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Abstract. Given that physics-based models can be difficult to derive,
data-driven models have been widely used for remaining useful life (RUL)
prediction, which is a key element for predictive maintenance. In indus-
trial applications, although the models have to be trained in a short time
with limited computational resources, recent research using back prop-
agation neural networks (BPNNs) has focused only on minimizing the
RUL prediction error, without considering the time needed for training.
Driven by this motivation, here we consider a simple and fast neural net-
work, named extreme learning machine (ELM), and we optimize it for
the specific case of RUL prediction. In particular, we propose to apply
both single-objective and multi-objective optimization to search for the
best ELM architectures in terms of a trade-off between RUL prediction
error and training time, the latter being determined by the number of
trainable parameters. We perform a comparative analysis on a recent
benchmark dataset, the N-CMAPSS, in which we compare the proposed
methods with other algorithms based on BPNNs. The results show that
while the optimized ELMs perform slightly worse than the BPNNs in
terms of RUL prediction error, they require a significantly shorter (up
to 2 orders of magnitude) training time.

Keywords: Evolutionary Algorithm · Multi-Objective Optimization ·
Extreme Learning Machine · Remaining Useful Life · N-CMAPSS

1 Introduction

With the advent of Industry 4.0, the remaining useful life (RUL) prediction of
industrial components has become one of the mainstream elements in predic-
tive maintenance (PdM) research [1]. Maintenance of industrial components is
in fact closely related to costs and reliability, since industry stakeholders can cut
their loss by reducing any unplanned downtime. Moreover, the performance of
the industrial equipment—as well as the quality of products—can be improved
by offering timely maintenance before failures occur. A paradigmatic example
is given by the airline industry, where it is crucial to predict the RUL of air-
craft engines accurately and timely, in order to guarantee the aircraft operation
safety, and make appropriate maintenance decisions. By estimating the RUL
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of the aircraft engines, airlines can improve maintenance schedules and indeed
avoid major disasters. The RUL prediction is thus an essential requirement for
minimizing maintenance cost, as well as guaranteeing safety [2].

Recently, many ML-based methods using neural networks have been intro-
duced to handle the above task. One of the earliest approaches, discussed in [3],
is to employ a multi-layer perceptron (MLP) for the RUL prediction of aircraft
engines. In the same work, the authors also propose to use a convolutional neural
network (CNN), that is a widely used network used especially for computer vision
tasks. Instead of using traditional back propagation-neural networks (BPNNs),
such as a MLP or a CNN, Yang et al. [4] propose to exploit extreme learn-
ing machines (ELM) [5], a kind of neural network that requires a much shorter
training time compared to (even shallow) BPNNs. As an alternative approach,
recurrent neural networks (RNNs), including long short term memory (LSTM),
have been proven able to predict the RUL by directly recognizing temporal pat-
terns of the data, instead of extracting their convolutional features [6]. More
recently, deeper neural networks have been proposed to improve the RUL pre-
diction accuracy [7]. Other deep learning (DL)-based RUL prediction methods
consider a combination of an autoencoder (AE) with a CNN [8], or with a RNN
[9]. An attention-based DL framework has been proposed in [10]. Another recent
work [11] applied evolutionary computation to optimize deep networks tailored
to the RUL prediction task. In this case the authors propose to use a genetic
algorithm (GA) to optimize the architecture of a multi-head CNN-LSTM, which
was handcrafted in their previous work [12].

Most of the methods proposed so far in the literature mainly focus on achiev-
ing a minimization of the RUL prediction error on a well-established benchmark
called the commercial modular aero-propulsion system simulation (CMAPSS)
dataset [13], which is the de facto standard benchmark for RUL prediction. The
CMAPSS dataset has been widely used to develop and evaluate the RUL pre-
diction models after it became publicly available on the NASA’s data repository
in 2008. However, one shortcoming of this dataset is that the data are solely
based on MATLAB simulations, without considering real flight conditions, so
that each time series is rather short (just a few hundred samples). In 2021, the
NASA’s data repository released the new CMAPSS (N-CMAPSS) [14] dataset,
that contains data acquired under real flight conditions. One major difference
with respect to the previous dataset is that each time series consists of millions of
samples, thus the total size of the dataset is significantly larger. Therefore, this
new realistic dataset provides a chance to develop reliable algorithms for RUL
prediction in a real-world context. Moreover, while the previous dataset was
small enough to allow researchers to focus only on the minimization of the RUL
prediction error, without consider the training time, the N-CMAPSS dataset,
due to its much larger amount of data, requires algorithms that are faster to
train, without compromising the RUL prediction error.

It should be noted that, although reducing the training time (which corre-
lates to the number of trainable parameters) is a crucial objective in industrial
contexts that do not normally have access to expensive computing infrastruc-



Multi-Objective Optimization of ELM for RUL Prediction 3

tures, this aspect has not been considered so far in the literature, also because
of the aforementioned limitations of the CMAPSS dataset.

To achieve the multiple (and conflicting) objectives of reducing the RUL
prediction error while also minimizing the training time, here we propose to use
an ELM and we optimize its architecture and parameters using both a single-
objective optimization (SOO) and a multi-objective optimization (MOO) algo-
rithm. For the SOO case, we use a custom GA with two different fitness func-
tion formulations (including or not a penalty on the neural network complexity):
we use its results as baseline. For the MOO case, we use the well-known non-
dominated sorting genetic algorithm II (NSGA-II) [15], which has been recently
applied successfully also for neural architecture search [16]. The choice of using
an ELM is motivated by the experimental results presented in [17], that are
based on the CMAPSS dataset, where the authors show that ELM-based mod-
els can provide comparable performance to BPNNs in terms of RUL prediction
error, while enabling a considerable saving in terms of training time. The main
limitation of the study presented in [17], however, is that it only considers for the
comparative analysis a small set of manually designed ELM architectures. On
the other hand, exploring the search space of those networks with an automatic
search process can potentially provide further performance improvements: our
goal is to fill this gap. Moreover, to take into account a proper assessment of the
training time, we perform our experiments on the N-CMAPSS dataset.

Another important advantage of our proposal is that it is based on a fully
data-driven approach that is able to predict the RUL directly, by leveraging
the relation between the degradation pattern of the raw sensor data and the
RUL, thus without using any physics-based model of the degradation process
(as recently done in [18]). This is also made possible by the large amount of data
available in the N-CMAPSS dataset: in fact, these sensor data allow to model
the RUL prediction problem as a regression task on a multivariate time series.

To summarize, the main contributions of this work can be identified in the
following elements:

– We achieve a successful trade-off between two conflicting objectives, namely
the RUL prediction error and the number of trainable parameters.

– To the best of our knowledge, this is the first use case of multi-objective
neural architecture search applied to RUL prediction (and, in particular, on
the N-CMAPSS dataset).

The rest of the paper is organized as follows: in Section 2, the background
concepts on ELMs are introduced. The details of the proposed methods are
presented in Section 3. Then, Section 4 discusses the details of our experiments
and Section 5 presents the numerical results. Finally, Section 6 provides the
conclusions of this work.

2 Background

An ELM is a fast training algorithm for single-hidden layer feed-forward neural
networks (SLFNs). While BPNNs tune their parameters iteratively with (usually,



4 Hyunho Mo and Giovanni Iacca

time-consuming) gradient-based computations, ELMs merely use an analytically
determined non-iterative solution as the output weights, together with randomly
initialized input weights.

An ELM can be formally described as follows. Let N be the number of
labeled samples, where each sample is a pair made of a d-dimensional input
vector and the corresponding c-dimensional label, which are denoted by xi and
ti respectively. A given set of training samples can then be written as (xi, ti),
i ∈ [1, N ] with xi ∈ IRd and ti ∈ IRc. In our experiments on the N-CMAPSS
dataset, d is the number of monitoring signals, and c = 1 (i.e., the label is a real
number representing a RUL value).

Fig. 1: Illustration of ELM with the structure of a SLFN.

The notation used for describing the ELM and the structure of a SLFN are
visualized in Fig. 1. For a given input sample xi, the output of a SLFN oi with
L hidden neurons and activation function g(·) is defined by:

oi =

L∑
j=1

βjg(wj · xi + bj). (1)

wherewj = [w1j , . . . , wdj ] is a vector of weights on the connections between the d
input neurons (which are assumed to be linear) and each j-th hidden neuron, βj

is the weight on the connection between the j-th hidden neuron and the output
neuron, and bj denotes the bias for the j-th hidden neuron. The computation for
all the N equations (one for each of the N samples) can be written compactly
as:

H · β =

 g(w1 · x1 + b1) · · · g(wL · x1 + bL)
...

. . .
...

g(w1 · xN + b1) · · · g(wL · xN + bL)


β1

...
βL

 (2)

where H is the hidden layer output matrix (of size N × L), and β (of size L)
consists of the weights of all the connections between the hidden neurons and
the output neuron.
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To train the SLFN defined above is equivalent to find a least square solution
β̂ to the linear system H · β = T where T = [t1, · · · , tN ]⊤. Therefore, the
mathematical formulation of the training procedure can be expressed as:

∥Hβ̂ − T ∥ = min
β

∥Hβ − T ∥ (3)

As discussed in [5], the smallest norm least squares solution of the above equation
is determined by:

β̂ = H†T (4)

where H† denotes the Moore-Penrose generalized inverse of the matrix H. The
pseudo-inverse can be calculated as (H⊤H)−1H⊤. Moreover, an L2 regulariza-
tion term αI (with α ∈ IR being an arbitrarily small value) is added to prevent
the inverse term from being singular (i.e., H⊤H is replaced by H⊤H + αI).
The solution to Eq. (3) is then defined by:

β̂ = (H⊤H + αI)−1H⊤T . (5)

This last equation describes the ELM training algorithm for SLFNs1.

As pointed out in the seminal paper on ELMs [5], the training process de-
scribed by Eq. (5) is extremely fast (hence their name). Moreover, it has been
shown that ELMs can even achieve a better generalization performance than
back-propagation training algorithms [19, 20] and that, compared to BPNNs,
they obtain comparable results in terms of prediction accuracy on a variety of
regression tasks [17, 21]. Considering these advantages, ELMs then appear an
appropriate tool for RUL prediction tasks in industrial contexts that require a
fast learning process and a stable generalization performance.

On the other hand, the computational complexity of the ELM training algo-
rithm derives from the size of the matrix H: more specifically, it is O(NL2+L3).
In other words, the complexity is cubic w.r.t. the number of hidden neurons,
which, in turn, is the same as the number of trainable parameters (i.e., the β
values), see also the empiric characterization of the training time shown in Fig. 2.
Yet, increasing the number of hidden neurons L does not always contribute to
decreasing the RUL prediction error, and may lead to overfitting.

Finding the optimal value of L, as well as of the other parameters of an ELM,
is therefore a crucial element for the ELM performance. However, this task that
cannot be easily achieved by manual design or by empiric considerations. On
the contrary, using evolutionary search to explore this parameter space and to
discover optimized ELMs automatically (in terms of both the RUL prediction
error and the number of trainable parameters) seems to be a more viable solution.

1 We should note that, strictly speaking, “ELM” refers to the training algorithm only.
However in the literature (as well as in the rest of this paper) “ELM” is generically
used to refer to both the training algorithm and the neural network itself.
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Fig. 2: Correlation between the number of trainable parameters and the training
time of the ELM models. The best fit curve shows a super-quadratic dependency
between the training time and the number of parameters, in line with the cubic
complexity derived analytically, O(NL2 + L3).

3 Methods

We present now the details of the proposed methods: Section 3.1 describes the
individual encoding, while Section 3.2 describes the SOO and MOO evolutionary
algorithms.

3.1 Individual encoding

Given the baseline structure of the ELM model described in Section 2, we con-
sider the optimization of the following integer parameters:

– number of hidden neurons with hyperbolic tangent activation (ntanh);
– number of hidden neurons with sigmoid activation (nsigm);
– L2 regularization parameter (r);

In preliminary experiments, we observed that the RUL prediction error as well
as the computational complexity are largely affected by the number of hidden
neurons. Furthermore, using different activation function g(·) for the hidden
neurons also produces different results. Therefore, we encode the number of
hidden neurons with two different activation functions into ntanh and nsigm,
respectively. The remaining parameter, r, refers to the order of magnitude of
the L2 regularization parameter α described in Section 2, i.e., α = 10−r.

Overall, the lower and upper bounds for each parameter considered in our
experiments are set as follows: [1, 200] (multiplied by a fixed value of 10) for both
ntanh and nsigm, and [2, 6] for r. These values have been chosen empirically. In
particular, we use a discretization on the number of hidden nodes to reduce the
search space yet allowing ELMs of up to 2, 000 tanh hidden neurons and 2, 000
sigmoid hidden neurons. This upper bound is chosen to allow to train each ELM
generated during the evolutionary search within a maximum training time of 500
seconds, so that the overall runtime of the search remains affordable. Concerning
r, its lower bound corresponds to α = 10−2, which we find being the largest value
that does not too much affect the ELM performance; the upper bound, on the
other hand, corresponds to α = 10−6, which we set as the smallest value that
makes the inverse term in Eq. (4) non-singular.
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3.2 Optimization algorithms

In order to optimize the ELM parameters described in Section 3.1, we consider
first a SOO approach based on a GA aimed at minimizing simply the RUL
prediction error. However, as we will see in Section 5, in this case the discovered
ELMs tend to have a large number of trainable parameters. To avoid this, we
consider a second SOO approach where the number of trainable parameters is
included as a penalty factor into the fitness evaluation. Finally, we consider
a MOO approach to look explicitly for the best trade-off solutions in terms
of RUL prediction error and number of trainable parameters. In all the three
approaches, the fitness of each individual is calculated by generating an ELM (the
phenotype) associated to the corresponding genotype, i.e., a vector containing
the three parameters introduced in Section 3.1. Moreover, given that the N-
CMAPSS dataset consists of a training set Dtrain and a test set Dtest, we further
split Dtrain into training purpose data, Etrain, and validation purpose data, Eval

(i.e., Dtrain = Etrain ∪ Eval). The fitness is calculated on the latter.

Single-objective optimization First, we initialize the population by generat-
ing npop individuals at random. In the main loop of the evolutionary search, we
use crossover and mutation as genetic operators. As for crossover, we implement
a specialized one-point crossover: at first, the population is sorted according to
the fitness of its individuals. Then we mate the individual in the (2i)-th position
with the one in the (2i + 1)-th position following a crossover probability pcx,
where i ∈ [0, npop/2−1]. This allows us not only to exploit the best individuals,
but also to explore the areas of the search space that are distant from the region
in which the best individuals lie. Then, we apply uniform mutation following
a mutation probability pmut, according to which each gene can be mutated to
another value uniformly drawn from its bounds specified in Section 3.1. The
expected number of mutations is determined by a pgene parameter which is set
to 0.4, so that we have, on average, 1.2 mutated genes out of 3. This enables
us to have a relatively fast search process by having on average at least one
gene mutation, while avoiding disruptive mutations. After that, we create the
population for the next generation with implicit elitism, i.e., the worst parent
involved in the crossover is replaced by its offspring if the latter has a better
fitness. We set both pcx and pmut to 0.5.

We stop the above process after a fixed number of generations ngen, after
which the algorithm returns the best individual found during the evolutionary
search based on the specific fitness. We set npop to 28 and ngen to 30. We
have empirically found that these settings allow enough evaluations to observe
convergence on the fitness across generations.

We consider two different scenarios in terms of SOO, that we refer to re-
spectively as SOO-ELM(1) and SOO-ELM(2). In the first case, the fitness of
each individual is defined as the root mean square error (RMSE) of its pheno-
type on Eval, after training it on Etrain. We indicate this validation RMSE with
RMSEval. As said, the limitation of this approach is that the size of the discov-
ered ELM tends to be very large in order to decrease RMSEval. In other words,
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ntanh and nsigm tend to converge to their upper bounds throughout the evolu-
tionary process. To overcome this limitation, we consider a second SOO approach
in which the fitness formulation includes the number of trainable parameters of
the ELM. This is obtained by calculating the fitness as RMSEval+ τL, where τ
is a constant weight. This way, we can prevent the survival of the unnecessarily
large ELMs by penalizing their fitness with τL.

Multi-objective optimization As we discussed earlier, minimizing RMSEval

and L are conflicting objectives in the architecture search of the ELMs. While
the SOO-ELM(2) approach discussed above somehow goes in the direction of
compromising those two objectives, the best model still largely depends on a
human decision, since it depends on how the value of τ is parametrized.

To tackle this limitation, we propose to use a MOO algorithm, NSGA-II,
to search explicitly for a set of trade-off ELMs. We refer to this method as
MOO-ELM. We follow the procedure of the original NSGA-II algorithm. At the
beginning of the evolutionary run, a population of npop individuals is randomly
initialized. In the main loop after the initial generation, an offspring population
of the same size is created by using tournament selection, crossover and mutation.
The tournament selection primarily checks the dominance across the individuals
in the population. Then, the secondary criteria, crowding distance, is considered
only once all the non-dominated individuals have been considered. Regarding the
crossover and the mutation, we use the same strategies specified in the single-
objective case, with the same parametrization. The combined population of the
parents and the offspring is then sorted according to non-domination. The best
non-dominated sets are inserted into the new population, until no more sets
can be accommodated. For the next non-dominated set, which would make the
new population be larger than the fixed population size npop, only the solutions
largest crowding distance values are inserted in the remaining slots in the new
population. When the new population is ready, its offspring population is created
and the same process continues to the next generation.

Also in this case, we set npop to 28 and ngen to 30. After the fixed number of
generations, the evolutionary search returns a set of the trade-off solutions that
have the top dominance level (i.e., the method returns a Pareto front).

4 Experimental setup

In this section, we present the details of our experimentation: first, we briefly
describe the N-CMAPSS dataset in Section 4.1. In the following Section 4.2, we
describe two BPNNs that are used for the comparison with our methods. Then,
the computational setup and data preparation steps are outlined in Section 4.3.

4.1 Benchmark dataset

The proposed methods are evaluated on the N-CMAPSS dataset. Specifically, we
only use its sub-dataset DS02, that has been developed for data-driven methods
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[14]. It consists of the run-to-failure degradation trajectories of nine turbofan
engines with unknown and different initial conditions. The synthetic trajectories
were generated with the CMAPSS dynamic model implemented in MATLAB,
but a fidelity gap between simulation and reality is mitigated by reflecting real
flight conditions recorded on board of a commercial jet. Furthermore, the relation
between the degradation and its operation history is considered, to extend the
degradation modeling [14]. Among the nine engines, we use 6 units (u2, u5, u10,
u16, u18 and u20) for the training set Dtrain, and the remaining 3 units (u11, u14

and u15) for the test set Dtest. In particular, the u14 and u15 relate to shorter
and lower altitude flights compared to those of the training units, so that the
evaluation results on the Dtest can implicitly reflect the generalization capability
of the RUL prediction model.

Table 1 describes each unit in the dataset. The total number of samples (i.e.,
timestamps) is 5.26M in Dtrain and 1.25M in Dtest, with a sampling rate of
1Hz. The end-of-life time tEOL points out the counted flight cycles at the end
of the engine’s lifespan, i.e., tEOL is the same as the initial value of the labeled
RUL. There are two distinctive failure modes in the dataset: the abnormal high-
pressure turbine (HPT) and the low-pressure turbine (LPT). The combination
of the two failure modes for a unit means that the unit is subject to a more
complex failure mode than a single-failure mode.

The dataset provides condition monitoring signals that are related to the
useful life of the flight engine. Following the setup used in [18], we select the
same 20 signals. The multivariate time series from the 20 signals is used as an
input for the ELM model, therefore the dimension of the input sample d is 20.

Table 1: Overview of each unit in the DS02 of N-CMAPSS dataset w.r.t the
number of samples mi, the end-of-life time tEOL and the failure modes.

Training set (Dtrain) Test set (Dtest)
Unit mi(M) tEOL Failure Mode Unit mi(M) tEOL Failure Mode

u2 0.85 75 HPT u11 0.66 59 HPT+LPT
u5 1.03 89 HPT u14 0.16 76 HPT+LPT
u10 0.95 82 HPT u15 0.43 67 HPT+LPT
u16 0.77 63 HPT+LPT
u18 0.89 71 HPT+LPT
u20 0.77 66 HPT+LPT

4.2 Back-propagation neural networks (BPNNs)

To compare the proposed methods to BPNNs, we consider a MLP and a CNN
whose architectures were manually designed in [18]. As we discussed in Section 1,
the previous works on the old CMAPSS dataset have mostly used deep networks
with complex architectures. On the other hand, on the new dataset a simple feed-
forward neural network (a MLP) and a 1D CNN are still used as state-of-the-art
neural networks, considering the great amount of data (in the order of millions
of samples) obtained from real flight conditions.
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The architecture of the considered MLP has four hidden layers: the first three
of them have 200 neurons each, while the last one has 50 neurons. All the hidden
nodes use the ReLU activation function. Similarly to the ELM, a 20-dimensional
vector for each timestamp is used as an input for the MLP, so the input layer
has 20 nodes, while the output layer consists of a single node.

In contrast, the CNN requires time-windowed data as an input to apply 1D
convolution in the temporal direction. Therefore, all the given time series are
sliced by a time window of length 50 and stride 1. Each input for the CNN
then spans 50 timestamps and has a size of 50× 20. Regarding the architecture,
the CNN is made up of three convolutional layers followed by a fully connected
layer. The first two convolutional layers consist of 10 filters of size 10, while the
last convolutional layer has only one filter of the same size. The following fully
connected layer has 50 neurons. ReLU is used as activation function for all the
nodes in the network.

Lastly, we should note that we follow the training setup used in [18]. In
particular, stochastic gradient descent (SGD), with mini-batch size set to 1024,
is used to compute the gradient, and AMSgrad [22] is used as an optimization
algorithm after initializing the weights with Xavier initialization [23]. For the
training iterations, the maximum number of epochs is set to 60 and 30 for the
MLP and the CNN respectively, whereas the learning rate is set to 0.001. To
handle overfitting, early stopping is considered with a patience of 5.

4.3 Computational setup and data preparation

All the neural networks used in our work are implemented in Python. In partic-
ular, TensorFlow 2.3 is used to implement the BPNNs. To implement the ELM,
we use the high performance toolbox for ELM (HP-ELM)2 that supports GPU
computation. All the experiments have been conducted on the same workstation
with an NVIDIA TITAN Xp GPU, so that we can have a reliable comparison
between different models w.r.t the training time. Both the SOO and MOO algo-
rithms are implemented using the DEAP library3. Our code is available online4.

Since we employ the neural networks, each time series is normalized to [−1, 1]
by a min-max normalization. As we mentioned in Section 3.2, we split Dtrain in
Etrain and Eval: for that, we randomly choose 80% of the data in Dtrain and
assign them to Etrain, used for training each individual. The remaining 20% are
designated as Eval for the fitness evaluation. For the experiments on the BPNNs,
following the experimental setup used in [18], 90% of the data in Dtrain are used
to train the networks, and the remaining 10% are reserved for early stopping.

5 Experimental results

The aim of our experiments is to evaluate the optimized ELMs found with the
proposed methods described in Section 3.2, by comparing their results with those

2 https://github.com/akusok/hpelm
3 https://github.com/DEAP/deap
4 https://github.com/mohyunho/MOO_ELM

https://github.com/akusok/hpelm
https://github.com/DEAP/deap
https://github.com/mohyunho/MOO_ELM


Multi-Objective Optimization of ELM for RUL Prediction 11

obtained by the two BPNNs described in Section 4.2. The comparison is mainly
based on two metrics: 1) the RMSE on Dtest, and 2) the number of trainable
parameters. To highlight the advantage of MOO-ELM, we additionally compare
the training times of the methods under study, which as seen in Fig. 2 in the
case of ELM is super-quadratic w.r.t. the number of trainable parameters. To
improve the reliability of the results from the GA-based methods, we execute 10
independent runs with different random seeds.

Let us first analyze the convergence of MOO-ELM. For each MOO-ELM run,
we collect the hypervolume (HV) [24] across 30 generations, and we normalize it
to [0, 1] by a min-max normalization. As shown in Fig. 3, a gradual improvement
across the generations of MOO-ELM is observed by an increase in the normalized
HV. The monotonic increase of the mean HV indicates that the MOO-ELM al-
gorithm keeps finding better non-dominated solutions across the generations. In
addition, the slope of the mean HV and its std. dev. indicate convergence at the
end of the generations. This means that the algorithm explores the search space
enough within 30 generations, even if it starts from different initial populations.
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Fig. 3: Normalized hypervolume across generations (mean ± std. dev. across 10
independent runs) for the proposed MOO-ELM approach.

To compare the results obtained by the different methods under study, we
aggregate the 10 independent runs in the following way: in the case of the two
SOO-ELM approaches, each run returns a single solution that has the best fitness
during the evolution. The aggregation is then simply the mean of the test RMSE
of the 10 best individuals. On the other hand, each run of NSGA-II returns a
number of solutions on the final Pareto front. In our case, we collected 417 non-
dominated solutions across the 10 runs. For the sake of comparison, instead of
using all of them, we select a fraction of the solutions based on their density in
the fitness space, as described in Fig. 4. When we do not have any preference for
a certain objective, this strategy can be used to derive a subset of the solutions
which are implicitly “preferred” by the MOO algorithm. As shown in Fig. 4,
we first place all the solutions from the 10 runs on the fitness space, which
is discretized in equally-spaced bins. The density of the solutions can then be
measured by counting the number of solutions lying in each bin. As a result,
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we choose the 28 solutions from the bin with the highest density and use the
average of their test RMSE as the final result for MOO-ELM, shown in Table 2.
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experimentation. For SOO-ELM(1),
SOO-ELM(2) and MOO-ELM we re-
port the result of each of the 10 avail-
able runs, and their average. For MLP
and CNN, we report only one solution
related to one single run (since their
computations are deterministic).

The comparative results of all the considered methods are presented in Table
2. It can be seen that MOO-ELM achieves comparable results to state-of-the-art
MLP and CNN models designed by human experts [18]. As mentioned earlier,
in the scope of data-driven methods, those deep networks offer indeed state-of-
the-art RUL predictions (in terms of test RMSE) on the N-CMAPSS dataset.
However, the MLP contains a huge amount of trainable parameter throughout
four stacked layers, and training those parameters with an iterative approach
requires more than 18 minutes. The CNN shows better prediction accuracy with
a lower number of parameters by leveraging parameter sharing, but the training
time of this DL architecture is almost twice as big as that of the MLP. Note that
the test RMSE values of the BPNNs in Table 2 is different from those reported
in [18], which are based on an early version of DS02 that has lower noise level
on the sensor readings and a sampling rate of 0.1Hz (instead of 1Hz).

On the contrary, all the optimized ELMs have a considerably smaller num-
ber of trainable parameters, which reflects in a much shorter (up to 2 orders of
magnitude) training time. The architecture discovered by SOO-ELM(1) tends
to have almost the maximum available number of hidden neurons, because it
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Table 2: Summary of the comparative analysis. For MLP and CNN, we report
only one value related to one single run (since their computations are determin-
istic). For the proposed methods, SOO-ELM(1), SOO-ELM(2) and MOO-ELM,
we report mean ± std. dev. obtained across 10 independent runs. Note that for
the proposed methods the worst/median/best architectures are reported in Ta-
ble 3. The boldface indicates the best result in each column.

Methods Architecture
Test RMSE
(on Dtest)

Trainable
parameters

Training
time (s)

MLP [18] 4 hidden layers 6.79 94,701 1,081

CNN [18] 3 convolutional layers 6.29 5,722 1,969

SOO-ELM(1) - 7.27±0.05 3,405±202 337±49

SOO-ELM(2) - 7.21±0.04 1,859±207 110±22

MOO-ELM - 7.29±0.07 898±60 55±10

Table 3: Worst, median and best architectures among the best solutions found
in each of the 10 runs for each of the three proposed methods, with the cor-
responding test RMSE and number of trainable parameters. The architectures
are denoted by [ntanh·10, nsigm·10] representing the number of tanh and sigmoid
hidden neurons, respectively. The L2 regularization parameter r is almost always
the same, with a value of 6 for most of the best solutions (5 for the remaining
few cases). Thus, we omit its value for brevity.

Methods
Test RMSE Trainable parameters

Worst Median Best Worst Median Best

SOO-ELM(1) [1,840, 1,310] [1,740, 1,390] [1,930, 1,760] [1,930, 1,760] [1,910, 1,490] [1,750, 1,310]

SOO-ELM(2) [1,780, 10] [1,900, 50] [1,860, 70] [1,960, 310] [1,860, 70] [1,500, 10]

MOO-ELM [740, 110] [790, 80] [850, 60] [970, 20] [840, 20] [740, 70]

simply uses the validation RMSE as the fitness for its evolutionary search. Yet,
in this case the ELM does not suffer from overfitting and its performance does
not get worse even if we increase the number of hidden neurons excessively.
In other words, the oversized ELM network merely can make a negligible im-
provement but requires unnecessarily large computational cost for training the
redundant parameters. The SOO-ELM(2) approach, on the other hand penalizes
those oversized ELM by introducing the penalty factor described in Section 3.2.
We set the constant weight τ to 10−4, small enough that the penalty does not
dominate the overall fitness. We can see that SOO-ELM(2) successfully prevents
the use of the redundant neurons, so that it can preserve the RUL prediction
accuracy using only almost half of the neurons, w.r.t. the previous method.

Although SOO-ELM(2) uses almost a half of the neurons and requires less
than two minutes of training time, a proper value of τ must be determined by
empirical considerations. In contrast, MOO-ELM can overcome this problem us-
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ing NSGA-II for automatically searching a set of trade-off network architectures
without considering a tunable parameter such as the τ used before. Compared to
SOO-ELM(2), this method achieves almost the same test RMSE but can further
halve the number of trainable parameters. Moreover, it only needs, on average,
less than one minute to train the best trade-off networks.

Table 4: Execution time for 30 generations of the three proposed methods (mean
± std. dev. across 10 independent runs). The boldface indicates the best result.

SOO-ELM(1) SOO-ELM(2) MOO-ELM

Execution time (hours) 16.19±1.68 9.67±0.44 6.43±0.27

In addition, MOO-ELM has a clear advantage in terms of execution time.
As shown in Table 4, on average, the evolutionary search process of MOO-
ELM is much shorter than that of the two SOO-ELM approaches. For SOO-
ELM(1), very large ELM models, that take long time to evaluate, tend to survive
throughout the generations, because they can have better validation RMSE even
though their improvement may be trivial. In contrast, those individuals hardly
survive during a run of MOO-ELM, because the NSGA-II algorithm proceeds in
the direction of finding better trade-off solutions.

Finally, the comparative results are visualized in Fig. 5, which easily enables
to compare the performance of the different methods in terms of trade-off be-
tween the two conflicting objectives. We can observe that the CNN dominates
the MLP. Among the compared algorithms, MOO-ELM obtains the best solu-
tions in terms of number trainable parameters (on average, about 900, i.e., less
than 16% compared to the CNN). Moreover, compared to the CNN, the mod-
els discovered by MOO-ELM have an approximately 97% shorter training time,
while their test RMSE is on average only 16% larger.

6 Conclusions

In this paper, we applied evolutionary algorithms to search for optimized ELMs
for RUL prediction tasks. We considered three methods, two single-objective
based on a custom GA (SOO-ELM) and one multi-objective based on NSGA-
II (MOO-ELM), and applied them to automatic design ELMs. Our goal was
to achieve a trade-off between two competing objectives: the test RMSE and
the number of trainable parameters. We compared our methods to state-of-the-
art MLP and CNN models from the literature. The comparative evaluation was
based on the experimental results on the N-CMAPSS, one of the most up-to-date
benchmarks in the area of RUL prediction. The results show that MOO-ELM
can search ELMs that are much smaller in size compared to ELMs obtained by
optimizing only the RUL prediction error, but have similar prediction perfor-
mance. Compared to the MLP and CNN, MOO-ELM performs slightly worse in
terms of the test RMSE, but the number of trainable parameters is considerably
smaller and the training time is significantly shorter. Hence, our work can be
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used as an efficient RUL prediction tool for industrial applications that require
to compromise training time and prediction accuracy.

One major limitation of ELMs is that they comprise a single hidden layer
network. To overcome this limitation, multiple hidden layer ELMs (MELMs)
have been proposed recently [25]. In future work, we expect to obtain further im-
provements by applying our method to optimize the architecture of the MELMs.
Another interesting future direction would be to employ recurrent extreme learn-
ing machines (RELMs) [26]. Similar to this work, we can attempt to optimize
the parameters of the RELMs and their architecture in order to achieve higher
accuracy while saving time during the training stage.
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