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Abstract 

 

An optimization problem for designing non-uniformly spaced, 

linear arrays is formulated and solved by means of an improved 

genetic algorithm (IGA) procedure. The proposed iterative 

method aims at array thinning and optimization of element 

positions and weights by minimizing the side-lobes level. 

Selected examples are included, which demonstrate the 

effectiveness and the design flexibility of the proposed method in 

the framework of electromagnetic synthesis of linear arrays. 
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I. INTRODUCTION 

The global synthesis of antenna arrays that generate a desired radiation pattern is a highly 

nonlinear optimization problem. Many analytical methods have been proposed for its solution. 

Examples of analytical techniques include the well-known Taylor method and the Chebishev 

method [1]. However, analytical or calculus-based methods are generally unable to optimize both 

positions and weights of the array elements. To this end, stochastic methods are necessary [2][3] 

in order to efficiently deal with large nonlinear search spaces and to extend the analysis also to 

the elements’ placement. 

In the literature, problem-tailored Genetic Algorithms (GAs) have been largely applied to various 

test cases [4]. As far as symmetrical array synthesis is concerned, a real-coded GA-based 

procedure was proposed in [5] for the optimization of the array weights when the sensors are λ/2-

equispaced. Moreover, in [6] and in [7] a binary genetic algorithm was applied in order to deal 

with isophorical array thinning, and a stochastic approach aimed at optimizing isophorical arrays 

with a fixed number of elements was proposed in [8]. Unfortunately, all of these papers consider 

symmetrical arrays in order to reduce the computational time. 

On the other hand, in [4][9] the array optimization has been investigated by considering a higher 

number of degrees of freedom such as elements’ positions asymmetry and arbitrary weighting. 

To this end, an optimization method based on a simulated annealing (SA) process was applied to 

simultaneous weights’ and positions’ optimization in [4] and to global array synthesis and beam 

pattern shaping in [9]. 

In this framework, the aim of this paper is to present a modular method, based on a Genetic 

Algorithm, able to synthesize linear, real-weighted arrays according to different constraints, such 

as side lobes peak minimization, array thinning, linear dimension minimization, and beam 

pattern (BP) shape modeling. Several successfully investigated test cases seem to confirm the 

effectiveness, but also the flexibility and suitability of the proposed GAs-based procedure for the 

antenna array optimization. 

 

II. MATHEMATICAL FORMULATION 

Let us consider the linear array shown in Fig. 1, where M non-uniformly spaced elements are 

located along a straight line (L) at the positions 1,...,0, −= Mkxk . The beam pattern function of 

the array, p(u), is defined as follows 
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where wk is the weight coefficient of the k-th element, λ is the background wavelength, 

0sinsin θ−θ=u , being θ and θ0 the incident angle of the impinging plane wave and the steering 

angle of the array, respectively.  

In order to generate a BP fulfilling some constraints (e.g., side lobes level (SLL) lower than a 

fixed threshold) or reproducing a desired shape (pref(u)), an array configuration must be 

synthesized. First of all, it is necessary to define a measure of the difference between desired and 

synthesized beam pattern. To this end, let us define a function called fitness function, f, as 

follows 
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where ustart is a value allowing the main lobe to be excluded from the calculation of the SLL; D is 

the array aperture; Q is a normalizing constant; S is the range of values for which 

( ) ( )upQ
up ref

dB
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 , being ( )upref

dB  the desired BP shape. Finally, k1, k2, k3 and k4 are 

normalizing coefficient chosen according to the optimization strategy. 

The fitness function defined in (2) results highly non-linear with a large number of local maxima, 

where deterministic procedure can be trapped. Consequently, a stochastic method able to avoid 

local maxima and effective in exploring highly non-linear search spaces should be used to solve 
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the maximization problem at hand. GAs have already proven their effectiveness in optimizing 

antenna arrays and seem to be a reasonable choice. 

 

III. GA-BASED COMPUTATIONAL TECHNIQUE 

GAs are optimization methods based on Darwinian theory of evolution. They simulate the 

evolution of a population of individuals (i.e., trial solutions for the problem dealt with) over time 

favoring the improvement of individual characteristics (i.e., the fitting with some constraints 

evaluated by means of a fitness function). 

Standard GAs (SGA) differ from other optimization methods because of these characteristics 

[16][17]: 

• SGAs work with a coding of the parameters, not with the parameters themselves; 

• SGAs are multiple-agent searching procedure (i.e., multiple sampling of the search space); 

• SGAs don't need to use derivatives; 

• SGAs use random transition rules, not deterministic ones. 

According to [10], SGA must be customized for each application in order to give optimal results. 

To this end, an IGA is proposed for some class of antenna synthesis problems. The flow chart of 

the IGA is shown in Figure 2. The main features of the algorithms are: 

• the use of an hybrid coding;  

• 

the independence of the chromosome’s genes (i.e., genes representing elements’ placement 

and weights coefficients are optimized at the same time);  

•   the design of a-priori knowledge-augmented operators; 

• the definition of an adaptive evolution strategy; 

• an hybridization with a local search algorithm. 

In the following, a detailed analysis of the proposed maximization strategy is presented. 
 

A. PARAMETERS REPRESENTATION 

Generally, SGAs code an individual with a binary array (also called chromosome), so that 

pseudo-Boolean optimization problems (see for example [6][8]) are accurately handled. On the 

other side, if discrete parameters are taken into account, a coding procedure is necessary. Each 

parameter is represented by a string of q bits, where ( )Lq 2log= , being L the number of values 

that the discrete variable can assume [11]. However, when real unknowns are considered, binary 
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coding is unpractical and disadvantageous because of quantization noise and time consuming 

coding/decoding procedures [12]. In order to overcome these problems, a real-valued 

representation should be used [13].  

As far as the antenna synthesis of linear ( )2
λ  equally spaced array is concerned (to prevent 

grating lobes), different kinds of parameters have to be optimized: number of active elements, M, 

and weights of active elements { }1,...,0; −= Mkwk . In order to effectively address this problem 

by means of a GA-based procedure, a hybrid coding is used. The chromosome assumes this 

structure 

 

{ }1010 ,...,,...,;,...,,...,; −−=ξ NkNk wwwbbbM                                   (4) 

 

where kb  is a boolean value indicating the state (turned on or off) of the kth array element, k is 

the integer number of ( )2
λ  intervals separating the kth element of the non-uniform array to the 

left array extremity (
2
λ= kxk ), kw  is the corresponding excitation coefficient, and N  is the 

number of intervals (
2
λ  in length) in which the array length has been discretized. 

According to the adopted representation, suitable genetic operators have to be defined in order to 

obtain admissible solutions and possibly enhance the convergence process. However, mutation 

must remain a mean for exploring new regions of the solution space and crossover must again 

constitute a way to mix at the best the genes of the current population. In our implementation 

some innovative choices have been applied. 
 

B. GENETIC OPERATORS 

• Selection 

A Roulette Wheel Selection [14] with fitness scaling is considered. As far as the scaling is 

concerned the following rule is applied 
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where f ′  is the scaled fitness function, favg is the average fitness value of the current 

population and fworst indicates the lowest fitness value, being i the generation index. The 

values of m and n are heuristically defined in order to avoid premature convergence and speed 

up the search when the population approaches convergence [15]. 

• Crossover 

The basic concept in crossover is to exchange gene information between chromosomes, and it 

is clear that the use of the crossover technique to improve the offspring production is 

undoubtedly problem oriented. An effective design of crossover operation greatly increases 

the convergence rate of the maximization procedure. Due to the hybrid chromosome 

representation, a different strategy is considered for the real or boolean part of the 

chromosome. Let us consider two selected parents, )(aξ  and )(bξ , a randomly selected 

crossover point sk . 
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After crossover operation, the offspring result equal to 
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For the real part of the chromosome, a real-crossover is performed according to a modified 

version (for variable length chromosomes) of the algorithm preliminary proposed in [13], then 
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being [ ]1,0∈r  a random number such that the resulting gene belongs to the acceptance 

domain defined by means of the a-priori knowledge 
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where min
kw  and max

kw  are fixed constants whose values are chosen to avoid mutual coupling 

effects arising in dense array. 

On the other hand, boolean positions obey to semi-probabilistic rules, equal sensors' states of 

the parents are preserved and unequal sensors' states are activated with probability r for one 

child and 1-r for the other  
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The crossover is performed with a probability cp  and the reproduction (i.e., duplication of 

selected chromosomes from old to new population) with a probability )1( cp− . 

• Mutation 

The mutation is performed with probability mp  on a chromosome of the population. Then 

occasionally (with probability bmp ) a mutation operation occurs which alters the value of a 

string position so as to introduce variations into chromosome. The mutation is performed 

following different strategies according to the type of the gene to mutate. If the randomly 

selected gene is binary-valued, kb , then standard binary mutation is adopted [16] by using 

different probabilities for death or birth of an array element  
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To adopt the concept of introducing variations into the chromosome, a random mutation has 

been designed also for real-valued genes 

 

[ ] η+=′
kk ww                                                               (12) 

 

where η is a random value such that the obtained solution be physically admissible.  

• Elitism 

To avoid losing highly fit individuals from one generation to another, elitism is applied [16]. 

At each generation the best chromosome obtained so far is reproduced in the new population. 
 

C. GA-HYBRIDIZATION 

Generally, a GA-based procedure is fairly slow to “fine tune” the optimum solution after locating 

an appropriate region (attraction basin) in the solution space. On the contrary, gradient-descent 

algorithm can do well in local optimization, but can be trapped in local maxima of a highly 

nonlinear fitness function. To overcome these problems, a hybridization including the essence 

and merits of GA and gradient-descent methods is introduced. The idea is to embed gradient-

descent algorithm into the evolution concept of the GA in order to provide a structured random 

search (Fig. 2). The proposed hybridization performs at different levels: 

• basic level (i.e. at each iteration of the IGA); 

• high level (i.e. during the evolution process). 

At each generation (i), the procedure operates as SGA performing selection, crossover, mutation 

and elitism, then a “Modified G-Bit Improvement” (MGbI) is performed. A randomly selected 

chromosome, ξ , is modified by sweeping each gene, Nll 2,...,0; =ξ . Boolean-valued genes are 

changed ( [ ] { }ll not ξ⇐ξ * ) and real valued genes slightly updated 
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of the fitness function evaluated by using the new field configuration and the last accepted 

configuration is computed ( ) ( )ξ−ξ=∆ fff * . If 0>∆f  then we accept the new chromosome 

configuration so that we set *ξ=ξ . Otherwise, the trial configuration is rejected.  

As far as the high-level hybridization is concerned, once a fixed threshold in the fitness function 

has been reached ( ( ) υ>ξopt
if ), the geometry of the array (i.e., genes ( )opt

N
opt
k

optopt bbbM 10 ,...,,...,; − ) 

is frozen and a local search is performed by means of a standard Polak-Ribière conjugate-

gradient algorithm [18] to further improve array weights ( opt
N

opt
k

opt www 10 ,...,,..., − ). 

 

III. NUMERICAL RESULTS 

To assess the effectiveness of the proposed approach, different test cases were investigated. In 

this section, representative numerical results are presented and compared with reference solutions 

(available in literature) in order to assess the effectiveness and the flexibility of the proposed. 
  
A. Optimization of Element Positions and Weights – Side Lobes Level Minimization 

In the first example, the minimization of the maximum side lobes level ( slpΦ ) by varying 

element weights is addressed. Concerning this problem, in [4] the antenna synthesis procedure 

was applied to a linear array of 25 isotropic elements λ50=D  in length. In order to compare 

IGA-based optimization with the results achieved by Trucco et al. [4], the parameter ustart was set 

to 0.04 and weight coefficients were allowed to vary within the range [0.2,2.0]. 

For this application, the following hypotheses were considered: the array length was discretized 

in 100=N  ( )2
λ -spaced steps by imposing equal to 25=M  the number of active elements. Then 

the structure of the chromosome results 
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The fitness coefficients were set as follows: 11 =k  and 0432 === kkk . The other IGA 

parameters (chosen according to values suggested in related literature) resulted: population 

dimension, 140=J ; 6.0=cp ; 6.0=mp ; gene mutation probability for boolean-values, 
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( )( ) 06.01106
1

3 +−⋅= ipbm ; gene mutation probability for real-values, 

( )( ) 03.0110
7

5 +−= ipbm ; maximum number of iterations, 600=I . MGbI was performed on 

4=R  roulette-wheel selected individuals (this value represents a good choice allowing an 

effective trade-off between amount of computational load and convergence rate). 

The best result was an array with a side lobe peak dBslp 77.14−=Φ . Let us consider that the 

threshold for side-lobes level achieved in [4], which to the authors’ knowledge is the best in 

related literature, was of dB45.14−  ( 191.0=mlu  being the half-beamwidth). Figure 3 compares 

the BP, the element weights and position layout of such arrays. 

On the other hand, if also the main lobe width has to be taken into account, one of the best results 

was an array with a BP characterized by a side-lobe peak dBslp 67.14−=Φ  and a main-lobe 

width 0204.0=mlu . In this case, the algorithm was able to synthesize an array with side-lobes 

level close to the optimal one ( dB67.14−  versus dB77.14− ) with a decrease in the main-lobe 

width ( 0190.0  versus 0204.0 ). As a comment, it should be pointed out that, even if a sidelobe 

reduction of about dB2.0  could be lower than the error amount in real phased array, the achieved 

result are quite impressive due to the closeness to theoretical optimal value [4].  

For completeness, in order to point out the achievable tradeoff between side-lobe peak and main-

lobe width, a small collection of the best results obtained after some runs of the proposed 

algorithm have been reported in Fig. 4. For comparison, also the point given by the SA-based 

procedure is shown. 

Finally, isophoric arrays [19] were considered as well. In this case the array element weights 

were fixed ( 1,...,0; −= Nkwk ) and the optimization dealt with array element positions. Figure 5 

shows the BP and position layout in correspondence with best solutions, in term of minimum 

side-lobe level peak ( dBslp 06.13−=Φ  and 0170.0=mlu ; IGA (a)) as well as in term of optimal 

tradeoff between side-lobe level and main-lobe width ( dBslp 32.12−=Φ  and 0126.0=mlu ; IGA 

(b)), obtained by means of the IGA-based method. Also the features of the array synthesized with 

the SA-based procedure are given ( dBslp 07.12−=Φ  and 0133.0=mlu ; SA [4]). 
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B. Optimization of Element Layout and Weights – Beam Pattern Shaping 

In the second test case, the optimization of the number of sensors and of the length of an array 

with a fixed BP shape was taken into account. The desired pattern was the same as in [9][19] and 

described in Table I.  

As far as the IGA-based optimization procedure is concerned, the fitness coefficients were 

heuristically chosen: 01 =k , 5.62 =k , 3.43 =k , and 8.24 =k . The range of variation for array 

coefficients was fixed to [ ]75.1,25.0∈kw  and 2000=I  iterations were performed over a 

population of 200=J  individuals. The evolution strategy was defined choosing 5.0=cp , 

01.0=deathp , and 003.0=birthp . 

Figure 6 shows the BP of the best obtained array in which 15 elements are located over a linear 

length equal to λ= 5.16D (Fig. 6(b)). To the best of the authors' knowledge, the most optimized 

result for this test case was reported in [9], where the authors synthesized an array with 16 

elements and λ5.19  in length. However, the disadvantage of the sharply reduced aperture is the 

increased main lobe width, which is greater than the one in [9] ( 0249.0)( =IGA
mlu  versus 

0228.0)( =SA
mlu ). 

In order to give some indications about the iterative process, Figure 7 shows the behavior of the 

fitness function, ( )opt
if ξ , versus the iteration number for the best array synthesis. For 

completeness, also single terms of the fitness function are given ( ( )opt
iBPf ξ , ( )opt

iNf ξ , ( )opt
iDf ξ ). 

 

C.  Optimization of Element Layout - Thinning 

The effectiveness of the IGA-based approach in array thinning was further assessed in the third 

scenario. The array pattern was optimized for the lowest maximum side-lobe level. A 200-

elements isophoric array with half-wavelength spacing was considered to compare the results 

obtained by the proposed method with those presented in the literature [6][7].  

For this application, the chromosome structure resulted  
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and a suitable fitness function was considered by setting 21 =k , 042 == kk , 5
3 10−=k . The 

parameters of the maximization algorithm were fixed as follows: 1000=I , 200=J , 5.0=cp , 

01.0=deathp  and 003.0=birthp . 

Due to the stochastic nature of the proposed method, some statistical parameters related to the 

collection of simulations were evaluated. Table II gives the values of the best, worst, average 

results and standard deviation values in terms of number of elements, minimum side-lobe peak 

and main-lobe width. It is interesting to observe that the filling percentage is always lower than 

the one achieved in [6][7] as well as generally the side-lobe peak value. The best result in terms 

of minimum slpΦ  ( dBslp 09.23−<Φ ) (Fig. 8) was obtained with a 76% filled array ( 152=M ). 

On the other hand, the array with 73.5% filling presented a side-lobe peak dBslp 60.22−<Φ  

slightly worse than the best result in [10] ( dB60.22−  versus dB79.22− ), but with a reduced 

number of array elements (147 versus 154). 

In conclusion, it should be pointed out that removing symmetry constraints resulted in better 

performances (symmetrical arrays are considered in [6][7]). 
 

D. Optimization of Element Weights – Side Lobes Level 

In the last test case, the addressed problem was the optimization of weight coefficients (whose 

range was set to (0.05,1)) of 30=M ( )2
λ -spaced elements in order to minimize the side-lobe 

peak of the resulting BP.  

The IGA performed 1000=I  iterations with a fitness function characterized by 11.01 =k , 

0432 === kkk . 

The same problem has been investigated in [5] yielding a BP with dBslp 02.36−=Φ  and 

0418.0=mlu . The array configuration (Fig. 9(a)) - achieved with the IGA-based procedure - 

generated a BP shown in Figure 9(b), characterized by a side-lobe peak equal to dB418.40−  and 

a main-lobe width equal to 0.0417. As far as the optimum Dolph-Chebyschev weighted array is 

concerned, 0413.0=mlu . Because of the slight difference between these values, we can conclude 

that the proposed method attained the global optimum of the fitness function.  
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Finally, side-lobe peak statistics given in Table III clearly point out the robustness of the results 

despite the stochastic nature of the suggested procedure. Many runnings of the proposed method 

(starting from random initial populations) gave results very close to the best achieved.  

 

V. CONCLUSIONS 

An optimization method for the synthesis of linear array pattern functions has been proposed and 

assessed. Shaped beam pattern, constrained side-lobes level, main-lobe width are contemporarily 

taken into account by maximizing a suitable cost function by means of an innovative improved 

Genetic-Algorithm-based procedure. The proposed approach offers a great flexibility and an easy 

insertion of the a-priori knowledge within a low computational burden. Many additional 

extensions of the proposed approach could be also easily implemented both in term of cost 

function definition, optimization methodology and applications and antenna types. 
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FIGURE CAPTIONS 
 

• Figure 1 

Linear array geometry. 

• Figure 2 

Flowchart of the Improved Genetic Algorithm. 

• Figure 3 

Optimization of Element Weights – (a) BP with a side-lobe peak of dB77.14− ; (b) positions 

and weights of the array elements. 

• Figure 4 

Optimization of Element Weights – Peak side-lobe level as a function of main-lobe width 

([dB] units;  - IGA simulation; Ο  - SA simulation). 

• Figure 5 

Optimization of Element Positions and Weights – Optimal syntheses for isophoric arrays. (a) 

BPs; (b) array layouts. 

• 

Figure 6 

Optimization of Element Layout and Weights – (a) BP of the 15-elements array with 

λ= 5.16D ; (b) positions and weights of the array elements. 

• Figure 7 

Optimization of Element Layout and Weights – Behaviour of the fitness function versus the 

number of iterations. 

• Figure 8 

Optimization of Element Layout – BP generated by using 152=M  elements with side-lobe 

peak dBslp 09.23−=Φ . 

• 

Figure 9 

Optimization of Element Weights – (a) Behavior of weight coefficient values; (b) BP with 

side-lobe peak equal to dB418.40− . 
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TABLE CAPTIONS 
 

• Table I 

Beam pattern constraints [9][20]. 

• Table II 

Statistical behavior of the number of active elements, side-lobe peak and main-lobe width 

after some tens of process realizations. 

• Table III 

Statistical characterization of the side-lobe peak value achieved after many process 

realizations. 
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Fig. 1 -  M. Donelli et al., “Linear Antenna Synthesis ...” 
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Fig. 2 -  M. Donelli et al., “Linear Antenna Synthesis ...” 
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Fig. 3 -  M. Donelli et al., “Linear Antenna Synthesis ...” 
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Fig. 4 -  M. Donelli et al., “Linear Antenna Synthesis ...” 
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Fig. 5 -  M. Donelli et al., “Linear Antenna Synthesis ...” 
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Fig. 6 -  M. Donelli et al., “Linear Antenna Synthesis ...” 
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Fig. 7 -  M. Donelli et al., “Linear Antenna Synthesis ...” 
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Fig. 8 -  M. Donelli et al., “Linear Antenna Synthesis ...” 
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Fig. 9 -  M. Donelli et al., “Linear Antenna Synthesis ...” 
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Range 
 

 

Beam Pattern Amplitude 

 

042.00 ≤< u  

 

 

dB0  

 

31.0042.0 ≤< u  

 

 

dB4.13−  

 

45.031.0 ≤< u  

 

 

dB9.26−  

 

80.045.0 ≤< u  

 

 

dB4.13−  

 

180.0 ≤< u  

 

 

dB0  

 

 

 

 

 

 

 

Tab. I -  M. Donelli et al., “Linear Antenna Synthesis ...” 
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Number of active elements (M) 

 
 

Best 
 

 
Worst 

 
Average 

 
Std. Dev. 

 
147 (73.5%) 

 

 
153 (76.5%)

 
149.6 (74.8%)

 
1.0368 

 
Side-Lobe Peak  ( slpΦ ) [dB] 

 
 

Best 
 

Worst 
 

Average 
 

 
Std. Dev. 

 
-23.09 

 
-22.59 

 
-22.82 

 

 
0.2312 

 
Main-Lobe Width ( mlu ) 

 
 

Best 
 

Worst 
 

Average 
 

Std. Dev. 
 

 
0.0050 

 
0.0052 

 
0.00508 

 
~ 0 

 
 

 

 

 

 

Tab. II -  M. Donelli et al., “Linear Antenna Synthesis ...” 
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Side-Lobe Peak  ( slpΦ ) [dB] 

 
 

Best 
 

Worst 
 

Average 
 

 
Std. Dev. 

 
dB418.40−  

 
dB168.40−

 
dB318.40−  

 

 
dB118.0  

 

 

 

 

 

 

 

 

 

 

Tab. III -  M. Donelli et al., “Linear Antenna Synthesis ...” 

 

 


