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Introduction

This Thesis summarizes the main topics of the research activity I have performed during

the three years of my PhD education at the Department of Physics of the University of

Trento, specifically at the INO-CNR BEC Center, under the supervision of Dr. Alessio

Recati. The subject of this Thesis is the study of the dynamics of mixtures of ultracold

Bose gases.

Ultracold gases allow the realization of multi-component Bose-Einstein condensates

(BECs). The latter are novel systems, whose behaviour is very different with respect

to that of a single component BEC. In particular they show different zero-temperature

phases, each described by a proper vector order parameter. The possibility of tuning a

number of system parameters, such as the interaction strength through Feshbach reso-

nances, and the possibility of tailoring the trapping potentials make such systems ideal

for studying the structure of the various phases and the nature of the phase transitions

and give rise to new ground states and to peculiar dynamic processes. The problem is

very general being related to the long standing issue of phases and stability of interacting

superfluids. In particular superfluid current stability in mixtures [1, 2, 3] has been started

to be addressed experimentally only recently [4].

In the present work we consider one of the easiest implementations, namely a 2-

component (spinor) condensate with an (optional) external field that drives the popula-

tion transfer (spin-flipping) between the two atomic levels. In spite of the apparent sim-

plicity of the problem, the physics it contains is very rich. Indeed, spinor condensates

allow us to address many interesting phenomena from the Andreev-Bashkin effect [5,

1



Introduction

6] to the (internal) Josephson effect [7, 8], or Schrödinger-cat- and twin-Fock-like states

[9, 10], from dimerized vortices [11, 12, 13], to the study of quenching in classical bifur-

cations [14, 15, 16]. They represent also the basis for most of the recent realizations of

artificial gauges in cold gases [17].

Moreover, thanks to new technological developments, mixtures with high unbalance

between the two components have attracted a lot of attention both on the theoretical and

experimental side with a huge number of different realizations and regimes (see, e.g., the

recent experimental works [18, 19] and reference therein). This is quite obvious being the

impurity problem almost ubiquitous in physics, especially in condensed matter physics

[20].

Thesis outline

This Thesis is organized as follows. The first chapter provides a general introduction to

Bose-Einstein condensation and mixtures of of condensates. It includes a derivation of

Gross-Pitaevskii equations for the different types of mixtures considered in this Thesis

and a description of the theoretical foundation of the topics discussed in next chapters.

In the second chapter we focus on homogeneous systems. We describe the differ-

ent ground states the mixture has with or without coherent coupling and we show the

excitation spectra in both cases. In the last section we address the problem of stability

of persistent currents in a mixture. We find the criterion for their stability both in the

miscible and immiscible regime and, in the first case, we also discover a regime of par-

tial instability. The existence of this regime could be at the origin of the experimental

observations in [4].

The third chapter is instead devoted to the study of a mixture in an external harmonic

potential. We first describe how ground states change from the homogeneous case in-

troducing and characterizing a new solitonic structure (Double Domain Wall Soliton)

found in highly unbalanced mixtures. We then analyse the second order ferromagnetic

transition occurring in a coherently coupled mixture by studying its static and dynamic

response to a spin-dipole perturbation. In the ferromagnetic phase we also observe a

phenomena related to ground state selection.

The fourth chapter describes the numerical method used for obtaining all the results

of previous chapters, namely the time evolving split-operator method. We give the de-

tails of its implementation and we describe some tricks used to make the algorithm more

efficient.
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In the fifth chapter I introduce a different numerical method for simulating quan-

tum systems taking into account quantum correlations, namely Tensor Network method.

This Chapter is a summary of what I learnt on the last year of my PhD working with Jun.

Prof. Matteo Rizzi from the Johannes Gutenberg Universität of Mainz. I give a brief de-

scription of the tools needed for understanding this method, I explain why and when it

is useful and what are the differences with respect to other methods. I introduce Matrix

Product States and Matrix Product Operators that are the building block for the imple-

mentation of the variational algorithm and for the algorithms used for getting the time

evolution of a quantum state. In the last section I describe and compare different types

of time evolving algorithms applying them to some literature results.

List of publications

The original results presented in this thesis have been published in the following articles:

(i) A. Sartori and A. Recati, Dynamics of highly unbalanced Bose-Bose mixtures: mis-

cible vs immiscible gases, Eur. Phys. J. D, 67, 260 (2013), Ref. [21]

(ii) M. Abad, A. Sartori, S. Finazzi and A. Recati, Persistent currents in two-component

condensates in a toroidal trap, Phys. Rev. A, 89, 053602 (2014), Ref. [22]

(iii) A. Sartori, J. Marino, S. Stringari and A. Recati, Spin dipole oscillation and relaxation

of coherently coupled Bose-Einstein condensates, New. J. Phys., 17, 093036 (2015),

Ref. [23]
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CHAPTER

1
Bose-Einstein Condensation and

Bose-Bose mixtures

In this first introductive Chapter we lay the theoretical foundation of Bose-Einstein

condensation and Bose-Bose mixtures. We introduce the Gross-Pitaevskii equation

and coherently coupled condensates reporting the main equations that will be used

in the next chapters.

Contents

1.1 The Gross-Pitaevskii equation . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 BEC mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Coherently coupled Bose-Einstein condensates . . . . . . . . . . . . . 12
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Bose-Einstein Condensation and Bose-Bose mixtures

1.1 The Gross-Pitaevskii equation

In this Section we give a brief derivation of the Gross-Pitaevskii equation, for a more

detailed analysis please see [24] or [25].

Let us consider an atomic Bose gas of N particles enclosed in a volume V . The po-

sition and momentum of each particle will be denoted by ri and pi , respectively, with

i ∈ {1,2, ..., N } the particle index. Each couple of atoms interacts through some inter-

atomic potential V (ri − r j ) depending on their relative position. For neutral atoms, any

realistic interatomic potential is typically isotropic (it depends only on the relative dis-

tance ri j = |ri−r j | of the atoms) and short-range (there exists a distance r0 called range of

the potential beyond which the potential is negligible). In a dilute atomic gas the mean

interparticle distance d = n−1/3, fixed by the average density n = N /V , is much larger

than the range of the potential r0, i.e. the inequality

nr0
3 ¿ 1 (1.1)

holds. Condition (1.1) implies that the probability of finding three or more particles si-

multaneously within a sphere of radius r0 is much smaller than the probability of finding

only two atoms within this distance. As a consequence, one is allowed to consider only

configurations involving pairs of interacting particles, i.e. to take into account only bi-

nary collisions.

Another consequence of inequality (1.1) is that the large distance between particles

allows for the use of the asymptotic expression for the wave function of their relative

motion, which is fixed by the scattering amplitude. Therefore the specific details of the

two-body potential will not matter and all the properties of the system will depend only

on this quantity. In addition, at temperatures smaller than the critical temperature for

Bose-Einstein condensation, the scattering amplitude becomes independent of energy

as well as of the scattering angle, and can be safely replaced with its low-energy value.

The latter, according to standard scattering theory, is determined by the so-called s-wave

scattering length a (see, for example, [24]). In conclusion, one expects that all the effects

of the interactions on the physical properties of the gas are determined by one single

parameter, which is exactly the s-wave scattering length a. In particular the small inter-

actions condition can be written as

n|a|3 ¿ 1. (1.2)

The quantity n|a|3 is usually referred as the gas parameter.

6



1.1 The Gross-Pitaevskii equation

The many-body Hamiltonian of an atomic Bose gas of N particles can be written as

H =
N∑

i=1

(−ħ2∇2

2m
+Vext(ri )

)
+ 1

2

N∑
i , j=1

V (ri − r j ) (1.3)

where m is the atomic mass, and we have introduced an external potential Vext(r). Let

us now rewrite H in the formalism of second quantization, introducing the atomic field

operator ψ

H =
∫

dr ψ†(r)

(−ħ2∇2

2m
+Vext(ri )

)
ψ(r)+ 1

2

∫
dr′ dr ψ†(r)ψ†(r′)V (r′− r)ψ(r)ψ(r′) (1.4)

The field operator can be conveniently written in the form

ψ(r) =∑
j
ϕ j (r)a j (1.5)

where the summation runs over all the possible values of a complete set of quantum

numbers j , ϕ j represents a convenient basis of single-particle wave functions, and a j

(a†
j ) are the annihilation (creation) operators of a particle in the state ϕ j .

Bose-Einstein condensation occurs when one of the single-particle states ( j = 0) is

occupied in a macroscopic way, i.e. its occupation number N0 is of the order of N . In

this case, it is useful to rewrite Eq. (1.5) separating the contribution of the condensate

term from the other ones:

ψ(r) =ϕ0(r)a0 +
∑
j 6=0

ϕ j (r)a j (1.6)

The advantage of this representation is that it allows to naturally introduce the so-called

Bogoliubov approximation, which consists in replacing the operators a0 and a†
0 with the

c-number
p

N0. This is equivalent to neglecting the non-commutativity of a0 and a†
0,

which is reasonable when dealing with Bose-Einstein condensation, where the occupa-

tion number N0 = 〈a†
0a0〉 is large. Indeed, the commutator between a0 and a†

0 is equal to

1, while the operators themselves are of the order of
p

N0. Equation (1.6) then becomes

ψ(r) =ψ0(r)+δψ(r) (1.7)

where we have defined ψ0 =p
N0ϕ0 and δψ = ∑

j 6=0ϕ j a j . In the case of a dilute weakly

interacting Bose gas at very low temperatures the non-condensate component δψ is neg-

ligible, and the system can be described by means of the classical field ψ0 only, which

hereafter will be referred to as the condensate wave function or the order parameter. It is

characterized by a modulus and a phase

ψ0(r) = |ψ0(r)|eiS(r) (1.8)

7



Bose-Einstein Condensation and Bose-Bose mixtures

where the modulus determines the particle density n(r) = |ψ0(r)|2 of the condensate

while the phase characterizes the coherence and superfluid phenomena. The conden-

sate wave function is normalized to the total number of particles,
∫

dr|ψ0(r)|2 = N0 = N .

The order parameterψ0 characterizes the Bose-Einstein condensed phase, and vanishes

above the critical temperature needed for the condensation to occur. The Hamiltonian

of Eq. (1.3) is invariant forψ→ψeiφ (U (1) symmetry). This is the manifestation of gauge

symmetry of the problem: in the BEC phase transition, a condensate spontaneously

chooses a particular phase. Making an explicit choice for the phase is referred to as a

spontaneous breaking of the gauge symmetry and, according to Goldstone theorem, this

implies that the condensed phase has a gapless mode (see Section 2.2).

The Bogoliubov ansatz, Eq. (1.7), for the field operator can be interpreted by saying

that the expectation value 〈ψ〉 of the field operator is different from zero. Of course, this

statement is not correct if the states on the left and on the right had exactly the same

number of particles. Its exact meaning can be explained as follows: since the occupation

number N0 is much greater than 1, adding one single particle to the condensate does not

affect the physical properties of the system. Therefore, a state |N〉 is in practice physically

equivalent to the states |N+1〉∝ a†
0|N〉 and |N−1〉∝ a0|N〉. Thus, it makes sense to write

ψ0 = 〈ψ〉, provided that the states on the left have one less particle than the states on the

right. From a quantum field theoretical point of view, the condensate is in a coherent

state defined by

â|α〉 =α|α〉 (1.9)

where |α|2 = N0 is the average particle number in the condensate. The coherent state |α〉
can also be expanded in particle number eigenstates as

|α〉 =∑
n

e−|α|
2/2

p
n!

αn |n〉. (1.10)

This allows to consider the replacement ofψ byψ0 as a mean-field approximation, which

is essentially the analogue of the classical limit of quantum electrodynamics, where the

classical electromagnetic field entirely replaces the microscopic description in terms of

photons.

In order to derive the equation governing the field ψ0 we first switch to the Heisen-

berg picture. In this representation the quantum field ψ(r, t ) fulfils the exact equation

iħ ∂

∂t
ψ(r, t ) = [

ψ(r, t ), H
]

=
[
−ħ2∇2

2m
+Vext (r)+

∫
dr′ψ†(r′, t )V (r′− r)ψ(r′, t )

]
ψ(r, t ). (1.11)

8



1.1 The Gross-Pitaevskii equation

The next step is to get rid of the field operators ψ and substitute them with ψ0 how-

ever, for a realistic interatomic potential V , such a replacement is not generally correct.

Indeed, a realistic potential always contains a short-range term which varies rapidly at

distances of the order of r0, thus making quantum correlations important. However, in

virtue of the above discussion on the diluteness criteria, we know that the actual form of

the two-body potential is not important for describing the macroscopic properties of the

gas, the only relevant parameter being the s-wave scattering length. As a consequence,

one can replace the bare potential by an effective potential

Veff(r′− r) = gδ(r′− r) (1.12)

where the coupling constant g is related to the s-wave scattering length a through

g = 4πħ2a

m
. (1.13)

Hence, we can legitimately make the simultaneous replacement of ψ by ψ0 and of V by

Veff, and Equation (1.11) becomes

iħ ∂

∂t
ψ0(r, t ) =

(
−ħ2∇2

2m
+Vext(r)+ g |ψ0(r, t )|2

)
ψ0(r, t ). (1.14)

Equation (1.14) corresponds to the well-known time-dependent Gross-Pitaevskii equa-

tion for the order parameter of the condensate. It was derived independently by Gross

[26] and Pitaevskii [27], and it is the main theoretical tool for investigating non-uniform

weakly interacting dilute Bose gases at low temperatures. The Gross-Pitaevskii equation

has the typical form of a mean-field equation, where the order parameter must be calcu-

lated in a self-consistent way. Its validity has been rigorously proved by Lieb, Seiringer,

Solovej and Yngvason in [28].

It is worth mentioning that the GP equation, Eq. (1.14), can also be obtained using a

variational procedure. In fact, by imposing the stationarity condition

δ

[∫
dt dr

(
−iħψ∗

0
∂

∂t
ψ0

)
+

∫
dt E

]
= 0 (1.15)

to the action, one obtains the equation

iħ∂ψ0

∂t
= δE

δψ∗
0

(1.16)

for the order parameter, where the energy functional E is given by

E [ψ0] =
∫

dr
[ ħ2

2m
|∇ψ0|2 +Vext(r)|ψ0|2 + g

2
|ψ0|4

]
. (1.17)

9



Bose-Einstein Condensation and Bose-Bose mixtures

Let we now consider a stationary, zero-temperature condensate described by the

Gross-Pitaevskii equation, Eq. (1.14). For such a system the condensate density is time

invariant and the wave function evolution consist solely of a spatially uniform phase ro-

tation due to the condensate’s energy. Hence we can separate the time-dependent con-

densate wave function using the usual ansatz

ψ0(r, t ) =ψ0(r)e−iµt/ħ, (1.18)

where ψ0(r) is now the time-independent condensate wave function and µ is the char-

acteristic energy of the condensate whose meaning will be discussed below. Applying

this ansatz to the Gross-Pitaevskii equation, Eq. (1.14), we straightforwardly arrive at the

time-independent Gross-Pitaevskii equation(
−ħ2∇2

2m
+Vext(r)+ g

∣∣ψ0(r)
∣∣2

)
ψ0(r) =µψ0(r), (1.19)

To ensure consistency between these two equations, Eqs. (1.14)-(1.19), µ must be

the condensate chemical potential. Indeed the wave function phase factor reflects the

fact that microscopically ψ0 is equal to the matrix element of the annihilation operator

ψ between the ground state with N particles and that with N −1 particles,

ψ0(r, t ) = 〈N −1|ψ(r)|N〉∝ exp[−i(EN −EN−1)t/ħ] . (1.20)

For large N the difference in ground state energies for states with N and N −1 particles

is equal to ∂E/∂N which is exactly the chemical potential. The chemical potential µ is

fixed by imposing the normalization of the wave function to the total number of particles,∫
dr |ψ0(r)|2 = N .

Equation (1.19) has the form of a non-linear Schrödinger equation, with the non-

linearity coming from the mean-field term, proportional to the particle density. In the

absence of interactions (g = 0), this equation reduces to the usual Schrödinger equation

for the single-particle Hamiltonian −ħ2∇2/(2m)+Vext(r), and the condensate wave func-

tion becomes equal, up to a factor
p

N , to the corresponding ground-state wave function.

1.2 BEC mixtures

For a weakly interacting mixture of two Bose-Einstein condensed gases the theoretical

description can be derived through a natural generalization of the Gross-Pitaevskii equa-

tion, Eq. (1.14), each condensate being described by its own wave function. The first

10



1.2 BEC mixtures

theoretical work on binary mixtures was provided by Ho and Shenoy [29]. Considera-

tions similar to the ones developed in last Section yield to the following expression for

the energy of the mixture of two Bose-Einstein condensates:

E =
∫

dr
[ ħ2

2ma
|∇ψa |2 + ħ2

2mb
|∇ψb |2 +V ext

a |ψa |2 +V ext
b |ψb |2+

+ 1

2
ga |ψa |4 + 1

2
gb |ψb |4 + gab |ψa |2|ψb |2

]
, (1.21)

where ψa and ψb are the wave functions for the two components of the mixture, with

masses ma and mb respectively, which are subjected to the external potentials V ext
a (r)

and V ext
b (r). The coupling constants ga = 4πħ2aa/ma and gb = 4πħ2ab/mb are fixed by

the scattering lengths aa and ab , while gab = 2πħ2aab/mr with 1/mr = 1/ma +1/mb is

determined by the scattering length aab where an atom in the state a scatters with an

atom in the state b.

Equation (1.21) for the energy functional ignores the possible coupling between the

velocity fields of the two fluids, which lead to physical phenomena such as the Andreev-

Bashkin effect [5]. This effect is however small in weakly interacting gases [6].

The coupled Gross-Pitaevskii equations can be derived from the variational principle

iħ∂ψσ/∂t = δE/δψ∗
σ with σ= a,b. One finds:

iħ ∂

∂t
ψa =

(
−ħ2∇2

2ma
+V ext

a (r)+ ga |ψa |2 + gab |ψb |2
)
ψa , (1.22)

iħ ∂

∂t
ψb =

(
−ħ2∇2

2mb
+V ext

b (r)+ gb |ψb |2 + gab |ψa |2
)
ψb , (1.23)

or, in the time-independent version,

µaψa =
(
−ħ2∇2

2ma
+V ext

a (r)+ ga |ψa |2 + gab |ψb |2
)
ψa , (1.24)

µbψb =
(
−ħ2∇2

2mb
+V ext

b (r)+ gb |ψb |2 + gab |ψa |2
)
ψb , (1.25)

where the two chemical potentials µa and µb are in principle different and fixed by the

normalization of the wave functions,
∫

dr|ψσ(r)|2 = Nσ, σ= a,b.

As we will see in the next chapter the system has two gapless Goldstone modes that

correspond to the fact that there is no cost for changing the phase of the two wave func-

tions ψa and ψb .

11



Bose-Einstein Condensation and Bose-Bose mixtures

1.3 Coherently coupled Bose-Einstein condensates

Equations (1.22)-(1.23) conserve the numbers of atoms of each component. However,

the application of an oscillating radio frequency (rf ) field tuned close to the hyperfine

splitting Vhf can result in the possibility of transfer of atoms from one state to the other.

In this situation the wave function of the system becomes a vector with a component for

each hyperfine level,

ψ=
(
ψa

ψb

)
, (1.26)

and it can be described by adding a term proportional to ψa to the equation for ψb and

vice versa. In the rotating wave approximation we find

iħ ∂

∂t
ψa =

(
−ħ2∇2

2ma
+Vext(r)+ ga |ψa |2 + gab |ψb |2

)
ψa −Ω(t ) eiωr f tψb (1.27)

iħ ∂

∂t
ψb =

(
−ħ2∇2

2mb
+Vext(r)+Vhf + gb |ψb |2 + gab |ψa |2

)
ψb −Ω∗(t ) e−iωr f tψa (1.28)

where ωr f is the frequency of the rf wave and the Rabi energy Ω(t ) plays the role of the

coupling constant for the transition. Notice that the phase ofΩ defining the phase of the

rf field is arbitrary. In the following Ω will be assumed real and positive. For simplicity,

we have assumed that the external potential felt by the two spin components is the same,

apart from the hyperfine splitting Vhf fixed by the magnetic field.

Notice that the physical meaning of the amplitudeΩ is different for different types of

transitions. If the transfer can be obtained via one-photon transitions,Ω is proportional

to the field amplitude. However, in other cases the transition requires two units of angu-

lar momentum and can be activated only with two-photon transitions. In this case the

amplitudeΩ is quadratic in the rf field.

The application of this radio frequency field is useful not only to add new features

and to enrich the physics of the mixture (as we will see in following Chapters) but also

for creating the initial desired population unbalance in the system. This is done using

the following procedure. Starting from a configuration where all the atoms are in the

state |a〉 (and hence ψ=
(p

n0 0
)

) an rf pulse of short duration will bring some atoms

into the state |b〉 without changing their space distribution. In this case one can write the

solutions of the Gross-Pitaevskii equations in the form

ψ(r, t ) =
(
ψa(r, t )

ψb(r, t )

)
=

(
Aa(t )

p
n0(r)

Ab(t )
p

n0(r)

)
. (1.29)

12



1.3 Coherently coupled Bose-Einstein condensates

By further assuming ga ∼ gb ∼ gab , the equation for the amplitudes A becomes

iħ d

dt

(
Aa

Ab

)
=

(
µa −Ωeiωr f t

−Ωeiωr f t µb

)(
Aa

Ab

)
(1.30)

where µa and µb =µa +Vhf are the chemical potentials of the two components. For brief

pulses of duration t such that t À 1/δ, where δ=ωr f −Vhf/ħ¿Vhf/ħ, the solution takes

the form

Aa(t ) = e−iµa t/ħ
(
C1e−iΩt/ħ+C2e+iΩt/ħ

)
, (1.31)

Ab(t ) = e−iµb t/ħ
(
−C1e−iΩt/ħ+C2e+iΩt/ħ

)
(1.32)

where C1 and C2 are fixed by the initial conditions (C1 =C2 = 1/2 in our case). Then, after

the time τ = (π/2)(ħ/2Ω) (“π/2 pulse”), one gets |Aa |2 = |Ab |2 = 1/2 and the atoms will

be equally distributed between the two hyperfine states. A pulse of double duration (“π

pulse”) will instead convert completely the system from the state |a〉 into |b〉.
However, if the π pulse is split into two π/2 pulses with an intermediate time delay

t0, the wave functions of the condensates, after the first pulse, will evolve according to

the laws Aa ∼ e−iµa t/ħ and Ab ∼ e−iµb t/ħ. As a consequence, after the time t0, the relative

phase between the two condensates has varied by the amount (µa −µb)t0/ħ. On the

other hand, in the same time interval also the phase of the coupling field has evolved

by the amount ωr f t0. One can see that the fraction of atoms that, after the second π/2

pulse, will be converted to the state |b〉, is given by

Nb = N

2

{
1+cos

[(
ωr f −

µa −µb

ħ
)

t0

]}
(1.33)

Since the difference between the two chemical potentials coincides with the hyperfine

splitting (µa −µb = Vhf), the frequency of the oscillation is given by the detuning δ =
ωr f −Vrf/ħ.

It is also interesting to discuss the solutions of the Gross-Pitaevskii equations, Eqs.

(1.27)- (1.28), in the presence of stationary rf coupling between the two hyperfine states.

To this purpose it is convenient to introduce a unitary transformation yielding ψa →
e−iωr f t/2ψa and ψb → e+iωr f t/2ψb , corresponding to a rotation in spin space around the

third spin axis by the angle ωr f t . The new Hamiltonian in the rotated frame becomes

time independent and, choosing the rf frequency equal to the hyperfine splitting (ħωr f =

13



Bose-Einstein Condensation and Bose-Bose mixtures

Vhf), the Gross-Pitaevskii equations take the form

iħ ∂

∂t
ψa =

(
−ħ2∇2

2m
+Vext(r)+ ga |ψa |2 + gab |ψb |2

)
ψa −Ωψb (1.34)

iħ ∂

∂t
ψb =

(
−ħ2∇2

2m
+Vext(r)+ gb |ψb |2 + gab |ψa |2

)
ψb −Ωψa (1.35)

These equations can be also derived starting from the energy functional, Eq. (1.21), con-

taining the additional rf term

EΩ =−Ω
∫

dr
(
ψ∗

aψb +ψ∗
bψa

)=−2Ω
∫

dr |ψa ||ψb |cos(φb −φa), (1.36)

which depends explicitly on the relative phase (φb −φa) between the two order parame-

ters.

Also in this case we can easily derive the time-independent version of GP equations:

µψa =
(
−ħ2∇2

2m
+Vext(r)+ ga |ψa |2 + gab |ψb |2

)
ψa −Ωψb (1.37)

µψb =
(
−ħ2∇2

2m
+Vext(r)+ gb |ψb |2 + gab |ψa |2

)
ψb −Ωψa . (1.38)

Now, because of the presence of the Rabi coupling Ω, only the total number of particles

Ntot is conserved and the spinor wave function is characterized by a single chemical

potential µ fixed by its normalization to Ntot =
∫

dr
(|ψa(r)|2 +|ψb(r)|2).

As we will see in Section 2.2 the system has one gapless Goldstone mode correspond-

ing to the fact that there is no cost to change the global phase of the spinor and one

gapped mode corresponding to the energy cost that must be paid for changing the rela-

tive phase, see Eq. (1.36).
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CHAPTER

2
Homogeneous gas

In this chapter we investigate the different ground states and the dynamics of a

Bose-Bose mixture in an homogeneous external potential. In particular we first

show the different phases this system can exhibit with or without the Rabi cou-

pling: miscible vs. immiscible and paramagnetic vs. ferromagnetic regimes. We

then describe its excitations focusing on the differences between density and spin

modes and finally we address the problem of persistent currents in a BEC mixture:

we derive a criterion for their stability and we check it by means of imaginary- and

real-time simulations of the Gross-Pitaevskii equations.
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Homogeneous gas

Trapping cold atoms in a box-shaped external potential is not so simple. Only recently,

thanks to the use of dark optical traps and phase-imprinting spatial light modulators

(SLM), the condensation of an atomic gas in a three dimensional (quasi)uniform po-

tential has become possible [30]. Most of the experiments are thus done with harmonic-

shaped trapping potentials. Despite that, we first discuss homogeneous systems not only

because they are simpler to study but also because most of the characteristics we will en-

counter here can be retrieved in the case of trapped mixtures be means of Local Density

Approximation (LDA).

2.1 Ground state phases

2.1.1 Ω= 0, miscible vs. immiscible phase

We start our analysis from the easiest situation in which there is no Rabi coupling be-

tween the two components,Ω= 0.

In this case the ground state can be either a uniform mixture of the two components,

or phase separated. The condition for the miscibility can be easily established investigat-

ing the energies of the two configurations in the homogeneous case (see Equation (1.21)

of Chapter 1):

Eunif =
ga

2

N 2
a

V
+ gb

2

N 2
b

V
+ gab

Na Nb

V
(2.1)

Esepar = ga

2

N 2
a

Va
+ gb

2

N 2
b

Vb
(2.2)

where Va and Vb are the volumes occupied by the two separated phases and Va +Vb =V .

To ensure the mechanical equilibrium between the two phases they must satisfy the con-

dition ∂Esepar/∂Va = ∂Esepar/∂Vb that implies the relationship ga(Na/Va)2 = gb(Nb/Vb)2.

Using this last expression we can rewrite the phase separation energy, Eq. (2.2), in a more

suitable form:

Esepar = ga

2

N 2
a

V
+ gb

2

N 2
b

V
+p

ga gb
Na Nb

V
. (2.3)

So, comparing Equation (2.1) with Equation (2.3), we see that, in order to have phase

separation (Esepar < Eunif), we must require [31]

gab >p
ga gb . (2.4)
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2.1 Ground state phases

At the critical value the system undergoes a first order phase transition creating two re-

gions in which only one component of the gas is present separated by a domain wall (for

a detailed discussion see [32, 29, 33]).

2.1.2 Ω 6= 0, paramagnetic vs. ferromagnetic phase

When the Rabi coupling is switched on the energy per unit volume is

e(na ,nb) = 1

2
gana

2 + 1

2
gbnb

2 + gabnanb +2|Ω|cosφ
p

nanb −µ(na +nb) (2.5)

where we have rewritten the spinor components wave functions in terms of densities

nσ and phases φσ, ψσ = p
nσeiφσ , and we have introduced the phase φ ≡ φr +φΩ in

terms of the phase difference φr =φb −φa and the phase of the Rabi coupling defined by

Ω= |Ω|eiφΩ .

The ground state of the system [34, 15, 35, 36] is given by the values of densities and

phases which minimize this energy. This configuration corresponds to cosφ = −1. For

Ω real (φΩ = 0,π) this means φr = π for Ω > 0 and φr = 0 for Ω < 0; for Ω complex,

the equilibrium value of φr is such that φr +φΩ = (2l + 1)π with l ∈ Z. Notice that the

condition cosφ = +1 can give rise to an extremum of the energy [34, 37, 38] but it will

never be the global minimum (in fact it is a saddle-point in the energy landscape). In the

following, without any loss of generality, we assumeΩ to be real and positive that implies

φr =π.

The structure of the ground state is better understood in the Z2 symmetric case ga =
gb ≡ g and, since the total density n is fixed, the equilibrium configuration is charac-

terised by the density difference or polarization P = (na −nb)/n. Neglecting the gradient

term and subtracting the two GP equations, Eqs. (1.37)-(1.38), we get a simple relation

the equilibrium solutions must satisfy:(
g − gab +

Ωp
nanb

)
(na −nb) = 0. (2.6)

The latter equation admits two possible solutions

(GSU) (na −nb) = 0, (2.7)

(GSP) (na −nb)± =±n

√
1−

(
2|Ω|

(g − gab)n

)2

; (2.8)

corresponding to an unpolarized (GSU) and to a polarized (GSP) ground state. Introduc-

ing the critical interspecies interaction value as ḡab = g +2Ω/n one can easily find that

the energetically favoured state is GSU when gab < ḡab and GSP for gab > ḡab .
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Homogeneous gas
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FIGURE 2.1: Polarization of the condensate as a function of the interspecies interaction gab

with Ω = 0.3g n. Insets: Bloch sphere representation, the Rabi coupling tries to maintain the
spinor order parameter in the x-y plane, while the unbalance between inter- and intra-species
interaction favour a non zero projection along the z axis, i.e. a finite polarization.

As shown in Fig. 2.1, at the critical point gab = ḡab there exists a bifurcation in the

ground state solutions which hints a second-order phase transition. This bifurcation has

been measured experimentally by M. Oberthaler group, see Ref. [8]. This phase transition

is very different from the miscible-immiscible one occurring in the mixture without Rabi

coupling. In the latter the presence of coherent coupling shifts the critical point to higher

values of interspecies interaction and prevents phase separation by instead creating a

finite polarization.

2.2 Excitations: density vs. spin modes

The whole spectrum of the system is captured using a Bogoliubov approach. To address

small amplitude excitations above the ground state we write the time-dependent order

parameter as

Ψσ(r, t ) = e−iµt/ħ [
ψσ+eiφσδΨσ(r, t )

]
, (2.9)
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2.2 Excitations: density vs. spin modes

with µ the chemical potential of the complete system, ψσ the ground state wave func-

tions ψσ =p
nσeiφσ and σ= a,b. Since we are dealing with an homogeneous system we

can write the perturbations δΨσ as plane waves with complex amplitudes uσ and vσ,

δΨσ = uσei(k·r−ωt ) (2.10)

δΨ∗
σ = vσei(k·r−ωt ). (2.11)

After some algebra an eigenvalue equation is reached

ħω


ua

va

ub

vb

=L


ua

va

ub

vb

 , (2.12)

where the linear operator L is given by

L =


ha gana gab

p
nanb −|Ω| gab

p
nanb

−gana −ha −gab
p

nanb −gab
p

nanb +|Ω|
gab

p
nanb −|Ω| gab

p
nanb hb gbnb

−gab
p

nanb −gab
p

nanb +|Ω| −gbnb −hb


(2.13)

and we have defined

ha = ħ2k2

2m
+2gana + gabnb −µa (2.14)

hb = ħ2k2

2m
+2gbnb + gabna −µb (2.15)

µ≡µa =µb = 1

2

[
gana + gbnb + gabn − np

nanb
|Ω|

]
forΩ 6= 0 (2.16)

µa = gana + gabnb forΩ= 0 (2.17)

µb = gbnb + gabna forΩ= 0 (2.18)

In order to obtain the main characteristics of the dispersions it is easiest to take equal

intraspecies interactions, ga = gb ≡ g . We start analysing excitations above the sym-

metric unpolarized ground state GSU which corresponds to na = nb = n/2 as shown in

Fig. 2.1. In this situation the solutions, that clearly exist only for gab < g +2Ω/n, take the
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FIGURE 2.2: Upper panels: dispersion relations for Ω = 0, density (full line) and spin mode
(dashed line) for gab = 0.5g (left panel) and gab = g (right panel). Lower panel: density (full line)
and spin (dashed line) speed of sound as a function of gab/g , dotted line represents the phase
separation point. ξ = ħ/

p
mg n is the healing length and c̃ = (

√
2m/g n)cvis the speed of sound

in adimensional units.

form [39]:

ħωd =
√

ħ2k2

2m

[ħ2k2

2m
+ (g + gab)n

]
(2.19)

ħωs =
√

ħ2k2

2m

[ħ2k2

2m
+ (g − gab)n +4|Ω|

]
+2|Ω|[(g − gab)n +2|Ω|] (2.20)

2.2.1 Ω= 0, normal mixture

WhenΩ= 0 we get two Bogoliubov-like dispersion relations, linear at low k and quadratic

at high k (see upper left panel of Fig. 2.2). These two modes, hereafter called respectively

density and spin, are the dispersion laws in which the two components of the system

moves in phase (Eq. 2.19) or counterphase (Eq. 2.20). They represent the two gapless

Goldstone modes due to the breaking of the U(1)×U(1) symmetry possessed by the sys-

tem. The linear slopes are different for density and spin excitations and are given by the
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k0ξ

0 0.2 0.4 0.6 0.8 1
0

0.5

1

kξ

ħω
/g

n

0 0.2 0.4 0.6 0.8 1

kξ

0 0.2 0.4 0.6 0.8 1
0

0.5

1

kξ

ħω
/g

n

FIGURE 2.3: Dispersion relations for Ω 6= 0: density (full line) and spin mode (dashed line).
Upper left panel: below the transition, above the unpolarized ground state (GSU), with gab =
0.5g and Ω = 0.1g n. Upper right panel: at the transition point, with gab = 1.2g and Ω = 0.1g n.
Lower panel: above the transition, above the polarized ground state (GSP), with gab = 1.3g and
Ω= 0.02g n. Dotted line represents the position of the crossing point k0.

density and spin speeds of sound (see lower panel of Fig. 2.2),

cd ,s
2 = ca

2 + cb
2

2
± 1

2

√
ca

4 + cb
4 +2ca

2cb
2

(
2gab

2

ga gb
−1

)
= g n

2m

(
1± gab

g

)
for ga = gb ≡ g and na = nb = n/2 (2.21)

where cσ2 = g nσ/m and σ= a,b. At the demixing point g = gab , the spin speed of sound

vanishes (see lower panel of Fig. 2.2) and the spin-sector becomes quadratic also at low

k (see upper right panel of Fig. 2.2) underlining the first order phase transition between

a mixed and a phase separated state taking place in the system.

2.2.2 Ω 6= 0, spinor condensate

As shown in the upper left panel of Fig. 2.3, forΩ 6= 0, the density sector, being the Gold-

stone mode related to the total particle number conservation, remains linear and gapless
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Homogeneous gas

at low k, it does not depend onΩ, see Eq. 2.19. In contrast, the frequencyωs corresponds

to a gapped spin mode with a ∼ k2 behaviour for k → 0 above the gap

ħωG =
√

2|Ω|[(g − gab)n +2|Ω|]. (2.22)

In addition there is a crossing between the two branches at momentum

k0 =
√

2m|Ω|
ħ2

(
g

gab −2|Ω|/n
−1

)
. (2.23)

Notice that k0 exists only provided gab < g + 2|Ω|/n which is exactly the condition we

discuss in the previous Section for GSU to be the lowest energy state. From the dispersion

relations Eqs. (2.19) and (2.20) it is also clear that such an unpolarized phase can be

stable against polarisation only if gab < g +2|Ω|/n.

As the critical condition is approached, the crossing occurs at lower k and the gap en-

ergy approaches zero. At the critical point the gap ωG closes and the dispersion relation

becomes linear at low k, as can be seen in upper right panel of Fig. 2.3. Such a behaviour

is very different from the softening of the mode in the Ω = 0 case at the demixing point

because in that situation the spin-sector is gapless with a linear dispersion relation be-

fore the phase separation point and quadratic at phase transition.

Finally, for gab > ḡab the frequency ωs (calculated above GSU) becomes imaginary,

leading to instability, since the real ground state under this condition is the polarized one

(GSP). In this case (as well as for ga 6= gb) due to Z2 symmetry breaking the crossing be-

comes an avoided crossing (lower panel of Fig. 2.3 and [34] for an analytical expression

of the dispersion in the general case). Therefore a density (spin) mode at low momen-

tum becomes a spin (density) mode after the avoided crossing. For the GSP the point

where the avoided crossing occurs depends strongly on the specific location along the

bifurcation curve [39].

2.3 Superfluid current stability

The evolution of experimental apparatuses and of experimental techniques has led to

the possibility of trapping condensates in toroidal potentials [40, 41]. This has opened

the doors to the creation and study of persistent currents in these systems. Persistent

currents are dissipationless flows representing one of the strongest signatures of super-

fluidity. They are topological long-lived metastable states of quantum fluids which are
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2.3 Superfluid current stability

FIGURE 2.4: Metastability and decay of persistent currents. (a) Energy landscape of a superfluid
gas in a ring. Local minima correspond to metastable states with quantized angular momentum.
(b) Decay from a q = 5 state to a q = 4 state via a vortex-mediated phase slip. Figure taken from
[41].

described by a macroscopic wave function (order parameter in Bose-Einstein conden-

sates). The phase of this wave function must wind around the ring (torus) by an integer

multiple of 2π, corresponding to the charge q of a vortex trapped inside the ring.

In Figure 2.4 we show qualitatively the physical origin of the supercurrent metasta-

bility. In general, for N atoms in a ring trap, the average angular momentum per particle

does not need to be quantized but, when the system is superfluid this quantization be-

comes energetically preferred. In this situation the typical landscape of energy E as a

function of angular momentum L has a parabolic behaviour with local minima corre-

sponding to topologically distinct metastable states with L/N = ħq . Although the true

ground state of the system corresponds to the global minimum q = 0, a current state

with q 6= 0 can be extremely long-lived and almost immune to perturbations such as

thermal fluctuations and disorder. A transition between two adjacent minima involves a

2π phase slip [41] in the condensate wave function and it occurs when a single charged

vortex crosses the ring.

Persistent currents become unstable above a certain critical velocity (or equivalently

above a certain critical q) [42] and their decay in the absence of a weak link is a complex,

stochastic process related to the existence of barriers to the excitations to cross the bulk

superfluid [43, 44, 45].

These currents have been studied for decades in liquid helium and solid states sys-

tems [46, 47, 48, 49]. More recently it has become possible to trap an atomic BEC in a ring

geometry and induce rotational superflow in the system. This has opened the doors to

a lot of experiments where both long-lived superflows [41, 50] and quantized phase slips
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corresponding to vortices crossing the superfluid [41, 51] have been observed. These

first experiments were limited to spinless, single-component condensates; only in the

last few years they have been extended to multicomponent systems, essential for under-

standing superfluids with a vector order parameter and for applications in atom inter-

ferometry.

In particular, in a recent experiment of Z. Hadzibabic group [4], the stability of per-

sistent currents in a toroidal two-component Bose gas was studied for different polar-

izations of the mixture. They drew the stability diagram of the system finding a critical

polarization Pc below which currents decay very fast. In the opposite situation of high

polarization the currents persist for over 2 minutes eventually disappearing due to total

atom number decay.

Despite the growing number of experiment on these systems, the superfluid proper-

ties of BEC mixtures are still controversial, especially regarding the stability of persistent

currents. Indeed, existing theoretical predictions [1, 52, 3, 53, 54] do not explain the re-

cent experimental observations in [4]. Also, very recently the dynamics of the persistent

currents have been numerically simulated using spin-1 Gross-Pitaevskii equations [55],

but a deep theoretical understanding of the results in [4] is missing. Furthermore, argu-

ments related to the continuous twisting of the order parameter can be applied neither

to the mixture configuration nor in the presence of coherent coupling because in both

cases the Hamiltonian is generally not invariant under SU (2) transformations.

In order to get an insight in the problem we consider a 2-dimensional mixture in an

external ring-shaped trapping potential. In particular, for better comparison with exper-

iment [4], in all numerical simulations the potential is obtained as the sum of harmonic

and Gaussian potentials,

V = 1

2
mω⊥2r 2 +V0e−2r 2/σ0

2
(2.24)

whereω⊥ is the radial trapping frequency, r 2 = x2+y2 the radial coordinate,σ0 the beam

waist and V0 the strength of the laser beam which is proportional to its intensity. The

analytical results are instead obtained for a homogeneous ring potential of the form

V =
0 if R0 − r0 < r < R0 + r0

V0 otherwise.
(2.25)

Different ring traps change the results quantitatively but not qualitatively.

To characterize the rotation of the condensates, we can use the mean value of the

angular momentum along z, Lz , and the circulation, Γ. The first one has the advantage
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2.3 Superfluid current stability

of being independent on the circuit of integration, but the disadvantage of not being

quantized if the system is not axially symmetric. The circulation, on the other hand,

depends on the integration circuit but it is always quantized.

The angular momentum is given by

Lz = 〈ψ|L̂z |ψ〉 =
∫

d rψ∗L̂zψ (2.26)

with

L̂z =−iħ ∂

∂ϕ
=−iħ

(
x
∂

∂y
− y

∂

∂x

)
(2.27)

where ϕ is the azimuthal angle and the second form is the one used in the numerical

code.

The circulation is given by

Γ=
∮

v ·dl = ħ
m

∮
∇φ ·dl (2.28)

where we have used the definition of the superfluid velocity in terms of the phase of the

wave function, φ. It is easy to see that, in case of vortex-like solution, where φ= κϕ, the

circulation is quantized

Γ= ħ
m

∮
1

r⊥
∂

∂ϕ
(κϕ)r⊥dϕ= κħ

m

∮
dϕ= 2πκħ

m
= h

m
κ (2.29)

where r⊥ is the radius of the integration contour and we have taken an infinitesimal con-

tour element dl = r⊥dϕêϕ. In contrast to the angular momentum, this result is indepen-

dent of the density distribution. Numerically, if we are working in a Cartesian coordinate

system, it is convenient to introduce a square circuit on the plane x y . If this square has

vertices ABC D , we can write

Γ= ħ
m

[∫ B

A

∂φ

∂x
dx +

∫ C

B

∂φ

∂y
dy −

∫ D

C

∂φ

∂x
dx −

∫ A

D

∂φ

∂y
dy

]
. (2.30)

To calculate Γ it might be better to use the current instead of the phase, that is

j = nv = ħ
2mi

(
ψ∗∇ψ−ψ∇ψ∗)= ħ

m
Im

[
ψ∗∇ψ]

. (2.31)

Using this definition we obtain

Γ=
∫ B

A

jx

n
dx +

∫ C

B

jx

n
dy −

∫ D

C

jx

n
dx −

∫ A

D

jy

n
dy. (2.32)

In this way we avoid the problem of calculating φ through trigonometric functions and

worrying about the sign of the angles. This is the method used in the numerical code.
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2.3.1 Miscible regime

The main result we find is that, in the miscible regime and without coherent coupling

between the two components, the stability of persistent currents is closely related to the

Bogoliubov spectrum.

Dispersion relations above states with finite velocities

Since we are interested in the stability of states with superfluid currents we need to calcu-

late the Bogoliubov spectrum above a mean-field state where components a and b move

at velocities va and vb , respectively,

Ψσ(r, t ) = (
ψσ+δΨσ(r, t )

)
e−iµσt/ħe−i mvσ·r/ħ (2.33)

where µa = mv2
a/2+ gana + gabnb is the chemical potential for component a and µb

is the corresponding expression for component b (see Eqs. (2.17)-(2.18) plus the kinetic

energy associated with the rotation). The superfluid velocities vσ are related to the phase

of the order parameters, Sσ, as vσ = ħ/m∇Sσ, where σ = a,b. To find the equations for

the (small) perturbations δΨσ, we proceed as in Sec. 2.2 obtaining a linear operator L

with a shift given by the velocities

L =


ha −ħva ·k gana gab

p
nanb gab

p
nanb

−gana −ha −ħva ·k −gab
p

nanb −gab
p

nanb

gab
p

nanb gab
p

nanb hb −ħvb ·k gbnb

−gab
p

nanb −gab
p

nanb −gbnb −hb −ħvb ·k

 (2.34)

where now hσ are defined as hσ =ħ2k2/(2m)+ gσnσ, with σ= a,b.

We first analyse the situation in which the mixture is at rest, vσ = 0. In this case the

diagonalization of the eigenproblem gives again the dispersion relations of last Section

that, generalised to na 6= nb and rewritten in terms of the total density n ≡ na +nb and of

the polarization of the mixture P = (na −nb)/n, read

ħωd ,s =
√

ħ2k2

2m

(ħ2k2

2m
+2mcd ,s

2

)
(2.35)

with

cd ,s
2 = g n

2m

(
1±

√
P 2 + (1−P 2)

gab
2

g 2

)
. (2.36)

As one can see from Fig. 2.5, in the limit of P → 1 the density mode is dominated by

the majority component, ca → cd , while the spin mode is dominated by the minority
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FIGURE 2.5: Spin, density and single species speeds of sound for gab = 0.8g with c̃ = c
√

g n/m.

component, cb → cs . Notice also from Eq. (2.36) that at the demixing transition point,

i.e. gab = g , the spin speed of sound vanishes for any polarization P , or equivalently

the susceptibility of the mixture diverges. Stability of persistent currents in this critical

regime has been addressed in Refs. [1, 3] for a one-dimensional ring, and in Ref. [52] in

two dimensions.

The second situation we study is when va = vb = v. It is easy to see that this gives rise

to a shift in the frequencies by the quantity v ·k, which has the role of a classical Doppler

shift

ħωd ,s =
√

ħ2k2

2m

(ħ2k2

2m
+2mcd ,s

2

)
−ħv ·k. (2.37)

As one can see in Fig. 2.6, when the system is in the proximity of the criticality, gab . g ,

the effect of a non zero velocity is small for the density mode that is higher in energy. In

contrast, the spin mode is much more sensitive and adding a velocity can have strong

consequences on the dispersions. In particular, they are bended toward the k-axis and,

for large enough velocities they can become negative leading to an energetic instability

which, as shown in the next Section, is responsible for a great extent to the decay of

persistent currents. Notice also that in Fig. 2.6 we indicate the velocity values by means

of the parameter κ that takes into account the quantization of the circulation in a ring

geometry, |v| = ħκ/mR0 where R0 is the central radius of the ring.
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FIGURE 2.6: Bogoliubov excitation spectra for density (ωd ) and spin (ωs ) modes. Different col-
ors correspond to different quanta of circulation in the ring, points correspond to discretized
values of k arising from the ring geometry. Parameters used are P = 0, gab = 0.95g , radius of the
ring R0 = 18ξ.

Stability diagram

For κ = 0 the Bogoliubov dispersion relations are linear at low k with slope given by the

spin or density speed of sound so, for κ 6= 0, when the flow velocity equals the speed of

sound, the dispersion becomes tangent to theω= 0 axis and triggers a Landau instability.

Since the spin mode has the lower speed, the instability appears first in the spin channel

leading to the following criterion for the stability of persistent currents: when the flow

velocity is larger than the spin speed of sound the currents become energetically unstable.

In order to check our prediction we have numerically solved the coupled GP equa-

tions (see Chapter 4) with a vortex-like initial configuration

Ψσ(τ= 0) =ψσ

(
x + i y√
x2 + y2

)κσ
(2.38)

with σ = a,b, τ the imaginary time variable, κa = κb = κ. The functions ψσ have been

built from both random density and phase distributions, in order to prevent the algo-

rithm from reaching false metastable states. The system is then allowed to evolve freely

in imaginary time until convergence is reached. After convergence, we calculate the ex-

pectation value of the angular momentum per particle, L(σ)
z , and the circulation integral,

Γσ, evaluated in a closed circuit around the central hole.
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FIGURE 2.7: Stability diagram of persistent currents in the miscible regime obtained from
imaginary-time simulations. The left y-axis shows the initial velocity and the right y-axis the
initial angular momentum per particle, which is quantized in multiples of κ. The solid line rep-
resents the spin speed of sound cs [see Eq. (2.36)] computed at the density maxima by taking into
account the corrective factor for 2D geometries (see Appendix A). The upper dashed line repre-
sents the boundary for dynamical instability when vb = 0 obtained from Bogoliubov analysis. a⊥
is the harmonic oscillator length a⊥ =√ħ/mω⊥.

The result are summarized in Fig. 2.7. The metastability of the initial states is shown

as different shaded regions, corresponding to different stability regimes. The supercur-

rent is stable (dark region) if the velocity at the density maximum is smaller than the spin

speed of sound (black solid line), in good agreement with the above criterion relating su-

percurrent instability to the Landau instability of the spin mode (see also [3]). The spin

speed of sound has been renormalized by the factor
p

2/3 that takes into account the

effect of the transverse width of the condensate (see Appendix A). This factor has been

obtained in Thomas-Fermi limit and for a very long prolate harmonic trap with periodic

boundary conditions. There might thus exist a small correction due to the anharmonic-

ity of the trapping potential used in the numerical simulations (see Eq. 2.24) and to the

bending introduced by the ring geometry. As one can see in Figure 2.7, these corrections

do not seem to have any appreciable effect on the numerical data.

Furthermore, the numerical simulations allow us to distinguish between two unsta-

ble regions:
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(i) a partially stable one, where the current in the majority component is stable, while

it decays in the minority component;

(ii) an unstable one where both currents are unstable.

While the boundary between the partially stable and the stable region is determined by

the spin speed of sound, the boundary between the partially stable and the unstable

region is not fixed by any universal criterion and its exact position depends on the geom-

etry of the system, as is discussed in the next paragraph.

Partially stable region

The existence of a criterion for the stability of currents is quite obvious but the presence

of a region in which only the current in the minority component decays can be surpris-

ing. In this paragraph we give a physical interpretation of the mechanism that lead to

this behaviour.

If we go back to Fig. 2.5 we see that in the limit of P → 1 the spin mode is dominated

by the minority component. In physical terms, the minority component is more sensitive

to spin excitations, whereas the majority component becomes more stable, being less

affected by spin-density excitations. In mathematical terms, further insight is provided

by considering the case where the two components have different velocities, va 6= vb .

Clearly, once the minority component has lost a part of its initial angular momentum,

the dispersion relation is no longer given by Eq. (2.36) and a non-linear Doppler shift is

originated by the velocity difference. As a result, the system becomes more stable.

An example of this analysis is shown in Fig. 2.8. This figure shows the maximum

velocity that component a can sustain for a fixed (quantized) initial velocity of b, such

that the energy of the spin excitations remains positive. The different curves have been

obtained by diagonalizing the operator L , see Eq. (2.34), with the parameters and the

densities taken from the ground state of the GP equations in the absence of currents.

The factor
p

2/3 (see Section A.2) has been applied to all curves. For comparison, we

have also plotted the spin sound velocity for equal flow velocities, cs , and the line of dy-

namical instability for vb = 0 (see next Section). We see from the figure that, at fixed P ,

as the velocity difference grows (that is, κb decreases), the allowed maximum velocity for

component a is larger. This means that the superflow can be stabilized by losing veloc-

ity in one of the components (in this case the minority component b). This argument

justifies the presence of the partially stable region in Fig. 2.7.
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FIGURE 2.8: Lines of energetic instability for vb = ħκb/mR0 for different values of κb (dashed
lines). The left y-axis shows the initial velocity and the right y-axis the initial angular momentum
per particle, which is quantized in multiples of κ. The instability corresponds to the maximum
velocity for the a component that leads to a positive spin-mode frequency. Dynamical instability
for vb = 0 (red full line) and spin speed of sound for equal velocities (black full line).

In order to further check these results and to avoid any spurious effect due to imagi-

nary time evolution, we also ran some simulation in real time adding a dissipation term

(see Chapter 4) in the GP equations. In Fig. 2.9 are represented the obtained results. As

one can see from the upper panel, the current in the majority component remains stable

throughout all the dynamics while the current in the minority one decays. The decay is

indeed induced by the creation of vortices that enter through the internal ring surface,

travel across the ring and exit from the external ring surface as is shown in the density

snapshots of Fig. 2.9 for the majority (upper row) and minority components (lower row).

These snapshots show the dynamical process explained above very clearly:

(a)-(b) the spin instability kicks in as out-of-phase density oscillations in the azimuthal

direction

(c)-(d) since the minority component is more sensitive to this perturbation, its density

oscillations grow enough to allow the penetration of vortices inside the ring
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FIGURE 2.9: Upper panel: time-dependence of angular momentum of components a (dashed
line) and b (solid line) in real-time dynamics in the partially stable region. Dotted lines represent
time at which snapshots are taken. Lower panels: density snapshots of components a (upper
row) and b (lower row) at times: t = 260ω−1

⊥ in panels (a) and (b), t = 305ω−1
⊥ in panels (c) and

(d), and t = 560ω−1
⊥ in panels (e) and (f). The density (in units of a−2

⊥ ) is represented by the color
scale. For this case Pz = 0.8 and κ= 7.

(e)-(f ) finally, after losing angular momentum, the system is stabilized through the new

stability criterion shown in Fig. 2.8
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Dynamical instability

The energetic instability, although being the relevant one when the two superfluids have

the same velocity, is not the only mechanism that can trigger the decay of persistent cur-
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rents in a binary mixture. Indeed, when the difference between the velocities of the two

components, |va − vb |, exceeds some critical value the eigenfrequencies corresponding

to the spin-density mode acquire an imaginary part, leading to an exponential growth of

the spin excitations that makes the flow dynamically unstable.

This dynamical instability is a more general result due to the breaking of Galilean

invariance and in the context of binary mixtures is know as counterflow instability. It has

been studied both theoretically [56, 57, 58, 59] and experimentally [60, 61] and recently

also in the context of spin-orbit coupled condensates [62].

In the top panel of Fig. 2.10 the structure of the dispersion relations is shown. In a

range around 0 the frequencies acquire an imaginary part and the real part, in the limit

of small k, is nonzero in contrast to the case of the demixing instability driven by inter-

species interaction.

Also in this case we can distinguish three different regimes in the (this time imagi-

nary) time dynamics (see density snapshots of Fig. 2.10):

(a)-(b) in a first stage the two components oscillates in a radial breathing mode;

(c)-(d) in a second stage the dynamical instability shows up and deformations in the

condensate densities appear;

(e)-(f ) in a third stage vortices enter in the mixture stabilizing the angular momentum

to L(a)
z = L(b)

z = Lz /2.

Notice that the maxima of density in one component correspond to the minima of the

other component thus confirming that the instability is driven by the spin mode. Since

our imaginary time evolution has no dissipation terms, the total angular momentum is

conserved and the vortices can not escape the torus. However if we add a small imag-

inary term on the left-hand of GP equations we get an evolution in which both energy

and angular momentum decrease in time thus allowing the vortices to exit.

2.3.2 Immiscible regime

In the last Section we learned that the criterion for the stability of currents in misci-

ble mixture is related to the Bogoliubov spectrum and in particular to the spin speed

of sound. When the mixture is in the immiscible regime things are very different. The

ground state is formed by two single-species condensates separated by a domain wall

and, excluding the modes located in the vicinity of the wall, the Bogoliubov spectrum in
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different values of the polarization and as a function of the imaginary time, τ. The color scale
represents the value of the circulation. In the insets the final density of the majority component
for P = 0.6 (top) and P = 0.95 (bottom) are plotted.

the bulk is that of a single component. In this case we can not rely on simple analyti-

cal arguments and the results strongly depend on the geometry of the system. For these

reasons we show only some numerical results.

In Fig. 2.11 the stability diagram for the majority component is plotted. As one can

see the current is stable only for very high polarization, P > 0.9. In order to explain such

a behaviour we take a look at the density profiles for different polarization (see insets of

Fig. 2.11, the minority component is not shown but it occupies the empty region of the

ring). When P is small, the two components occupy two sectors of the ring whose length

is determined by the value of P (top inset). Conversely, when P is large, the minority

component occupies only a small region, creating a barrier (or weak link, depending on

the value of the penetration length) for the majority component (bottom inset). These

two kinds of density distributions correspond, respectively, to ground states character-

ized by µa =µb and by µa >µb .

The current in the minority component is always unstable, since it occupies a simply

connected region in the torus. The persistence of the current in the majority component

depends instead on satisfying two conditions: (i) it occupies a multiply connected re-
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gion, and (ii) the barrier formed by the minority component is small enough to prevent

vortices from escaping (similarly to what happens in weak-link systems [Wright2013, 50,

63] and in dipolar condensates [64]). In the present situation, we identify three regimes:

for Pz > 0.9 persistent currents are stable, for 0.6 < Pz < 0.9 the decay consists in a series

of jumps through states with integer circulation, and for Pz < 0.6 the decay is continuous.

Despite not being real time, imaginary time evolution gives an idea of whether the sys-

tem reaches its ground state, or else remains blocked in a metastable state. Qualitatively

similar behaviour is expected in an experiment due to dissipative effects.

2.3.3 Coherently coupled mixture

For the sake of completeness, we briefly discuss the case in which particle exchange is

allowed by the presence of a linear coupling, Ω 6= 0. Since in this case a gap opens in

the spin-density mode, the Landau critical velocity becomes larger than in the binary

mixture. Consequently, the spinor two-component condensate becomes stable in con-

figurations where the normal mixture was unstable. Stability is also reinforced by the

presence ofΩ, which ensures P = 0. This result fully agrees with the experimental obser-

vations of [4]. In the polarized regime, the criterion for stability is more complex since

the neutral and polarized phases always coexist in the trap [39]. However, phase coher-

ence still guarantees that the two species decay together. For a more detailed and recent

analysis of persistent currents in coherently coupled Bose-Einstein condensates please

see Ref. [65].
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CHAPTER

3
Trapped case

In this Chapter we extend the results of the previous one to a system trapped with

harmonic shaped potentials. In particular we show the different ground states the

mixture can have with or without Rabi coupling and we analyse its dynamics in

some interesting regimes: we study the behaviour of a solitonic structure and the

dipole oscillations of the mixture across theΩ-induced phase transition. In this last

case we characterize an interesting phenomenon of ground state relaxation.
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Trapped case

The experimental realization of Bose Einstein condensates has been achieved in atomic

gases where the shape of the trapping potential is, in many cases, well approximated by

a harmonic shape.

In the presence of harmonic trapping the GP equation should be solved numerically

except for some special limits, one of this is the so called Thomas-Fermi limit. When the

interaction is repulsive (g > 0) its effect is to spread the gas, increasing the size of the

cloud with respect to the non-interacting case. Eventually, if the effect of the interaction

is very important, the width of the gas will become so large and the density profile so

smooth that one can ignore the kinetic energy term in the GP equation.

When density is a smooth function of the spatial coordinate one can also use the

Local Density Approximation describing every point of the cloud as an homogeneous

system with density equal to the local density of the inhomogeneous one.

3.1 Phase separated configuration

For what regards the transition between a miscible and an immiscible phase the results

of Section 2.1.1 hold equally within LDA. The criterion for phase separation is the same

(gab >p
ga gb) and the only difference is that changing the trap shape or the system pa-

rameters we can have a wider zoology of configurations (see for instance [32] for more

details).

We now focus on the particular case of a highly unbalanced mixture and for con-

creteness we consider Na À Nb
1. For a mixture with equal masses, equal traps, equal

intraspecies interactions, ga = gb ≡ g , and in the phase separation regime (gab > g ), the

ground state densities are plotted in the left panel of Figure 3.1. Let us remind that in

obtaining the phase separated density profiles with numerical methods one has to be a

little careful. The ground states in Figure 3.1 have been obtained inserting some asym-

metry in the initial wave functions, if they have been perfectly symmetric one would have

found the wrong ground state in which the smaller component remains at the centre of

the bigger one or it splits up in two parts located on the sides (both these solutions have

a bigger energy). A recent and detailed discussion about this issue can be found in [66].

In order to get a configuration where the minority component is at the centre of the

trap (as shown in the right panel of Figure 3.1) we take, for equal masses, the trapping

frequency of the minority component bigger than the one of the majority component.

Indeed, in this case, the energy gained by separation is less than the energy lost by going

1In such a regime LDA does not generally hold.
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FIGURE 3.1: Ground state configurations in the phase separated regime. Left panel: a typical
configuration for equal trapping frequencies. Right panel: the same system with ωb = 2.5ωa .
Parameters are Na = 200, Nb = 10, gab = 1.5g .

in a region in which the trapping potential is higher. When we have very few particles in

the minority component (in Fig. 3.1 Na = 200 and Nb = 10) the quantum pressure plays

an important role and makes the majority component connected.

It is interesting to notice that in this last configuration the density profiles do not

show any drastic change by going across the phase transition point gab = p
ga gb (see

Figure 3.2). As we will see in Section 3.2, the dynamics of such structure is instead very

much affected by the interaction values showing two completely different behaviours in

miscible and immiscible regimes.

Let us here just mention that, if we remove the minority trapping potential for gab <
g , the minority component will escape while, for gab > g , it will remain there.

3.2 Breathing and dipole modes across phase separation

In this section we will focus on the dynamics of an unbalanced mixture going across the

phase separation point. In particular we will study two different modes of the minority

components of the system: breathing and dipole mode.

In the former the system is initially in the ground state obtained with both traps cen-

tred in zero but with a bigger trapping frequency for the minority component (see right

plot of Figure 3.1). At time t = 0 this frequency is suddenly set to the value of the majority
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FIGURE 3.2: Majority and minority density profiles for different values of the parameter ∆ =
ga gb/g 2

ab . We change the value of gb and we take gab = g . The mixture is miscible for ∆> 1 and
the case gab = 0 corresponds to ∆=∞.

component trap and the system starts its oscillations. At regular real time intervals we

calculate and record the expectation value of our breathing operator B ,

B = 1

Nb

∫
x2|Ψb(x)|2dx. (3.1)

For the dipole mode the system is again prepared with a narrower trap for the mi-

nority component but this time this second trap is shifted and centred in a position xD .

At time t = 0 the trap of the minority component is suddenly centred in zero and its fre-

quency set to the value of the majority component one so the system starts to oscillate in

a species independent external potential. At regular real time intervals we calculate and

record the expectation value of our dipole operator D ,

D = 1

Nb

∫
x|Ψb(x)|2dx. (3.2)

3.2.1 Double Domain Wall Soliton

As explained in Ref. [21] and Ref. [67], for a very unbalanced mixture it is possible to

describe the dispersion law of the minority component simply as a correction to the one
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FIGURE 3.3: Breathing mode frequencies across phase separation point as a function of gb .
Dashed grey line represents the value of frequency in miscible regime given by Eq. (3.3). Param-
eters are Na/Nb = 20, ma = mb , ga = 2gab ≡ g for the black points, ga = 2gab = 1.5g for the red
ones and ga = 2gab = 2g for the blue ones. Lines connecting points are only a guide to the eyes.
Inset: breathing mode frequency for ga = 2gab ≡ g (diamonds) and function 1/(kd) (dashed line).

of a single component gas. In particular, being b the minority one, one has

ωk,b
2 =ωb

2 k(k +1)

2

(
1− gabmaωa

2

gambωb
2

)
(3.3)

where the first fraction is the usual dispersion for a one dimensional single component

gas [68] while the term in parenthesis is the correction. The modes that we consider here

corresponds to k = 1 (dipole mode) and k = 2 (breathing, lowest compressional mode).

Notice that in this regime the minority component modes coincide essentially with

the out-of-phase mode and it is interesting that the parameter gb does not enter at all

in Equation (3.3). This means that the out-of-phase frequency can go to zero, but such

softening has nothing to do with the the phase separation. In the homogeneous case, in-

stead, as shown in Chapter 2, the lowest out-of-phase mode is linear (sound like) in the

momentum and it becomes quadratic, i.e. the speed of sound becomes zero or equiva-

lently the susceptibility diverges, precisely at the phase transition.

This result is obtained considering a miscible system, we will now figure out how

things change going through the phase transition. A clever way for doing so is modify
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FIGURE 3.4: Dipole mode frequencies across phase separation point as a function of gb . Dashed
grey line represents the value of frequency in miscible regime given by Eq. (3.3). Parameters are
Na/Nb = 20, ma = mb , ga = 2gab ≡ g for the black points, ga = 2gab = 1.5g for the red ones and
ga = 2gab = 2g for the blue ones. Lines are linear fits to the data points. Inset: dipole mode
frequency for ga = 2gab ≡ g (diamonds) and fitted function A+Bkd (dashed line).

only gb : if Eq. (3.3) correctly describes the dispersion then, since it does not depend on

gb , we should get a constant frequency no matter the value of the minority compon-

ent intraspecies interaction. The results of such analysis are shown in Figure 3.3 for the

breathing mode and in Figure 3.4 for the dipole mode.

From both these Figures one immediately sees the differences between the miscible

and immiscible regime. In the first one the frequencies are almost constant varying gb

while in the second one the behaviour is very different and not universal. The general

trend is however quite natural. For the breathing mode the narrower the density hole

(see Figure 3.2), the larger is the frequency. Indeed the frequency increases both de-

creasing gb or increasing ga . For the dipole mode instead, the narrower the density hole

the smaller is the frequency and it decreases both decreasing gb or increasing ga .

We know that in the immiscible regime the mixture has a tendency in forming do-

main walls. Indeed if one tries to fit the soliton solutions with a simple double domain
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FIGURE 3.5: Density maps describing the time evolution of a collisional event in miscible regime
(top plot) and immiscible regime (bottom plot).

wall ansatz in analogy with the single DW profile (see, e.g., [69])

ψDDW(x) ∝ tanh[k(x +d)]− tanh[k(x −d)], (3.4)

with k and d positive real numbers, the agreement is perfect. Moreover as it can been

seen from the insets of Figures 3.3 and 3.4 the mode frequencies are strictly related to

the dimensionless parameter kd , which can be interpreted as an effective width of the

double domain wall soliton. In particular we find that in the solitonic regime kd ∝ ∆

and the breathing mode frequency is inversely proportional to gb or equivalently to kd

at fixed ga and gab , while the dependence of the dipole mode frequency is linear (Figs.

3.3 and 3.4). Such a nice behaviour does not work in the miscible regime where domain

walls should not be present.
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In this Section we often refer to the double domain wall as a soliton, now we want to

explain the motivations behind this definition. The first evidence is its dynamics inside

the trap during a dipole oscillation. The double domain wall structure remains localized,

its motion is not dispersive and the structure is globally well defined also after many peri-

ods of oscillation. Vice versa in the miscible case the motion of the impurity is dispersive

and it excites phonons in the majority component already after a few periods of oscilla-

tion. The oscillation of the minority component (the out-of-phase mode) is damped out

already after a few periods [67].

Finally we address the behaviour of the double domain wall against collisions with

respect to the the miscible case. For this we simulate a collision between two very small

cloud of the minority component. We find that the collisional behaviour is even more

different depending on whether the gases are miscible or not as clearly shown in Figure

3.5. In the earlier case, ∆ > 1, already after the first collision, dispersion and interfer-

ence appear and the two impurities lose soon their identity. On the contrary the double

domain wall solitons (∆< 1) keep being well defined objects even after many collisions,

justifying the name soliton for such a structure.

3.3 Paramagnetic and ferromagnetic states in trap

As already described in Chapter 2, when the coherent coupling is switched on, things

change very much. Phase separation does not occur any more and the mixture shows in-

stead a phase transition between an unpolarized and a polarized configuration. The crit-

ical point is no more the geometric mean of the intraspecies interactions but it becomes

density dependent with the addition of a term proportional toΩ, ḡab = g +2|Ω|/n.

As already discussed, neglecting the kinetic terms in GP equations and subtracting

and adding them we obtain(
g − gab +

|Ω|p
nanb

)
(na −nb) =Vb −Va (3.5)(

g + gab −
|Ω|p
nanb

)
(na +nb) = 2µ− (Vb +Va) (3.6)

where this time we have also a term taking into account the external trapping potentials.

Here we consider two equal harmonic traps of the form

Va(r ) =Vb(r ) ≡V (r ) = 1

2
mω2r 2, (3.7)
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3.3 Paramagnetic and ferromagnetic states in trap

so the right-hand-side of Eq. (3.5) vanishes and we obtain the same equation of the

homogeneous case with the only difference that now the densities are position depen-

dent. This means that, within local density approximation, the system has two differ-

ent ground states characterized locally by the same solutions of the homogeneous case,

Equations (2.7) and (2.8). In particular the system is in the unpolarized ground state

(GSU) for gab < ḡab(r ) and in the polarized one (GSP) for gab > ḡab(r ).

The differences with the homogeneous case are given by the fact that now also the

critical condition is position dependent. Since at low density the Rabi flipping term al-

ways dominates, for the two-component spinor condensate in a harmonic trap we can

distinguish two different scenarios:

(i) the whole system is in GSU, i.e. the critical condition gab < ḡab(r ) is fulfilled at

the point in which it is more restrictive, that is at r = 0 where the total density is

maximum;

(ii) GSP is the lowest energy state at the center of the trap, i.e. gab > ḡab(0). Then,

since the total density goes to 0 moving towards trap edges, there exists always a

critical radius Rc above which the lowest energy state becomes GSU, i.e. gab <
ḡab(r ) for r > Rc . In this case we have coexistence of the two ground states in the

same system with the transition occurring at r = Rc .

This allows us to define a critical value also for the Rabi coupling,

Ωcr = 1

2
n(0)(gab − g ), (3.8)

for valuesΩ≥Ωcr the system is unpolarized everywhere.

When the system is in the GSU (everywhere in the first situation and for r > Rc in

the second one) the densities of the two components are equal, na(r ) = nb(r ) = n(r )/2.

Inserting these densities into Eq. (3.6), we can easily get an analytical expression for the

profiles

n(r ) = 2
µ+|Ω|−Vho(r )

g + gab
= 2(µ+|Ω|)

g + gab

(
1− r 2

RT F
2

)
(3.9)

where

RT F
2 = 2(µ+|Ω|)

mω2 (3.10)

and µ is given by imposing the total number of particles

µ=
[

3

8
N (g + gab)

]2/3 (
mω2

2

)1/3

−Ω. (3.11)
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FIGURE 3.6: Ground state of the two component spinor condensate in equal harmonic traps:
na (light grey), nb (dashed blue) and n (black). The inner region is described by GSP and the
outer one by GSU. Parameters are gab = 1.3g ,Ω= 0.1µ and Rc ' 0.55RT F , n0 represents the total
density at the center of the trap.

At the critical radius both the terms in parenthesis on the left-hand-side of Eq. (3.5)

must be zero. This means that we still have equal densities in the two components, so
p

nanb = n/2, and setting to zero the first parenthesis we obtain the condition n(Rc ) =
2|Ω|/(gab − g ). Inserting it in Eq. (3.9) we finally find

Rc =
√

1

mω2

(
2µ+4|Ω| g

g − gab

)
. (3.12)

In the internal region, where r < Rc and the system is in GSP, the densities are different

between each other and the only way to satisfy Eq. (3.5) is to have the first term equal

zero. Solving this condition with the substitution na,b(r ) = n(r )−nb,a(r ) one gets

na,b(r ) = n(r )

2

[
1±

√
1−

(
2|Ω|

(gab − g )n(r )

)2
]

(3.13)

Summarizing all these informations, we obtain the densities plotted in Figure 3.6. Due

to the use of the local density approximation the density profiles measurement is a direct

mapping of the phase diagram of the corresponding homogeneous system (see Fig. 2.1).
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3.4 Narrowing one trap

3.4 Narrowing one trap

In Section 3.2 we studied how the system behaves when the trap of one component has

a bigger frequency than the trap for the second one. Now we want to analyse the same

situation but with coherent coupling between components switched on.

We define the trapping potentials for the two species as

Va = 1

2
mω2

hox2, Vb = 1

2
m

(
ηωho

)2 x2. (3.14)

In Figure 3.7 we show different ground states for different values of η and in different

positions along the paramagnetic-ferromagnetic transition. As one can see, a structure

similar to the DDWS of Section 3.2 appears for large values of η and, in general, the effect

ofΩ above the transition is that of smearing the density profile of the minority compon-

ent and of flatten the hole in majority one. In order to quantitatively characterize how

the ground states are changed by the phase transition, we introduce a quantity named

kurtosis and defined as the ratio between the fourth momentum and second momentum

squared:

γ2 =β2 −3 = m4

m2
2 −3. (3.15)

In the definition the value 3 is subtracted because a Gaussian distribution has a kurtosis

index β2 = 3. The quantity γ2 is a measure of the level of flattening of a distribution:

values lower than 0 indicate that our curve is more flattened than a Gaussian, values

greater than 0 the opposite, a curve sharper than a Gaussian. In our case it is better to

take as reference the situation in which η = 1 (equal traps) and ΩÀ Ωcr (equal ground

state profiles for the two component). The corresponding value for the parameters used

in numerical simulations is β2 ' 2.145. Thus, our modified kurtosis is

γGP = m4

m2
2 −2.145, (3.16)

where

m4 = 1

Na

∫
x4|ψa(x)|2dx, (3.17)

m2 = 1

Na

∫
x2|ψa(x)|2dx. (3.18)

We will focus on the minority component since it is the one that, more or less, maintain

its shape without drastically changing it on contrary of the majority one in which a cen-

tral hole appears. In Figure 3.8 we show the result of such analysis for different values of
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FIGURE 3.8: Kurtosis γGP for the minority component at different values of the narrowing factor
η across phase transition. Values lower than zero correspond to configurations more flattened
than the reference case (see Fig. 3.7 plot (a4)) while values bigger than zero correspond to sharper
configurations.

η. For equal traps (η = 1) we see that above the critical point the kurtosis is zero: in this

region, without any external perturbation, the system is globally and locally unpolarized

and the two densities coincide. Below the critical point instead the minority component

starts to flatten and the kurtosis drop below zero. The presence of a narrower trap for one

of the components (η> 1) has the effect of sharpening the density profile of this compon-

ent, thus increasing its kurtosis; the presence of the phase transition is still visible and,

above the critical point the kurtosis falls again toward zero.

The problem of kurtosis is that it tells us nothing about the presence of a central hole

in the densities. In order to characterize this factor we plot the second derivative in zero

of the density of the majority component. As one can see in Figure 3.9, for η large enough,

the second derivative starts from a negative value, for a interval of Ω values it becomes

positive (thus indicating the presence of a hole) and then it falls again below zero reach-

ing an asymptotic negative value that we call d2 and that will play a role in a while. For

η−1 ¿ 1 the trend is different, the hole does not appear in the majority component and

instead the derivative decreases before saturating to d2. The plot for n′′
b(0) is not shown

because is the almost perfect mirror image of n′′
a(0) with the reflection axis at n′′(0) = d2.

This means that the sum of the second derivatives is somehow conserved varyingΩ and

d2 is the value the derivative takes forΩÀΩcr when the two clouds coincide.
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FIGURE 3.9: Second derivative of the density of majority component in x = 0 across phase tran-
sition. Values lower than zero indicate the presence of a central hole in the density.

3.5 Paramagnetic spin dipole mode

In this and in the next Section we study the response of the Rabi coupled mixture to an

out-of-phase (spin) dipole perturbation. As we will see this response is very rich and cap-

tures many relevant phenomena related to the paramagnetic/ferromagnetic-like phase

transition taking place in the system.

3.5.1 Static dipole polarizability

A relative component perturbation is accessible in cold gases by applying different trap-

ping potentials for different atomic internal levels. In particular the spin-dipole configu-

ration is realized by applying trapping potentials that have the same shape, but that are

displaced for the two components of the gas by a quantity d

Va,b = 1

2
mωho

2 (x ±d)2

= 1

2
mω2

ho x2 ±mω2
ho xd +O(d 2), (3.19)

where d ¿ xho and xho =√ħ/(mωho) is the oscillator length associated with the traps.

The GP ground state solutions for the spinor gas in equal and displaced potentials is

reported in Figure 3.10. For the sake of concreteness we take gab > g in order to show the

difference with a phase separated mixture.
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When the traps are not displaced, d = 0 (row a), we see the features of theΩ-induced

phase transition: below the critical value the linear coupling prevents the phase sepa-

ration by creating a finite global polarization in the system (figure 3.10, plot (a2)); ap-

proaching the critical value the global polarization decreases (figure 3.10, plot (a3)) and

above the critical value the gas is unpolarized (figure 3.10, plot (a4)). In contrast, a nor-

mal mixture without Rabi coupling (Ω = 0) would be in a phase separated regime (fig-

ure 3.10, plot (a1)).

When instead the traps are displaced, d 6= 0 (row b), even a very small difference

in the potentials has strong consequences. The ferromagnetic configurations become

strongly polarized and as a result a domain wall is created at the center of the trap (fig-

ure 3.10, plot (b2) and (b3)). Since with different potentials the right-hand-side of Equa-

tion 3.5 is no more vanishing, the local polarization of the system is different from zero

everywhere (a part for x = 0) and both for the ferromagnetic and paramagnetic cases (see

figure 3.10, plot (b4)).

Notice also that without the Rabi coupling the ground state of the mixture in the

phase separated regime is almost unchanged by the traps displacement (figure 3.10, plot

(b1)).

In order to calculate the spin-dipole susceptibility we first determine the spin-dipole

moment D , defined as

D = 1

N

∫
x [na(x)−nb(x)]dx. (3.20)

The spin-dipole susceptibility is then defined by the limit

χsd = lim
d→0

D

λ
(3.21)

where λ= mω2
hod is the perturbation associated with the spin-dependent component of

the potential of Eq. (3.19).

In the global paramagnetic phase (Ω >Ωcr ) it is easy to obtain an analytical expres-

sion for χsd within local density approximation. In this case one can employ the energy

functional

E =
∫ [

χs
−1(na −nb)2 −λx(na −nb)

]
dx (3.22)

relative to the spin degrees of freedom of the problem, where

χs = 2

g − gab +2Ω/n
(3.23)

is the magnetic spin susceptibility for an homogeneous system of total density n (see,

e.g., [39]). Since in the paramagnetic region the density profiles are very close to the
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3.5 Paramagnetic spin dipole mode

ones without the potentials displacement we can treat the density difference as a small

quantity. Variation of the energy with respect to the spin density (na−nb) yields the result

na(x)−nb(x) = xλχs [n0(x)] , (3.24)

where n0(x) is the total density of the system in the GSU from Eq. (3.9). After substituting

this expression into Eq. (3.20) the spin-dipole polarizability finally reads

χsd = 1

N

∫
x2χs [n0(x)] (3.25)

After integration we obtain the result

D

d
= g + gab

g − gab

[
1+ f

(
Ω

(g − gab)n0

)]
(3.26)

for the dimensionless ratio D/d = mω2
hoχsd where we used the notation n0 = n0(0)/2,

being n0 the maximum density of each component in the paramagnetic regime, and we

have introduced the function

f (α) = 3α
[

1− (
p

1+α)arccoth(
p

1+α)
]

. (3.27)

Notice that the domain of the function f (α) to be real, i.e. 1/α ≥ −1, is precisely the

region in which the system is fully paramagnetic when we take α =Ω/(g − gab)n0 as in

Eq. 3.26

A couple of comments are due on this result. First of all we consider the case of a

normal Bose-Bose mixture, i.e. Ω → 0. In this case f (α → 0) → 0 and thus the spin-

dipole susceptibility is simply proportional to the magnetic susceptibility of equation

(3.23). Therefore, also χsd diverges at the miscible/immiscible transition point gab →
g−. Physically this is due to the fact that the two gases become globally immiscible at

this point since the latter condition is density independent. As we will see in the next

section, the divergence of the spin-dipole susceptibility leads to a zero frequency spin-

dipole mode. At the same point but for finiteΩwe have instead f (α→∞) →−1+2/(5α)

and therefore D/d = g n0/(5Ω).

By contrast, for finite Ω, the paramagnetic/ferromagnetic transition point, gab =
g +2Ω/n0, depends on the density. This means that the spinor gas starts becoming ferro-

magnetic at the center of the trap only. The spin-dipole susceptibility, χsd, being density

integrated, remains finite at the transition point (indeed f (−1) = −3) leading to a finite

frequency for the spin-dipole frequency (see next Section). This behaviour is very general
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FIGURE 3.11: Dipole D as a function of traps displacement d for different values of Ω/Ωcr and
for gab/g = 1.1. Dotted lines are analytical results from equation (3.26) for the four bigger values
ofΩ, points are numerical data and grey full lines are only a guide for the eye.

and it has already been pointed out for the Stoner (or itinerant ferromagnetic) instability

in the context of cold gases [70].

Above the critical point the response of the system is no longer linear. The system

is partially ferromagnetic and has the tendency to form a magnetic domain wall at the

centre of the trap.

A detailed analysis of the behaviour of D/d is shown in Figure 3.11 where we calcu-

late numerically the spin-dipole of the gas as a function of the trap separation d with the

choice gab/g = 1.1. Above the critical Rabi frequency we see that indeed linear response

applies and the analytical expression of equation (3.26) works very well for low d . No-

tice that the spin-dipole moment allows for a clear identification of the phase transition

point, above which the induced dipole moment D changes its behaviour as a function of

d .

3.5.2 Sum rule approach for spin-dipole dynamics

In this Section we study the dynamics of the system in the paramagnetic phase. In par-

ticular we let the ground state obtained in displaced traps to evolve in time after we sud-
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3.5 Paramagnetic spin dipole mode

denly set the displacement to zero. Notice that for two independent condensates (Ω= 0

and gab = 0) the spin-dipole frequency simply coincides with the trapping one, ωho .

As shown in Figure 3.10, plots (a4)-(b4), in the paramagnetic phase a small trap dis-

placement corresponds to a small deviation in density profiles with respect to the ground

states in same traps. This allows us to apply linear response theory in order to find an an-

alytical expression for the spin-dipole frequency. In particular, a very powerful tool to es-

timate collective modes frequencies is the so called sum rule approach [71, 72], a method

that has been successfully applied for the dynamics of both cold gases and nuclei.

Sum rules are defined for an operator F̂ as

mk (F ) =∑
n
|〈0|F̂ |n〉|2 (En −E0)k , (3.28)

and they represent the moments of the strength distribution function relative to F̂ . The

sum rule approach has the merit of providing a direct way to obtain an upper bound of

collective modes frequency through the ratio of different momenta, and therefore gives

an understanding of the collective mode frequency in terms of static macroscopic quan-

tities [72].

For the sake of concreteness we are here considering the response of the system to

the application of the spin-dipole operator

Ŝd =
N∑

i=1
xi σ̂z,i , (3.29)

and we want to use the energy weighted and the inverse energy weighted sum rules, i.e.,

ħ2ωsd
2 ≤ m1(Ŝd )

m−1(Ŝd )
. (3.30)

The energy weighted one (m1) can be easily rewritten in terms of a double commu-

tator [72] as

m1 = 1

2
〈0|[Ŝd , [H , Ŝd ]

] |0〉. (3.31)

The only terms in the Hamiltonian that do not commute with Ŝd are the kinetic energy

and the Rabi coupling that, as spinor operator, can be written as

HR =−Ω∑
i
σ̂x,i . (3.32)
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The first one gives the usual Nħ2/(2m) contribution while the second one, using the

commuting properties of Pauli matrices, can be easily evaluated to

[
Ŝd , [H , Ŝd ]

]=−Ω
[∑

i
xi σ̂z,i ,

[∑
i
σ̂x,i ,

∑
i

xi σ̂z,i

]]

=−2Ωi

[∑
i

xi σ̂z,i ,
∑

i
xi σ̂y,i

]
= 4Ω

∑
i

xi
2σ̂x,i . (3.33)

Averaging on the ground state (in Thomas-Fermi approximation) we obtain

m1 = N
ħ2

2m
+8Ω

∫ RT F

o
x2n0(x)dx

=ħωho xho
2 N

2

[
1+ 8

5

Ω

ħωho
(n0xho)

(g + gab)

ħωho xho

]
(3.34)

The inverse energy weighted sum rule (m−1) is instead directly proportional to the

spin-dipole susceptibility of the ground state through the relation [72]

m−1 = N

2
χsd, (3.35)

so, using the definition of Equation (3.21) and the result of Equation (3.25), one obtains

the following upper bound to the spin-dipole frequency

ωsd
2 =ωho

2
(

g − gab

g + gab

)[
1+8Ωn0(g + gab)/(5ħ2ωho

2)

1+ f
(
Ω/[(g − gab)n0]

) ]
. (3.36)

We here remind that this is only an upper bound to the frequency and that the equality

in Equation (3.30) is attained only when a single mode is excited in the system.

Before analysing the numerically extrapolated frequency values, we show in Figure

3.12 an example of motion of the two clouds. The last plot shows the dipole D as a func-

tion of time. As one can see, in general there is more than one mode (more than one

frequency) excited in the system and this is reflected in snapshots for t = 0 and t > 0

of the first row. The density profiles in fact become slightly deformed with time evolu-

tion and some “surface” modes appear. The second row show the map of the density of

component a as a function of time.

In Figure 3.13 the sum rule results are compared with the frequencies extrapolated

by a numerical real time evolution of the Gross-Pitaevskii equations. The frequencies

are extracted by the data via a Fourier analysis, the shown data points correspond to the

maximum amplitude components of the Fourier spectrum.

56



3.5 Paramagnetic spin dipole mode

0 2 4 6 8 10 12 14 16 18 20

−15

−7.5

0

7.5

15

ωho t

x
/x

h
o

0

2

4

6

−12 −6 0 6 12
0

2

4

6

8
ωho t = 0

x/x0

n
ix

0

−12 −6 0 6 12

ωho t = 7

x/x0

0 2 4 6 8 10 12 14 16 18 20

−0.4

−0.2

0

0.2

0.4

ωho t

D
/x

h
o

FIGURE 3.12: Spin dipole oscillations in paramagnetic regime for Ω= 1.5ħωho and gab = 0.9g .
Top row: density snapshots at time ωho t = 0 (left plot) and ωho t = 7 (right plot). Central row:
density map of component a as a function of time. Bottom row: time evolution of the dipole D .
A movie of such dynamics can be seen in [73] or in the Supplementary Material of [23].
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FIGURE 3.13: Spin-dipole frequency as a function ofΩ for different values of interactions. Lines
are analytical prediction from Equation (3.36) and points are numerical data. In order to have a
fully paramagnetic phase for gab > g we must require Ω ≥Ωcr (see text and Equation (3.8)), the
values ofΩcr for gab/g = 1.01 and gab/g = 1.02 are shown by dashed lines.

We first notice that at the transition point the frequency does not go to zero, since for

the reasons explained in the previous section χsd (or m−1) does not diverge at that point.

Below the transition point no more data are shown because we enter in the ferromag-

netic regime in which clearly linear response is no more applicable. If we compare these

results with the mixture case (recovered sendingΩ→ 0), we see that in this situation the

spin-dipole frequency vanishes close to the critical point following the law

ωSD(Ω= 0) =ωho

√
g − gab

g + gab
(3.37)

and the sum-rule approach gives the exact result as shown in Figure 3.14. This happens

because the magnetic spin susceptibility diverges at the critical point (see Eq. (3.23)) and,

since it does not depend any more on the density, the integration of Equation (3.25) does

not fix the divergence.

Sum-rules give the exact result also for the intrinsic SU (2) symmetric point gab = g

(andΩ 6= 0 in general) as it can be seen in Figure 3.13 (red triangles). The magnetic energy

of the spinor gas in this regime depends on the relative density only through the Rabi

coupling, which breaks the SU (2) symmetry of the system. The spin-dipole frequency
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FIGURE 3.14: Spin-dipole frequency for a Bose-Bose mixture, i.e. Ω= 0, as a function of gab/g .
Line is the analytical result of Equation (3.37) and points are numerical data. In this case the
spin-dipole frequency goes to zero at the phase separation point.

behaves in this case as

ħωSD(gab = g ) = 2Ω

√
1+ 5

16

ħ2ωho
2

g n0Ω
(3.38)

which is essentially twice the Rabi frequency and therefore almost independent of the

tapping frequency. The latter unusual result for a trapped gas is due to the correlation

between the internal and external degrees of freedom that in particular leads to the mod-

ification of the f -sum rule, see Equation (3.34). An example of this dynamics exactly cap-

tured by sum-rule approach is given in Figure 3.15. The real time evolution shows clearly

the presence of a single frequency, as opposed to gab 6= g (see Figure 3.12).

In the more general case, when both Ω and (gab − g ) are different from zero, the fre-

quency is given by the full Equation (3.36) in which both the coherent and the inter-

species s-wave couplings play a role. In this more general case one observes that the

sum-rule approach provides only an upper bound to the numerical solution, due to the

appearance of more frequencies in the numerical signal resulting in beating effects (see

Figure 3.12).
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FIGURE 3.15: Spin dipole oscillations in paramagnetic regime forΩ= 1.5ħωho and gab = g . Top
row: density snapshots at time ωho t = 0 (left plot) and ωho t = 7 (right plot). Central row: density
map of component a as a function of time. Bottom row: time evolution of the dipole D . A movie
of such dynamics can be seen in [74] or in the Supplementary Material of [23].
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3.6 Ferromagnetic phase: ground state relaxation

In the previous section we studied the dynamics of a completely paramagnetic gas, i.e.,

Ω>Ωcr . The behaviour is very different when the system is in the ferromagnetic regime.

In this case the ground state of the system with equal trapping potentials is polarized as

shown in Figure 3.10 plots (a2) and (a3). When the traps are shifted, the ground state is

instead globally unpolarized (Na = Nb) but with a large spin-dipole moment (depending

on the values of Ω and d) as one can see in Figure 3.10, plots (b2) and (b3). Therefore,

the initial state and the ground state are very far from each other. This circumstance

results in a non-trivial and highly non-linear dynamics that clearly is no more captured

by a sum-rule approach.

Let us first show in Figure 3.16 a typical dynamics in this regime. At the beginning, the

spinor gas oscillates around the initial configuration, trapped in the unpolarized state.

After a certain time, τwait, the domain wall starts moving and a finite polarization ap-

pears. The system then bounces back and forth between the initial magnetic state and

its magnetic ground state to eventually relax to the latter one. The system is closed, en-

ergy conserving and still able, in the long time limit, to approach and select one of the

two possible ground states. The final state obviously presents small oscillations around

the true ground state. If the global polarization of the ground state is large, the effects

of non-linearity and the number of bounces are large. When the system is slightly in the

ferromagnetic regime, no bounces are observed and the system after τwait soon reaches

its ground state. Figure 3.17 summarizes these different types of dynamics.

Notice that even if the system is isolated, it can approach in the long time limit an

asymptotic steady state as a result of destructive interference of several time oscillating

factors, present in the evolution of expectation values of observables. Specifically, in the

case of a large and dense collection of frequencies, the interference phenomenon results

in a dephasing mechanism similar to inhomogeneous dephasing. The total energy of

the system is still conserved, the algorithm used (see Chapter 4) does not contains any

dissipative mechanism and we explicitly check that the total energy does not change

during the evolution. At the end of the real time evolution we get the ground state profile

superposed with some high frequency perturbations carrying the extra energy.

As we have already mentioned, the initial configuration in the ferromagnetic case

contains a domain wall at the centre of the trap. The properties of this domain wall

clearly depends on the value of Ω, i.e. on how much is the system in the ferromagnetic

phase. From Figure 3.17 one can easily see that also the waiting time τwait strongly de-
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FIGURE 3.16: Spin dipole oscillations in ferromagnetic regime for Ω= 1.5ħωho and gab = 1.1g .
Top row: density snapshots showing the evolution from the initial state (ωho t < 20) to real ground
state (ωho t = 45) and the bouncing back an forth between these two states. Central row: density
map of component a as a function of time. Bottom row: time evolution of the dipole D (black
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dynamics can be seen in [75] or in the Supplementary Material of [23].
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p
σ where σ is the surface tension of equation (3.43).

pends on this parameter, so we looked for a relation between τwait and the energy char-

acterizing the domain wall, that is its surface tension σ. In order to calculate the surface

tension it is useful to first approximate the energy functional for the magnetization of our

spinor condensate with a classical one-dimensionalφ4 theory (Ginzburg-Landau for the

phase transition) [76]. In the symmetric case ga = gb = g and considering a uniform total

density n = na +nb , the relative density or magnetization M = (na −nb)/n enters in the

energy density as

E(M) =
∫

dx

[ ħ2n(∇M)2

8m(1−M 2)
+W (M)

]
, (3.39)

where the first term arises from the kinetic energy and the term

W (M) = n2

4
(g − gab)M 2 −Ωn

√
1−M 2, (3.40)

accounts for the density-density interaction and for the coherent Rabi coupling. For a

homogeneous magnetization, minimisation δE/δM = 0 leads to the usual equation for

the paramagnetic- and ferromagnetic-like states. From equation (3.39) one sees that

close to the phase transition, i.e. M ¿ 1, a standard Ginzburg-Landau theory for the

order parameter M is valid, since in this case the kinetic energy term is just the square of
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the gradient of M and the effective potential takes the usual quadratic plus quartic form

W (M) = n2

4

(
g − gab +

2Ω

n

)
M 2 + nΩ

8
M 4 (3.41)

≡ r

2
M 2 + u

4
M 4. (3.42)

As usual, the Z2 symmetry broken ground state is obtained for r < 0. A kink in M is the

field solution interpolating between the two degenerate minima. Its surface tension, σ,

which coincides with its energy in a one-dimensional situation, can be easily computed

[77] yielding the result

σ∝
√

ħ2n2

m

|r |3/2

u
∝

√
ħ2n2

m

∣∣(g − gab)n +2Ω
∣∣3/2

Ω
(3.43)

From an intuitive point of view, the higher is the energy of the domain wall, σ, the more

time is required for the system to relax from the kink into one of the ground states of

the system; accordingly, a relation of proportionality between the waiting time and σ

is expected. A standard field theoretical estimate of the average tunnelling time cannot

be straightforwardly performed since only close to the transition does our field theory

resemble an ordinary φ4 theory; for this reason, we took advantage of a numerical fit to

extract with surprising accuracy the relation, τwait ∝
p
σ, as shown in Figure 3.18.

The fact that for Ω→ 0 the waiting time diverges can be easily understood noticing

that the initial state and the ground state are very far from each other (see, e.g., panels

(a2) and (b2) of figure 3.10). Eventually, in the strictΩ= 0 case, the system cannot reach

the totally polarized ground state and it remains in the phase separated state (see panels

(a1) and (b1) of figure 3.10).
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CHAPTER

4
Time evolving split-operator method

The great majority of the data presented in this Thesis are obtained by means of

the split-operator method. We use its imaginary time evolution version for find-

ing ground states and its real time evolution one for simulating the dynamics. In

this Chapter we derive the main expressions and we give the details of some tricks

implemented in our program to make the algorithm more efficient.
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Time evolving split-operator method

4.1 Real vs. imaginary time

Let us call {|ψn〉} a basis set of non-degenerate eigenfunctions of an Hamiltonian H . They

fulfil the eigenvalue equation

H |ψn〉 = En |ψn〉, (4.1)

with En the energy corresponding to the state |ψn〉. We denote the ground state as ψ0

and the corresponding energy, that is the smallest of the set of eigenvalues {En}, as E0.

Given an arbitrary wave function |Φ〉, its expansion in terms of the basis of H is given by

|Φ〉 =∑
n
〈ψn |Φ〉|ψn〉 =

∑
n

an |ψn〉. (4.2)

The wave function |Φ〉 evolves in time according to H . At a time t the time evolution will

be given by the evolution operator, U (t ) = e−iH t/ħ, as

|Φ(t )〉 = e−iH t/ħ|Φ(0)〉, (4.3)

so, in order to find the real time evolution of our starting wave function Φ(0), we just

need a way of exponentiating of the Hamiltonian H applied to it (see next Section).

Equation (4.3) can be rewritten as

|Φ(t )〉 = e−iH t/ħ∑
n

an |ψn〉 =
∑
n

ane−iEn t/ħ|ψn〉. (4.4)

We can now set the time t to be imaginary (whence the name of imaginary time method)

and define a new time τ ∈ R where t =−iħτ. We then separate the summation over n in

Eq. (4.4) into a term containing n = 0 and the summation over the rest. Notice that this

introduction makes the operator in the exponential non-unitary, which means that the

norm will not in general be preserved. In terms of τ, Eq. (4.4) is rewritten as

|Φ(τ)〉 = a0e−E0τ|ψ0〉+
∑

n 6=0
ane−Enτ|ψn〉 (4.5)

Since the energies, by definition, fulfill E0 < E1 < . . . < En < . . ., in the limit τ→ ∞ the

contribution of the states with n 6= 0 will be exponentially killed compared to the contri-

bution of n = 0. The imaginary time version of the method is based exactly on this fact

that we can state as:

lim
τ→∞ |Φ(τ)〉∝ e−E0τ|ψ0〉. (4.6)

Therefore, for an infinite time, the wave function converges to the ground state of the

system. This is true for whatever initial wave function we are using, provided that it has

some non-zero component of the ground state, that is a0 6= 0 in Eq. (4.2).
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Before proceeding we must stress one thing. The derivation of this Section has been

done for a linear system while the Hamiltonian in Gross-Pitaevskii equation contains

non linear terms. However, it has been proven [78, 79] that this method works very well

also for non-linear Schrödinger-like problems assuming that sufficiently small time and

spatial steps are chosen.

4.2 Splitting of the evolution operator

In order to propagate the initial wave function in real or imaginary time we first split the

evolution operator to time τ in N pieces corresponding to time intervals ∆τ

e−Hτ = (
e−Hτ/N )N = e−H∆τe−H∆τ . . . e−H∆τ︸ ︷︷ ︸

N times

. (4.7)

We considered here the imaginary time evolution but the same holds with almost no

changes for real time.

At this point the only problem is to find a way of exponentiate H . For doing this we

refer to our specific Hamiltonian for a BEC mixture possibly with Rabi coupling between

the two species:

H =
(
−ħ2∇2

2m +Va + ga |ψa |2 + gab |ψb |2 Ω

Ω∗ −ħ2∇2

2m +Vb + gb |ψb |2 + gab |ψa |2
)

(4.8)

To simplify our algorithm we divide our Hamiltonian in a kinetic term HK , a potential

term HV and a Rabi term HR ,

HK =
(
−ħ2∇2

2m 0

0 −ħ2∇2

2m

)
(4.9)

HV =
(

Va + ga |ψa |2 + gab |ψb |2 0

0 Vb + gb |ψb |2 + gab |ψa |2
)

(4.10)

HR =
(

0 Ω

Ω∗ 0

)
(4.11)

and we use the Lie-Trotter-Suzuki formula to split the exponential as

e−H∆τ = e−HK∆τe−HV∆τe−HR∆τ+o(∆τ2). (4.12)

In particular, in order to avoid the presence of a derivative in the exponent, we treat the

kinetic term in Fourier space [78, 79] using the “Fastest Fourier Transform in the West”

(FFTW) library [80].
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4.3 Algorithm implementation

The implementations of the two versions of the algorithm are very similar. One has to

proceed as follows:

1. Start with two initial normalized guess functions, ψa(x) and ψb(x).

2. Transform them to the Fourier space by means of FFTW

ψi (x) 7→ ψ̃i (k). (4.13)

3. Multiply the exponential of the transformed kinetic part of the Hamiltonian and

then transform back to real space

ψ̃i (k) 7→ e−k2∆τ/2ψ̃i (k), (4.14)

ψ̃i (k) 7→ψi (x). (4.15)

4. Multiply the exponential of the potential part of the Hamiltonian

ψi (x) 7→ e−(Vi+gi |ψi (x)|2+gab |ψ j (x)|2)∆τψi (x). (4.16)

5. Multiply the exponential of the Rabi part of the Hamiltonian. Since it is not di-

agonal one must explicitly calculate the exponential of the matrix that gives two

different results for imaginary and real time evolutions

ψi (x) 7→
cosh(Ω∆τ)ψi (x)− sinh(Ω∆τ)ψ j (x) if imaginary time evolution

cos(Ω∆t )ψi (x)− i sin(Ω∆t )ψ j (x) if real time evolution

(4.17)

6. For imaginary time evolution normalize the obtained wave functions ψi (x,∆τ)

since in this case the evolution operator is not unitary and the norm is not pre-

served.

7. Repeat the process n times until convergence (imaginary time evolution) or de-

sired time t (real time evolution) is reached.

The time steps have to be small enough to ensure the stability of the algorithm and

to let the system evolve smoothly but large enough to make this process efficient.
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4.4 Convergence of imaginary time evolution

In imaginary time evolution the convergence of the solution to the ground state of the

system is not easily assessed. A possibility is to track the energy change (or the change in

chemical potential) between iterations. Since in general this quantity is small between

two subsequent iterations, one can track the energy change every, say, 50 iterations and

establish a “self-made” convergence criterion. When the energy change is very small (in

our simulations, it is typically of the order of 10−12Etot , with Etot the total energy) we say

that the algorithm is converged and that we have found the ground state of H .

Sometimes, if the energy of the ground state is very close to the energy of an excited

state or the imaginary time step is large or there is some symmetry of the initial wave

function that has to be broken, the algorithm can stay in a false minimum for an amount

of time that can be also very large, looking as if it was already converged to the ground

state (this is sometimes called a metastable solution). There are several possibilities to

deal with this situation. One of them is to initialize the algorithm with a different trial

function: from random numbers, from a particular shape (for instance, from a Thomas-

Fermi profile in the case of BEC problems), etc. Another possibility is to reduce the imag-

inary time step or the grid spacing when the energy change between two iterations be-

comes smaller than some quantity. A third possibility is to leave the program running

for a very long time. We have applied the first and third methods, which are easier to

implement, in several of the calculations presented in this Thesis.

Metastable solutions are not always a problem that has to be solved but instead can

be very useful, as in the case of persistent currents (Section 2.3). In that situation we

explicitly count on the fact that the algorithm would remain trapped in a false ground

state (the one with a current different from zero) in order to distinguish between stable

and not stable states and to get a state with a current from which calculate its real time

evolution.

4.5 Algorithm with dissipation term

The real time version of the algorithm as it was presented in the last sections clearly con-

serves the energy. This is not always a good thing since sometimes one needs to study the

evolution of the system from a metastable or excited state to the ground state therefore to

a state with a lower energy. With the standard version of the time evolving split-operator

method this can not be done and one gets the ground state with superposed a lot of ex-
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citations carrying the extra energy. Furthermore, as already discussed in the previous

Section, the imaginary time version of the algorithm can got stuck in a local minimum.

In numerical simulation of GP equations this obstacle can be overcome adding a dis-

sipation term γ to them

(i−γ)ħ∂ψ
∂t

= Hψ. (4.18)

The parameter γ is chosen phenomenologically and it represents an exchange of parti-

cles and energy between the condensate and a reservoir. With the addition of dissipa-

tions in the code the norm of the wave function is no more preserved neither with real

time evolution so, at the end of every step, one must renormalize the state to the total

atom number or use a time-dependent chemical potential µ(t ).

In this Thesis we used this method for checking the results on partial stability of per-

sistent currents obtained with the imaginary time evolution algorithm (see Section 2.3).

We inserted a dissipation parameter γ= 0.8 in analogy to what has been done in Ref. [55]

and the wave functions have been renormalized at every time step to the initial number

of particles following what was done in Ref. [81]. We have also added a very small ran-

dom noise to the potentials to make the energetic instability appear in shorter time scale

checking that this does not change the results obtained without any noise.

4.6 Virial theorem

A useful criterion for checking the correctness and the convergence of a code for solving

a GP equation is the virial theorem. Its formulation is very simple and we recall here the

main step of its derivation.

If we consider a stationary solution of the Gross-Pitaevskii equation, the energy (see

Eq. (1.17)) is a functional of the density and can be rewritten as

E [n] =
∫

dr
[ ħ2

2m

∣∣∇pn
∣∣2 +nVext + g n2

2

]
(4.19)

where we can identify three different contributions to the total energy that are respec-

tively the kinetic, external potential and interaction one:

Ekin =
∫

dr
ħ2

2m

∣∣∇pn
∣∣2

, Eext =
∫

dr nVext, Eint = g

2

∫
dr n2. (4.20)

Since the energy functional is stationary for any variation of the the functionψ around

the solutionψ0 of the GP equation, one can choose a scaling transformation and impose
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that the energy variation associated with this transformation vanishes at first order in

some parameter. We will use the following transformation:

ψ(x1, . . . , xD ) = (1+ν)D/2ψ0 [(1+ν)x1, . . . , (1+ν)xD ] , (4.21)

n(x1, . . . , xD ) = (1+ν)D n0 [(1+ν)x1, . . . , (1+ν)xD ] . (4.22)

The virial theorem tell us that (E [n]−E [n0])/ν = 0 so what we have to calculate are the

different contributions to E [n] at first order in ν. In doing so it is useful to change the

variable of integration from r to r′ = (1+ν)r.

We start from the kinetic energy term giving the details of the calculation. For the

other two contributions the procedure is similar and we will give only some comment.

Ekin[n] =
∫

dr
ħ2

2m

∣∣∣∇√
n(r)

∣∣∣2

=
∫

dr′(1−ν)−D ħ2

2m

∣∣∣∣(1−ν)∇′
√

(1−ν)D n0(r′)
∣∣∣∣2

=
∫

dr′
ħ2

2m
(1−ν)2

∣∣∣∇′√n0(r′)
∣∣∣2

= (1−ν)2Ekin[n0] (4.23)

For the interaction term we have a (1+ν) factor with power 2D arising from the square

density and a factor with power −D arising from the integration variable giving:

Eint[n] = (1+ν)D Eint[n0]. (4.24)

For the external potential contribution things are a little more complicated because now

the result depends on the particular potential choice. For the harmonic one we have a

(1−ν)−2 arising from the r 2 term, a factor with power D from the density and on with

power −D from the integration variable, giving:

Eho[n] = (1+ν)−2Eho[n0]. (4.25)

More complicated potentials will be treated in the next section.

Finally, expanding at the first order in ν, we obtain

E [n]−E [n0]

ν
= 2Ekin −2Eho +DEint = 0. (4.26)

Since this relation must be satisfied by any solution of the GP equation, one can calculate

it sometimes during the simulation to check convergence of the code and eventually the

presence of errors.
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4.6.1 Toroidal potential: central Gaussian barrier

The toroidal shape of the trapping potential can be obtained using a normal harmonic

potential plus a Gaussian one placed at the centre of the previous:

Vext(r ) = 1

2
mω2r 2 +V0e−2r 2/σ2

. (4.27)

Let us start by writing this potential as a function of ν and expand it to the first order.

Vext(r ′,ν) = 1

2
mω2r ′2(1+ν)−2 +V0 exp

[
−2r ′2

σ2

1

(1+ν)2

]

'Vext(r ′)−2ν

[
Vext(r ′)−

(
1+ 2r ′2

σ2

)
V0e−2r ′2/σ2

]
(4.28)

Using this expression in the calculation of the energy we get

Eext[n] =
∫

dr′n0Vext(r ′)−2ν
∫

dr′n0Vext(r ′)+2ν
∫

dr′n0

(
1+ 2r ′2

σ2

)
V0e−2r ′2/σ2

= Eext[n0]−2νEext[n0]+2ν
∫

dr′n0

(
1+ 2r ′2

σ2

)
V0e−2r ′2/σ2

. (4.29)

So in this case the virial theorem for this type of potential reads:

2Ekin −2Eext +DEint +2
∫

dr′n0

(
1+ 2r ′2

σ2

)
V0e−2r ′2/σ2 = 0. (4.30)

4.6.2 Toroidal potential: displaced harmonic trap

Another way to obtain the toroidal shape is using a normal harmonic potential centred

in a circle or radius R:

Vext(r ) = 1

2
mω2

(√
r 2 −R

)2
. (4.31)

Also in this case let us start by writing the potential as a function of ν and expand it to the

first order.

Vext(r ′,ν) = 1

2
mω2

(√
r ′2(1+ν)−1 −R

)2

'Vext(r ′)−ν
[

2Vext(r ′)−mω2
(
R2 −

√
r ′2R

)]
(4.32)

Using this expression in the calculation of the energy we get

Eext[n] =
∫

dr′n0Vext(r ′)−2ν
∫

dr′n0Vext(r ′)+ν
∫

dr′n0mω2
(
R2 −

√
r ′2R

)
= Eext[n0]−2νEext[n0]+ν

∫
dr′n0mω2

(
R2 −

√
r ′2R

)
. (4.33)
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So the virial theorem for this type of potential reads:

2Ekin −2Eext +DEint +
∫

dr′n0mω2
(
R2 −

√
r ′2R

)
= 0. (4.34)
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CHAPTER

5
Tensor Network methods: Matrix

Product State algorithm

In this last Chapter we introduce a numerical method useful in studying ultracold

gases on a lattice, namely Tensor Network method. On contrary of Gross-Pitaevskii

equation and algorithms for solving it, it takes correctly into account quantum cor-

relations. Here we give a brief introduction of the theory behind this method with-

out entering too much into the details of the implementation. In addition we com-

pare two different ways of time evolving a quantum state written in terms of a tensor

network, we apply these two methods to some literature results and we analyse their

performances.
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In recent years Tensor Network (TN) methods have become increasingly popular to

simulate strongly correlated systems. In these methods the wave function of the system

is described by a network of interconnected tensors. To make a practical comparison, the

DNA is the fundamental building block of a person in the same way as the tensor is the

building block of a quantum state. Therefore we could say that the tensor is the DNA of

the wave function in the sense that the whole wave function can be reconstructed from

it just following some simple rules. The glue that keeps the tensors together is the en-

tanglement between them. More precisely TN techniques offer an efficient description

of wave function based on the entanglement content in it. The amount and structure of

entanglement is, as we will see later, a consequence of the chosen network pattern and of

the parameters of the tensors. The most famous example of a TN method is the Density

Matrix Renormalization Group (DMRG) [82, 83, 84, 85] introduced by White in 1992.

5.1 Advantages

All the existing numerical techniques have their own limitations. For example mean-

field theory fails to incorporate faithfully the effect of quantum correlations in the sys-

tem; exact diagonalization of the quantum Hamiltonian is restricted to systems of small

size; quantum Monte Carlo algorithms suffer from the sign problem, etc. As we will see,

the main limitation of TN methods is due to the amount and structure of entanglement

in quantum many-body states. But this is a new sort of limitation in a computational

method and it extends the range of models that can be simulated in new directions.

The bigger advantage is related to the size of the Hilbert space. If we take a system

of N spin-1/2 particles the dimension of the Hilbert space is 2N which is exponentially

large in the number of particles. Therefore representing a quantum state by giving the

coefficients of its wave function in some basis is a very inefficient representation. Luckily

enough, not all the states of the Hilbert space are equal but some of them are more rel-

evant than others. In particular, one can prove that low-energy eigenstates of a gapped

Hamiltonian with local interactions obey the so-called area law for the entanglement en-

tropy. This means that the entanglement entropy of a region of space tends to scale as the

size of the boundary of the region and not as its volume. Now imagine to pick a state at

random from the Hilbert space. It will most likely has an entanglement entropy between

subregions that scales like the volume and not like the area. This means that low-energy

states of realistic Hamiltonians are heavily constrained by locality so that they must obey

the entanglement area law.
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The manifold containing the states that satisfy area law is just an exponentially small

corner of the whole Hilbert space and this is the point in which TN methods come in

play. TN states are in fact the family of states that targets the corner of most relevant

states. Thus it is natural to use TN to describe low-energy states of realistic Hamiltonians

and it is also natural to use them in Renormalization Group methods where the goal

is precisely to discard all the degrees of freedom that are not relevant in describing the

system.

Another consequence of having a so big Hilbert space is that also the manifold of

states that can be reached evolving a quantum many-body state for a time O(poly(N ))

with a local Hamiltonian is exponentially small. This means that, given some initial state

that most likely will belong to the relevant corner of area law states, most of the Hilbert

space is unreachable in practice. This is the reason why sometimes the Hilbert space is

referred to as a convenient illusion [86]: it is convenient from a mathematical point of

view but physically it is an illusion because no one will ever see most of it.

5.2 Matrix Product States

Before going to Matrix Product States (MPS) let’s introduce some notation and represen-

tation of tensors and tensor networks.

For our purposes a tensor is a multidimensional array of complex numbers. The rank

of a tensor is the number of indices. Thus, a rank-0 tensor is a scalar (a), a rank-1 tensor

is a vector (aα) and a rank-2 tensor is a matrix (Aαβ). We can contract an index, that

is summing over all the possible values of the repeated indices of a set of tensors. For

instance, the matrix product

Cαγ =
D∑
β=1

AαβBβγ (5.1)

is the contraction of index β. Indices that are not contracted are called open indices.

In the following, when the summation range is obvious, we will use the convention that

repeated indices hide an implicit summation.

A tensor network is a set of tensors where some, or all, of its indices are contracted

according to some specific pattern. If the contraction leaves no open indices the result is

a scalar, otherwise the result is another tensor.

A very useful way of representing TN is to introduce a diagrammatic notation for ten-

sors in terms of tensor network diagrams. In these diagrams a tensor is represented by

some shape and indices of the tensor are represented by lines emerging from the shape.
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scalar vector matrix rank-3 tensor

FIGURE 5.1: Diagrammatic representation of different types of tensors: a scalar with no legs, a
vector with one leg, a matrix with two legs and a rank-3 tensor with three legs.

(a) (b) (c) (d)
A

B
C

D

FIGURE 5.2: Tensor network diagrams for a scalar product between two vectors (a), a matrix
multiplication (b), a contraction between 2 tensors with 2 open indices (c) and a contraction
between 4 tensors with 3 open indices.

Lines connecting tensors between each other correspond to contracted indices while

lines with a free endpoint are open indices. In Figure 5.1 one can see tensors with differ-

ent number of indices (legs): a scalar, a vector, a matrix and a rank-3 tensor. In Figure 5.2

instead different contractions are shown: a scalar product between two vectors, a matrix

multiplication, a contraction between two rank-3 tensors forming a matrix:

Cγσ =
D∑

α,β=1
AαγβBβσα (5.2)

and a more strange contraction between 4 tensors forming a rank-3 tensor:

Eασν =
D∑

β,γ,δ,µ,ω=1
AαβγδBβσµCµγνωDδω. (5.3)

In doing contractions there is something one has to care about. Namely, that the

number of operations that has to be performed to obtain a certain result strongly de-

pends on the order in which indices of TN are contracted. For instance in Figure 5.3,

we see two different ways of applying the same overall contraction but in the first case

the number of operations to be performed is O(D4) while in the second one it is O(D5).

Since every TN algorithm has to deal with a lot of contraction one has to be very careful

in choosing the order that minimizes the total computational cost.

With these concepts about tensors and tensor networks in mind we can now see how

to write a wave function in term of MPS and what MPS really are.

Consider a lattice of L sites with d-dimensional local state spaces {σi } on sites i =
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O(D4) O(D4)

O(D5) O(D4)

FIGURE 5.3: Contraction of 3 tensors in O(D4) computational time (top row); contraction of the
same 3 tensors in O(D5) computational time (bottom row).

1, . . . ,L. The most general quantum state on the lattice is

|ψ〉 = ∑
σ1,...,σL

cσ1...σL |σ1, . . . ,σL〉, (5.4)

where we have exponentially (d L) many coefficients cσ1...σL . The first step is to find a

notation that gives a more local notion of the state and to do this we use Singular Value

Decomposition (SVD) on the coefficients cσ1...σL . If we reshape the state vector with d L

components into a matrixΨ of dimension (d ×d L−1) and we apply SVD on it, we obtain

cσ1...σL =Ψσ1(σ2...σL ) =
r1∑
a1

Uσ1a1 Sa1a1 (V †)a1(σ2...σL ) ≡
r1∑
a1

Uσ1a1 ca1σ2...σL . (5.5)

We now decompose the matrix U in a collection of d row vectors Aσ1 with entries Aσ1
a1

=
Uσ1a1 . At the same time we reshape ca1σ2...σL into a matrix Ψ(a1σ2)(σ3...σL ) of dimension

(r1d ×d L−2) and we apply again SVD on it:

cσ1...σL =
r1∑
a1

r2∑
a2

Aσ1
a1

U(a1σ2)a2 Sa2a2 (V †)a2(σ3...σL ) =
r2∑
a2

Aσ1
a1

Aσ2
a1a2

Ψ(a2σ3)(σ4...σL ), (5.6)

where we have replaced U by a set of d matrices Aσ2 of dimension (r1 × r2) with entries

Aσ2
a1a2

=U(a1σ2)a2 . Iterating this procedure to the end of the chain we obtain

cσ1...σL =
∑

a1,...,aL−1

Aσ1
a1

Aσ2
a1a2

· · · AσL−1
aL−2aL−1

AσL
aL−1

(5.7)

or more compactly, recognizing the sums over ai as matrix multiplications,

cσ1...σL = Aσ1 Aσ2 · · · AσL−1 AσL . (5.8)
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σ1 σL

σ1 σL

σ1 σL
. . .

σ1 σL
. . .

σ1 σLσl σl+1

S

FIGURE 5.4: Graphical representation of an exact MPS obtained by a sequence of singular value
decompositions starting from the left and from the right. The diamond represents the diagonal
singular value matrix. Matrices to the left are left-normalized, matrices to the right are right-
normalized, see Fig. 5.5.

So, the arbitrary quantum state |ψ〉 is now represented exactly in the form of a matrix

product state:

|ψ〉 = ∑
σ1,...,σL

Aσ1 Aσ2 · · · AσL−1 AσL |σ1, . . . ,σL〉. (5.9)

From the properties of SVD one can easily show that matrices A satisfy the following

relation ∑
σl

Aσl † Aσl = 1. (5.10)

Matrices that obey this condition are referred as left-normalized and matrix product

states that consist only of left-normalized matrices are referred as left-canonical. One

can obviously apply the same procedure starting from site L, i.e. from the right, in this

case we obtain a right-canonical MPS formed by right-normalized matrices B with∑
σl

Bσl Bσl † = 1. (5.11)
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(a)

=

(b)

=

FIGURE 5.5: If two left(right)-normalized tensors are contracted over their left(right) indices, (a)
and (b) respectively, an identity matrix represented by a line results.

Lastly, we can also decompose the state from the left up to site l and from the right up to

site l +1. We therefore end up with a decomposition

cσ1...σL = Aσ1 · · · Aσl SBσl+1 · · ·BσL , (5.12)

which contains the singular values on the bond (l , l+1) and that will be referred as mixed

canonical matrix product state.

This decomposition process can be viewed also in terms of tensor network diagrams.

In Figure 5.4 the initial state vector or, to be more rigorous, the initial state rank-L tensor,

is rewritten in the mixed canonical MPS representation. Tensors with triangular shape

are those satisfying relations (5.10) and (5.11), graphically represented in Figure 5.5.

We have rewritten our quantum state in terms of a MPS but where are all the ad-

vantages? The effect of SVDs is to reshape our initial vector but the size of parame-

ters remains exponentially big. Furthermore, in addition to the initial physical indices

σ1, . . . ,σL (the vertical ones in figure 5.4), we have some new degrees of freedom respon-

sible for gluing together our tensors and represented by contracted horizontal lines in

figure 5.4. What are they?

These indices, as we will see in a moment, turn out to have an important physical

meaning: they represent the structure of the many-body entanglement in the quantum

state |ψ〉, and the number of different values that each one of them can take is a quan-

titative measure of the amount of quantum correlations in the wave function. They are

usually called bond indices and the number of possible values they can take is referred

as bond dimension. In order to reduce the parameters space, we can arbitrary choose

a value m and force all bond dimensions to be equal (or lower) to m. Doing this we get

only O(Ldm2) parameters instead of O(d L).

To better understand what we are cutting with this approximation and how entan-

glement relates to the bond indices, let us give an example. Imagine of having an MPS

with bond dimension m for all indices such as the one in Figure 5.6. Let us now estimate

the entanglement entropy of the blocks shown in the figure. For doing this we call α the
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α

|left(α)〉 |right(α)〉

FIGURE 5.6: Partition of an MPS at bond α.

index across the boundary of the block and we write the state in terms of unnormalized

kets for the left and right blocks as

|ψ〉 =
m∑
α=1

|left(α)〉⊗ |right(α)〉 (5.13)

The reduced density matrix of e.g. the left part is given by

ρleft =
∑
α,α′

Xαα′ |left(α)〉〈left(α′)|, (5.14)

where Xαα′ = 〈right(α′)|right(α)〉. This reduced density matrix clearly has a rank that is, at

most, m (the same conclusions would apply if we considered the right block). Moreover,

the entanglement entropy of the block, S = −tr(ρleft logρleft), is upper bounded by the

logarithm of the rank of ρleft. So, in the end, we get

S ≤ logm (5.15)

which is a version of the area law for entanglement entropy since in one dimension the

boundary between the two blocks has simply dimension 1. In fact, we can also inter-

pret this equation as every broken bond index giving an entropy contribution of at most

logm. For more complex TN such as PEPS (Projected Entangled Pair State, a two dimen-

sional grid of tensors) this equation is slightly modified. In that case, choosing e.g. a

square block, we cut 4L bonds, where L is the number of tensors for each side of the

square, and the entanglement entropy is upper bounded by

S(L) ≤ 4L logm. (5.16)

Let us discuss the above result. First, if m = 1 then the upper bound says that S(L) = 0

no matter the size of the block. That is, no entanglement is present in the wave function.

This is a generic result for any TN: if the bond dimensions are trivial, then no entangle-

ment is present in the wave function, and the TN state is just a product state. This is

the type of ansatz that is used in e.g. mean field theory. Second, for any m > 1 we have

that the ansatz can already handle an area-law for the entanglement entropy. Changing

84



5.3 Matrix Product Operators
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FIGURE 5.7: Graphical representation of a Matrix Product Operator.

the bond dimension m modifies only the multiplicative factor of the area-law. There-

fore, in order to modify the scaling with L one should change the geometric pattern of

the TN. This means that the entanglement in the TN is a consequence of both m (the

size of the bond indices), and also the geometric pattern (the way these bond indices

are connected). In fact, different families of TN states turn out to have very different en-

tanglement properties, even for the same m. Third, notice that by limiting m to a fixed

value greater than one we can achieve TN representations of a quantum many-body state

which are both computationally efficient (as in mean field theory) and quantumly cor-

related (as in exact diagonalization). In a way, by using TNs one gets the best of both

worlds.

The last point that remains to be clarified is how can we cut the bond indices to some

fixed dimension m. Also in this case the answer is very easy and singular values decom-

position gives us the recipe. The entanglement entropy is directly related to the Schmidt

coefficients so one only needs to take only the m most relevant coefficients on each bond

index and discard all the others.

5.3 Matrix Product Operators

If we consider a single coefficient 〈σ|ψ〉 of an MPS,

〈σ|ψ〉 = Mσ1 Mσ2 · · ·MσL−1 MσL , (5.17)

it is a natural generalization to try to write coefficients 〈σ|Ô|σ′〉 of operators as

〈σ|Ô|σ′〉 =W σ1σ
′
1W σ2σ

′
2 · · ·W σL−1σ

′
L−1W σLσ

′
L , (5.18)

where the W σσ′
are matrices just like the Mσ, with the only difference that, being repre-

sentation of operators, they need both outgoing and ingoing physical states:

Ô = ∑
σ,σ′

W σ1σ
′
1W σ2σ

′
2 · · ·W σL−1σ

′
L−1W σLσ

′
L |σ〉〈σ′|. (5.19)
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Also the diagrammatic representation introduced for MPS can be easily extended for

MPO. The only difference is that now, instead of a single index representing the physical

state, we have two vertical indices, one down and one up, for the ingoing and outgoing

physical states, see Figure 5.7.

A tensor product operator W = W [1] ⊗W [2] ⊗·· ·⊗W [L] is already written as an MPO

so expectation values of local observables and correlation functions on an MPS can be

evaluated efficiently. It can result more difficult to understand how to write standard

operators like Hamiltonians. Consider, for example, the Bose-Hubbard Hamiltonian

H =−t
∑

l ,l+1
(a†

l al+1 +a†
l+1al )+ U

2

∑
l

nl (nl −1). (5.20)

We can rewrite it using MPO matrices as

W [l ] =


1 −t al −t a†

l Hl

0 0 0 a†
l

0 0 0 al

0 0 0 1

 , (5.21)

where the single-site operator is Hl =Unl (nl −1)/2. In this formula we interpret the en-

tries in W [l ] as indicating which operator in the basis |σ〉〈σ′| is assigned to what weight.

There is a convenient device for constructing MPOs based on finite state machines.

The idea is essentially to consider the matrix W [l ] as the adjacency matrix of a directed

graph, where all the different paths through the graph correspond exactly to all the terms

occurring in the operator formula. In Figure 5.8, the graph associated with the Bose-

Hubbard Hamiltonian is shown. By tracing all the possible paths starting at 1 and of

length L through the graph, all terms of Eq. (5.20) will be generated. The graph can be

translated to Eq. (5.21) by inserting the symbols over the arrow connecting state i and j

into the matrix-entry W [l ]
i j . Tracing the paths corresponds to multiplying the matrices W

in the MPO formula Eq. (5.19).

Note that is quite easy to create terms with exponentially decaying weight by placing

an operator on the diagonal of W [l ] or, equivalently, adding a loop in the corresponding

finite state machine. For example, inserting a loop on the node 5 with weight λ1 in the

graph to the right in Figure 5.8 will generate interactions terms V2λ
k nl nl+k for all l and

k ≥ 2.
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FIGURE 5.8: Finite state machine for the Hamiltonian of Eq. (5.20) (left) and for a Bose-Hubbard
model with also nearest (V1nl nl+1) and next-nearest (V2nl nl+2) density-density interactions
(right).

5.4 Variational algorithm

We understood how TN (MPS in case of one dimensional systems) are very good ansätze

for approximating ground states and low-energy excitations of local Hamiltonians. How-

ever, we still need a way for finding the coefficients of the tensors. For doing so there are

different ways which depend on the type of the system and on the type of the state that is

targeted. Here we explain the basic idea behind the variational optimization of an MPS

in order to find the ground state of a one dimensional system.

Assume Ĥ given in MPO form and consider a class of MPS with predefined matrix

dimensions (simply think about a random MPS with matrices Mσ of desired shape and

size, but no normalization assumed for the moment). In order to find the optimal ap-

proximation to the ground state within this class, we have to find the MPS |ψ〉 that mini-

mizes

E = 〈ψ|Ĥ |ψ〉
〈ψ|ψ〉 (5.22)

In order to solve this problem, we introduce a Lagrangian multiplier λ, and extremize

〈ψ|Ĥ |ψ〉−λ〈ψ|ψ〉. (5.23)

In the end, |ψ〉 will be the desired ground state and λ the ground state energy. The prob-

lem with this approach is that the variables (the matrix elements Mσ
aa′) appear in the

form of products, making this a highly non-linear optimization problem. But it can be

done iteratively, too, and this is the idea that also drives DMRG: while keeping the matri-

ces on all sites but one (l ) constant, consider only the matrix entries Mσl
al−1al

on site l as

variables. Then the variables appear in Eq. (5.23) only in quadratic form, for which the

determination of the extremum is a benign linear algebra problem. This will lower the
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−λ = 0

FIGURE 5.9: Generalized eigenvalue problem for the optimization of the Mσl
al−1al

vector (tensor
reshaped to a vector). The unknown vector is the circled one, the left shaded region represents
Heff and the right one N .

energy, and find a variationally better state, but of course not the optimal one. Now one

continues to vary the matrix elements on another site for finding a state again lower in

energy, moving through all sites multiple times, until the energy does not improve any

more.

Rewriting the variational equation (5.23) in terms of tensors of our MPS and our MPO

we get the expression diagrammatically showed in Figure 5.9. At this point we reshape

the unknown tensor Mσl
al−1al

to a vector v and the two shaded region in Figure 5.9 to

matrices Heff and N arriving to a generalized eigenvalue problem of matrix dimension

(dm2 ×dm2),

Heffv −λN v = 0. (5.24)

Solving for the lowest eigenvalue λ0 gives us a vector v0
σl al−1al

which is reshaped back to

Mσl
al−1al

,λ0 being the current ground state energy estimate. In general dm2 is too large for

an exact diagonalization, but since we are interested only in the lowest eigenvalue and

eigenstate we can use eigensolvers suited for this aim like Lanczos solvers. In addition,

generalized eigenvalue problems can become numerically very demanding if the condi-

tion number of N becomes bad. We can avoid this problem if we ensure that the state is

left-normalized up to site l −1 and right normalized from site l +1. In this situation we

can use the properties showed in Figure 5.5 and simplify N to the identity matrix.

To summarize the optimal algorithm runs as follows.

• Start from some guess state |ψ〉, right-normalized.

• Right sweep: Sweep through the lattice starting from site l = 1 to site l − 1 and

at each site solve the standard eigenproblem for Mσl . Left normalize the obtained

Mσl into Aσl by SVD. The remaining matrices of the SVD are multiplied to the right
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into Mσl+1 which will be the starting guess for the eigensolver in the next site. Move

on by one site and repeat.

• Left sweep: Sweep through the lattice starting from site l = L to site 2 and at each

site solve the standard eigenproblem for Mσl . Right normalize the obtained Mσl

into Bσl by SVD. The remaining matrices of the SVD are multiplied to the left into

Mσl−1 which will be the starting guess for the eigensolver in the next site. Move on

by one site and repeat.

• Repeat right and left sweeps until convergence is reached.

This variational MPS algorithm is quite prone to getting stuck, thus not giving the

correct ground state. Once we arrive in a well-defined symmetry sector then each one of

the states will have a good quantum number and their distribution can not change any

more. This means that if it does not correspond to the distribution that the variationally

optimal state would yield, it can never reach that state.

To overcome this limitation one can use a two-site optimization. In this case the

optimization will be done on two nearest sites contracted, i.e. a matrix of dimension

(d 2m2 ×d 2m2), and the resulting reshaped tensor will have to be split again in two ten-

sors via SVD with the notice of truncating the just created bond link to dimension m.

5.5 Time evolution algorithms

In this section we analyse two different methods for obtaining the time evolution of a

quantum state described by an MPS. The first one is the conventional Time Evolving

Block Decimation (TEBD) method based on a Lie-Trotter-Suzuki decomposition of the

evolution operator. The second is the Dirack-Frenkel Time Dependent Variational Prin-

ciple (TDVP) based on a splitting of the projector onto the matrix product state tangent

space [87, 88].

5.5.1 Time Evolving Block Decimation method

If one has an Hamiltonian H consisting only of nearest-neighbour interactions, i.e. H =∑
i hi , where hi contains only the terms relative to sites i and i +1, a first-order Trotter

decomposition of the relative evolution operator is

e−iHτ = e−ih1τ+e−ih2τ+ . . .+e−ihL−2τ+e−ihL−1τ+o(τ2). (5.25)
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U (τ)

FIGURE 5.10: Time evolution of an MPS by a time step τ. Blue tensors are gates corresponding
to the exponentiation of Hamiltonians for odd links, red ones are those corresponding to the
exponentiation of Hamiltonians for even links.

It contains an error because the link Hamiltonians do not commute, [hi ,hi+1] 6= 0. In

order to have commuting terms one can split H in even (hE
i , i = 2,4, ...) and odd (hO

i ,

i = 1,3, ...) operators acting respectively on even and odd links and then apply all the

odd gates first and the even ones after as shown in Figure 5.10. The big problem of this

method is that finding a way of splitting the Hamiltonian in commuting pieces becomes

more and more difficult for non nearest-neighbour Hamiltonians. A simple improve-

ment on the algorithm given above is to do a second-order Trotter decomposition

e−iHτ = e−iHoddτ/2 +e−iHevenτ+e−iHoddτ/2 +o(τ3) (5.26)

and this is what is used in the next.

The resulting algorithm consists of the following steps (assuming an initial MPS right-

normalized):

1. Contract hO
1 on first link

2. Do a (truncated) SVD-decomposition for getting back two tensors, left-normalize

the two tensors and put the remainder in the next link

3. Repeat steps 1 and 2 for remaining odd links

4. Contract hE
L−2 (or hE

L−1 if L is odd) on right end of the chain

5. Do a (truncated) SVD-decomposition for getting back two tensors, right-normalize

the two tensors and put the remainder in the next link

6. Repeat steps 3 and 4 for remaining even links
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(a) (b)
AC (n) C (n)

(c) (d)

H(n) = K (n) = H(n)

(e)

L∑
n=1

−
L−1∑
n=1

H(n) K (n)

FIGURE 5.11: An MPS can be brought into a mixed-canonical form with a one-site center, AC (n),
at site n (a) or even a zero-site center, C (n), whose singular values correspond to the Schmidt
coefficients of the state (b). One-site effective Hamiltonian H(n) (c). Similarly, one can define a
zero-site effective Hamiltonian K (n) (d) which can easily be computed from H(n). Right-hand
side (up to the factor −i) of the TDVP equation, Eq. (5.27) (e).

5.5.2 Time Dependent Variational Principle method

The TDVP method corresponds to an orthogonal projection of the evolution vector of

the Schrödinger equation (−iH |Ψ〉) onto the tangent space of the MPS manifold at the

current state:
d|Ψ(M)〉

dt
=−iPH |Ψ(M)〉 (5.27)

In this way the state is always in the MPS manifold and can be described by a set of time

evolving parameters corresponding to the tensors of the MPS (M matrices).

The tangent space projector applied to H |Ψ〉 results in the diagrammatic expression

of Figure 5.11 (e) where H(n) and K (n) are defined in Figure 5.11 (c)-(d) (for the explicit

calculation of the projector see Supplemental Material of [88]). Taking the MPS in the

form of Figure 5.11 (a) or Figure 5.11 (b) alternatively, we have the time-dependent pa-

rameters in tensors A and C and these tensors are the only ones that matter in the time

derivative of the state. Equation (5.27) can be then exactly integrated for every single
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FIGURE 5.12: Spin-1 Heisenberg chain: time evolution of the local magnetization after a lo-
cal quench at the center of the chain. Comparison between results of [91] (left box) and those
obtained by a TDVP-TS evolution (right box). Left box is a figure taken from [91].

term of the sum with solutions:

An(t ) = exp[−iH(n)t ] An(0) (5.28)

Cn(t ) = exp[+iK (n)t ]Cn(0) (5.29)

Since we have a differential equation consisting in a sum of integrable parts it is natural to

use a Lie-Trotter splitting approach and to evolve every single integrable part for a small

step τ. In addition, the normal DMRG sweep already defines a natural order in doing so.

Another simplification is the existence of Lanzcos routines [89, 90] for computing matrix

exponential acting on a vector without the need of explicitly calculating the exponential.

The resulting algorithm for single-site integration consists of the following steps (as-

suming an initial MPS right-normalized):

1. Evolve A(n, t ) according to Eq. (5.28) obtaining A(n, t +τ)

2. Do a QR-decomposition of A(n, t+τ) into a left normalized tensor and a remainder

C (n, t +τ)

3. Evolve C (n, t +τ) backwards according to Eq. (5.29) obtaining the new C (n, t )

4. Absorb C (n, t ) into the next site to create the new A(n +1, t )

5. Repeat steps 1-4 for all sites.
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This algorithm can also be extended to a 2-sites version in which Eqs. (5.28)-(5.29) are

replaced by

An:n+1(t ) = exp[−iH(n : n +1)t ] An:n+1(0) (5.30)

An(t ) = exp[+iH(n)t ] An(0) (5.31)

where Eq. (5.31) is the backwards analogous of Eq. (5.28), An:n+1 is the tensor result-

ing by the contraction of two neighbours sites and H(n : n + 1) is the 2-sites version of

Fig. 5.11 (c). In this case on step 2 one has to perform a truncated SVD-decomposition to

cut the bond dimension at the desired value. For a more specific description of the steps

see Supplementary Material of [88].

5.5.3 Test: local quench

In order to check the validity of this relatively new method and to compare it with the

more acknowledged TEBD, we repeat some results well known in literature analysing the

correctness and timing performances of TDVP.

As a first test we consider the time evolution of the on-site magnetization for an ex-

cited state of a spin-1 Heisenberg chain [91]. In order to study the dynamics of this ex-

citation, we first run the variational algorithm for obtaining the ground state of a chain

of 200 sites. Then we perform a preliminary sweep to apply Ŝ+ to a single site located

at the center of the chain thus getting the initial state as a localized wave packet con-

sisting of all wave vectors. Finally we let this initial state evolve in time under the action

of the Heisenberg Hamiltonian, and we measure the local magnetization Sz ( j ) for each

site j at every time step. The initial wave packet spreads out as time progresses; different

components move with different speeds, given by the corresponding group velocity.

In Figure 5.12 we compare the results taken from [91] with those obtained with a two

sites TDVP evolution. As one can see the plots are very similar. The differences with

respect to the single site TDVP evolution have also been checked. The latter is much

faster (see next section for a detailed time analysis) and, for this particular case, the lost

in precision is not so pronounced as one can see in Figure 5.13. This figure shows the dif-

ferences in local magnetization at different times for the two site (TS) and single site (SS)

TDVP evolution. These differences grow with time but also for the longest time reached

in the simulation they remain around 0.5% of the maximum magnetization value.
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FIGURE 5.13: Spin-1 Heisenberg chain: comparison between single site (SS) and two sites (TS)
TDVP evolution.
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FIGURE 5.14: XX(Z) chain, global quench: comparison between TEBD and two sites TDVP al-
gorithms.

5.5.4 Test: global quench

As a second test we consider the evolution of the block entanglement entropy in a linear

X X Z chain. The state of the system at time t = 0 is the anti-ferromagnetic one. We let

this initial state evolve with the Hamiltonian of the X X model thus changing from an

initial product state to an entangled one. This entanglement can be measured by the
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FIGURE 5.15: XX(Z) chain, global quench: comparison between single site and two sites TDVP
evolution.

von Neumann entropy of the reduced density matrix of the block ρ(t ):

S(t ) =−Tr
[
ρ(t )log2ρ(t )

]
(5.32)

This has been done for different values of the bond dimension m ranging from 30 to

200. Clearly, as the state evolves towards an entangled one, the entanglement present in

the system grows and one needs more states to correctly describe it. An estimate of the

number of states needed for an accurate description is given by ∝ 2S(t ) so when the block

entropy reaches a (m-dependent) critical value it diverges from the theoretical curve. To

maintain consistency with Ref. [92] we analyse S(t ) for a block of length 6 in a chain of 50

sites and with a time step d t = 5×10−2.

For this system we test the two sites TDVP algorithm not only against the literature

result [92] but also against the TEBD algorithm. This comparison can be viewed in Fig-

ure 5.14. As one can see the block entropies obtained with the two different algorithms

are in very good agreement between each other and also with respect to results of [92].

The single site TDVP instead diverges from the ideal curve much before (see Figure 5.15)

making it not suitable for simulate systems of this type.

5.5.5 Strictly Single-Site TDVP Algorithm with Subspace Expansion

Single site TDVP is much faster than two sites TDVP but, as shown in the previous sec-

tions, it gives less accurate or, in some cases, even wrong results. We can try to improve
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(a)
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(b)
n n +1

(c)
n n +1

(d) n n +1 (e)
n

n +1

FIGURE 5.16: Steps of enhanced single site TDVP evolution for site n. Green tensors are at
time t , purple ones at time t + δt . (a): initial MPS tensors. (b): evolution forward in time of
tensor n. (c): enlargement of both tensors. (d): SVD decomposition, truncation and absorption
of singular values into remainder tensor. (e): evolution back in time of remainder and contraction
with tensor n +1 to obtain the next tensor.

the single-site algorithm implementing a method called “Strictly Single Site with Sub-

space Expansion” [93]. This method is designed for the variational algorithm and is

based on an enlargement of the MPS tensors and a subsequent singular value decom-

position during the minimization sweep (for more details see Ref. [93]). The steps we

followed in adapting this method to the TDVP one are synthesized in Figure 5.16. The

only thing that changes with respect to the normal single site TDVP algorithm is the ten-

sor enlargement (see Ref. [93] for the explicit expression of the enlarged term) after the

time evolution of the site tensor (step (c) in Fig. 5.16).

In Figure 5.17 the results of this algorithm compared with the “exact” two sites TDVP

are shown. As one can see they are in very good agreement between each other. In the

next section we will also analyse the differences in execution time for the different time

evolution algorithms treated in this Section.

5.5.6 Timing

So far we have introduced two different algorithms for the time evolution of an MPS:

Time Evolving Block Decimation method and Time Dependent Variational Principle method.

For this second algorithm we have also introduced three different variants: Single Site,

Two Sites and Single Site with subspace expansion. Now we want to analyse them from

the point of view of the performances.

For doing so we ran 20 repetitions of each couple (m,alg) with equal initial conditions

and where m = 30,50,75,100,150,200 and alg = TDVP TS,TDVP SS,TDVP SSenh,TEBD.
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FIGURE 5.17: XX(Z) chain, comparison between “exact” two sites TDVP and single site TDVP
with subspace expansion.
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FIGURE 5.18: XX(Z) chain: execution time for different algorithms as a function of m. Dashed
lines are fitted curves ∼ Amα with fitting parameter α indicated.

The averaged CPU times obtained are reported in Figure 5.18.

As one can see, TEBD is the fastest, at least one order of magnitude faster than the

others. The slowest seems to be the single site TDVP with subspace expansion and this

can be surprising at first since its creators claim that, for what regards the minimization,

it is about 4 times faster than two sites version [93]. An explanation can be that in the
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minimization procedure with subspace expansion the tensor that is minimized has al-

ways dimension m2d as in the normal single site algorithm. Here instead we evolve in

time a m2d tensor and a m2(s+1) one (with s the MPO dimension) opposed to the single

site TDVP case where tensors have dimensions m2d and m2.

Another thing that has to be considered is that all algorithms have been only checked

for what regards the correctness of results but they have not been optimized with respect

to performances.
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Conclusion

In this Thesis I have presented our study on dynamical properties of mixtures of ultra-

cold Bose gases. We analysed the behaviour of this system in different regimes: with

and without coherent coupling between the two components, in homogeneous and har-

monic shaped trapping potentials and in different dimensions and geometries. Most of

the results presented here have been obtained by means of numerical solutions of cou-

pled Gross-Pitaevskii equations and have been compared with theoretical predictions

(and sometimes experiments), describing the same phenomena.

In Chapter 2 the stability of persistent currents in a two-component Bose-Einstein

condensate in a toroidal trap is studied in both the miscible and the immiscible regime.

In the miscible regime we show that superflow decay is related to linear instabilities of

the spin-density Bogoliubov mode. We find a region of partial stability, where the flow

is stable in the majority component while it decays in the minority component. We also

characterize the dynamical instability appearing for a large relative velocity between the

two components. In the immiscible regime the stability criterion is modified and de-

pends on the specific density distribution of the two components. The effect of a coher-

ent coupling between the two components is also discussed.

In Chapter 3 I have presented our study on the collective modes of the minority com-

ponent of a highly unbalanced Bose-Bose mixture. In the immiscible case we find that

the ground state can be a two-domain walls soliton. Although the mode frequencies are

continuous at the transition, their behaviour is very different with respect to the miscible

case. The dynamical behaviour of the solitonic structure and the frequency dependence
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on the inter- and intra-species interaction is numerically studied using coupled Gross-

Pitaevskii equations.

In this chapter we also showed the results of the study on the static and the dy-

namic response of coherently coupled two component Bose-Einstein condensates due

to a spin-dipole perturbation. The static dipole susceptibility is determined and is shown

to be a key quantity to identify the second order ferromagnetic transition occurring at

large inter-species interactions. The dynamics, which is obtained by quenching the spin-

dipole perturbation, is very much affected by the system being paramagnetic or ferro-

magnetic and by the correlation between the motional and the internal degrees of free-

dom. In the paramagnetic phase the gas exhibits well defined out-of-phase dipole oscil-

lations, whose frequency can be related to the susceptibility of the system using a sum

rule approach. In particular in the interaction SU (2) symmetric case, when all the two-

body interactions are the same, the external dipole oscillation coincides with the internal

Rabi flipping frequency. In the ferromagnetic case, where linear response theory isnot

applicable, the system shows highly non-linear dynamics. In particular we observe phe-

nomena related to ground state selection: the gas, initially trapped in a domain wall con-

figuration, reaches a final state corresponding to the magnetic ground state plus small

density ripples. Interestingly, the time during which the gas is unable to escape from

its initial configuration is found to be proportional to the square root of the wall surface

tension.

Finally, in Chaper 5, I have introduced the Tensor Network method, a numerical

method that allows to correctly take into account quantum correlation. This method

is also very useful for extending the results obtained in this Thesis.
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APPENDIX

A
Thomas-Fermi approximation and

speed of sound correction

The Gross-Pitaevskii equation

iħ ∂

∂t
ψ(r, t ) =

(
−ħ2∇2

2m
+Vext(r)+ g |ψ(r, t )|2

)
ψ(r, t ) (A.1)

should be solved numerically except in some important limits, one of this is the Thomas-

Fermi limit. If we are in the presence of a repulsive interaction (g > 0) the gas will expand

and the size of the cloud will increase. Eventually, if the effect of the interaction is very

significant, the width of the gas will become so large and the density profile so smooth

that we can ignore the kinetic energy term in the Gross-Pitaevskii equation. This limit is

called the Thomas-Fermi limit and it is characterized by the following analytical solution

for the order parameter

ΨTF(r) =
√

nTF(r) =
√

1

g

[
µTF −Vext(r)

]
. (A.2)

The chemical potentialµTF is obtained by imposing the normalization of nTF to the num-

ber of particles,
∫

dr|ψ(r)|2 = N , and it takes the value

µTF = ħωho

2

(
15N a

aho

)2/5

(A.3)

where aho =√ħ/(mωho) is the oscillator length associated with the geometrical average

of the three trapping frequencies, ωho.
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Thomas-Fermi approximation and speed of sound correction

We now introduce a crucial quantity for the theory that characterizes the interacting

nature of the system, namely the healing length

ξ=
√

ħ2

2mg n
. (A.4)

It is the shortest distance over which the wave function can change and is obtained

equating the kinetic term to the energy scale of the system given by the chemical po-

tential. Typically ξ is much smaller than the dimension of the system and smoothing of

the wave function only occurs in a thin boundary layer so these surface effects give only

small corrections to results calculated using the Thomas-Fermi approximation.

The condition of validity for the Thomas-Fermi approximation can be investigated

rescaling the Gross-Pitaevskii equation (A.1) with spherical harmonic trapping of fre-

quency ωho and using aho and ħωho as units of length and energy:[
−∇̃2 + r̃ 2 +8π

(
N a

aho

)
Ψ̃2(r̃)

]
Ψ̃(r̃) = 2µ̃Ψ̃(r̃) (A.5)

where Ψ̃ = N−1/2a−3/2
ho Ψ0. So, in order to ignore the kinetic term we must have that the

so called Thomas-Fermi parameter N a/aho is much higher than 1.

The density profile takes the form of an inverted parabola which vanishes at the clas-

sical turning point where Vext(Rk ) =µTF, k = x, y, z. In case of an isotropic trapping these

radii reduce to a single value

RTF = aho

(
15N a

aho

)1/5

(A.6)

and, if we evaluate the healing length at the centre of the trap where nTF(0) = µ/g , we

obtain for the ratio of ξ and R as

ξ

R
=

(
15N a

aho

)−2/5

(A.7)

showing that, as previously said, in the Thomas-Fermi limit the healing length becomes

much smaller than the size of the condensate.

A.1 Thomas-Fermi approximation for 2-component BEC in a

ring trap

To apply Thomas-Fermi approximation to our condensate in a ring geometry it is con-

venient to assume a displaced harmonic trap as confining potential (this has been done
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FIGURE A.1: Thomas-Fermi density profiles for a two-component mixture in a ring shaped har-
monic trap. Dashed line corresponds to the balanced mixture, Na = Nb , solid lines to the unbal-
anced one with polarization Pz = (Na −Nb)/N = 0.4.

for example in [52]),

V (r⊥) = 1

2
mω2

⊥ (r⊥−R0)2 , (A.8)

where m is the atomic mass, ω⊥ is the trapping frequency, r 2
⊥ = x2 + y2 is the radial co-

ordinate and R0 is the position of the potential minimum. Without any loss of generality

we are considering here a two dimensional system as we have done in [22].

Neglecting the quantum pressure term in GP equations and assuming equal intra-

species scattering lengths (ga = gb ≡ g ), the densities for components σ= a,b are given

by

nσ = n0

[
1−

(
r⊥−R0

RTF

)2]
±δn, (A.9)

with ± corresponding respectively to a and b. In the last expression we used the cen-

tral density n0, the Thomas-Fermi radius RTF and the half density difference δn given

respectively by

n0 = 1

2

µa +µb

g + gab
, (A.10)

R2
TF = µa +µb

mω2
⊥

, (A.11)
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δn = 1

2

µa −µb

g − gab
. (A.12)

The quantity RTF corresponds to the Thomas-Fermi radius of the total density. Since the

components can be differently populated, the radial extent of the corresponding clouds

can also be different. This allows us to define inner (+) and outer (−) radii for the two

components as

Ra
± = R0 ±δRa = R0 ±RTF

√
1+ δn

n0
, (A.13)

Rb
± = R0 ±δRb = R0 ±RTF

√
1− δn

n0
. (A.14)

Normalization of the densities to Na and Nb gives the chemical potentials

µa = µ0

g + gab

[
g

(
2Na

N

)2/3

+ gab

(
2Nb

N

)2/3
]

, (A.15)

µa = µ0

g + gab

[
g

(
2Nb

N

)2/3

+ gab

(
2Na

N

)2/3
]

, (A.16)

where µ0 is given by

µ0 = 1

2
ħω⊥

(
3

16π

g + gab

ħω⊥a2
⊥

a⊥
R0

N

)2/3

(A.17)

and corresponds to the chemical potential of the symmetric mixture (Na = Nb). An ex-

ample of what these density profiles look like is given in Figure A.1, where the relevant

parameters are indicated. We can also rewrite the chemical potentials as functions of the

total number of particles N = Na +Nb and of the polarization Pz = (Na −Nb)/N

µa = µ0

g + gab

[
g (1+Pz )2/3 + gab (1−Pz )2/3] , (A.18)

µa = µ0

g + gab

[
g (1−Pz )2/3 + gab (1+Pz )2/3] . (A.19)

A.2 Speed of sound correction in a ring trap

The spin speed of sound expression used to delimit the region in which currents are sta-

ble in chapter 2.3 is calculated taking into account a one dimensional system. Here we

calculate the correction to this value given by the presence of a transverse (radial) degree

of freedom.

For a single component condensate in a 3D harmonic trap the renormalizing factor

ranges from unity in the noninteracting limit to 1/
p

2 in the Thomas-Fermi one [94, 95,
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96, 97]. This correction depends on the geometry and on the density structure, not in the

nature of the mode (spin or density) or in the number of components (provided that the

mixture is in the miscible phase).

In order to simplify our problem we observe two things. First, a ring trap with cir-

cumference, 2πR0, much larger than the radial width can be thought of as a very long

prolate trap with periodic boundary conditions. Second, the densities of the two com-

ponents in the Thomas-Fermi limit take the same inverted parabola structure as for one

component (see Section A.1). Therefore, without any loss of generality, we can calculate

the Thomas-Fermi correction factor to the speed of sound for a single component con-

densate confined in a 2D prolate trap and apply it to the two-component ring-confined

case.

To derive the correction factor to the speed of sound we start from the hydrodynamic

equations for the density and the velocity in a 2D system,

∂n

∂t
+∇⊥(vn) = 0, (A.20)

m
∂v

∂t
+∇⊥

[
Vext + g n +− ħ2

2m
p

n
∇2
⊥
p

n + 1

2
mv2

]
= 0, (A.21)

where Vext = 1
2 mω2

x x2+ 1
2 mω2

y y2. We want to analyse the situation whereωx Àωy , which

is the relevant one for the toroidal trap where the y coordinate corresponds to the az-

imuthal angle around the trap axis. Neglecting the quantum pressure term (∼ ∇2
⊥
p

n),

the ground state at rest is characterized by an inverted parabola profile with Thomas-

Fermi radii given by Rx =
√

2µ
mω2

x
and Ry =

√
2µ

mω2
y

. The system forms an ellipse on the

x y-plane with minor and major axis given by Rx and Ry respectively. The chemical po-

tential is given by µ = ħωy
√

N g̃ /(πλ⊥), where g̃ = g /(ħωy a2
y ), with g the 2D coupling

constant, ay = √ħ/(mωy ) and where we have introduced the ratio of trapping frequen-

cies λ⊥ =ωy /ωx .

By linearising the hydrodynamic equations and combining them, one finds the eigen-

value equation

ω2δn =−∂x

[
µ−Vext

m
∂xδn

]
−∂y

[
µ−Vext

m
∂yδn

]
, (A.22)

where δn = n −n0 and n0 is the unperturbed density. Notice that we have assumed a

temporal dependence of the density perturbations δn ∼ eiωt/ħ and analogously for the

velocity perturbation. We are interested in finding the lowest energy excitations which,

consistently with our assumptionωx Àωy , will mainly come from the y-dependent part

of the eigenvalue equation above. Neglecting thus all dependence of δn on x, that is
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taking δn ≡ δn0(y), and integrating the whole equation with respect to x, we find

ωδn0 =−1

3
ω2

y

(
R2

y − y2
)
∂2

yδn0 +2ω2
y y∂yδn0. (A.23)

For the excitations localized at the center of the trap (y ' 0) this yelds

ω2 = 1

3
ω2

y R2
y k2 = 2

3

µ

m
k2. (A.24)

Using the well-known result c0 =
√
µ/m for the speed of sound of a uniform condensate

we recover the dispersion relation ω= ck with

c =
√

2

3
c0. (A.25)

The correction factor due to radial confinement is thus
p

2/3. The main deviation from

this factor would come from a density profile that was not close enough to the Thomas-

Fermi limit.
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