if t ∈ [−δ, 1 + δ] \ {0}.

Thus, Ai(t) ∈ Θ if t ∈ [−δ, 1 + δ] \ {0} and ζi := Ai(0) ∈ Cl(Θ), see prop-

erty 3.6.7(5). Define the linear maps ηi :=
∑d
j=1 αij(−δ)xj ∈ F and ξi :=∑d

j=1 αij(1 + δ)xj ∈ F. As ηi(∆d−1), ξi(∆d−1) ⊂ Int(τi) ⊂ Int(Λki), we deduce
by property 3.6.7(5)

(ei; 0, . . . , 0,
(i)
ηi , 0, . . . , 0), (ei; 0, . . . , 0,

(i)

ξi , 0, . . . , 0) ∈ Θ.

Up to repeating the charts φi as many times as needed, we may assume

φi(Λki) ∩ φi+1(Λki+1
) 6= ∅

and let φi(wi) = φi+1(zi+1) ∈ φi(Λki) ∩ φi+1(Λki+1
). Consider the Nash paths

Bi : [0, 1]→ Θ0, t 7→ (ei; 0, . . . , 0, (1− t)ξi + tψwi , tψzi+1
, 0, . . . , 0),

Ci : [0, 1]→ Θ0, t 7→ ((1− t)ei + tei+1; 0, . . . , 0, ψwi , ψzi+1
, 0, . . . , 0),

Di : [0, 1]→ Θ0, t 7→ (ei+1; 0, . . . , 0, (1− t)ψwi , (1− t)ψzi+1
+ tηi+1, 0, . . . , 0).

We have Bi([0, 1]) ⊂ Θ0 because Bi(0) = (ei; 0, . . . , 0,
(i)

ξi , 0, . . . , 0) ∈ Θ0 and
Bi((0, 1]) ⊂ Θ0 by property 3.6.7(4). In addition, Ci([0, 1]) ⊂ Θ0 by the proof
of property 3.6.7(2). Moreover, Di([0, 1]) ⊂ Θ0 because

Di(1) = (ei+1; 0, . . . , 0,
(i+1)
ηi+1 , 0, . . . , 0) ∈ Θ0
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and Di([0, 1)) ⊂ Θ0 by property 3.6.7(4). Observe that

Bi(0) = (ei; 0, . . . , 0,
(i)

ξi , 0, . . . , 0) ∈ Θ

and Bi([0, 1]) is connected so Bi([0, 1]) ⊂ Θ. Analogously, Ci(0) = Bi(1) ∈ Θ
and Ci([0, 1]) is connected so Ci([0, 1]) ⊂ Θ. In addition, Di(0) = Ci(1) ∈ Θ
and Di([0, 1]) is connected so Di([0, 1]) ⊂ Θ.

Fix times 0 < t1 < s1 < · · · < tr < sr < 1 and denote

χi := Ai(1) = (ei, 0, . . . , 0,
(i)

(x1 + · · ·+ xd)pi, 0, . . . , 0) ∈ Θ.

Observe that (x1 + . . .+xd)pi is the linear map Rd → Rd that takes the constant
value pi ∈ Int(Λki) on the hyperplane {x1 + · · · + xd = 1}. Consider the
continuous semi-algebraic path obtained concatenating the previous paths:

E :=
r∗
i=1

(Ai ∗Bi ∗ Ci ∗Di) : [0, 1]→ Θ ∪ {ζ1, . . . , ζr}

and assume, after reparametrizing the paths if necessary, E(ti) = ζi, Ej(si) = χi
and E|[ti,si] is an affine reparametrization of Ai|[0,1]. Let ρ > 0 be such that E
is Nash on

I :=

r⋃
i=1

([ti − ρ, ti + ρ] ∪ [si − ρ, si + ρ]) .

By Lemma 3.3.5 we can approximate the continuous semi-algebraic path E by
a polynomial path γ : [0, 1]→ Θ ∪ {ζ1, . . . , ζr}, such that:

(i) γ(ti) = E(ti) = ζi, γ
′(ti) = E′(ti), γ

′′(ti) = E′′(ti) and γ′′′(ti) = E′′′(ti)
for each i = 1, . . . , r.

(ii) γ(si) = E(si) = χi, γ
′(si) = E′(si), γ

′′(si) = E′′(si) and γ′′′(si) = E′′′(si)
for each i = 1, . . . , r.

(iii) ‖γ − E‖, ‖γ′ − E′‖I , ‖γ′′ − E′′‖I and ‖γ′′′ − E′′′‖I are small enough.

Write γ := (µ;ψ1, . . . , ψr) and µ := (µ1, . . . , µr). As

Ai(t) =

(
ei; 0, . . . , 0,

d∑
j=1

αij(t)xj , 0, . . . , 0

)
,

we deduce by (i) and (ii) above that

µi(sj) = µi(tj) =

{
1 if i = j

0 if i 6= j,

µ′i(ti) = µ′i(si) = 0, µ′′i (ti) = µ′′i (si) = 0 and µ′′′i (ti) = µ′′′i (si) = 0. By Lemma
3.6.4 τi ⊂ ψi([ti, si]×∆d−1) ⊂ Λki . Consider

Γ(γ) =

r∑
i=1

µi(t)(φi ◦ ψi)(t, x) : [0, 1]× Rd → Rn.
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3. Nash images of closed balls

We have Γ(γ)({t} × ∆d−1) ⊂ ν−1(Reg(T)) if t ∈ [0, 1] \ {t1, . . . , tr}, whereas
Γ(γ)({ti} ×∆d−1) = φ(σi) ∈ T for i = 1, . . . , r. This means that

ν(Γ(γ)([0, 1]×∆d−1)) ⊂ T. (3.6.15)

Fix i = 1, . . . , r and denote

λij :=

{
µi − 1 if j = i,

µj if i 6= j.

Observe that λ
(`)
ij (ti) = λ

(`)
ij (si) = 0 for 1 ≤ i, j ≤ r, ` = 0, 1, 2, 3 and each λij is

close to zero. By (3.6.14) there exist L,K > 0 such that

∥∥∥φ−1
i

(
ν
(

(φi ◦ ψi)(t, x) +

r∑
j=1

λij(t)(φj ◦ ψj)(t, x)
))
− ψi(t, x)

∥∥∥
≤ 2LK

r∑
j=1

|λij(t)|.

By Lemmas 3.6.4 and 3.6.6, we deduce τi ⊂ φ−1
i (ν(Γ(γ)([ti, si]×∆d−1))) ⊂ Λki

because τi ⊂ ψi([ti, si]×∆d−1) ⊂ Λki . Thus,

φi(τi) ⊂ ν(Γ(γ)([ti, si]×∆d−1)) ⊂ φi(Λki) ⊂ T

for i = 1, . . . , r, so by (3.6.15)

T =

r⋃
i=1

φi(τi) ⊂ ν(Γ(γ)(I ×∆d−1)) ⊂ ν(Γ(γ)([0, 1]×∆d−1)) ⊂ T.

Consequently, ν(Γ(γ)([0, 1]×∆d−1)) = T, as required.

3.7 General Nash images.

Once we have completely characterised the Nash images of the closed ball, a
natural question arises: To determine all possible compact models that allow us
to represent a compact semi-algebraic set S ⊂ Rn of dimension d connected by
analytic paths as a Nash image. This question is not trivial, and different classes
of semi-algebraic functions might have different answers. For instance, we have
seen in Remark 3.1.10 that the family of polynomial images of the closed ball
and the one of sphere are different.

In the Nash case we are able to give a complete characterization of the
compact models. Combining Theorem 3.2 and the next result we will show
that: If S ⊂ Rn and T ⊂ Rm are two semi-algebraic sets such that S ⊂ Rn
is compact, connected by analytic paths and dim(S) ≤ dim(T), there exists a
Nash map f : Rm → Rn such that f(T) = S. This means that we can use any
semi-algebraic set T of dimension d to represent d-dimensional compact semi-
algebraic sets connected by analytic paths as Nash images of T. For instance,
a ‘semi-algebraic Teddy bear’ can be mapped onto a ‘semi-algebraic sheep’ by
means of a Nash map and vice versa (see Figure 3.9). Denote Bm(p, ε) the
closed ball of Rm of centre p and radius ε > 0.
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3.7. General Nash images.

Figure 3.9: A sheep and a Teddy bear (figure borrowed from [FU6, Fig.1.3]).

Theorem 3.7.1 (Bärchen-Schäfchen’s Theorem). Let T ⊂ Rm be any semi-
algebraic set of dimension d. Then, there exists a regular map f : Rm → Rd
such that f(T) = Bd.

Proof. Let p ∈ T be a regular point of T such that dim(Tp) = d, let p + TpT
be the affine tangent space to Reg(T) at p and let π : Rm → p + TpT be the
orthogonal projection of Rm onto p + TpT. There exist ε > 0 and a compact
neighbourhood W p ⊂ Reg(T) of p such that π|Wp : W p → Bm(p, ε)∩(p+TpT) is
a Nash diffeomorphism. For simplicity we assume that p is the origin and ε = 1,
so that Bm(p, ε) ∩ (p + TpT) is isometric to the unit closed ball Bd. Consider
the inverse of the stereographic projection

ϕ : Rd → Sd \ {(0, . . . , 1)},

x := (x1, . . . , xd) 7→
(

2x1

1 + ‖x‖2
, . . . ,

2xd
1 + ‖x‖2

,
−1 + ‖x‖2

1 + ‖x‖2

)
.

Let π′ : Rd+1 → Rd, (x1, . . . , xd+1) 7→ (x1, . . . , xd) be the projection onto the
first d coordinates and observe that π′ ◦ ϕ : Rd → Rd satisfies

(π′ ◦ ϕ)(Rd) = (π′ ◦ ϕ)(Bd) = Bd.

After taking suitable coordinates and considering the previous regular map,
there exists a surjective regular map g : p+ TpT → Bd such that

g(Bm(p, ε) ∩ (p+ TpT)) = g(p+ TpT) = Bd ⊂ Rd.

In particular, g(A) = Bd for each A such that Bm(p, ε)∩(p+TpT) ⊂ A ⊂ p+TpT.
Thus, the composition g ◦ π : Rm → Rd is a regular map satisfying

(g ◦ π)(T) = g(π(T)) = g(π(W p)) = g(Bm(p, ε) ∩ (p+ TpT)) = Bd,

as required.

It is natural now to wonder if the previous result extends to pairs of general
semi-algebraic sets non necessarily compact. If S ⊂ Rn is non-compact and
T ⊂ Rm is compact, there exists no Nash map f : Rm → Rn such that f(T) = S.

Let Td be the set of points of T of dimension d, which is a semi-algebraic set
(see [Fe2, §3.1]). If T has dimension d ≥ 2, the semi-algebraic set Cl(Td) ∩ T is
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3. Nash images of closed balls

not compact and S ⊂ Rn is connected by analytic paths with dim(S) ≤ d, then
there exists a Nash map f : Rm → Rn such that f(T) = S. By Theorem 3.1 it
is enough to consider the case S = Rd for d ≥ 2.

Theorem 3.7.2. Let T ⊂ Rm be a semi-algebraic set and let d ≥ 2. Assume
that Cl(Td) ∩ T is not compact. Then, there exists a Nash map f : Rm → Rd
such that f(T) = Rd.

Proof. If m = d and T = Rd there is nothing to prove. Thus, let us assume
Rm \ T 6= ∅. We may assume that Td is unbounded. Otherwise, Td is bounded
and not closed (because Cl(Td)∩T is not compact), so there exists p ∈ Cl(Td)\T.
Consider the Nash map

h : Rm \ {p} → Rm+1, x 7→
(
x,

1

‖x− p‖

)
,

which is a Nash diffeomorphism onto its image. Observe that h(Td) ⊂ h(T) ⊂
Rm+1 is unbounded. We identify h(T) with T and h(Td) with Td.

Consider the immersion ψ1 : Rm → RPm, x 7→ [1 : x]. As Td is unbounded,
we may assume

[0 : . . . : 0 :
(d+1)

1 : 0 : . . . : 0] ∈ ClRPm(Td).

Consider the projection

π̂ : RPm → RPd, [x0 : x1 : . . . : xm] 7→ [x0 : x1 : . . . : xd]

whose restriction to Rm is the projection π : Rm → Rd, (x1, . . . , xm) 7→
(x1, . . . , xd). As

π̂([0 : . . . : 0 : 1 : 0 : . . . : 0]) = [0 : . . . : 0 : 1] ∈ ClRPd(π(Td)),

we deduce π(T) is not bounded. Thus, taking π(T) instead of T we may assume
m = d, dim(T) = d and Td unbounded.

If T = Rd we are done, otherwise, we may assume after a translation that
0 6∈ T. Consider the inversion i : Rd \{0} → Rd \{0}, x 7→ x

‖x‖ , which is a Nash

involution of Rd \ {0}. Thus, at this point T ⊂ Rd is a semi-algebraic set of
dimension d such that 0 ∈ Cl(Td) \ T. Observe that Reg(Td) is an open subset
of Rd adherent to the origin.

By the Nash curve selection lemma (see [BCR, Prop.8.1.13]) there exists a
Nash arc

α := (α1, . . . , αd) : [0, 1]→ Reg(Td) ∪ {0}

such that α((0, 1]) ⊂ Reg(Td) and α(0) = 0. After a linear change of coordinates
we may assume that α((0, 1]) ∩ {x1 = 0} = ∅ (here we are using that d ≥ 2).
Consider now the Nash map

g : Rd \ {0} → {x1 > 0}, (x1, . . . , xd) 7→ (‖x‖, x2, . . . , xd).

As g|Rd\{x1=0} is a local diffeomorphism and in particular is open, g(Reg(Td))
contains an open semi-algebraic set U ⊂ {x1 > 0} adherent to the origin such
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that g(α((0, 1])) ⊂ U . After substituting α by g ◦ α and reparameterizing we
may assume α1 = tp, each αi is an algebraic series in the variable t and the
order of α1 is smaller than or equal to the order of αi for i = 2, . . . , d. The
previous conditions hold because because the αi are algebraic Puiseux series at
the origin and the first component of g ◦α is

√
α2

1 + . . .+ α2
d . By Lemma 3.3.5

we may assume that αi ∈ R[t] for i = 2, . . . , d. We substitute T ⊂ Rd \ {0} by
g(T) ⊂ {x1 > 0}, which is a semi-algebraic subset of Rd of dimension d such
that 0 ∈ Cl(g(T)d) \ g(T).

Consider the Nash diffeomorphism

h : {x1 > 0} → {x1 > 0},
(x1, x2, . . . , xd) 7→ ( p

√
x1, x2 − α2( p

√
x1), . . . , xd − αd( p

√
x1))

and observe that h ◦ α = (t, 0, . . . , 0).

Let us fix an ε > 0 such that (0, ε] × {(0, . . . , 0)} ⊂ h(U). Observe that
h(T) ⊂ {x1 > 0} because T ⊂ {x1 > 0}. Let

δ : (0, ε]→ (0,+∞), t 7→ dist((t, 0, . . . , 0),Rd \ h(U))

and let ξ : (0, ε] → (0,+∞) be a Nash function such that | δ2 − ξ| < δ
4 , so

δ
4 < ξ < 3δ

4 . Write x′ := (x2, . . . , xd) and consider the open semi-algebraic set

U := {(x1, x
′) ∈ (0, ε)× Rd−1 : ‖x′‖2 < ξ2(x1)} ⊂ h(T).

Observe that ξ is a Puiseux series at the origin. The map

f` : {x1 > 0} → {x1 > 0}, (x1, x
′) 7→

( 1

x1
,
x′

x`1

)
is a Nash involution for each ` ≥ 1. Fix two positive numbers N1, N2 > 0
and consider the semi-algebraic set F := {N1 + N2‖x′‖2 ≤ x1}. Observe that
(y1, y

′) ∈ f`(F) if and only if f`(y1, y
′) ∈ F, so

f`(F) =

{
‖x′‖2 ≤ 1

N2
x2`−1

1 (1−N1x1)

}
⊂ {0} ∪

{
(x1, x

′) ∈
(

0,
1

N1

)
× Rd−1 : ‖x′‖2 ≤ 1

N2
x2`−1

1

}
.

If N1, N2, ` are large enough, f`(F) ⊂ {0} ∪U, so F ⊂ (f` ◦ h)(T) (recall that f`
is an involution). Consider the polynomial map

P1 : Rd → Rd, (x1, x
′) 7→ (x1 − (N1 +N2‖x′‖2), x′)

that maps F onto {x1 ≥ 0}. Let P2 : Rd → {x1 ≥ 0}, (x1, x
′) 7→ (x2

1, x
′).

Observe that

{x1 ≥ 0} = P2({x1 ≥ 0}) = (P2 ◦ P1)(F)

⊂ (P2 ◦ P1 ◦ f` ◦ h)(T) ⊂ P2(Rd) = {x1 ≥ 0},

so (P2 ◦ P1 ◦ f` ◦ h)(T) = {x1 ≥ 0}. Denote x′′ := (x3, . . . , xd) and consider the
polynomial map

P3 : Rd → Rd, (x1, x2, x
′′) 7→ (x2

1 − x2
2, 2x1x2, x

′′)

that maps {x1 ≥ 0} to Rd (again we have used here that d ≥ 2). Consequently,
(P3 ◦ P2 ◦ P1 ◦ f` ◦ h)(T) = Rd, as required.
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3. Nash images of closed balls

The following example shows that Theorem 3.7.2 is no longer true if d = 1.

Example 3.7.3. Let f : [0,+∞)→ R be a non-constant Nash map and consider
its derivative f ′ : [0,+∞) → R. Observe that {f ′ = 0} is a finite set. Define
a := max{f ′ = 0} and assume that f ′ is strictly positive on (a,+∞), so f is
strictly increasing on (a,+∞). This means that f([a,+∞)) = [f(a), b) for some
b ∈ R ∪ {+∞}. As f([0, a]) is a connected compact set, f([0, a]) = [c, d], so
f([0,+∞)) = [c, d] ∪ [f(a), b), which is not an open interval. Thus, f([0,+∞))
is a proper subset of R.

Putting together all these results, we obtain the following characterization
for Nash images of general semi-algebraic sets.

Theorem 3.7.4. Let S ⊂ Rn be a semi-algebraic set of dimension d ≥ 2 con-
nected by analytic paths. For each semi-algebraic set T ⊂ Rm with d ≤ dim(T),
such that Cl(Te) ∩ T is non-compact for some d ≤ e ≤ dim(T) in case S is
non-compact, there exists a Nash map f : Rm → Rn such that f(T) = S.

3.8 Surjective Nash maps between general semi-
algebraic sets

Once established a satisfactory classification (both for the compact and non-
compact case) of the possible models to represent semi-algebraic sets connected
by analytic paths as Nash images, a natural question at this point is to determine
until what extend we can represent general semi-algebraic sets as Nash images.
We introduce first the analytic path-connected components of a semi-algebraic
set [Fe4, §9].

3.8.1. Analytic path-connected components. A semi-algebraic set S ⊂ Rn
is connected by analytic paths if for each x, y ∈ S there exists σ : [0, 1] → S

analytic such that σ(0) = x and σ(1) = y. Observe that if S ⊂ Rn is connected
by analytic paths and f : S → Rn is a Nash map, then f(S) is also connected
by analytic paths. Thus, T := {x2 − zy2 = 0, z ≥ 0}, which is image of the
polynomial map f : R2 → R3, (s, t) 7→ (st, t, s2), is connected by analytic
paths, whereas its Zarisky closure W := {x2 − zy2 = 0} is not because there is
no analytic path between a point in the stick {x = 0, y = 0, z < 0} and a point
in W \ {x = 0, y = 0}. To take advantage of the full strength of our results (in
particular Theorem 3.2) we introduce the analytic path-connected components
of a semi-algebraic set.

Definition 3.8.1. A semi-algebraic set S ⊂ Rn admits a decomposition into an-
alytic path-connected components if there exist semi-algebraic sets S1, . . . , Sr ⊂ S

such that:

(i) Each Si is connected by analytic paths.

(ii) If T ⊂ S is a semi-algebraic set connected by analytic paths that contains
Si, then Si = T.

(iii) Si 6⊂
⋃
j 6=i Sj .

(iv) S =
⋃r
i=1 Si.
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3.8. Surjective Nash maps between general semi-algebraic sets

In [Fe4, Thm.9.2] Fernando shows the following characterization for analytic
path-connected components of a semi-algebraic set.

Theorem 3.8.2 ([Fe4, Thm.9.2]). Let S ⊂ Rn be a semi-algebraic set. Then
S admits a decomposition into analytic path-connected components and this de-
composition is unique. In addition, the analytic path-connected components of
a semi-algebraic set are closed in S.

Example 3.8.3. (i) Let S := {z(x2 + y2) − x3 = 0} ⊂ R3 be Cartan’s umbrella.
The analytic path-connected components of S are

S1 := (S \ {x = 0, y = 0}) ∪ {0} and S2 := {x = 0, y = 0}.

In fact, S1 is image of R2 through the analytic map

ϕ : R2 → R3, (u, v) 7→ (u cos v, u sin v, u cos3 v).

(ii) Let S := S1 ∪ S2 ∪ S3 ⊂ R3, where

S1 := [−1, 1]× {0} × [−1, 1], S2 := {z = 0, x ≥ 1}, S3 := {z = 0, x ≤ −1}.

The analytic path-connected components of S are S1, S2 and S3. In contrast, S
has two irreducible components, which are S ∩ {y = 0} and S ∩ {z = 0}.

Recall that if S∗1 and S∗2 are irreducible components of a semi-algebraic set
S ⊂ Rn, then dim(S∗1 ∩S∗2) < min{dim(S∗1),dim(S∗2)} (see Remark 2.4.9). In the
case of the analytic path-connected components of S this inequality is no longer
true.

Example 3.8.4. Let W := {x2 − zy2 = 0} ⊂ R3 be Whitney’s umbrella. Its
analytic path-connected components are

W1 := W ∩ {z ≥ 0} and W2 := {x = 0, y = 0}.

It holds W1 ∩W2 = {x = 0, y = 0, z ≥ 0}, which has dimension 1, so

dim(W1 ∩W2) = 1 = dim(W2).

However, we have the following result:

Lemma 3.8.5. Let S ⊂ Rn be a semi-algebraic set and let {Si}ri=1 be its family
of analytic path-connected components. Then

dim(Si ∩ Sj) < max{dim(Si),dim(Sj)}

for 1 ≤ i < j ≤ r.

Proof. If dim(Si) < dim(Sj), then

dim(Si ∩ Sj) ≤ dim(Si) < dim(Sj) ≤ max{dim(Si),dim(Sj)}.

Suppose next e := dim(Si) = dim(Sj) and dim(Si ∩ Sj) = e. Let S0 := Si ∪ Sj
and observe that Sing(S0) has dimension ≤ e − 1. Thus, there exists y ∈
(S1∩S2)\Sing(S0). Let xk ∈ Sk for k = 1, 2. As each Sk is connected by analytic
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paths, by Theorem 3.4.2 each Sk is connected by Nash paths. Thus, there exist
Nash paths αk : [0, 1] → Sk such that αk(0) = xk, αk(1) = y. The continuous
semi-algebraic path α := α1 ∗ α−1

2 connects the points x1 and x2 and satisfies
η(α) ⊂ {y} ⊂ Reg(S0) (see Section 3.4 for the definition of η(α)). Consequently,
S0 is well-welded, so S0 is connected by analytic paths by Theorem 3.4.2. As
Si, Sj are analytic path-connected components of S, we conclude Si = S0 = Sj ,
which is a contradiction. Thus,

dim(Si ∩ Sj) < e = max{dim(Si),dim(Sj)},

as required.

3.8.2. Nash interpolation. As a consequence of Theorem 3.1 and the exis-
tence of a decomposition of semi-algebraic sets into analytic path-connected
components we obtain the following interpolation result for Nash maps:

Corollary 3.8.6. Let S ⊂ Rn and T ⊂ Rm be semi-algebraic sets and let
T∗ be an analytic path-connected component of T. Given p1, . . . , pk ∈ S and
q1, . . . , qk ∈ T∗ (non necessarily distinct), there exists a Nash map F : S → T

such that F (pi) = qi for each i = 1, . . . , k.

Proof. Let d := dim(T∗). As T∗ is connected by analytic paths, there exists
by Theorem 3.1 a surjective Nash map f : Rd → T∗. For each i = 1, . . . , k
fix si ∈ f−1(qi). By Lagrange’s interpolation there exists a polynomial map
g : Rn → Rd such that g(pi) = si. Thus, the Nash map F := f ◦ g|S : S → T

satisfies F (pi) = qi for each i = 1, . . . , k.

3.8.3. General surjective Nash maps. In view of the previous results it is
natural to wonder given arbitrary semi-algebraic sets S ⊂ Rm and T ⊂ Rn
whether there exists a surjective Nash map f : S→ T. Recall that the image of
a semi-algebraic set connected by analytic paths under a Nash map is connected
by analytic paths. In addition, the image of an irreducible semi-algebraic set
under a Nash map is an irreducible semi-algebraic set [FG3, §3.1].

Thus, obstructions to construct such a Nash map f : S → T concentrate
on the configuration of the intersections of pairwise different analytic path-
connected components {Si}ri=1 (resp. irreducible components {S∗j}`j=1) of S and
the configuration of their images, which are semi-algebraic subsets Ti := f(Si)
of T connected by analytic paths (resp. irreducible semi-algebraic subsets T∗j :=
f(S∗j ) of T). Namely, if the intersection Si1 ∩· · ·∩Sik (for 1 ≤ i1 < · · · < ik ≤ r)
is non-empty, then

f(Si1 ∩ · · · ∩ Sik) ⊂ f(Si1) ∩ · · · ∩ f(Sik) ⊂ Ti1 ∩ · · · ∩ Tik

and the analytic path-connected components of Si1 ∩ · · · ∩ Sik are mapped into
analytic path-connected components of Ti1 ∩ · · · ∩ Tik . Analogously, if the in-
tersection S∗j1 ∩ · · · ∩ S∗jp (for 1 ≤ j1 < · · · < jp ≤ `) is non-empty, then

f(S∗j1 ∩ · · · ∩ S∗jp) ⊂ f(S∗j1) ∩ · · · ∩ f(Sj∗p ) ⊂ Tj1 ∩ · · · ∩ T∗jp

and the irreducible components of Sj1 ∩ · · · ∩ Sjp are mapped into irreducible
components of Tj1 ∩ · · · ∩ Tjp .
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Examples 3.8.7. (i) Let S := {z = 0}∪ {x = 0, y = 0}∪ {x− z = 0, y = 0} ⊂ R3

and T := {z = 0} ∪ {x = 0, y = 0} ∪ {x = 1, y = 0} ⊂ R3. We claim: There
exists no surjective Nash map f : S→ T.

The analytic path-connected components of S are

S1 := {z = 0}, S2 := {x = 0, y = 0} and S3 := {x− z = 0, y = 0},

whereas the analytic path-connected components of T are T1 := {z = 0}, T2 :=
{x = 0, y = 0} and T3 := {x = 1, y = 0}. Suppose there exists a surjective Nash
map f : S → T. Using straightforward dimensional arguments f(S1) = T1 and
either f(S2) = T2 and f(S3) = T3 or f(S2) = T3 and f(S3) = T2. However, this
is not possible because S1 ∩ S2 ∩ S3 = {(0, 0, 0)}, whereas T1 ∩ T2 ∩ T3 = ∅ and
f(S1 ∩ S2 ∩ S3) ⊂ T1 ∩ T2 ∩ T3.

(ii) Let S := {y ≥ 0} ∪ {x = 0} ⊂ R2 and T := {x2 − zy2 = 0} ⊂ R3, which
are both irreducible. We claim: There exists no surjective Nash map f : S→ T.

The analytic path-connected components of S are S1 := {y ≥ 0} and S2 :=
{x = 0}, whereas the analytic path-connected components of T are

T1 := {x2 − zy2 = 0, z ≥ 0} and T2 := {x = 0, y = 0}.

Suppose there exists a surjective Nash map f : S → T. Using straightforward
dimensional arguments f(S1) = T1 and {x = 0, y = 0, z < 0} ⊂ f(S2) ⊂ T2. As
f is Nash, there exist a connected open semi-algebraic neighbourhood U ⊂ R2

and a Nash extension F : U → R3. As U is an open connected semi-algebraic
subset of R2, it is an irreducible semi-algebraic set of dimension 2. Thus, F (U)
is an irreducible semi-algebraic subset of R3 of dimension ≤ 2. In particular,
its Zariski closure is an irreducible algebraic set of dimension ≤ 2. As f(S1) =
T1 has dimension 2 and the Zariski closure of T1 is T (which is irreducible),
we conclude that the Zariski closure of F (U) is T. As connected open semi-
algebraic sets are connected by analytic paths (because they are connected Nash
manifolds), we deduce that T1 = f(S1) ⊂ F (U) ⊂ T1, so

{x = 0, y = 0, z < 0} ⊂ f(S2) ⊂ F (U) = T1,

which is a contradiction.

(iii) However, there exists a surjective Nash map f : T → S where T :=
{x2 − zy2 = 0} ⊂ R3 and S := {y ≥ 0} ∪ {x = 0} ⊂ R2. It is enough to take
f(x, y, z) = (y, z).

Recall that if S ⊂ Rm has dimension d, the set S(d) of points of S of dimension
d is a closed semi-algebraic subset of S. In order to soften the obstructions
quoted at the beginning of this section we will assume that each irreducible
component S∗i of S is mapped onto an analytic path-connected component Ti
of T and that

⋂r
i=1 f(Ti) 6= ∅. Under this type of assumptions we propose the

following characterization.

Theorem 3.8.8 (Surjective Nash maps). Let S ⊂ Rm and T ⊂ Rn be semi-
algebraic sets, let {S∗i }ri=1 be the irreducible components of S and let {Ti}ri=1 be
a family of (non-necessarily distinct) semi-algebraic subsets of T connected by
analytic paths such that

⋂r
i=1 Ti 6= ∅. Denote di := dim(S∗i ) and assume that

the set S
∗,(di)
i of points of S∗i of dimension di is non-compact if Ti is non-compact
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for i = 1, . . . , r. Then, there exists a Nash map f : S→ T such that f(S∗i ) = Ti
for i = 1, . . . , r if and only if ei := dim(Ti) ≤ dim(S∗i ) =: di for i = 1, . . . , r.

Before proving this result we need the following preliminary one.

Lemma 3.8.9. Let S ⊂ Rm be a semi-algebraic set and let {S∗i }si=1 be the family
of the irreducible components of S that are non-compact. Denote di := dim(S∗i )

and S
∗,(di)
i the set of points of S∗i of dimension di, which we assume non-compact

for each i = 1, . . . , s. Let U be an open semi-algebraic subset of Rm that contains
S and let X1, . . . , Xs be Nash subsets of U such that S∗i \Xi 6= ∅ for each i. Up
to take a smaller U if necessary, there exist a Nash manifold M ⊂ Rp, a Nash
diffeomorphism ϕ : M → U and a Nash function gi : M → R whose zero set
contains ϕ−1(Xi) and the corresponding Nash map

Gi : M → Rp+1, x 7→ (x · gi(x), gi(x))

satisfies 0 ∈ Gi(ϕ
−1(S∗i )) = Gi(ϕ

−1(S
∗,(di)
i )) and Gi(ϕ

−1(S
∗,(di)
i )) is pure di-

mensional of dimension di and non-compact for i = 1, . . . , s.

Proof. We may apply the Nash diffeomorphism

ψ0 : Rm → Bm(0, 1), x 7→ x√
1 + ‖x‖2

to S and assume that S is bounded. As S∗i \ Xi 6= ∅, S∗i is irreducible and
Xi is the zero-set of a Nash function on U , we deduce by [FG3, Lem.3.6] that

dim(S∗i ∩Xi) < dim(S∗i ) = dim(S
∗,(di)
i ) for each i = 1, . . . , r. Pick a point qi ∈

S
∗,(di)
i . Let Zi be the Zariski closure of (Cl(S∗i )∩Cl(Xi))∪Cl(S∗i \S

∗,(di)
i )∪{qi},

which has dimension strictly smaller than dim(S∗i ).

Indeed, as S∗i is closed in S and Xi is closed in U , we deduce that

Cl(S∗i ) ∩ Cl(Xi) ∩ S = S∗i ∩Xi,

so (Cl(S∗i ) ∩ Cl(Xi)) \ Cl(S∗i ∩Xi) ⊂ Cl(S∗i ) \ S∗i , which has dimension strictly
smaller that dim(S∗i ). Thus, Cl(S∗i ) ∩ Cl(X∗i ) has dimension strictly smaller

than dim(S∗i ). In addition, Cl(S∗i \ S
∗,(di)
i ) has dimension strictly smaller that

dim(S∗), because dim(S∗i \ S
∗,(di)
i ) < di = dim(S∗i ).

As S
∗,(di)
i is bounded and non-compact and S

∗,(di)
i is closed in S (because it is

a closed subset of S∗i , which is a closed subset of S), there exists pi ∈ Cl(S
∗,(di)
i )\S

(because otherwise Cl(S
∗,(di)
i ) ⊂ S and S

∗,(di)
i = Cl(S

∗,(di)
i ) ∩ S = Cl(S

∗,(di)
i )

would be compact). As pi 6∈ S, up to replace U by U ′ := U \ {p1, . . . , pr} and

Xi by U ′ ∩ Xi if necessary, we may assume pi 6∈ Xi. As S
∗,(di)
i \ Zi is dense

in S
∗,(di)
i (because S

∗,(di)
i is pure dimensional), there exists by the Nash curve

selection lemma (see [BCR, 8.1.13]) a Nash curve αi : (−1, 1) → Rm such that

αi((0, 1)) ⊂ S
∗,(di)
i \ Zi and αi(0) = pi. Let Qi ∈ R[x1, . . . , xn] be a polynomial

whose zero set is Zi.

Case 1. If Qi(pi) 6= 0, we take a bounded Nash function gi on U whose
zero set is the union of Xi and the smallest Nash subset of U that contains
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Cl(S∗i \S
∗,(di)
i ). Observe that the limit limt→0+ gi◦αi(t) exists and it is non-zero,

because otherwise either pi belongs to the Zariski closure of Cl(S∗i \ S
∗,(di)
i ) ⊂

Zi = {Qi = 0} or pi ∈ Cl(S
∗,(di)
i ) ∩ Cl(Xi) ⊂ Zi = {Qi = 0}, which is a

contradiction.

Consider the Nash map Gi : U → Rm+1, x 7→ (x · gi(x), gi(x)), whose
restriction to U \ {gi = 0} is a Nash diffeomorphism between U \ {gi = 0} and
Gi(U) \ {0}, whose inverse is Hi : Gi(U) \ {0} → U \ {gi = 0}, (y, t) 7→ y

t . If

Gi(S
∗,(di)
i ) is compact, then limt→0+(αi(t) ·gi ◦αi(t), gi ◦αi(t)) ∈ Gi(S∗,(di)i ). As

Gi|S∗,(di)i \{gi=0} : S
∗,(di)
i \ {gi = 0} → Gi(S

∗,(di)
i ) \ {0}

is a Nash diffeomorphism, we conclude that limt→0+ αi(t)·gi◦αi(t) = 0 (because

pi 6∈ S
∗,(di)
i ), which is a contradiction because limt→0+ gi ◦ αi(t) exists and it

is non-zero. Consequently, Gi(S
∗,(di)
i ) is non-compact. Again as the restriction

Gi|S∗,(di)i \{gi=0} is a Nash diffeomorphism,

Gi(S
∗,(di)
i ) \ {0} = Gi(S

∗,(di)
i \ {gi = 0})

is pure dimensional of dimension di. As qi ∈ S
∗,(di)
i ∩ {gi = 0}, we conclude

0 ∈ Cl(Gi(S
∗,(di)
i \ {gi = 0})), so Gi(S

∗,(di)
i ) is pure dimensional of dimension

di. In addition,

0 ∈ G(S
∗,(di)
i ) = G(S

∗,(di)
i ) ∪ {0} = G(S

∗,(di)
i ∪ (Si ∩ {gi = 0})) = G(S∗i ).

Case 2. If Qi(pi) = 0, we have Qi◦αi ∈ R[[t]]alg is a non-zero series. Let (Yi, φi)
be the blow-up of Rm at pi. The restriction φi : Yi \ {φ−1

i (pi)} → Rm \ {pi} is
a Nash diffeomorphism and pi 6∈ S ∪Xi, so φ−1

i (S) is Nash diffeomorphic to S

and φ−1
i (Xi) is Nash diffeomorphic to Xi. The series

Qi ◦ αi = (Qi ◦ φi) ◦ (φ−1
i ◦ αi)

and let (Qi ◦ φi)∗ be the strict transform of (Qi ◦ φi). The order of the series
(Qi◦φi)∗◦(φ−1

i ◦αi) is strictly smaller than the order of Qi◦αi, because we have
eliminated from (Qi ◦φi) a power of an equation of the exceptional divisor. Let
p′i := limt→0+(φ−1

i ◦αi)(t). If (Qi ◦φi)∗(p′i) 6= 0 we have finished with this index
i. Otherwise, we repeat the previous process with the point p′i. In each step
the order of the strict transform of the corresponding polynomial substituted in
the corresponding curve has strictly smaller order, so in finitely many steps we
achieve order 0 and the corresponding polynomial does not vanish at the limit
point.

After composing all the involved blow-ups (corresponding to all the indices
i = 1, . . . , r) and taking suitable restrictions we find a Nash manifold M ⊂ Rp,
a Nash diffeomorphism ϕ : M → U and Nash functions gi : M → R such that
ϕ−1(Xi) ⊂ {gi = 0} and the corresponding Nash maps

Gi : M → Rp+1, x 7→ (x · gi(x), gi(x))

satisfies 0 ∈ Gi(ϕ
−1(S∗i )) = Gi(ϕ

−1(S
∗,(di)
i )) and Gi(ϕ

−1(S
∗,(di)
i )) is pure di-

mensional of dimension di and non-compact for i = 1, . . . , s, as required.
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We are ready to prove Theorem 3.8.8.

Proof of Theorem 3.8.8. The only if condition are straightforward. The proof
of the converse is conducted in several steps:

Step 1. Suppose S∗i is non-compact for i = 1, . . . , s and S∗i is compact for
i = s + 1, . . . , r. For each i = 1, . . . , r let fi : S → R be a Nash function on S

such that S∗i = {fi = 0} (see [FG3, Lem.2.4, Thm. 4.3]). Let U be an open
semi-algebraic neighborhood of S in Rm to which all the Nash funcions fi extend
as Nash functions Fi : U → R. Define Xi :=

⋃
j 6=i{Fj = 0} and observe that

S∗i ∩ Xi = S∗i ∩
⋃
j 6=i S

∗
j is a semi-algebraic subset of S∗i of dimension strictly

smaller than di. We distinguish two cases:

Case 1. Non-compact irreducible components. By Lemma 3.8.9 we may
assume (up to a suitable Nash diffeomorphism) that for each i = 1, . . . , s there
exist a Nash function gi : U → R whose respective zero set {gi = 0} contains
Xi and the corresponding Nash map

Gi : U → Rm+1, x 7→ (x · gi(x), gi(x))

satisfies 0 ∈ Gi(S∗i ) = Gi(S
∗,(di)
i ) and Gi(S

∗,(di)
i ) is non-compact and pure di-

mensional of dimension di for i = 1, . . . , s. In addition,

Gi(S) = Gi(S
∗
i ∪

⋃
j 6=i

S∗j ) = Gi(S
∗
i ) ∪

⋃
j 6=i

Gi(S
∗
j ) = Gi(S

∗
i ) ∪ {0} = Gi(S

∗,(di)
i ).

Case 2. Compact irreducible components. For each i = s + 1, . . . , r let

qi ∈ S
∗,(di)
i and let hi be a polynomial whose zero set is the union of {qi} and

the Zariski closure Yi of Cl(S∗i \ S
∗,(di)
i ). Define gi := hi

∏
j 6=i Fj : U → R and

observe that {gi = 0} = {qi} ∪ (Yi ∩ S∗i ) ∪
⋃
j 6=i S

∗
j . As S∗i is irreducible and gi

does not vanish identically on S∗i , the intersection {gi = 0} ∩ S∗i has dimension
< di := dim(S∗i ). Consider the Nash map

Gi : U → Rm+1, x 7→ (x · gi(x), gi(x)),

whose restriction to U \{gi = 0} is a Nash diffeomorphism between U \{gi = 0}
and Gi(U) \ {0}. Observe that Gi(S

∗
j ) = {0} if i 6= j and S′i := Gi(S) =

Gi(S
∗,(di)
i ) is pure dimensional of dimension di.

As Gi|S∗,(di)i \{gi=0} : S
∗,(di)
i \{gi = 0} → Gi(S

∗,(di)
i )\{0} is a Nash diffeomor-

phism, Gi(S
∗,(di)
i )\{0} = Gi(S

∗,(di)
i \{gi = 0}) is pure dimensional of dimension

di. As qi ∈ S
∗,(di)
i ∩ {gi = 0}, we conclude 0 ∈ Cl(Gi(S

∗,(di)
i \ {gi = 0})), so

Gi(S
∗,(di)
i ) is pure dimensional of dimension di. In addition,

0 ∈ G(S
∗,(di)
i ) = G(S

∗,(di)
i ) ∪ {0} = G(S

∗,(di)
i ∪ (Si ∩ {gi = 0})) = G(S∗i ).

Moreover,

Gi(S) = Gi(S
∗
i ∪

⋃
j 6=i

S∗j ) = Gi(S
∗
i ) ∪

⋃
j 6=i

Gi(S
∗
j ) = Gi(S

∗
i ) ∪ {0} = Gi(S

∗,(di)
i )

for i = s+ 1, . . . , r.
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3.8. Surjective Nash maps between general semi-algebraic sets

Step 2. Define S′i := Gi(S) for i = 1, . . . , r and

G : S→ R(m+1)r, x 7→ (G1(x), . . . , Gr(x)).

Observe that

G(S∗i ) = {0} × · · · × {0} ×
(i)

S′i × {0} × · · · × {0}

and G(S) =
⋃s
i=1G(S∗i ). In addition, G(S∗i ) ∩G(S∗j ) = {(0, . . . , 0)} if i 6= j.

We distinguish two cases:

Case 1. If S∗i is non-compact, S′i is non-compact. By Theorem 3.7.2 there
exists a Nash map Hi : Rm+1 → Rdi such that Hi(S

′
i) = Rdi . We may assume

in addition Hi(0) = 0.

Case 2. If Si is compact, also S′i is compact and there exists by Theorem 3.7.1
a Nash map Hi : Rm+1 → Rdi such that Hi(S

′
i) = Bdi . Following the proof of

Theorem 3.7.1 the reader can check that we may assume Hi(0) = 0.

Step 3. Let q ∈
⋂r
i=1 Ti and assume q is the origin of Rn. Let Fi : Rdi → Rn

be a Nash map such that Fi(Bdi) = Ti for i = 1, . . . , s and Fi(Rdi) = Ti for
i = s+ 1, . . . , r. We may assume in addition Fi(0) = 0 for i = 1, . . . , r. We have

(Fi ◦Hi ◦Gi)(Sj) =

{
Fi(Bdi) = Ti if j = i,

Fi({0}) = {0} if j 6= i.

Define Ei = Rdi if S′i is non-compact (i = 1, . . . , s) and Ei = Bdi if S′i is
compact (i = s+ 1, . . . , r). Observe that

((F1◦H1, . . . , Fr ◦Hr) ◦G)(Si) = (F1 ◦H1 ◦G1, . . . , Fr ◦Hr ◦Gr)(Si)
= (F1 ◦H1)({0})× . . .× (Fi−1 ◦Hi−1)({0})× (Fi ◦Hi)(S

′
i)

× (Fi+1 ◦Hi+1)({0})× . . .× (Fr ◦Hr)({0})
= F1({0})× . . .× Fi−1({0})× Fi(Ei)× Fi+1({0})× . . .× Fr({0})

= {0} × · · · × {0} ×
(i)

Ti × {0} × · · · × {0}.

Thus, if

F :=

r∑
i=1

(Fi ◦Hi ◦Gi) : S→ T,

we have F (Si) = Ti for i = 1, . . . , r, so

F (S) = F

(
r⋃
i=1

Si

)
=

r⋃
i=1

F (Si) =

r⋃
i=1

Ti = T,

as required.

Recall that the analytic path-connected components of S are irreducible
semi-algebraic sets. Thus, each of them is contained in an irreducible component
of S. If S∗i is the irreducible component of S that contains Si for i = 1, . . . , r
it may happen that S∗i = S∗j for some i 6= j or S∗i 6= S∗j whereas Si ( S∗i and
Sj ( S∗j .
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Examples 3.8.10. (i) Define S := S1 ∪ S2 ∪ S3 ⊂ R2 where S1 := {x ≥ 1},
S2 := {y = 0} and S3 := {x ≤ −1}. Observe that S1, S2 and S3 are the analytic
path-connected components of S, whereas S is irreducible. Thus, S∗1 = S∗2 = S∗3.

(ii) Define S := S1 ∪ S2 ⊂ R3 where

S1 := {x = 0, y ≥ 0} and S2 := {y ≤ 0, z = 0}.

Observe that S1 and S2 are the analytic path-connected components of S,
whereas S∗1 = S1 ∪ {x = 0, z = 0} and S∗2 = S2 ∪ {x = 0, z = 0} are the
irreducible components of S.

Remarks 3.8.11. (i) Let S ⊂ Rm be a semi-algebraic set and let {Si}ri=1 be the
analytic path-connected components of S. Let S∗i be the irreducible component
of S that contains Si for i = 1, . . . , r and assume S∗i 6= S∗j for 1 ≤ i < j ≤ r.
Denote di := dim(S∗i ). We claim:

(1) {S∗i }ri=1 is the collection of the irreducible components of S.

(2) S
∗,(di)
i = Si for i = 1, . . . , r.

As S =
⋃r
i=1 Si ⊂

⋃r
i=1 S

∗
i ⊂ S, we deduce that {S∗i }ri=1 is the collection of

the irreducible components of S, because S∗i 6= S∗j if i 6= j. Thus, (1) holds.

Let us check that (2). To that end, we prove first: dim(Sj ∩ S∗i ) < dim(S∗i )
if j 6= i.

Otherwise, there exists Sj with j 6= i such that dim(Sj ∩ S∗i ) = dim(S∗i ), so
each Nash function that vanishes identically on S∗j vanishes also identically on
S∗i . Thus, S∗i ⊂ S∗j and i = j, which is a contradiction.

Consequently,

Si \
⋃
j 6=i

Sj ⊂ S∗i \
⋃
j 6=i

Sj ⊂ S \
⋃
j 6=i

Sj = Si \
⋃
j 6=i

Sj

and Si \
⋃
j 6=i Sj = S∗i \

⋃
j 6=i Sj is non-empty and has dimension di. As Si is pure

dimensional of dimension di and
⋃
j 6=i S

∗
i ∩ Sj has dimension < di, we deduce

that Si \
⋃
j 6=i Sj is dense in Si. In addition, Si ⊂ S

∗,(di)
i (because Si is pure

dimensional of dimension di) and S
∗,(di)
i \

⋃
j 6=i Sj is dense in S

∗,(di)
i . As

S
∗,(di)
i \

⋃
j 6=i

Sj ⊂ S∗i \
⋃
j 6=i

Sj = Si \
⋃
j 6=i

Sj ,

we conclude taking closures in S that S
∗,(di)
i = Si (because both S

∗,(di)
i and Si

are closed in S).

(ii) Observe that Theorems 3.7.1 and 3.7.2 are particular cases of Theorem
3.8.8 when T is connected by analytic paths.

As a straightforward consequence of Theorem 3.8.8 and Remark 3.8.11(i),
we have the following:

Corollary 3.8.12. Let S ⊂ Rm and T ⊂ Rn be semi-algebraic sets, let {Si}ri=1

be the family of analytic path-connected components of S and let S∗i be the ir-
reducible component of S that contains Si for i = 1, . . . , r. Assume S∗i 6= S∗j
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for 1 ≤ i < j ≤ r. Let {Ti}ri=1 be a family of (non-necessarily distinct) semi-
algebraic subsets of T connected by analytic paths and assume

⋂r
i=1 Ti 6= ∅.

Then, there exists a Nash map f : S → T such that f(Si) = Ti for i = 1, . . . , r
if and only if ei := dim(Ti) ≤ dim(Si) =: di and Ti is compact in case Si is
compact for i = 1, . . . , r.

3.9 Two consequences

In this section we present two remarkable consequences of Theorem 3.2. The first
one about representation of pure dimensional compact irreducible arc-symmetric
semi-algebraic sets as Nash images of closed balls. As a second consequence
we show that a compact semi-algebraic set is the projection of a non-singular
compact algebraic set with the simplest possible topology (a disjoint union of
spheres).

3.9.1. Representation of arc-symmetric compact semi-algebraic sets.
Arc-symmetric semi-algebraic sets were introduced by Kurdyka in [K] and sub-
sequently studied by many authors. Recall that a semi-algebraic set S ⊂ Rn is
arc-symmetric if for each analytic arc γ : (−1, 1) → Rn with γ((−1, 0)) ⊂ S it
holds that γ((−1, 1)) ⊂ S. In particular arc-symmetric semi-algebraic sets are
closed subsets of Rn. An arc-symmetric semi-algebraic set S ⊂ Rn is irreducible
if it cannot be written as the union of two proper arc-symmetric semi-algebraic
subsets [K, §2]. An arc-symmetric semi-algebraic set S ⊂ Rn irreducible as
semi-algebraic set (in the sense of Definition 2.4.5) is not necessarily irreducible
as arc-symmetric set (in the sense of [K, §2]), as shown in the following example.

Example 3.9.1. Let X := {z(x2 + y2) − x3 = 0} ⊂ R3 be Cartan’s umbrella.
As X is an irreducible real analytic set, the ring N (X) is an integral domain.
Thus, X is irreducible as semi-algebraic set. Let us show that X is reducible

as arc-symmetric set. We claim: Let f(x, y) := x3

x2+y2 . For each analytic arc

γ := (γ1, γ2) : (−1, 1)→ R2 the composition f ◦γ is analytic. As f is regular on
R2 \ {0}, we may assume γ(0) = 0. Denote ord0(γi) the order of vanishing of γi
at 0 for i ∈ {1, 2}. As 3 ord0(γ1) > 2 min{ord0(γ1), ord0(γ2)}, the composition
f ◦ γ is analytic, as required.

We can write

z(x2 + y2)− x3 = (x2 + y2)
(
z− x3

x2 + y2

)
.

Let X1 := {z − f(x, y) = 0} and let γ : (−1, 1) → R3 be an analytic arc such
that γ(−1, 0) ⊂ X1. As (z− f(x, y)) ◦ γ is analytic, by the identity principle for
analytic functions we deduce γ(−1, 1) ⊂ X1. Thus, the semi-algebraic set X1 is
arc-symmetric. As X = X1 ∪X2, where X2 := {x2 + y2 = 0}, we conclude that
X is a reducible arc-symmetric set.

It follows from Theorem 3.2 and [K, Cor.2.8] that a pure dimensional com-
pact irreducible arc-symmetric semi-algebraic set is a Nash image of Bd where
d := dim(S).

Corollary 3.9.2. Let S ⊂ Rn be a pure dimensional compact irreducible arc-
symmetric semi-algebraic set of dimension d. Then S is a Nash image of Bd.
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Proof. Let X be the Zariski closure of S and let π : X̃ → X be a resolution
of the singularities of X (see Theorem 2.4.2). Assume X̃ ⊂ Rp and π is the

restriction to X̃ of a polynomial map Π : Rp → Rn. By [K, Thm.2.6] applied
to the irreducible arc-symmetric set S there exists a connected component E
of X̃ such that π(E) = Cl(Reg(S)) = S (recall that S is pure dimensional and
compact). As π is proper and S is compact, also E is compact (because it is
a closed subset of the compact set π−1(S)). Thus, E is a connected compact
Nash manifold. By Theorem 3.2 there exists a Nash map f0 : Rd → Rp such
that f0(Bd) = E. Consequently, the Nash map f := π ◦ f0 : Rd → Rn satisfies
f(Bd) = π(f0(Bd)) = π(E) = S, as required.

3.9.2. Elimination of inequalities. A converse problem to Tarski’s theorem

is to find an algebraic set in Rn+k whose projection is a given semi-algebraic
subset of Rn. This is known as the problem of eliminating inequalities. Motzkin
proved in [Mo] that this problem always has a solution for k = 1. However,
his solution is rather complicated and is generally a reducible algebraic set. In
another direction Andradas and Gamboa proved in [AG1, AG2] that if S ⊂ Rn
is a closed semi-algebraic set whose Zariski closure is irreducible, then S is the
projection of an irreducible algebraic set in some Rn+k. In [P] Pecker gives
some improvements on both results: for the first by finding a construction of an
algebraic set in Rn+1 that projects onto the given semi-algebraic subset of Rn,
far simpler than the original construction of Motzkin; for the second by proving
that if S is a locally closed semi-algebraic subset of Rn with an interior point,
then S is the projection of an irreducible algebraic subset of Rn+1. In [Fe4] it is
proved that each semi-algebraic set S ⊂ Rn is the projection of a non-singular
algebraic set X ⊂ Rn+k whose connected components are Nash diffeomorphic
to affine spaces (maybe of different dimensions). Here we improve the previous
result if S is compact and we prove that there exists an algebraic set X ⊂ R2d+1,
where d := dim(S), that is Nash diffeomorphic to a finite pairwise disjoint union
of spheres (maybe of different dimensions) that project onto S. To guarantee
that X ⊂ R2d+1 we use implicitly in the last part of the proof the weak version
of the Whitney’s immersion theorem.

Corollary 3.9.3. Let S ⊂ Rn be a compact semi-algebraic set of dimension d.
We have:

(i) If S is connected by analytic paths, it is the projection of an irreducible
compact non-singular algebraic set X ⊂ Rn+k (for some k ≥ 0) that has at
most two connected components Nash diffeomorphic to the d-dimensional
sphere Sd. In addition,

(1) Each connected component of X projects onto S.

(2) There exists an automorphism of X that swaps both connected com-
ponents of X.

(ii) In general S is the projection of an algebraic set X ⊂ Rn+k (for some
k ≥ 0) of dimension d that is Nash diffeomorphic to a finite pairwise
disjoint union of spheres (maybe of different dimensions).

Even for dimension 1, it is not possible to impose the connectedness of X
(see Lemma 3.9.5 and Example 3.9.6). Contrast the previous result with [Fe4,
Cor.1.8].
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To prove Corollary 3.9.3 we recall first the following well-known separation
result, that we include here for the sake of completeness.

Lemma 3.9.4 (Separation). Let S1, S2 ⊂ Rn be semi-algebraic sets such that
S1 is compact, S2 is closed and S1 ∩ S2 = ∅. Then, there exists f ∈ R[x] such
that S1 ⊂ {f < 0} and S2 ⊂ {f > 0}.

Proof. We may assume S1 ⊂ Bn(0, 1
2 ). Let g : Rn → R be a continuous function

such that S1 ⊂ {g < 0} and S2 ⊂ {g > 0}. Let

ε := dist(S1, S2) := min{dist(x1, x2) : x1 ∈ S1, x2 ∈ S2} > 0.

By Weierstrass’ approximation theorem there exists a polynomial f0 ∈ R[x] such
that

max{|g(x)− f0(x)| : x ∈ Bn(0, 1)} < ε

3
.

By [BCR, Prop.2.6.2] there exists a constant c > 0 and m ≥ 1 such that

|f0(x)| < c(1 + ‖x‖2)m

on Rn. Thus, |f0(x)| < 2mc‖x‖2m on Rn \ Bn(0, 1). Denote c′ := 2mc and let

k ≥ m be such that c′

22k <
ε
3 . Define f := f0 + c′‖x‖2k ∈ R[x]. The reader can

check that S1 ⊂ {f < 0} and S2 ⊂ {f > 0}, as required.

Proof of Corollary 3.9.3. (i) By Theorem 3.2 and Proposition 3.1.1 there exists
a Nash map f : Rd+1 → Rn such that f(Sd) = S. By Artin-Mazur’s description
of Nash maps [BCR, Thm.8.4.4] there exist s ≥ 1 and a non-singular irreducible
algebraic set Z ⊂ Rd+1+n+s of dimension d, a connected component M of Z
and a Nash diffeomorphism g : Sd → M such that the following diagram is
commutative.

Z �
� // Rd+1 × Rn × Rs ≡ Rm

π2

��

π1

yy

M
?�

OO

Sd
��
∼=g

OO

f //

f

��

Rn

S
) 	

66

We denote the projection of Rd+1 × Rn × Rs onto the first space Rd+1 with π1

and the projection of Rd+1×Rn×Rs onto the second space Rn with π2. Write
m := d+ 1 +n+ s. As M is compact, there exists by Lemma 3.9.4 a polynomial
f : Rm → R such that M = Z ∩ {f > 0}. Observe that M is the projection of
the algebraic set

Y := {(z, t) ∈ Z × R : f(z)t2 − 1 = 0}

under π : Rm × R → Rm, (z, t) 7→ z. Fix ε = ±1 and let Mε := Y ∩ {εt > 0}.
Consider the Nash diffeomorphism

ϕε : M→Mε, x 7→
(
x, ε

1√
f(x)

)
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3. Nash images of closed balls

whose inverse map is the restriction to Mε of the projection π.

Observe that {Mε}ε∈{−1,1} is the collection of the connected components of
Y . As π(Mε) = M and using the diagram above, we deduce

(π2 ◦ π)(Mε) = π2(M) = (f ◦ π1)(M) = f(Sd) = S.

In addition, each Mε is Nash diffeomorphic to Sd and for ε 6= ε′ the polynomial
map

φ : Rm × R→ Rm × R, (x, t) 7→ (x,−t)

induces an involution of Y such that φ(Mε) = Mε′ . As Z is non-singular, also
Y is non-singular. Let X be the irreducible component of Y that contains M+1.

Then k := d+ s+ 2 and the non-singular algebraic set X satisfy the require-
ments in the statement.

In addition, X has at most two connected components and each of them is
Nash diffeomorphic to Sd. Thus, X is Nash diffeomorphic to Sd × {1, s}, where
s = 1, 2 is the number of connected components of X.

(ii) Let S1, . . . , Sr be the (compact) analytic path-connected components of
S, which satisfy S =

⋃r
i=1 Si. By (i) there exist m ≥ 1 and for each i = 1, . . . , r

a non-singular algebraic set Xi ⊂ Rm that is Nash diffeomorphic to a disjoint
union of at most two spheres of Rd+1 (each of them isometric to Sdi where
di := dim(Si) ≤ d = dim(S)) and satisfies π(Xi) = Si, where

π : Rn × Rm−n → Rn, (x, y) 7→ x

is the projection onto the first n coordinates. Consider the pairwise disjoint
union X :=

⊔r
i=1Xi × {i} ⊂ Rm+1 and the projection

π′ : Rn × Rm+1−n × R→ Rn, (x, y, t) 7→ x.

Then X is a non-singular algebraic set, which is Nash diffeomorphic to a finite
pairwise disjoint union of spheres of dimension ≤ d and satisfies π(X) = S, as
required.

The following lemma together with the subsequent example shows that
Corollary 3.9.3 is somehow sharp.

Lemma 3.9.5. Let Z ⊂ Rm be a non-singular irreducible algebraic set and let
M one of its connected components of maximal dimension d. Suppose that there
exists an irreducible algebraic set Y ⊂ Rp of dimension d and a rational map
ϕ : Rp 99K Rm such that ϕ|Y : Y → M is bijective. Then M is the unique
connected component of Z of dimension d.

Proof. Let Ỹ ⊂ Cp be the complexification of Y and let Z̃ ⊂ C be the com-
plexification of Z. Observe that Ỹ , Z̃ are irreducible algebraic sets of (complex)
dimension d. Consider the rational map ϕ̃ : Cp 99K Cm that extends ϕ. As
ϕ(Y ) = M ⊂ Z ⊂ Z̃, the Zariski closure of ϕ(Y ) in Cm is contained in Z̃. As M

has (real) dimension d and Z̃ is an irreducible algebraic set of Cn of (complex)

dimension d, we deduce that Z̃ is the Zariski closure of ϕ(Y ). As ϕ̃ : Cp 99K Cm

is continuous for the Zariski topology, Ỹ is the Zariski closure of Y and Z̃ is the
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3.9. Two consequences

Zariski closure of ϕ(Y ) = ϕ̃(Y ), we conclude ϕ̃(Ỹ ) ⊂ Z̃ and the Zariski closure

of ϕ̃(Ỹ ) is Z̃. Thus, ϕ̃|Ỹ : Ỹ 99K Z̃ is a dominant rational map. Denote M(Ỹ )

the field of meromorphic functions on Ỹ and M(Z̃) the field of meromorphic

functions on Z̃. The map

ϕ̃∗ :M(Z̃)→M(Ỹ ), f 7→ f ◦ ϕ̃

is a homomorphism of fields of the same transcendence degree d over C. Con-
sequently,M(Ỹ ) is an algebraic extension ofM(Z̃) of finite degree m. By [Ha,
Prop.7.16] the number of points in a general fiber of ϕ̃ is equal to m. As M has
(real) dimension d, there exists a point p ∈ M such that the fiber ϕ̃−1(p) has

exactly m points. As Y is a (real) algebraic set, Ỹ ∩ Rp = Y . As ϕ is a real
rational map and ϕ|Y : Y →M is bijective, we conclude that m is odd, because

if z ∈ Ỹ \ Y and ϕ̃(z) = p, then z ∈ Ỹ \ Y and ϕ̃(z) = p.

Suppose Z has another connected component M′ of dimension d. Then
there exists q ∈M′ such that ϕ̃−1(q) has exactly m points. As Ỹ ∩Rp = Y and

ϕ̃(Y ) = M, we conclude that ϕ̃−1(q) ⊂ Ỹ \ Y . As q ∈ Z = Z̃ ∩ Rn, we deduce
that if z ∈ ϕ̃−1(q), also z ∈ ϕ̃−1(q). Thus, ϕ̃−1(q) consists of an even number
of elements, which is a contradiction because m is odd. Consequently, M is the
unique connected component of Z of dimension d, as required.

Example 3.9.6. Let X := {y2 = −(x − 1)(x − 2)(x + 1)} ⊂ R2 which is an
irreducible non-singular cubic with two connected components of dimension 1,
one is bounded (that we denote C1) and the other one is unbounded (that we
denote C2). Consider the polynomial x, which satisfies X ∩ {x > 0} = C1 and
X ∩ {x < 0} = C2. Let Y := {(x, y, z) ∈ X ×R : xz2− 1 = 0} ⊂ R3, which has
exactly two connected componentes M1 := Y ∩{z > 0} and M2 := Y ∩{z < 0}
and both have dimension 1.

C1

C2

Figure 3.10: The cubic curve y2 = −(x− 1)(x− 2)(x + 1).

Suppose there exists an algebraic set Z ⊂ Rp of dimension 1 and a polynomial
map ϕ : Rp → R3 such that ϕ|Z : Z → M1 is bijective. Let π : R3 →
R2, (x, y, z) 7→ (x, y), which satisfies π|M1

: M1 → C1 is bijective. Thus, the
composition π ◦ f : Rp → R2 is a polynomial map that satisfies π|Z : Z → C1 is
bijective, but this contradicts Lemma 3.9.5. Consequently, there does not exist
the couple (ϕ,Z).

The previous example suggests that in Corollary 3.9.3(i) two connected com-
ponents Nash diffeomorphic to Sd are needed in many cases.

87





Chapter 4

Resolution of semi-algebraic
sets connected by analytic
paths

Once achieved a complete characterization of Nash images of closed balls in The-
orem 3.1, a natural question at this point is to determine until what extend we
can represent semi-algebraic sets connected by analytic paths using polynomial
maps. Polynomial images of models connected by polynomial paths (e.g. Eu-
clidean spaces, closed balls etc.) are connected by polynomial paths. In general,
semi-algebraic sets do not contain rational paths. By [C, V] a generic complex
hypersurface Z of CPm of degree d ≥ 2m−2 for m ≥ 4 and of degree d ≥ 2m−1
for m = 2, 3 does not contain rational curves. If S is a semi-algebraic set whose
Zariski closure in RPm is a generic hypersurface of high enough degree, then its
Zariski closure Z in CPm does not contains rational curves, so S cannot contain
rational paths. This means in particular that general semi-algebraic sets do not
contain polynomial paths.

If S ⊂ Rm is a closed semi-algebraic set connected by analytic paths, we
show that S is the image under a proper polynomial map of a Nash manifold
with corners of the same dimension. In fact, there exists an algebraic set of
smaller dimension such that the restriction of the polynomial map to the Nash
manifold with corners minus this algebraic set is a Nash diffeomorphism onto
its image.

Theorem 4.1. Let S ⊂ Rm be a d-dimensional closed semi-algebraic set con-
nected by analytic paths. Then there exist:

(i) A d-dimensional non-singular irreducible algebraic set X ⊂ Rn and a
normal-crossings divisor Y ⊂ X.

(ii) A connected Nash manifold with corners Q ⊂ X (which is a closed subset
of X) whose boundary ∂Q has Y as its Zariski closure.

(iii) A polynomial map f : Rn → Rm such that the restriction f |Q : Q → S is
proper and f(Q) = S.
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4. Resolution of semi-algebraic sets connected by analytic paths

(iv) A closed semi-algebraic set R ⊂ S of dimension strictly smaller than d
such that S \ R and Q \ f−1(R) are Nash manifolds and the polynomial
map f |Q\f−1(R) : Q \ f−1(R)→ S \ R is a Nash diffeomorphism.

If S ⊂ Rm is a general semi-algebraic set connected by analytic paths, one
can wonder if it is possible to provide a similar result that also works for S. As
the chosen Nash manifold with corners Q is closed in its Zariski closure and the
chosen polynomial map f : Rn → Rm restricts to a proper map f |Q : Q→ Rm,
its image S is a closed subset of Rm. Thus, if S is not closed in Rm, we should
change the type of domain and/or the type of map. The second approach
considering general Nash maps non-necessarily proper has been developed in
[Fe4, Proof of Thm.1.4, §8.C.12] and it is shown that if the involved Nash map
is not necessarily proper, then there exists a Nash manifold H with smooth
boundary and a surjective Nash map f : H → S. If one wants to keep the
properness condition, it is not possible to keep as domains Nash manifolds Q

with corners because they are locally compact and images of locally compact
subset of Rn under proper maps are locally compact subsets of Rm. Thus, we
have to change the type of involved domains and we will consider semi-algebraic
sets T ⊂ Rn whose closure is a Nash manifold with corners Q ⊂ Rn and Q \ T
is a union of some of the strata of the a suitable stratification of ∂Q. A Nash
quasi-manifold with corners is a Nash manifold with corners with some faces
erased (the precise definition is included in Section 4.3).

Theorem 4.2. Let S ⊂ Rm be a d-dimensional semi-algebraic set connected by
analytic paths. Then there exist:

(i) A d-dimensional connected compact non-singular algebraic set M ⊂ Rn
and a normal-crossings divisor Y ⊂M .

(ii) A connected Nash quasi-manifold with corners S• ⊂M that is a checker-
board set and whose closure in M is a compact connected Nash manifold
with corners Q• ⊂M whose boundary ∂Q• has Y as its Zarsiki closure.

(iii) A Nash map f : Rn → Rm such that the restriction f |S• : S• → S is proper
and f(S•) = S.

(iv) A closed semi-algebraic set R ⊂ S of dimension strictly smaller than d
such that S \ R and S• \ f−1(R) are Nash manifolds and the Nash map
f |S•\f−1(R) : S• \ f−1(R)→ S \ R is a Nash diffeomorphism.

4.1 Drilling blow-up

In [Fe4] Fernando introduced the concept of drilling blow-up of a Nash manifold
M with center a closed Nash submanifold N . We refer the reader to [S, Hi2]
for the oriented blow-up of a real analytic space with center a closed subspace,
which is the counterpart of the construction of Fernando in the real analytic
setting. In [HPV, §5] appears a presentation of the oriented blow-up in the
analytic case closer to the drilling blow-up described by Fernando. The authors
consider there the case of the oriented blow-up of a real analytic manifold M
with center a closed real analytic submanifold N whose vanishing ideal inside
M is finitely generated (this happens for instance if N is compact). In [Fe3, §3]
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4.1. Drilling blow-up

it is presented a similar construction in the semi-algebraic setting, which is used
to ‘appropriately embed’ semi-algebraic sets in Euclidean space. In this section
we will describe the construction made by Fernando [Fe4, §5] of the drilling
blow-up with the main properties. We add some results that we need in the
following sections.

4.1.1. Local structure of the drilling blow-up. Let M ⊂ Rm be a Nash
manifold of dimension d and let N ⊂ M be a closed Nash submanifold of
dimension e. As we are interested in the local structure, assume that there
exists a Nash diffeomorphism u := (u1, . . . , ud) : M → Rd such that

N = {ue+1 = 0, . . . , ud = 0}.

Denote ψ := u−1 : Rd ≡ Re × Rd−e → M . Let ζe+1, . . . , ζd : Rd → Rk be Nash
maps such that the vectors ζe+1(y, 0), . . . , ζd(y, 0) are linearly independent for
each y ∈ Re. Write z ∈ Rd−e as z := (ze+1, . . . , zd). Consider the Nash maps

ϕ : Rd ≡ Re × Rd−e → Rk, (y, z) 7→ ζe+1(y, z)ze+1 + . . .+ ζd(y, z)zd,

φ : Re × R× Sd−e−1 → Rk, (y, ρ, w) 7→ ζe+1(y, ρw)we+1 + · · ·+ ζd(y, ρw)wd

and assume that ϕ(y, z) = 0 if and only if z = 0. Consider the projections

θ1 : Rd ≡ Re × Rd−e → Re, (y, z) 7→ y,

θ2 : Rd ≡ Re × Rd−e → Rd−e, (y, z) 7→ z.

Consider the (well-defined) Nash map:

Φ : Re × R× Sd−e−1 →M × Sk−1, (y, ρ, w) 7→
(
ψ(y, ρw),

φ(y, ρ, w)

‖φ(y, ρ, w)‖

)
.

Fact 4.1.1. Fix ε = ± and denote

Iε :=

{
[0,+∞) if ε = +,

(−∞, 0] if ε = −.

The closure M̃ε in M × Sk−1 of the set

Γε :=

{(
ψ(y, z), ε

ϕ(y, z)

‖ϕ(y, z)‖

)
∈M × Sk−1 : z 6= 0

}
is a Nash manifold with boundary such that:

(i) M̃ε ⊂ im(Φ).

(ii) The restriction of Φ to Re × Iε × Sd−e−1 induces a Nash diffeomorphism

between Re × Iε × Sd−e−1 and M̃ε. Consequently,

∂M̃ε = Φ(Re × {0} × Sd−e−1)

and Γε = Int(M̃ε) = Φ(Re × (Iε \ {0})× Sd−e−1).
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4. Resolution of semi-algebraic sets connected by analytic paths

Fact 4.1.2. Denote R := ∂M̃+ = ∂M̃− and M̂ := M̃+ ∪ M̃− = Γ+ t R t Γ−.

Then Φ induces a Nash diffeomorphism between Re×R×Sd−e−1 and M̂ , which
is the Nash closure of M̃+ and M̃− in M × Sk−1. In addition, the Nash map

σ : M × Sk−1 → M × Sk−1, (a, b) → (a,−b) induces a Nash involution on M̂

without fixed points such that σ(M̃+) = M̃− and Φ(y,−ρ,−w) = (σ ◦Φ)(y, ρ, w)
for each (y, ρ, w) ∈ Re × R× Sd−e−1.

Fact 4.1.3. Consider the projection π : M × Sk−1 → M onto the first factor
and denote πε := π|

M̃ε
. Then

(i) πε is proper, πε(M̃ε) = M and R = π−1
ε (N).

(ii) The restriction πε|Γε : Γε →M \N is a Nash diffeomorphism.

(iii) For each q ∈ N it holds π−1
ε (q) = {q}×Sd−e−1

q where Sd−e−1
q is the sphere

of dimension d−e−1 obtained when intersecting the sphere Sk−1 with the
linear subspace Lq generated by (ζe+1 ◦ u)(q), . . . , (ζd ◦ u)(q).

Φ−1(π̂−1(N)) •
u(N)

(y, ρ, w) (y, ρw)

RdRe × [0,+∞)× Sd−e−1

u ◦ π+ ◦ Φ
•

Figure 4.1: Local structure of the drilling blow-up M̃+ of M of center N (figure
borrowed from [Fe4, Fig.3]).

Denote π̂ := π|
M̂

and consider the commutative diagram.

Re × R× Sd−e−1

u◦π̂◦Φ
��

Φ
∼=

// M̂

π̂

��

(y, ρ, w)
_

��

� // Φ(y, ρ, w)
_

��
Rd M

u
∼=

oo (y, ρw) ψ(y, ρw)
�oo

(4.1.1)

As a consequence, we have: The Nash maps πε and π̂ have local representations

(x1, . . . , xd) 7→ (x1, . . . , xe, xe+1, xe+1xe+2, . . . , xe+1xd)

in an open neighbourhood of each point p ∈ R. In addition, dπp(TpM̂) 6⊂ Tπ(p)N .

Proof ([Fe4, 5.A.5]). After a change of coordinates in Re×R×Sd−e−1, we may
assume that p ∈ R is the image of the point (0, 0, (1, 0, . . . , 0)). Consider the
local parametrization around (0, 0, (1, 0, . . . , 0)) of the set Re×R×Sd−e−1 given
by

η : Re × R×B→ Re × R× Sd−e−1,

(y, ρ, v := (ve+2, . . . , vd)) 7→ (y, ρ, (
√

1− ‖v‖2, v))
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4.1. Drilling blow-up

where B is the open ball of center the origin and radius 1 in Rd−e−1. It holds

u ◦ π̂ ◦ Φ ◦ η : Re × R×B→ Rd, (y, ρ, v) 7→ (y, ρ
√

1− ‖v‖2, ρv).

Consider the Nash diffeomorphism

f : Re × R×B→ Rd, (y, ρ, v)→
(
y, ρ
√

1− ‖v‖2, v√
1− ‖v‖2

)
,

whose inverse is

f−1 : Rd → Re × R×B, (y, ρ′, v′) 7→
(
y, ρ′

√
1 + ‖v′‖2, v′√

1 + ‖v′‖2
)
.

The Nash map

π′ := u ◦ π̂ ◦ Φ ◦ η ◦ f−1 : Rd → Rd, (y, ρ′, v′) 7→ (y, ρ′, ρ′v′).

represents π̂ locally around p and the restriction

π′ε := π′|{ερ′≥0} : {ερ′ ≥ 0} → Rd, (y, ρ′, v′) 7→ (y, ρ′, ρ′v′).

represents πε locally around p.

To prove that dπp(TpM̂) 6⊂ Tπ(p)N , it is enough to show dπ′0(Rd) 6⊂ u(N).
It holds, dπ′0(ee+1) = ee+1 6∈ u(N), as required.

Remarks 4.1.4. Denote g := u ◦ π̂ ◦ Φ and

g+ := g|Re×[0,+∞)×Sd−e−1 = u ◦ π+ ◦ Φ|Re×[0,+∞)×Sd−e−1 .

Consider the Nash normal-crossings divisor Z := {ye+1 · · · yd = 0} ⊂ Rd. Con-
sider coordinates (we+1, . . . , wd) in Rd−e and the sphere

Sd−e−1 = {w2
e+1 + . . .+ w2

d = 1}.

(i) Write Zk := {yk = 0} for k = e+ 1, . . . , d and observe that

g−1(Zk) = (Re × {0} × Sd−e−1) ∪ (Re × R× (Sd−e−1 ∩ {wk = 0})),
g−1

+ (Zk) = (Re × {0} × Sd−e−1) ∪ (Re × [0,+∞)× (Sd−e−1 ∩ {wk = 0}))

for k = e+ 1, . . . , d. Thus,

g−1(Z) = (Re × {0} × Sd−e−1) ∪
d⋃

k=e+1

(Re × R× (Sd−e−1 ∩ {wk = 0})),

g−1
+ (Z) = (Re × {0} × Sd−e−1) ∪

d⋃
k=e+1

(Re × [0,+∞)× (Sd−e−1 ∩ {wk = 0}))

are Nash normal-crossings divisors.

(ii) Let ε := (εe+1, . . . , εd) where εk = ±1 and denote

Qε := {εe+1ye+1 ≥ 0, . . . , εdyd ≥ 0}.
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4. Resolution of semi-algebraic sets connected by analytic paths

Write −ε := (−εe+1, . . . ,−εd). We have:

Cl(g−1
+ (Qε \ Z)) = Re × {ρ ≥ 0} × (Sd−e−1 ∩ {εe+1we+1 ≥ 0, . . . , εdwd ≥ 0}).

Consequently,
Cl(g−1

+ (Qε \ Z)) ∩ Cl(g−1
+ (Q−ε \ Z)) = ∅.

More generally, if

ε := (εe+1, . . . , εm, εm+1, . . . , εd), ε
′ := (εe+1, . . . , εm,−εm+1, . . . ,−εd)

where e < m < d, then

Qε ∩ Qε′ = {εe+1ye+1 ≥ 0, . . . , εmym ≥ 0, ym+1 = 0, . . . , yd = 0},

which has dimension e+ (d− e)− (d−m) = m. In addition,

Cl(g−1
+ (Qε \ Z)) ∩ Cl(g−1

+ (Qε′ \ Z))

= Re × {ρ ≥ 0} × (Sd−e−1 ∩ {εe+1we+1 ≥ 0, . . . , εmwm ≥ 0, wm+1 = 0, . . . , wd = 0}),

which has dimension e+ 1 + (d− e− 1− (d−m)) = m.

(iii) Let Y1, Y2 be intersections of dimension e+ 1 of irreducible components
of Z that contain N . We may assume Y1 = {ye+1 = 0, . . . , yd−1 = 0} and Y2 =
{ye+1 = 0, . . . , yd−2 = 0, yd = 0}, so Y1 ∩ Y2 = {ye+1 = 0, . . . , yd = 0} = N .
Thus,

g−1(Y1) = (Re × {0} × Sd−e−1)

∪ (Re × R× (Sd−e−1 ∩ {we+1 = 0, . . . , wd−1 = 0})),
g−1

+ (Y1) = (Re × {0} × Sd−e−1)

∪ (Re × [0,+∞)× (Sd−e−1 ∩ {we+1 = 0, . . . , wd−1 = 0})),
g−1(Y2) = (Re × {0} × Sd−e−1)

∪ (Re × R× (Sd−e−1 ∩ {we+1 = 0, . . . , wd−2 = 0, wd = 0})),
g−1

+ (Y2) = (Re × {0} × Sd−e−1)

∪ (Re × [0,+∞)× (Sd−e−1 ∩ {we+1 = 0, . . . , wd−2 = 0, wd = 0})).

As the intersection

Sd−e−1 ∩ {we+1 = 0, . . . , wd−1 = 0} ∩ {we+1 = 0, . . . , wd−2 = 0, wd = 0}

is empty, we conclude that the intersection

g−1(Y1) ∩ Cl(g−1(Y1 \N)) ∩ g−1(Y2) ∩ Cl(g−1(Y2 \N))

of the strict transforms of Y1, Y2 under g is also empty. Analogously, the inter-
section

g−1
+ (Y1) ∩ Cl(g−1

+ (Y1 \N)) ∩ g−1
+ (Y2) ∩ Cl(g−1

+ (Y2 \N))

of the strict transforms of Y1, Y2 under g+ is empty.

We analyze next all we know about the local structure of drilling blow-up
when N has dimension d− 1.
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4.1. Drilling blow-up

Fact 4.1.5. Assume N has dimension e = d − 1. The Nash diffeomorphism
u := (u1, . . . , ud) : M → Rd satisfies N = {ud = 0}. Recall that

ψ := u−1 : Rd ≡ Rd−1 × R→M

and ζd : Rd → Rk is a Nash map that does not vanish and define the Nash map

Φ : Rd−1 × R× {±1} →M × Sk−1, (y, ρ,±1) 7→
(
ψ(y,±ρ),± ζd(y,±ρ)

‖ζd(y,±ρ)‖

)
.

Fix ε = ± and denote

Iε :=

{
[0,+∞) if ε = +,

(−∞, 0] if ε = −.

The closure M̃ε in M × Sk−1 of the set

Γε :=

{(
ψ(y, z), ε

z

|z|
ζd(y, z)

‖ζd(y, z)‖

)
∈M × Sk−1 : z 6= 0

}
is a Nash manifold with boundary such that:

(i) M̃ε ⊂ im(Φ).

(ii) The restriction of Φ to Rd−1 × Iε × {±1} induces a Nash diffeomorphism

between Rd−1 × Iε × {±1} and M̃ε. Consequently,

∂M̃ε = Φ(Rd−1 × {0} × {±1})

and Γε = Int(M̃ε) = Φ(Rd−1 × (Iε \ {0})× {±1}).

Denote R := ∂M̃+ = ∂M̃− and M̂ := M̃+ ∪ M̃− = Γ+ t R t Γ−. Then

Φ induces a Nash diffeomorphism between Rd−1 × R × {±1} and M̂ , which is

the Nash closure of M̃+ and M̃− in M × Sk−1. In addition, the Nash map

σ : M × Sk−1 → M × Sk−1, (a, b) → (a,−b) induces a Nash involution on M̂

without fixed points such that σ(M̃+) = M̃− and Φ(y,−ρ,±1) = (σ◦Φ)(y, ρ,∓1)
for each (y, ρ,±1) ∈ Rd−1 × R× {±1}.

Consider the projection π : M × Sk−1 →M onto the first factor and denote
πε := π|

M̃ε
. Then

(i) πε is proper, πε(M̃ε) = M and R = π−1
ε (N).

(ii) The restriction πε|Γε : Γε →M \N is a Nash diffeomorphism.

(iii) For each q ∈ N it holds π−1
ε (q) = {q} × {± {(ζd◦u)(q)}

‖{(ζd◦u)(q)}‖}, that is, each

point q ∈ N has exactly two preimages under πε.

Denote π̂ := π|
M̂

and consider the commutative diagram.

Rd−1 × R× {±1}

u◦π̂◦Φ
��

Φ
∼=

// M̂

π̂

��

(y, ρ,±1)
_

��

� // Φ(y, ρ,±1)
_

��
Rd M

u
∼=

oo (y,±ρ) ψ(y,±ρ)�oo

(4.1.2)
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4. Resolution of semi-algebraic sets connected by analytic paths

As a consequence, we have: The Nash maps πε and π̂ have local representations

(x1, . . . , xd) 7→ (x1, . . . , xd)

in an open neighbourhood of each point p ∈ R. In addition, dπp(TpM̂) 6⊂ Tπ(p)N .

4.1.2. Global definition. Let M ⊂ Rm be a d-dimensional Nash manifold and
N ⊂M a closed e-dimensional Nash submanifold. Let f1, . . . , fk ∈ N (M) be a
finite system of generators of the ideal I(N) of Nash functions on M vanishing
identically on N . Consider the Nash map

F : M \N → Sk−1, x 7→ (f1(x), . . . , fk(x))

‖(f1(x), . . . , fk(x))‖
.

We have:

Fact 4.1.6. Fix ε = ±. The closure M̃ε in M × Sk−1 of the graph

Γε := {(x, εF (x)) ∈M × Sk−1 : x ∈M \N}

is a Nash manifold with boundary. Denote R := ∂M̃+ = ∂M̃− and M̂ :=

M̃+∪M̃− = Γ+tRtΓ−, which is the Nash closure of M̃+ and M̃− in M×Sk−1

if M is connected. In addition, M̂ is a Nash manifold and the Nash map

σ : M × Sk−1 →M × Sk−1, (a, b)→ (a,−b)

induces a Nash involution on M̂ without fixed points that maps M̃+ onto M̃−.

Fact 4.1.7. Consider the projection π : M × Sk−1 → M onto the first factor.
Denote πε := π|

M̃ε
and π̂ := π|

M̂
. We have:

(i) πε is proper, πε(M̃ε) = M and R = π−1
ε (N).

(ii) The restriction πε|Γε : Γε →M \N is a Nash diffeomorphism.

(iii) Consider the Nash map f := (f1, . . . , fk) : M → Rk (whose coordinates
generate I(N)). Fix q ∈ N and let Eq be any complementary linear
subspace of TqN in TqM . Then π−1

ε (q) = {q} × Sd−e−1
q , where Sd−e−1

q

denotes the sphere of dimension d− e− 1 obtained when intersecting Sk−1

with the (d − e)-dimensional linear subspace dqf(Eq). In case e = d − 1,
each q ∈ N has exactly two preimages under πε.

(iv) The Nash maps πε and π̂ have local representations of the type

(x1, . . . , xd) 7→ (x1, . . . , xe, xe+1, xe+1xe+2, . . . , xe+1xd)

in an open neighbourhood of each point p ∈ R. In case e = d − 1 the
previous local representations are (x1, . . . , xd) 7→ (x1, . . . , xd). In addition,

dπp(TpM̂) 6⊂ Tπ(p)N.

Fact 4.1.8. Up to Nash diffeomorphisms compatible with the respective projec-
tions, the pairs (M̃ε, πε) and (M̂, π̂) do not depend on the generators f1, . . . , fk
of I(N). Moreover, such Nash diffeomorphisms are unique.
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4.1. Drilling blow-up

Definition 4.1.9. The pair (M̃+, π+) is the drilling blow-up of the Nash man-

ifold M with center the closed Nash submanifold N ⊂ M and (M̂, π̂) is the

twisted Nash double of (M̃+, π+).

Remark 4.1.10. Let N ⊂M ′ ⊂M be Nash manifolds such that N,M ′ are closed
in M . Let (M̃+, π+) is the drilling blow-up of M with center N and let (M̂, π̂)

be the twisted Nash double of (M̃+, π+). Denote M ′∗ := Cl(π−1
+ (M ′ \N)) and

M ′• := Cl(π̂(M ′ \N)). Then (M ′∗, π+|M ′∗) is the drilling blow-up of M ′ with
center N and (M ′•, π̂|M ′•) is the twisted Nash double of (M ′∗, π+|M ′∗).

In fact, a finite system of generators f1, . . . , fk ∈ N (M ′) of the ideal I(N)
can be obtained considering a finite system of generators g1, . . . , gk ∈ N (M) of
the ideal I(N) by defining fj := gj |M ′ for j = 1, . . . , k.

4.1.3. Alternative description of the drilling blow-up. Fernando extended
the construction in diagram (4.1.1) to an open semi-algebraic neighbourhood of
the center N of the drilling blow-up of M (see [Fe4, 5.C]). This construction

gives a global picture of the drilling blow-up (M̃+, π+) and justifies the first part
of the name (see also Figure 4.2).

Let M ⊂ Rm be a Nash manifold of dimension d and let N ⊂M be a closed
Nash submanifold of dimension e. Let (M̂, π̂) be the twisted Nash double of the

drilling blow-up (M̃+, π+) of M with center N .

Lemma 4.1.11. Let U1 ⊂ M and U2 ⊂ M̂ be respective open semi-algebraic
neighbourhoods of N and R := π̂−1(N). Then there exist Nash tubular neigh-
bourhoods (V1, θ1) of N in U1 and (V2, θ2) of R in U2 such that π̂(V2) = V1 and

V2 is the Nash double of a collar of R in M̃+.

Theorem 4.1.12 (Alternative description of the drilling blow-up). Let M ⊂ Rm
be a Nash manifold, let N ⊂ M be a closed Nash submanifold and let U be an
open semi-algebraic neighbourhood of N in M . Then there exist a Nash tubular
neighbourhood (V, θ) of N in U such that M\V is a Nash manifold with boundary

∂V and a Nash diffeomorphism g : M \ V → M̃+.

4.1.4. Relationship between drilling blow-up and classical blow-up.
Let M ⊂ Rm be a Nash manifold of dimension d and let N ⊂M be a closed Nash
submanifold of dimension e. Let f1, . . . , fk ∈ N (M) be a system of generators
of the ideal I(N). Define

Γ′ := {(x, (f1(x) : . . . : fk(x))) ∈M × RPk−1 : x ∈M \N}.

The closure B(M,N) of Γ′ in M × RPk−1 together with the restriction π′ to
B(M,N) of the projection M ×RPk−1 →M is the classical blow-up of M with
center N .

Corollary 4.1.13. Let (M̂, π̂) be the twisted Nash double of the drilling blow-up

(M̃+, π+). Let σ : M̂ → M̂, (a, b) 7→ (a,−b) be the involution of M̂ without
fixed points. Consider the Nash map

Θ : M × Sk−1 →M × RPk−1, (p, q)→ (p, [q])

and its restriction θ : M̂ → B(M,N). We have
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4. Resolution of semi-algebraic sets connected by analytic paths

• •
•

0(y, ρ, w)

(y, ρw)

w

ρ

Rd

Re × R× Sd−e−1

u ◦ π̂ ◦ Φ

Φ

u

π̂

π̂ ◦ g

M

N N

V1 \ VUi

M \ V

g

R := π̂−1(N)

M̃−

M̃+

M̂

Figure 4.2: Full picture of the drilling blow-up M̃+ of M with center N (figure
borrowed from [Fe4, Fig.4]).

(i) θ(M̂) = B(M,N), θ ◦ σ = θ, π′ ◦ θ = π̂ and θ−1(a, [b]) = {(a, b), (a,−b)}
for each (a, [b]) ∈ B(M,N).

(ii) θ is an unramified two to one Nash covering of B(M,N).

4.1.5. Algebraic description of drilling blow-up. Let us analyse an enough
general situation for which we can guarantee that the drilling blow-up is a
constructible set and its twisted (Nash) double an algebraic set. Let X ⊂ Rn
be a non-singular d-dimensional algebraic set and let Y ⊂ X be a non-singular
e-dimensional algebraic subset. Let f1, . . . , fr ∈ R[x] be a system of generators

of the ideal I(Y ) of polynomials vanishing identically on Y . Then X̃+ is the
(topological) closure of

Γ+ =

{
(x, u) ∈ (X \ Y )× Sr−1 : rk

(
u1 · · · ur
f1(x) · · · fr(x)

)
= 1,

u1f1(x) + · · ·+ urfr(x) > 0

}
in X × Sr−1. In addition, X̂ is the (topological) closure of

Γ =

{
(x, u) ∈ (X \ Y )× Sr−1 : rk

(
u1 · · · ur
f1(x) · · · fr(x)

)
= 1

}
or equivalently the union of the irreducible components of the algebraic set{

(x, u) ∈ X × Sr−1 : rk

(
u1 · · · ur
f1(x) · · · fr(x)

)
= 1

}
different from Y × Sr−1 and it holds X̃+ = X̂ ∩ {u1f1 + · · ·+ urfr ≥ 0}. Thus,

the Zariski closure of X̃+ is a union of irreducible components of X̂.

98



4.2. Resolution of closed checkerboard sets

4.2 Resolution of closed checkerboard sets

If S ⊂ Rm is a semi-algebraic set, we denote ∂S := Cl(S) \ Reg(S). Recall
(see Section 3.5) that a pure dimensional semi-algebraic set T ⊂ Rn is called a
checkerboard set if it satisfies the following properties:

� T
zar

is a non-singular algebraic set.

� ∂T
zar

is a normal-crossings divisor of T
zar

.

� Reg(T) is connected.

In [Fe4] Fernando proved Theorem 3.5.2. Even if it is not explicitly quoted
in the statement of [Fe4, Thm.8.4] he actually proved more. So, looking at his
proof, we can reformulate the statement of Theorem 3.5.2 in the following way
(recall that by Theorem 3.4.2 a semi-algebraic set S is well-welded if and only
if it is connected by analytic paths):

Theorem 4.2.1. Let S ⊂ Rm be a semi-algebraic set connected by analytic paths
of dimension d ≥ 2 and denote X := S

zar
. Then there exists a checkerboard set

T ⊂ Rn of dimension d and a proper polynomial map f : Y := T
zar → X

such that f(T) = S and the restriction f |T : T → S is also proper. Moreover,
there exists a semi-algebraic set R ⊂ S of dimension strictly smaller than d
such that f−1(R) ⊂ ∂T

zar
, S \ R and T \ f−1(R) are Nash manifolds and

f |T\f−1(R) : T \ f−1(R)→ S \ R is a Nash diffeomorphism.

4.2.1. Closed checkerboard sets. Thus, in order to prove Theorem 4.1, we
are reduced to the case when T ⊂ Rn is a closed checkerboard set. We need
some preliminary notations and results on checkerboard sets.

Given a non-singular algebraic set X ⊂ Rn of dimension d and a normal-
crossings divisor Z ⊂ X, we denote, for 1 ≤ ` ≤ d,

Sing0(Z) := Z,

Sing`(Z) := Sing(Sing`−1(Z)).

Observe that if Sing`(Z) 6= ∅, then dim(Sing`(Z)) = d − ` − 1. In addition, if
Sing`(Z) = ∅, then Singk(Z) = ∅ for k ≥ `. In particular, Singd(Z) = ∅.

Let T ⊂ Rn be a closed checkerboard set and denote X := T
zar

. For each
point x ∈ T there exists a coordinate system (u1, . . . , ud) of the Nash manifold

X at x and an integer 0 ≤ rx ≤ d such that either ∂T
an

x = {u1 · · · urx = 0}x if
rx ≥ 1 or x ∈ Reg(T) = T \ ∂T if rx = 0. We denote with ex := ex(T) ≤ rx the
number of indices 1 ≤ i ≤ rx such that the germ Tx \ {ui = 0}x is disconnected.
If rx ≤ 1, then ex = 0.

Lemma 4.2.2. ex = 0 if and only if Tx is the germ at x of a Nash manifold
with corners.

Proof. The if implication is clear because after changing the sign of some of the
variables if necessary, we may assume either x ∈ Reg(T) or

Tx = {u1 ≥ 0, . . . , urx ≥ 0}x
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4. Resolution of semi-algebraic sets connected by analytic paths

for some 1 ≤ rx ≤ d, so ex = 0.

Conversely, if ex = 0, then after changing the sign of some of the variables
if necessary, we may assume either x ∈ Reg(T) or Tx ⊂ {u1 ≥ 0, . . . , urx ≥ 0}x
for some 1 ≤ rx ≤ d. As

Tx \ ∂T
an

x = Reg(T)x \ ∂T
an

x

is an open and closed germ, Tx \ ∂T
an

x is a union of connected components of
{u1 · · · urx 6= 0}x contained in {u1 > 0, . . . , urx > 0}x, so

Tx \ ∂T
an

x = {u1 > 0, . . . , urx > 0}x.

As Tx is closed and pure dimensional and dim(∂T
an

x ) < dim(Tx), we conclude
Tx = {u1 ≥ 0, . . . , urx ≥ 0}x is the germ at x of a Nash manifold with corners,
as required.

It follows from the previous statement: A closed checkerboard set is a Nash
manifold with corners if and only if ex(T) = 0 for each x ∈ T.

Lemma 4.2.3. Let T ⊂ Rn be a closed checkerboard set. Then ex 6= 1, for each
x ∈ ∂T.

Proof. Let X := T
zar

. For each x ∈ ∂T there exists an open semi-algebraic set
U ⊂ X equipped with a Nash diffeomorphism u := (u1, . . . , ud) : U → Rd and

an integer 1 ≤ rx ≤ d such that u(x) = 0 and ∂T
an

x = {u1 · · · urx = 0}x.

Suppose that ex ≥ 1 for some x ∈ ∂T. As ex 6= 0, then rx ≥ 2, because
otherwise Tx is the germ of a Nash manifold with boundary and ex = 0. Up to
rename the variables if necessary, we may assume Tx\{u1 = 0}x is disconnected.
Suppose that for each 2 ≤ i ≤ rx the germ Tx \ {ui = 0}x is connected. After
changing the signs of some of the variables if necessary, we may assume

Tx ⊂ {u2 ≥ 0, . . . , urx ≥ 0}x.

Proceeding as in the proof of Lemma 4.2.2, as Tx \ ∂T
an

x = Reg(T)x \ ∂T
an

x

is an open and closed germ, Tx \ ∂T
an

x is a union of connected components of
{u1 · · · urx 6= 0}x contained in {u2 > 0, . . . , urx > 0}x. As Tx is closed and pure

dimensional and dim(∂T
an

x ) < dim(Tx), we have only two possibilities:

� Tx = {u1 ≥ 0, . . . , urx ≥ 0}x (up to changing the sign of the germ u1 if
necessary),

� Tx = {u2 ≥ 0, . . . , urx ≥ 0}x.

In the first case ex = 0, which contradicts the fact that Tx \ {u1 = 0}x is

disconnected, whereas in the second case {u1 = 0}x 6⊂ ∂T
an

, which contradicts

the fact that ∂T
an

= {u1 · · · urx = 0}x. Thus, there exists 2 ≤ i ≤ rx such that
Tx \ {ui = 0}x is disconnected, so ex ≥ 2 as required.

We show next that the function e(T) is a semi-algebraic function.
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4.2. Resolution of closed checkerboard sets

Lemma 4.2.4 (Semi-algebricity of e(T)). Let T ⊂ Rn be a d-dimensional closed
checkerboard set and let 0 ≤ e ≤ d. The set

Te := {x ∈ T : ex = e}

is a semi-algebraic set and T0 is an open subset of T. In addition, if Z is the
Zariski closure of ∂T and C is a connected component of Sing`(Z) \ Sing`+1(Z)
for some 0 ≤ ` ≤ d− 1, then e(T) is constant on C.

Proof. The boundary ∂T is a closed semi-algebraic subset of the Nash manifold
X := T

zar
. For each x ∈ ∂T there exists a coordinate system (u1, . . . , ud) of X

at x and an integer 1 ≤ rx ≤ d such that ∂T
an

x = {u1 · · · urx = 0}x. By [FGR,
Prop.4.4, Prop.4.6] there exist finitely many open semi-algebraic sets {Ui}si=1

equipped with Nash diffeomorphism ui := (ui1, . . . , uid) : Ui → Rd and integers

ri ≥ 1 such that ∂T
an

x = {ui1 · · · uiri = 0}x for all x ∈ T ∩ Ui.
Fix i ∈ {1, . . . , s} and J ⊂ {1, . . . , ri}. Reordering the variables if necessary,

we may assume J = {1, . . . ,m} for some 1 ≤ m ≤ ri. Let V be a connected
component of Ui \ {um+1 · · · uri = 0}. After changing the signs of some of
the variables if necessary, we may assume V := {ui,m+1 > 0, . . . , ui,ri > 0}.
Consider the semi-algebraic set T′ := T ∩ Ui ∩ V and the projection

πi : Rd ≡ Rm × Rd−m → Rm

onto the first m coordinates. We take coordinates (x1, . . . , xm) on Rm and
(xm+1, . . . , xd) on Rd−m. Denote

Λi := {xi,m+1 > 0, . . . , xi,ri > 0} ⊂ Rd−m.

As ui(T ∩ Ui) is the union of connected components of Rd \ {x1 . . . xri = 0},
there exist εi,1, . . . , εi,k ∈ {−1, 1}ri such that

ui(T ∩ Ui) =

k⋃
p=1

{ε1p1x1 ≥ 0, . . . , εiprixri ≥ 0}

where εip := (εip1 , . . . , εipri ). Consequently,

ui(T
′) = ui(T ∩ Ui ∩ V )

=

k⋃
p=1

{ε1p1x1 ≥ 0, . . . , εiprixri ≥ 0, xm+1 ≥ 0, . . . , xri ≥ 0}

Observe that

{ε1p1x1 ≥ 0, . . . , εiprixri ≥ 0, xm+1 ≥ 0, . . . , xri ≥ 0}

=


{ε1p1x1 ≥ 0, . . . , εipmxm ≥ 0, xm+1 ≥ 0, . . . , xri ≥ 0},

if εipm+1 = . . . = εipri = 1,

∅, otherwhise.

Thus,

ui(T
′) =

⋃
p∈{1,...,k}

(εipm+1
,...,εipri

)=(1,...,1)

{ε1p1x1 ≥ 0, . . . , εipmxm ≥ 0, xm+1 ≥ 0, . . . , xri ≥ 0}

= πi(ui(T
′))× Λi.
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4. Resolution of semi-algebraic sets connected by analytic paths

If x ∈ {ui1 = 0, . . . , uim = 0}∩V ∩T, then ex(T) = e0(πi(ui(T∩Ui∩V ))) and in
particular ex(T) is constant on {ui1 = 0, . . . , uim = 0, ui,m+1 > 0, . . . , uiri > 0}.
As each x ∈ T ∩ Ui ∩ {ui1 . . . uiri = 0} belongs to a set of the type

{uij = 0, j ∈ J} ∪ {εijuij > 0, j 6∈ J}

where J = {1, . . . , ri} and εij ∈ {−1, 1}, the function e(T) provides a semi-
algebraic partition of ∂T ∩ Ui for each i = 1, . . . , s. In particular, each set Te is
semi-algebraic. As the condition ‘to be a Nash manifold with corners’ is a local
open condition, we deduce T0 is an open semi-algebraic subset of T.

We have proved above that if Z ′i := {ui1 · · · uiri = 0} and C ′i is a connected
component of Sing`(Z

′
i) \ Sing`+1(Z ′i) for some 0 ≤ ` ≤ d − 1, then e(T) is

constant on C ′. That means that if C is a connected component of Sing`(Z) \
Sing`+1(Z), there exists a finite semi-algebraic open covering WC of C such
that e(T) is constant on each semi-algebraic open subset of the covering. If
x, y ∈ C, there exists W1, . . . ,Wg ∈ WC such that x ∈ W1, y ∈ Wg and
Wj∩Wj+1 6= ∅ for j = 1, . . . , g−1. As e(T)|Wj

is constant we deduce recursively
that ex(T) = ey(T), as required.

We show next that the function e(T) is upper semi-continuous.

Lemma 4.2.5 (Upper semi-continuity of e(T)). Let T ⊂ Rd be a d-dimensional
closed checkerboard set and let x ∈ ∂T. Then ex ≥ ey for each y ∈ T close
enough to x.

Proof. Let k be the maximum of the values e ≥ 0 such that x ∈ Cl(Te). It

is enough to check that ex ≥ k. Consider the Nash manifold X := T
zar

and
let U ⊂ X be an open semi-algebraic neighbourhood of x equipped with a
Nash diffeomorphism u := (u1, . . . , ud) : U → Rd such that u(x) = 0 and

∂T
an

x = {u1 · · · ur = 0}x. If ex < k, we may assume Tx ⊂ {uk ≥ 0, . . . , ud ≥ 0}x.
Shrinking U if necessary, we have

T ∩ U ⊂ {uk ≥ 0, . . . , ud ≥ 0}.

Thus, ey < k for each y ∈ U , which is a contradiction because x ∈ Cl(Tk).

Remark 4.2.6. As e(T) is upper semi-continuous, the set
⋃
k≥e Tk is a closed

subset of ∂T for each 1 ≤ e ≤ d.

4.2.2. Closed checkerboard sets and drilling blow-up. We want to study
now how the quantity ex(T) changes after performing a drilling blow-up. We
show the following:

Lemma 4.2.7. Let S ⊂ Rn be a d-dimensional closed checkerboard set. Denote
X := S

zar
and Z := ∂S

zar
. Let Z1, . . . , Zr be the irreducible components of Z

and Y an irreducible component of Z1∩· · ·∩Z` for some 2 ≤ ` ≤ r. Let (X̂, π̂) be

the twisted Nash double of the drilling blow-up (X̃, π+) of X with center Y . Let
T := Cl(π−1

+ (S\Y )) = π−1
+ (S)∩Cl(π−1

+ (S\Y )) be the strict transform of S. Then
T is d-dimensional closed checkerboard set, ey(T) ≤ eπ+(y)(S) for each y ∈ ∂T
and ey(T) < eπ+(y)(S) for each y ∈ ∂T ∩ π−1

+ (Y ) such that Sπ+(y) \ Zi,π+(y) is
not connected for i = 1, . . . , `.
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4.2. Resolution of closed checkerboard sets

Proof. As ` ≥ 2, we have dim(Y ) ≤ d − 2, so Reg(S) \ Y is connected because
Reg(S) is a connected Nash manifold of dimension d. As S and T are both pure
dimensional, we have

π−1
+ (Reg(S) \ Y ) ⊂ Reg(T) ⊂ Cl(π−1

+ (S \ Y )) = Cl(π−1
+ (Reg(S) \ Y )).

Thus, Reg(T) is connected and T is a checkerboard set, because: it is closed,

T
zar

= X̂ is a non-singular algebraic set and the Zariski closure of ∂T is a union
of irreducible components of π̂−1(∂S

zar
), which is a normal-crossings divisor by

Remarks 4.1.4 and 4.1.10.

As π+|X̃\π−1
+ (Y ) : X̃ \ π−1

+ (Y ) → X \ Y is a Nash diffeomorphism, it holds

ey(T) = eπ+(y)(S) for each y ∈ ∂T \ π−1
+ (Y ). Let us see what happens at the

points of ∂T∩π−1
+ (Y ). Fix a point y ∈ ∂T∩π−1

+ (Y ) and denote x := π+(y) ∈ Y .

Assume that the irreducible components of Z that contain x are Z1, . . . , Zr′

for some 2 ≤ ` ≤ r′ ≤ r. Let U ⊂ X be an open semi-algebraic neighbourhood
of x equipped with a Nash diffeomorphism u := (u1, . . . , ud) : U → Rd such that

u(Z ∩ U) = {u1 · · · ur′ = 0} and u(Y ∩ U) = {u1 = 0, . . . , u` = 0}

Write e := dim(Y ) = d − ` and assume that ex(S) = k ≤ r. Reordering the
variables and changing their signs if necessary, we may assume

S ∩ U ⊂ {u1 ≥ 0, . . . , um ≥ 0, u`+1 ≥ 0, . . . , us ≥ 0} (4.2.1)

for some 0 ≤ m ≤ ` and ` ≤ s ≤ r′ and both m and s are maximal satisfying
(4.2.1). If m = 0, then

S ∩ U ⊂ {u`+1 ≥ 0, . . . , us ≥ 0},

whereas if s = `, then S ∩ U ⊂ {u1 ≥ 0, . . . , um ≥ 0}. As ex(S) = k, we have

k = (`−m) + (r′ − s). By Remarks 4.1.4 we can choose coordinates in X̂ such
that π+ behaves (with the already taken coordinates in X) as the Nash map

g+ : [0,+∞)× Sd−e−1 × Re → Rd, (ρ, w, z) 7→ (ρw, z),

where w := (w1, . . . , w`) and z := (z`+1, . . . , zd) ∈ Re = Rd−`. We have

g−1
+ (u(Z ∩ U)) = {ρ`w1 · · · w`z`+1 · · · zr′ = 0, w2

1 + · · ·+ w2
` = 1},

g−1
+ (u(Y ∩ U)) = {ρ`w1 · · · w` = 0, w2

1 + · · ·+ w2
` = 1}

and

g−1
+ (u(S∩U\Y )) ⊂ {ρ ≥ 0, w1 ≥ 0, . . . , wm ≥ 0, z`+1 ≥ 0, . . . , zs ≥ 0, w21+· · ·+w

2
` = 1}.

If m = 0, then S ∩ U ⊂ {u`+1 ≥ 0, . . . , us ≥ 0} and

g−1
+ (u(S ∩ U \ Y )) ⊂ {ρ ≥ 0, z`+1 ≥ 0, . . . , zs ≥ 0, w2

1 + · · ·+ w2
` = 1}.

Thus, ey(T) ≤ ` − 1 + r′ − s = k − 1 < k = ex(S) for each y ∈ g−1(x). The
condition m = 0 means that Sx \ Zi,x is not connected for i = 1, . . . , `.

We assume in the following m ≥ 1. Observe that Sx \ Zi,x is not connected
for i = m + 1, . . . , `. Let us show ey(T) ≤ ex(S) for each y ∈ g−1(x). It may
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4. Resolution of semi-algebraic sets connected by analytic paths

happen that for some y ∈ g−1(x) the previous inequality is strict even if Sx\Zi,x
is connected for the indices i = 1, . . . ,m. If some wi(y) 6= 0, this variable
has no relevance in the description of T locally around y and wi behaves as

±
√

1−
∑
j 6=i w

2
i . Analogously, if some zj(y) 6= 0, this variable has no relevance

in the description of T locally around y. As w2
1 + · · · + w2

` = 1, there exists an
index 1 ≤ i ≤ ` such that wi(y) 6= 0:

Case 1. If 1 ≤ i ≤ m, we may assume i = m. Thus, wm(y) > 0 and wm =

+
√

1−
∑`−1
j=1 w

2
i . Thus, we consider coordinates

(ρ, w1, . . . , wm−1, wm+1, . . . , w`, z`+1, . . . , zd)

and ey(T) ≤ `− (m−1 + 1) + (r′− `)− (s− `) = (`−m) + (r′− s) = k = ex(S).

Case 2. If m + 1 ≤ i ≤ `, we may assume i = `. Thus, w`(y) 6= 0 and

w` = ±
√

1−
∑`−1
j=1 w

2
i . Thus, we consider coordinates

(ρ, w1, . . . , w`−1, z`+1, . . . , zd)

and

ey(T) ≤ 1 + (`− 1)− (m+ 1) + (r′ − `)− (s− `)
= (`−m) + (r′ − s)− 1 = k − 1 < k = ex(S),

as required.

4.2.3. Closed checkerboard sets and Nash manifolds with corners. We
are ready to prove Theorem 4.1. After the previous preparation (in particular
Theorem 4.2.1) we are reduced to the case when S is a d-dimensional closed
checkerboard set.

Proof of Theorem 4.1. Let us construct the Nash manifold with corners Q first.
Let S ⊂ Rm be a d-dimensional closed checkerboard set and denote X0 := S

zar
.

Let Z := ∂S
zar

and let Z1, . . . , Zr be its irreducible components. Define

e := max{ex(S) : x ∈ ∂S}.

If e = 0, we conclude by Lemma 4.2.2 that S is already a Nash manifold with
corners. Otherwise, by Lemma 4.2.3 e ≥ 2. By Remark 4.2.6 Se is a closed
subset of ∂S. By Lemma 4.2.4 Se is a union of connected components of the
semi-algebraic sets Sing`(Z) \ Sing`+1(Z) for 1 ≤ ` ≤ d− 1 (recall that e ≥ 2).

Pick a point x ∈ Se and assume that Z1, . . . , Ze are the irreducible com-
ponents of Z such that the germ Sx \ Zi,x is not connected for i = 1, . . . , e.
Then, there exists an open semi-algebraic neighbourhood U ⊂ X of x equipped
with a Nash diffeomorphism u := (u1, . . . , ud) : U → Rd such that u(x) = 0,
Z ∩ U = {u1 · · · ur = 0}, Zi ∩ U = {ui = 0} and

S ∩ U ⊂ {ue+1 ≥ 0, . . . , ur ≥ 0}.

Thus, {u1 = 0, . . . , ue = 0, ue+1 ≥ 0, . . . , ur ≥ 0} ⊂ Se. By Lemma 4.2.5 the
connected component C of (Z1 ∩ · · · ∩ Ze) \

⋃r
i=e+1 Zi that contains {u1 =

104



4.2. Resolution of closed checkerboard sets

0, . . . , ue = 0, ue+1 ≥ 0, . . . , ur ≥ 0} is contained in Se. Thus, the Zariski
closure of C is the irreducible component of Z1 ∩ · · · ∩ Ze that contains x. As
we can repeat the previous argument for each x ∈ Se, we conclude that the
Zariski closure of Se is a union of irreducible components of the algebraic set⋃
{i1,...,ie}⊂{1,...,r}

⋂e
j=1 Zij .

In addition, for each x ∈ Se there exists irreducible components Zi1 , . . . , Zie
of Z such that the germ Sx \Zij ,x is not connected for j = 1, . . . , e. We proceed
by double induction on e and the number m of irreducible components of Se.

Let W be an irreducible component of the Zariski closure of Se. Let (X̂0, π̂)

be the twisted Nash double of the drilling blow-up (X̃0, π+) of X0 with center
W , which is by Section 4.1.5 an algebraic set. Let

T := Cl(π−1
+ (S \W )) = π−1

+ (S) ∩ Cl(π−1
+ (S \W ))

be the strict transform of S (recall that S is closed). As S is pure dimensional

and Se ⊂ ∂S
zar

has dimension strictly smaller, S \W is dense in S so

π+(T) = π+(Cl(π−1
+ (S \W ))) = Cl(π+(π−1

+ (S \W ))) = Cl(S \W ) = S,

because π+ : X̃0 → X0 is proper and surjective. By Lemma 4.2.7 T is a
checkerboard set, ey(T) ≤ eπ+(y)(S) for each y ∈ ∂T and ey(T) < eπ+(y)(S)

for each y ∈ ∂T ∩ π−1
+ (W ) such that Sπ+(y) \ Zij ,π+(y) is not connected for

j = 1, . . . , e.

If max{e(T)y : y ∈ ∂T} < e, by induction hypothesis the statement holds
for T so it also holds for S. If max{e(T)y : y ∈ ∂T} = e, the Zariski closure of

Te is contained in Cl(π̂(Se
zar \W )) and it has m − 1 irreducible components.

As by Lemma 4.2.2 e = 0 if and only if T is a Nash manifold with corners, our
inductive argument is consistent. Thus, by induction hypothesis the statement
holds for T so it also holds for S.

Let Q ⊂ Rn be the Nash manifold with corners obtained by our inductive
process. We have constructed the manifold Q, starting from S, with a finite
number of drilling blow-ups. Namely, we have constructed a finite number of
tuples {Ti, (X̃Ti , π+,i), (X̂Ti , π̂i)}si=0 where:

� T0 := S, X̃T0 := X0 = S
zar

, π+,0 := idX0
, X̂T0

:= X0 and π̂0 := idX0
.

� (X̃Ti+1 , π+,i+1) is the drilling blow-up of the irreducible algebraic manifold

T
zar

i with center a (suitable) irreducible algebraic submanifold Wi of T
zar

i .

� (X̂Ti+1 , π̂i+1) is the twisted Nash double of (X̃Ti+1 , π+,i+1).

� Ti+1 := Cl(π−1
+,i+1(Ti \Wi)) is the strict transform of Ti and

π̂i+1(Ti+1) = π+,i+1(Ti+1) = Ti.

� Ts = Q.

By Section 4.1.5 T
zar

i is an irreducible component of the algebraic set X̂Ti . In

particular Q
zar ⊂ X̂Ts . As by Lemma 4.2.7 the Nash manifold with corners
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4. Resolution of semi-algebraic sets connected by analytic paths

Q is a checkerboard set, X := Q
zar

is a d-dimensional non-singular irreducible
algebraic set and Y := ∂Q

zar
is a normal-crossings divisor of X. Thus, (i) and

(ii) hold.

Consider the polynomial map f := π̂s◦ . . .◦ π̂1 : X̂Ts → X0. By Fact 4.1.7(i),

f : X̂Ts → X0 is composition of proper maps, so it is proper. Moreover, as S is
closed and Q is obtained from S after a finite number of drilling blow-ups taking
strict transforms in each step, Q is a closed subset of X. Thus, the restriction
f |Q : Q→ X0 is proper. In addition, as π̂i+1(Ti+1) = Ti for i = 0, . . . , s− 1, we
conclude that f(Q) = S.

Let us show (iv). The semi-algebraic set R := f(∂Q) ∪ (S ∩ ∂Szar
) ⊂ S is

closed, because both S and ∂S are closed and f(∂Q) is closed as f is proper

and ∂Q is closed. As both ∂Q and S ∩ ∂Szar
have dimension not greater than

d− 1, we have dimR ≤ d− 1 < d. The semi-algebraic sets S \R and Q \ f−1(R)
are Nash manifolds, because S \R is an open semi-algebraic subset of the Nash
manifold Reg(S) and Q \ f−1(R) is an open semi-algebraic subset of the Nash
manifold Int(Q). Looking at the procedure developed to construct the Nash
manifold with corners Q starting from the checkerboard set T0 = S using drilling
blow-ups and taking into account the nature of the centre Wi of each step that
is contained in ∂T

zar

i and satisfies π−1
+,i+1(Wi) ∩ Ti+1 ⊂ ∂Ti+1, we conclude

f |Q\f−1(R) : Q \ f−1(R)→ S \ R is a Nash diffeomorphism (see Facts 4.1.6 and
4.1.7(ii)), as required.

Q S
f |Q

Figure 4.3: Resolution of the closed checkerboard set S (right) by the Nash manifold
with corners Q (left).

Remark 4.2.8. As we have considered in each step of the inductive procedure
in the proof of Theorem 4.1 the Zariski closure of Ti,ei instead of Ti,ei , it may

happen that f(∂Q) 6⊂ S ∩ ∂Szar
and we have to add it in R. If we change in

the statement of Theorem 4.1 polynomial maps by Nash maps, then it holds
f(∂Q) ⊂ S ∩ ∂Szar

and R = S ∩ ∂Szar
.

4.3 Resolution of general checkerboard sets

If S ⊂ Rm is a general semi-algebraic set connected by analytic paths, one can
wonder if it is possible to provide a similar result to Theorem 4.1 that also
works for S. As the chosen Nash manifold with corners Q is closed in its Zariski
closure and the chosen polynomial map f : Rn → Rm restricts to a proper map
f |Q : Q → Rm, its image S is a closed subset of Rm. Thus, if S is not closed
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4.3. Resolution of general checkerboard sets

in Rm, we should change the type of domain and/or the type of map. The
second approach considering general Nash maps non-necessarily proper has been
developed in [Fe4, Proof of Thm.1.4, §8.C.12] and it is shown that if the involved
Nash map is not necessarily proper, then there exists a Nash manifold H with
smooth boundary and a surjective Nash map f : H → S. If one wants to keep
the properness condition, it is not possible to keep as domains Nash manifolds
Q with corners because they are locally compact and images of locally compact
subset of Rn under proper maps are locally compact subsets of Rm. Thus, we
have to change the type of involved domains and we will consider semi-algebraic
sets T ⊂ Rn whose closure is a Nash manifold with corners Q ⊂ Rn and Q \ T is
a union of some of the strata of the a suitable stratification of ∂Q. Let us recall
the definition of (Nash) stratification of a semi-algebraic set.

Definition 4.3.1. Let S ⊂ Rm be a semi-algebraic set. A (Nash) stratification
of S is a finite partition {Sα}α∈A of S, where each Sα is a connected Nash
submanifold of Rm and the following property is satisfied: if Sα ∩ Cl(Sβ) 6= ∅
and α 6= β, then Sα ⊂ Cl(Sβ) and dim(Sα) < dim(Sβ). The Sα are called the
strata of the stratification and if d := dim(Sα), then Sα is a d-stratum.

Note that the condition dim(Sα) < dim(Sβ) follows from [BCR, Prop.2.8.13]
because Sα ⊂ Cl(Sβ) \ Sβ .

Given a d-dimensional semi-algebraic set S ⊂ Rm, we consider the following
partition of S. Recall that Sth(S) is the set of points x ∈ S at which the germ
Sx is the germ of a Nash manifold (see Section 2.4.1). Define Γ1 := Sth(S) and

Γk := Sth(S \
⋃k−1
j=1 Γj) for k ≥ 2. Let s ≥ 1 be the largest index k such that

Γk 6= ∅. For each k ≥ 1 let Γk` (for ` = 1, . . . , rk) be the connected components
of Γk. The collection

G(S) := {Γk` : 1 ≤ k ≤ s, 1 ≤ ` ≤ rk}

is a partition of S. We say that a semi-algebraic set T ⊂ S is compatible with
G(S) if it is the union of some of the Γk`.

Examples 4.3.2. (i) The semi-algebraic partition G(S) of a semi-algebraic set is
not in general a stratification of S. Consider for instance the semi-algebraic set
S := {y2 − x3 = 0} ∩ ({z > 0} ∪ {z ≤ 0, y ≥ 0}) ⊂ R3. Then

Γ11 := {y2 − x3 = 0, y > 0}, Γ12 := {y2 − x3 = 0, y < 0, z > 0},
Γ21 = {x = 0, y = 0}

and G(S) = {Γ11,Γ12,Γ21}. Observe that Γ21 ∩ Cl(Γ12), but Γ21 6⊂ Cl(Γ12).
Thus, G(S) is not a stratification of S.

(ii) If M ⊂ Rn is a d-dimensional Nash manifold and X ⊂ M is a normal-
crossings divisor, then G(X) is a stratification of X.

It is enough to consider local models, that is, X := {x1 · · · xr = 0} ⊂ Rd. In
fact, we may assume r = d, because X = Y × Rd−r where

Y := {x1 · · · xr = 0} ⊂ Rr.

The semi-algebraic partition G(X) of X is the collection of semi-algebraic sets
Γ` := {x1 ∗1 0, . . . , xd ∗d 0} where ∗i ∈ {<,=, >} and one of the ∗i values =.
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4. Resolution of semi-algebraic sets connected by analytic paths

The closure of each Γ` is a union of finitely many Γk and consequently G(X) is
a stratification of X.

In this case Sth(X) = Reg(X) and Sth(Sing`(X)) = Reg(Sing`(X)) for each
` ≥ 1.

(iii) Let M ⊂ Rn be a Nash manifold such that Reg(M) = M , X ⊂ M is a
normal-crossings divisor and S the closure of a union of connected components
of M \ X. Then G(S) is a stratification of S and G(X) is compatible with
∂S = S \ Reg(S) and S ∩X.

Also in this case it is enough to consider local models and we may assume
X := {x1 · · · xr = 0} ⊂ Rd. Again we suppose r = d, because X = Y × Rd−r
where Y := {x1 · · · xr = 0} ⊂ Rr. Thus, S :=

⋃
ε∈F Qε, where ε := (ε1, . . . , εd),

Qε := {ε1x1 ≥ 0, . . . , εdxd ≥ 0}

and F ⊂ {−1, 1}d. The semi-algebraic partition G(S) of S is a collection of
the type {xi1 ∗i1 0, . . . , xi` ∗i` 0} where 0 ≤ ` ≤ d, 1 ≤ i1 < · · · < i` ≤ d and
∗ik ∈ {<,=, >} for k = 1, . . . , `. The closure of each Γ` is a union of finitely
many Γk, so G(S) is a stratification of S. Observe that ∂S = S \ Reg(S) and
S ∩ X are unions of finitely many of the sets {xi1 ∗i1 0, . . . , xi` ∗i` 0} with the
condition that some of the ∗ik is equal to =, that is, all of them belong to G(X)
and G(X) is compatible with ∂S = S \ Reg(S).

In this case Sth(S) = Reg(S) and Sth(∂`S) = Reg(∂`S), where ∂`S :=
∂(∂`−1S) for each ` ≥ 2. This is so because ∂S ⊂ Sing(X) and ∂`S ⊂ Sing`(X)
for each ` ≥ 2.

(iv) If Q ⊂ Rn is a d-dimensional Nash manifold with corners, G(Q) is a
stratification of Q.

It is enough to apply Theorem 2.5.12 and (iii).

A subset T ⊂ Rn is a Nash quasi-manifold with corners if Q := Cl(T) is a
Nash manifold with corners and Q\T is a union of elements of the stratification
G(∂Q).

We are ready to prove Theorem 4.2. That is, we show that if S ⊂ Rm is a
d-dimensional semi-algebraic set connected by analytic paths, then there exist:

(i) A d-dimensional connected compact non-singular algebraic set M ⊂ Rn
and a normal-crossings divisor Y ⊂M .

(ii) A connected Nash quasi-manifold with corners S• ⊂M that is a checker-
board set and whose closure in M is a compact connected Nash manifold
with corners Q• ⊂M whose boundary ∂Q• has Y as its Zarsiki closure.

(iii) A Nash map f : Rn → Rm such that the restriction f |S• : S• → S is
proper and f(S•) = S.

(iv) A closed semi-algebraic set R ⊂ S of dimension strictly smaller than d
such that S \ R and S• \ f−1(R) are Nash manifolds and the Nash map
f |S•\f−1(R) : S• \ f−1(R)→ S \ R is a Nash diffeomorphism.

Proof of Theorem 4.2. The proof is conducted in several steps and subsequent
reductions:
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4.3. Resolution of general checkerboard sets

Step 1. Initial preparation. We embed Rm in RPm and the latter in
RN for N large enough, so we can suppose S is in addition bounded, so Cl(S)
is compact, and the Zariski closure of S is compact. By Theorem 4.2.1 we
may assume that S ⊂ Rm is a checkerboard set, whose Zariski closure X is
a d-dimensional non-singular compact algebraic subset of Rm. In particular,
Reg(S) is connected.

Let Z1 be the Zariski closure of Cl(S) \ Reg(S), which is a normal crossing
divisor of the Zariski closure X of S (and has dimension d − 1). We construct
next a semi-algebraic partition of Cl(S) as a finite union of Nash manifolds of
different dimensions compatible with T1 := Cl(S) \ S and T2 := S \ Reg(S).
Observe that T1 and T2 are disjoint semi-algebraic sets, they have dimensions
≤ d− 1 and ∂S := Cl(S) \ Reg(S) = T1 t T2.

S S

T1

T2

Figure 4.4: A bounded checkerboard set S (left) and S with the sets T1 (blue) and T2

(red) coloured (right).

Let N1 be the union of the connected components of Reg(T1) t Reg(T2) of
dimension d − 1. Note that the connected components of dimension d − 1 of
Reg(T1) t Reg(T2) are in general different from the connected components of
dimension d − 1 of Reg(∂S). As dim(Ti \ Reg(Ti)) ≤ d − 2, the semi-algebraic
set ∂S \ N1 has dimension ≤ d − 2. Let Z2 be the Zariski closure of ∂S \ N1.
Each connected component of the Nash manifold N ′1 := ∂S \ Z2 = N1 \ Z2 has
dimension d−1 and it is contained in either T1 or T2. In addition, ∂S\N ′1 ⊂ Z2

has dimension ≤ d− 2 and Cl(N ′1) ⊂ ∂S.

Let us construct recursively pairwise disjoint semi-algebraic sets N ′k that
are either Nash manifolds of dimension d− k, whose connected components are
contained in either T1 or T2, or the empty set and algebraic sets Zk of dimension
≤ d− k such that N ′k ⊂ Zk, N ′k ∩Zk+1 = ∅, Zk+1 ⊂ Zk, ∂S \ (N ′1 ∪ · · · ∪N ′k) ⊂
Zk+1 and Cl(N ′k) ⊂ ∂S \ (N ′1 ∪ · · · ∪N ′k−1).

Suppose we have constructed the Nash manifolds N ′1, . . . , N
′
k−1 and the al-

gebraic sets Z1, . . . , Zk satisfying the required conditions and let us construct
N ′k and Zk+1. Let Nk be the union of the connected components of dimension
d−k of Reg(T1 ∩Zk)tReg(T2 ∩Zk) or the empty set if dim((Zk ∩Cl(S)) \S) <
d − k. As dim((Ti ∩ Zk) \ Reg(Ti ∩ Zk)) ≤ d − (k + 1), the semi-algebraic set
∂S\(N ′1∪· · ·∪N ′k−1∪Nk) ⊂ ∂S∩Zk\Nk has dimension ≤ d−(k+1). Let Zk+1 be
the Zariski closure of ∂S\(N ′1∪· · ·∪N ′k−1∪Nk), which has dimension≤ d−(k+1).
In case Nk = ∅, then dim(Zk) < d − k and Zk+1 = Zk. Each connected com-
ponent of the Nash manifold N ′k := ∂S \ (N ′1 ∪ · · · ∪N ′k−1 ∪ Zk+1) = Nk \ Zk+1

has dimension d − k and it is contained in either T1 or T2. In addition,
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4. Resolution of semi-algebraic sets connected by analytic paths

∂S \ (N ′1 ∪ · · · ∪N ′k) ⊂ Zk+1, so it has dimension ≤ d− (k + 1).

As Z` ⊂ Zk if ` < k and N ′` ∩ Z`+1 = ∅ for ` < k, we deduce N ′` ∩ Zk = ∅
if ` < k, so Cl(N ′k) ⊂ Zk does not meet N ′1 ∪ · · · ∪N ′k−1, so

Cl(N ′k) ⊂ ∂S \ (N ′1 ∪ · · · ∪N ′k−1).

Thus, we have constructed the Nash manifolds N ′k of dimension d − k (or the
emptyset) and the algebraic sets Zk of dimension ≤ d−k satisfying the required
conditions for k = 1, . . . , d− 1. In particular,

Cl(N ′k) \N ′k ⊂ ∂S \ (N ′1 ∪ · · · ∪N ′k) ⊂ Zk+1

for k = 1, . . . , d (and Zd+1 := ∅).

Define the algebraic set Tk := Zd−k, which has dimension ≤ k, and the
Nash manifold Mk := N ′d−k, which is either empty or has dimension k, for
k = 0, . . . , d−1. The algebraic set Tk is the Zariski closure of the Nash manifold
Mk if Mk 6= ∅. If M0 6= ∅, then M0 is a finite set and M0 = T0. Otherwise,
if m is the least k such that Mk 6= ∅, then Mm is a (finite) union of connected
components of Tm of dimension m and Mk = ∅ for 0 ≤ k < m.

Observe that dim(Tk) ≤ d − k, Tk ⊂ Tk+1, Mk ⊂ Tk, Mk ∩ Tk−1 = ∅,
Cl(Mk) \Mk ⊂M0 t · · · tMk−1 ⊂ Tk−1. In addition,

Cl(S) ∩ Tk = S ∩ Zd−k = (Reg(S) ∩ Zd−k) ∪ (∂S ∩ Zd−k)

= N ′d−k t · · · tN ′d = M0 t · · · tMk,

(Cl(S) \ S) ∩ Tk = (M0 ∩ T1) t · · · t (Mk ∩ T1),

S ∩ Tk = (M0 ∩ T2) t · · · t (Mk ∩ T2),

where M` ∩ Ti is the union of the connected components of the Nash manifold
M` contained in Ti for i = 1, 2. Observe that M` = (M` ∩ T1) t (M` ∩ T2).

Step 2. Initial algebraic resolution procedure. Let g0 : X0 → X
be the blowing-up of X of center T0 and let E0 := g−1

0 (T0) be the exceptional
divisor of g0. Recall that g0|X0\E0

: X0 \E0 → X \T0 is a Nash diffeomorphism
whose inverse map is a regular map and X0 is a non-singular (compact) algebraic
set. Denote T0i := g−1

0 (Ti) ∩ Cl(g−1
0 (Ti \ T0)) the strict transform of Ti under

g0, which is an algebraic set of the same dimension as Ti and denote Y1 := T01.
Observe that no T0i is contained in the algebraic set E0 for i ≥ 1. In particular,
dim(T0i ∩ E0) < dim(T0i) for each i ≥ 1 and no irreducible component of Y1 is
contained in E0. We desingularize next E0 ∪ Y1.

By Theorem 2.4.4 there exists a non-singular (compact) algebraic set X1 and
a proper surjective polynomial map g1 : X1 → X0 such that E1 := g−1

1 (E0∪Y1)
is a normal-crossings divisor of X1 and the restriction

g1|X1\E1
: X1 \ E1 → X0 \ (E0 ∪ Y1)

is a Nash diffeomorphism whose inverse map is a regular map. In fact, g1 is
a composition of finitely many blowing-ups whose non-singular centers have
dimension ≤ min{dim(Y1), d− 2}. Denote

T1i := g−1
1 (T0i) ∩ Cl(g−1

1 (T0i \ (E0 ∪ Y1)))
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the strict transform of T0i, which is an algebraic set of the same dimension as
Ti and denote Y2 := T12. Observe that no T1i is contained in the algebraic set
E1 for i ≥ 2. In particular, dim(T1i ∩ E1) < dim(T1i) for each i ≥ 2 and no
irreducible component of Y2 is contained in E1. We desingularize next E1 ∪ Y2.

We proceed recursively and in the step k ≤ d− 1 we find by Theorem 2.4.4
a non-singular (compact) algebraic set Xk and a proper surjective polynomial
map gk : Xk → Xk−1 such that Ek := g−1

k (Ek−1 ∪ Yk) is a normal-crossings
divisor of Xk and the restriction gk|Xk\Ek : Xk \ Ek → Xk−1 \ (Ek−1 ∪ Yk)
is a Nash diffeomorphism whose inverse map is a regular map. In fact, gk is
a composition of finitely many blowing-ups whose non-singular centers have
dimension ≤ min{dim(Yk), d− 2}. Denote

Tki := g−1
k (Tk−1,i) ∩ Cl(g−1

k (Tk−1,i \ (Ek−1 ∪ Yk)))

the strict transform of Tk−1,i, which is an algebraic set of the same dimension
as Ti and let Yk+1 := Tk,k+1. Observe that no Tki is contained in the algebraic
set Ek for i ≥ k+ 1. In particular, dim(Tki ∩Ek) < dim(Tki) for each i ≥ k+ 1
and no irreducible component of Yk+1 is contained in Ek. Observe that Yd = ∅
(because Td = ∅, so Td−1,d = ∅) and Ed−1 = (g0 ◦ · · · ◦ gd−1)−1(Td−1) is a
normal-crossing divisor.

Step 3. Properties of the strict transform. For each k = 0, . . . , d − 1
the polynomial map gk : Xk → Xk−1 (where X−1 := X) is the composition
of finitely many blow-ups whose centers have dimensions ≤ d − 2. Recall that
the blow-up b : V̂ → V of a d-dimensional non-singular algebraic set V with
center a non-singular algebraic subset W of dimension ≤ d− 2 provides a Nash
diffeomorphism b|V̂ \b−1(W ) : V̂ \ b−1(W ) → V \W . As the image of a semi-

algebraic set of dimension ≤ d− 2 is a semi-algebraic set of dimension ≤ d− 2,
we conclude that there exists a semi-algebraic set Rk−1 ⊂ Xk−1 of dimension
≤ d − 2 such that gk|Xk\g−1

k (Rk−1) : Xk \ g−1
k (Rk−1) → Xk−1 \ Rk−1 is a Nash

diffeomorphism. Substituting Rk by its Zariski closure we may assume Rk is an
algebraic set.

Consider the composition g := g0 ◦ · · · ◦ gd−1 : Xd−1 → X. Let R be the

Zariski closure of R−1 ∪
⋃d−2
k=0(g0 ◦ · · · ◦ gk)(Rk), which is an algebraic set of

dimension ≤ d− 2. The restriction g|Xd−1\g−1(R) : Xd−1 \ g−1(R)→ X \R is a
Nash diffeomorphism.

Define S∗ := g−1(S) ∩ Cl(g−1(S) \ Ed−1) the strict transform of S under g
and Sk := g−1

k (Sk−1) ∩ Cl(g−1
k (Sk−1) \ Ek) the strict transform of Sk−1 under

gk for k = 0, . . . , d− 1, where S−1 := S. We claim: S∗ = Sd.

Let us prove by induction on ` that

S∗` := (g0 ◦ · · · ◦ g`)−1(S) ∩ Cl((g0 ◦ · · · ◦ g`)−1(S) \ E`)

equals S` for each ` = 0, . . . , d − 1. If ` = 0, then S∗0 = S0. Suppose the
result true for ` − 1, that is, S∗`−1 = S`−1 and let us check S∗` = S`. Denote
h`−1 := g0 ◦ · · · ◦ g`−1. We have

S∗` = (g0 ◦ · · · ◦ g`)−1(S) ∩ Cl((g0 ◦ · · · ◦ g`)−1(S) \ E`)
= g−1

` (h−1
`−1(S)) ∩ Cl(g−1

` (h−1
`−1(S)) \ E`)

111



4. Resolution of semi-algebraic sets connected by analytic paths

is the strict transform of h−1
`−1(S) under g`. It holds

S∗`−1 = h−1
`−1(S) ∩ Cl(h−1

`−1(S) \ E`−1)

and recall that E` = g−1
` (E`−1 ∪ Y`).

The strict transform of S∗`−1 under g` is

g−1
` (S∗`−1) ∩ Cl(g−1

` (S∗`−1) \ E`) = g−1
` (h−1

`−1(S)) ∩ g−1
` (Cl(h−1

`−1(S) \ E`−1))

∩ Cl((g−1
` (h−1

`−1(S)) \ E`) ∩ (g−1
` (Cl(h−1

`−1(S) \ E`−1) \ E`))

As h−1
`−1(S) \ E`−1 ⊂ Cl(h−1

`−1(S) \ E`−1) and g−1
` (E`−1) ⊂ E`, we deduce

g−1
` (h−1

`−1(S)) \ E` ⊂ g−1
` (Cl(h−1

`−1(S) \ E`−1)).

Consequently,

Cl(g−1
` (h−1

`−1(S)) \ E`) ⊂ g−1
` (Cl(h−1

`−1(S) \ E`−1)),

g−1
` (h−1

`−1(S)) \ E` ⊂ g−1
` (Cl(h−1

`−1(S) \ E`−1)) \ E`.

Thus,

Cl((g−1
` (h−1

`−1(S)) \ E`) ∩ (g−1
` (Cl(h−1

`−1(S) \ E`−1) \ E`)) = Cl(g−1
` (h−1

`−1(S)) \ E`),

Cl(g−1
` (h−1

`−1(S)) \ E`) ∩ g−1
` (Cl(h−1

`−1(S) \ E`−1)) = Cl(g−1
` (h−1

`−1(S)) \ E`).

We conclude

g−1
` (S∗`−1) ∩ Cl(g−1

` (S∗`−1) \ E`) = g−1
` (h−1

`−1(S)) ∩ Cl(g−1
` (h−1

`−1(S)) \ E`) = S∗` .

As by induction hypothesis S∗`−1 = S`−1, we have

S∗` = g−1
` (S`−1) ∩ Cl(g−1

` (S`−1) \ E`) = S`,

as claimed.

We prove next: Reg(S∗) is a connected d-dimensional Nash manifold and
contains g−1(Reg(S) \R) as connected dense open semi-algebraic subset.

As Reg(S) is a connected Nash manifold and dim(R) ≤ d−2, also Reg(S)\R
is a connected Nash manifold. As the restriction

g|Xd−1\g−1(R) : Xd−1 \ g−1(R)→ X \R

is a Nash diffeomorphism, g−1(Reg(S) \ R) is a connected Nash manifold. As
dim(R) ≤ d−2, S is pure dimensional of dimension d and Reg(S) is dense in S, we
deduce Reg(S)\R is a dense open semi-algebraic subset of S, so g−1(Reg(S)\R)
is a dense open semi-algebraic subset of g−1(S \ R). As dim(Ed−1) = d − 1,
g−1(R) ⊂ Ed−1 and g−1(S \ R) is pure dimensional of dimension d, we deduce
that g−1(Reg(S))\Ed−1 = g−1(Reg(S)\R)\Ed−1 is a dense open semi-algebraic
subset of g−1(S) \ Ed−1, so

Cl(g−1(Reg(S) \R) \ Ed−1) = Cl(g−1(Reg(S)) \ Ed−1)

= Cl(g−1(S) \ Ed−1).
(4.3.1)

112



4.3. Resolution of general checkerboard sets

As g−1(Reg(S) \ R) is a d-dimensional Nash manifold and dim(Ed−1) = d − 1,
we deduce that g−1(Reg(S) \R) \ Ed−1 is dense in g−1(Reg(S) \R), so

Cl(g−1(Reg(S) \R)) = Cl(g−1(Reg(S) \R) \ Ed−1).

Consequently,

g−1(Reg(S) \R) = g−1(Reg(S) \R) ∩ Cl(g−1(Reg(S) \R) \ Ed−1) ⊂ S∗.

As S is connected by analytic paths, we deduce by [Fe4, Lem.7.16] that also
S∗ is connected by analytic paths, so in particular S∗ is pure dimensional (of
dimension d). Thus,

S∗ \ Ed−1 = g−1(S) \ Ed−1 (4.3.2)

is a dense open semi-algebraic subset of S∗. As g−1(Reg(S) \ R) is a dense
open semi-algebraic subset of g−1(S \ R) and g−1(R) ⊂ Ed−1, we deduce that
g−1(Reg(S)\R) is a dense open semi-algebraic subset of S∗. As g−1(Reg(S)\R)
is a d-dimensional connected Nash manifold, g−1(Reg(S) \ R) ⊂ Reg(S∗), so
Reg(S∗) is connected because it contains a dense connected subset.

Let us prove: ∂S∗ ⊂ Ed−1.

It holds ∂S = Cl(S) \ Reg(S) ⊂
⋃d−1
k=0 Tk and

g−1(∂S) = g−1(Cl(S) \ Reg(S)) ⊂
d−1⋃
k=0

g−1(Tk).

Recall that Tki is the strict transform of Tk−1,i under gk for i ≥ k, Yk is the
Zariski closure of Tk−1,k, Ek = g−1

k (Ek−1 ∪ Yk) for k ≥ 1 and E0 = g−1
0 (T0).

Thus,
(g0 ◦ · · · ◦ gk−1)−1(Tk) ⊂ Tk−1,k ∪ Ek−1 ⊂ Yk ∪ Ek−1,

so (g0 ◦ · · · ◦ gk)−1(Tk) ⊂ g−1
k (Yk ∪ Ek−1) = Ek and

g−1(Tk) = (g0 ◦ · · · ◦ gd−1)−1(Tk) ⊂ Ed−1

for each k = 0, . . . , d− 1. Thus,

g−1(∂S) = g−1(Cl(S) \ Reg(S)) ⊂
d−1⋃
k=0

g−1(Tk) ⊂ Ed−1. (4.3.3)

We deduce using that g−1(Reg(S) \R) ⊂ Reg(S∗)

Cl(S∗) \ Ed−1 ⊂ Cl(g−1(S)) ∩ Cl(g−1(S) \ Ed−1) \ Ed−1

= Cl(g−1(S)) \ Ed−1 ⊂ g−1(Cl(S)) \ Ed−1

= (g−1(Reg(S)) \ Ed−1) ∪ (g−1(∂S) \ Ed−1))

= g−1(Reg(S)) \ Ed−1 ⊂ g−1(Reg(S) \R) ⊂ Reg(S∗),

so ∂S∗ = Cl(S∗) \ Reg(S∗) ⊂ Ed−1.

Define T−1 := ∅. Let Ekd−1 be the Zariski closure of g−1(Tk \ Tk−1) for
k = 0, . . . , d − 1, which is the union of the irreducible components of g−1(Tk)

that are non contained in g−1(Tk−1). We have Ed−1 =
⋃d−1
k=0E

k
d−1 and each
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4. Resolution of semi-algebraic sets connected by analytic paths

irreducible component of Ed−1 is an irreducible component of Ekd−1 for exactly

one k = 0, . . . , d − 1. Conversely, each irreducible component of Ekd−1 is an

irreducible component of Ed−1. If H is an irreducible component of Ekd−1, then
g(H) ⊂ Tk and g(H) 6⊂ T` if ` < k. As

S∗ \ Ed−1 = g−1(S) \ Ed−1 = g−1(Reg(S)) \ Ed−1 = g−1(Cl(S)) \ Ed−1

is an open and closed subset of Xd−1 \Ed−1, it is a union of connected compo-
nents of Xd−1 \ Ed−1.

Let T∗1 := Cl(S∗) \ S∗ and T∗2 := S∗ \ Reg(S∗). Let us check: g(T∗i ) ⊂ Ti for
i = 1, 2.

Recall that by (4.3.1) and (4.3.3) we have

Cl(g−1(S) \ Ed−1) = Cl(g−1(Cl(S)) \ Ed−1) = Cl(g−1(Reg(S)) \ Ed−1).

As S is connected by analytic paths, Cl(S) is also connected by analytic paths
[Fe4, Lem.7.4]. Thus, the strict transform Cl(S)∗ of Cl(S) under g is connected
by analytic paths [Fe4, Lem.7.16], so it is pure dimensional of dimension d.
Thus,

Cl(S)∗ \ Ed−1 = g−1(Cl(S)) \ Ed−1 = g−1(S) \ Ed−1 ⊂ S∗ ⊂ Cl(S∗)

is a dense subset of Cl(S)∗. As Cl(S)∗ is a closed set that contains S∗, we
conclude Cl(S∗) = Cl(S)∗ is the strict transform under g of Cl(S). Consequently,
T∗1 = Cl(S∗)\S∗ = g−1(Cl(S)\S)∩Cl(g−1(S)\Ed−1) ⊂ g−1(T1), so g(T∗1) ⊂ T1.

In addition, the strict transform Reg(S)∗ of Reg(S) under g is

g−1(Reg(S)) ∩ Cl(g−1(Reg(S)) \ Ed−1),

As g−1(Reg(S)) is pure dimensional of dimension d, because it is an open
semi-algebraic subset of Xd−1, and Ed−1 has dimension d − 1, we deduce that
g−1(Reg(S)) \ Ed−1 is dense in g−1(Reg(S)), so Reg(S)∗ = g−1(Reg(S)) is an
open semi-algebraic subset of Xd−1. Thus, Reg(S)∗ ⊂ Reg(S∗) and

T∗2 = S∗ \ Reg(S∗) ⊂ S∗ \ Reg(S)∗

= g−1(S \ Reg(S)) ∩ Cl(g−1(S) \ Ed−1) ⊂ g−1(T2),

so g(T∗2) ⊂ T2.

Next, let W ∈ G(∂S∗) and let L be the Zariski closure of W . As W is a
connected Nash manifold, L is an irreducible algebraic set. Observe that L is
an irreducible component of Singj(Ed−1) for some j ≥ 1 and W is a connected
component of Reg(Singj(Ed−1)). Let k ≥ 0 be such that g(L) ⊂ Tk, but

g(L) 6⊂ Tk−1. Then L ⊂ E`d−1 for ` ≥ k, but L 6⊂
⋃k−1
`=0 E

`
d−1 = g−1(Tk−1).

Observe that W is a connected component of L \ g−1(Tk−1), because

L ∩ Sing(Singj(Ed−1)) = L ∩ g−1(Tk−1)

(recall that L ⊂ E`d−1 for ` ≥ k). Then g(W ) ⊂ ∂S ∩ Tk \ Tk−1 = Mk is
connected. As each connected component of Mk is contained in either T1 or T2,
we deduce either g(W ) ⊂ T1 or g(W ) ⊂ T2. If W ∩ T∗i 6= ∅, then W ⊂ T∗i ,
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because otherwise also W ∩ T∗j 6= ∅ for j ∈ {1, 2} \ {i} and g(W ) meets T1 and
T2, which is a contradiction because g(W ) is contained in either T1 or T2. Thus,
W is contained in either T∗1 or T∗2 .

Consequently, G(Ed−1) is compatible with T∗1 and T∗2 , that is, these sets
are unions of elements of G(Ed−1). As Cl(S∗) is the closure of a union of
connected components of Xd−1 \ Ed−1, then T∗3 := Cl(S∗) \ Reg(Cl(S∗)) is a
(d − 1)-dimensional semi-algebraic subset contained in Ed−1. In fact, using
local coordinates one realizes that both T∗3 and Cl(S∗) ∩ Ed−1 are unions of
elements of G(Ed−1) (see Examples 4.3.2(iii)). Thus,

T∗1 ∩ T∗3 = (Cl(S∗) \ S∗) ∩ (Cl(S∗) \ Reg(Cl(S∗)))

= Cl(S∗) \ (S∗ ∪ Reg(Cl(S∗)))

= (Cl(S∗) ∩ Ed−1) \ ((S∗ ∪ Reg(Cl(S∗))) ∩ Ed−1)

is a union of elements of G(Ed−1), so (S∗ ∪Reg(Cl(S∗))) ∩Ed−1 is also a union
of elements of G(Ed−1). Thus,

T∗4 := Reg(Cl(S∗)) \ S∗ = ((S∗ ∪ Reg(Cl(S∗))) ∩ Ed−1) \ T2

is a union of elements of G(Ed−1).

Let Z be the Zariski closure of ∂S∗ := Cl(S∗) \ Reg(S∗) in the non-singular

(compact) algebraic set S∗
zar

. We have proved the following: Z is a normal-

crossings divisor of Xd−1 = S∗
zar

, S∗ is a checkerboard set and the semi-algebraic
sets

T∗1 := Cl(S∗) \ S∗, T∗2 := S∗ \ Reg(S∗), T∗3 := Cl(S∗) \ Reg(Cl(S∗)),

T∗1 ∩ T∗3 = Cl(S∗) \ (S∗ ∪ Reg(Cl(S∗))) and T∗4 := Reg(Cl(S∗)) \ S∗

are unions of elements of the stratification G(Z).

The Zariski closure of S∗ isXd−1, which is a non-singular (compact) algebraic
set, the Zariski closure of ∂S∗ is a union of connected components of Ed−1, which
is a normal-crossings divisor of Xd−1. As S∗ is the strict transform of S under
g and S is pure dimensional of dimension d, the restriction g|S∗ : S∗ → S is a
proper surjective map. Take R := g(Ed−1)∩S, which has dimension ≤ d−1 and
observe that g|S∗\g−1(R) : S∗\g−1(R)→ S\R is a Nash diffeomorphism, because
g|Xd−1\Ed−1

: Xd−1 \Ed−1 → X \Td−1. As S∗ \g−1(R) = S∗ \Ed−1 ⊂ S∗ \∂S∗ is
a Nash manifold, so its image S \R under g|Xd−1\Ed−1

is also a Nash manifold.
Thus, it only remains to modify the construction to achieve that Cl(S∗) is a
Nash manifold with corners.

We assume that the initial situation is the one quoted above concerning S∗.
For the sake of simplicity we reset all the previous notations above to continue
the proof.

Step 4. First drilling resolution procedure. Thus, we may assume in
the following: S is a checkerboard set (and in particular Reg(S) is a connected
Nash manifold), Cl(S) is compact, the Zarsiki closure X of S is a non-singular
(compact) algebraic set, the Zarsiki closure Z of Cl(S) \ Reg(S) is a normal
crossing divisor of X, the semi-algebraic sets

T1 := Cl(S) \ S, T2 := S \ Reg(S), T3 := Cl(S) \ Reg(Cl(S)),

T1 ∩ T3 = Cl(S) \ (S ∪ Reg(Cl(S))) and T4 := Reg(Cl(S)) \ S
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are unions of elements of the stratification G(Z).

By Theorem 4.1 applied to Cl(S) there exist:

(i) A d-dimensional non-singular irreducible algebraic set X ′ and a normal-
crossings divisor Z ′ ⊂ X ′.

(ii) A connected Nash manifold with corners Q ⊂ X ′ (which is a closed subset
of X ′) whose boundary ∂Q has Z ′ as its Zariski closure.

(iii) A polynomial map g : Rn → Rm such that the restriction g|Q : Q→ Cl(S)
is proper and g(Q) = Cl(S).

(iv) A closed semi-algebraic set R ⊂ Cl(S) of dimension strictly smaller than d
such that Cl(S)\R and Q\g−1(R) are Nash manifolds and the polynomial
map g|Q\g−1(R) : Q \ g−1(R)→ Cl(S) \ R is a Nash diffeomorphism.

Let S∗ := g−1(S) ∩ Cl(g−1(S) \ R) be the strict transform of S under g. By the
properties of the drilling blow-up and specially Remarks 4.1.4 (one can almost
reproduce the procedure already developed in Step 3 taking into the proof of
Theorem 4.1 applied to Cl(S)) in addition the semi-algebraic sets

T∗1 := Cl(S∗) \ S∗, T∗2 := S∗ \ Reg(S∗), T∗3 := Cl(S∗) \ Reg(Cl(S∗)),

T∗1 ∩ T∗3 = Cl(S∗) \ (S∗ ∪ Reg(Cl(S∗))) and T∗4 := Reg(Cl(S∗)) \ S∗

are unions of elements of the stratification G(Z ′). If Reg(Cl(S∗)) = Reg(S∗),
then T∗3 = Cl(S∗) \ Reg(S∗) = ∂S∗ and T4 = ∅. Thus, S∗ is a quasi Nash
manifolds with corners. Consequently, to continue we suppose Reg(Cl(S∗)) 6=
Reg(S∗). This means that T∗4 6= ∅, because otherwise Reg(Cl(S∗)) ⊂ S∗ and
consequently Reg(Cl(S∗)) = Reg(S∗) (because Reg(Cl(S∗)) is an open semi-
algebraic subset of X ′ contained in S∗ that contains Reg(S∗)).

Step 5. Second drilling resolution procedure. We assume in the
following that: S is a checkerboard set (and in particular Reg(S) is a connected
Nash manifold), Q := Cl(S) is a compact Nash manifold with corners, the Zarsiki
closure X of S is a non-singular (compact) algebraic set, the Zarsiki closure Z
of Q \ Reg(S) is a normal crossing divisor of X, the semi-algebraic sets

T1 := Q \ S, T2 := S \ Reg(S), T3 := Q \ Reg(Q),

T1 ∩ T3 = Q \ (S ∪ Reg(Q)) and T4 := Reg(Q) \ S 6= ∅

are unions of elements of the stratification G(Z). Let us prove: We may assume
in addition Reg(T4) is a pure dimensional semi-algebraic set of dimension d−1
and ∂T4 = Cl(T4) \ Reg(T4) ⊂ ∂Q.

As T4 is a union of elements of the stratification G(Z), then Cl(T4) is also a
union of elements of the stratification G(Z). If T4 has dimension ≤ d−2, then it
is contained in Sing(Z) and Cl(T4)∩Reg(Q) 6= ∅. Otherwise, T4 has dimension
d − 1 and let M4 be the union of the connected components of Reg(T4) of
dimension d− 1. Observe that both M4 and Cl(T4) \M4 are unions of elements
of the stratification G(Z). Define

A(S) :=

{
Cl(T4) ∩ Reg(Q) if dim(T4) ≤ d− 2,

(Cl(T4) \M4) ∩ Reg(Q) if dim(T4) = d− 1,
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which is empty if and only if dim(T4) = d − 1 and Cl(T4) \ M4 ⊂ ∂Q. As
T4 = Reg(Q) \ S, this means that Reg(T4) = M4 is a pure dimensional semi-
algebraic set of dimension d−1. Our purpose it to develop a procedure to reduce
to this case.

Let Y be the Zariski closure of A(S), which is a union of irreducible compo-
nents of Sing`(Z) for ` = 1, . . . , d − 1, maybe of different dimensions. Let e be
the dimension of Y and let Ye−k be the union of Singk(Y ) and the irreducible
components of Y of dimension e − k for k = 0, . . . , e. Let ` := `(S) ≤ e be
the minimum value k such that Yk = ∅ and m := m(S) the number of irre-
ducible components of Y`. Observe that Y` is a pure dimensional non-singular
(compact) algebraic set. We proceed by double induction on ` and m.

Let W be an irreducible component of Y`. Let (X̂, π̂) be the twisted Nash

double of the drilling blow-up (X̃, π+) of X with center W , which is by Section
4.1.5 an algebraic set. Let

Q∗ := π−1
+ (Q) ∩ Cl(π−1

+ (Q \W ))

be the strict transform of Q. As Q is pure dimensional and Y` ⊂ Z has dimension
strictly smaller, Q \W is dense in Q, so π+(Q∗) = Q, because π+ : X̃ → X is
proper and surjective. By Lemma 4.2.7 Q∗ is a checkerboard set and a Nash
manifold with corners such that π−1

+ (W ) ∩ Q∗ ⊂ ∂Q∗. Let S∗ := π−1
+ (S) ∩

Cl(π−1
+ (S \W )) be the strict transform of S∗, which keep the same properties

required to S (to check this fact one proceeds similarly as we have done in Steps
3 and 4). Observe that A(S∗) = π−1

+ (A(S) \W ), so m(S∗) = m(S)− 1 and

`(S∗)

{
> `(S) if m(S) = 1,

= `(S) if m(S) > 1.

Observe that π+|S∗ : S∗ → S is a surjective proper polynomial map and if
R := ∂S ∪ W , the restriction π+|S∗\π−1

+ (R) : S∗ \ π−1
+ (R) → S \ R is a Nash

diffeomorphism. We proceed inductively and after finitely many steps we may
assume A(S) = ∅.

Step 6. Final drilling resolution procedure. We assume in the follow-
ing that: S is a checkerboard set (and in particular Reg(S) is a connected Nash
manifold), Q := Cl(S) is a compact Nash manifold with corners, the Zarsiki
closure X of S is a non-singular (compact) algebraic set, the Zarsiki closure Z
of Q \ Reg(S) is a normal crossing divisor of X, the semi-algebraic sets

T1 := Q \ S, T2 := S \ Reg(S), T3 := Q \ Reg(Q),

T1 ∩ T3 = Q \ (S ∪ Reg(Q)) and T4 := Reg(Q) \ S 6= ∅

are unions of elements of the stratification G(Z). In addition, Reg(T4) is a pure
dimensional semi-algebraic set of dimension d− 1 and

∂T4 = Cl(T4) \ Reg(T4) ⊂ ∂Q.

In order to finish we will take advantage of Fact 4.1.5. Until this step all
the involved maps are polynomials, however in this step as we will perform the
drilling blow-up of a Nash submanifold of dimension d− 1, we have to proceed
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with care in order to not disconnect the regular locus of S. We prove first that
Reg(T4) = T4. As T4 = Reg(Q) \S ⊂ Reg(Q) and ∂T4 = Cl(T4) \Reg(T4) ⊂ ∂Q,
we deduce T4 ∩ ∂T4 ⊂ Reg(Q) ∩ ∂Q = ∅, so T4 = Reg(T4). Thus, Reg(T4) is
a union of elements of the stratification G(Z). Consequently, each connected
component C of Reg(T4) is a union of elements of the stratification G(Z). In
particular, if C1 and C2 are connected components of Reg(T4), then Cl(C1) ∩
C2 = ∅, because if x ∈ Cl(C1) ∩ C2, then x has no neighbourhood in T4 Nash
diffeomorphic to a Nash manifold. Let C1, . . . , Cm be the connected components
of Reg(T4). As Reg(Ci) = Ci, we have

∂T4 = Cl(T4) \ Reg(T4) = Cl
( m⋃
i=1

Ci

)
\
m⋃
i=1

Ci =

m⋃
i=1

Cl(Ci) \ Ci =

m⋃
i=1

∂Ci.

We claim: Cl(Ci) ∩ Cl(Cj) = ∅ if i 6= j.

Assume Cl(C1) ∩ Cl(C2) 6= ∅. As Cl(Ci) ∩ Cj = ∅ if i 6= j, we deduce

Cl(C1) ∩ Cl(C2) = (Cl(C1) \ C1) ∩ (Cl(C2) \ C2) = ∂C1 ∩ ∂C2 ⊂ ∂Q.

Pick x ∈ Cl(C1) ∩ Cl(C2) and let U ⊂ X be an open semi-algebraic neighbour-
hood of x such that Z ∩ U has coordinates {x1 · · · xr = 0}. We may assume
Q∩U = {x1 ≥ 0, . . . , xs ≥ 0} for some 1 ≤ s ≤ r− 2, C1 ∩U ⊂ {xr−1 = 0} and
C2 ∩ U ⊂ {xr = 0} (recall that C1, C2 ⊂ Reg(Q) and G(Z) is compatible with
C1, C2). As G(Z) is compatible with C1 and C2, we may assume

{x1 ≥ 0, . . . , xs ≥ 0, xs+1 ≥ 0, . . . , xr−2 ≥ 0, xr−1 = 0, xr ≥ 0} ⊂ Cl(C1) ∩ U,
{x1 ≥ 0, . . . , xs ≥ 0, xs+1 ∗s+1 0, xr−2 ∗r−2 0, xr−1 ∗r−1 0, xr = 0} ⊂ Cl(C1) ∩ U,

where ∗j ∈ {≥,≤} for j = s+ 1, . . . , r − 1. Thus,

{x1 ≥ 0, . . . , xs ≥ 0, xs+1 = 0, . . . , xr = 0} ⊂ Cl(C1) ∩ Cl(C2) ∩ U

⊂ ∂Q ∩ U =

s⋃
i=1

{x1 ≥ 0, . . . , xs ≥ 0, xi = 0},

which is a contradiction. Consequently, Cl(C1) ∩ Cl(C2) = ∅, as claimed.

Let Γ be a stratum of G(Z) contained in Q such that Γ is not contained in
Cl(Ci). We prove next: If the Zariski closure of Γ is contained in the Zariski
closure of Ci, then Cl(Γ)∩Cl(Ci) = ∅. As Γ is not contained in Cl(Ci) and the
stratification G(Z) is compatible with Ci, we have Cl(Γ) ∩ Ci = ∅, so

Cl(Γ) ∩ Cl(Ci) = Cl(Γ) ∩ (Cl(Ci) \ Ci) = Cl(Γ) ∩ ∂Ci.

Suppose Cl(Γ)∩Cl(Ci) 6= ∅, pick x ∈ Cl(Γ)∩Cl(Ci) and let U ⊂ X be an open
semi-algebraic neighbourhood of x such that Z ∩U has coordinates {x1 · · · xr =
0}. We may assume Q ∩ U = {x1 ≥ 0, . . . , xs ≥ 0} for some 1 ≤ s ≤ r − 1
and Ci ∩ U ⊂ {xr = 0}. As the Zariski closures of Γ is contained in the Zariski
closure of Ci and x ∈ Cl(Γ) ∩ Cl(Ci) ∩ U , we deduce Cl(Γ) ∩ U ⊂ {xr = 0}. In
addition, ∂Ci ∩ U ⊂ ∂Q ∩ U =

⋃s
i=1{x1 ≥ 0, . . . , xs ≥ 0, xi = 0}. As G(Z) is

compatible with Ci and ∂Ci ⊂ ∂Q, we deduce

Ci ∩ U = {x1 > 0, . . . , xs > 0, xr = 0} = Reg(Q) ∩ U ∩ {xr = 0},
Cl(Ci) ∩ U = {x1 ≥ 0, . . . , xs ≥ 0, xr = 0} = Q ∩ U ∩ {xr = 0},
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4.3. Resolution of general checkerboard sets

so Cl(Γ) ∩ U ⊂ Q ∩ U ∩ {xr = 0} = Cl(Ci) ∩ U , which is a contradiction. Thus,
Cl(Γ) ∩ Cl(Ci) = ∅.

For each connected component Ci of Reg(T4) the Zariski closure of Ci is
the irreducible component Zi of Z that contains Ci. The semi-algebraic set
Zi∩Q\Cl(Ci) is a union of elements of G(Z) and it is closed, because otherwise
there exists a stratum Γ of G(Z) contained in Q such that Γ 6⊂ Cl(Ci) but
Cl(Γ)∩Cl(Ci) 6= ∅, which is a contradiction. Consider the closed semi-algebraic
set

Ki := (Zi ∩ Q \ Cl(Ci)) ∪
⋃
j 6=i

Cl(Cj)

and observe that Ki ∩ Cl(Ci) = ∅. As both semi-algebraic sets are compact
and disjoint,

ε :=
1

2
min{dist(Ki,Cl(Ci)) : i = 1, . . . ,m} > 0.

Define Ui := {x ∈ Zi : dist(x,Cl(Ci)) < ε}. We claim: N :=
⋃m
i=1 Ui is a closed

Nash submanifold of the Nash manifold M := X \
⋃
i=1(Cl(Ui) \ Ui), Q ⊂ M

and Q ∩N =
⋃m
i=1 Cl(Ci) = Cl(T4). It is clear that N is a closed subset of M .

As each Ui is an open semi-algebraic subset of the Nash manifold Zi, to prove
that N ⊂M is a Nash manifold, it is enough to show that Cl(Ui)∩Cl(Uj) = ∅
if i 6= j. If there exists x ∈ Cl(Ui) ∩ Cl(Uj), then

dist(Cl(Ci),Cl(Cj)) ≤ dist(x,Cl(Ci)) + dist(x,Cl(Cj))

< 2ε ≤ dist(Ki,Cl(Ci)) ≤ dist(Cl(Ci),Cl(Cj)),

which is a contradiction. Consequently, the semi-algebraic sets Cl(Ui) for i =
1, . . . ,m are pairwise disjoint. We check next: Q ⊂ M . Suppose there exists
x ∈ Q∩ (Cl(Ui) \Ui), so x ∈ Zi ∩Q∩ (Cl(Ui) \Ui) ⊂ (Zi ∩Q \Cl(Ci))∩Cl(Ui),
because Cl(Ci) ⊂ Ui. As x ∈ Cl(Ui) and x ∈ Zi ∩ Q \ Cl(Ci), we have

dist(x,Cl(Ci)) ≤ ε ≤
1

2
dist(Ki,Cl(Ci))

≤ 1

2
dist(Zi ∩ Q \ Cl(Ci),Cl(Ci)) ≤

1

2
dist(x,Cl(Ci)),

which is a contradiction. Consequently, Q ∩ (Cl(Ui) \ Ui) = ∅ for each i =
1, . . . ,m. Thus, Q ⊂ X \

⋃
i=1(Cl(Ui)\Ui) = M . To prove that Q∩N = Cl(T4),

it is enough to check: Q ∩ Ui = Cl(Ci) or, equivalently, Q ∩ (Ui \ Cl(Ci)) = ∅.
If x ∈ Q ∩ (Ui \ Cl(Ci)) ⊂ Zi, then x ∈ Ui and x ∈ Zi ∩ Q \ Cl(Ci), which is a
contradiction as we have seen in the previous paragraph. Thus, Q∩N = Cl(T4),
as claimed.

As ∂T4 ⊂ ∂Q, we have Cl(T4) ∩ Reg(Q) = Reg(T4) ∩ Reg(Q), so Cl(T4) ∩
Reg(Q) = T4 ∩ Reg(Q). As T4 = Reg(Q) \ S,

Reg(Q) \ Cl(T4) = Reg(Q) \ T4 = S ∩ Reg(Q) ⊂ S

is an open semi-algebraic subset of X contained in S, so S ∩ Reg(Q) ⊂ Reg(S).
As Reg(S) ⊂ S ∩ Reg(Q), we conclude

Reg(S) = Reg(Q) \ Cl(T4) = Reg(Q) \N.
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In general, N is not an algebraic set and its Zariski closure Y is not an option
because Reg(Q) \ Y might be disconnected (see Example 4.3.3). Thus, in the

following the involved drilling blow-up needs to be a Nash map. Let (M̂, π̂) be

the twisted Nash double of the drilling blow-up (M̃, π+) of M := X with center

N , which is by Section 4.1.2 a Nash manifold. In addition, as π̂ : M̂ → M is
proper and surjective and M is compact, also M̂ is compact. We have denoted
X by M in order to stress that M̂ is a compact Nash manifold, which is not
in general a non-singular algebraic set (but only one of its compact connected
components). Let

Q• := π−1
+ (Q) ∩ Cl(π−1

+ (Q \N))

be the strict transform of Q. As Q is pure dimensional and N ⊂ Z has dimension
strictly smaller, Q \ N is dense in Q, so π+(Q•) = Q, because π+ : M̃ → M is
proper and surjective. By Remarks 4.1.4 and Fact 4.1.5 Q• is a Nash manifold
with corners such that π−1

+ (N) ∩ Q• ⊂ ∂Q•. Observe that Q• \ π−1
+ (N) =

π−1
+ (Q \N) is Nash diffeomorphic to Q \N . Thus,

Sth(Q•) = Sth(π−1
+ (Q \N)) = π−1

+ (Reg(Q \N))

= π−1
+ (Reg(Q) \N) = π−1

+ (Reg(S)),

so Sth(Q•) is connected, because π+|M̃\π−1
+ (N)

: M̃ \π−1
+ (N)→M \N is a Nash

diffeomorphism. Let S• := π−1
+ (S)∩Cl(π−1

+ (S\N)) be the strict transform of S,
which keeps the same properties required to S (to check this fact one proceeds
similarly as we have done in Steps 3, 4 and 5) if one changes the operator Reg(·)
by the operator Sth(·) in each case. In addition,

Sth(S•) ⊂ Sth(Q•) = π−1
+ (Reg(S)) ⊂ Sth(S•)

(because Reg(S) ⊂ M \ N), so Sth(S•) = Sth(Q•). Observe that π+|S• :
S• → S is a surjective proper Nash map and if R := S \ Reg(S), the restric-
tion π+|S•\π−1

+ (R) : S• \ π−1
+ (R)→ S \ R is a Nash diffeomorphism, as required.

Recall that by [AK, Thm.1.1] the pair constituted by a compact Nash mani-
fold and a Nash normal-crossing divisor is diffeomorphic to a pair constituted by
a non-singular compact algebraic set and a normal-crossing divisor and the pre-
vious diffeomorphism preserves Nash irreducible components of the correspond-
ing Nash normal-crossing divisors. By the proof of the approximation results
[BFR, Thm.1.7 & Prop.8.2] modified to fit our situation (we have to substitute
Efroymson’s approximation result [Sh, Thm.II.4.1] for differentiable semialge-
braic functions on a Nash manifold by Nash functions by Stone-Weierstrass
aproximation for differentiable functions on differentiable manifolds by polyno-
mial functions) we may assume that the previous diffeomorphism is in addition
a Nash diffeomorphism.

Using the previous fact and [Fe4, Lem.8.3 & Lem.C.1] we may assume in

addition (using a suitable Nash embedding of M̃ in some affine space) that the
quasi Nash manifold with corners S• is a checkerboard set, the Nash manifold
with corners Q• = Cl(S•) is a checkerboard set, the Zariski closure X• of S• is
a connected compact non-singular irreducible algebraic set, the Zariski closure
Z• of

∂S• = Q• \ Reg(S•) = Q• \ Reg(Q•) = ∂Q•
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4.3. Resolution of general checkerboard sets

is a normal-crossings divisor of X• and the stratification G(Z•) is compatible
with S• \ Reg(S•).

S• S
f |S•

Figure 4.5: Resolution of the checkerboard set S (right) by the quasi Nash manifold
with corners S• (left).

Example 4.3.3. Let X := {x2
1 + · · ·+ x2

n = 1} ⊂ Rn and let

S := X ∩ {x2
n ≤ 1

4} \ {xn−2 ≤ 0, xn−1 = 0},

which is a checkerboard set whose Zariski closure is X. The algebraic set X
is the (n − 1)-dimensional unit sphere, so it is compact and non-singular. The
closure Cl(S) = X∩{x2

n ≤ 1
4} is a compact Nash manifold with corners. Observe

that Reg(S) = S ∩ {x2
n <

1
4}, so

Cl(S) \ Reg(S) = (X ∩ {x2
n = 1

4}) ∪ (X ∩ {xn−2 ≤ 0, xn−1 = 0} ∩ {x2
n ≤ 1

4}).

The Zariski closure of Cl(S) \ Reg(S) is

Z := (X ∩ {xn = 1
2}) ∪ (X ∩ {xn = − 1

2}) ∪ (X ∩ {xn−1 = 0}),

which is a normal-crossings divisor of X. Denote Q := Cl(S). The semi-algebraic
sets

T1 : = Q \ S = X ∩ {xn−2 ≤ 0, xn−1 = 0} ∩ {x2
n ≤ 1

4},
T2 : = S \ Reg(S) = X ∩ {x2

n = 1
4} \ {xn−2 ≤ 0, xn−1 = 0},

T3 : = Q \ Reg(Q) = X ∩ {x2
n = 1

4},
T1 ∩ T3 = Q \ (S ∪ Reg(Q)) = X ∩ {x2

n = 1
4} ∩ {xn−2 ≤ 0, xn−1 = 0},

T4 : = Reg(Q) \ S = X ∩ {xn−2 ≤ 0, xn−1 = 0} \ {x2
n = 1

4} 6= ∅

are unions of elements of the stratification G(Z). In addition, Reg(T4) is a pure
dimensional semi-algebraic set of dimension d− 1 and

∂T4 = Cl(T4) \ Reg(T4) = X ∩ {x2
n = 1

4} ∩ {xn−2 ≤ 0, xn−1 = 0} ⊂ ∂Q.

Thus, we are under the hypothesis of Step 6 of the Proof of Theorem 4.2. We
can take as N := X ∩ {xn−2 < 0, xn−1 = 0}, but we can not take its Zariski
closure X ∩ {xn−1 = 0}, because it disconnects Reg(S).
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Chapter 5

Folding Nash manifolds

In the article [FGR] Fernando, Gamboa and Ruiz proved that given a Nash
manifold Q ⊂ Rn with corners it is contained as a closed subset in a Nash
manifold M ⊂ Rn of the same dimension and the behaviour of the Nash closure
of its boundary is the suitable one. The main purpose of this chapter is to
show that the Nash manifold M can be ‘folded’ to reconstruct the manifold
with corners Q. That is, there exists a surjective Nash map M → Q such
that the restriction to Q is close to the identity and preserves the stratification
of the boundary ∂Q. The construction we present, even if it requires some
technicalities, is geometrical and neat. This construction, that has interest by its
own, has remarkable consequences. A first consequence is that this construction
provides an approximation result for (proper) continuous semi-algebraic maps
by Nash maps, when the target space is a Nash manifold with corners.

A second consequence of our construction is a variant of Theorem 4.1. A
similar result changing Q by a Nash manifold with boundary seems difficult to be
achieved if we want to keep that the map f is polynomial, so we will show that
a closed semi-algebraic set S connected by analytic paths can be ‘resolved’ by a
Nash manifold with boundary, up to consider Nash maps instead of polynomial
ones. Moreover, we will provide an alternative characterization of the Nash
images of the closed ball, taking advantage of this new technique of ‘resolution’
of semi-algebraic sets by Nash manifolds with boundary.

5.1 Folding boundaries to construct Nash man-
ifolds with corners.

In this section we deal with the main construction of this chapter. We show
how to ‘fold’ the Nash manifold M to reconstruct the manifold with corners
Q ⊂ M . We will use some of the standard tools for manifold with boundary
(boundary equations, doubling, collars etc.). These standard constructions have
been done, for the Nash category, by Shiota [Sh, Ch.VI] in the compact case and
by Fernando [Fe4, §4] in the general case. We adapt their proofs (especially those
of Fernando) in order to obtain constructions compatible with an assigned Nash
normal-crossings divisor. Eventually, we show that our construction is canonical
and does not depend on the order of the ‘foldings along the facets of Q’.
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5. Folding Nash manifolds

5.1.1. Compatible Nash retractions. Let M ⊂ Rn be a connected Nash
manifold of dimension d and let Y ⊂ M be a Nash normal-crossings divisor.
For each ` ≥ 2 define inductively

Sing1(Y ) := Sing Y,

Sing`(Y ) := Sing`−1(Sing(Y )).

In order to lighten the exposition, we write Sing0(Y ) := Y and Sing−1(Y ) := M .
The irreducible components of Sing`(Y ) are Nash manifolds for each ` ≥ 1 such
that Sing`(Y ) 6= ∅. In fact, if Y`,1, . . . , Y`,s` are the irreducible components of
Sing`(Y ), then

Sing`+1(Y ) =
⋃
i6=j

(Y`,i ∩ Y`,j).

If Sing`(Y ) 6= ∅, then dim(Sing`(Y )) = d− `− 1.

For each ` ≥ 1 we have Sing`(Y ) ⊂ Sing`−1(Y ), so there exists an r ≥ 0
such that Singr(Y ) 6= ∅, but Singr+1(Y ) = ∅, whereas Singt(Y ) 6= ∅ for each
0 ≤ t ≤ r. Let Z be an irreducible component of Singt(Y ).

Definition 5.1.1. A Nash retraction ρ : W → Z, where W ⊂ M is an open
semi-algebraic neighbourhood of Z, is compatible with Y if

ρ(Yi ∩W ) = Yi ∩ Z,

for each irreducible component Yi of Y such that Yi ∩ Z 6= ∅.

In [FGh, Prop. 4.1] Fernando and Ghiloni proved the following result, which
is a powerful tool to make constructions compatible with an assigned Nash
normal-crossings divisor. We will take advantage of this result in the rest of the
chapter.

Proposition 5.1.2 (Compatible Nash retractions, [FGh, Prop. 4.1]). There
exist an open semi-algebraic neighbourhood W ⊂M of Z and a Nash retraction
ρ : W → Z that is compatible with Y . In addition

ρ(X ∩W ) = X ∩ Z,

for each irreducible component X of Sing`(Y ) such that X ∩ Z 6= ∅ and ` ≥ 1.

5.1.2. Compatible Nash collars. Nash collars for Nash manifolds with non-
empty boundary have been constructed by Shiota [Sh, VI.1.6] in the compact
case and by Fernando [Fe4, Lem.4.2] in the general case. For our purposes we
need to adapt these constructions in order to make the collars compatible with
a Nash normal-crossings divisor Y that contains ∂H.

Let M ⊂ Rn be a Nash manifold and let Y ⊂M be a Nash normal-crossings
divisor.

Proposition 5.1.3 (Compatible Nash collars). Let Y1 be an irreducible com-
ponent of Y and let ρ : W → Y1 be a Nash retraction compatible with Y1 such
that ρ(X ∩W ) = X ∩Z for each irreducible component X of Sing`(Y ) such that
X ∩ Z 6= ∅ and ` ≥ 1. Let h be a Nash function on W such that {h = 0} = Y1

and dxh : TxM → R is surjective for all x ∈ Y1. Then there exist an open
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5.1. Folding boundaries to construct Nash manifolds with corners.

semi-algebraic neighbourhood V ⊂W of Y1 and a strictly positive Nash function
ε : Y1 → R such that the Nash map ϕ := (ρ, h

ε◦ρ ) : V → Y1 × (−1, 1) is a Nash
diffeomorphism and

ϕ(Z ∩ V ) = (Z ∩ Y1)× (−1, 1)

for each irreducible component Z of Sing`(Y ) such that Z 6⊂ Y1 and Z ∩Y1 6= ∅
and ` ≥ 0.

Proof. We show first: Define φ := (ρ, h) : W → Y1 × R. Then the derivative
dxφ = (dxρ, dxh) : TxM → TxY1 × R is an isomorphism for all x ∈ Y1. As
dim(TxM) = dim(TxY1 × R), it is enough to show: dxφ is surjective.

As φ|Y1 = (idY1 , 0), we have dxφ|TxY1 = (idTxY1 , 0), so TxY1×{0} ⊂ im(dxφ).
In addition dxh : TxM → R is surjective, so there exists v ∈ TxM such that
dxh(v) = 1. Thus, dxφ(v) = (dxρ(v), 1) and dxφ is surjective.

Let W ′ := {x ∈ W : dxφ is an isomorphism}, which is an open semi-
algebraic neighbourhood of Y1. Thus, φ|W ′ : W ′ → Y1 × R is an open map
and φ(W ′) is an open semi-algebraic neighbourhood of Y1 × {0} in Y1 × R.
As φ|W ′ : W ′ → φ(W ′) is a local homeomorphism and φ|Y1

= (idY1
, 0) is a

homeomorphism (onto its image), there exist by [BFR, Lem.9.2] open semi-
algebraic neighbourhoods W ′′ ⊂W ′ of Y1 and U ⊂ Y1×R of Y1×{0} such that
φ|W ′′ : W ′′ → U is a semi-algebraic homeomorphism.

Consider the strictly positive, continuous semi-algebraic map

δ : Y1 → (0,+∞), x 7→ dist((x, 0), (Y1 × R) \ U).

By [Sh, II.4.1] there exists a strictly positive Nash function ε on Y1 such that
1
2δ < ε < δ. Consider the open semi-algebraic neighbourhood

U ′ := {(x, t) ∈ Y1 × R : |t| < ε(x)} ⊂ U

of Y1 × {0} and define V := (φ|W ′′)−1(U ′). The restriction φ|V : V → U ′ is a
Nash diffeomorphism. Consequently,

ϕ : V → Y1 × (−1, 1), x 7→
(
ρ(x),

h(x)

ε(ρ(x))

)
is a Nash diffeomorphism (as it is the composition of φ|V with a Nash diffeo-
morphism).

Let ` ≥ 0 and let Z be an irreducible component of Sing`(Y ) such that
Z 6⊂ Y1 and Z ∩ Y1 6= ∅. By Proposition 5.1.2 ρ(Z ∩ V ) = Z ∩ Y1, so

ϕ(Z ∩ V ) ⊂ (Z ∩ Y1)× (−1, 1).

As Y is a Nash normal-crossings divisor, Z ∩ Y1 is a Nash manifold, so its
connected components Ci are Nash manifolds (all of the same dimension e− 1
where e = dim(Z), because Z 6⊂ Y1). Thus, Ci × (−1, 1) are closed connected
Nash submanifolds of Y1 × (−1, 1) of dimension e.

Let Zi be an irreducible component of Z ∩ V such that Ci ⊂ Zi ∩ Y1. As
Zi is connected, also ρ(Zi) ⊂ Z ∩ Y1 is connected, so it is contained in one of
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5. Folding Nash manifolds

the connected components of Z ∩ Y1. As Ci ⊂ Zi ∩ Y1 ⊂ ρ(Zi) is a connected
component of Z∩Y1, we deduce ρ(Zi) = Zi∩Y1 = Ci. Then ϕ(Zi) ⊂ Ci×(−1, 1)
is a Nash subset of Y1 × (−1, 1) of dimension e. By the identity principle, we
conclude ϕ(Zi) = Ci×(−1, 1) because Ci×(−1, 1) is an irreducible Nash subset
of Y1× (−1, 1) of dimension e. Consequently, ϕ(Z ∩ V ) = (Z ∩ Y1)× (−1, 1), as
required.

5.1.3. Nash equations for boundary components. Recall that (see Section
2.5.3) a semi-algebraic set Q ⊂ Rn is a Nash manifold with corners of dimension
d if for each point y ∈ Q there exist an integer 0 ≤ k ≤ d and an open semi-
algebraic neighbourhood U ⊂ Q of y equipped with a Nash diffeomorphism

φ : U → {x1 ≥ 0, . . . , xk ≥ 0} ⊂ Rd.

Recall that we consider only Nash manifolds with divisorial corners (see
Section 2.5.3). Let Q ⊂ Rn be a Nash manifold with corners of dimension
d ≥ 2. By [FGR, Thm.1.11, 1.12] there exists a d-dimensional Nash manifold
M ⊂ Rn, called a Nash envelope of Q, that contains Q as a closed subset and
satisfies:

(i) The Nash closure Y of ∂Q in M is a Nash normal-crossings divisor of M
and Q ∩ Y = ∂Q.

(ii) For every x ∈ ∂Q the analytic closure of the germ ∂Qx is Yx.

(iii) For each irreducible component Y1 of Y the intersection Q ∩ Y1 is a facet
of Q.

(iv) M can be covered by finitely many open semi-algebraic subsets Ui, for
i = 1, . . . , r, equipped with Nash diffeomorphisms

ui := (ui1, . . . , uid) : Ui → Rd

such that:{
Ui ⊂ Int(Q) or Ui ∩ Q = ∅ if Ui does not meet ∂Q,

Ui ∩ Q = {ui1 ≥ 0, . . . , uiki ≥ 0} if Ui meets ∂Q (for a suitable ki ≥ 1).

The following result allows us to build suitable Nash equations for the facets
of Q. The proof is strongly inspired on the proof of [Fe4, Lem.4.3].

Lemma 5.1.4 (Nash equations for the faces). Let Y1 an irreducible component
of the Nash normal-crossings divisor Y (which is the Nash closure of ∂Q in
the Nash envelope M). Then, after shrinking M is necessary, there exists a
Nash function h1 : M → R such that Y1 = {h1 = 0} and dxh1 : TxM → R is
surjective for each x ∈ Y1. In addition, H1 := h−1

1 ([0,+∞)) is a Nash manifold
with boundary Y1 that contains Q as a closed subset.

Proof. The proof is conducted in several steps:

Step 1. We construct first an S2 semi-algebraic function h∗1 on M such that
Y1 ⊂ {h∗1 = 0} and dxh

∗
1(v) > 0 for each x ∈ Y1 ∩ Q and each non-zero vector

v ∈ TxM pointing ‘inside Q’.
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5.1. Folding boundaries to construct Nash manifolds with corners.

Assume that Y1 meets Ui exactly for i = 1, . . . , s for some s ≤ r. We
reorder the variables uij in order to guarantee that Y1 ∩ Ui = {ui1 = 0} and
Q ∩Ui ⊂ {ui1 ≥ 0} for i = 1, . . . , s. Let {θi}s+1

i=1 : M → [0, 1] be an S2 partition
of unity subordinated to the finite covering {Ui}si=1 ∪ Us+1 := {M \ Y1} of M
and consider the S2 function h∗1 :=

∑s
i=1 θiui1. It holds Y1 ⊂ {h∗1 = 0}.

Fix x ∈ Y1∩Q and let v ∈ TxM be a non-zero vector pointing ‘inside Q’, that
is, dxui1(v) > 0 if x ∈ Ui. We have ui1(x) = 0 for i = 1, . . . , s and x 6∈ Us+1, so

dxh
∗
1 =

∑
x∈Ui

ui1(x)dxθi +
∑
x∈Ui

θi(x)dxui1 =
∑
x∈Ui

θi(x)dxui1

 dxh
∗
1(v) =

∑
x∈Ui

θi(x)dxui1(v) > 0

because
∑
x∈Ui θi(x) = 1, θi(x) ≥ 0 and dxui1(v) > 0 if x ∈ Ui.

Step 2. By [BFR, Prop.8.2] there exists a Nash function h′1 on M close to h∗1
in the S2 topology such that Y1 ⊂ {h′1 = 0} and dxh

′
1(v) > 0 for each x ∈ Y1∩Q

and each non-zero vector v ∈ TxM pointing ‘inside Q’. We claim: there exists
an open semi-algebraic neighbourhood W ⊂M of Y1 ∩ Q such that

Int(Q) ∩W ⊂ {h′1 > 0} ∩W

and {h′1 = 0} ∩W = Y1.

Pick a point x ∈ Y1 and assume x ∈ U1. As h′1 vanishes identically at
Y1, we may write h′1|U1

= u11a1 where a1 is a Nash function on U1. Pick
y ∈ Y1 ∩ U1 ∩ Q and observe that dyh

′
1 = a1(y)dyu11. Let v ∈ TyM be a non-

zero vector pointing ‘inside Q’. As dyu11(v) > 0 and dyh
′
1(v) > 0, we deduce

a1(y) > 0. Define W1 := {a1 > 0} ⊂ U1 and notice that Y1 ∩ U1 ∩ Q ⊂ W1,
Int(Q) ∩ W1 ⊂ {h′1 > 0} ∩ W1 and {h′1 = 0} ∩ W1 = Y1 ∩ W1. Construct
analogously W2, . . . ,Ws and observe that W :=

⋃s
i=1Wi satisfies the required

properties.

Substitute M by M \ (Y1 \W ), which is an open semi-algebraic subset of
M that contains Q as a closed subset. Substitute Y by the Nash closure of ∂Q
in the new M and Y1 by the irreducible component of the new Y that contains
the facet Y1 ∩ Q.

Step 3. Next, we construct h1. If W = M , it is enough to set h1 := h′1.
Suppose W 6= M . Let ε0 be a (continuous) semi-algebraic function whose value
is 1 on Y1 and −1 on M \W . Let ε be a Nash approximation of ε0 such that
|ε− ε0| < 1

2 . Then

ε(x)

{
> 1

2 if x ∈ Y1,

< − 1
2 if x ∈M \W .

Thus, {ε > 0} ⊂ W is an open semi-algebraic neighbourhood of Y1 in M . By
[Sh, II.5.3] Y1 is a Nash subset of M . Let f be a Nash equation of Y1 in M .

Substituting f by f2

ε2+f2 we may assume that f is non-negative and f(x) = 1 if

ε(x) = 0. Consider the (continuous) semi-algebraic function on M given by

δ(x) :=

{
1 if ε(x) > 0,

1
f(x) if ε(x) ≤ 0.
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5. Folding Nash manifolds

Let g be a Nash function on M such that δ < g (see [BCR, Prop.2.6.2], after
embedding M in Rn+1 as a closed subset). Consider the Nash function

h1 := h′1 + f2g2(h′21 + 1)

and let us prove that it satisfies the required conditions.

Step 4. We claim: h1 is positive on Int(Q).

Let x ∈ Int(Q). If h′1(x) > 0, then h1(x) > 0. If h′1(x) ≤ 0, then x 6∈ W
(because Int(Q) ∩W ⊂ {h′1 > 0} ∩W ). Thus, ε(x) ≤ 0 and

h1(x) = h′1(x) + g2(x)f2(x)(h′21 (x) + 1)

> h′1(x) +
1

f2(x)
f2(x)(h′21 (x) + 1) = h′21 (x) + h′1(x) + 1 > 0.

Step 5. It holds: There exists an open semi-algebraic neighbourhood W ′ ⊂ W
of Y1 such that {h1 = 0} ∩W ′ = Y1, Int(Q) ∩W ′ ⊂ {h1 > 0} ∩W ′ and the
differential dxh1 : TxM → R is surjective for all x ∈ Y1.

Recall that W =
⋃s
i=1Wi. We have seen in Step 2 that there exists a Nash

function a1 on U1 such that h′1|U1 = u11a1 and Y1∩U1 ⊂W1 := {a1 > 0}. As f
vanishes identically at Y1, we deduce f |U1 = u11b1 where b1 is a Nash function
on U1. Consequently,

h1|U1 = u11a1 + g2|U1u
2
11b

2
1(u2

11a
2
1 + 1) = u11(a1 + g2|U1

u11b
2
1(u2

11a
2
1 + 1))

and dxh1 = a1(x)dxu11 = dxh
′
1 for x ∈ Y1 ∩ U1. Define

W ′1 := {a1 + g2|U1u11b
2
1(u2

11a
2
1 + 1) > 0} ∩W1,

which is an open semi-algebraic subset of M . We have Y1 ∩ U1 ⊂W ′1 and

Int(Q) ∩W ′1 ⊂ {h1 > 0} ∩W ′1.

Construct analogously W ′2, . . . ,W
′
s and observe that the open semi-algebraic

subset W ′ :=
⋃s
i=1W

′
i ⊂ M is an open neighbourhood of Y1 that satisfies

{h1 = 0} ∩W ′ = Y1, Int(Q) ∩W ′ ⊂ {h1 > 0} ∩W ′ and dxh : TxM → R is
surjective for all x ∈ Y1.

Consequently, M ′ := {h1 > 0} ∪ W ′ and h1|M ′ satisfy all the required
conditions.

Remark 5.1.5. Let H ⊂ Rn be a d-dimensional Nash manifold with non-empty
boundary ∂H and M ⊂ Rn a Nash manifold that contains H as a closed subset.
In this case, the previous lemma provides a Nash equation for the boundary ∂H.
That is, up to shrink M if necessary, there exists a Nash function h : M → R
such that

(i) ∂H = {h = 0},

(ii) Int(H) = {h > 0},

(iii) dxh : TxH → R is surjective for all x ∈ ∂H.
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5.1. Folding boundaries to construct Nash manifolds with corners.

Let Y1, . . . , Y` the irreducible components of Y . As an immediate conse-
quence of the previous lemma, we have the following:

Corollary 5.1.6. After shrinking the manifold M if necessary, there exist Nash
functions hi : M → R such that Yi = {hi = 0}, dxhi : TxM → R is surjective
for each x ∈ Yi and

Q = {h1 ≥ 0, . . . , h` ≥ 0}.

5.1.4. Nash doubles. Doubling a smooth manifold with boundary is a very
standard tool in differential topology. The Nash construction has been treated
by Shiota [Sh, VI.2.1] in the compact case and by Fernando [Fe4, 4.B.1] in the
general case.

Let H ⊂ Rn be a d-dimensional Nash manifold with non-empty boundary
∂H and let h : M → R be a Nash equation for ∂H (as in Remark 5.1.5).

Proposition 5.1.7 (Nash double). The semi-algebraic set

D(H) := {(x, t) ∈ H × R : t2 − h(x) = 0} ⊂ Rn+1

is a Nash manifold of dimension d that contains ∂H × {0} as the Nash subset
{t = 0}.

Proof. As H = {x ∈M : h(x) ≥ 0}, we can describe D(H) as the Nash subset

D(H) = {(x, t) ∈M × R : t2 − h(x) = 0} ⊂M × R,

so it is enough to check that D(H) is smooth. We consider the Nash function
f : M × R → R, defined as f(x, t) = t2 − h(x). It holds D(H) = f−1(0). The
differential of f at (x, t) ∈ M × R is d(x,t)f = 2t − dxh, that is surjective for
each (x, t) (we are using Lemma 5.1.4 when t = 0). Thus 0 ∈ R is a regular
value for the Nash function f , so D(H) is a smooth Nash subset of dimension
d of M × R. The last part of the statement is clear.

x1

xd

tH+

D(H)

H−

∂H × {0}

H ∂H

π

Figure 5.1: Nash double of H (figure borrowed from [Fe4, Fig.3]).

Consider now the projection π : D(H)→ H, (x, t) 7→ x, that is a surjective
Nash map. Fix ε = ± and denote Hε := D(H) ∩ {εt ≥ 0}. We have the
following:
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5. Folding Nash manifolds

Proposition 5.1.8. The map π : D(H)→ H verifies the following properties.

(i) The restriction πε := π|Hε : Hε → H is a semi-algebraic homeomorphism
and the restriction π|D(H)∩{εt>0} : D(H) ∩ {εt > 0} → Int(H) is a Nash
diffeomorphism.

(ii) π(x, 0) = x for all (x, 0) ∈ ∂H × {0} = D(H) ∩ {t = 0}.

(iii) π has local representations (y1, . . . , yd) 7→ (y2
1 , y2, . . . , yd) at each point of

D(H) ∩ {t = 0}.

(iv) π is open and proper.

Proof. (i) Observe that Hε is the graph of the continuous semi-algebraic map
ε
√
h on H, so πε : Hε → H is a semi-algebraic homeomorphism.

The intersection D(H) ∩ {εt > 0} is the graph of the strictly positive Nash
function ε

√
h on Int(H). Consequently

π|D(H)∩{εt>0} : D(H) ∩ {εt > 0} → Int(H)

is Nash diffeomorphism.

Statement (ii) is clear.

(iii) Let us first construct local coordinates at the points of D(H)∩{t = 0}.
Pick a point x0 ∈ ∂H and let U ⊂M be an open semi-algebraic neighbourhood
of x0 equipped with a Nash diffeomorphism

u := (u1, . . . , ud) : U → (−1, 1)× Rd−1,

such that u(x0) = 0 and U ∩H = {u1 ≥ 0}. We may assume, after shrinking U
if necessary and modifying suitably u and h, that u1 = h|U . This is so because
{u1 ≥ 0} = {h ≥ 0}, {u1 = 0} = {h = 0}∩U and dxu, dxh : TxM → R are both
surjective for each x ∈ {h = 0} ∩U , so u1/h is a strictly positive Nash function
on a neighbourhood of {h = 0}∩U . Observe that V := (U ∩H)×R is an open
semi-algebraic subset of H × R and

W := D(H) ∩ V = {(x,±
√
h(x)) : x ∈ U ∩H}

is an open semi-algebraic neighbourhood of (x0, 0) in D(H). Consider the Nash
map

u′ := (u′1, . . . , u
′
d) : W → (−1, 1)× Rd−1, (x, t) 7→ (t, u2(x), . . . , ud(x))

and let us check that it is a Nash diffeomorphism. As

(u′2, . . . , u
′
d)(W ) = (u2, . . . , ud)(U ∩H) = Rd−1,

we have u′(W ) = (−1, 1)× Rd−1, so u′ is surjective.

Pick (x1, t1), (x2, t2) ∈W such that u′(x1, t1) = u′(x2, t2). Then t1 = t2, so

u1(x1) = h(x1) = t21 = t22 = h(x2) = u1(x2)

and u(x1) = u(x2). As u is injective, we have x1 = x2, so (x1, t1) = (x2, t2).
Thus, u′ is injective.
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5.1. Folding boundaries to construct Nash manifolds with corners.

Denote u−1 := φ := (φ1, . . . , φm). The inverse of u′ is the Nash map

ζ : (−1, 1)× Rd−1 →W, (t, y′) := (t, y2, . . . , yd) 7→ (φ(t2, y′), t).

The differential of ζ at a point (t, y′) ∈ (−1, 1)× Rd−1 is
2t∂φ1

∂y1
(t2, y′) ∂φ1

∂y2
(t2, y′) · · · ∂φ1

∂yd
(t2, y′)

...
...

. . .
...

2t∂φm∂y1 (t2, y′) ∂φm
∂y2

(t2, y′) · · · ∂φm
∂yd

(t2, y′)

1 0 · · · 0


and it has rank d. Consequently, u′ is a Nash diffeomorphism.

Let us see how is the local representation of π at (t, y′) ∈ D(H) ∩ {t = 0} if
we use suitable coordinates. We have

(−1, 1)× Rd−1 ζ→W
π→ H ∩ U u→ (−1, 1)× Rd−1,

(t, y′) 7→ (φ(t2, y′), t) 7→ φ(t2, y′) 7→ (t2, y′),

as required.

(iv) We prove first that π is open. Let A ⊂ D(H) be an open set and let
Aε := A∩Hε, which is an open subset of Hε. As πε : Hε → H is a semi-algebraic
homeomorphism, π(Aε) is an open subset of H. Thus, π(A) = π(A+) ∪ π(A−)
is an open subset of H and π is open.

To show that π is proper, pick K ⊂ H compact and observe that

π−1(K) = (π+)−1(K) ∪ (π−)−1(K).

As each πε : Hε → H is a semi-algebraic homeomorphism, (πε)
−1(K) is compact

for ε = ±, so π−1(K) is a compact subset of D(H) and π is proper as required.

5.1.5. Folding one boundary component. Let M ⊂ Rn be a d-dimensional
Nash manifold that contains H as a closed subset and assume that ∂H is a
Nash subset of M . Let Y be a Nash normal-crossings divisor of M , such that
∂H is a union of irreducible components of Y . Let Y1, . . . , Yr be the irreducible
components of Y that meet ∂H but are not contained in ∂H. Let h : M → R be
a Nash equation of ∂H. Observe that hi := h|Yi is a Nash equation of Yi ∩ ∂H
such that Int(H) ∩ Yi = {hi > 0}, and dxhi : TxYi → R is surjective for all
x ∈ Yi ∩ ∂H. Thus, Yi ∩H is a Nash manifold with boundary Yi ∩ ∂H that is
contained in Yi as a closed subset. In addition

D(Yi ∩H) = {(x, t) ∈ (Yi ∩H)× R : t2 − hi(x) = 0} = D(H) ∩ (Yi × R),

is the Nash double of Yi ∩H. Define Hε := D(H) ∩ {εt ≥ 0}, for ε = ±.

We want to show that there exists a Nash embedding of M into D(H), that
maps the Nash normal-crossings divisor Y into D(Y ) component-wise. We need
the following technical lemma.

Lemma 5.1.9. Let k ≥ 1 and 0 < a ≤ 1. Consider the C2k semi-algebraic
function fa := (1− (t/a)2k)2kt + (1− (1− (t/a)2k)2k)

√
t. Then fa is positive

semidefinite [0, a], it is strictly increasing on [0, a], the Taylor polynomial of fa
at t = 0 of degree 2k is t whereas the Taylor polynomial of fa at t = a of degree
2k − 1 is that of

√
t at t = a. In addition, fa(t) ≤

√
t on [0, 1].
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•

0.5

•

0.5

Figure 5.2: Graphs of fa for a = 1
2

and k = 2 (left) and k = 6 (right).

Proof. Write f := fa to light notations. Using Newton’s binomial we have

f =

2k∑
`=0

(
2k

`

)
(−1)`

(t
a

)2k`

t−
2k∑
`=1

(
2k

`

)
(−1)`

(t
a

)2k`√
t,

so the Taylor polynomial of f at t = 0 of degree 2k is t. In particular, f is a
C2k semi-algebraic function. In addition,

f = (1− (1 + (t/a)− 1)2k)2kt + (1− (1− (1 + (t/a)− 1)2k)2k)
√
t

and using Newton’s binomial we have

f =
√
t−

(t
a
− 1
)2k

(
2k∑
`=1

(
2k

`

)(t
a
− 1
)`−1

)2k

(t−
√
t),

so the Taylor polynomial of f at t = a of degree 2k − 1 is that of
√
t at t = a.

Define σ := (1 − (t/a)2k)2k and observe that σ(0) = 1, σ(a) = 0 and both
σ, 1−σ are positive semidefinite on [0, a]. Thus, f = σt+ (1−σ)

√
t is positive

semidefinite on [0, a]. As 0 < a ≤ 1, it holds
√
t − t > 0 on (0, a), so the

derivative

f ′ :=
(
t−
√
t
)
σ′ + (1− σ)

1

2
√
t

+ σ

= (
√
t− t)4k2(1− (t/a)2k)2k−1(t/a)2k−1(1/a) + (1− σ)

1

2
√
t

+ σ

is strictly positive on (0, a) and f is strictly increasing on [0, a]. Finally, as t ≤
√
t

on [0, 1] we deduce that f = σt+ (1− σ)
√
t ≤
√
t on [0, 1], as required.

We are ready to prove the embedding theorem. Note that, as a straightfor-
ward consequence of this result, we obtain: The Nash manifold with boundary
H is Nash diffeomorphic to Hε, for ε = ±.

Theorem 5.1.10 (Embedding). After shrinking M if necessary, there exists a
Nash embedding φ : M → D(H) that maps H onto H+ and Yi into D(Yi ∩H).
In addition, φ|∂H = id∂H , φ|H is close to (π|H+)−1, φ(x) is close to ρ(x) for
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5.1. Folding boundaries to construct Nash manifolds with corners.

each x ∈M \H, where ρ is a Nash retraction compatible with Y and there exists
an open semi-algebraic neighbourhood W ⊂M of ∂H such that

φ|Cl(W )∪H : Cl(W ) ∪H → D(H)

is proper.

Proof. The proof is constructed in several steps.

Step 1. We construct first suitable semi-algebraic neighbourhoods U ⊂ M of
∂H and V ⊂ D(H) of ∂H × {0}.

Let U ⊂M be an open semi-algebraic neighbourhood of ∂H equipped with
a Nash retraction ρ : U → ∂H compatible with Y (see Proposition 5.1.2). We
may assume that U does not meet the irreducible components of Y that do not
meet ∂H. Define the Nash map ϕ := (ρ, h) : U → ∂H × R. By Proposition
5.1.3 we may assume, after shrinking U if necessary, that there exists a strictly
positive Nash function ε : ∂H → (0, 1) such that

ϕ(U) = {(y, s) ∈ ∂H × R : |s| < ε(y)},
ϕ(U ∩H) = {(y, s) ∈ ∂H × R : 0 ≤ s < ε(y)},

and ϕ : U → ϕ(U) is a Nash diffeomorphism such that

ϕ(Z ∩ U) = {(y, s) ∈ (Z ∩ ∂H)× R : |s| < ε(y)}

for each irreducible component Z of Sing`(Y ) such that Z ∩ ∂H 6= ∅, Z 6⊂ ∂H
and ` ≥ 0. Define V := π−1(U ∩H).

Step 2. Let V ′ := {(y, t) ∈ ∂H × R : |t| <
√
ε(y)}. We want to prove: The

Nash map
ψ : V → ∂H × R, (x, t) 7→ (ρ(x), t)

is a Nash diffeomorphism onto its image V ′, such that

ψ(Z ∩ U ∩H) = {(y, t) ∈ (Z ∩ ∂H)× R : 0 ≤ t <
√
ε(y)}

for each irreducible component Z of Sing`(Y ) such that Z ∩ ∂H 6= ∅, Z 6⊂ ∂H
and ` ≥ 0.

(1) ψ is injective. If (x1, t1), (x2, t2) ∈ V satisfy ψ(x1, t1) = ψ(x2, t2), then
ρ(x1) = ρ(x2) and

h(x1) = t21 = t22 = h(x2).

Then we have ϕ(x1) = ϕ(x2), so x1 = x2. Thus (x1, t1) = (x2, t2).

(2) ψ(V ) = V ′. Fix a point (x, t) ∈ V . Then, by definition, x ∈ U and
ϕ(x) = (ρ(x), h(x)) ∈ ϕ(U), so t2 = h(x) < ε(ρ(x)) and ψ(x, t) ∈ V ′. Con-
versely, fix a point (y, t) ∈ V ′. As (y, t2) ∈ ϕ(U), there exists a point x ∈ U
such that ϕ(x) = (ρ(x), h(x)) = (y, t2). As x ∈ U and h(x) = t2 ≥ 0, we have
x ∈ U ∩H, so (x, t) ∈ V and (y, t) = (ρ(x), t) = ψ(x, t) ∈ ψ(V ).

(3) The differential dzψ : TzD(H)→ Tρ(z)H×R is an isomorphism for each
z ∈ V . Write z := (x, t) and notice that

TzD(H) = {(v, r) ∈ TxH × R : dxh(v)− 2tr = 0}
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and dxψ(v, r) = (dxρ(v), r). If t 6= 0,

dzψ(v, r) =

(
dxρ(v),

1

2t
dxh(v)

)
.

As dxϕ = (dxρ, dxh) is an isomorphism, also dzψ is an isomorphism. If t = 0,
that is z = (x, 0) ∈ ∂H × R, then

TzD(H) = {(v, r) ∈ TxH × R : dxh(v) = 0} = Tx∂H × R

and dzψ(v, r) = (v, r) because ρ|∂H = id∂H . So dzψ is an isomorphism also in
this case.

(4) Let Z be an irreducible component of Sing`(Y ) such that Z ∩ ∂H 6= ∅,
Z 6⊂ ∂H and ` ≥ 0. Then

ψ(Z ∩ U ∩H) = {(y, t) ∈ (Z ∩ ∂H)× R : 0 ≤ t <
√
ε(y)}.

By Proposition 5.1.2 we have ρ(Z ∩ U) = Z ∩ ∂H. Thus,

ψ(Z ∩ U ∩H) ⊂ {(y, t) ∈ (Z ∩ ∂H)× R : 0 ≤ t <
√
ε(y)}.

To prove that the previous inclusion is in fact an equality it is enough to proceed
similarly to the end of the proof of Proposition 5.1.3.

Step 3. Let a : ∂H → R be a strictly positive Nash function such that a < ε.
For ε = ±, define

H• := H \ ϕ−1

({
(y, s) ∈ ∂H × R : |s| < a(y)

4

})
⊂ H \ U,

H•ε := Hε \ ψ−1

({
(y, s) ∈ ∂H × R : |s| <

√
a(y)

2

})
⊂ Hε \ V.

The restriction ωaε := π|H•ε : H•ε → H• is a Nash diffeomorphism for ε = ±.

Indeed ωaε is clearly injective. Let x ∈ H•. As x ∈ Int(H), we have h(x) > 0
and write t := ε

√
h(x). It holds that (x, t) ∈ D(H) and π(x, t) = x. We want

to check that (x, t) ∈ H•ε . If x 6∈ U , then (x, t) ∈ Hε \ V ⊂ H•ε . If x ∈ U , then
ψ(x, t) = (ρ(x), t). As x ∈ H•, it holds

a(ρ(y))

4
≤ h(x), so

√
a(ρ(y))

2
≤
√
h(x) = εt.

Consequently, (x, t) ∈ H•ε and ωaε is surjective. In addition, by Proposition
5.1.8(i) dzωaε = dzπ is an isomorphism for each z ∈ H•ε ⊂ D(H) ∩ {εt > 0}.
Consequently ωaε is a Nash diffeomorphism.

Step 4. We want to construct now a semi-algebraic embedding φa : M → D(H)
of class C2k−1, for k ≥ 1 arbitrarily large. Substitute M by H ∪ U and define

Fa : ∂H × R→ ∂H × R, (y, s) 7→


(y, s) if s < 0,

(y, fa(y)(s)) if 0 ≤ s ≤ a(y),

(y,
√
s) if a(y) < s,
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5.1. Folding boundaries to construct Nash manifolds with corners.

where fa(y) is the C2k semi-algebraic function introduced in Lemma 5.1.9 and
we choose k large enough. Denote

U ′ := ϕ(U) = {(y, s) ∈ ∂H × R : |s| < ε(y)},

V ′ = ψ(V ) = {(y, t) ∈ ∂H × R : |t| <
√
ε(y)} (already introduced in Step 2).

The open semi-algebraic set Fa(U ′) is contained in V ′, because if −ε(y) <
−s < 0, then −

√
ε(y) < −

√
s < −s < 0 (recall that 0 < ε(y) < 1) and

0 ≤ fa(y)(s) ≤
√
s if 0 ≤ s ≤ a(y) ≤ 1.

The map Fa is a S2k−1 diffeomorphism because fa(y) : [0, a(y)]→ [0,
√
a(y)]

is by Lemma 5.1.9 a S2k diffeomorphism such that the Taylor polynomial of
degree 2k at t = 0 is t and the Taylor polynomial of fa of degree 2k − 1 at
t = a(y) is that of

√
t.

Define

φa : M → D(H), x 7→

{
ω−1
a+(x) if x ∈M \ U = H \ U ⊂ H•,

(ψ−1 ◦ Fa ◦ ϕ)(x) if x ∈ U .

It holds that φa is a S2k−1 diffeomorphism onto its image φa(M), whose S2k−1

inverse is

φ−1
a : φa(M)→M, x 7→

{
ωa+(y) if y ∈ φa(M) \ V ⊂ H•+,

(ϕ−1 ◦ F−1
a ◦ ψ)(y) if y ∈ V .

In addition, it satisfies:

� φa(H) = H+ and φa|∂H = id∂H .

� φa(M) is an open semi-algebraic subset of D(H), because D(H) \ H•
is an open semi-algebraic subset of φa(H) = H+, φ|U : U → U ′ and
ψV : V → V ′ are Nash diffeomorphisms and Fa(U ′) ⊂ V ′ is an open
semi-algebraic set.

� φa(Yi) ⊂ D(Yi ∩H) = D(H) ∩ (Yi × R).

It only remains to show that if a is small enough, then φa|H is close to (π|H+)−1.

Observe that π′ := ψ◦π|H+
◦ϕ−1(y, s) = (y,

√
s). Let η : M → R be a strictly

positive continuous semi-algebraic function and let us choose a to guarantee that
‖φa|H−(π|H+)−1‖ < η|H . In fact, as ψ,ϕ are Nash diffeomorphisms, it is enough
to check: If b : ϕ(U) → R is a strictly positive semi-algebraic function, there
exists a strictly positive semi-algebraic function a : ∂H → R such that a < ε
and ‖Fa|ϕ(U) − π′‖ < b.

As Fa coincides with π′ outside {(y, s) ∈ ∂H × R : s ∈ [0, ε(y))}, we will
find a < 3

4ε < 1. Let us work on K := {(y, s) ∈ ∂H × R : s ∈ [0, 3
4ε(y)]}. The

projection π1 : K → ∂H is open, closed and surjective. The semi-algebraic map
π1 is surjective because ∂H × {0} ⊂ K. Let us show that it is open.

Let A ⊂ K be an open set and let y0 ∈ π1(A). Let s0 ∈ [0, 3
4ε(y0)] be such

that (y0, s0) ∈ A. As A is open, there exists ξ > 0 and B ⊂ ∂H open such
that y0 ∈ B and (B × [s0 − ξ, s0 + ξ]) ∩ K ⊂ A. In particular, (y0, s) ∈ A
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5. Folding Nash manifolds

and π1(y0, s) = y0 for each s ∈ [s0 − ξ, 3
4ε(y0)]. Changing s0 by s0 − ξ we

may assume s0 ∈ [0, 3
4ε(y0)]. Let ξ′ be such that s0 + ξ′ < 3

4ε(y0). As ε is
continuous and s0 + ξ′ < 3

4ε(y0), we may assume that 3
4ε(B) ⊂ [s0 + ξ′,+∞).

Thus, B× (s0− ξ′, s0 + ξ′) ⊂ K and A∩ (B× (s0− ξ′, s0 + ξ′)) ⊂ K is an open
subset of ∂H × (s0 − ξ′, s0 + ξ′).

Let us show that π1 is in fact proper. Let C ⊂ ∂H be a compact set and let
λ := max 3

4ε|C . Then π−1
1 (C) ⊂ C × [0, λ], which is a compact set, so π−1(C)

is also compact and π1 is in particular closed.

By [FG4, Const.3.1] the function

a : ∂H → R, y 7→ 1

2
min

{
b(y, s)2 : s ∈

[
0,

3

4
ε(y)

]}
is strictly positive, continuous and semi-algebraic. As the last component of Fa
is strictly increasing on [0, a(y)] and fa(a(y)) =

√
a(y), we have

‖Fa(y, s)− (y,
√
s)‖

=

{
0 < b(y, s) if a(y) ≤ s ≤ 3

4
ε(y),

|fa(s)−
√
s| =

√
s− fa(s) <

√
s <

√
a(y) ≤ b(y, s) if 0 ≤ s < a(y).

In addition, if −a(y) < s < 0,

‖Fa(y, s)−(ψ◦ρ◦ϕ−1)(y, s)‖ = ‖(y, s)−(y, 0)‖ = −s < a(y) <
√
a(y) ≤ b(y, s).

We have used that a < 3
4ε(y) < 1.

Step 5. Let us see now how to obtain the desired Nash embedding. Recall
that Y1, . . . , Yr are the irreducible components of Y that meet ∂H but are not
contained in ∂H. Consider the Nash normal-crossings divisor

Y :=

r⋃
i=1

Yi ⊂M.

Let Yr+1, . . . , Ys be the irreducible components of Y that do not meet ∂H and
recall that U ∩

⋃s
j=r+1 Yj = ∅, so

φa|⋃s
j=r+1 Yj

= (π|H+)−1|⋃s
j=r+1 Yj

.

By [BFR, Thm.1.6, Thm 1.7], up to take k big enough, we can approximate the

restriction φa|Y : Y → D(H) by a Nash map φ̂ : Y → D(H) such that

φ̂|∂H∪⋃sj=r+1 Yj
= (π|H+)−1|∂H∪⋃sj=r+1 Yj

and φ̂|Y : Y → D(H) satisfies φ̂(Yi) ⊂ D(Yi ∩H). By [BFR, Prop.8.2] we can

extend φ̂ to a global Nash map φ : M → D(H), that is, up to take k big enough,
close to φa in the C1 semi-algebraic topology. Thus by [Sh, II.1.7] the map φ is
a Nash embedding.

Step 6. We show: There exists an open semi-algebraic neighbourhood W ⊂M
of ∂H such that φ|Cl(W )∪H : Cl(W )∪H → D(H) is proper. Once this is done we
conclude as it is straightforward to see that, up to take a smaller semi-algebraic
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5.1. Folding boundaries to construct Nash manifolds with corners.

function a > 0 if necessary, the Nash embedding φ : M → D(H) defined in Step
5 satisfies all the other required properties.

As φ(M) is open in D(H), the set C := D(H) \ φ(M) is a closed subset of
D(H) that does not intersect ∂H. Let V be an open semi-algebraic neighbour-
hood of ∂H in φ(M) such that Cl(V ) ∩ C = ∅. The set W := φ−1(V ) is an
open semi-algebraic neighbourhood of ∂H in M such that π(Cl(W )) = Cl(V )
because φ : M → φ(M) is a semi-algebraic homeomorphism. The restriction
φ|Cl(W )∪H : Cl(W ) ∪ H → D(H) satisfies φ(Cl(W ) ∪ H) = Cl(V ) ∪ H+ be-
cause φ(Cl(W )) = Cl(V ) and φ(H) = H+. As Cl(V ) ∪H+ is closed in D(H),
if K ⊂ D(H) is compact then the set K ∩ (Cl(V ) ∪ H+) is compact. The
map φ|Cl(W )∪H : Cl(W ) ∪ H → D(H) is a semi-algebraic homeomorphism, so
φ−1(K ∩ (Cl(V ) ∪ H+)) is a compact set. We conclude that the restriction
φ|Cl(W )∪H : Cl(W ) ∪H → D(H) is proper, as required.

As an immediate consequence of this embedding theorem, we have the fol-
lowing:

Corollary 5.1.11. The composition f := π ◦ φ : M → H is a Nash map with
the following properties:

(i) f(Yi) ⊂ Yi for i = 1, . . . , r.

(ii) f |H is a semi-algebraic homeomorphism close to idH . Moreover f |Int(H)

is a Nash diffeomorphism and f |∂H = id∂H .

(iii) f |M\H : M \H → H is a Nash embedding close to ρ|M\H .

(iv) At each point x ∈ ∂H the map f has a local presentation of the type

(y1, . . . , yd) 7→ (y2
1 , y2, . . . , yd).

(v) There exists an open semi-algebraic neighbourhood V ⊂ M of ∂H, such
that f |Cl(V )∪H is a proper Nash map.

Proof. Statements (i), (ii) and (iii) follow from Theorem 5.1.10, whereas state-
ment (iv) is a consequence of Proposition 5.1.8(iii). To prove (v) we use that π
is proper (see Proposition 5.1.8(v)) and that φ is proper on Cl(V ) ∪ H where
V ⊂M is a small semi-algebraic neighbourhood of ∂H in M .

5.1.6. Folding all the boundary components. Now we have all the ingredi-
ents to prove the main result of this chapter. We want to ‘fold’ a (small enough)
Nash envelope M of Q to construct Q from M . That is, we want to construct
a surjective Nash map f : M → Q close to the identity when restricted to Q

and with ‘nice’ properties. We start with a technical lemma to construct local
models:

Lemma 5.1.12. Consider the Nash map

ϕ : Rd :→ Rd, (x1, . . . , xd) 7→ (x2
1, x2, . . . , xd)

and let ψ1, ψ2 : Rd → Rd be Nash diffeomorphisms such that

ψi({xj = 0}) = {xj = 0},
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5. Folding Nash manifolds

for j = 1, . . . , s and i = 1, 2. Then there exist Nash functions fj : Rd → R each
one strictly positive around {xj = 0} and a Nash map g : Rd → Rd−s such that
g|{x1=0,...,xs=0} : {x1 = 0, . . . , xs = 0} → Rd−s is a Nash diffeomorphism and
ψ2 ◦ ϕ ◦ ψ1 = ((x1f1)2, x2f2, . . . , xsfs, g).

Proof. As ψi({x1 = 0}) = {x1 = 0} and ψi is a Nash diffeomorphism, then
ψi|{x1=0,...,xs=0} : {x1 = 0, . . . , xs = 0} → {x1 = 0, . . . , xs = 0} is a Nash
diffeomorphism. Thus

ψ2 ◦ ϕ ◦ ψ1|{x1=0,...,xs=0} : {x1 = 0, . . . , xs = 0} → {x1 = 0, . . . , xs = 0}

is a Nash diffeomorphism. Let π : Rd → Rd−s, (x1, . . . , xn) → (xs+1, . . . , xn)
and let g := π ◦ ψ2 ◦ ϕ ◦ ψ1. We have

g|{x1=0,...,xs=0} : {x1 = 0, . . . , xs = 0} → Rd−s

is a Nash diffeomorphism and ψ2◦ϕ◦ψ1 = (g1, . . . , gs, g) for some Nash functions
gi : Rd → R. As ψi({xj = 0}) = {xj = 0}, its jth component ψij is divisible
by xj thus, there exists a Nash function hij : Rd → R that is strictly positive
around {xj = 0} such that ψij = xjhij for i = 1, 2 and j = 1, . . . , s. Thus,

ψ2 ◦ ϕ ◦ ψ1 =

(ψ2
11h21(ψ2

11, ψ12, . . . , ψ1d), ψ12h22(ψ2
11, ψ12, . . . , ψ1d), · · · , ψ1sh2s(ψ

2
11, ψ12, . . . , ψ1d), g)

= ((x1h11)2h21(ψ2
11, ψ12, . . . , ψ1d), x2h12h22(ψ2

11, ψ12, . . . , ψ1d), . . .

. . . , xsh1sh2s(ψ
2
11, ψ12, . . . , ψ1d), g).

It is enough to take f1 := h11

√
h21(ψ2

11, ψ12, . . . , ψ1d) and

fj := h1jh2j(ψ
2
11, ψ12, . . . , ψ1d)

for j = 2, . . . , s.

Theorem 5.1.13 (Folding Nash manifolds). Let Q ⊂ Rn be a d-dimensional
Nash manifold with corners. Then, there exist

(i) A d-dimensional Nash manifold M ⊂ Rn that contains Q as a closed
subset.

(ii) A Nash normal-crossings divisor Y ⊂M that is the smallest Nash subset
of M that contains ∂Q and satisfies Q ∩ Y = ∂Q.

(iii) A Nash map f : M → Q such that f |Q : Q → Q is a semi-algebraic
homeomorphism close to the identity map and f |Int(Q) : Int(Q) → Int(Q)
is a Nash diffeomorphism.

In addition, for each x ∈ ∂Q there exist open semi-algebraic neighbourhoods
U, V ⊂M of x equipped with Nash diffeomorphisms ϕ : U → Rd and ψ : V → Rd
and 1 ≤ s ≤ d such that

ψ ◦ f ◦ ϕ−1 : Rd → Rd, (x1, . . . , xd) 7→ (x2
1, . . . , x

2
s, xs+1, . . . , xd).
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5.1. Folding boundaries to construct Nash manifolds with corners.

Proof. Let M be a Nash envelope of Q and let Y1, . . . , Y` be the irreducible
components of the Nash closure Y of ∂Q in M (see Section 5.1.3). By Lemma
5.1.4 there exist, after shrinkingM if necessary, Nash equations hi : M → R of Yi
such that dxhi : TxM → R is surjective for each x ∈ Yi and Hi := h−1

i ([0,+∞))
is a Nash manifold with boundary whose boundary is Yi for each i = 1, . . . , `. By
Corollary 5.1.11 we have for each index i a proper Nash map fi : Cl(M)→ Hi

such that:

(i) fi(Yj) ⊂ Yj for j = 1, . . . , ` and fi|Yi = idYi ,

(ii) fi|Hi : Hi → Hi is a semi-algebraic homeomorphism close to the identity
map, whose restriction fi|Int(Hi) : Int(Hi)→ Int(Hi) is a Nash diffeomor-
phism and fi|∂Hi = id∂Hi ,

(iii) fi|M\Hi : M \ Hi → Int(Hi) is a semi-algebraic embedding close to
ρi|M\Hi : M \Hi → ∂Hi,

(iv) fi has local representations (y1, . . . , yd) 7→ (y2
1 , y2, . . . , yd) at each point

x ∈ Yi.

Let {Ck}k be the connected components of M \Y such that Cl(Ck)∩Hi = ∅
for some i = 1, . . . , `. As Q = H1 ∩ . . . ∩H`, we deduce that M \

⋃
k=1 Cl(Ck)

is an open semi-algebraic neighbourhood of Q in M . Let us substitute M by
M ′ := M \

⋃
k Cl(Ck) and Y by Y ∩ M ′. Observe that now the connected

components of M \ Y satisfy Cl(C) ∩Hi 6= ∅ for each i = 1, . . . , `.

Consider the proper Nash map f := f` ◦ · · · ◦ f1 : Cl(M) → Cl(M). Let us
check that f satisfies the following properties:

(1) f(Yi) ⊂ Yi for each i = 1, . . . , `.

(2) f |Q : Q→ Q is a semi-algebraic homeomorphism close to the identity map,
whose restriction f |Int(Q) : Int(Q)→ Int(Q) is a Nash diffeomorphism,

(3) f(Cl(M)) = Q,

(4) f has local representations (y1, . . . , yd) 7→ (y2
1 , . . . , y

2
s , ys+1, . . . , yd) at each

point x ∈ ∂Q. The integer s ≥ 1 depends on the point x and corresponds
to the number of irreducible components of Y that passes through x.

Property (1) follows straightforwardly from (i). To prove (2) we show first:
fi(Q) = Q and fi(Int(Q)) = Int(Q) for i = 1, . . . , `. Once this is done, as
Q = H1 ∩ · · · ∩ H`, fi|Hi : Hi → Hi is a semi-algebraic homomorphism close
to the identity map for each i and fi|Int(Hi) : Int(Hi) → Int(Hi) is a Nash
diffeomorphism, we deduce that f |Q : Q→ Q is a semi-algebraic homeomorphism
close to the identity map and its restriction f |Int(Q) : Int(Q)→ Int(Q) is a Nash
diffeomorphism.

As fi is proper and Q = Cl(Int(Q)), we have

fi(Q) = fi(Cl(Int(Q))) = Cl(fi(Int(Q)))

so it is enough to prove fi(Int(Q)) = Int(Q).
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5. Folding Nash manifolds

As the map fi|Int(Hi) : Int(Hi) → Int(Hi) is a Nash diffeomorphism and
Int(Q) ⊂ Int(Hi), we have fi(Int(Q)) ⊂ Int(Hi). As fi(Yj) ⊂ Yj , we deduce
fi(Yj ∩ Int(Hi)) is a closed Nash submanifold of the Nash manifold Yj ∩ Int(Hi)
and both have the same dimension. Consequently, the image of each connected
component of fi(Yj ∩ Int(Hi)) is a connected component of Yj ∩ Int(Hi). As fi
is close to the identity map fi(D) = D for each connected component of Yj ∩
Int(Hi). Thus, fi(Yj∩Int(Hi)) = Yj∩Int(Hi) and fi(Y ∩Int(Hi)) = Y ∩Int(Hi).
Observe that Int(Q) is a union of connected components of Int(Hi) \ Y because
Q ∩ Y = ∂Q. Again as fi|Int(Hi) : Int(Hi)→ Int(Hi) is a Nash diffeomorphism,
fi(Int(Q)) is also a union of connected components of Int(Hi) \ Y . As fi|Int(Q)

is close to the identity map, fi(C) = C for each connected component of Int(Q).
In particular, fi(Int(Q)) = Int(Q), as claimed.

Next, we prove (3). Let us show: fi(Hj) ⊂ Hj for each i, j. Once this is
proved, we have fi(Hj) ⊂ Hi ∩Hj for each i, j (because fi(Cl(M)) ⊂ Hi) and:

f(Cl(M)) = (f` ◦ · · · ◦ f1)(Cl(M)) = (f` ◦ · · · ◦ f2)(H1)

⊂ (f` ◦ · · · ◦ f3)(H1 ∩H2) ⊂ · · · ⊂ H1 ∩ · · · ∩H` = Q,

as f(Q) = Q, we conclude f(Cl(M)) = Q.

For simplicity we prove f2(H1) ⊂ H1. As f2 is continuous, it is enough to
prove: f2(Int(H1 ∩H2)) ⊂ Int(H1 ∩H2) and f2(Int(H1) \H2) ⊂ Int(H1). For
the first part, it is enough to consider the Nash manifold with corners H1 ∩H2

and to proceed analogously as above with fi and Q.

As f2|M\H2
: M \H2 → Int(H2) is a Nash embedding and f2(Y1) ⊂ Y1, we

deduce that each connected component C of Int(H1) \H2 is mapped under f2

into a connected component of Int(H2) \ Y1. Let C be a connected component
of Int(H1) \ H2 ⊂ M \ (Y1 ∪ Y2). As M \ Y2 = (M \ H2) t Int(H2) and
Int(H1) = H1\Y1, we deduce that Int(H1)\H2 is open and closed inM\(Y1∪Y2),
so C is a connected component of M \ (Y1 ∪ Y2).

If Cl(C) ∩ Y2 6= ∅, we pick a point x ∈ Cl(C) ∩ (Y2 \ Y1). This is possible
because C is a connected component ofM\(Y1∪Y2) and Y1∪Y2 is a Nash normal-
crossings divisor. Let V be a semi-algebraic neighbourhood of x in M with
compact closure K that does not meet Y1. As x ∈ Cl(C) and C ⊂ Int(H1), we
deduce V ⊂ Int(H1). As ρ2(x) = x ∈ Int(H1), and f2|M\H2

: M \H2 → Int(H2)
is close to ρ2|M\H2

: M \H2 → ∂H2, we may assume f2(K) ⊂ Int(H1). Thus,
f2(C) meets Int(H1). As f2(C) is a connected component of Int(H2) \H1 and
Int(H1) ∩ Int(H2) is open and closed in Int(H2) \ Y1, we deduce that

f2(C) ⊂ Int(H1) ∩ Int(H2) ⊂ Int(H1).

Suppose now Cl(C) ∩ Y2 = ∅. As C ∩H2 = ∅, we deduce that

Cl(C) ∩H2 = Cl(C) ∩ (Y2 ∪ Int(H2)) = Cl(C) ∩ Int(H2)

= Cl(C ∩ Int(H2)) ∩ Int(H2) ⊂ Cl(C ∩H2) = ∅.

Observe that C is the closure in M \ (Y1 ∪ Y2) of some connected components
of M \ Y , which is a contradiction because by construction all the connected
components of M \ Y meet H2. Thus Cl(C) ∩ Y2 6= ∅.
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5.1. Folding boundaries to construct Nash manifolds with corners.

So, it holds f2(C) ⊂ Int(H1) for each connected component C of Int(H1)\H2.
Consequently, f2(Int(H1) \H2) ⊂ Int(H1).

Finally, we prove (4). Pick a point x ∈ ∂Q and assume that x belongs exactly
to Y1, . . . , Ys. Recall that the analytic closure of ∂Qx is Y1,x ∪ · · · ∪ Ys,x and
there exists an open semi-algebraic neighbourhood U ⊂ M of x equipped with
a Nash diffeomorphism u : U → Rd such that u(x) = 0, u(Yj ∩ U) = {xj = 0}
and u(Q ∩ U) = {x1 ≥ 0, . . . , xs ≥ 0}.

Observe that η := u◦f ◦u−1 = η`◦· · ·◦η1 where ηk := u◦fk ◦u−1 : Rd → Rd
is either a Nash diffeomorphism or a Nash map that has local representations
(y1, . . . , yd) 7→ (y2

1 , y2, . . . , yd) at each point x ∈ Yk. We may assume that
this local representations preserve the local representations of Y1, . . . , Ys. Note
that Y1, . . . , Ys correspond to coordinates hyperplanes in these coordinates. By
Lemma 5.1.12 we may assume that η = σs ◦ · · · ◦ σ1 is a composition of Nash
maps of the type σm : Rd → Rd,

(x1, . . . , xd) 7→ (x1f1m, . . . , xm−1fm−1,m, x
2
mf

2
mm, xm+1fm+1,m, . . . , xsfsm, gm)

where fjm : Rd → R is a Nash function that does not vanish around {xj = 0}
and gm : Rd → Rd−s satisfies gm|{x1=0,...,xs=0} : {x1 = 0, . . . , xs = 0} → Rd−s
is a Nash diffeomorphism. Thus, there exist Nash functions fj : Rd → R
that does not vanish around {xj = 0} and a Nash map g : Rd → Rd−s such
that g|{x1=0,...,xs=0} : {x1 = 0, . . . , xs = 0} → Rd−s is a Nash diffeomorphism
satisfying

η : Rd → Rd, (x1, . . . , xd) 7→ (x2
1f

2
1 , . . . , x

2
sf

2
s , g).

Observe that the map

ψ : Rd → Rd, (x1, . . . , xd) 7→ (x1f1, . . . , xsfs, g)

is a Nash diffeomorphism around the origin, because the determinant of its
Jacobian matrix

Jψ(x) =


f1(x) 0 0

. . .
...

0 fs(x) 0
0 . . . 0 Jg(x)


does not vanish at the origin. Thus, after shrinking the open semi-algebraic
neighbourhood U ⊂M of x we may assume that there exists a Nash diffeomor-
phism φ : Rd → Rd such that ψ ◦ φ = idRd . As η = θ ◦ ψ, where

θ : Rd → Rd, (x1, . . . , xd) 7→ (x2
1, · · · , x2

s, xs+1, . . . , xd),

we deduce that η ◦ φ = θ, so f has local representation

(y1, . . . , yd) 7→ (y2
1 , . . . , y

2
s , ys+1, . . . , yd)

at x ∈ ∂Q. Recall that s ≥ 1 corresponds to the number of irreducible compo-
nents of Y that passes through x, as required.
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5. Folding Nash manifolds

5.1.7. A ‘canonical’ folding. Let Q ⊂ Rn be a Nash manifold with corners
and let M be a Nash envelope of Q such that the Nash closure Y of ∂Q is a Nash
normal-crossings divisor of M and Q∩Y = ∂Q. Let Y1, . . . , Y` be the irreducible
components of Y and hi : M → R a Nash equations of Yi for i = 1, . . . , ` as in
Lemma 5.1.4. We can consider the following two constructions.

Doubling after doubling. By Lemma 5.1.4 the sets Hi := h−1
i ([0,+∞))

are Nash manifolds with boundary Yi, that contain Q as a closed subset. Write
(see Corollary 5.1.6):

Q = H1 ∩ . . . ∩H` = {x ∈M : h1(x) ≥ 0, . . . , h`(x) ≥ 0} ⊂M ⊂ Rn,

and let (D(H1), π1) be the Nash double of H1. Let

Q1 : = π−1
1 (H2) ∩ . . . ∩ π−1

1 (H`)

= {(x, t1) ∈M × R : t21 − h1(x) = 0, h2(x) ≥ 0, . . . , h`(x) ≥ 0} ⊂ D(H1) ⊂ Rn+1,

which is a Nash manifolds with corners. It is described as intersection of `− 1
Nash manifolds with boundary, which are π−1

1 (H2), . . . , π−1
1 (H`). By Theorem

5.1.10 there exists a Nash embedding φ1 : M → D(H1) such that φ1(H1) = H1+

and M1 := φ1(M) is an open semi-algebraic subset of D(H1) that contains
Q1 ∩M1 as a closed subset. In addition φ1|Y1

= idY1
if we identify Y1 with

Y1×{0}, φ1(Yi) ⊂ D(Yi ∩H1) for i = 2, . . . , ` and φ1|H1
: H1 → H1+ is close to

(π1|H1+
)−1. We claim: φ1(Q) = Q1 ∩H1+.

To that end we prove that φ1(H1 ∩ Hi) = H1+ ∩ π−1
1 (Hi) for i = 2, . . . , `.

As φ1 : M →M1 is a Nash diffeomorphism it is enough to check

φ1(Int(H1) ∩ Int(Hi)) = Int(H1+) ∩ π−1
1 (Int(Hi)).

Observe that Int(H1)∩Int(Hi) is a union of connected component ofM\(Y1∪Y2).
In addition φ1(Y1) = Y1 × {0} and φ1(Yi) ⊂ D(Yi ∩H1), so

φ1(Yi ∩ Int(H1)) ⊂ D(Yi ∩Hi) ∩ Int(Hi+).

As φ1|Int(H1) : Int(H1) → Int(H1+) is a Nash diffeomorphism we deduce that
φ1(Yi ∩ Int(H1)) is a closed Nash submanifold of the Nash manifold D(Yi ∩
H1)∩ Int(H1+) of the same dimension. As φ1 is close to (π1|H1,+)−1, both Nash
manifolds have the same number of connected components and

φ1(Y1 ∩ Int(H1)) = D(Yi ∩H1) ∩ Int(H1+).

Note that Int(H1+)∩π−1
1 (Hi) is a union of connected components of Int(H1+)\

D(Yi ∩H1). As π1 is close to (π1|H1+)−1 we conclude that φ1 establish a bijec-
tion between the connected components of Int(H1)∩ Int(Hi) and the connected
components of Int(H1+) ∩ π−1

1 (Hi), so that

φ1(Int(H1) ∩ Int(Hi)) = Int(H1+) ∩ π−1
1 (Hi).

At this point we have the Nash manifold N1 := D(H1), the Nash manifolds
with boundary H1+ and H1

i := π−1
1 (Hi) for i = 2, . . . , ` whose boundaries are

respectively Y1 = ∂H1, D(Y2 ∩H1), . . . , D(Y` ∩H1). Recall that

Y 1 := Y1 ∪D(Y2 ∩H1) ∪ . . . ∪D(Y` ∩H1)
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5.1. Folding boundaries to construct Nash manifolds with corners.

is a Nash normal-crossings divisor of D(H1) and that

Q
1 : = Q1 ∩H1+ = H1+ ∩H1

2 ∩ . . . ∩H1
`

= {(x, t1) ∈M × R : t21 − h1(x) = 0, t1 ≥ 0, h2(x) ≥ 0, . . . , h`(x) ≥ 0} ⊂ D(H1),

is a Nash manifold with corners. The Nash closure of ∂Q1 is Y 1 and M1 =
φ1(M) is an open semi-algebraic neighbourhood of Q1 in D(H1). In addition
φ1(Hi∩H1) = H1

i ∩H1+. Let us check: The Nash map h1
2 : D(H1)→ R defined

as h1
2(x, t1) := h2(x) is a Nash equation of D(Y2 ∩H1) in D(H1) such that

d(x,t1)h
1
2 : T(x,t1)D(H1)→ R,

is surjective.

It is clear that

D(Y2 ∩H1) = {(x, t1) ∈M × R : t21 − h1(x) = 0, h2(x) = 0}
= {(x, t1) ∈ Y2 × R : t21 − h1(x) = 0},

so h1
2 = 0 is a Nash equation of D(Y2 ∩ H1) in D(H1). The tangent space of

D(H1) at a point (x, t1) is

T(x,t1)D(H1) = {(v, s) ∈ TxM × R : dxh1(v)− 2t1s = 0}

and d(x,t1)h
1
2(v, s) = dxh2(v). Let us check that it is surjective.

Case 1: t1 6= 0. As T(x,t1)D(H1) = {(v, s) ∈ TxM ×R : dxh1(v)− 2t1s = 0} we

pick a vector v ∈ TxM such that dxh2(v) 6= 0 and
(
v, dxh1(v)

2t1

)
∈ T(x,t1)D(H1).

We have,

d(x,t1)h
1
2

(
v,
dxh1(v)

2t1

)
= dxh2(v) 6= 0.

Case 2: t1 = 0. We have T(x,0)D(H1) = {(v, s) ∈ TxM ×R : dxh1(v) = 0}. As
Y1 ∪ Y2 is a normal-crossings divisor, we have that dxh1 and dxh2 are linearly
independent, so there exists v ∈ TxM such that dxh2(v) 6= 0 and dxh1(v) = 0.
Pick (v, 0) ∈ T(x,0)D(H1) such that

d(x,t1)h
1
2(v, 0) = dxh

1
2(v) 6= 0.

Thus, in both cases d(x,t1)h
1
2 : T(x,t1)D(H1)→ R is surjective and h1

2 satisfies
the required properties.

Observe that the same happens with h1
3, . . . , h

1
` . In addition,

h1
1 : D(H1)→ R, (x, t) 7→ t

is a Nash equation of Y1 × {0} in D(H1). Observe that

T(x,0)D(H1) = {(v, s) ∈ TxM × R : dxh1(v) = 0} = TxY1

and d(x,t)h
1
1 : TxY1 × R→ R, (v, s) 7→ s is surjective.
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5. Folding Nash manifolds

We construct next the double of H1
2 (with respect to h1

2) which is a Nash
manifold with boundary Y 1

2 = D(Y2∩H1) contained in D(H1) as a closed subset.
Thus, at this point we have the Nash manifold

N2 := D(H1
2 ) = {(x, t1, t2) ∈ (M × R)× R : t21 − h1(x) = 0, t22 − h1

2(x, t1) = 0}
= {(x, t1, t2) ∈M × R2 : t21 − h1(x) = 0, t22 − h2(x) = 0}

and the projection π2 : D(H1
2 ) → H1

2 . We have also the Nash manifolds with
boundary

H2
1 := π−1

2 (H1+), H2
3 := π−1

2 (H1
3 ), . . . ,H2

` := π−1
2 (H1

` )

and H2
2 := H1

2+. Consider also the Nash manifold with corners

Q2 := H2
1 ∩ . . . ∩H2

` .

The boundary of H1
2 is Y 1

2 × {0} and the boundary of H2
i for i = 1, 3, . . . , ` is

Y 2
i := D(Y 1

i ∩ H1
2 ) where Y 1

1 := Y1 × {0}. By theorem 5.1.10 there exists a
Nash embedding φ2 : M1 → D(H1

2 ) that maps the Nash manifold with corners
Q1 = H1

1 ∩ . . . ∩H1
` onto the Nash manifold with corners Q2 = H2

1 ∩ . . . ∩H2
`

(where H2
2 = H2+), see the claim above concerning φ1 : M → M1, that maps

Q onto Q1. Observe also that Y 2 := Y 2
1 ∪ . . . ∪ Y 2

` is a Nash normal-crossings
divisor of D(H1

2 ) and it is the Nash closure of ∂Q2 in N2 := D(H1
2 ). Note also

that
h2
i : N2 → R, (x, t1, t2) 7→ h1

i (x, t1)

is a Nash equation of Y 2
i fot i = 1, 3, . . . , ` such that

d(x,t1,t2)h
2
i : T(x,t1,t2)N

2 → R

is surjective for each (x, t1, t2) ∈ Y 2
i . In addition, h2

2 : N2 → R, (x, t1, t2) 7→ t2
is a Nash equation of Y 2

2 := Y 1
2 × {0} such that

d(x,t1,0)h
2
2 : T(x,t1,0)N

2 = T(x,t1)Y
1
2 × R→ R, (v, s1, s2) 7→ s2

is surjective. The proofs of all these facts are similar to the ones included in the
first step and the concrete details are left to the reader.

We proceed recursively with H3
3 , . . . ,H

`
` . In the last step, we have the Nash

manifold

N ` := D(H`−1
` ) = {(x, t) ∈M × R` : t21 − h1(x) = 0, . . . , t2` − h`(x) = 0}

the projection π` : D(H`−1
` ) → H`−1

` and the Nash manifolds with boundary

H`
i := π−1

` (H`−1
i ) for i = 1, . . . , ` − 1 and H`

` = H`−1
`+ . The boundary of H`

i is

Y `i := D(Y `−1
i ∩H`−1

` ) and Q` := H`
1∩ . . .∩H`

` is a Nash manifold with corners.

By Theorem 5.1.10 and proceeding similarly to the first step, there exists a
Nash embedding φ` : M`−1 → D(H`−1

` ) such that φ`(Q
`−1) = Q` and M ` =

φ`(M`−1) is an open semi-algebraic neighbourhood of Q` in N `.

Let Y `i := D(Y `−1
i ∩ H`−1

` ) for i = 1, . . . , ` − 1 and Y `` := Y `−1
` × {0}. It

holds that
h`i : N ` → R, (x, t) 7→ h`−1

i (x, t1, . . . , t`−1)
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5.1. Folding boundaries to construct Nash manifolds with corners.

is a Nash equation of Y `i in N ` such that d(x,t)h
`
i : T(x,t)N

` → R is surjective

for each (x, t) ∈ Y `i and i = 1, . . . , ` − 1. In addition, h`` : N ` → R, (x, t) 7→ t`
is a Nash equation of Y `` such that

d(x,t1,...,t`−1,0)h
`
` : T(x,t1,...,t`−1,0)N

` → R

is surjective. We have Y ` :=
⋃`
i=1 Y

`
i is the Nash closure of ∂Q` in N `.

Define

D(Q) := N ` = {(x, t) ∈ Q× R` : t21 − h1(x) = 0, . . . , t2` − h`(x) = 0}

and π := π` ◦ . . . ◦ π1 : D(Q) → Q. Define also gi : D(Q) → R, (x, t) 7→ ti,
which satisfies {gi = 0} = Y `i and d(x,t)gi : T(x,t)D(Q)→ R is surjective for each

(x, t) ∈ Yi and φ := φ` ◦ . . . ◦ φ1 : M → M `, which is a Nash diffeomorphism
that maps Q := {h1 ≥ 0, . . . , h` ≥ 0} onto

Q` = {(x, t) ∈M × R` : t21 − h1(x) = 0, . . . , t2` − h`(x) = 0, t1 ≥ 0, . . . , t` ≥ 0}
= {(x, t) ∈ D(Q)× R` : t1 ≥ 0, . . . , t` ≥ 0}.

In addition,

� D(Q) = {(x, t) ∈ M × R` : t21 − h1(x) = 0, . . . , t2` − h`(x) = 0}, which
only depends on Q and h1, . . . , h`, which are unique up to multiplication
by strictly positive Nash function on Q.

� π : D(Q)→ Q, (x, t) 7→ x.

� π|Q` : Q` → Q is a semi-algebraic homeomorphism.

� π|Int(Q`) : Int(Q`)→ Q is a Nash diffeomorphism.

Doubling everything together. Thus, we can ‘double’ all the irreducible
components of ∂Q at the same time. Let us check alternatively that D(Q) is a
Nash manifold. As

D(Q) = {(x, t) ∈M × R` : t21 − h1(x) = 0, . . . , t2` − h`(x) = 0} ⊂M × R`,

it is enough to check that D(Q) is smooth. Consider the Nash map

f : M × R` → R`, (x, t) 7→ (t21 − h1(x), . . . , t2` − h`(x)),

where t := (t1, . . . , t`) and note that D(Q) = f−1(0). Fixed a point (x, t) ∈ D(Q)
the differential of f at (x, t) is:

d(x,t)f : T(x,t)(M × R`) ≡ TxM × R` → R`,
(v, s) 7→ (2t1s1 − dxh1(v), . . . , 2t`s` − dxh`(v)),

where s := (s1, . . . , s`). If ti 6= 0 for each index i the differential is surjective
because

d(x,t)f

(
0,
s1

2t1
, . . . ,

s`
2t`

)
= (s1, . . . , s`)

for each s = (s1, . . . , s`) ∈ R`.
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5. Folding Nash manifolds

Assume now that there exist r ≥ 1 indices such that ti = 0. Up to reorder
the variables, we suppose that t1 = . . . = tr = 0 whereas tr+1 6= 0, . . . , t` 6= 0.
As Y is a Nash normal-crossings divisor, the tangent spaces

TxY1 = ker(dxh1), . . . , TxYr = ker(dxhr) ⊂ TxM

are in general position. By Lemma 5.1.4 the differentials

dxh1, . . . , dxhr : TxM → R,

are all surjective for each x ∈ Y1 ∩ . . . ∩ Yr. Note that h1(x) = . . . = hr(x) = 0
because (x, t) ∈ D(Q), so x ∈ Y1 ∩ . . . ∩ Yr. As {dxh1, . . . , dxhr} are linearly
independent for each index i = 1, . . . , r, there exists a vector vi ∈ TxM such
that dxhi(vi) = 1, whereas dxhj(vi) = 0 for j 6= i. Thus, also in this case the
differential d(x,t)f is surjective because given the vectors

s :=

(
0, . . . , 0,

sr+1 −
∑r
i=1 sidxhr+1(vi)

2tr+1
, . . . ,

s` −
∑r
i=1 sidxh`(vi)

2t`

)
∈ R`

v := −s1v1 − . . .− srvr ∈ TxM,

it holds d(x,t)f(v, s) = (s1, . . . , s`) for each s = (s1, . . . , s`) ∈ R`.

We deduce that 0 ∈ R` is a regular value for the Nash map f , so D(Q) is a
smooth Nash submanifold of M × R` of dimension d.

Observe that D(Q) depends only on Q and on the Nash functions h1, . . . , h`
that are unique up to multiplication by strictly positive Nash functions on M .
Observe that D(Q) is a Nash envelope of Q` = D(Q) ∩ {t1 ≥ 0, . . . , t` ≥ 0}. In
fact, if φ : Q→ Q` is a Nash diffeomorphism there exist a Nash envelopeM ′ ⊂M
of Q, a Nash envelope N ⊂ D(Q) of Q` and a unique Nash diffeomorphism
Φ : M ′ → N that extends φ to M ′ (see [FGR, Thm.1.3]). The uniqueness of Φ
follows from the identity principle.

Remark 5.1.14. The Nash manifold D(Q) does not depend on the order we do
the doublings with respect to the boundaries Y1, . . . , Yr, because at the end the
result is (D(Q), π) and

� D(Q) = {(x, t) ∈ Q× R` : t21 − h1(x) = 0, . . . , t2` − h`(x) = 0},

� π : D(Q)→ Q, (x, t) 7→ x,

� Q` = D(Q) ∩ {t1 ≥ 0, . . . , t` ≥ 0} is Nash diffeomorphic to Q.

We will see in the following sections some remarkable consequences of Theo-
rem 5.1.13 and the construction made in this section. Here we present a simple
example. It is well-known that the compact orientable surface of genus g admits
a Nash model. We show in the following example how to deduce straightfor-
wardly by our construction this fact.

Example 5.1.15. Let Pn ⊂ R2 be a convex polygon with n edges. As Pn is
convex, there exist polynomials h1, . . . , hn ∈ R[x, y] of degree 1 such that

Pn = {h1 ≥ 0, . . . , hn ≥ 0}.

146



5.1. Folding boundaries to construct Nash manifolds with corners.

Fix 2 + 1
2 (1 − (−1)n) ≤ s ≤ n and let J := {Jk}sk=1 be a partition of the set

{1, . . . , n} such that

Pn ∩ {hi = 0} ∩ {hj = 0} = ∅ (5.1.1)

for each i, j ∈ Jk with i 6= j. For each k = 1, . . . , s define the polynomial hJk :=∏
i∈Jk hi. As the partition J satisfies (5.1.1), it holds that Pn is a connected

component of the semialgebraic set {x ∈ R2 : hJ1(x) ≥ 0, . . . , hJs(x) ≥ 0}.
Thus,

Ds(Pn) := {(x, t) ∈ Pn × Rs : t21 − hJ1(x) = 0, . . . , t2s − hJs(x) = 0} ⊂ Rs+2

is a connected compact Nash surface, which is in addition a connected compo-
nent of the (maybe singular) algebraic set

Xs,n = {(x, t) ∈ R2 × Rs : t21 − hJ1(x) = 0, . . . , t2s − hJs(x) = 0} ⊂ Rs+2.

We claim: Ds(Pn) ⊂ Reg(Xs,n).

Pick (x, t) ∈ Ds(Pn) and consider the Jacobian matrix

Js,n(x, t) :=


2t1 0 · · · 0

∂hJ1
∂x1

(x)
∂hJ1
∂x2

(x)

0 2t2 · · · 0
∂hJ2
∂x1

(x)
∂hJ2
∂x2

(x)
...

...
. . .

...
...

...

0 0 · · · 2ts
∂hJs
∂x1

(x)
∂hJs
∂x2

(x)


has rank ≤ s. As (x, t) ∈ Ds(Pn), then x ∈ Pn and there exists at most two
indices k, ` such that x ∈ {hJk = 0, hJ` = 0}. If such is the case, the vectors

(
∂hJk
∂x1

(x),
∂hJk
∂x2

(x)) and (
∂hJ`
∂x1

(x),
∂hJ`
∂x2

(x)) are linearly independent. If there

exists only one index k such that x ∈ {hJk = 0}, the vector (
∂hJk
∂x1

(x),
∂hJk
∂x2

(x))

is non-zero because the partition J satisfies (5.1.1). As t2k − hJk(x) = 0 for
k = 1, . . . , s, the matrix Js,n(x, t) has rank s, so (x, t) ∈ Reg(Xs,n), as claimed.

As Ds(Pn) is obtained recursively by doubling orientable Nash manifolds
with boundary, Ds(Pn) is an orientable Nash surface. By the (smooth) clas-
sification of surfaces (see for instance [H, Ch.9]) Ds(Pn) is diffeomorphic to a
connected sum of g tori and the genus g completely characterize its diffeomor-
phism class.

For each ε := (ε1, . . . , εs) ∈ {−1, 1}s the set

Ds(Pn) ∩ {ε1t1 ≥ 0, . . . , εsts ≥ 0}

is Nash diffeomorphic to Pn. Thus, Ds(Pn) is obtained (topologically) by glue-
ing 2s copies of Pn, one for each choice of ε ∈ {−1, 1}s. The polygon Pn has
a (natural) structure of CW complex with n vertices, n edges and 1 face. This
CW complex structure induces a CW complex structure on Ds(Pn) with 2s−2n
vertices (because each vertex belongs exactly to 4 polygons of the CW complex),
2s−1n edges (because each edge belongs exactly to 2 polygons of the CW com-
plex) and 2s faces. We deduce that Ds(Pn) is diffeomorphic to the connected
sum of 2s−3(n − 4) + 1 tori, whenever the number 2s−3(n − 4) + 1 is a non-
negative integer. In particular, the compact orientable surface of genus g ≥ 1 is
diffeomorphic to the Nash surfaces D2(P2g+2) ⊂ R4 and D3(Pg+3) ⊂ R5. Note
that the genus g of the surface Ds(Pn) depends both on n and s (see Table 5.1).
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5. Folding Nash manifolds

s = 2 s = 3 s = 4 s = 5 s = 6 s = 7
n = 3 – 0 – – – –
n = 4 1 1 1 – – –
n = 5 – 2 3 5 – –
n = 6 2 3 5 9 17 –
n = 7 – 4 7 13 25 49

Table 5.1: The genus of the Nash surface Ds(Pn) for n ≤ 7.

5.2 Approximation for manifolds with corners

Approximation of classes of functions by sub-classes of nicer functions is an
important tool in many areas of mathematics. In particular, in geometry the
possibility of approximating a certain class of functions by a dense (with respect
to suitable topologies) sub-class with a better behaviour, allows (often) a deeper
and better understanding of many situations.

A celebrated example, with uncountable applications, is the Whitney’s ap-
proximation theorem [W] for continuous maps whose target space is a Cr sub-
manifold M of Rn, for r ∈ N∪{∞}. Whitney approximation theorem has been
extended in many directions, like the case of manifolds with boundary (using
partitions of unit and collars). Recently Fernando and Ghiloni [FGh2] proved
new results of approximation in Whitney’s style when the target space has sin-
gularities, under the hypothesis that it admits some ‘nice’ triangulations. For
example, as an application of their (much more general) results, it is possible to
prove that every continuous map between a locally compact set X ⊂ Rm and a
smooth manifold with corners (not necessarily divisorial corners) Q ⊂ Rn, can
be approximated by a smooth map.

There are several and relevant results on approximation also in the semi-
algebraic setting. Efoymson [Ef] showed that every continuous semi-algebraic
function can be approximated by a Nash function on Nash manifolds. Shiota
improved this result (see [Sh]) in many directions. He proved relative versions
and results with (a strong) control on the derivatives of the approximation.
Recently approximation techniques have been developed in the case where the
target space has singularities. In [BFR] Baro, Fernando and Ruiz obtained
results when the target space is a Nash set with monomial singularities (un-
der some regularity assumptions on the involved maps). In another direction,
Fernando and Ghiloni [FGh] proved results on differentiable approximation of
continuous semi-algebraic maps, when the target space admits ‘nice’ triangula-
tions. The techniques developed by Fernando and Ghiloni, make an essential use
of partitions of unity, thus their results do not extend to Nash approximation.

One of the main tools in approximation is the existence of (suitable) tubular
neighbourhood (together with the corresponding retractions). When the target
space has singularities, we cannot take advantage of tubular neighbourhoods
and retractions, as it is shown in the following example.

Example 5.2.1 ([FGh, 1.10]). There exists no C1 retractions from a neighbour-
hood U of X := {xy = 0} ⊂ R2 onto X. Suppose that ρ : U → X is a C1

retraction. As ρ is the identity on X, we have that d0ρ = idR2 . Thus, by the
implicit function theorem, ρ is a local C1 diffeomorphism at the origin, which is
a contradiction.
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5.2. Approximation for manifolds with corners

5.2.1. Nash approximation. When one wants to approximate continuous
semi-algebraic functions by Nash functions often technical difficulties arise. The
rigidity of the Nash class and their algebraic nature prevents us from using the
standard tools in approximation theory, such as partitions of unity, integration
of vector fields etc. When the target space has singularities, the lack of the ex-
istence of retractions complicates even more the situation. Consequently, when
we deal with Nash functions we have (often) to develop ad hoc techniques and
constructions.

Using Theorem 5.1.13 we are able to prove that Nash approximation is pos-
sible for proper semi-algebraic continuous maps when the target space is a Nash
manifold with corners.

Theorem 5.2.2 (Nash approximation). Let S ⊂ Rm be a locally compact semi-
algebraic set and let Q ⊂ Rn be a Nash manifold with corners. Let h : S→ Q be
a proper continuous semi-algebraic map. Then there exist Nash maps g : S→ Q

arbitrarily close to h with respect to the C0 semi-algebraic topology.

Proof. By [DK] there exist an open semi-algebraic neighbourhood U ⊂ Rm of
S (in which S is closed) and a semi-algebraic retraction ν : U → S. Consider
the continuous semi-algebraic function H := h ◦ ν : U → Q. Let M ⊂ Rn be a
d-dimensional Nash manifold that contains Q as a closed subset. By Theorem
5.1.13 there exists (after shrinking M if necessary) a Nash map f : M → Q

such that f |Q : Q→ Q is a semi-algebraic homeomorphism close to the identity
map and f |Int(Q) : Int(Q) → Int(Q) is a Nash diffeomorphism. Let ε0 : S → R
be a strictly positive continuous semi-algebraic function and let ε : U → R be
a strictly positive continuous semi-algebraic extension of ε0 to U . As the map
f∗ : S0(U,M) → S0(U,Q), H 7→ f ◦ H is continuous [Sh, II.1.5], there exists
δ : U → R such that if G ∈ S(U,M) and ‖G−H‖ < δ, then ‖f ◦G−f ◦H‖ < ε

2 .
As the map h∗ : S0(Q,Q) → S0(S,Q), ζ 7→ ζ ◦ h is continuous by [Sh, II.1.5],
because h is proper and f is close to idQ, we may assume that

‖h− f ◦ h‖ = ‖ idQ ◦h− f ◦ h‖ <
ε|S
2
.

Let G : U →M be a Nash map such that ‖G−H‖ < δ, so ‖f◦G−f◦H‖ < ε
2 .

As H|S = h, we deduce

‖f ◦G|S − h‖ ≤ ‖f ◦G|S − f ◦H|S‖+ ‖f ◦ h− h‖ < ε|S
2

+
ε|S
2

= ε|S = ε0,

as required.

When approximation results are achieved a natural question is whether it is
possible to approximate also homotopies.

Question 5.2.2. Let S ⊂ Rm be a semi-algebraic set and let Q ⊂ Rn be a Nash
manifold with corners. Given two Nash maps f, g : S → Q that are homotopic
through a continuous semi-algebraic homotopy F : S× [0, 1]→ Q, are they Nash
homotopic?

The previous question is open. The difficulty lies in the fact that, in order
to approximate the continuous semi-algebraic homotopy F : S × [0, 1] → Q by
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a Nash one, we need have to approximate relatively to the semi-algebraic set
S × {0, 1}. So far, the techniques we developed seem not to be extendible to
relative approximation.

5.2.3. Smooth approximation. In [FGh2, Cor.1.10] Fernando and Ghiloni
showed that, if the target space is a smooth manifold with corners (non nec-
essarily divisorial corners), continuous maps can be approximated by smooth
maps. The construction we made in this chapter and in particular Theorem
5.1.13, holds also in the smooth case if Q is a smooth manifold with divisorial
corners. So, at the cost of (much) more restrictive hypothesis, we obtain an
alternative and more direct proof of this result.

Unlike the Nash case, when working with the smooth category, we can take
advantage of many and useful tools proper of this category. That allows us to go
further in the smooth case and prove an approximation result for homotopies,
that is, we answer positively to Question 5.2.2 in the smooth setting.

Let Q ⊂ Rn be a smooth d-dimensional manifold with corners (not necessar-
ily divisorial corners). For each x ∈ ∂Q consider a smooth chart

φx : Ux → Rn,k := {x1 ≥ 0, . . . , xk ≥ 0} ⊂ Rn,

with φx(x) = 0. On Rn,k we can consider the pointing ‘inside’ vector field

Vk :=
∂

∂x1
+ . . .+

∂

∂xk
,

and its pullback Vx := φ∗x(Vk) on Ux, that is a vector field on Ux pointing
‘inside Ux’. Let {Ui}i∈I be a locally finite refinement in Q of the open covering
{Ux}x∈∂Q ∪ {Q \ ∂Q} (recall that Q is paracompact). For each i ∈ I satisfying
Ui 6⊂ Q \ ∂Q let xi ∈ ∂Q be such that Ui ⊂ Uxi and define

Vi :=

{
0, if Ui ⊂ Q \ ∂Q,
Vxi |Ui , otherwise.

Let {ρi}i∈I be a smooth partition of unity subordinated to the open covering
{Ui}i∈I . We can glue together the local vector fields Vi obtaining a global vector
field

V :=
∑
i∈I

ρiVi,

pointing ‘inside Q’.

We want to integrate pointing ‘inside’ vector fields on manifolds with corners.
We start with compact sets: Given any compact set K ⊂ Q and a pointing
‘inside’ vector field V , there exists an ε > 0 and a (well-known) smooth map

exp : K × [0, ε)→ Q, (x, t) 7→ exp(tV )(x),

called exponential map, such that exp(0)(x) = x for each x ∈ K and the curve
t 7→ exp(tV )(x) is the unique integral curve of V through x for t = 0.

The uniqueness of integral curves follows from the uniqueness theorem for
ordinary differential equations (see [Le, Thm.17.9]) using standard arguments
(see for instance the proof of [Le, Thm.17.8]). Fix a point y ∈ K. Let U be
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5.2. Approximation for manifolds with corners

an open neighbourhood of y in K and φ : U → Rn,k a local chart such that
φ(y) = 0. In order to prove the local existence of the exponential map for the
vector field V in Q, by the uniqueness of integral curves it is sufficient to show
the local existence of the exponential map for the vector field (φ−1)∗(V ) in Rn,k
(because the uniqueness of integral curves implies the invariance by changing
of coordinates). As Rn,k is closed in Rn, using smooth partition of unity we
can extend the vector field (φ−1)∗(V ) to a vector field defined on an open
neighbourhood W ⊂ Rn of Rn,k. By the existence and smoothness theorem
for ordinary differential equations (see [Le, Thm.17.9]) there exists ε > 0 such
that the map

exp′ : W × (−ε, ε)→ Rn, (x, t) 7→ exp(t(φ−1)∗V )(x),

is smooth and well-defined. As V is a vector field pointing ‘inside Q’, the vector
field (φ−1)∗V points ‘inside Rn,k’, so the restriction exp′ |Rn,k×[0,ε) takes values

in Rn,k. In particular,

exp |U×[0,ε) : U × [0, ε)→ Q,

because exp(tV )(x) = φ−1(exp(t(φ−1)∗(V ))(φ(x)) for each (x, t) ∈ U × [0, ε).
As K is compact, there exists ε > 0 that verifies the required conditions (see
also [Me, Cor.1.13.1]).

Let now {Kj}j∈J be a locally finite covering of Q made of compact sets,
such that {IntKj}j∈J is still a locally finite covering of Q. Let εj > 0 be a
positive number such that the exponential map is defined on Kj × [0, εj) and
exp(Kj × (0, εj)) ⊂ Int(Q). Define the function

ε : Q→ R, x 7→ inf{εi : x ∈ Ki}.

As the covering {Kj}j∈J is locally finite, this function is strictly positive and
takes only finitely many values on a (small) neighbourhood of each point. Thus,
using a smooth partition of unity, there exists a smooth function ε : Q→ R such
that 0 < ε < ε. Consider the smooth map

H : Q× [0, 1]→ Q, (x, t) 7→ H(x, t) := exp(ε(x)tV )(x). (5.2.1)

For each t ∈ [0, 1] the map H(−, t) is a diffeomorphism onto its image (see [Le,
Lem.17.2, Thm.17.8]) and H(Q× (0, 1]) ⊂ IntQ.

Let X ⊂ Rm be a locally compact set. We want to show: Every continuous
map f ∈ C0(X,Q) is homotopic to a smooth map g ∈ C∞(X,Q). We need
the following well-known result whose proof follows straightforwardly from [H,
Ex.10, pp.64-65] using standard arguments.

Lemma 5.2.3. Let X ⊂ Rn and Y ⊂ Rm be locally compact sets and let
f : Y → Y be a continuous map. Then the map

f∗ : C0(X,Y )→ C0(X,Y ), g 7→ f ◦ g,

is continuous with respect to the compact-open topology.

Proposition 5.2.4. Let X ⊂ Rm be a locally compact set, Q ⊂ Rn be a d-
dimensional smooth manifold with corners (not necessarily divisorial corners)
and f : X → Q a continuous map. Then f is homotopic to a smooth map
g : X → Q.
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5. Folding Nash manifolds

Proof. By [FGh2, Cor.1.10] the space C0(X,Q) is dense in C∞(X,Q) with respect
to the compact-open topology. So in order to conclude it is sufficient to prove
that: If f, g ∈ C0(X,Q) are close enough, with respect to the compact-open
topology, then they are homotopic.

It is well known (see for instance [H, Thm.5.1]), that there exists a strictly
positive continuous function ε : IntQ→ R>0, such that, if we consider the open
neighbourhood in Rn of IntQ, defined as

(IntQ)ε := {y ∈ Rn : ‖x− y‖ < ε(x) for some x ∈ IntQ},

then

(i) each y ∈ (IntQ)ε admits a unique closest point π(y) ∈ IntQ, namely,
d(y, IntQ) = ‖y − π(y)‖;

(ii) the map π : (IntQ)ε → IntQ is smooth.

Consider now the map H defined in (5.2.1) and H1 : Q→ Int(Q), x 7→ H(x, 1).
By Lemma 5.2.3 the map (H1)∗ : C0(X,Q) → C0(X,Q), f 7→ H1 ◦ f is contin-
uous, so the maps H1 ◦ f,H1 ◦ g : X → IntQ can be taken as close as needed,
because we can take f close enough to g. Thus, we may assume

‖H1(f(x))−H1(g(x))‖ < ε(H1(g(x))),

for all x ∈ IntQ. Then for each t ∈ [0, 1] we have

(1− t)H1(f(x)) + tH1(g(x)) ⊂ (IntQ)ε.

Thus the map, F : X × [0, 1]→ IntQ given by

F (x, t) := π((1− t)H1(f(x)) + tH1(g(x))),

is a well defined homotopy between H1◦f and H1◦g. The map G : X×[0, 1]→ Q

defined as

G(x, t) :=


H(f(x), 3t), if 0 ≤ t ≤ 1

3 ,

F (x, 3t− 1), if 1
3 ≤ t ≤

2
3 ,

H(g(x), 3− 3t), if 2
3 ≤ t ≤ 1,

is the desired homotopy between f and g.

We show next that, in the smooth setting homotopies can be approximated
by smooth homotopies if the target space is a smooth manifold with corners.

Theorem 5.2.5 (Differential homotopy). Let X ⊂ Rm be a locally compact set
and let Q ⊂ Rn be a d-dimensional smooth manifold with corners (not necessarily
divisorial corners). Let f1, f2 : X → Q be two homotopic smooth maps. Then
f1, f2 are homotopic trough a smooth homotopy.

Proof. Let H1 := H(−, 1), where H : Q× [0, 1]→ Q is the map defined in (5.2.1)
and let F : X × [0, 1] → Q be a homotopy between f1 and f2. Then the map
H1 ◦F : X × [0, 1]→ IntQ is a homotopy between H1 ◦ f1 and H1 ◦ f2. As IntQ
is a smooth manifold, there exists a smooth homotopy G : X × [0, 1] → IntQ
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between H1 ◦ f1 and H1 ◦ f2. Let µ : [0, 1]→ [0, 1] be a smooth function that is
identically 0 in a neighbourhood of 0 and identically 1 on a neighbourhood of
1. The smooth map F̂ : X × [0, 1]→ Q defined as

F̂ (x, t) :=


H(f1(x), µ(3t)), if 0 ≤ t ≤ 1

3 ,

G(x, µ(3t− 1)), if 1
3 < t ≤ 2

3 ,

H(f2(x), 1− µ(3t− 2)), if 2
3 < t ≤ 1,

is a smooth homotopy between f1 and f2, as required.

5.3 An alternative construction of Nash images
of closed balls

The purpose of this section is to prove an alternative version to Theorem 4.1.
We will show how to ‘resolve’ a semi-algebraic set connected by analytic paths
by a Nash manifold with boundary. At the end of the section we will provide
an alternative construction of Nash images of the closed ball, as a consequence
of this resolution of semi-algebraic sets.

5.3.1. Resolution by Nash manifolds with boundary. A similar result to
Theorem 4.1 changing the Nash manifold with corners Q by Nash manifolds
with boundary seems difficult to be achieved if we want to keep the map f
is polynomial and that the semi-algebraic set R has dimension strictly smaller
than the dimension of S. We propose the following statement:

Theorem 5.3.1. Let S ⊂ Rn be a d-dimensional closed semi-algebraic set con-
nected by analytic paths and let ε > 0. Then there exist:

(i) A d-dimensional non-singular algebraic set X ⊂ Rm.

(ii) A Nash manifold with boundary Hε ⊂ Rm such that the Zariski closure
Zε of ∂Hε is a non-singular algebraic set Zε ⊂ X of dimension d− 1 and
Int(Hε) is a connected component of X \ Zε.

(iii) A proper Nash map f : Hε → S such that f(Hε) = S.

(iv) The restriction f |Hε\f−1(Tε) : Hε \ f−1(Tε) → S \ Tε is a Nash diffeo-
morphism, where Tε := {x ∈ S : dist(x,R) ≤ ε} for a certain closed
semi-algebraic set R ⊂ S of dimension strictly smaller than d.

Proof. By Theorem 4.1 we may assume that S = Q ⊂ Rn is a Nash manifold
with corners. Recall that X := Q

zar ⊂ Rn is a non-singular algebraic set. Using
the stereographic projection and Hironaka’s desingularization (Theorem 2.4.2),
we may assume in addition that X is compact (see also [Sh, I.5.11]). Fix ε > 0
and let M ⊂ X be the set of points x ∈ X such that dist(x,Q) < ε, which is
a Nash manifold. By [FGR, Thm.1.11, 1.12] we may assume, up to eventually
take a smaller ε, in addition:

� The Nash closure Y of ∂Q in M is a Nash normal-crossings divisor of M
and Q ∩ Y = ∂Q.
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5. Folding Nash manifolds

� For every x ∈ ∂Q the analytic closure of the germ ∂Qx is Yx.

By [Sh, VI.2.1] and its proof there exists a C1 function g : M → R such
that M is diffeomorphic to g−1((0,+∞)) and H := g−1([0,+∞)) is a compact
manifold with boundary that contains Q in its interior. We may assume in
addition that the differential dxg : TxM → R is surjective for each x ∈ g−1(0)
(see Lemma 5.1.4). Let G : X → R be a C1 extension of g to X such that
G−1(0) = g−1(0). Let F : X → R be a polynomial approximation of G in the
C1 compact-open topology. As G is strictly positive on the compact set Q, we
may assume F is strictly positive on Q, so F−1(0) ⊂M \ Q. In addition, as we
consider a C1 approximation, we may assume dxF : TxX → R is surjective for
each x ∈ F−1(0). Thus, Hε := F−1([0,+∞)) ⊂M is a compact Nash manifold
with (non-singular) boundary Zε := F−1(0), which is a non-singular algebraic
subset of X of dimension d− 1.

By Theorem 5.1.13 there exists a Nash map h : M → Q such that h(M) =
h(Q) = Q and h|Hε\h−1(Tε) : Hε \ h−1(Tε) → Q \ Tε is a Nash diffeomorphism,
where Tε := {x ∈ Q : dist(x, ∂Q) < ε}.

5.3.2. An alternative proof of Theorem 3.2 In order to give an alterna-
tive proof of Theorem 3.2 based on Theorem 5.3.1 we need some preliminary
results. We start with the following Lemma that extends [Fe4, Lem.2.8] to Nash
manifolds with non-empty boundary.

Lemma 5.3.2. Let H1 ⊂ Rm and H2 ⊂ Rn be Nash manifolds with (non-
singular) boundary. Let f : H1 → H2 be a semi-algebraic homeomorphism.
Then every continuous semi-algebraic map g : H1 → H2 close to f , such that
g(∂H1) ⊂ ∂H2, is surjective.

Proof. As f : H1 → H2 is a semi-algebraic homeomorphism, f(∂H1) = ∂H2

(use invariance of domain). Consider the Nash doubles (D(Hi), πi) and

Hi,ε = D(Hi) ∩ {εt ≥ 0},

where ε = ±. Recall that πiε : Hi,ε → Hi is a semi-algebraic homeomorphism.
As f(∂H1) = ∂H2, the map

F : D(H1)→ D(H2), (x, t) 7→ (π2ε)
−1 ◦ f ◦ π1ε(x, t)

is well-defined and semi-algebraic for ε = ±. Observe that F is bijective and

F−1 : D(H2)→ D(H1), (y, s) 7→ (π1ε)
−1 ◦ f−1 ◦ π2ε(y, s).

Let us check: F is continuous. Once this is done, the same proof shows that
F−1 is continuous, so f is a semi-algebraic homeomorphism.

As F is continuous on both H1,+, H1,− and π1|H1+∩H1− = π1|∂H1
= id∂H1

,
we conclude by the pasting lemma that F is continuous on D(H1).

Let g : H1 → H2 be a continuous semi-algebraic map. If g(∂H1) ⊂ ∂H2, the
map

G : D(H1)→ D(H2), (x, t) 7→ (π2ε)
−1 ◦ g ◦ π1ε(x, t)

is well-defined, continuous and semi-algebraic for ε = ±. The proof is analogous
to the one for F .
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By [Fe4, Lem.2.8] there exists a strictly positive continuous semi-algebraic
function ε : D(H1)→ R such that if ‖G− F‖ < ε, then G is surjective.

For ε = ±, consider the strictly positive continuous semi-algebraic functions

εε := ε ◦ π−1
1ε : H1 → R

and ε∗ = min{ε+, ε−}. Let δ : H1 → R be a strictly positive continuous semi-
algebraic function such that if f, g : H1 → H2 are continuous semi-algebraic
maps such that ‖g − f‖ < δ, then ‖(π2ε)

−1 ◦ f − (π2ε)
−1 ◦ g‖ < ε∗ for ε = ±

(see [Sh, II.1.5]). Thus, ‖(π2ε)
−1 ◦ f ◦ π1ε − (π2ε)

−1 ◦ g ◦ π1ε‖ < ε∗ ◦ π1ε ≤ ε for
ε = ±. Consequently, ‖F −G‖ < ε, so G is surjective. Following the definition
of G, we conclude that g is also surjective, as required.

Let us prove that: If S ⊂ Rn is a compact semi-algebraic set connected by
analytic paths of dimension d ≥ 2, then there exists a Nash map f : Rd → Rn
such that f(Bd) = S .

By Theorem 5.3.1 we may assume that H := S is a connected compact Nash
manifold with smooth boundary. Let M := D(H) be the Nash double of H
and consider the surjective Nash map π : D(H)→ H introduced in Proposition
5.1.8. Observe that M is a connected compact Nash manifold. Thus, we may
assume that M := S is a connected compact Nash manifold. Let {Ui}ri=1 be
a finite covering of M equipped with Nash diffeomorphisms ui : Ui → Rd such
that M =

⋃m
i=1 u

−1
i (∆d) where ∆d := {x1 ≥ 0, . . . , xd ≥ 0, x1 + · · · + xd ≤ 1}.

Define
∆′d := {x1 ≥ −2, . . . , xd ≥ −2, x1 + · · ·+ xd ≤ d+ 1}

and observe that ∆d ⊂ Bd ⊂ ∆′d. Let ψ : Rd → Rd be an affine isomorphism
such that ψ(∆d) = ∆′d.

Lemma 5.3.3. Let σ ⊂ Rd−1 be the (d− 1)-simplex

σ := {x1 ≥ 0, . . . , xd−1 ≥ 0, x1 + · · ·+ xd−1 ≤ 1}.

Then the surjective Nash map f : σ × [0, 1] → ∆′d, (x, t) 7→ ψ(((1 − t)x, t))
restricts to a Nash diffeomorphism f |σ×[0,1) : σ×[0, 1)→ ∆′d\{ψ((0, . . . , 0, 1))}.

Proof. As ψ is an affine isomorphism such that ψ(∆d) = ∆′d, it is enough to
prove that the surjective Nash map σ×[0, 1]→ ∆d, (x, t) 7→ ((1−t)x, t) restricts
to a Nash diffeomorphism

ϕ : σ × [0, 1)→ ∆d \ {(0, . . . , 0, 1)}.

This is straightforward, because the Nash map

φ : ∆d \ {(0, . . . , 0, 1)} → σ × [0, 1), (x1, . . . , xd) 7→
(

x1

1− xd
, . . . ,

xd−1

1− xd
, xd

)
is the inverse of ϕ.

We are now ready to give an alternative proof of Theorem 3.2.
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Proof of Theorem 3.2. Let us construct a surjective continuous semi-algebraic
function

h : σ × [0, 2r − 1]→M =

r⋃
i=1

u−1
i (∆d) =

r⋃
i=1

u−1
i (Bd) =

r⋃
i=1

u−1
i (∆′d)

that is Nash on σ × (
⋃r
i=1(2(i− 1), 2(i− 1) + 1) and satisfies

u−1
i (Bd) ⊂ h(∆d × (2(i− 1), 2(i− 1) + 1)),

for each i = 1, . . . , r.

Let f : σ × [0, 1] → ∆′d be the surjective Nash map introduced in Lemma
5.3.3 and define

hi : σ × [2(i− 1), 2(i− 1) + 1]→ u−1
i (∆′d), (x, t) 7→ u−1

i (f(x, t− 2(i− 1))),

which is a surjective Nash map whose restriction to σ×{2(i−1)+1} is constant
and it is restriction to σ× [2(i− 1), 2(i− 1) + 1) is a Nash diffeomorphism onto
its image. Write {pi} := hi(σ×{2(i− 1) + 1}). Let b1, . . . , bd be the vertices of
∆′d different from ψ(0, . . . , 0, 1). Define xd := 1− x1 − · · · − xd−1 and consider
the continuous semi-algebraic map

g′i : σ ×
[
1
2

+ 2(i− 1) + 1, 2(i− 1) + 2
]
→ Rd,

(x, t) 7→ u−1
i+1

( d∑
i=1

xibi2
(
t− 1

2
− 2(i− 1)− 1

) )
.

Let αi : [2(i− 1) + 1, 1
2 + 2(i− 1) + 1]→M be a continuous semi-algebraic map

such that αi(2(i− 1) + 1) = pi and αi(
1
2 + 2(i− 1) + 1) = u−1

i+1(0). Consider the
continuous semi-algebraic map

gi : σ × [2(i− 1) + 1, 1
2 + 2(i− 1) + 1]→M, (x, t) 7→ αi(t).

Define h : σ × [0, 2r − 1]→M , as

(x, t) 7→


hi(x, t) if (x, t) ∈ σ × [2(i− 1), 2(i− 1) + 1],

gi(x, t) if (x, t) ∈ σ × [2(i− 1) + 1, 1
2 + 2(i− 1) + 1],

g′i(x, t) if (x, t) ∈ σ × [ 1
2 + 2(i− 1) + 1, 2(i− 1) + 2],

hr(x, t) if (x, t) ∈ σ × [2(r − 1), 2r − 1]

for i = 1, . . . , r − 1. Observe that h is a continuous semi-algebraic map such
that for each i = 1, . . . , r:

� the restriction h|σ×(2(i−1),2(i−1)+1) is a Nash diffeomorphism onto its im-
age.

� h(σ × [2(i− 1), 2(i− 1) + 1]) = u−1
i (∆′d).

� u−1
i (Bd) ⊂ h(σ × (2(i− 1), 2(i− 1) + 1)).

We conclude that the restriction of h to σ× (
⋃r
i=1(2(i− 1), 2(i− 1) + 1) is Nash

and surjective, because M =
⋃m
i=1 u

−1
i (Bd). Let H : Rd → M be a continuous

156



5.3. An alternative construction of Nash images of closed balls

semi-algebraic extension of h to Rd. Define X1 :=
⋃r
i=1(ui ◦ hi)−1(∂Bd), which

is a Nash subset of

Ω := Int(σ)×
r⋃
i=1

(2(i− 1), 2(i− 1) + 1),

and observe that H is Nash on the open semi-algebraic set Ω. By [Sh, II.5.2]
there exists a Nash maps F : Rd →M close to H such that

F |(ui◦hi)−1(∂Bd) = H|(ui◦hi)−1(∂Bd)

for i = 1, . . . , r. By Lemma 5.3.2 the restriction F |(ui◦hi)−1(Bd) is surjective for
i = 1, . . . , r. Thus,

M =

m⋃
i=1

u−1
i (Bd) ⊂ F (σ × [0, 2r − 1]) ⊂M,

so F (σ × [0, 2r − 1]) = M , as required.
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