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� Functional connectivity changes in Alzheimer’s disease are already detectable at the prodromal phase, Mild Cognitive Impairment.
� An early non-invasive detection of electrophysiological biomarkers is a priority.
� Alpha temporo-parietal desynchronization could be a potential early neurophysiological biomarker.
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Objective: Early synchrony alterations have been observed through electrophysiological techniques in
Mild Cognitive Impairment (MCI), which is considered the intermediate phase between healthy aging
(HC) and Alzheimer’s disease (AD). However, the documented direction (hyper/hypo-synchronization),
regions and frequency bands affected are inconsistent. This meta-analysis intended to elucidate existing
evidence linked to potential neurophysiological biomarkers of AD.
Methods: We conducted a random-effects meta-analysis that entailed the unbiased inclusion of Non-
statistically Significant Unreported Effect Sizes (‘‘MetaNSUE”) of electroencephalogram (EEG) and magne-
toencephalogram (MEG) studies investigating functional connectivity changes at rest along the healthy-
pathological aging continuum, searched through PubMed, Scopus, Web of Science and PsycINFO data-
bases until June 2023.
Results: Of the 3852 articles extracted, we analyzed 12 papers, and we found an alpha synchrony
decrease in MCI compared to HC, specifically between temporal-parietal (d = -0.26) and frontal-
parietal areas (d = -0.25).
Conclusions: Alterations of alpha synchrony are present even at MCI stage.
Significance: Synchrony measures may be promising for the detection of the first hallmarks of connectiv-
ity alterations, even at the prodromal stages of the AD, before clinical symptoms occur.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder char-
acterized by memory loss and cognitive dysfunction. It is the most
prevalent cause of cognitive impairment in aging, representing 60%
to 80% of cases worldwide (Tahami Monfared et al., 2022) with an
incidence that increases with age: 3% among people aged 65–74,
17% of people from 75 to 84 years old and 32% of people of age
85 or older have Alzheimer’s dementia (‘‘2020 Alzheimer’s
Disease Facts and Figures”, 2020). Alzheimer’s disease has there-
fore become a global public health concern with a huge impact
on health systems and societal costs.

Neuropathological changes due to AD include extra-cellular
accumulation of the amyloid-b (Ab) and neurofibrillary tangles of
hyperphosphorylated tau protein (p-Tau) causing neuronal death
that consequently leads to brain atrophy and synaptic dysfunction
(Braak and Braak, 1991; Jack et al., 2018). The earliest stages of this
process start in the entorhinal cortex and the hippocampus and
spread in a cascade through neocortical regions (Hardy and
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Higgins, 1992; Jack et al., 2016) as the disease progresses. How-
ever, growing evidence supports the hypothesis that the neu-
ropathology of AD is not global (Delbeuck et al., 2003), and could
at first target specific and functionally connected areas that are
considered to be crucial nodes of larger brain networks
(Manuello et al., 2018).

The neurodegenerative process of AD is characterized by a
silent phase that may last years or decades during which the neu-
ropathophysiological process has started and is ongoing, but the
clinical hallmarks are still subtle. Then, the neurodegenerative pro-
gression may result in a preclinical phase, called Mild Cognitive
Impairment (MCI) (Petersen et al., 1999), which gradually and irre-
versibly leads to a loss of autonomy that characterizes the demen-
tia phase (Sperling et al., 2011). MCI is defined as an intermediate
phase between normal aging and the clinical diagnosis of probabil-
ity for AD onset (Albert et al., 2011; Petersen, 2004). It is character-
ized by an objective cognitive impairment in memory (amnestic
MCI, ‘‘aMCI”) or in other cognitive domains (non-amnestic MCI,
‘‘naMCI”) as documented by neuropsychological assessment
(Winblad et al., 2004). Moreover, MCI subjects show essen-
tial preservation of basic cognitive functions and daily life activi-
ties (Petersen et al., 2018).

Within the framework that views the brain as a set of complex
and dynamical neural networks (Bullmore and Sporns, 2009;
McKenna et al., 1994) brain functions are supposed to rely on the
integrity of interconnections between brain regions, both in terms
of structural circuits and functional dynamics (Friston, 2011). Dis-
ruptions of network communication could lead to the neurocogni-
tive changes observed during physiological aging, as well as to
neurological disorders (Babiloni et al., 2013; Courtney and
Hinault, 2021; Vecchio et al., 2013; Voytek and Knight, 2015). A
network perspective accounting for such functional interactions
has the potential to provide new and meaningful information
about the state-dependent patterns of alteration of functional con-
nectivity that characterize the intermediate phase of the neu-
ropathology (Pievani et al., 2011). Therefore, identifying early-
stage in vivo functional biomarkers that allow tracking changes
affecting large-scale brain networks can help develop new strate-
gies to optimize the management of the dementia syndrome via
new therapies (Prvulovic et al., 2011).

Connectivity footprints of AD neurodegeneration and MCI have
already been detected through several neuroimaging methods,
such as positron emission tomography with fluorodeoxyglucose
(FDG-PET), diffusion tensor imaging (DTI) (Honea et al., 2009),
magnetic resonance spectroscopy (MRS) (Gao and Barker, 2014),
and Arterial Spin Labeling (ASL-MRI) (for a review, see Wolk and
Detre, 2012). Functional magnetic resonance imaging (fMRI) is a
technique frequently used for the exploration of brain changes in
AD (Dennis and Thompson, 2014) as well as in the MCI phase
(Farràs-Permanyer et al., 2015). Although less invasive than the
above-mentioned functional neuroimaging methods, fMRI is
highly expensive (Crosson et al., 2010). Furthermore, it is well
known that the blood-oxygen-level-dependent (BOLD) signal mea-
sured by fMRI is limited by the hemodynamic response time, so
that the BOLD response builds up in approximately 5 to 6 seconds
following the onset of the neural stimulus. This response time,
which is much slower than the underlying neural processes, makes
the temporal information heavily disturbed (Glover, 2011).

In contrast, neurophysiological measures, such as electroen-
cephalography (EEG) and magnetoencephalography (MEG), are
non-invasive methods that record electromagnetic signals pro-
duced by the ionic currents that are generated by neural activity
(microscale) (Buzsáki and Draguhn, 2004). In addition, EEG is
cost-effective and versatile compared to the other neuroimaging
tools. Neurophysiological techniques enable the investigation of
brain rhythms generated by the oscillatory activity of large groups
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of cortical neurons (mesoscale) (Babiloni et al., 2020) with a high
temporal resolution (few milliseconds). Brain areas can communi-
cate via five main frequency bands: delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz) and gamma
(35–100 Hz). Electrophysiological signals reflect the functional
synchronization (or desynchronization) orchestrated by the oscil-
lation of large groups of cortical neurons of several neural systems
(macro-scale) supporting alertness, motivation, and several cogni-
tive processes. The interactions between inputs and outputs of
neural systems can be represented by a spectrum of values along
the axes deterministic-stochastic, complexity-simplicity, linear-
nonlinear, stationary-nonstationary, and phase-non phase locking
dimensions that may be differently affected by AD processes
(Babiloni et al., 2020).

There are several methods to evaluate functional connectivity
between brain areas based on signal synchronization and coupling
(Table 1). Coherence quantifies the linear relationship between
two signals from brain regions in the frequency domain. Its
squared value represents the amount of variance in one of the sig-
nals that can be explained by the other signal, or vice-versa (Nunez
et al., 1997). It is represented by a correlation coefficient ranging
from 0 (i.e., no coherence) to 1 (meaning ‘‘total coherence”) that
estimates the consistency of relative amplitude and phase between
a given pair of signals in each frequency band (Srinivasan et al.,
2007). Another method based on linear relationships is the Ampli-
tude Envelope Correlation (AEC), which measures the correlation
between envelopes of the amplitude of two signals (Bruns et al.,
2000). These measures yield fundamental information about net-
work formation and functional integration across brain regions,
although distortions can stem from incorrect modeling of volume
conductivity of head tissues and from imprecise electrode location.
Also, since these measures are estimators of linear relationships,
they might not reflect the nonlinear nature of brain network
dynamics.

To address the above issues, other methods such as the imagi-
nary part of coherency (iCOH)(Nolte et al., 2004), the Phase Locking
Value (PLV)(Lachaux et al., 1999) Phase Amplitude Coupling (PAC)
(Tort et al., 2010), or Phase Lag Index (PLI) (Stam et al., 2007) have
been developed. While iCOH is extracted by simply evaluating the
imaginary part of the complex-valued coherency, PLV captures the
variability of phase differences between two signals over time.
Similarly, PLI measures the asymmetry of the phase difference dis-
tribution (D/) between two signals and reflects the consistency
with which one signal is phase leading or phase lagging with
respect to another signal. PAC is instead based on the principle that
the amplitude of high-frequency oscillations is modulated by the
phase of low-frequency rhythms. If no phase coupling exists, then
this distribution is expected to be flat. These methods allow for the
extraction of information on the phase difference (i.e., the time
delay) between two signals and are therefore complementary to
coherence because they capture coupling independently from
amplitude correlations (For an extensive review, see Bastos and
Schoffelen, 2016). Finally, methods derived from information the-
ory have been implemented to give an estimate of the dynamical
interdependence between two or more simultaneously recorded
time series. Among these, Synchronization Likelihood (SL) quanti-
fies the probability that two signals are in the same ‘‘dynamical
state” (Stam and Van Dijk, 2002).

Overall, all these measures are capable of detecting neuropatho-
physiological processes affecting brain networks before the onset
of clinical symptoms and structural alterations (Sadaghiani et al.,
2022), thus representing a useful asset for clinical applications
and leading to new theoretical considerations (Babiloni et al.,
2020). Several studies using machine learning classification meth-
ods have indeed proven high rates of accuracy in distinguishing
MCI from healthy control (HC) subjects through the computation



Table 1
Indexes that evaluate functional connectivity based on signal synchronization and coupling.

Connectivity Index Description

Coherence (Coh) A measure of the covariance of the frequency components of two signals. In EEG studies, COH typically
corresponds to the covariance of spectral activity between two electrode locations (Nunez et al., 1997).

Imaginary Part of Coherency (iCOH) It is the imaginary part of the Fourier-transformed coherency. Coherency between two EEG signals is a
measure of the linear relationship of the two at a specific frequency while Coherence is its absolute value.
Coherency essentially measures how the phases in channel i and j are coupled to each other assuming that
signals are stationary. (Nolte et al., 2004)

Phase Locking Value (PLV) A measure of the variability of phase differences between two regions. PLV is close to 1 (i.e., high synchrony
between regions) while, with large variability in the phase difference, PLV is close to zero (Lachaux et al.,
1999).

Phase Lag Index (PLI) A measure of the asymmetry of the phase difference distribution between two EEG signals. PLI reflects the
consistency with which one signal is phase-leading or phase-lagging with respect to another signal (Stam
et al., 2007).

Synchronization Likelihood (SL) A measure of the statistical likelihood that two signals are in the same ‘‘dynamical state”. States are defined
as time-delay embedding vectors of the signals (Stam and van Dijk, 2002).

Phase Amplitude Coupling (PAC) A measure of coupling that relies on the assumption that the phase of a low-frequency oscillation is coupled
to the amplitude of a higher-frequency oscillation within a single brain region, or across cortical regions (e.g.,
low-frequency phase in region A driving high-frequency amplitude in region B) (Tort et al., 2010).

Amplitude Envelope Correlation (AEC) A measure of correlation between envelopes of the amplitude of two signals (typically, two channels) for
each frequency of interest. AEC corresponds to Pearson’s r between the log-transformed power envelopes.
(Bruns et al., 2000).
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of synchrony measures at resting state, a condition that is particu-
larly sensitive for detecting the earliest changes of the AD progres-
sion (Babiloni et al., 2013; Rossini et al., 2008; Yang et al., 2019).
For instance, Dauwels and colleagues (2010) used a combination
of linear and nonlinear measures of the interdependence of
resting-state EEG (rsEEG) signal and found a classification accuracy
of 80% and 85% in the discrimination of HC and MCI individuals.
Moreover, Musaeus and colleagues (2019) obtained a diagnostic
accuracy of 95% in distinguishing between HC, MCI, and AD
patients: using coherence, the iCOH and weighted PLI, they
observed a significant decrease in alpha coherence in AD patients.

However, findings of functional connectivity changes in MCI
have been inconsistent (Wen et al., 2015): both a global hyper-
synchronization (Jiang and Zheng, 2006; Pons et al., 2010) in delta
and theta (Handayani et al., 2018; López et al., 2014) and hypo-
synchronization (Youssef et al., 2021) specifically in delta (Koenig
et al., 2005; Požar et al., 2020; Tóth et al., 2014), alpha and beta
(López et al., 2014) bands have been observed in MCI compared
to HC. Many studies observed a slow-down of EEG activity in
MCI and a recent meta-analysis reported a significant reduction
in alpha activity (Lejko et al., 2020) at rest as a valid biomarker
for AD (Cecchetti et al., 2021). However, information about local
activity could be insufficient to explain the temporal dynamic evo-
lution of a neurodegenerative disease as a proper ‘‘disconnection
syndrome” (Bajo et al., 2010; Neufang et al., 2011; Pasquini et al.,
2019). As the boundaries between physiological aging and MCI
are blurred, a deeper understanding of this intermediate stage is
crucial when searching for neurofunctional biomarkers in clinical
settings. To this purpose, a systematic review of the available evi-
dence concerning alterations of brain connectivity linked to MCI is
required.

The present meta-analysis sought to identify the most frequent
and early signs of connectivity changes linked to MCI by quantita-
tively elucidating previous findings on synchrony alterations in
MCI patients compared to HC at resting state. To do so, we com-
puted the standardized mean difference (smd) of the effect sizes
reported by the studies retrieved through systematic research of
the literature conducted until June 2023. Moreover, we used a
novel method, namely a random-effects analysis that allows the
unbiased inclusion of Non-statistically Significant Unreported
Effect sizes (‘‘MetaNSUE”, Albajes-Eizagirre et al., 2019; Radua
et al., 2015). To our knowledge, this is the first study using this
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innovative methodological approach in a meta-analysis of syn-
chrony changes occurring in pathological aging. Identifying an
electrophysiological biomarker of AD would help the early and
easily accessed diagnosis of the disease, thus providing optimal
management of the disease progression.

As already observed in AD patients (Adler et al., 2003; Jeong,
2004) and in line with previous findings (Babiloni et al., 2006;
Handayani et al., 2018) supporting the ‘‘disconnection hypothesis”
(Delbeuck et al., 2003), we expected an overall synchrony decrease
in MCI patients compared to healthy older adults between frontal
and parietal, and frontal and temporal regions (Vecchio et al.,
2013). Specifically, we expected a specific loss of synchrony
between temporo-parietal regions and frontal areas in MCI
patients, both in theta (reflecting memory impairment) and alpha
bands (Handayani et al., 2018). This pattern of decline in MCI
was deemed to reflect the loss of cholinergic connectivity path-
ways connecting fibers from temporal and parietal regions with
the frontal areas of the brain and the cholinergic projections from
the basal forebrain with the cortex and hippocampus (Mesulam,
2004).
2. Methods

2.1. Literature search

The literature search was conducted from December 10 until
February 28, 2022, and updated to June 9, 2023, following the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statements for systematic reviews and meta-analyses
(Page et al., 2021). PubMed, Scopus, Web of Science and PsycINFO
databases were independently searched by AP, GB and CF, using
the following keyword strings: 1) (‘‘EEG” OR ‘‘MEG” OR
‘‘electroencephal*” OR ‘‘magnetoencephal*”) AND (‘‘connectivity”
OR ‘‘synchronization”) AND (‘‘Alzheimer” OR ‘‘MCI” OR ‘‘mild cog-
nitive impairment” OR ‘‘aging”) NOT ‘‘child*” (Table S1a) and, from
June 22, 2023 2) All Fields (eeg OR meg OR electroencephal* OR
magnetoencephal*) AND (connectivity OR synchronization OR
coherence OR phase locking value OR phase lag index OR synchro-
nization likelihood OR phase amplitude coupling OR amplitude
envelope correlation) AND (Alzheimer OR mci OR ”mild cognitive
impairment‘‘ OR aging) NOT (”child*) (Table S1b).
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Filters for (a) article type (only original articles and reviews), (b)
language (only articles in English) and (c) population (only
humans) have also been applied to the query. No limitations to
the year of publication were applied. Once the papers were
screened for abstract, GB and CF cross-checked for the eligibility
criteria to proceed with the selection process.

2.2. Quality assessment (QA)

To assess the risk of bias of each study to be included in the
analysis, the Modified Newcastle-Ottawa Quality Assessment Scale
based on Reilly et al. (2018) was used. See the Supplementary
Material.

2.3. Study eligibility

Eligible papers were selected according to the following inclu-
sion criteria: (1) the age of the sample included had to be over
65 years old for older adults and at least 18 for the younger coun-
terpart; (2) studies had to show an effect size (z, t, or p values) of
the change in synchronization between two brain areas for each
group of comparison: older adults (OA) vs young adults (YA); HC
vs MCI; MCI vs AD.

Papers were discarded according to the following exclusion cri-
teria: (1) studies with small sample sizes (n � 6); (2) reporting glo-
bal functional connectivity values only (i.e., averaging of all
channels for each frequency band, such as Global Synchronization
Index or Global Coupling Index); (3) studies involving psychiatric
and or neurologic diseases (e.g., Parkinson’s disease, vascular dis-
ease, Huntington’s disease, epilepsy, multiple sclerosis, psychiatric
illness, diabetes mellitus) were excluded; (4) articles including car-
riers of genetic variants deemed to increase the risk to develop Alz-
heimer’s Disease Dementia; (5) studies that were methodologically
inappropriate (e.g., study design, within group, studies with
incomplete data, studies that did not consider the contrast of our
interest and/or that were no open access) and that include other
variables (e.g., sleep, cognitive tasks).

2.4. Data extraction

To avoid imbalance in the sample sizes for the various contrasts,
we decided to analyze the HC > MCI contrast only (12 studies per
condition; k(YA > HC) = 4 and k(MCI > AD) = 4). The following data
were extracted from each study: (1) Basic bibliographic informa-
tion (i.e. first author’s name, year of publication, journal); (2) EEG
parameters such as montage, number of electrodes (spanned from
16 to 128), placement of the analyzed electrodes (Table 2) and fre-
quency band considered; (3) Functional connectivity metrics
implemented; (4) sample demographic data (i.e. samples size,
age); (5) paradigm and type of the task or (6) resting state modality
(eyes open (EO) or eyes closed (EC)); (7) the effect size of the
between groups contrast quantifying any change in functional
connectivity.

2.5. Statistical analyses

To explore synchrony alterations between healthy and MCI, a
meta-analysis of the standardized mean difference (SMD) for each
pair of areas of interest (among Frontal, Temporal, Parietal and
Occipital) was computed for each of the four frequency bands
selected, namely Alpha(a), Beta (b), Theta (h) and Delta (d).
The standardized mean difference is used as a summary statistic
in meta-analysis when the studies all assess the same outcome
but measure it in a variety of ways (McKenzie et al., 2019). We then
represented the effect estimates and confidence intervals for both
individual studies and meta-analyses by means of forest plots,
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showing synchrony changes between Fronto-Temporal (FT),
Fronto-Parietal (FP), Fronto-Occipital (FO) and Temporal-Parietal
(TP) regions and for each frequency band.

For each frequency band and pair of brain areas, differences in
the corresponding functional connectivity between groups were
collected and converted to t-values on https://www.sdmpro-
ject.com/utilities/?show=Statistics.

Some of the selected studies did not report any values for signif-
icant effects (‘‘non-statistically significant unreported effects”
[NSUEs]). To include these studies with NSUEs in this meta-
analysis, we used the ‘‘MetaNSUE” package (Albajes-Eizagirre
et al., 2019; Radua et al., 2015) implemented in R (https://cran.r-
project.org/). This novel method estimates the bounds where
NSUEs fall and transforms them to unbiased effect sizes. The first
step consists in using the following formula Eq. (1) implemented
in the function ‘‘smd_from_t” to convert two-sample t-values into
standard mean difference:

yi ¼ J df1ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ni;1

þ 1
ni;2

s
� ti ð1Þ

where J is the exact form of the Hedge’s correction factor, df1 are the
degrees of freedom and ni;1 and ni;2 are respectively the size of the
first and the second sample. Then, an estimation of the parameters
for subsequent imputations, namely the upper and lower limits
within which the effect size should fall, is conducted by maximizing
the likelihood (MLE) of the unreported effect sizes through the mul-
tiplication of the likelihood that each unreported effect size lies
within its two effect size bounds. Noteworthy, these parameters
account for the within-study variance (Q) (i.e., a standardized mea-
sure sensitive to the ratio of the observed variation to the within-
study error). In addition to serving as a significance test for the
homogeneity of the effect sizes, this metric is used to compute
the excess of variation (Q - df) (namely, the part that will be attrib-
uted to differences in the true effects from study to study), the
between-studies variance (s2, Borenstein et al., 2009), and the ratio
of true heterogeneity to the total variation in the observed effect
(I2). This value ranges from 0 to 100, it is independent of the effect
size and of the number of studies (Borenstein et al., 2009), and it is
calculated according to Eq. (2).

I2 ¼ Q � df
Q

� �
� 100 ð2Þ

In short, I2 is the percentage of total variation across studies
that is due to heterogeneity rather than chance, wherein values
approaching 100% indicate increasing inconsistency across the
studies (Higgins et al., 2003).

Following the MLE, multiple imputation creates several differ-
ent plausible imputed data sets by replacing each missing value
with two or more imputed values to represent the uncertainty
on which value to impute, and it appropriately combines the
results obtained. After this step, a standard meta-analysis is inde-
pendently carried out for each set of imputed effect sizes. Finally,
the results of these meta-analyses are pooled using a standard for-
mula for multiple imputations (Li et al., 1991).

A forest plot of the effect sizes of all studies was obtained
through the function ‘‘meta(smd)” for each contrast and for each
pair of areas of interest. We next applied the Leave One Out Protec-
tion (LOO) (‘‘leave1out(x)”). This function allows to carry out a sen-
sitivity analysis, based on the estimation of the same MLE model,
though with all studies except the first, then with all studies except
the second, then with all studies except the third, and so on. If the
result obtained is consistent (significance-wise) in the majority of
the repetitions of the analysis, one can infer that the outcome
obtained is replicable.

https://www.sdmproject.com/utilities/?show=Statistics
https://www.sdmproject.com/utilities/?show=Statistics
https://cran.r-project.org/
https://cran.r-project.org/


Table 2
The description of the studies that were included in the meta-analysis for healthy controls (HC) and Mild Cognitive Impairment patients (MCI) comparison.

First author Tool Montage (system) Connectivity
index

MCI diagnosis
(criteria)

RS method (analyzed
time)

Results Frequencies bands
and areas analyzed

Findings

Akrofi et al., 2009 EEG 16 (10–20) COH MCI (NS) EC (selected 30 s
artifact-free)

MCI ; theta in FOMCI ; beta
in FP, FO

Delta: FT; FP; FO; TP
Theta: FT; FP; FO; TP
Alpha: FT; FP; FO;
TPBeta: FT; FP; FO; TP

No significance for alpha and
delta. Significant for beta and
theta.

Gonzalez-Escamilla
et al., 2015

EEG 59 (10–20) PLI aMCI (Petersen 1999) EC (10 min of rs;
selected 60 s artifact-
free)

MCI ; in alpha TP Alpha: FT; FP; FO; TP The aMCI group showed
decreased neural synchrony
patterns mainly in temporo-
parietal regions.

Handayani et al., 2018 EEG 14 (10–20) COH + PLV MCI (NS) EC (20 min of rs) MCI " COH delta in FT
MCI ; COH alpha in FT, FP,
FOMCI ; COH beta in FT, FP,
FO
MCI " PLV alpha in FOMCI ;
PLV beta in FT, FP, FO

Delta: FT; FP; FO;
TPAlpha: FT; FP; FO;
TP
Beta: FT; FP; FO; TP

COH and PLV were lower in MCI
than in the healthy subjects in
the temporo-parietal-occipital
regions.

López et al., 2014 MEG 306 (102
magnetometers.204 planar
gradiometers).

PLV MCI (Petersen 2004) EC (3 min) MCI ; delta in FP
MCI " theta in TP, FO
MCI ; alpha in FOMCI " beta
in TP

Delta: FT; FP; FO; TP
Theta: FT; FP; FO; TP
Alpha: FT; FP; FO; TP
Beta: FT; FP; FO; TP

MCI display
hypersynchronization in low-
frequency bands and a lack of
synchronization in alpha and
beta

Meghdadi et al., 2021 EEG 20 (10–20) COH aMCI (DSM-V) EC (5 min) + EO (5 min) MCI ; delta in TP Delta: FT; FP; FO; TP
Theta: FT; FP; FO;
TPAlpha: FT; FP; FO;
TP

Decrease TP synchronization in
delta bands, no effects in alpha
and theta in the areas of our
interest.

Moretti et al., 2008 EEG 19 (10–20) COH MCI not considering clinical
subtype (Petersen 1997)

EC (10 min)
MCI ; COH in delta FP
MCI ; COH in alpha FP
MCI ; COH in beta FP

Delta: FT; FP; TP
Alpha: FT; FP; TPBeta:
FT; FP; TP

Decrease in COH only in FP in all
frequency bands in MCI

Núñez et al., 2019 EEG 19 (10–20) COH, PLI,
MSCOH

MCI due to AD (NIA-AA) EC (5 min) MCI tendency to ; in AEC-
alpha
MCI ; in AEC-beta in
temporal and parieto-
occipital regions= in MSCOH
and PLI

Alpha: FT; FP; FO;
TPBeta: FT; FP; FO; TP

Statistically significant
differences between groups
were found in the alpha and beta
bands.

Teipel et al., 2009 EEG 32 (10–20) COH aMCI (Petersen, 2004) EC (10 min) MCI ; COH in alpha TPMCI =
COH in beta

Alpha: TPBeta: TP Reduced temporo-parietal
coherence in alpha band

Tóth et al., (2014) EEG 33 (10–20) PLI MCI (Petersen, 2004) EC (4 min) +
EO (4 min)

MCI ; PLV in delta FT, FPMCI
; PLV in theta FP

Theta: FP, FT, TP, Decreases inter-regional delta e
theta connectivity between FT
and FP areas.

Youssef et al., (2021) EEG 64(10–10) dwPLI aMCI (Petersen 2004) EC (5 min) MCI ;dwPLI in theta in FO,
FT, FP, TP

Delta: FT; FP; FO; TP
Theta: FT; FP; FO; TP
Alpha: FT; FP; FO;
TPBeta: FT; FP; FO; TP

Decrease in PLI only in theta
bands in MCI

Jiang and Zheng (2006) EEG 16 (10–20) COH aMCI (DSM-IV) EC (10 min) MCI = HC Delta: TP
Theta: TPAlpha: TP

No between group differences

Su et al., (2021) EEG 16 (10–20) PLV aMCI (NS) EC (5 min) MCI = HC Alpha: FT; FP; FO; TP No between group differences

Abbreviations: eyes closed (EC); eyes open (EO); amnestic MCI (aMCI); not specified (NS); Frontal-Temporal areas (FT); Frontal-Parietal areas (FP); Frontal-Occipital areas (FO); Temporal-Parietal areas (TP); electroencephalogram
(EEG); magnetoencephalogram (MEG); coherence (COH); phase-lag index (PLI); phase locking value (PLV); debiased weighted phase lag index (dwPLI); amplitude envelope correlation (AEC); magnitude squared coherence
(MSCOH); seconds (s); minutes (min); resting state (rs/RS); decrease (;); equal (=); Diagnostic and Statistical Manual of Mental Disorders (DSM); National Institute on Aging e la Alzheimer’s Association (NIA-AA).
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As a final step, to check for publication bias through the detec-
tion of any asymmetry in the funnel plot, we conducted a meta-
regression of the effect sizes of the studies by their standard errors
through the ‘‘metabias” function.

3. Results

3.1. Study selection

The keywords filled in each one of the databases queried
returned a total of 4685 articles, of which 1220 from PubMed,
838 from Scopus, 2219 from Web of Science and 408 from Psy-
chInfo, while 730 were retrieved by cross-reference methods. From
the research of June 2023 (with different keywords) a total of 4109
articles were found, of which 112 from PubMed, 979 from Scopus,
2578 from Web of Science and 440 from Psychinfo. After removing
duplicates, title and abstract of 3852 articles were independently
screened and then cross-checked by GB and CF. This first skimming
Fig. 1. The flowchart illustrates the study selection process following the Preferred Repor
analyses and systematic reviews. Abbreviations: healthy control (HC); Mild Cognitive Im

188
step allowed us to proceed with the full-text screening of 398 arti-
cles, 367 of which were excluded for the following reasons: they
did not allow open access (n = 20), the study design did not match
with our research question [(n = 166), due to the contrast analyzed
(n = 140) or the employment of an active task (n = 32)], they inves-
tigated other diseases (n = 6), they carried out within-group con-
trasts (n = 11) or data were incomplete (n = 3). Where articles
showed missing information, authors were contacted by email.
Thus, 31 articles were assessed for eligibility, 12 of which were fur-
therly excluded by cross-checking due to the study design imple-
mented. At last, 19 studies were selected for the quantitative
meta-analysis. However, due to the small sample size, 8 articles
have been discarded, obtaining 12 exploitable articles for the quan-
titative analysis. The characteristics of the studies meeting our
inclusion criteria are shown in Table 2 and the literature search
is depicted in the PRISMA Flowchart (Fig. 1).

Results of QA are reported in the supplementary material
(Table S2).
ting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for meta-
pairment (MCI); Alzheimer’s Dementia (AD); young adults (YA).
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3.2. Sample description

Sample characteristics are reported in Table 3. Demographic
data of both HC (N = 327, 180 women; mean age 68.7 years, stan-
dard deviation (sd) 5.1 years; mean education 9.9 years, sd
1.3 years) and MCI patients (N = 379; 220 women; mean age
70.9 years, sd 4.1 years; mean education 8.6 years, sd 1.5 years)
were included in the meta-analysis. The cognitive state of the sam-
ple was assessed by the Mini-Mental State Examination (MMSE)
(Folstein et al., 1983) both for HC (mean score 28.6, sd 0.8) and
MCI patients (mean score 25, sd 3.5). By applying independent
sample t-tests between groups, the sample was found to be com-
parable for age (p = 0.283) and education (p = 0.376), but signifi-
cant differences were found in MMSE score (p < 0.001). The
diagnosis of MCI was based on NIA-AA (Jack et al., 2018), DSM-
IV, DSM-V or Petersen (Petersen, 2004; Petersen et al., 1999)
criteria.

3.3. Alpha band

The analysis showed a negative value in the comparison
between the temporal and parietal (Fig. 2) and between the frontal
and parietal (Fig. 3) areas (k = 11, of which 7 NSUEs, respectively, d
= � 0.250, I2= 1.11%, C.I. [-0.4317;-0.0749], p < 0.01 and d = -0.260,
I2= 34.54%, C.I. [-0.489;-0.0391], p < 0.05), thus indicating a
decrease of alpha coupling between these areas in the MCI group
compared to their healthy counterpart. No significant differences
in alpha synchrony between Fronto-Temporal (k = 11, of which 8
NSUEs; d = -0.093, I2= 0.70%, C.I. [-0.279; 0.092], p = 0.323) and
Fronto-Occipital sites (k = 8, of which 6 NSUEs, d = -0.127, I2=
1.37%, C.I. [-0.321;0.067], p = 0.200) were found. Leave-One-Out
analyses replicated the results in all of the cases except for 3 stud-
ies (when discarding study 1 (d = -0.202, p = 0.094), when discard-
ing study 5 (d = -0.246, p = 0.069, when discarding study 11 (d = -
0.184, p = 0.062) considering the fronto-parietal areas (Fig. 4), sug-
gesting that these three studies could have driven the outcome. On
the contrary, the results were replicated in all the cases for the
temporo-parietal coupling (Fig. 5), pointing out a high reliability
of this outcome.

Finally, no publication biases were detected in any of the meta-
analyses carried out for this frequency band.

3.4. Theta band

No significant fronto-parietal reduction of theta synchrony in
MCI was detected by meta-analyzing the 6 studies, 5 of which
NSUEs (d = -0.250, I2 = 7.34%, C.I. [-0.52; 0.0], p = 0.053). In addi-
tion, the Leave-One-Out analysis found that when discarding study
1 (d = -0.279, p = 0.046), study 2 (d = -0.330, p = 0.030), study 5
(d = -0.302, p = 0.037) or study 6 (d = -0.294, p = 0.046), a moderate
effect was found, suggesting that 4 studies out of 6 could have dri-
ven the results. No differences were found between fronto-
temporal (k = 6, of which 5 NSUEs, d = -0.087, I2 = 20.51%, C.I. [-
Table 3
Sample characteristics of healthy controls (HC) and Mild Cognitive Impairment patients (
deviation (sd); Mini-Mental State Examination (MMSE); female (F); male (M).

HC

Sample size (F/M) 327 (180/147)
Age (mean years ± sd) 68.7 ± 5.1
Education* (mean years ± sd) 9.9 ± 1.3
MMSE (mean score ± sd) 28.6 ± 0.8

Note: * Data refer only to the studies that reported mean and sd; Student T-Test was
Education and MMSE because it violates the assumption of normality.
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0.39;0.22], p = 0.574), fronto-occipital (k = 6, 3 NSUEs, d = -
0.0845, I2 = 62.19%, C.I. [-0.45;0.28], p = 0.650) nor temporal-
parietal areas (k = 6, 4 of which NSUEs, d = -0.020, I2 = 59.75%, C.
I. [-0.39;0.35], with no risk of publication bias in all cases.

3.5. Delta band

No delta synchrony alterations were found in any of the areas
studied by summarizing the evidence of 8 studies (Fronto-
Temporal: 6 NSUEs, d = -0.141, I2 = 2.32%, C.I [-0.37; 0.09],
p = 0.229; Fronto-Parietal: 5 NSUEs; d = -0.043, I2 = 54.73%, C.I. [-
0.38;0.35], p = 0.063; Fronto-Occipital: 7 NSUEs, d = -0.039,
I2 = 1.77%, C.I. [-0.28; 0.20], p = 0.744; Temporo-Parietal: 5 NSUEs,
d = -0.015, I2 = 69.36%, C.I. [-0.38;0.35], p = 0.937). No study was
detected by the LOO analysis, and no publication bias emerged.

3.6. Beta band

No significant differences in beta synchrony were observed in
the 7 studies considered of MCI subjects compared to HC in any
pair of regions (Fronto-Temporal: 5 NSUEs, d = -0.0238,
I2 = 0.52%, C.I. [-0.27; 0.22], p = 0.775; Fronto-Parietal: 3 NSUEs;
d = -0.203, I2 = 0.63%, C.I. [-0.42; 0.01], p = 0.067; Fronto-
Occipital: 4 NSUEs; d = -0.088, I2 = 0.88%, C.I. [-0.33;0.15],
p = 0.466; Temporo-Parietal: 3 NSUEs, d = -0.153, I2 = 56.09%, C.I.
[-0.49;0.18], p = 0.365). Lastly, no study was found to drive the out-
come, and no potential reporting bias was observed.
4. Discussion

Identifying in-vivo biomarkers to diagnose Alzheimer’s Disease
at the prodromal stage is pivotal to developing new therapy proto-
cols and possibly slowing down the progression of the disease
(Pievani et al., 2011). Neurophysiological measures have been
demonstrated as valid, cost-effective (for EEG), and readily accessi-
ble biomarkers for the early detection of brain alterations before
the appearance of clinical symptoms (Rossini et al., 2020). In this
framework, a powerful approach is provided by the analysis of
functional connectivity, which can be computed from noninvasive
M/EEG recordings with different methods quantifying linear and
nonlinear relationships among the neural activity of distant brain
regions (Stam, 2010). Capturing specific alterations of connectivity
between brain regions could shed light on the effects of AD neu-
ropathology on neurophysiological mechanisms underpinning
neural excitation/inhibition, neurotransmission, as well as brain
network dynamics (Courtney and Hinault, 2021; Voytek and
Knight, 2015).

To our knowledge, this is the first meta-analysis to quantita-
tively summarize existing evidence of connectivity changes (in
the main frequency bands) between specific couples of brain areas
at rest using a recent technique that also includes Non-Statistically
Significant Unreported effect sizes (Radua et al., 2015). This novel
method avoids publication biases and allows for the identification
MCI). p-values lower than 0.05 were considered significant. Abbreviations: standard

MCI p-value

379 (220/159)
70.9 ± 4.1 p = 0.283
8.6 ± 1.5 p = 0.376
25 ± 3.5 P < 0.001

computed for Age, while non-parametric Mann-Whitney Test was computed for



Fig. 2. Forest plot of Temporo-Parietal synchrony differences in a between MCI and HC. Values are weighted for the sample size. Asterisks represent p-values: *** = 0.001; ** =
0.01; * = 0.05.

Fig. 3. Forest Plot of Fronto-Parietal synchrony differences in a between MCI and HC. Values are weighed for the sample size. Asterisks represent p-values: *** = 0.001; ** =
0.01; * = 0.05.
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of potential patterns of synchrony alterations that characterize the
MCI phase, expanding the current knowledge while increasing the
strength of previous findings.

The forest plots, obtained by computing the standardized mean
difference of the effect sizes of each study, showed an overall
reduction of functional coupling in MCI patients compared to HC,
in line with findings reporting a hypo-synchronization associated
with MCI. Notably, we specifically observed a significant reduction
of alpha synchrony between temporo-parietal areas. As the Leave-
One-Out Analysis was significant in three cases out of eleven, the
reported fronto-parietal alpha decrease is less consistent, and
should be taken with caution.

A decrease in alpha global coherence has repeatedly been
observed along the AD progression (for a review: Babiloni et al.,
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2016), and it is more evident in patients with a more severe cogni-
tive impairment (Locatelli et al., 1998). Moreover, in line with our
results, several studies have observed a specific reduction of
temporal-parietal (together with fronto-parietal) alpha synchro-
nization at rest also in MCI patients (Handayani et al., 2018;
Gonzalez-Escamilla et al., 2015; Moretti et al., 2009; Teipel et al.,
2009).

The medial temporal lobe, the prefrontal cortex (PFC) and pos-
terior cingulate cortex (PCC) are hubs, among others, that are acti-
vated during wakeful states by a well-known resting state network
(RSN) (van den Heuvel and Sporns, 2013) namely the default mode
network (DMN) (Greicius et al., 2003; Gusnard et al., 2001; Raichle
et al., 2001). Alterations of DMN have been established by MEG
studies in cognitively normal individuals at-risk for Alzheimer’s



Fig. 4. Funnel Plot of the study results for Fronto-Parietal a synchrony differences between MCI and HC, expressed as the residual effect size (x-axis), and their standard error
(y-axis), with each dot representing a single study. Larger studies with greater precision are displayed at the top and studies with lower precision at the bottom. The light gray
shadow contains 95% of the imputations of the studies with NSUEs. Asterisks represent p-values: *** = 0.001; ** = 0.01; * = 0.05.

Fig. 5. Funnel Plot of the study results for Temporo-Parietal a synchrony differences in a between MCI and HC, expressed as the residual effect size (x-axis), and their
standard error (y-axis), with each dot representing a single study. Larger studies with greater precision are displayed at the top and studies with lower precision at the
bottom. The light gray shadow contains 95% of the imputations of the studies with NSUEs. Asterisks represent p-values: *** = 0.001; ** = 0.01; * = 0.05.
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disease (Nakamura et al., 2017) suggesting the early susceptibility
of this network, which thus deserves special attention in screening
procedures at the earliest stage. This evidence seems to support the
‘‘system degeneration theory” (Greicius and Kimmel, 2012; Saper
191
et al., 1987), according to which neurodegenerative diseases pref-
erentially affect large-scale brain networks (Jones et al., 2016).
Alpha coherence decrease is indeed mostly observed at first
throughout temporal and parietal regions (Locatelli et al., 1998),



G. Buzi, C. Fornari, A. Perinelli et al. Clinical Neurophysiology 156 (2023) 183–195
then it might spread to other network hubs lying in the frontal cor-
tex, following the AD pathology progression (Braak and Braak
1991; Hardy and Higgins, 1992). This pattern could reflect an early
degeneration of the cholinergic transmission between cortical and
subcortical neurons (Chen et al., 2022) and can result in distortions
of the temporal coordination of the distributed neural activity
(Uhlhaas and Singer, 2006). For instance, a recent study by
Ranasinghe and coll. (2020) established that alpha hypo-
synchrony successfully predicted the density of neurofibrillary tan-
gles in the angular gyrus, supporting the view of a link between
neuropathology and EEG signals (Gaubert et al., 2019). Further-
more, a reduction of bilateral temporoparietal alpha coherence
was found to be associated with the allele e4 of the apolipoprotein
E (Rossini et al., 2007), a major genetic risk factor for late onset’s
AD (Jelic et al., 1997).

Of note, DMN is considered to drive several internally oriented
cognitive functions, such as episodic memory and mind wandering
(Andrews-Hanna et al., 2010; Fox et al., 2015). A recent study
exploiting MEG data (Higgins et al., 2021), reported that the
DMN and alpha parietal network activity are related to neural
replay, a key mechanism consisting of the spontaneous replay of
items supporting memory consolidation and transferring knowl-
edge from the hippocampus to the cortex (Dragoi and Tonegawa,
2011). Alpha rhythm is not only considered to be modulated by
thalamus-cortical and cortico-cortical interactions supporting
brain communications between cortical and subcortical structures,
but it seems to also underlie the retrieval of the semantic informa-
tion from the brain (Giustiniani et al., 2022; Pfurtscheller and
Lopes Da Silva, 1999). Moreover, reduction of alpha coherence
was found to be related with the immediate verbal recall score in
patients with the diagnosis of Alzheimer’s Dementia (Adler et al.,
2003). We could therefore speculate that the temporoparietal
alpha coherence decrease observed here could reflect an initial
impairment by MCI subjects to form and store in memory recently
acquired information.

From a therapeutic standpoint, the implementation of tech-
niques such as transcranial magnetic stimulation (TMS) and EEG
co-registration allows to jointly explore cortical reactivity and
functional/effective connectivity (Nardone et al., 2021). As an
example, Ferreri and coll. (2021) observed an inter-trial alpha
coherence (ITS) decreases already at the MCI stage.

Patients with MCI show white matter hyperintensities
(Targosz-Gajniak et al., 2009), hypoperfusion (Chandra et al.,
2019) and gray matter loss in the posterior parietal cortex (for a
review: Jacobs et al., 2012), which has a key role in memory retrie-
val dysfunction in MCI (Cabeza et al., 2008). Targeting TMS parietal
cortex, Bonnì and coll. (2013) found that parieto-frontal cortico-
cortical functional connectivity is altered in these patients, likely
due to the alteration of the superior longitudinal fasciculus (SLF)
connecting frontal and parietal cortices (Ferreri et al., 2016;
Jacobs et al., 2012). This lack of connectivity between posterior
parietal regions, temporal and frontal areas in MCI suggests that
the DMN dysfunction could also be due to structural white matter
changes (Babiloni et al., 2009; Jacobs et al., 2012), specifically in
the SLF.

Overall, the present results report a global reduction of func-
tional integration between cortical areas, which has been consid-
ered as an index of disconnection (Das and Puthankattil, 2020),
thus suggesting that the cortical ‘‘disconnection syndrome”
(Delbeuck et al., 2003) (i.e., the hypothesis claiming a reduction
of functional integration between brain areas) could be observed
even at the MCI stage in specific brain sites (Koenig et al., 2005;
López et al., 2014; Stam et al., 2003; Youssef et al., 2021).

The electrophysiological assessment of the temporo-parietal
functional synchronization (at least) in the alpha band is then use-
ful to detect neurodegeneration processes in a first-level screening,
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playing a pivotal role in the detection of AD at prodromal stages.
Altogether, alterations in temporoparietal synchrony for higher
frequency bands have indeed proven to be highly sensitive and
specific to AD neurodegeneration such as gray matter atrophy, loss
of cortico-cortical connections (Whitwell et al., 2011), and
temporo-parietal hypo-metabolism (Alexander et al., 2002; Tait
et al., 2020), which are well-established neuropathological
biomarkers of AD (Dubois et al., 2016; McKhann et al., 2011; Jack
et al., 2018). Also, a mounting number of studies using machine
learning observed that alpha 1 source in parietal and temporal
areas were stronger in MCI converters than stable subjects
(Rossini et al., 2006), and that the classification performance of
alpha 2 bilateral temporo-parietal envelope correlation reached
98% (Dimitriadis et al., 2018). This flourishing line of research
toward the discovery of a functional electrophysiological biomar-
ker of AD will contribute to the early detection of the disease
and thus to the implementation of disease-modifying therapies.
4.1. Limitations and future perspectives

The present work has some drawbacks. First, some of the results
should be taken with caution, because of the (relatively) small
samples of the retrieved studies and the LOO violation in alpha
and theta fronto-parietal contrasts. Second, due to the heterogene-
ity in the electrode location and density of the M/EEG setup, differ-
ent pairs of electrodes were selected for each brain area. To ensure
as much as possible homogeneity of the spatial references between
the studies, we decided to select only articles carrying out the anal-
ysis in the sensor space, which limits the spatial resolution of our
findings. Importantly, despite these setup differences, the hetero-
geneity index calculated for the meta-analysis was low.

Finally, more studies are needed in order to assess whether
tempo-parietal and fronto-parietal coupling in specific frequency
bands can be predictive of neuropathology progression. Identifying
functional biomarkers for AD, such as phase-coupling changes,
may help devise new disease-modifying therapies and promote
the implementation of new stimulation protocols, targeting speci-
fic sets of brain areas forming large-scale networks. Specifically,
neurostimulation could induce plasticity and/or boost connectivity
between those areas that exhibit weak coupling.
5. Conclusions

The present meta-analysis corroborates previous findings
regarding the changes in synchronization between brain areas in
MCI patients compared to HC. Here, we extend previous knowl-
edge by reviewing and specifying synchrony alterations for the
main frequency bands in several couples of areas, with a novel tool
to compute a standardized mean difference that allows the inclu-
sion of non-reported effect sizes. The high feasibility of electro-
physiological measures could allow the early detection of brain
pathological changes, thus providing new strategies to manage
the disease at its prodromal stages.
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