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Abstract: In the study of hyperspectral image classification based on machine learning theory and
techniques, the problems related to the high dimensionality of the images and the scarcity of training
samples are widely discussed as two main issues that limit the performance of the data-driven
classifiers. These two issues are closely interrelated, but are usually addressed separately. In our
study, we try to kill two birds with one stone by constructing an ensemble of lightweight base models
embedded with spectral feature refining modules. The spectral feature refining module is a technique
based on the mechanism of channel attention. This technique can not only perform dimensionality
reduction, but also provide diversity within the ensemble. The proposed ensemble can provide
state-of-the-art performance when the training samples are quite limited. Specifically, using only a
total of 200 samples from each of the four popular benchmark data sets (Indian Pines, Salinas, Pavia
University and Kennedy Space Center), we achieved overall accuracies of 89.34%, 95.75%, 93.58%,
and 98.14%, respectively.

Keywords: hyperspectral image classification; convolutional neural network; ensemble learning;
channel attention; remote sensing

1. Introduction

Hyperspectral image classification is a widely studied subject among remote sensing
applications which are heavily dependent on machine learning theory and the related
techniques [1]. The long lasting research interest for hyperspectral image classification is
mainly due to the extremely high spectral resolution of hyperspectral images (HSIs), which
is a very unique characteristic compared to natural images and other kinds of optical remote
sensing images. HSIs with high spectral resolutions can be used to measure informative
and distinctive spectral signatures of the ground surface. Therefore, HSIs are valuable
to various applications, including resource management, environment monitoring and
disaster analysis [2]. However, the high dimensionality of HSIs also makes HSI classification
a challenging task. One critical issue is the Hughes phenomenon [3], which is caused by
the high dimensionality of HSIs and the scarcity of training samples. In practical HSI
classification tasks, the amount of labeled pixels which are available as training samples, is
generally quite limited. These training samples result in being very sparse in the original
high dimensional spectral feature space. Accordingly, they are often insufficient to support
the training process of a complex machine learning model. Therefore, dimensionality
reduction operations are usually included in HSI classification practices. Band selection is
the most direct way to reduce the dimensionality of HSIs [4]. The flaw of band selection
techniques is obviously that, in order to reduce information redundancy, some useful
information will also be discarded by simply removing most of the spectral bands in
HSIs. A more sophisticated choice is to adopt projection-based dimensionality reduction
methods. Dimensionality reduction based on linear projection techniques, such as principle
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component analysis (PCA), independent component analysis (ICA) and factor analysis
(FA), has typically been a standard preprocessing in HSI classification tasks for a long
time [5]. On the other hand, nonlinear dimensionality reduction methods, such as those
based on graphs and manifolds [6,7], are becoming more and more popular.

In recent years, there is an obvious growing trend that convolutional neural networks
(CNNs) and other deep learning models are more and more popular in HSI classification
tasks [8–10]. In order to make the CNN models more compatible with the unique charac-
teristics of HSIs, many novel designs and exquisite structures have been proposed. As a
pioneer work, the contextual deep CNN (CDCNN) [11] use a multi-scale convolutional
filter bank to achieve a joint exploitation of the spatial and the spectral information in HSIs.
In the diverse region-based CNN (DR-CNN) [12], six different shaped neighbor regions of a
target pixel are extracted to provide richer spatial features for classifying the pixel. Besides
extracting features from multiple scales and diverse regions, multi-model combination is
also a widely adopted strategy in many HSI classification approaches. The two-stream
model proposed in [13] uses a stacked denoising autoencoder to encode pixel-wise spectral
values and a deep CNN to extract spatial features. In the spectral-spatial unified network
(SSUN) [14], the pixel-wise analysis is implemented by a long short term memory (LSTM)
module in parallel with a typical CNN established for patch-wise analysis and spatial fea-
ture extraction. In the double-branch multi-attention mechanism network (DBMA) [15], a
CNN equipped with a channel attention module and another CNN equipped with a spatial
attention module are combined to implement parallel spectral–spatial feature extraction.
The usage of other attention modules has also been reported, such as the efficient channel
attention (ECA) module embedded in the attention-based adaptive spectral–spatial kernel
improved residual network (A2S2K-ResNet) proposed in [16]. There are also some very
fresh works based on pure attention models, such as the model named spectralFormer
proposed in [17]. As for single-stream models, such as the spectral–spatial residual network
(SSRN) [18] and the hybrid spectral CNN (HybridSN) [19], 3D convolutions are usually
adopted to achieve the simultaneous extraction of both the spectral and the spatial features
in HSIs. In our previous work [20], we also used 3D convolutions together with dilated
convolutions to achieve state-of-the-art performance on benchmark datasets. As compared
to the basic 2D CNNs, 3D CNNs are usually more complex and require a larger amount of
training samples.

In order to support the training processes of large CNN models using only a limited
number of labeled samples, preprocessing steps, such as data augmentation and data
generation, are usually implemented [21]. In [22], a ‘virtual sample enhanced’ method is
presented to improve the training of the proposed 3D CNN by creating virtual training sam-
ples based on the mixture of real samples. In [23], data augmentation techniques based on
image rotation and image flipping are adopted to increase the number of training samples
up to six times. In [24], the idea of adversarial training is introduced into HSI classification
tasks, and a multi-class spatial–spectral generative adversarial network (MSGAN), which
contains two generator components and one discriminator component, is proposed. During
the adversarial training procedure of MSGAN, one generator imitates the original training
samples and generates synthetic samples containing only spectral information; the other
one generates synthetic samples containing spatial information. These synthetic samples
are given to the discriminator to improve its ability to classify real HSI samples.

Besides data augmentation and data generation, ensemble learning has also been
verified as an effective technique to address the contradiction between large models and
small training sets. The band-adaptive spectral–spatial feature learning neural network
(Bass Net) proposed in [25] is an early stage deep neural network ensemble for HSI classifi-
cation, which is based on an equal partition of the HSI spectral channels. A state-of-the-art
performance on benchmark data sets was achieved by Bass Net without involving any kind
of data augmentation. As compared to the idea of spectral feature partitioning used in Bass
Net, random feature selection (RFS) is a more convenient and widely adopted manner to
construct CNN ensembles for HSI classification [4]. As reported in [26], individual CNN
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classifiers with very simple structures are defined based on randomly selected spectral fea-
tures extracted from the original HSIs. The resulting ensemble can produce highly accurate
classifications after a training process based on the use of only a small amount of training
samples. This work was improved later in [27] by introducing transfer learning [28] and
employing pre-trained ImageNet models [29] as the base classifiers. The inspiration here is
quite straightforward, i.e., the ensemble can be improved by enhancing the base classifiers.
In [30], a model augmentation technique is proposed to synthesize new deep networks
based on the original one by injecting Gaussian noise into the model’s weights, and this
technique notably boosts the ensembles’ generalization ability over the unseen test data.
In [31], the random oversampling of training samples is performed to enhance the training
processes of base classifiers and therefore can improve the performance of the ensemble. Fol-
lowing a similar strategy, semi-supervised learning [32] and self-supervised learning [33]
have also been introduced into the training processes of classification ensembles for HSIs.

In our study, we focus on the idea of using ensemble learning to solve the problems
caused by the scarcity of training samples and the high dimensionality of HSIs. Instead
of the RFS process, we propose a trainable spectral feature refining module as a very
effective and convenient technique to construct ensembles of improved CNN classifiers.
This spectral feature refining module consists of a channel attention computation and
a 1 × 1 convolution layer, and it can be embedded into the CNN classifiers to support
an end-to-end processing procedure. Unlike the independent RFS process, the spectral
feature refining module can be trained along with the other layers within the base CNN
classifier. Therefore, an optimized lower dimensional feature subspace can be produced
by the module to support better classifications. The diversity among base classifiers in
the ensemble is guaranteed by the inherent randomness of the training processes of the
modules and the CNN models. The end-to-end fashion for training the base classifiers
makes the proposed strategy more convenient than the RFS-based ensembles.

The main contributions of our study are twofold:

1. We propose a trainable spectral feature refining module that is an effective dimen-
sionality reduction technique for HSI classification. While the widely used projection-
based dimensionality reduction techniques are usually implemented independently
in the preprocessing stages of HSI classification tasks, the proposed spectral feature
refining is more like an internal process of the classifier and can be optimized directly
for improving the classification results.

2. A new ensemble learning strategy for HSI classification is established based on the
proposed spectral feature refining module and the inherent randomness of CNN
models. Using such a simple strategy, it is quite convenient to produce diversity
among base classifiers. Without explicitly splitting the original spectral feature space,
the base classifiers are automatically trained on different low dimensional spectral
feature subspaces produced by the embedded spectral feature refining modules.

The rest of this paper is organized as follows. As the two pillars of our proposal,
the idea of ensemble learning and the mechanism of channel attention operations are
discussed in Section 2. In Section 3, we describe the proposed ensemble model from its core
mechanism to the overall architecture. Experimental comparisons between our proposal
and the state-of-the-art approaches are reported in Section 4, followed by the conclusion of
our study in Section 5.

2. Related Works
2.1. CNN Ensembles for HSI Classification

The main idea of ensemble learning is that, instead of using a large classifier, highly
accurate and reliable classifications can also be obtained by establishing an ensemble of
smaller classifiers. Since smaller classifiers are easier to train, the ensemble will be less
demanding on the required amount of training samples. As stated in some classic works
about ensemble learning [34], the error diversity among the predictions produced by the
base classifiers is the key factor affecting the overall performance of an ensemble. If all the
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base classifiers make the same prediction, the ensemble cannot bring any improvements to
the classification accuracy. Therefore, diverse individual predictions are pursued when an
ensemble is established. According to the strategies adopted to create diversity, we divide
the major existing CNN ensembles for HSI classification into four categories. We illustrate
the differences between these strategies in Figure 1, where we take ensembles containing
three base classifiers as examples.

Figure 1. Four strategies (1, 2, 3, 4) for creating diversity within an ensemble of HSI classifiers. The
rectangles represent different data sets, while the rounded rectangles represent the base classifiers.
B1, B2 and B3 represent data sets corresponding to three contiguous sub-bands of the original HSI
spectrum. S1, S2 and S3 represent data sets in three randomly selected spectral feature subspaces.
A1, A2 and A3 are three different architectures for creating diversity in models, while I1, I2 and I3
represent three different initial states of the models created by the random initialization processes.
Accordingly, an ensemble of three different models, denoted as M1, M2 and M3, can be created either
with different architectures or with different initial states.

The aforementioned Bass Net [25] and TCNN ensemble [27] belong to the first two
categories (labeled as 1 and 2 in Figure 1). Both ensembles use identical CNN models
as base classifiers, and the diversity is obtained by constructing diverse training sets for
different base classifiers. Since each new training set represents an unique subspace within
the original feature space of HSIs, we denote this kind of diversity as feature-based diversity.
The difference between these two categories relies on whether there is randomness in the
feature subspace.

The other two categories (labeled as 3 and 4 in Figure 1) consist of ensembles directly
established on different base models. We denote the corresponding strategy as model-based
diversity. The aforementioned two-stream models, such as the one proposed in [13], can
be considered simple ensembles following the strategy of category 3. In these ensembles,
the two streams are the base models which are constructed with totally different deep
network architectures. When the base models are CNNs, differences in architectures are
not necessary for creating model-based diversity. The training processes of CNNs are based
on random initialization and will converge to different states (especially) when the training
samples are not abundant (the scarcity of training samples becomes an advantage here).
It is therefore possible to train multiple CNNs with the same architecture using the same
training set but still obtain different predictions for the same classification task. This very
simple strategy was proved effective in models such as Hybra [35], which is an ensemble
of multiple ResNets [36] and DenseNets [37].

Both the feature-based diversity and the model-based diversity have their own advan-
tages. In ensembles using feature-based diversity, a dimensionality reduction procedure
is implicitly included for each base classifier. Since the classifiers are established in some
lower dimensional feature spaces, their structure can be smaller and their demands on
training samples are also reduced. This is an implicit relief for the training sample scarcity
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problem. On the other hand, the advantage of the ensembles using model-based diversity
is that no dedicated preprocessings are required.

It is not typical to see classic ensemble algorithms, such as bagging and boosting [38],
being used in HSI classification tasks because these algorithms are based on a sub-sampling
of the training samples, which obviously is not wise when the samples are already very
scarce. Therefore, sampling-based ensembles are not included in our discussion.

2.2. Channel Attention

The attention mechanism is a much fresher technique compared to ensemble learning.
It was introduced into vision-related research only a few years ago. However, because the
attention mechanism is such an effective complement to the inefficiency of convolution
operations to capture long range correlations, it has quickly become a preferred option for
improving CNN models. There are two main types of attention mechanisms, which are
known as spatial attention and channel attention. The attention mechanism has also been
used in the study of HSI classification in recent years [39,40]. In some research, channel
attention is also called spectral attention because different channels in a HSI represent
different spectral features. However, the channel attention mechanism is usually not
directly applied to the original spectral channels of HSIs, but is used to process intermediate
stage feature maps in the data flow of CNN models.

The most classic channel attention mechanism is implemented in the squeeze-and-
excitation (SE) block [41], which is illustrated in Figure 2. The SE block corresponds to an
intermediate stage adaptive processing. The feature map X, generated by the previous
convolutional layer, is re-calibrated by the SE block to improve the feature extraction
process of the following convolutional layers. The re-calibration of the feature map is
achieved by assigning different weights to each channel in X. These weights in the form of
a vector are the output of a two-layer fully connected (FC) neural network, which takes
the channel-wise global averages of X as inputs. Therefore, the channel attention vector is
determined by X and the trainable parameters of the two-layer network. The effect of the
feature re-calibration in the SE block is that the more important features in X are enhanced,
whereas the less important ones are suppressed. The importance of the channels refers to
whether they can contribute to the correct classifications of the model.

Figure 2. Implementation of the channel attention mechanism in a squeeze-and-excitation block.

The feature re-calibration process in an SE block can be described by the following
equations:

z(c) =
1

H ×W

H

∑
i=1

W

∑
j=1

X(i, j, c) (1)

s = σ(W2 · δ(W1 · z)) (2)

X′(i, j, c) = s(c)× X(i, j, c) (3)

where X, X′ ∈ RH×W×C are the original feature map and the re-calibrated one; H, W, and
C represent their heights, widths and channel numbers; and z, s ∈ RC are the channel
descriptors and the scale vector, respectively. W1 ∈ RC′×C and W2 ∈ RC×C′ are the weight
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matrices in the two-layer FC network; σ and δ represent the nonlinear activation functions
of sigmoid and ReLU [42].

In our study, we expand the usage of this channel attention mechanism from an
intermediate stage processing to a preprocessing applied to the original HSIs. Moreover,
we propose a spectral feature refining technique, which is based on this expansion of the
channel attention mechanism.

3. Proposed Method
3.1. Channel Attention-Based Spectral Feature Refining

In our study, we use channel attention at the very front end of the model as a ‘soft’
spectral feature selection mechanism. The original spectral features corresponding to differ-
ent HSI channels are weighted according to their impacts on the classification results. The
channels assigned with large weights are considered the selected spectral features, whereas
the unselected channels are suppressed by the small weights assigned to them. Since these
suppressed feature channels cannot be discarded directly by this ‘soft’ feature selection
mechanism, we use a small set of 1× 1 convolution kernels to reduce the dimensions
of the weighted HSIs. As illustrated in Figure 3, we obtain a spectral feature refining
(SFR) module, which can be embedded into almost any CNN model for HSI classification.
Although the dimensionality of HSIs can be reduced by barely using the 1× 1 convolution
layer, the channel attention operations in the module are still critical since they can improve
the dimensionality reduction process. This is similar to the situations in which SE blocks
are used to improve the feature extraction processes of convolution operations in many
related research studies.

Figure 3. Data flow of the proposed spectral feature refining (SFR) module. GAP is short for global
average pooling. W1 and W2 denote the parameters of the two fully connected layers. K1, K2 and
K3 denotes three 1× 1 convolution kernels.

The ‘soft’ spectral feature selection process in the SFR module is mathematically the
same as described in (1), (2) and (3), except that X represents the input HSI cube rather than
an intermediate feature map. The dimensionality reduction process can be described as

X′′ = CONCAT
(
X′ ∗K1, X′ ∗K2, X′ ∗K3

)
(4)

where CONCAT denotes the concatenation operation. X′′ ∈ RH×W×3 is the output of the
SFR module, which is a dimensionality reduced version of X with refined spectral channels.

Hereafter, we denote a CNN model equipped with the proposed SFR module as a
spectral feature refining network (SFRN). An ordinary CNN model for HSI classification
can be decomposed into two functional parts. The front part usually consists of several
convolution layers with nonlinear activations and pooling operations. This part is in charge
of semantic feature extraction. The rear part usually consists of some fully connected
layers, including a softmax layer. This part is in charge of classification. The SFRN model
proposed here contains three parts, namely the spectral feature refining part, the semantic
feature extraction part and the classification part. Since the dimensionality of HSIs can
be reduced by the spectral feature refining part, the dimensionality reduction operation
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for HSIs becomes an embedded component of the CNN model. The advantages of this
embedded dimensionality reduction are as follows:

1. It is more convenient since the process of dimensionality reduction is no longer an
extra preprocessing step previous to the feature extraction and classification processes.

2. Both the channel attention operation and the 1 × 1 convolution layer contain trainable
parameters. Therefore, the spectral feature refining module can be optimized during
the training stage of the SFRN model. This process not only reduces the dimensionality
of HSIs, but also refines the spectral features for the classification task.

3. More importantly, as in a SFRN, the training processes of the spectral feature refining
part, the semantic feature extraction part and the classification part are implemented
simultaneously using the same objective function. Hence, all the parts are optimized
to the same direction.

3.2. SFRN Ensemble

We follow a patch-based manner to construct multiple SFRN models for our HSI
classification tasks. During the training processes of the models, the trainable parame-
ters are initialized randomly. Therefore, SFRN models with the same structure can be
trained into different classifiers. Based on this inherent randomness in the training pro-
cesses of our SFRN models, we construct an ensemble model which is denoted as SFRN
ensemble hereafter.

The training process and the prediction process of the SFRN ensemble are illustrated in
Figure 4. The structure of the individual SFRN classifier is quite simple. Besides the channel
attention block, three 1 × 1 convolution kernels are included in the SFR module to reduce
the dimensionality of the HSIs to three. The SFR module is followed by two convolution
layers, both of which contain 64 convolution kernels with a ReLU activation function [43].
The rest part of the SFRN model consists of two fully connected layers containing 64 and M
neurons respectively, where M represents the number of classes defined by the classification
task. Multiple SFRN models are established as the base classifiers to construct our ensemble.
The prediction of each base classifier will be a vector with M elements, which represents
the possibilities that the input belongs to the M classes. All the base classifiers are trained
independently using the same set of training samples, then their individual predictions for
an unknown input are averaged to make the final classification. To be specific, the output
vectors of the base classifiers are averaged as a single possibility vector. The decision is
made by choosing the class with the largest possibility. As compared to CNN ensembles
based on feature selection techniques, such as RFS, the proposed SFRN ensemble is much
more convenient, as no preprocessing steps are required.
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Figure 4. Data flow of the SFRN ensemble. Multiple identical base SFRN classifiers are trained in
parallel, and the ensemble prediction for an unknown input is a simple average of the predictions
produced by the base classifiers.

3.3. Discussion

As discussed in Section 2.1, different strategies for creating CNN ensembles have
their own advantages. The feature-based ensemble is less demanding on the complexity
and the power of the base model, while the model-based ensemble is preprocessing free.
The ensemble proposed in this paper has both of these advantages at the same time since
it follows a hybrid strategy by training randomly initialized CNN models in randomly
created feature subspaces. Additionally, the whole ensemble is itself an end-to-end model,
which can be conveniently implemented in practical applications. The hybrid strategy
adopted in the proposed SFRN ensemble is illustrated in Figure 5.

Figure 5. Hybrid strategy adopted in the proposed SFRN ensemble.

The main objective of the proposed approach is to take advantage of the rich spectral
information provided by HSIs while alleviating the problems caused by the high dimen-
sionality of HSIs. We also aim at promoting data-driven models for HSI classification when
training samples are scarce. The SFRN ensemble is the comprehensive solution to meet
all our research objectives. The spectral feature refining technique provides an optimized
usage of the spectral features in HSIs, and the dimensionality reduction process is also
implicitly included. Furthermore, both the ensemble framework and the dimensionality
reduced feature space make it possible to obtain accurate classification results using only
very simple CNN architectures with small amounts of labeled samples for training.

4. Experimental Results
4.1. Data Set Description and Experimental Setup

In our study, the performance of the proposed SFRN ensemble is evaluated on four
classical HSI benchmark data sets, including the Indian Pines (IP) data set, the Salinas (SA)
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data set, the Pavia University (PU) data set and the Kennedy Space Center (KSC) data
set [10]. Brief introductions about these data sets are as follows:

• The IP image was captured in 1992 by the 224-band airborne visible/infrared imaging
spectrometer (AVIRIS) [44] over the Indian Pines test site in Northwestern Indiana,
USA. The image contains 145× 145 pixels with a spatial resolution of 20 mpp. Here,
200 bands in the spectral range of 0.4–2.5 µm are selected out of the original image,
then 10,249 pixels in the image are labeled and divided into 16 classes to form the
data set.

• The SA data set is another data set gathered by the AVIRIS sensor. The campaign was
conducted in 1998 over the agricultural area of Salinas Valley, California. The image
contains 512× 217 pixels with a spatial resolution of 3.7 mpp. Here, 20 bands in the
original image are discarded due to water absorption and noise. The data set contains
54,129 pixels belonging to 16 different classes.

• The PU image was captured by the reflective optics system imaging spectrometer
(ROSIS) [45] over the campus of the University of Pavia, in the north of Italy. The
image contains 610× 340 pixels with a spatial resolution of 1.3 mpp. After discarding
the noisy bands, 103 out of the 115 original spectral bands, covering the spectral range
from 0.43 to 0.86 µm, are kept to form the data set. It contains 42,776 pixels which
can be categorized as nine different classes that belong to an urban environment with
multiple solid structures, natural objects and shadows.

• The KSC image was also captured by the AVIRIS sensor. The campaign was conducted
in 1996 over the neighborhood of the Kennedy Space Center in Florida, USA. The
image contains 512× 614 pixels with a spatial resolution of 18 mpp. Only 176 spectral
bands ranging from 0.4 to 2.5 µm are kept in the data set, which contains 5211 labeled
pixels belonging to 13 different land cover classes.

Four sets of comparative experiments were conducted. The first experiment is a
comparison between the SFR module and the PCA-based dimensionality reduction. This is
to study the saturation phenomenon in the band selection process for HSI classification, and
it is also to demonstrate the superiority of the SFR module as an optimized dimensionality
reduction technique. In the second experiment, the SFRN ensemble is compared with
some state-of-the-art (SOTA) HSI classification models. This experiment is to verify that
the proposed ensemble is capable of improving the performance of very simple CNN
models to the level of those of SOTA CNN models with very complex structures. In
the third experiment, the SFRN ensemble is compared with other ensembles for HSI
classification. This is to verify the effectiveness of the proposed convenient strategy to
construct reliable ensembles which can make accurate predictions based on small amounts
of training samples. Ablation analysis is also performed by comparing ensembles of SFRNs,
CDRNs and basic CNNs. This is the fourth set of experiments conducted in our study. The
overall accuracy (OA), the average accuracy (AA) and the kappa coefficient are the metrics
involved in our experiments to evaluate the classification results of different models.

The experiments are conducted on an Intel Xeon E5 platform equipped with 64 GB
memory and a Nvidia Geforce GTX 1080Ti graphic processing unit. The proposed SFRN
ensemble is implemented based on the framework of Tensorflow. The source code is avail-
able on Github (https://github.com/modestyao/SFRN-ensemble, accessed on 7 October
2022). More details about the programming environment can be found on our source code
page. In the first two sets of experiments, all the results are obtained in our own programs,
while in the third experiment, the accuracy metrics of the existing ensembles are cited from
the original paper. This is because we have no access to the source codes of these ensemble
approaches and therefore cannot reproduce their experiments fairly.

4.2. Spectral Redundancy and Dimensionality Reduction

The purpose of the first experiment is to evaluate the SFR module as an effective
dimensionality reduction technique for HSI classification. Four different dimensionality
reduction processes, including the one based on the SFR module, are implemented and

https://github.com/modestyao/SFRN-ensemble
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compared with each other in the experiment. The PCA-based approach is the most classic
one which has been widely used and is still quite popular in recent researches. The FA-based
approach is also very effective for reducing a large number of variables into fewer numbers
of factors. The convolution-based dimensionality reduction (CDR) can be considered the
prototype of the SFR module. As discussed in Section 3.1, the dimensionality of HSIs can
be reduced by barely using a 1× 1 convolution layer, and the channel attention operation
in the SFR module can further improve the spectral features with reduced dimensions.

A very simple CNN model with only two convolution layers is employed as the objec-
tive model working on the spectral feature subspaces created by different dimensionality
reduction approaches. The structure of this objective model is illustrated in Figure 6. The
objective model is trained using 10% of the labeled samples in each of the four benchmark
data sets, and the overall accuracies of its predictions are estimated on the remaining
samples. Patches corresponding to the 9× 9 neighborhood of the samples are cropped from
the images after the dimensionality reduction operations. These patches are constructed as
the inputs to the classification model. The number of epochs for training the model is set to
50. We use the Adam optimizer for the training processes, and the learning rate is set to
0.001. We repeat the experiments for five times and the means and standard deviations
(STDs) of the OA values are illustrated in Figure 7. We denote the classification results
achieved by the model on different spectral subspaces created by the four dimensionality
reduction approaches as PCA, FA, CDR and SFR, respectively.

Figure 6. Structure of the objective CNN model. The major parts of this network include two
convolutional layers and two fully connected layers. Two sets of 64 3× 3 convolution filters are used
in the two convolutional layers.
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(a)

(b)

(c)

(d)

Figure 7. Classification results obtained by the objective CNN model on different spectral feature
subspaces created by four dimensionality reduction approaches, respectively. The model is trained
using 10% of the samples in each of the four data sets. (a) IP, (b) SA, (c) PU, (d) KSC.
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Since we are using a quite small model, most of the accuracy curves show a trend
to saturate rapidly when the dimensions of the inputs increase. Both the PCA-based
dimensionality reduction process and the FA-based dimensionality reduction process are
implemented based on the internal structures of the data sets, while CDR and SFR are
optimized for the classification tasks. Therefore, it is not surprising to see that the CNN
model produces less accurate classification results on the feature spaces created by the the
two projection-based approaches, especially when the dimensionality of the feature space
is lower than five. When the dimensionality is higher than 10, the accuracies corresponding
to the four different dimensionality reduction approaches are very close to each other
on the data sets of SA and PU. On the IP data set, the advantages of the proposed SFR
dimensionality reduction approach over the projection-based ones are more obvious, while
the accuracy curves are also quite similar to each other when the dimensionality is higher
than 30. The situation is quite different on the KSC data set. The PCA dimensionality
reduction approach leads to very poor classification results even when the dimensionality
is only reduced to 50. The FA curve looks better, but the accuracies are also quite low when
the dimensionality is lower than 10. On the contrary, SFR and CDR lead to much better
classification results. In particular, the accuracies corresponding to SFR are constantly
higher than 95% when the dimensionality is higher than two. The reason for the poor
performances of the PCA and the FA approaches is that the labeled samples only take
a very small percentage among the pixels in the whole image. The projection-based
approaches are optimized for the whole image, while CDR and SFR are optimized only
for the labeled samples. CDR and SFR are more “task-oriented” and hence can support
better classifications. In general, for any of the four data sets, the SFR module can help the
CNN model to produce accurate classifications even when the spectral dimensionality of
the data set is largely reduced. The improvements from CDR to SFR are also very obvious
on all the data sets involved in our experiments.

4.3. Classification Performance

The second part of our experimental analysis is related to the comparisons between
the proposed SFRN ensemble and the SOTA HSI classification approaches. In these com-
parisons, the implementation of the SFRN ensemble (SFRN-E) consists of 10 SFRNs as the
base classifiers, and the structures of these SFRNs in the ensemble are exactly the same as
illustrated in Figure 4, except for that they take 11 × 11 patches as inputs. SFRN-E is com-
pared with five SOTA models, namely CDCNN [11], SSRN [18], DBMA [15], HybridSN [19]
and SpectralNet [46]. In each of the 10 base SFRN classifier in our ensemble, we use the
SFR module to reduce the dimensionality of the original HSIs to three. The randomness
of the SFR-based dimensionality reduction process will guarantee the diversity of the
obtained three-dimensional feature spaces. This means that we can obtain 30 different
feature dimensions in the ensemble. For the other single-model approaches, we reduce the
dimensionality of the HSIs to 30 before constructing our training samples. Therefore, both
our ensemble and the SOTA models are trained on 30-dimensional feature spaces. This
gives our comparative experiment a certain level of fairness. All the models are trained
using a total of 200 samples in each of the four benchmark data sets. These samples are
randomly selected from all the categories according to their proportions within each data
set. The performance of the models is estimated on the remaining samples, as reported in
Tables 1–4. The amounts of samples in the training set and the test set are also reported.
The per-class classification accuracies are measured using the F1-score; OA, AA and the
kappa coefficients are reported to demonstrate the overall performance of different models.

SFRN-E outperforms all the compared approaches on the four data sets, in terms
of overall accuracy. As regarding to class-wise accuracies, SFRN-E produced the best
classification results on seven out of the 16 classes in the IP dataset, and this proportion is
12/13 for the dataset of KSC. All the class-wise accuracies achieved by SFRN-E are above
90%, on 15 out of the 16 classes in the SA dataset. This is a noticeably more stable and
balanced performance as compared to the other models. On the PU dataset, SFRN-E also
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achieved the best class-wise results on three out of the nine classes. A very important
advantage of SFRN-E is the consistency of its performance across different datasets. As
a contrast, the performance of DBMA is quite close to SFRN-E on the datasets of SA and
PU, but it drops a lot on the dataset of KSC. In general, the advantage of SFRN-E is more
obvious on the IP and the KSC data sets, which contain fewer labeled samples as compared
to the other two data sets. This can be considered as verification of the ability of SFRN to
deal with the scarcity of training samples.

Table 1. Classification accuracies on the test set obtained by different approaches on the IP dataset
(200 samples are used for training and the rest for test). Best results are pointed out in bold.

Label Class Name Training/Test CDCNN SSRN DBMA HybridSN SpectralNet SFRN-E

1 Alfalfa 2/44 42.72 46.15 68.24 88.61 56.82 82.67
2 Corn-notill 25/1403 58.82 71.83 73.58 66.92 65.72 89.06
3 Corn-mintill 13/817 46.15 77.43 70.44 56.60 69.25 65.19
4 Corn 3/234 29.59 25.19 52.70 38.62 25.74 64.76
5 Grass-pasture 7/476 89.15 80.87 80.92 75.83 64.39 84.67
6 Grass-trees 12/718 94.25 94.15 88.68 93.99 81.46 87.88
7 Grass-pasture-mowed 1/27 9.76 0.00 25.00 66.67 46.67 75.00
8 Hay-windrowed 14/464 94.14 97.71 96.30 75.51 99.46 97.83
9 Oats 1/19 12.24 0.00 0.00 58.18 25.00 27.50
10 Soybean-notill 25/947 68.74 78.04 80.29 75.19 74.90 87.67
11 Soybean-mintill 48/2407 75.75 85.08 86.76 86.00 79.05 94.62
12 Soybean-clean 11/582 44.89 52.61 71.08 53.75 60.06 75.74
13 Wheat 4/201 82.06 86.44 85.09 81.82 96.68 96.16
14 Woods 28/1237 92.49 91.36 94.77 96.14 90.81 97.37
15 Buildings-Grass-Trees-Drives 5/381 66.67 24.35 53.99 54.77 51.50 52.69
16 Stone-Steel-Towers 1/92 70.27 55.93 17.82 42.11 35.77 62.94

OA(%) 72.03 ± 1.29 78.48 ± 0.96 80.86 ± 1.80 77.07 ± 2.51 75.07 ± 2.03 86.39 ± 0.92
AA(%) 62.88 ± 1.71 57.42 ± 2.98 64.70 ± 2.74 70.30 ± 3.66 61.07 ± 3.24 75.87 ± 2.60

Kappa× 100 68.03 ± 1.49 75.30 ± 1.12 78.10 ± 2.06 73.83 ± 2.84 71.05 ± 2.31 84.44 ± 1.03

Table 2. Classification accuracies on the test set obtained by different approaches on the SA dataset
(200 samples are used for training and the rest for test). Best results are pointed out in bold.

Label Class Name Training/
Test CDCNN SSRN DBMA HybridSN SpectralNet SFRN-E

1 Brocoli_green_weeds_1 7/2002 99.98 100.00 98.84 99.63 76.06 98.50
2 Brocoli_green_weeds_2 14/3712 96.80 99.93 99.92 99.72 85.63 99.68
3 Fallow 7/1969 99.46 95.57 96.63 91.48 91.97 98.41
4 Fallow_rough_plow 5/1389 92.84 98.55 96.58 95.59 95.96 93.63
5 Fallow_smooth 10/2668 95.20 98.39 95.83 96.49 97.16 96.36
6 Stubble 15/3944 99.23 100.00 99.23 96.34 99.51 99.39
7 Celery 13/3566 99.92 99.87 99.86 99.87 94.49 98.87
8 Grapes_untrained 42/11,229 83.50 88.04 92.06 94.06 82.08 92.81
9 Soil_vinyard_develop 23/6180 99.19 99.72 99.57 100.00 98.66 99.51

10 Corn_senesced_green_
weeds 12/3266 92.70 94.12 93.56 98.00 92.27 95.92

11 Lettuce_romaine_4wk 4/1064 93.53 96.61 92.26 79.50 74.97 97.38
12 Lettuce_romaine_5wk 7/1920 96.75 99.12 99.46 100.00 91.57 95.29
13 Lettuce_romaine_6wk 3/913 83.38 98.85 99.51 91.91 93.38 92.92
14 Lettuce_romaine_7wk 4/1066 90.86 96.44 94.42 82.45 97.20 94.42
15 Vinyard_untrained 27/7241 76.69 78.13 90.00 92.05 76.31 89.89
16 Vinyard_vertical_trellis 7/1800 98.24 99.20 98.28 80.57 92.08 99.02

OA(%) 91.40 ± 0.48 93.82 ± 0.51 95.70 ± 0.37 95.15 ± 0.92 88.42 ± 1.47 95.75 ± 0.27
AA(%) 94.09 ± 0.75 96.41 ± 0.90 97.31 ± 0.39 93.69 ± 1.63 89.98 ± 1.35 96.59 ± 0.44

Kappa× 100 90.44 ± 0.54 93.11 ± 0.58 95.22 ± 0.42 94.61 ± 1.02 87.13 ± 1.64 95.27 ± 0.29

Visual comparisons are also included here, as illustrated in Figures 8–11. Classification
maps produced by different approaches are compared with the ground truths. In general,
the classification maps produced by the SFRN ensemble show fewer mislabeled areas as
compared to the maps produced by the other approaches.
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Table 3. Classification accuracies on the test set obtained by different approaches on the PU dataset
(200 samples are used for training and the rest for test). Best results are pointed out in bold.

Label Class Name Training/
Test CDCNN SSRN DBMA HybridSN SpectralNet SFRN-E

1 Asphalt 31/6600 88.86 91.80 95.28 85.37 85.94 91.39
2 Meadows 87/18,562 96.53 97.53 97.10 97.69 92.32 98.70
3 Gravel 10/2089 64.82 75.81 76.92 76.90 59.11 79.62
4 Trees 14/3050 92.51 94.04 94.35 68.37 89.11 93.70
5 Painted metal sheets 6/1339 99.96 99.87 99.32 88.40 95.64 99.51
6 Bare Soil 24/5005 86.51 91.63 90.16 92.83 79.42 94.93
7 Bitumen 6/1324 74.95 91.74 91.95 78.20 66.00 88.84
8 Self-Blocking Bricks 17/3665 75.49 84.00 81.86 71.76 82.03 78.30
9 Shadows 5/942 78.65 91.37 94.42 53.26 70.27 90.47

OA(%) 89.70 ± 0.76 93.25 ± 0.89 93.33 ± 0.77 88.25 ± 3.42 86.36 ± 2.04 93.58 ± 0.89
AA(%) 83.77 ± 1.90 90.35 ± 1.37 91.44 ± 1.28 79.16 ± 7.83 77.15 ± 2.28 89.01 ± 1.26

Kappa× 100 86.27 ± 0.98 91.05 ± 1.16 91.17 ± 1.02 84.31 ± 4.68 81.51 ± 2.56 91.46 ± 1.18

Table 4. Classification accuracies on the test set obtained by different approaches on the KSC dataset
(200 samples are used for training and the rest for test). Best results are pointed out in bold.

Label Class Name Training/Test CDCNN SSRN DBMA HybridSN SpectralNet SFRN-E

1 Scrub 29/732 85.20 88.54 84.00 96.85 89.27 100.00
2 Willow swamp 9/234 78.74 77.29 68.78 79.53 67.02 91.03
3 CP hammock 10/246 86.56 93.14 84.94 93.75 59.66 97.07
4 Slash pine 10/242 64.79 80.72 71.36 78.44 42.86 90.42
5 Oak/Broadleaf 6/155 61.86 75.86 65.55 76.87 73.97 88.26
6 Hardwood 9/220 61.21 74.01 66.81 89.50 69.72 100.00
7 Swamp 4/101 64.76 65.22 80.46 79.56 87.83 88.40
8 Gramionoi marsh 17/414 95.48 93.51 77.83 97.62 65.59 97.30
9 Spartina marsh 20/500 90.96 93.30 86.12 96.59 80.47 99.70
10 Cattail marsh 15/389 89.45 91.50 84.38 99.62 75.28 100.00
11 Salt marsh 16/403 75.19 79.20 72.29 86.97 91.18 100.00
12 Mud flats 19/484 89.16 88.66 80.82 94.55 77.79 100.00
13 Water 36/891 95.91 95.02 96.74 96.01 96.42 100.00

OA(%) 85.05 ± 0.99 88.15 ± 1.40 82.18 ± 2.00 92.96 ± 1.43 79.82 ± 2.01 98.14 ± 0.18
AA(%) 80.18 ± 0.92 81.67 ± 2.25 76.95 ± 2.44 88.49 ± 1.59 74.92 ± 2.53 95.54 ± 0.47

Kappa× 100 83.36 ± 01.09 86.73 ± 1.61 80.10 ± 2.23 92.14 ± 1.62 77.53 ± 2.25 97.93 ± 0.20

Figure 8. Visual assessments of the classification maps produced by different approaches on the
IP data set. Some local details are highlighted to demonstrate the differences in the classification
results. (a) False color image; (b) Ground truth; (c) CDCNN; (d) SSRN; (e) DBMA; (f) HybridSN;
(g) SpectralNet; (h) SFRN-E; (i) Legends.
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Figure 9. Visual assessments of the classification maps produced by different approaches on the SA
data set. (a) False color image; (b) Ground truth; (c) CDCNN; (d) SSRN; (e) DBMA; (f) HybridSN;
(g) SpectralNet; (h) SFRN-E; (i) Legends.

Figure 10. Visual assessments of the classification maps produced by different approaches on the
PU data set. Some local details are highlighted to demonstrate the differences in the classification
results. (a) False color image; (b) Ground truth; (c) CDCNN; (d) SSRN; (e) DBMA; (f) HybridSN;
(g) SpectralNet; (h) SFRN-E; (i) Legends.
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Figure 11. Visual assessments of the classification maps produced by different approaches on the
KSC data set. Some local details are highlighted to demonstrate the differences in the classification
results. (a) False color image; (b) Ground truth; (c) CDCNN; (d) SSRN; (e) DBMA; (f) HybridSN;
(g) SpectralNet; (h) SFRN-E; (i) Legends.

4.4. Comparisons with Other Ensembles

The third experiment is to compare the proposed SFRN ensemble with other ensembles.
The comparisons are partially based on the experimental results reported in [27]. As
discussed in Section 1, ensemble learning is introduced into the tasks of HSI classification
as an alternative to data augmentation techniques when the amount of labeled samples is
not large enough to fully support the training of a complex CNN model. In our experiment,
we select only 200 samples from each data set to train the SFRN ensemble and then we
evaluate the ensemble using the remaining samples. As in the second experiment, we use
10 SFRNs as the base classifiers to construct our ensemble. The Adam optimizer is adopted,
and the learning rate is uniformly set to 0.001 for the training processes of all the base
classifiers. The numbers of training epochs are set to 50. For the sake of fair comparisons,
we follow the settings in [27] by repeating the training and evaluation processes of our
ensemble 10 times, and the averages and standard deviations of accuracies achieved on the
test sets are recorded and compared with the recordings reported in [27]. As shown in Table
5, four ensembles are considered for comparisons, including an ensemble of support vector
machine (SVM-E), a CNN ensemble (CNN-E), a CNN ensemble with transfer learning
(TCNN-E) and a CNN ensemble with transfer learning and improved label smoothing
(TCNN-E-ILS). As in Section 4.3, SFRN-E in Table 5 represents the implementation of the
proposed SFRN ensemble. Inspired by the label smoothing process applied in [27], we also
include label smoothing into the training processes of our base SFRN classifiers.
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Table 5. Classification results produced by different ensembles, using only 200 samples in each data
set for training and the rest for test. Best results are pointed out in bold. The accuracies are the
averages obtained in 10 repeated experiments, and the stand deviations are also reported.

Data Sets Metrics SVM-E CNN-E TCNN-E TCNN-E SFRN-E
(with Label
Smoothing)

(with Label
Smoothing)

OA(%) 81.61 ± 1.47 88.62 ± 0.36 90.17 ± 2.16 91.88 ± 1.13 91.62 ± 0.45
IP AA(%) 57.51 ± 4.24 66.55 ± 3.49 71.53 ± 5.83 77.37 ± 4.04 80.02 ± 0.91

Kappa× 100 77.62 ± 1.83 86.30 ± 0.43 88.21 ± 2.60 90.28 ± 1.34 90.43 ± 0.51

OA(%) - 84.02 87.94 89.62 94.18 ± 0.35
PU AA(%) - 83.71 82.98 85.14 89.34 ± 0.58

Kappa× 100 - 84.76 84.21 86.51 92.25 ± 0.47

OA(%) 91.57 ± 2.47 96.85 ± 0.69 97.29 ± 1.51 99.27 ± 0.36 99.28 ± 0.30
KSC AA(%) 87.10 ± 3.43 95.90 ± 0.94 96.06 ± 2.14 98.87 ± 0.64 98.33 ± 0.67

Kappa× 100 90.60 ± 2.76 96.50 ± 0.76 96.98 ± 1.68 99.19 ± 0.41 99.20 ± 0.33

These ensembles are evaluated on three data sets, namely IP, PU and KSC. Since the
SA data set is not included in the experiments reported in [27], we cannot compare the
performance of SFRN-E with the other ensembles on this data set. The overall classification
performances are reported in Table 5, in terms of OAs, AAs and kappa coefficients. SVM-E,
CNN-E and TCNN-E are all established on the randomness of the random feature selection
process. This preprocessing is abandoned in SFRN-E by converting it into an internal
module of the base CNN classifier. SFRN outperforms SVM-E and CNN-E on all the
three datasets. The overall performance results of SFRN-E and TCNN-E are close to each
other on the data sets of IP and KSC, but SFRN-E is much more reliable on the data set
of PU. Considering the fact that TCNN-E is an ensemble of pretrained CNNs, SFRN-E is
much easier to construct. The experimental results confirm the effectiveness of this more
convenient strategy adopted in our study to construct CNN ensembles.

Another interesting phenomenon that can be observed in the experimental results is
that the performance of the ensemble is largely correlated with the base classifiers. Since
the ability of CNN models to extract spatial features from images is much stronger than
that of SVMs, all the CNN ensembles outperform SVM-E. Furthermore, the ensemble of
CNN can be improved when the individual CNN models are enhanced. This kind of
improvement can be achieved by adopting techniques, such as transfer learning and label
smoothing, as shown by the comparison between CNN-E, TCNN-E and TCNN-E trained
with label smoothing. The SFR module proposed in our study can also be considered as a
very effective technique to improve the individual CNN models in the ensemble. On the IP
and KSC data sets, the performance improvements brought by the SFR module are roughly
equivalent to transfer learning, while on the PU data set, the SFR is obviously a much more
effective boosting technique. Meanwhile, when the SFR module is used together with label
smoothing, the performance of the ensemble will be further improved.

The total numbers of the parameters in different models, including the proposed SFRN
ensemble, TCNN-E, HybridSN and the others involved in our study, are reported in Table 6.
The size of the proposed SFRN ensemble is much smaller than TCNN-E, and it is even
smaller than HybridSN. This indicates the advantage of the proposed ensemble as a low
complexity model which can provide comparable or even better classification results as
compared to those very complex models. It should be pointed out that these parameter
numbers only correspond to the models established for the KSC dataset. For the other
datasets with different class numbers, the sizes of these models will also be different, but
the order of size will remain consistent.
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Table 6. Total number of parameters in different models established for the KSC data set.

Models CDCNN SSRN DBMA HybridSN SpectralNet CNN-E TCNN-E SFRN-E

Parameter Amount 0.303 M 0.310 M 0.06 M 6.781 M 6.802 M 1.118 M 34.822 M 2.721 M

4.5. Ablation Analysis

The ablation study is conducted by modifying and removing the SFR modules from
the SFRNs in the proposed ensemble. Specifically, four ensembles composed of different
types of base classifiers are constructed and compared with each other. There are 10 base
classifiers in each of these ensembles, and the differences between the structures of their
base classifiers are illustrated in Figure 12. In the figure, “CNN” denotes the very simple
CNN structure as explained in Section 4.2. When we replace the SFR module in SFRN with
a CDR module, we obtain the CDR network (CDRN) as our base classifier. The proposed
SFR module is based on the SE block, and in the original study, SE blocks are used in the
middle part of CNNs. Therefore, we remove the SFR module from the top of SFRN and
insert it between the two convolutional layers in the network. We denote this variant of
the base classifier in our ensemble as “SENet”. The SFRN ensemble and its variants are
compared on the data sets of IP, SA, PU and KSC. A total of 200 samples out of each dataset
are selected for training the base classifiers in different ensembles. We still use the Adam
optimizer and the learning rate is still 0.001 during all the training processes. Each training
process still consists of 50 epochs.

As reported in Table 7, the improvements from the “CNN” ensemble to the CDRN
ensemble and then to the SFRN ensemble are quite obvious. A performance increase of at
least five percent in terms of OA can be observed when comparing the “CNN” ensemble
with the SFRN ensemble. This demonstrates the effectiveness of the SFR module as a
task-oriented dimensionality reduction technique. The comparison between the CDRN
ensemble and the SFRN ensemble reveals the necessity to include the spectral attention
based soft feature selection operation in our dimensionality reduction approach. The results
produced by the “SENet” ensemble are comparable to the SFRN ensemble, but the overall
advantages of SFRN ensemble are still notable.

Figure 12. Different types of base classifiers to construct the ensemble.
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Table 7. Ablation analysis. Best results are pointed out in bold. The accuracies are the averages
obtained in 10 repeated experiments, and the stand deviations are also reported.

Data Sets Metrics “CNN” Ensemble CDRN Ensemble “SENet” Ensemble SFRN Ensemble

OA(%) 73.31 ± 0.25 88.33 ± 0.94 90.75 ± 0.24 91.62 ± 0.45
IP AA(%) 65.00 ± 0.35 72.74 ± 2.61 78.41 ± 0.65 80.02 ± 0.91

Kappa× 100 69.34 ± 0.28 86.60 ± 1.09 89.83 ± 0.28 90.43 ± 0.51

OA(%) 90.26 ± 0.15 94.47 ± 0.33 95.06 ± 0.09 95.46 ± 0.18
SA AA(%) 92.65 ± 0.18 95.83 ± 0.56 97.35 ± 0.23 97.02 ± 0.42

Kappa× 100 89.15 ± 0.17 93.84 ± 0.37 94.50 ± 0.10 94.95 ± 0.19

OA(%) 89.77 ± 0.14 90.46 ± 0.38 92.78 ± 0.37 94.18 ± 0.35
PU AA(%) 86.89 ± 0.22 83.65 ± 0.93 88.55 ± 0.99 89.34 ± 0.58

Kappa× 100 86.30 ± 0.19 87.23 ± 0.52 90.35 ± 0.51 92.25 ± 0.47

OA(%) 59.07 ± 0.47 97.31 ± 0.35 99.06 ± 0.14 99.28 ± 0.30
KSC AA(%) 46.54 ± 0.91 93.65 ± 0.76 97.32 ± 0.42 98.33 ± 0.67

Kappa× 100 54.20 ± 0.55 97.00 ± 0.39 98.96 ± 0.16 99.20 ± 0.33

5. Conclusions

This paper presents ensemble learning for HSI classification as an alternative solution
to the training sample scarcity problem. As a common phenomenon in machine learning
researches, the training processes of simpler models are less demanding on the amounts of
required training samples, while ensemble learning is an effective technique to promote
the performance of simple models. Therefore, when the training samples are not sufficient
to support the training process of a complex CNN model, ensembles of simpler models can
be exploited. Following such an idea, we propose a quite convenient approach to construct
a very effective CNN ensemble for HSI classification, based on a novel spectral feature
refining module and the inherent randomness in the initialization of CNNs.

Besides the proposed approach for HSI classification, a very important theoretical
contribution in our study is the combination between a solution to the training sample
scarcity problem and a solution to the problems caused by the high dimensionality of HSIs.
An implicit dimensionality reduction is included in the spectral feature refining module,
which is the base for the ensemble. Experimental results demonstrate that the proposed
ensemble is a reliable choice for HSI classification tasks when training samples are scarce,
and the proposed module is also an effective technique for dimensionality reduction.

As the base classifier in the proposed ensemble, SFRN is a model featured by its very
simple structure. However, the SFRN ensemble as a whole is still a rather big model. As
compared to single-model approaches, the training process for any type of classification
ensemble can be more time consuming, especially when the ensemble contains a large
amount of base classifiers. We suppose that this is probably the main reason why ensemble
learning is less popular for small dataset problems, such as HSI classification. Therefore,
improving the efficiency of the classification model will be the main goal in our future
study. In fact, we have already started to research knowledge distillation techniques for
HSI classification tasks.
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Abbreviations
The following abbreviations are used in this manuscript:

CDR Convolution-based dimensionality reduction
SFR Spectral feature refining, which is a module for dimensionality reduction
SFRN Spectral feature refining network, a CNN equipped with a SFR module
SFRN-E Spectral feature refining network ensemble, an ensemble of multiple SFRNs
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