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Significance

Understanding how humans 
represent concepts and their 
relations is a crucial question in 
cognitive (neuro)science. By 
analyzing eye movements during 
verbal fluency tasks, we observed 
that people directed their gaze to 
the left or right before 
mentioning a small or large 
number, while they directed it to 
a closer or further position in 
bi-dimensional visual coordinates 
when mentioning colors that 
were, respectively, similar or 
dissimilar in the color wheel. 
These results suggested eye 
movements as a potential 
behavioral readout of low-
dimensional cognitive maps of 
concepts, thus we investigated 
participants’ gaze behavior when 
randomly generating animal 
names, observing that, in this 
case, spontaneous gaze fixations 
reflected similarity in word 
frequency along a left-to-right 
axis.
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Functional neuroimaging studies indicate that the human brain can represent concepts 
and their relational structure in memory using coding schemes typical of spatial navi-
gation. However, whether we can read out the internal representational geometries of 
conceptual spaces solely from human behavior remains unclear. Here, we report that 
the relational structure between concepts in memory might be reflected in spontaneous 
eye movements during verbal fluency tasks: When we asked participants to randomly 
generate numbers, their eye movements correlated with distances along the left-to-right 
one-dimensional geometry of the number space (mental number line), while they scaled 
with distance along the ring-like two-dimensional geometry of the color space (color 
wheel) when they randomly generated color names. Moreover, when participants ran-
domly produced animal names, eye movements correlated with low-dimensional sim-
ilarity in word frequencies. These results suggest that the representational geometries 
used to internally organize conceptual spaces might be read out from gaze behavior.

eye movements | representational geometry | conceptual spaces | cognitive map

When humans search for information in memory, they partially repurpose the neuronal 
mechanisms that evolved for navigating and interacting with the surrounding environment 
(1–5). For instance, the hippocampal-entorhinal system, known for its role in spatial 
mapping and orientation (see e.g., refs. 6 and 7), is also recruited to represent the relational 
structure between items in memory as they were points of internal “cognitive maps” 
(8–13). However, how such representations directly translate into behavior is less clear. 
Can we read out these representational geometries of conceptual spaces from human 
behavior?

Evidence from separate research lines converges in suggesting gaze behavior as a good 
candidate for investigating this question (for reviews see refs. 14–16). Monkey electrophysi-
ology, for instance, shows that neurons in the hippocampal formation not only respond to 
locations in space, but also map the visual field both during visual tasks and free exploration 
of the environment (15, 17–22). Human functional neuroimaging confirms and extends the 
notion that hippocampal activity is linked to eye movements and gaze behavior in a variety 
of tasks spanning for instance from visual tracking (23), visual search (24), and relational 
memory (25). Consistently, neuropsychology reveals that amnesic patients with hippocampal 
damage search in the visual environment less efficiently with their eyes (26–28). Therefore, 
given i) the role that hippocampal cognitive maps play for concept representation and mental 
search and ii) the link that exists between gaze behavior and hippocampal activity, we hypoth-
esized that eye movements might reflect the relational structure of concepts in memory, and 
that they can be used as a behavioral readout of low dimensional cognitive maps.

Preliminary evidence for this view is offered by studies in the fields of numerical cog-
nition and time representation. In Western cultures, both time and numbers are known 
to be mentally represented along one-dimensional (1D) structures [“mental time line” 
(29, 30) and “mental number line” (31)] mostly oriented from left to right. Consistent 
with this representation, Loetscher et al. (32) showed that when participants randomly 
generate numbers as they come to their mind, they move their eyes to either the left or 
the right if the next number is respectively smaller or larger compared to the previous one. 
This effect has been extended to arithmetic problems, comparing addition (associated to 
the right/up) and subtraction (associated to the left/down) (33–35). Similarly, when people 
encode, recall, or recognize events that happened either in the past or in the future, they 
look down/to the left for the former, and up/to the right for the latter (36–38).

These results suggest that spontaneous gaze behavior might reflect the internal relational 
structure of the mental spaces where concepts are sampled from, but the existent evidence is 
limited to highly conventionalized, culturally specific, and unidimensional representation of 
order (3). To support the hypothesis of a generalized mechanism of how concept relations 
are reflected in oculomotor behavior, it is important to collect and compare evidence from 
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conceptual domains with distinct representational geometries. To 
this end, we analyzed spontaneous eye movements when 30 adult 
participants randomly generated i) numbers, known to be arranged 
in a 1D structure that in Western cultures is usually oriented  
from left to right, and ii) colors, known to have a psychological 
two-dimensional (2D) structure akin to the “color wheel” or “ring” 
(39), typically observed through similarity judgments; see e.g., refs. 
40 and 41; see Fig. 1 A and B. If our hypothesis is correct and gaze 
behavior can reflect the representational geometry of conceptual 
spaces, then eye movements should correlate with the particular 
relational structures of the two conceptual domains: the left-to-right 
1D arrangement of the mental number line in the case of numbers 
and the 2D ring-like structure of the color wheel in the case of colors 
(Fig. 1 B and C).

Results

Spontaneous Eye Movements Reflect the 1D Relational Structure 
of the Number Space during Mental Search. Participants easily 
completed the “number” condition, closely following the rhythm 
of the metronome and randomly sampling the 12 numbers with 
roughly the expected frequency (SI Appendix, Fig. S1). For each 
number word, we extracted the median gaze position along the 
horizontal and vertical axes separately in the 500 ms interval before 
it was named (Methods). Next, we computed a vector with the 
trial-by-trial numerical difference, by subtracting from the next 
mentioned number the current one: A negative or positive value 
would indicate that the following number was smaller or larger, 
respectively, and the absolute value indicated the magnitude of 
their difference - that is, their distance along the mental number 
line. Similarly, we computed a vector of the trial-by-trial difference 
in gaze position, along the horizontal and vertical axes separately, 
as well as their combined Euclidean distance in the 2D visual 
space. For instance, a negative or positive value in the vector 
representing change of position along the horizontal axis would 
indicate that the subject had moved the eyes towards the left or 
the right, respectively, compared to the previous trial, and the 
absolute value would indicate the magnitude of this movement.

We observed a significant correlation between the signed dif-
ference in generated numbers and the signed change in gaze posi-
tion along both the horizontal [left–right; mean ρ = 0.24, 
SD = 0.15, t = 8.43, P < 0.001 (t test), Bayes Factor in favor of 
H1 over H0 (BF10) > 100] and the vertical [up–down; mean 
ρ = 0.09, SD = 0.11, t = 4.43, P < 0.001 (t test), BF10> 100] axes 
separately, but not for their conjunctive bidimensional displace-
ment in the visual space (mean ρ = −0.02, SD = 0.08, t = −1.19, 
P = 0.24 (t test), BF10 = 0.31] (Fig. 2A and SI Appendix, Fig. S2). 
The effect along the horizontal axis was significantly stronger (rel-
ative to zero) than that along the vertical axis [t = 5.05, P < 0.001 
(paired t test), BF10 > 100], see Fig. 2B, indicating the higher 
relevance of the horizontal dimension.

Was this effect mostly driven by the unsigned magnitude of the 
number change (where a change of, for instance, +5 or −5 would be 
considered the same irrespective of the sign), by its left vs. right 
direction (where a change of +5 or +7 would be considered the same 
irrespective of the magnitude), or by their combination? First, we 
isolated the contribution of magnitude by ignoring both the left vs. 
right change in eye movements and the signed difference in number 
change, thus focusing only on the correlation between unsigned 
magnitudes. We observed a significant effect at the group level [mean 
ρ = 0.04, SD = 0.05, t = 4.8, P < 0.001 (t test), BF10 > 100]. Second, 
we isolated the contribution of left vs. right direction by ignoring 
the magnitude of the number change and that of the eye movements, 
simply correlating the sign of the number change (plus or minus) 
with the sign of the change in gaze coordinates. Also in this case we 
observed a significant effect at the group level [mean ρ = 0.18, 
SD = 0.14, t = 7.1, P < 0.001 (t test), BF10 > 100]. The former effect 
was significantly weaker than the latter [t = 5.67, P < 0.001 (paired 
t test), BF10 > 100], but both correlation scores were significantly 
lower, at the group level, compared to their combination (both 
P < 0.001 and BF10 > 100), thus indicating that although the left vs. 
right coding contributed more than unsigned magnitude, eye move-
ments best correlated with their combination, which reflected the 
magnitude of change to the left vs. to the right). These results are 
summarized in Fig. 2C. Could this effect reflect the transition prob-
abilities between numbers (see examples in SI Appendix, Fig. S3), 
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Fig. 1.   Tracking eye movements during mental search. (A) Participants sat in the dark in front of a desktop computer wearing earplugs, with their eye movements 
monitored via an eye tracker. They started each block with an eye-tracking calibration, followed by visually displayed instructions: They were asked to generate, 
after a starting sound and in a random order, numbers (from 1 to 12) or 12 color names (red, orange, yellow, lime, green, turquoise, cyan, blue, violet, lilac, 
pink, and magenta), by speaking into a microphone. After this, the experimenter covered the PC monitor with a wooden panel to block any remaining source 
of light and potential visual interference. Then, participants were alerted by a starting sound, followed by the sound of a metronome, presented via earphones, 
at a frequency of 0.75 Hz, introduced to engage participants in generating words. Each block lasted 2 min and there were three blocks per conceptual domain.  
(B) The number space and the color space have two distinctive geometries, namely a 1D number line and a 2D color ring (or “wheel,” where distance between 
colors scales with their conceptual/perceptual similarity forming a canonical color wheel, as revealed by multidimensional scaling applied to similarity judgments, 
ref. 41). We hypothesized that eye movements during random number vs. color generation should reflect the representational geometry of the respective 
underlying conceptual space. (C) To test our hypothesis, we applied a correlational analysis approach. The main analysis, following Loetscher et al. (32), consisted 
in the extraction of the trial-by-trial distance from one concept to the other in the underlying conceptual space (e.g., number “four” followed by “ten,” or color 
“red” followed by “blue”) and in its correlation with trial-by-trial gaze displacement. Additional analyses are described in Results and Methods.D
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with small eye movements being associated for instance with more 
frequent transitions and large eye movements with less frequent 
transitions (or vice versa)? This seems to be unlikely, since eye move-
ments did not correlate with these factors [all mean ρ < 0.0004 and 
P > 0.97 (t test)].

Next, we looked at individual trials, moving away from trial-by- 
trial differences and looking at the “absolute” gaze coordinates 
before a given number was mentioned (e.g., where participants 
were looking at every time they said “four”). We observed that the 
smaller the number the participants were about to say, the more 
they were fixating the left of their visual field, while the bigger the 
number, the more they were fixating the right [average β of the 
slope = 6.46, t = 4.26, P < 0.001 (t test against 0); inter-
cept = 873.94; see Fig. 2 D, Left]. This effect was statistically absent 
for the up/down vertical positions [average β of the slope = 0.31, 
t = 0.57, P = 0.57 (t test against 0); intercept = 453.26; see 
Fig. 2 D, Right], confirming the higher importance of the 1D 
horizontal axis. Combining the two sets of coordinates allowed 
us to reconstruct the average gaze position for each number across 
participants that, despite some expected variability, reflected the 
mental number line (Fig. 2E). The small numbers from 1 to 6 are 
on average more on the left than large numbers from 7 to 12, 
which are positioned more on the right.

Finally, we corroborated our findings by applying a decoding 
approach, where we attempted to classify numbers as small (1 to 6) 
vs. large (7 to 12) using a linear discriminant analysis (LDA) and a 
leave-one-out-cross-validated scheme (Methods) at the individual 
subject level. Indeed, a single-trial cross-validated measure would 
strengthen our conclusion and allow us to test the emergence of the 

effect in single subjects. Results, significant at the group level [aver-
age accuracy = 0.529, SD = 0.058; P-value = 0.0134 for a one-sample 
t test against theoretical chance level of 0.5], indicated that this was 
indeed possible in eight participants, where the observed accuracy 
of the classifier exceeded with a probability P < 0.05 those obtained 
by randomly shuffling labels 1,000 times (SI Appendix, Fig. S4).

In short, when participants spontaneously generated numbers, they 
moved their eyes according to the 1D, horizontal, and left-to-right 
oriented, mental number line, consistent with previous findings (32). 
Having confirmed that with our analytical approach we can recover 
the underlying geometry of the number space, we then applied it to 
the color domain.

Spontaneous Eye Movements Reflect the 2D Relational Structure 
of the Color Space during Mental Search for Colors. For the color 
condition, we asked participants to randomly generate 12 colors 
that we presented the day before the eye-tracking experiment 
during an online training session. In this online part, we first 
showed participants 12 colored patches with their associated color 
name (SI  Appendix, Fig.  S5A), then asked them to recover the 
correct patch-name association (SI Appendix, Fig. S5B), and finally 
asked them to judge the pairwise similarity between the colors on 
a scale from 1 to 9 (Fig. 3A). This training procedure was repeated 
on the day of the eye-tracking experiment and had two specific 
purposes: first, to ensure that participants were randomly sampling 
from comparable color spaces, “foraging” the same 12 color names; 
second, to collect similarity judgments from each participant to 
recover, using multidimensional scaling (MDS) as indicated in the 
work by Shepard and Cooper (40), the bidimensional representation 
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Fig. 2.   Eye movements reflect the 1D, horizontal structure of the number space. (A) Fisher-transformed correlation coefficients between eye movements 
and signed change in generated numbers. 1D hor = horizontal eye movements (left–right), 1D ver = vertical eye movements (up–down), 2D = bidimensional 
eye movements (2D Euclidean distance). Bars indicate SEM. (B) Comparing the correlations with horizontal and vertical eye movements with respect to the 
zero, to evaluate whether one of the two better reflects the underlying representational geometry of numbers. Data are the same as plot a, here isolated for 
visualization purposes. (C) Comparing the correlation with eye movements when only absolute magnitude of the number change is considered (Left bar) vs. 
when only increase/decrease in numerosity is taken into account (Middle bar) vs. their combination (Right bar). (D) Absolute horizontal (Left bar) and vertical 
(Right bar) gaze coordinates before generating each number, averaged across participants. Error bars indicate SEM. For the vertical dimension, the y-axis is 
reversed in order as the eye-tracker considers the origin 0 at the top of the screen (E) visualization of the average gaze position for each number in visual space.  
***P < 0.001; BF10 = Bayes Factor in favor of H1 over H0.
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of the color space (the so-called “color-wheel”) for each individual 
(see examples in Fig. 3B and SI Appendix, Fig. S6). According to our 
hypothesis, eye movements should reflect subject-specific distances 
between colors in the 2D conceptual space.

On the day of the experiment, during the main task, participants 
performed a random color generation task (similar to the number 
condition; SI Appendix, Fig. S7). Then, we closely followed the same 
correlational approach that we used for the number blocks (Fig. 1C), 
but now we computed the trial-by-trial change between subse-
quently pronounced colors by looking at their Euclidean distance 
in the subject-specific bidimensional MDS (Fig. 3B). We observed 
that the semantic distance between colors was significantly correlated 
with the bidimensional displacement of gaze position in the visual 
field [mean ρ = 0.04, SD = 0.06, t = 3.42, P = 0.002 (t test), 
BF10 = 18.22]: If participants were about to mention a color that was 
more distant than the previous one in their own MDS-reconstructed 
color space, they moved their eyes to a more distant position, com-
pared to when the two colors were closer to each other (that is, sim-
ilar) (Fig. 3C and SI Appendix, Fig. S8). We did not find a significant 
correlation when we considered either the horizontal [left–right; 
mean ρ = −0.006, SD = 0.08, t = −0.36, P = 0.72 (t test), BF10 = 0.20] 
or the vertical [up–down; mean ρ = −0.009, SD = 0.08, t = −0.57, 
P = 0.57 (t test), BF10 = 0.23] signed gaze displacement, thus indi-
cating that the specific gaze behavior that predicted color generation 

was substantially different from the one employed during the number 
condition (that was sensitive to left–right distinctions). However, the 
correlation was significantly positive (although to a lower extent) 
when we considered the unsigned absolute value of unidimensional 
gaze displacement [horizontal movements: mean ρ = 0.03, t = 2.73, 
P = 0.01 (t test), BF10 = 4.29; vertical movements: mean ρ = 0.027, 
t = 2.26, P = 0.03 (t test), BF10 = 1.78; both uncorrected], as expected 
from the correlation with bidimensional eye movements (Fig. 3D). 
In other words, while the distinction between left and right seems to 
matter for representing numbers, it is no longer relevant in the case 
of colors, as expected from the fact that the color wheel has no typical 
left-vs.-right association. Interestingly, and confirming the difference 
from the number condition, there was no significant difference 
between the correlation values for horizontal vs. vertical movements 
[t = 0.27, P = 0.78 (paired t test), BF10 = 0.2], indicating that in this 
case both dimensions equally contributed to reflect the representa-
tional geometry of the conceptual space (Fig. 3D). Could this effect 
be explained by the transition frequencies from one color to another 
(see examples in SI Appendix, Fig. S9)? As it happened for numbers, 
this was not the case, because eye movements did not correlate with 
transition frequencies (all P < 0.19).

Next, as in the case of the number condition, we examined 
whether participants were fixating specific dedicated portions of 
their visual field before generating a given color. More specifically, 
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MDS reconstruction of color space from similarity judgments (Left) or from distances in visual space (Right) **P < 0.01; BF10 = Bayes Factor in favor of H1 over H0.D
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we asked whether the median fixation point before saying a color, 
averaged across trials, was predictive of the position of that color 
in the color space. To answer this question, we computed two 
distance matrices. The first one was the distance matrix of pair-
wise Euclidean distances between colors in the MDS-reconstructed 
color space (the one used for our previous trial-by-trial analysis) 
(Fig. 3 E, Top). The second one was the distance matrix of pair-
wise Euclidean distances between fixations in the visual field 
(Fig. 3 E, Bottom). Across participants, these two matrices were 
significantly correlated (mean ρ = 0.06, SD = 0.10, t = 3.23, P 
= 0.003, BF10 = 12.03; Fig. 3 E, Right), indicating that the fixa-
tion points on the visual field were constrained, at least partially, 
by the bidimensional arrangement of colors reconstructed 
through similarity judgments. In other words, the relative 
position of colors in the bidimensional color space was preserved 
in gaze fixations. Although there was high variability across par-
ticipants in their color-specific gaze coordinates (that is, different 
participants tended to fixate different portions of the visual  
space for the same color), pairwise relative distances between 
color-specific fixation points allowed us to reconstruct the 
approximation of a bidimensional color space at the group level 
based only on gaze behavior, capturing most of the similarity 
relations (e.g., in Fig. 3 F, Right, starting from red-orange and 
moving clockwise, we observe lilac-violet, then the triplet 
blue-cyan-turquoise, then green-lime, similar to Fig. 3 F, Left. 
Magenta, yellow, and pink, however, do not follow the expected 
circular arrangement).

To finally corroborate our findings we applied the same decod-
ing approach used in the number condition, now adapted to the 
situation of colors (Methods). We did not find a significant effect 
in the original dataset, with the classifier performing relatively well 
in the training dataset (accuracies >55%) but very poorly in the 
test dataset (accuracy often <50%), indicating potential overfitting 
that we ascribed to the low number of trials. In order to overcome 
these shortcomings, we analyzed an additional dataset from a dif-
ferent experiment in which we tested five new subjects using a 
dense sampling approach mutated by precision neuroimaging 
(e.g., see refs. 42 and 43). The five participants performed the 
color foraging task with the same 12 colors of experiment 1, for 
eight runs/blocks per day, for 3 d in a row, resulting in 24 runs/
blocks (compared to only three in experiment 1) and more than 
2,000 trials/observations per subject (Methods). We applied the 
same decoding classification procedure used for numbers but  
now to all the pairwise colors (Methods) and in all five subjects  
the classifier reached an accuracy above chance, with three of  
them having accuracy higher (P < 0.05) than that obtained by 
1,000 random permutations of labels (SI Appendix, Fig. S10A). 
Interestingly, and in line with our predictions, in all of them, we 
observed a general positive increase of the accuracy of the classifier 
as a function of distance between colors (SI Appendix, Fig. S10B), 
indicating that the average gaze position associated with two given 
colors became more distinguishable the more the colors were dif-
ferent. To summarize, we observed that when participants were 
asked to randomly sample a color space in our experiment (in a 
dark room where no visual information is available), their eye 
movements can reflect the bidimensional distances existing 
between colors on the color wheel.

Using Eye Movements to Investigate How People Mentally 
Represent Multidimensional Conceptual Spaces. Our results 
showed that spontaneous eye movements during mental search 
might contain information about the representational geometry 
of two conceptual spaces, that of numbers and that of colors. Can 
we use eye movements to read out the representational geometry 

of multidimensional conceptual spaces that have more complex 
or unknown underlying structures?

In order to provide a tentative preliminary answer to this ques-
tion, we focused on the conceptual domain of animals (SI Appendix, 
Fig. S11), which could be organized according to many dimen-
sions, such as taxonomy, size, speed, dangerousness, starting letter, 
frequency in a language, and so on. Is the relationship between 
concepts in one or more of these dimensions reflected in eye 
movements?

To examine this, we followed the same correlational approach 
used above (Fig. 1C), but now we modeled distances between 
animal names in the following ways: i) as their cosine distance 
between animal word vectors extracted from a distributional lan-
guage model (word2vec FastText, (44)), which has been shown to 
be a reliable model of high-dimensional semantic representations 
in the human mind (e.g., refs. 45–48) (Fig. 4 A, Left); ii) as change 
in semantic clusters, because it was shown that when human par-
ticipants randomly produce animal names during semantic for-
aging, they adopt a local-to-global search strategy in which they 
tend to produce animals belonging to the same clusters (e.g., farm 
animals) before moving to other ones (e.g., birds) (49–51) (Fig. 4 
A, Middle-Left); and iii) as human-like semantic similarity judg-
ments recovered from a state-of-the-art large language model 
(chatGPT, see Methods and SI Appendix, Fig. S12), which has 
shown human-like performance in a variety of tasks (52, 53) 
(Fig. 4 A, Middle-Right). Although these approaches have been 
proposed to map human cognition in various ways, none of them 
significantly correlated with neither horizontal nor vertical eye 
movements, nor with their bidimensional combination (all 
P-values > 0.10 uncorrected; Fig. 4B).

An alternative possibility, then, is that eye movements reflect 
lower-dimensional geometries between animal concepts. Previous 
studies indeed found that low-dimensional projections (through 
Principal Component Analysis, PCA) of linguistic vectors contain 
relevant semantic information (e.g., ref. 54) and correlate with 
human hippocampal activity during memory tasks (e.g., ref. 55). 
Thus, we computed distances between animal words as their 
Euclidean distances on the first principal component (PC1) of 
FastText space, and we observed a significant correlation with 
horizontal eye movements (mean ρ = 0.03, SD = 0.05, t = 2.29, 
P = 0.006, BF10 = 6.69) (Fig. 4B): Participants looked more to the 
left when they were about to say an animal that was similar/closer 
compared to the previous one, and more to the right when they 
were about to say an animal that was different/distant compared 
to the previous one. In addition, Hollis and Westbury (54) pro-
posed that PC1 of linguistic vectors could be interpreted as rep-
resenting, at least partially, word frequency. Indeed, consistent with 
this idea, we found that horizontal eye movements significantly 
correlated with differences in word frequency as computed by 
Crepaldi et al. (56) (mean ρ = 0.05, SD = 0.07, t = 3.86, P < 0.001, 
BF10 = 44.8). This result is statistically significant also when con-
sidering the high number of multiple comparisons we are perform-
ing in this exploratory analysis, which would lead to an alpha value 
of 0.05/15 = 0.003 according to Bonferroni correction) (Fig. 4C). 
Confirming Hollis and Westbury (54) intuition, distances on PC1 
and differences in word frequencies were correlated with each other 
(ρ = 0.3, P < 0.001), thus motivating the use of a partial correlation 
approach to isolate the real contribution of the two factors to the 
correlation with eye movements. The results indicate that the effect 
with distances along PC1 was no longer significant after con-
trolling for difference in word frequency (P = 0.14, BF10 = 0.54), 
therefore among the tested models, eye movements best reflected 
distance in “frequency space.” More specifically, and interestingly, 
the results indicate that participants looked more to the left before D
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mentioning an animal that has a similar frequency value compared 
to the previous one, and they looked more to the right before 
mentioning an animal that has a different frequency value com-
pared to the previous one (Fig. 4D). This effect was not driven by 
movements on one side of the space only, because small distances 
were biased toward the left as much as large distances were toward 
the right (P > 0.22).

Discussion

According to the cognitive map theory (57, 58) and more recent 
accounts (2, 3, 5), the neurocognitive machinery that supports 
spatial orientation in mammals can also be recruited to represent 
more abstract conceptual spaces, suggesting common underlying 

representational mechanisms for spatial and nonspatial knowledge. 
While most of the empirical support to this proposal comes from 
neuroimaging, there has been much less evidence on the behav-
ioral level. In light of the existing link between gaze behavior, 
navigation, and hippocampal formation (see ref. 16 for a review), 
we hypothesized that human eye movements might reflect the 
representational geometries of conceptual spaces, at least during 
specific tasks and situations.

In this study, we reported preliminary evidence in support of 
this hypothesis. First, when participants randomly generated num-
bers, their horizontal eye movements correlated with the 
left-to-right 1D arrangement of the “mental number line.” Second, 
when they randomly generated colors, their eye movements cor-
related with the ring-like 2D arrangement of the “color wheel.” 

A

B

C D
,

,
,

,

,

,
,

,

,

,
,

,

Fig. 4.   Eye movements reflect the low-dimensional projection of the high-dimensional animal space. (A) Distances between animal words were modeled i) as 
cosine distances between high-dimensional linguistic vectors extracted from fastText; ii) as jumps across semantic clusters; iii) as the inverse of semantic similarity 
as judged by chatGPT; iv) as Euclidean distances along a low-dimensional projection (PC1) of fastText vectors. (B) Correlation between horizontal (Top), vertical 
(Middle), and bidimensional (Bottom) gaze displacement and the four modeled distances. (C) Modeling distances between animal words as differences in their 
linguistic frequencies (Left) and correlating them with patterns of eye movements (Right); (D) Schematic representation of the only significant effect: Participants 
look more to the left if they are about to mention an animal that has a small difference in frequency in Italian compared to the previous one, while they look 
more to the right if they are about to mention an animal that has a large difference in frequency in Italian compared to the previous one.
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Third, we showed that information conveyed by eye movements 
can then be used to get insights on how people mentally organize 
multidimensional conceptual spaces during free mental search: 
We collected preliminary evidence that when randomly producing 
animal names, horizontal eye movements reflected similarity in 
word frequency.

Our results are in line with a large body of work indicating that 
eye movements reflect more than externally driven visual search 
behavior (e.g., scan a visual scene to find a specific target). They can 
reveal critical information about our internal mental processes, being 
involved in memory (59), imagination (60), attention (61), numerical 
and arithmetic cognition (32–34, 62), time representation (36, 63), 
working memory (64) and reasoning (65). Here, we showed that they 
also reflect the internal task-relevant relational structure (or representa-
tional geometry) of conceptual spaces. Interestingly, we observed this 
effect by analyzing a time window that preceded the generation of 
concept words during a verbal fluency task (500 ms before word 
onset), and this speaks in favor of the proposal that eye movements 
might even precede conscious recollection (14), potentially guiding 
memory expression toward action (66).

Some additional aspects demand particular attention. Are these 
gaze biases causally involved in mental search, or do they represent 
an epiphenomenal consequence of our internal strategies for men-
tal search? A recent study addressed the question by asking par-
ticipants to solve addition problems while following a moving dot 
with their eyes (67). The author showed that performance was 
faster for upward movements compared to downward or free 
movements, suggesting that the shift of gaze might not be a simple 
epiphenomenon. However, this evidence is limited to a 1D 
numerical/mathematical space, and recent studies have shown that 
grid-like coding during visual search, in monkeys and humans, 
emerged also while keeping fixation and searching the visual space 
with covert attention (68, 69). Further experiments are needed to 
better characterize the relationship between eye movements, atten-
tion, and internal low-dimensional cognitive maps, across different 
conceptual spaces and tasks.

What is the relationship between eye movements and brain activ-
ity? What are the neural mechanisms that are linked to the gaze 
biases observed in the present study and their representation of 
conceptual geometries? While the hippocampus has been related to 
eye movements in a variety of tasks and contexts (17, 23, 25), 
regions in frontal and parietal lobes are well known for their role in 
gaze control (70). The parietal cortex, in particular, has recently 
been proposed as a potential region for representing conceptual 
knowledge using spatial codes related to egocentric reference frames 
(3), which would be complementary to the allocentric cognitive 
maps that emerge in the hippocampal formation (see ref. 2). Indeed, 
recent empirical evidence indicates that when participants are 
engaged in goal-directed “conceptual navigation,” mentally search-
ing for specific goal stimuli in their mind, their parietal cortex rep-
resents the navigated conceptual space using egocentric-like codes 
(71). Crucially, this was associated with concurrent activation of 
the oculomotor system, which kept track of goal position in con-
ceptual space from a first-person perspective. The results reported 
in the current study are consistent with this previous evidence as 
well as, potentially, with the proposal of a specific role of the parietal 
cortex in representing structural knowledge (72–74), specially for 
the number domain (33). Future studies should address this point 
more directly, leveraging the concurrent use of eye-tracking tech-
nologies with whole brain neuroimaging.

Finally, an important finding of our experiments was the 
observation that when participants were engaged in a task that 

required them to sample concepts from a multidimensional 
space—that of animals—eye movements correlated with a rather 
simple low-dimensional projection of that space, representing 
word frequencies. This potentially resonates with recent findings 
that visual exploration dynamics are intrinsically low-dimensional 
(75), but whether this can be extended to all conceptual domains 
or, crucially, all task situations, remains unclear: Word frequency 
is a linguistic feature that was particularly useful in our verbal 
fluency task, but should eye movements correlate with other 
dimensions if the task imposes more stringent constraints is an 
open question. Similarly, it could be the case that other dimen-
sions or models not tested in our experiment could correlate 
better with eye movements. Interestingly, eye movements in our 
experiment did not represent the frequency value of each animal 
word per se (e.g., low frequency to the left, high frequency to 
the right), rather the similarity in the frequency space (same 
frequency value to the left, different frequency value to the right). 
We propose at least two interpretations of this finding. First, this 
can be potentially interpreted as a magnitude code (76), with 
small differences mapped to the left, and large differences to the 
right, accordingly with the well-documented propensity to map 
small and big quantities on the left–right space (SNARC-like 
effects, ref. 31). Since the category of animals, contrary to that 
of numbers, does not have a predefined order, what is mapped 
on the left–right continuum is the magnitude of each transition 
along the most salient lexical–semantic dimension (i.e., fre-
quency). A possible alternative explanation for the reported 
effect, however, can be formulated under a cognitive control 
framework: Participants might have a bias toward looking to the 
left when they stay in the same “state” or maintain the same 
search strategy (e.g., “keep mentioning frequent animals” or 
“keep mentioning atypical animals”), switching to the right of 
the visual field when they change the strategy (e.g., “now men-
tion an atypical/frequent animal”). Why (not) changing the 
current strategy should be associated with the right (left), how-
ever, remains unclear. More experiments are required to adjudi-
cate between these alternatives. However, it is worth mentioning 
that the cognitive control interpretation would still be in accord-
ance with a transition magnitude code: smaller effort to remain 
in the same strategy mapped to the left vs. bigger effort to change 
the current strategy mapped to the right. More speculatively, 
low-dimensional geometries such as lines (typical of magnitudes 
and numbers) and rings (typical of colors) might provide basis 
sets or primitives for scaffolding higher dimensional conceptual 
spaces, and this might be reflected in gaze behavior.

Before concluding, It worth asking why the reported effects 
were not ubiquitous to all the participants, especially when tested 
with single-subject analyses. In this experiment, we did not explore 
under what specific circumstances and manipulations the reported 
effects are observable, whether task constraints inherently trigger 
the spontaneous use of an oculomotor representational strategy, 
or whether individual differences exist across participants that 
might correlate with internal representational strategies in their 
memory. Further tailored experiments should address more care-
fully all these aspects and test how generalizable our results are to 
everyday situations and/or to all individuals.

To conclude, we have provided preliminary evidence that spon-
taneous eye movements might reflect the representational geometry 
of mentally navigated conceptual spaces, thus linking oculomotor 
behavior to cognitive mapping. These results could pave the way 
to a thorough investigation of conceptual spaces through gaze 
behavior.
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Methods

Participants. Thirty Italian volunteers participated in the experiment (mean 
age = 24.3, SD = 3.2, 18 females). They all gave informed consent and were 
reimbursed for their time with 7 euros/h. All had normal vision, no history of 
neurological disease, and were right-handed. For the number condition, one 
participant was discarded for not pronouncing the number “eleven.” For the color 
condition, two participants were discarded for not pronouncing the colors “lilac” 
and “turquoise.” Sample size was determined without an a priori power analysis, 
due to the lack of previous studies investigating eye movements and cognitive 
maps, but was consistent with G*Power sample size estimation at 85% power, 
alpha = 0.05 and assumed medium effect size of d = 0.5, which resulted in 
n = 27 participants. The study was approved by the Ethical Committee of the 
University of Trento (Comitato Etico per la Ricerca).

Stimuli. As the experiment required participants to freely and spontaneously 
generate words, no specific stimulation was provided. For the color condition, 
participants were instructed to memorize and then retrieve 12 colors: red, orange, 
yellow, lime, green, turquoise, cyan, blue, violet, lilac, pink, and magenta (in 
Italian: rosso, arancione, giallo, lime, verde, turchese, azzurro, blu, viola, lilla, rosa, 
and magenta). Color names were presented on the day before the experiment in 
association with color patches, which hues were selected from the internet. As the 
12 colors used were quite common in the Italian language, no further specific 
validation of these stimuli was performed.

Training Tasks for Colors. On the day before the eye-tracking experiment 
participants were sent a link to a training phase, to be performed remotely via 
Pavlovia (https://pavlovia.org). The training consisted of three tasks. During the 
Encoding task (task 1), participants were presented with the 12 color names next 
to the corresponding 12 color patches, and they had to passively view and memo-
rize them (SI Appendix, Fig. S4A). They could proceed to the next color by pressing 
a key on their keyboard. Each color was presented twice, in random order. During 
the Test task (task 2) we presented each color name next to a pseudorandomly 
chosen color patch, and participants were supposed to answer Yes or No as to 
whether the patch matched the color name (SI Appendix, Fig. S4B). Finally, during 
the Similarity Judgment task (task 3), participants were presented with two color 
names next to each other and they were asked to rate their similarity on a scale 
from 1 to 9, where 1 = low similarity and 9 = high similarity. Each color pair was 
presented twice, reversing the order of the two colors across repetitions. The entire 
training phase lasted about 30 min and was repeated identically on the day of 
the eye-tracking experiment, to ensure that participants remembered the color 
space to forage concepts from.

Similarity Ratings and MDS-Reconstructed Color Space. The similarity judg-
ments between colors, collected across the two days, were averaged and used 
to construct a dissimilarity matrix. Following Shepard and Cooper (40), we then 
applied multidimensional scaling (MDS, using the MATLAB function cmdscale) to 
recover the bidimensional reconstruction of the color space (color wheel) for each 
individual participant. Euclidean distances between color points in these subject-
specific color spaces were used for our correlational analyses with eye movements.

Experimental Setup and Eye-Tracking Acquisition. Participants sat in front 
of a monitor at a distance of approximately 60 cm with their head resting on a 
chin rest (readapted to be used on the forehead, to prevent excessive vertical 
movements when speaking). We continuously recorded gaze at a sampling rate 
of 1,000 Hz using an EyeLink 1000 Plus (SR Research). Before each block, we 
calibrated the eye tracker using the built-in calibration and validation protocols 
from the EyeLink software. Participants had earphones through which they could 
listen to sounds indicating the beginning and end of each block, as well as the 
metronome (see below: Main task). The lights in the room were switched off and 
the monitor was covered with a slightly larger white wooden panel to block any 
unwanted source of light or visual influence from it.

Main Task. After the eye-tracking calibration, participants read on the screen 
the category of concepts they had to think about on the screen. The monitor was 
then covered with the wooden panel and the experimenter started the block: 
This was signaled by a quick alerting sound that participants could hear from 
the earphones, and that was followed by a MATLAB-generated metronome at the 
frequency of 0.75 Hz. Although Loetscher et al. (32) reported using a frequency of  

1 Hz, we opted for a slightly slower rhythm after some piloting without eye 
tracking on our colleagues, where they experienced the pace as too fast. Each 
block lasted 2 min, and participants were notified that the block ended via a 
second sound. There were three blocks for each category (numbers, colors, ani-
mals). Participants’ voice was recorded using custom Psychtoolbox functions in 
the MATLAB environment, via the built-in microphone of the earphones used to 
present sounds. As a cover story, participants were told they participated in an 
experiment designed to investigate how word generation is affected by having 
the eyes open vs. closed. They were told to be part of the “eyes open” group, and 
for that reason, they had to limit blinking. They were also told to not fixate on any-
thing specific in front of them, but just to avoid looking around too much because 
otherwise the eye-tracker could lose the signal. There was no “eyes closed” group, 
and participants were debriefed after the end of the experiment.

Audio Segmentation. We segmented the audio tracks for each participant and 
block using a combination of custom MATLAB scripts, PRAAT, and Audacity. For 
each participant and block, we had a transcript of each pronounced word with 
the associated onset and offset.

Eye-Tracking Analysis. Eye-tracking data were converted from edf to MATLAB 
using the Edf2Mat toolbox (https://github.com/uzh/edf-converter). We excluded 
from the time series the time points where the eye-tracking signal was not avail-
able, due to blinks or because participants looked beyond the field of view of the 
eye-tracker, as automatically detected by the Eyelink. We did not apply any further 
preprocessing, inspired by van Ede et al. (61), who reported that their hypoth-
esized gaze attentional biases were detected already before signal correction 
and because we hypothesized the predicted effect should emerge at the level 
of raw, spontaneous, gaze behavior. Then, following the approach by Loetscher 
et al. (32), we extracted the median gaze position in the 500 ms window before 
each word was pronounced. The median was chosen because it is more robust 
to outliers. This information was then used to either compute the trial-by-trial 
change in gaze coordinates, necessary for our main correlational analysis (Fig. 1C, 
see for instance results in Fig. 2A or Fig. 3C), or to compute the average “absolute” 
gaze position when a specific concept word was mentioned, to reconstruct the 
“visualized” conceptual spaces as for instance in Fig. 2 C and D or Fig. 3 E and F.

Leave-One-Out Cross-Validated (LOOCV) LDA. To attempt a classification of 
numbers (small vs. large, see main text) or of colors (12 colors, see main text) 
at the single subject level, we applied a LOOCV or leave-one-trial-out LDA. We 
have used the LDA classifier implemented in the CoSMoMVPA toolbox for Matlab. 
In the number condition, we first extracted the horizontal X coordinates in the 
visual space associated with each trial (mentioned number). Next, we recodified 
each trial as “1” (small) if the mentioned number was smaller or equal to 6, as 
“2” if the mentioned number was equal or larger to 7. Using Matlab 2022b, we 
created a partitioning scheme creating N folds where N is the number of trials. 
For each fold, all the trials minus one (the “left out”) serves as a Training Set, 
while the “left out” trial serves as a Test Set. In each Training Set, the number 
of observations for the two classes (small vs. big, that is 1 vs. 2) is likely to be 
unbalanced, therefore we applied a random resampling procedure to ensure 
an equal distribution of the two classes in the Training Set, using Matlab func-
tion “randsample”. We applied the CoSMoMVPa function “cosmo_classify_lda” 
to obtain a prediction of the class of the Test Set. We computed the “Observed 
Accuracy” for each subject by calculating the proportion of correct predictions. We 
repeated this procedure 1,000 times by randomly shuffling the class labels, com-
puting 1,000 values of “Permuted Accuracy.” This resulted in a null-distribution of 
surrogate accuracies that allowed us to answer to the question of how likely it was 
to obtain the Observed Accuracy for each subject under the (null) hypothesis of 
random assignment of visual coordinates to numerical conditions. We calculated 
the probability (P) value as the mean number of Permuted Accuracies equal to or 
greater than the Observed Accuracy.

In the case of colors, we used the same exact procedure outlined above 
for the “Number” condition, with the major difference here that the binary 
classification was performed with bidimensional coordinates for all the possi-
ble pairwise combinations between colors—a necessary step to verify whether 
accuracy scales as a function of distance in color space. This means that for 
each subject we had a 12 × 12 accuracy matrix, with each cell representing the 
accuracy of the LDA for that specific color pair. The overall observed accuracy was 
computed as the average of the lower off-diagonal triangle of this symmetrized D
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matrix, and the significance of the observed result was tested using the same 
permutation approach used for the “Number” conditions. Contrary to the num-
ber condition where we could classify small vs. large numbers, in the color 
condition, we needed to test all pairwise combinations, thus diminishing dras-
tically the number of datapoints used for the cross-validated procedure in our 
classifier: Attempting this in our original dataset indeed resulted in overfitted 
responses, with the classifier performing above chance on the Training Set 
(avg. accuracy > 55%) and below chance in the Test Set. We thus analyzed data 
coming from a different dataset composed of five individuals that were tested 
multiple times to increase the number of datapoints, following the approach 
of precision neuroimaging (e.g., see refs. 42 and 43). These individuals per-
formed the color foraging task with the same 12 colors of Experiment 1, for 
eight blocks per day, for 3 d in a row, resulting in 24 blocks (compared to only 
three in Experiment 1) and more than 2,000 trials/observations per subject. 
This dataset was collected not only as part of our decoding attempt, but also 
as part of a follow-up pilot experiment where participants had to also forage 
for “emotion” names, in different blocks. The “emotion” condition (that in this 
case substituted the “number” condition) is not relevant for the present work 
and will thus be ignored (there was no task or any kind of influence between 
emotion and color condition before the eye-tracking experiment). Crucially, 
we implemented a second, simple but important manipulation in the color 
condition: Participants were not asked the similarity judgments between colors 
before the experiment, but they were simply presented acoustically with a list 
of the same 12 colors of Experiment 1, via an online procedure the day before 
the experiment, asking them to listen to the color names (presented in ran-
dom order) for multiple times, without completing any task. On the day of the 
experiment, the researcher asked the participants to repeat the color names, 
to make sure they were automatically memorized.

Animal Words and Their Distances. As a proxy of distance between animal 
words, we used several approaches that were used in previous studies to inves-
tigate semantic representations (see Results for references). First, we used pre-
trained linguistic vectors from FastText, freely available from the website https://
fasttext.cc. Distances between words in the full 300-dimensional space were 
computed using MATLAB built-in cosine distance (Fig.  4 A, Left). Second, we 
coded distances among subsequently pronounced animals as 0 or 1 based on 
whether whey implied a change in cluster or not (Fig. 4 A, Mid-Left), following 
the labeling of Troyer et al. (49), Hills et al. (50), and Zemla et al. (51) among 
others. Following these previous studies, we considered a passage to a word 
that does not share any semantic label with the previous one as jump to a new 
cluster (coded as 1 in an otherwise 0s vector). A similar analysis where instead 
of 1 or 0 we put the exact number of shared labels was conducted but yielded 
almost identical results, and it was therefore not reported for readability of the 
manuscript. Third, we modeled distances as the inverse of similarity (from 1 to 
9), as rated by chatGPT (Fig. 4 A, Mid Right; see next section for details). We also 
performed Principal Component Analysis using MATLAB built-in pca function, 
and Euclidean distances along PC1 were considered (Fig. 4 A, Right). Finally, we 
modeled distances as differences in word frequency, which was extracted from the 

freely available database by Crepaldi et al. (56) Subtlex-it (https://osf.io/zg7sc/): 
For each word, the corresponding frequency value was extracted and the distance 
between two words was computed as the unsigned difference between the two.

Modeling Distances with chatGPT. For each animal sequence (per partici-
pant and block) of length n animals, we created n−1 animal pairs, pairing each 
word with the previous and the subsequent one. We asked chatGPT (https://chat.
openai.com/chat, by OpenAI) to evaluate the similarity from 1 to 9 between the 
two animals of each pair (SI Appendix, Fig. S10). The range 1 to 9 was chosen to 
match that used for colors. This resulted in a vector of similarity judgments per 
participant and per block. This procedure was repeated twice for each animal pair 
to increase reliability, and the two results were averaged. The similarity vector 
was then transformed into a dissimilarity/distance vector simply by inverting the 
scores (10 minus similarity).

In order to increase the stability and reliability of these judgments we con-
structed a matrix of distances between animals where we put, for each animal pair, 
the average of the similarity scores that chatGPT gave across all the animal lists. This 
led to a big matrix of size ~310 × 310 (where 310 are the unique animals that have 
been mentioned across the whole experiment, so across participants and blocks), 
and we used this matrix as source of semantic distances, recreating the trial-by-trial 
distance vector and running the correlation analysis. Similarity ratings significantly 
correlated with cosine distance between the 300-dimensional linguistic vectors of 
FastText (P < 0.001), supporting the robustness and the reliability of the approach.

Statistical Analyses. Statistical analyses were performed using a combination 
of Null-Hypothesis Statistical Testing (NHST) and Bayesian statistics. We used 
custom MATLAB scripts and the software JASP (https://jasp-stats.org/).

Data, Materials, and Software Availability. Data and code to generate the 
main results and figures are available at DOI: 10.17605/OSF.IO/9GXBE (77).
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