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Abstract: The Landsat series has marked the history of Earth observation by performing the longest
continuous imaging program from space. The recent Landsat-9 carrying Operational Land Imager
2 (OLI-2) captures a higher dynamic range than sensors aboard Landsat-8 or Sentinel-2 (14-bit vs.
12-bit) that can potentially push forward the frontiers of aquatic remote sensing. This potential
stems from the enhanced radiometric resolution of OLI-2, providing higher sensitivity over water
bodies that are usually low-reflective. This study performs an initial assessment on retrieving water
quality parameters from Landsat-9 imagery based on both physics-based and machine learning
modeling. The concentration of chlorophyll-a (Chl-a) and total suspended matter (TSM) are retrieved
based on physics-based inversion in four Italian lakes encompassing oligo to eutrophic conditions.
A neural network-based regression model is also employed to derive Chl-a concentration in San
Francisco Bay. We perform a consistency analysis between the constituents derived from Landsat-9
and near-simultaneous Sentinel-2 imagery. The Chl-a and TSM retrievals are validated using in situ
matchups. The results indicate relatively high consistency among the water quality products derived
from Landsat-9 and Sentinel-2. However, the Landsat-9 constituent maps show less grainy noise, and
the matchup validation indicates relatively higher accuracies obtained from Landsat-9 (e.g., TSM R2

of 0.89) compared to Sentinel-2 (R2 = 0.71). The improved constituent retrieval from Landsat-9 can
be attributed to the higher signal-to-noise (SNR) enabled by the wider dynamic range of OLI-2. We
performed an image-based SNR estimation that confirms this assumption.

Keywords: Landsat-9; OLI-2; water quality; lakes; chlorophyll-a; total suspended matter; physics-based
modeling; machine learning; Sentinel-2; San Francisco Bay

1. Introduction

The launch of the first Landsat satellite dates back 50 years, which is followed by
a series of satellites representing the longest continuous mission for Earth observation.
Although the sensors aboard the Landsat series were not developed specifically for aquatic
applications, water quality retrieval has been a key interest since the launch of the first
Landsat satellites [1,2]. With the launch of Landsat-8 in 2013 carrying Operational Land
Imager (OLI), remote sensing of biophysical parameters in optically-complex inland and
near-shore coastal waters has become more widespread. Apart from other improvements
of OLI compared to the previous Landsat sensors, its enhanced radiometric resolution
(i.e., 12-bit dynamic range vs. 6-8 bit of previous sensors) paved the way to capture more
subtle changes in water-leaving radiance [3,4]. The high radiometric resolution of satellite
sensors is crucial for retrieving constituents, given that water bodies act as dark objects and
absorb a major fraction of the downwelling irradiance leading to a low signal-to-noise ratio
(SNR) [5]. With the launch of Sentinel-2 in 2015 carrying Multispectral Imager (MSI) that
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provides comparable characteristics with Landsat-8 (e.g., 12-bit dynamic range), remote
sensing of inland waters has been further explored [6,7]. The newly launched Landsat-9 (in
orbit since September 2021), with its onboard OLI-2 capturing 14-bit radiometric data, might
resolve even smaller differences in water-leaving radiance relative to OLI and MSI that can
potentially contribute to the studies on water quality retrieval. Satellite remote sensing
provides an efficient means of retrieving spatially and temporally explicit information about
the water quality indicators [8]. Remote mapping of chlorophyll-a (Chl-a) concentration,
as an indicator of phytoplankton biomass, is of particular importance due to the ever-
increasing eutrophication and algal bloom problems that pose a severe threat to inland
and coastal waters [9,10]. Total suspended matter (TSM) mapping provides a measure of
organic and mineral suspended solids, which is strongly related to water turbidity and
might reveal information about mass transport and sediment re-suspension [11]. High
loads of TSM can degrade primary production due to reduced light penetration in the
water column and thus severely limits the aquatic habitat, fisheries, and drinking water
supplies [12,13].

Various methods are developed for water quality retrieval from optical imagery, which
are mainly empirical (regression-based) or physics-based models [14,15]. The empirical
techniques require in situ measurements of constituents to form a relation between image-
derived features (e.g., band ratios) and the water quality parameter of interest [16]. Various
regressors can be employed for such empirically-based modeling, e.g., machine learning
methods including neural networks and support vector machines [17,18]. Regression-based
models are straightforward to apply as there is no need for a profound understanding
of the underlying physics. However, these methods are mainly applicable when in situ
samples concurrent with the image acquisition are available for training the regressor. Thus,
in most cases, image-specific in situ data are needed as the transformation of the trained
models is challenging either in space or time. Besides field measurements being timely
and costly, they are very limited, if not available, particularly when analyzing imagery
from a new satellite sensor. On the other hand, physics-based approaches invert a radiative
transfer model that accounts for the absorption and backscattering properties of water
and its optically active components, including Chl-a, TSM, and colored dissolved organic
matter (CDOM) [19,20]. The inversion is mainly applied to the remote sensing reflectance
(Rrs) derived after atmospheric correction [21,22]. There are mainly two approaches for
physics-based inversion: (i) training a neural network using a large number of radiative
transfer simulations and then using the trained model to estimate water quality parameters.
As the constituent retrieval is based on pre-trained networks, there is no flexibility in
adapting the retrieval to site-specific bio-optical conditions. Moreover, this approach is
sensor-dependent and thus requires training an individual network for each sensor, such as
those available in the Case 2 Regional CoastColour (C2RCC) processor [23]; (ii) analytical
spectrum matching, which seeks an optimal match between the observed (image) spec-
trum and radiative transfer simulations by iterating a set of parameters in a given range,
including the concentration of constituents. This inversion approach is sensor independent
and highly flexible in parametrization. However, site-specific inherent optical properties
(IOPs) such as the absorption spectrum of the phytoplankton are needed to optimize the
inversion. Water Color Simulator (WASI) and Bio-Optical Model Based tool for Estimating
water quality and bottom properties from Remote sensing images (BOMBER) are the main
publically available processors based on the spectrum matching approach [22,24,25].

This study builds upon both physics-based and machine learning modeling to examine
the water quality retrieval from newly released Landsat-9 imagery and compares the
results with Sentinel-2. We examine the potential of OLI-2 data in retrieving Chl-a and TSM
concentrations in the lake and near-shore coastal environments. We adapt the physics-based
inversion implemented in BOMBER for the case studies with available site-specific IOPs
(four Italian lakes). Moreover, a neural network (NN) empirical model is applied for a study
site (San Francisco Bay) with a sufficient number of in situ data for training the model. In
addition, we perform an inter-sensor comparison to quantify the consistency of Chl-a and
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TSM retrievals from Landsat-9 relative to Sentinel-2, a widely-used satellite sensor in water
quality mapping, particularly in inland waters. Thus, we pursue the following objectives:
(i) examine the potential of Landsat-9 imagery in retrieving Chl-a and TSM concentrations
in lakes and near-shore coastal waters based on a fully physics-based approach as well as an
empirical approach based on machine learning; (ii) perform a consistency analysis among
the water quality products derived from Landsat-9 and Sentinel-2 and validate the results
based on in situ matchups; (iii) compare the SNR from images acquired over different case
studies as an indication for the radiometric quality of Landsat-9 data relative to Sentinel-2.
Sensor noise is a limiting factor for detecting water constituents at low concentrations and
resolving small concentration differences. Thus, this comparison indicates if sensor noise
may explain some of the observed differences in the derived concentration maps.

2. Case Studies and Datasets

Four Italian lakes named Trasimeno, Maggiore, Varese, and Mantova are considered
for water quality retrieval from Landsat-9 and Sentinel-2 imagery (Figure 1a). The selected
lakes represent a diverse bio-optical status (Table 1) involving oligo- to eutrophic conditions
that allow for a relatively broad assessment of the constituent retrieval from satellite
imagery. Moreover, the site-specific IOPs were available for these sites; thus, we consider
them for physics-based inversion to retrieve Chl-a and TSM concentrations. We also
investigated Chl-a retrieval in San Francisco Bay (Figure 1b), for which a sufficient number
of in situ data (34 samples) was available to train an NN-based model. Samples of Landsat-9
and Sentinel-2 images, along with the location of in situ measurement stations, are shown
in Figures 2 and 3.
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Figure 1. The location of studied (a) lakes in Italy and (b) San Francisco Bay in the United States.

Table 1. Site descriptions, image acquisition dates, and the number of in situ samples for each
case study.

Water Body Site Descriptions Landsat-9 Imagery
(Sentinel-2 Overpass) Number of In Situ Matchups

Trasimeno Lake

Surface area: 120.5 km2

Shallow (max depth ~6.3 m),
turbid (Secchi depth ~1.1 m),
and mesotrophic–eutrophic

lake [26,27]

16 December 2021 (same day)
8 January 2022 (same day)
24 January 2022 (+1 day)

2 February 2022 (same day)
30 April 2022 (same day)

4 Chl-a
2 TSM
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Table 1. Cont.

Water Body Site Descriptions Landsat-9 Imagery
(Sentinel-2 Overpass) Number of In Situ Matchups

Maggiore Lake

Surface area ~212.5 km2,
represents deep water up to
370 m, oligotrophic lake [28],

Secchi depth ~10 m [29]

29 January 2022 (same day) 1 Chl-a
1 TSM

Varese Lake

Surface area ~14.8 km2, mean
depth ~11 m; Secchi depth

~3 m [30]. A dimictic lake with a
summer stratification from May

to November and an inverse
stratification in winter [31]

5 December 2021 (same day) 1 Chl-a

Mantova Lake

Surface area: 6.2 km2; mean
depth ~3.5 m; a hypertrophic

system composed of three
fluvial lakes with low

transparency (Secchi depth
< 1 m in summer and high Chl-a

concentration) [31,32]

9 February 2022 (−2 days) 3 Chl-a
3 TSM

San Francisco Bay

Surface area: ~1400 km2; most
extensive estuary system on the

west coast of North America,
overall a shallow water body
(<3 m in most parts) but also

representing deep waters up to
~113 m, turbid with an average
TSM of ~30 g/m3 for the past

year [33,34]

10 December 2021 (same day) 34 Chl-a

Table 1 reports the morphological characteristics and trophic status of case studies,
along with the image acquisition dates. Moreover, the number of available in situ water
quality matchups are provided for each water body during the studied period.

In situ data were collected by regional environmental protection agencies (i.e., ARPA
Lombardia and ARPA Umbria) for Varese, Mantova, and Trasimeno lakes; integrated
water samples between the surface and the Secchi Disk depth were collected using a Van
Dorn water sampler. Chl-a concentrations extracted with acetone were determined via the
spectrophotometric method [35]. TSM concentrations were determined gravimetrically [36].
Additional samples were collected with the WISPstation for Lake Trasimeno [37]. The
water quality measurements of Lake Maggiore were provided by CNR-IRSA; the data are
collected by fluorometer cyclops-7 installed on a fixed buoy [38]. The in situ Chl-a data at
San Francisco Bay are based on fluorescence measurements calibrated with discrete Chl-a
values according to U.S. Geological Survey (USGS) standards [34].

The relative spectral responses of Landsat-9 (OLI-2) and Sentinel-2 (MSI) are shown
in Figure 4. The bands are presented for wavelengths λ < 1000 nm, which are the infor-
mative bands for retrieving water quality parameters. However, both sensors have three
additional bands that are very similar, including one band at ~1370 nm for detection of
clouds, particularly thin cirrus clouds, and two SWIR bands. Landsat-9 also provides a
panchromatic band at 15 m spatial resolution. Moreover, carrying the thermal infrared
sensor (TIR-2) allows the surface temperatures to be measured at 100 m spatial resolution.
Instead, Sentinel-2 captures most of the useful bands for water quality retrieval at 10–20 m
though the coastal blue band (443 nm) has a 60 m spatial resolution. Landsat-9 provides a
revisit frequency of 16 days that enhances to eight days when coupled with Landsat-8. The
constellation of Sentinel-2A and Sentinel-2B provides a temporal resolution of five days.
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Figure 2. True color composite Landsat-9 and near-simultaneous Sentinel-2 images over four Italian 
lakes. The locations of in situ stations are shown on Landsat-9 images by yellow symbols. 
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Figure 2. True color composite Landsat-9 and near-simultaneous Sentinel-2 images over four Italian
lakes. The locations of in situ stations are shown on Landsat-9 images by yellow symbols.
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We downloaded level-1 top-of-atmosphere products of Landsat-9 and Sentinel-2.
Then, dark spectrum fitting (DSF) atmospheric correction is performed using the ACOLITE
processor [39,40] to derive Rrs data from both Landsat-9 and Sentinel-2 imagery. We use the
same atmospheric correction for both sensors to maintain consistency in the analyses. To
our knowledge, DSF is currently the only aquatic-specific atmospheric correction method
available for processing the new Landsat-9 imagery. DSF has provided high-quality Rrs data
in previous studies with various sensors, including Landsat-8 and Sentinel-2 [41–43]. The
ancillary data (pressure, ozone, and water vapor) available through ACOLITE processor
are used. However, a previous study demonstrated that the differences between using and
not using ancillary data are very small [40]. Note that the Sentinel-2 images are resampled
to 20 m through the ACOLITE atmospheric correction.
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3. Methods

This study employs well-established physics-based and machine learning models to
retrieve in-water constituents from Landsat-9 and Sentinel-2 imagery. Here, the methods
are described briefly, and relevant references are provided for detailed information.

3.1. Physics-Based Model and Parametrization

We leverage BOMBER (Bio-Optical Model Based tool for Estimating water quality and
bottom properties from Remote sensing images) as a physics-based inversion model to
derive water quality parameters [24]. BOMBER is a publicly available processor (https:
//zenodo.org/record/5418571) that retrieves information about the water constituents
and, in optically-shallow waters, bathymetry and substrate types/compositions. We apply
BOMBER to Italian lakes (Section 2), for which the site-specific IOPs are available. For
collecting the IOPs, the absorption spectra of particles retained on the filters were obtained
using the filter pad technique, separately for phytoplankton and non-algal particles [36].
The spectrophotometric determination and processing were used to measure the absorption
spectra of CDOM [44]. The backscattering coefficients of the particles were derived from
HydroScat-6 measurements [45]. The lakes represent optically-deep conditions; thus, only
water column properties are considered through the inversion process leading to the
retrieval of TSM and Chl-a concentrations. The IOPs [26] of different lakes are reported in
Table 2, which are used to parametrize BOMBER. Figure 5 shows the specific absorption
spectra of phytoplankton a∗phy(λ) fed to the inversion model.

Table 2. Site-specific inherent optical properties (IOPs) of Italian lakes used for parametrizing
BOMBER.

Trasimeno Maggiore Varese and Mantova

Spectral slope coefficient of CDOM
absorption [1/nm] 0.016 0.019 0.015

Specific absorption of non-algal
particles (NAP) at 440 nm [m2/g] 0.2 0.05 0.3

Spectral slope coefficient of NAP
absorption [1/nm] 0.013 0.011 0.009

Backscattering exponent of TSM [−] 0.65 0.76 0.8

Specific backscattering coefficient of
TSM at 555 nm [m2/g] 0.0119 0.0071 0.0111
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3.2. Neural Network-Based Regression Model

Empirical (regression-based) retrieval of constituents can be performed without know-
ing the site-specific IOPs and the underlying physics. However, in situ measurements of
the parameters of interest are required to train the models. Polynomial regression mod-
els based on either single bands or band ratios have long been used for retrieving water
quality parameters [7,46,47]. More recently, machine learning-based models, particularly
neural networks (NNs), have received growing attention as they can handle the complex
and non-linear relations between the spectral data and the target parameters (in water
constituents). Here, we employ an NN-based regression model building upon feedforward
fully connected layers similar to [18,48]. The network input data, i.e., spectral data of
training samples, are connected to the first fully connected layer. Each fully connected
layer performs a multiplication of input by a weight matrix and then adds a bias vector.
The first fully connected layer is followed by an activation layer, and the last one produces
the related water quality parameter (Figure 6). Bayesian optimization is applied to tune
the network’s hyperparameters, including the number of layers, the number of neurons
in each layer, and the type of the activation function. We apply the NN-based model to
the imagery from San Francisco Bay, for which spatially-distributed Chl-a samples are
available for training. Given the limited number of samples, we consider leave-one-out
cross-validation to assess the Chl-a retrieval results. Thus, each sample is successively left
out of the training data and used for validation [49].
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3.3. Validation and Consistency Analysis

We employ several metrics, including coefficient of determination (R2), root mean
square error/difference (RMSE/RMSD), bias, and mean absolute error (MAE), to perform
in situ matchup validation and Landsat-9 vs. Sentinel-2 consistency analysis. Bias and MAE
are both unitless and calculated in a log-transformed space to account for the proportionality
of the errors with the water quality parameters according to the definition provided by [50].
Bias values tending to one are ideal, whereas bias > 1 indicates overestimation, and bias
< 1 is an indication of underestimation. MAE is a multiplicative metric that always exceeds
one and quantifies the relative error of water quality estimates. For instance, a MAE of
1.4 indicates a relative measurement error of 40%. In the case of error-free estimation, the
MAE equals one. To relatively compare the RMSE/RMSD values among different case
studies, we normalize them (NRMSE/NRMSD) with the average values of constituents.
Note that, for the consistency analysis, water quality maps derived from Sentinel-2 at 20 m
resolution are downsampled to 30 m to perform a pixel-by-pixel comparison with the maps
derived from Landsat-9. We assume Sentinel-2 maps as the reference. Thus, for instance, a
bias of 1.2 indicates that Landsat-9 retrievals are, on average, 20% higher than Sentinel-2.

3.4. Image-Based SNR Estimation

We employ a well-established approach for the estimation of SNR from satellite
imagery. The local means and standard deviations of small homogeneous areas on a given
image are calculated as an indication of the signal and noise, respectively [51]. Thus, the
SNR of every band in a given image window is calculated by dividing the average of Rrs
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values by their standard deviation. We selected ten homogenous 5 × 5 windows for every
case study and computed the average SNR.

4. Results and Discussion

Figure 7 illustrates the average Rrs spectra of different case studies derived from the
DSF atmospheric correction using Landsat-9 and Sentinel-2 imagery. The spectra represent
the average Rrs of each water body, excluding the boundary pixels. An additional Rrs
spectrum is shown for the Varese Lake, representing a spot of the lake surface affected by a
cyanobacterial bloom (see Figure 2: the greenish pattern crossing the middle of the lake).
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4.1. Physics-Based Inversion in Italian lakes

The TSM and Chl-a maps derived from multitemporal Landsat-9 and Sentinel-2
imagery of Lake Trasimeno are presented in Figures 8 and 9. The visual inspection conveys
a high correspondence between the Landsat-9 and Sentinel-2 retrievals though some
differences are evident. Overall, the maps derived from Landsat-9 images, particularly
Chl-a retrievals, are more homogenous and represent lower salt-and-pepper noises than
those of Sentinel-2. The temporal analyses reveal that the concentration and pattern of
constituents change significantly over time. The average TSM concentration ranges from
~5.8 g/m3 (2 February 2022) to ~16.1 g/m3 (8 January 2022). Similarly, a range of 3.8 mg/m3

to 10.5 mg/m3 is detected for Chl-a concentration. Note that the southeast corner of the
lake is affected by the presence of macrophytes, and the water quality parameter estimation
could be affected by the presence of shallow water. We have excluded this region from
all analyses.

Figure 10 compares the Landsat-9 derived maps of TSM and Chl-a with those of
Sentinel-2 in Lake Maggiore. Despite generic agreement in the spatial pattern of con-
stituents, Sentinel-2 retrievals of TSM and Chl-a are lower than Landsat-9. The TSM maps
derived from Landsat-9 and Sentinel-2 images of Lake Mantova are shown in Figure 11.
Chl-a maps are not shown due to the noise caused by the poor signal in low light conditions
and due to the dominant effect of TSM that prevails the upwelling radiance in this case
study. Figure 12 shows the Chl-a maps retrieved from Landsat-9 and Sentinel-2 imagery in
Lake Varese. As evident in the satellite images (Figure 2), there is a very contrasting pattern
crossing from northwest to northeast of the lake. For the region dominated by this pattern
(cyanobacterial bloom), the physics-based inversion infers a very high concentration of
Chl-a from both Landsat-9 and Sentinel-2 imagery. TSM retrieval was not feasible due
to the surface accumulation of cyanobacteria. This is because the signal recorded by the
sensor is dominated by the surface component of radiance, and the contribution of the
water column becomes negligible. In the lack of information from the water column, TSM
retrieval would not be feasible regardless of the methods applied.
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Figure 8. TSM maps derived from Landsat-9 and Sentinel-2 imagery in Lake Trasimeno using 
BOMBER. 
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Figure 8. TSM maps derived from Landsat-9 and Sentinel-2 imagery in Lake Trasimeno using
BOMBER.
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Figure 9. Chl-a maps derived from Landsat-9 and Sentinel-2 imagery in Lake Trasimeno us-
ing BOMBER.
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Figure 10. TSM and Chl-a maps derived from Landsat-9 and Sentinel-2 imagery in Lake Maggiore.
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Figure 11. TSM maps derived from Landsat-9 and Sentinel-2 imagery in Lake Mantova.
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Figure 12. Chl-a map derived from Landsat-9 and Sentinel-2 imagery in Lake Varese.

Example scatterplots analyzing the pixel-by-pixel TSM and Chl-a consistency between
Landsat-9 and Sentinel-2 retrievals are shown in Figure 13 for Lake Trasimeno (16 December
2021). The consistency statistics for all multitemporal imagery of Lake Trasimeno and
other case studies are reported in Table 3. For Lake Trasimeno, TSM maps show stronger
agreement than Chl-a (average TSM R2 of 0.89 vs. 0.74 for Chl-a excluding 24 January
data that the images have one day gap). However, Chl-a retrievals are slightly less biased
(on average ~10%) than TSM when comparing Landsat-9 to Sentinel-2. In other lakes, the
agreements of retrievals are not strong with relatively low R2 values. In Lake Maggiore,
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the bias values reported in Table 3 indicate that TSM and Chl-a values are, on average,
23% and 17% lower on Sentinel-2 maps compared to Landsat-9. In Lake Mantova, the
Sentinel-2 map shows higher TSM (14% on average) with respect to Landsat-9. Despite the
generic correspondence of the spatial patterns of maps derived from the two sensors in
Lake Varese (Figure 12), the Sentinel-2-based retrievals of Chl-a are higher (60% on average)
than those of Landsat-9 (Table 3). The NRMSD values are comparable in different case
studies, particularly for TSM.

Remote Sens. 2022, 14, 4596 13 of 18 
 

 

lakes, the agreements of retrievals are not strong with relatively low R2 values. In Lake 
Maggiore, the bias values reported in Table 3 indicate that TSM and Chl-a values are, on 
average, 23% and 17% lower on Sentinel-2 maps compared to Landsat-9. In Lake Mantova, 
the Sentinel-2 map shows higher TSM (14% on average) with respect to Landsat-9. Despite 
the generic correspondence of the spatial patterns of maps derived from the two sensors 
in Lake Varese (Figure 12), the Sentinel-2-based retrievals of Chl-a are higher (60% on 
average) than those of Landsat-9 (Table 3). The NRMSD values are comparable in different 
case studies, particularly for TSM. 

  
(a) (b) 

Figure 13. Pixel-by-pixel comparison of (a) TSM and (b) Chl-a maps derived from Landsat-9 vs. 
Sentinel-2 in Lake Trasimeno (16 December 2021). 

Table 3. Consistency analysis of TSM and Chl-a concentrations derived from Landsat-9 and Senti-
nel-2 via BOMBER in Italian lakes. 

  R2 RMSD NRMSD% Bias MAE 
Trasimeno 

16 December 
2021 

TSM 0.87 1.78 g/m3 22 1.24 1.24 

Chl-a 0.77 0.94 mg/m3 21 1.05 1.25 

Trasimeno 
8 January 2022 

TSM 0.90 4.56 g/m3 20 0.92 1.18 
Chl-a 0.92 5.63 mg/m3 38 0.79 1.36 

Trasimeno 
24 January 2022 

TSM 0.31 1.03 g/m3 14 0.93 1.14 
Chl-a 0.30 1.19 mg/m3 26 1.21 1.32 

Trasimeno 
2 February 2022 

TSM 0.82 1.50 g/m3 25 1.40 1.41 
Chl-a 0.59 0.93 mg/m3 24 1.27 1.31 

Trasimeno 
30 April 2022 

TSM 0.97 0.66 g/m3 9 0.90 1.10 
Chl-a 0.69 0.44 mg/m3 28 0.88 1.54 

Maggiore 
TSM 0.33 0.16 g/m3 20 1.23 1.24 
Chl-a 0.06 0.49 mg/m3 19 1.17 1.18 

Mantova TSM 0.17 0.99 g/m3 19 0.86 1.18 
Varese Chl-a 0.13 61.7 mg/m3 55 0.40 2.52 

The in situ matchup analyses for TSM and Chl-a retrievals from Landsat-9 and Sen-
tinel-2 imagery are presented in Table 4 for the studied lakes. Landsat-9 retrievals are 
more accurate than Sentinel-2 for both TSM and Chl-a, i.e., 0.18 improvement in R2 for 
TSM and 11.65 mg/m3 lower RMSE for Chl-a. As the Chl-a matchup analysis is strongly 
affected by the high concentration in Lake Varese, we performed an additional analysis 
excluding this sample that again confirms the outperformance of retrievals based on 
Landsat-9 imagery (R2 = 0.89 and RMSE = 0.75 mg/m3 for Landsat-9; R2 = 0.66 and RMSE = 
1.86 mg/m3 for Sentinel-2). 

Figure 13. Pixel-by-pixel comparison of (a) TSM and (b) Chl-a maps derived from Landsat-9 vs.
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Table 3. Consistency analysis of TSM and Chl-a concentrations derived from Landsat-9 and Sentinel-2
via BOMBER in Italian lakes.

R2 RMSD NRMSD% Bias MAE

Trasimeno
16 December 2021

TSM 0.87 1.78 g/m3 22 1.24 1.24

Chl-a 0.77 0.94 mg/m3 21 1.05 1.25

Trasimeno
8 January 2022

TSM 0.90 4.56 g/m3 20 0.92 1.18

Chl-a 0.92 5.63 mg/m3 38 0.79 1.36

Trasimeno
24 January 2022

TSM 0.31 1.03 g/m3 14 0.93 1.14

Chl-a 0.30 1.19 mg/m3 26 1.21 1.32

Trasimeno
2 February 2022

TSM 0.82 1.50 g/m3 25 1.40 1.41

Chl-a 0.59 0.93 mg/m3 24 1.27 1.31

Trasimeno
30 April 2022

TSM 0.97 0.66 g/m3 9 0.90 1.10

Chl-a 0.69 0.44 mg/m3 28 0.88 1.54

Maggiore
TSM 0.33 0.16 g/m3 20 1.23 1.24

Chl-a 0.06 0.49 mg/m3 19 1.17 1.18

Mantova TSM 0.17 0.99 g/m3 19 0.86 1.18

Varese Chl-a 0.13 61.7 mg/m3 55 0.40 2.52

The in situ matchup analyses for TSM and Chl-a retrievals from Landsat-9 and Sentinel-
2 imagery are presented in Table 4 for the studied lakes. Landsat-9 retrievals are more
accurate than Sentinel-2 for both TSM and Chl-a, i.e., 0.18 improvement in R2 for TSM and
11.65 mg/m3 lower RMSE for Chl-a. As the Chl-a matchup analysis is strongly affected by
the high concentration in Lake Varese, we performed an additional analysis excluding this
sample that again confirms the outperformance of retrievals based on Landsat-9 imagery
(R2 = 0.89 and RMSE = 0.75 mg/m3 for Landsat-9; R2 = 0.66 and RMSE = 1.86 mg/m3 for
Sentinel-2).
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Table 4. In situ matchup validation of TSM (6 samples) and Chl-a (9 samples) retrievals via BOMBER
from Landsat-9 and Sentinel-2 imagery in the studied lakes.

R2 RMSE NRMSE% Bias MAE

TSM
Landsat-9 0.89 0.77 g/m3 18 1.01 1.17

Sentinel-2 0.71 1.20 g/m3 27 1.04 1.27

Chl-a
Landsat-9 0.99 1.05 mg/m3 5 1.03 1.16

Sentinel-2 0.97 12.7 mg/m3 55 1.01 1.27

4.2. NN-Based Chl-a Retrieval in San Francisco Bay

The Chl-a maps of San Francisco Bay derived from Landsat-9 and Sentinel-2 images
based on the NN regression model are presented in Figure 14. The pixel-by-pixel com-
parison implies a strong agreement between maps derived from Landsat-9 and Sentinel-2:
R2 = 0.94, RMSD = 0.83 mg/m3, NRMSD = 16%, bias = 0.97, MAE = 1.13.
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The in situ matchup validation is illustrated in Figure 15. The accuracies of Chl-a
retrievals from Landsat-9 and Sentinel-2 are comparable though the former is slightly more
accurate (Landsat-9 R2 of 0.85 vs. 0.8 for Sentinel-2).
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4.3. Image-Based SNR Estimation

The image-based SNR estimations (Section 3.4) over five similar bands of Landsat-9
and Sentinel-2 are shown in Figure 16. All case studies imply significantly higher SNR of
Landsat-9 images relative to Sentinel-2 over all spectral channels except the coastal-blue
band (443 nm). Although the magnitude of SNR depends on the case study, there are strong
correspondences in the SNR trend over the spectrum for both sensors. Figure 16f illustrates
the SNR averaged for all the case studies. The average SNR of Landsat-9 is higher than
Sentinel-2 by a factor of 2.25 (red band) to 2.9 (blue band). However, the coastal-blue band
of Sentinel-2 represents two times higher SNR than that of Landsat-9 on average.
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Figure 16. Image-based SNR estimates of Landsat-9 and Sentinel-2 for each case study.

Because sensor noise determines the thresholds for the absolute and relative concen-
trations of water constituents, concentration maps show a characteristic salt and pepper
pattern close to these thresholds. Such a pattern is obvious in all Chl-a maps from lake
Trasimeno (Figure 9) and the TSM map from 24 January 2022 (Figure 8) from Sentinel-2,
while the Landsat-9 maps appear noise-free. This demonstrates that Landsat-9 has lower
detection limits than Sentinel-2, particularly for Chl-a.

5. Conclusions

The recently launched Landsat-9 appeals to the aquatic remote sensing community as
its onboard OLI-2 captures 16,384 brightness levels (14-bit data), notably higher than 4096
levels for Sentinel-2 (12-bit data). This enhanced radiometric resolution can provide more
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sensitivity to the water-leaving radiance than previous missions such as Landsat-8 and
Sentinel-2 (12-bit dynamic range). This study examined the potential of Landsat-9 imagery
in mapping lake and coastal water quality parameters. Landsat-9 provided improved
retrievals of Chl-a and TSM compared to Sentinel-2 based on either the physics-based
inversion or the NN regression model. This finding is consistent with a recent study on the
bathymetric application of Landsat-9 imagery, demonstrating improved depth retrieval
in fluvial systems compared to Sentinel-2 imagery [52]. The image-based SNR analysis
supports the improved water quality results from Landsat-9. The Landsat-9 SNRs for four
out of five common bands are remarkably (up to ~ three times) higher than Sentinel-2,
which contributes to the accurate retrieval of constituents.

Although our analyses span several case studies, more investigation is needed to con-
sider different water types and perform comprehensive validation with more in situ data.
Our study compared the water quality products derived from Landsat-9 and Sentinel-2 im-
agery that indirectly provides insights into the quality of Rrs data that are the input for the
inversion models. However, the assessment of Rrs products based on in situ reflectance mea-
surements remains an area of investigation for future studies. The atmospheric correction
methods also need further development and assessment for Landsat-9 imagery.

Author Contributions: Conceptualization, M.N.-J., F.B., M.B., P.G. and C.G.; methodology, M.N.-J.,
F.B., M.B., P.G. and C.G..; software, M.N.-J., M.B. and C.G.; validation, M.N.-J., M.B. and C.G.; formal
analysis, M.N.-J., M.B. and C.G.; investigation, M.N.-J., M.B., P.G. and C.G.; resources, M.N.-J., F.B.,
M.B., P.G. and C.G.; data curation, M.N.-J., M.B., and C.G.; writing—original draft preparation,
M.N.-J.; writing—review and editing, M.N.-J., F.B., M.B., P.G. and C.G.; visualization, M.N.-J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The Landsat-9 and Sentinel-2 images are freely available at https:
//scihub.copernicus.eu/ and https://earthexplorer.usgs.gov/, respectively.

Acknowledgments: Authors would like to appreciate the in situ data provided by ARPA Lombardia
and ARPA Umbria and the data provided by Andrea Lami from CNR-IRSA for Lake Maggiore.
The Chl-a data from San Francisco Bay are provided by a USGS research program available at:
https://sfbay.wr.usgs.gov/water-quality-database/ (accessed on 6 July 2022). M.B. and C.G. have
conducted this study in the research framework of the H2020 Water-ForCE project (grant agreement
No 101004186).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carpenter, D.J.; Carpenter, S.M. Modeling inland water quality using Landsat data. Remote Sens. Environ. 1983, 13, 345–352.

[CrossRef]
2. Munday, J.C.; Alföldi, T.T. LANDSAT test of diffuse reflectance models for aquatic suspended solids measurement. Remote Sens.

Environ. 1979, 8, 169–183. [CrossRef]
3. Gerace, A.D.; Schott, J.R.; Nevins, R. Increased potential to monitor water quality in the near-shore environment with Landsat’s

next-generation satellite. J. Appl. Remote Sens. 2013, 7, 1–19. [CrossRef]
4. Markogianni, V.; Kalivas, D.; Petropoulos, G.; Dimitriou, E. An Appraisal of the Potential of Landsat 8 in Estimating Chlorophyll-a,

Ammonium Concentrations and Other Water Quality Indicators. Remote Sens. 2018, 10, 1018. [CrossRef]
5. Jorge, D.S.F.; Barbosa, C.C.F.; De Carvalho, L.A.S.; Affonso, A.G.; Lobo, F.D.L.; Novo, E.M.L.D.M. SNR (Signal-To-Noise Ratio)

Impact on Water Constituent Retrieval from Simulated Images of Optically Complex Amazon Lakes. Remote Sens. 2017, 9, 644.
[CrossRef]

6. Sent, G.; Biguino, B.; Favareto, L.; Cruz, J.; Sá, C.; Dogliotti, A.I.; Palma, C.; Brotas, V.; Brito, A.C. Deriving Water Quality
Parameters Using Sentinel-2 Imagery: A Case Study in the Sado Estuary, Portugal. Remote Sens. 2021, 13, 1043. [CrossRef]

7. Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with
Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [CrossRef]

8. Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003,
69, 695–704. [CrossRef]

9. Caballero, I.; Fernández, R.; Escalante, O.M.; Mamán, L.; Navarro, G. New capabilities of Sentinel-2A/B satellites combined with
in situ data for monitoring small harmful algal blooms in complex coastal waters. Sci. Rep. 2020, 10, 8743. [CrossRef]

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
https://sfbay.wr.usgs.gov/water-quality-database/
http://doi.org/10.1016/0034-4257(83)90035-4
http://doi.org/10.1016/0034-4257(79)90015-4
http://doi.org/10.1117/1.JRS.7.073558
http://doi.org/10.3390/rs10071018
http://doi.org/10.3390/rs9070644
http://doi.org/10.3390/rs13051043
http://doi.org/10.3390/rs8080640
http://doi.org/10.14358/PERS.69.6.695
http://doi.org/10.1038/s41598-020-65600-1


Remote Sens. 2022, 14, 4596 17 of 18

10. Binding, C.E.; Greenberg, T.A.; McCullough, G.; Watson, S.B.; Page, E. An analysis of satellite-derived chlorophyll and algal
bloom indices on Lake Winnipeg. J. Great Lakes Res. 2018, 44, 436–446. [CrossRef]

11. Rodrigues, T.; Mishra, D.R.; Alcantara, E.; Watanabe, F.; Rotta, L.; Imai, N.N. Retrieving Total Suspended Matter in Tropical
Reservoirs Within a Cascade System with Widely Differing Optical Properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017,
10, 5495–5512. [CrossRef]

12. Soomets, T.; Uudeberg, K.; Jakovels, D.; Brauns, A.; Zagars, M.; Kutser, T. Validation and comparison of water quality products in
baltic lakes using sentinel-2 msi and sentinel-3 OLCI data. Sensors 2020, 20, 742. [CrossRef]

13. Giardino, C.; Bresciani, M.; Braga, F.; Cazzaniga, I.; De Keukelaere, L.; Knaeps, E.; Brando, V.E. Chapter 5—Bio-optical Modeling
of Total Suspended Solids. In Bio-Optical Modeling and Remote Sensing of Inland Water; Mishra, D.R., Ogashawara, I., Gitelson, A.A.,
Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 129–156. ISBN 978-0-12-804644-9.

14. Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters
from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [CrossRef]

15. Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Inter-Comparison of Methods for Chlorophyll-a Retrieval: Sentinel-2
Time-Series Analysis in Italian Lakes. Remote Sens. 2021, 13, 2381. [CrossRef]

16. Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Novel Spectra-Derived Features for Empirical Retrieval of Water Quality
Parameters: Demonstrations for OLI, MSI, and OLCI Sensors. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10285–10300. [CrossRef]

17. Hafeez, S.; Wong, M.S.; Ho, H.C.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.H.; Pun, L. Comparison of Machine Learning
Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote Sens. 2019, 11, 617.
[CrossRef]

18. Niroumand-Jadidi, M.; Bovolo, F. Temporally Transferable Machine Learning Model for Total Suspended Matter Retrieval from
Sentinel-2. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 3, 339–345. [CrossRef]

19. Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Physics-based Bathymetry and Water Quality Retrieval Using Plan-
etScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon. Remote Sens. 2020, 12, 2381.
[CrossRef]

20. Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Water Quality Retrieval from PRISMA Hyperspectral Images: First Experience in
a Turbid Lake and Comparison with Sentinel-2. Remote Sens. 2020, 12, 3984. [CrossRef]

21. Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: Cambridge, MA, USA, 1994; ISBN 9780125027502.
22. Gege, P. The water color simulator WASI: An integrating software tool for analysis and simulation of optical in situ spectra.

Comput. Geosci. 2004, 30, 523–532. [CrossRef]
23. Brockmann, C.; Doerffer, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel

2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In Proceedings of the ESA
Living Planet, Prague, Czech Republic, 9–13 May 2016.

24. Giardino, C.; Candiani, G.; Bresciani, M.; Lee, Z.; Gagliano, S.; Pepe, M. BOMBER: A tool for estimating water quality and bottom
properties from remote sensing images. Comput. Geosci. 2012, 45, 313–318. [CrossRef]

25. Gege, P. WASI-2D: A software tool for regionally optimized analysis of imaging spectrometer data from deep and shallow waters.
Comput. Geosci. 2014, 62, 208–215. [CrossRef]

26. Bresciani, M.; Giardino, C.; Fabbretto, A.; Pellegrino, A.; Mangano, S.; Free, G.; Pinardi, M. Application of New Hyperspectral
Sensors in the Remote Sensing of Aquatic Ecosystem Health: Exploiting PRISMA and DESIS for Four Italian Lakes. Resources
2022, 11, 8. [CrossRef]

27. Free, G.; Bresciani, M.; Pinardi, M.; Peters, S.; Laanen, M.; Padula, R.; Cingolani, A.; Charavgis, F.; Giardino, C. Shorter blooms
expected with longer warm periods under climate change: An example from a shallow meso-eutrophic Mediterranean lake.
Hydrobiologia 2022. [CrossRef]

28. Eleveld, M.A.; Ruescas, A.B.; Hommersom, A.; Moore, T.S.; Peters, S.W.M.; Brockmann, C. An Optical Classification Tool for
Global Lake Waters. Remote Sens. 2017, 9, 420. [CrossRef]

29. Giardino, C.; Bresciani, M.; Stroppiana, D.; Oggioni, A.; Morabito, G. Optical remote sensing of lakes: An overview on Lake
Maggiore. J. Limnol. 2013, 73, 817. [CrossRef]

30. Chirico, N.; António, D.C.; Pozzoli, L.; Marinov, D.; Malagó, A.; Sanseverino, I.; Beghi, A.; Genoni, P.; Dobricic, S.; Lettieri,
T. Cyanobacterial Blooms in Lake Varese: Analysis and Characterization over Ten Years of Observations. Water 2020, 12, 675.
[CrossRef]

31. Bresciani, M.; Giardino, C.; Lauceri, R.; Matta, E.; Cazzaniga, I.; Pinardi, M.; Lami, A.; Austoni, M.; Viaggiu, E.; Congestri, R.;
et al. Earth observation for monitoring and mapping of cyanobacteria blooms. Case studies on five Italian lakes. J. Limnol. 2016,
76, 1565. [CrossRef]

32. Pinardi, M.; Bresciani, M.; Villa, P.; Cazzaniga, I.; Laini, A.; Tóth, V.; Fadel, A.; Austoni, M.; Lami, A.; Giardino, C. Spatial and
temporal dynamics of primary producers in shallow lakes as seen from space: Intra-annual observations from Sentinel-2A.
Limnologica 2018, 72, 32–43. [CrossRef]

33. Taylor, N.C.; Kudela, R.M. Spatial Variability of Suspended Sediments in San Francisco Bay, California. Remote Sens. 2021, 13, 4625.
[CrossRef]

34. Schraga, T.S.; Cloern, J.E. Water quality measurements in San Francisco Bay by the U.S. Geological Survey, 1969–2015. Sci. Data
2017, 4, 170098. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jglr.2018.04.001
http://doi.org/10.1109/JSTARS.2017.2745700
http://doi.org/10.3390/s20030742
http://doi.org/10.1016/j.rse.2011.11.013
http://doi.org/10.3390/rs13122381
http://doi.org/10.1109/TGRS.2019.2933251
http://doi.org/10.3390/rs11060617
http://doi.org/10.5194/isprs-annals-V-3-2022-339-2022
http://doi.org/10.3390/rs12152381
http://doi.org/10.3390/rs12233984
http://doi.org/10.1016/j.cageo.2004.03.005
http://doi.org/10.1016/j.cageo.2011.11.022
http://doi.org/10.1016/j.cageo.2013.07.022
http://doi.org/10.3390/resources11020008
http://doi.org/10.1007/s10750-021-04773-w
http://doi.org/10.3390/rs9050420
http://doi.org/10.4081/jlimnol.2014.817
http://doi.org/10.3390/w12030675
http://doi.org/10.4081/jlimnol.2016.1565
http://doi.org/10.1016/j.limno.2018.08.002
http://doi.org/10.3390/rs13224625
http://doi.org/10.1038/sdata.2017.98
http://www.ncbi.nlm.nih.gov/pubmed/28786972


Remote Sens. 2022, 14, 4596 18 of 18

35. APAT Metodi Analitici per le Acque. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/manuali-e-linee-
guida/metodi-analitici-per-le-acque (accessed on 4 November 2020).

36. Strömbeck, N.; Pierson, D.C. The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote
sensing in Swedish freshwaters. Sci. Total Environ. 2001, 268, 123–137. [CrossRef]

37. Bresciani, M.; Pinardi, M.; Free, G.; Luciani, G.; Ghebrehiwot, S.; Laanen, M.; Peters, S.; Della Bella, V.; Padula, R.; Giardino, C.
The Use of Multisource Optical Sensors to Study Phytoplankton Spatio-Temporal Variation in a Shallow Turbid Lake. Water 2020,
12, 284. [CrossRef]

38. Tiberti, R.; Caroni, R.; Cannata, M.; Lami, A.; Manca, D.; Strigaro, D.; Rogora, M. Automated high frequency monitoring of Lake
Maggiore through in situ sensors: System design, field test and data quality control. J. Limnol. 2021, 80, 2011. [CrossRef]

39. Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and
Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [CrossRef]

40. Vanhellemont, Q. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite
imagery using autonomous hyperspectral radiometry. Opt. Express 2020, 28, 29948–29965. [CrossRef] [PubMed]

41. Pereira-Sandoval, M.; Ruescas, A.; Urrego, P.; Ruiz-Verdú, A.; Delegido, J.; Tenjo, C.; Soria-Perpinyà, X.; Vicente, E.; Soria, J.;
Moreno, J. Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery
Data. Remote Sens. 2019, 11, 1469. [CrossRef]

42. Vanhellemont, Q.; Ruddick, K. Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter
and chlorophyll-a concentration in Belgian turbid coastal waters. Remote Sens. Environ. 2021, 256, 112284. [CrossRef]

43. Caballero, I.; Román, A.; Tovar-Sánchez, A.; Navarro, G. Water quality monitoring with Sentinel-2 and Landsat-8 satellites during
the 2021 volcanic eruption in La Palma (Canary Islands). Sci. Total Environ. 2022, 822, 153433. [CrossRef]

44. Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed.; Cambridge University Press: Cambridge, UK, 1994.
45. Maffione, R.A.; Dana, D.R. Instruments and methods for measuring the backward-scattering coefficient of ocean waters. Appl.

Opt. 1997, 36, 6057–6067. [CrossRef]
46. Dekker, A.G.; Peters, S.W.M. The use of the Thematic Mapper for the analysis of eutrophic lakes: A case study in the Netherlands.

Int. J. Remote Sens. 1993, 14, 799–821. [CrossRef]
47. Han, L.; Jordan, K.J. Estimating and mapping chlorophyll- a concentration in Pensacola Bay, Florida using Landsat ETM+ data.

Int. J. Remote Sens. 2005, 26, 5245–5254. [CrossRef]
48. Niroumand-Jadidi, M.; Legleiter, C.J.; Bovolo, F. Bathymetry retrieval from CubeSat image sequences with short time lags. Int. J.

Appl. Earth Obs. Geoinf. 2022, 112, 102958. [CrossRef]
49. Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [CrossRef]
50. Seegers, B.N.; Stumpf, R.P.; Schaeffer, B.A.; Loftin, K.A.; Werdell, P.J. Performance metrics for the assessment of satellite data

products: An ocean color case study. Opt. Express 2018, 26, 7404. [CrossRef]
51. Gao, B.-C. An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers. Remote

Sens. Environ. 1993, 43, 23–33. [CrossRef]
52. Niroumand-Jadidi, M.; Legleiter, C.J.; Bovolo, F. River Bathymetry Retrieval From Landsat-9 Images Based on Neural Networks

and Comparison to SuperDove and Sentinel-2. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5250–5260. [CrossRef]

https://www.isprambiente.gov.it/it/pubblicazioni/manuali-e-linee-guida/metodi-analitici-per-le-acque
https://www.isprambiente.gov.it/it/pubblicazioni/manuali-e-linee-guida/metodi-analitici-per-le-acque
http://doi.org/10.1016/S0048-9697(00)00681-1
http://doi.org/10.3390/w12010284
http://doi.org/10.4081/jlimnol.2021.2011
http://doi.org/10.1016/j.rse.2019.03.010
http://doi.org/10.1364/OE.397456
http://www.ncbi.nlm.nih.gov/pubmed/33114883
http://doi.org/10.3390/rs11121469
http://doi.org/10.1016/j.rse.2021.112284
http://doi.org/10.1016/j.scitotenv.2022.153433
http://doi.org/10.1364/AO.36.006057
http://doi.org/10.1080/01431169308904379
http://doi.org/10.1080/01431160500219182
http://doi.org/10.1016/j.jag.2022.102958
http://doi.org/10.1214/09-SS054
http://doi.org/10.1364/OE.26.007404
http://doi.org/10.1016/0034-4257(93)90061-2
http://doi.org/10.1109/JSTARS.2022.3187179

	Introduction 
	Case Studies and Datasets 
	Methods 
	Physics-Based Model and Parametrization 
	Neural Network-Based Regression Model 
	Validation and Consistency Analysis 
	Image-Based SNR Estimation 

	Results and Discussion 
	Physics-Based Inversion in Italian lakes 
	NN-Based Chl-a Retrieval in San Francisco Bay 
	Image-Based SNR Estimation 

	Conclusions 
	References

