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Abstract

The topic of this thesis lies in the intersection between proof the-
ory and algebraic logic. The main object of discussion, constructive
reasoning, was introduced at the beginning of the 20th century by
Brouwer, who followed Kant’s explanation of human intuition of
spacial forms and time points: these are constructed step by step
in a finite process by certain rules, mimicking constructions with
straightedge and compass and the construction of natural numbers,
respectively.

The aim of the present thesis is to show how classical reason-
ing, which admits some forms of indirect reasoning, can be made
more constructive. The central tool that we are using are induction
principles, methods that capture infinite collections of objects by
considering their process of generation instead of the whole class.
We start by studying the interplay between certain structures that
satisfy induction and the calculi for some non-classical logics. We
then use inductive methods to prove a few conservation theorems,
which contribute to answering the question of which parts of clas-
sical logic and mathematics can be made constructive.
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Notational conventions

Implication-like symbols
⊃ Implication
⇒ Metalinguistic implication
→ Sequent (also used for functions)
⊢ Derivability
⊩ Forcing relation
▷ Entailment relation

Equivalence, equality
⊃⊂ Equivalence
⇐⇒ Metalinguistic equivalence
≈ Equivalence (entailment relations)
= Equality as an equivalence relation
≡ Definitional equality

Conjunctions, disjunctions
∧ Conjunction
& Metalinguistic conjunction
∨ Disjunction
or Metalinguistic disjunction
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We use ∀ and ∃ for the universal and existential quantifier, re-
spectively. Sometimes the same symbols will be used in metalin-
guistic way; the meaning will be clear from the context.

We often write metalinguistic implications (A1 & A2 & ...) ⇒ B
as rules:

A1 A2 ...

B or

{Ai : i ∈ I}
B

where I ⊆N is a set of indexes. We also write metalinguistic equiv-
alences A⇐⇒ B as rules:

A

B
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1 Introduction

1.1 A brief introduction to constructive
reasoning

Constructivism [12,19,20,49,114] is an approach to logic and math-
ematics in which it is necessary to “construct” an object to prove
that it exists. This opposes to classical logic and mathematics, in
which one can prove the existence of an object without “finding”
that object explicitly, for instance by proving that its non-existence
is contradictory.

However, for several centuries, mathematics and logic were con-
sidered two different disciplines and little to no attempt was made
to apply one to the other. The first important result which uses non-
constructive reasoning is probably Gauß’s proof of the fundamental
theorem of algebra from 1799 [76]:

“Every non-constant single-variable polynomial with
complex coefficients has at least one complex root.”

In the 19th century there have been radical changes to the
methodology of mathematics. In particular, mathematicians grew a
preference for conceptual reasoning and abstract characterisations
of mathematical concepts rather than computations. This led to an
increasing confidence in dealing with “non-tangible” objects, such
as the infinite.
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1. Introduction

Starting from the end of the 19th century, scepticism grew about
this new way of reasoning, thus multiple schools of constructivism
spread: intuitionism [12], which doesn’t admit indirect reasoning,
predicativism [50], which doesn’t admit circular definitions, finitism
[195], which doesn’t admit actual infinity, ultraconstructivism [196],
which doesn’t admit anything that can’t be computed in practice
(e.g. too large natural numbers). For a more extended survey,
we refer to [117]. Nowadays, most “mainstream” constructivism,
such as Martin-Löf type theory MLTT [115, 116, 185] and Aczel’s
constructive Zermelo–Fraenkel set theory CZF [6, 7], is intuition-
ism + predicativism. Bishop-style constructive mathematics [18–20],
which has its roots in intuitionism, has developed to such an ex-
tent that it is often considered a largely independent mathematical
field [108, 117].

1.1.1 Intuitionism and the constructive content of
classical mathematics

“Constructive mathematics does not postulate a pre-
existent universe, with objects lying around waiting to
be collected and grouped into sets, like shells on a
beach.”

E. Bishop [18]

According to intuitionism, a school of constructivism founded by
Brouwer [28, 29, 114], mathematics is considered to be purely the
result of the constructive and creative mental activity of humans
rather than the discovery of fundamental principles claimed to exist
in an objective reality.

Brouwer followed Kant’s explanation of human intuition of spa-
cial forms and time points [99]: these are constructed step by step
in a finite number of steps by certain rules, mimicking construc-
tions with straightedge and compass and the construction of natu-
ral numbers, respectively.

We can think of objects as data on a computer, and of functions
as programs operating on data. An object is considered “valid” only

2



1.1. A brief introduction to constructive reasoning

when there is a program witnessing its construction. We call such
programs realisers, and write p : P for “p realises P ”. This follows
Bishop’s conjecture that, in the future, proofs would be compiled
more or less directly into implementable code [18], and assigns to
constructive reasoning a privileged role in the light of automated
reasoning, see e.g. [158].

If the objects under consideration are logical statements, their
realisers are proofs. The rules of the Brouwer–Heyting–Kolmogorov
Interpretation (BHK) explain when a program realises a statement:

— Falsehood ⊥ is never realised.

— Truth ⊤ is realised by a constant ∗.

— The conjunction P ∧Q is realised by a pair (p,q) such that p : P
and q : Q. In this case, we write π1(p,q) for p and π2(p,q) for
q.

— The disjunction P∨Q is realised by a pair (k,p) such that either
k ≡ 0 and p : P or else k ≡ 1 and q : Q.

— The implication P ⊃ Q is realised by a program which maps
realisers of P to realisers of Q.

— The universal formula ∀x ∈ A.P (x) is realised by a program
which maps (a representation of) any a ∈ A to a realiser of
P (a).

— The existential formula ∃x ∈ A.P (x) is realised by a pair (p,q)
such that p represents some a ∈ A and q : P (a).

We often write derivations as trees: by

A1 A2 ...

B

we mean that if it is the case that A1,A2, ..., then it is the case that

B. We also informally use dots
... to intend that there are some steps

3



1. Introduction

that are not made explicit. Two derivations can be composed:

Γ

...

A and

A ∆

...

B compose into

Γ

...

A ∆

...

B

When a realiser is introduced as the argument of a function that we
are constructing, we put it in square brackets. For instance:

[p : P ]
...

f (p) : Q

p 7→ f (p) : P ⊃Q

Notice that, whenever we have realisers f : P ⊃Q and p : P , then
we get a realiser f (p) : Q. We can write this as a rule:

f : P ⊃Q p : P

f (p) : Q

This principle is called modus ponens.
In intuitionistic logic, ¬P is defined as P ⊃ ⊥. Therefore, a re-

aliser of ¬P is a program which maps realisers of P to realisers of
⊥:

[p : P ]
...

f (p) : ⊥
p 7→ f (p) : ¬P

This reasoning principle is of course called proof of negation.
Let’s give an example:

Theorem 1.1.1 (Russell’s Theorem [160]). There is no set R ≡ {x : x <
x}.

4



1.1. A brief introduction to constructive reasoning

Proof. Suppose that there is such R. This means that there is a re-
aliser r of ∀x(x ∈ R ⊃⊂ x < x). In particular, r(R) ≡ R ∈ R ⊃⊂ R < R.
Let A ≡ R ∈ R. We show that q ≡ (a 7→ (π1(r(R))(a))(a)) is a realiser
of ¬A:

π1(r(R)) : A ⊃ ¬A [a : A]

π1(r(R))(a) : ¬A [a : A]

(π1(r(R))(a))(a) : ⊥
q ≡ a 7→ (π1(r(R))(a))(a) : ¬A

Now:

q : ¬A
π2(r(R)) : ¬A ⊃ A q : ¬A

(π2(r(R)))(q) : A

q((π2(r(R)))(q)) : ⊥

Since we obtained a realiser of ⊥, our assumption that R exists can-
not hold. ■

Recall that a realiser of P ∨Q is a pair (k,p) such that either k ≡ 0
and p : P or else k ≡ 1 and q : Q. Therefore, in intuitionistic logic, if
P ∨Q is provable, then either P is provable or Q is provable. This is
known as the disjunction property.

Classical logic can be defined as intuitionistic logic plus the prin-
ciple of excluded middle, also known as tertium non datur (TND):

“For any P , it holds that P ∨¬P .”

Take an undecidable statement P , that is statement such that nei-
ther P nor ¬P can be proved.1 If we assume TND, then the disjunc-
tion P ∨ ¬P holds, but this collides with the disjunction property.
Therefore the two principles cannot hold simultaneously: in par-
ticular, we get that classical logic does not satisfy the disjunction
property and intuitionistic logic does not satisfy TND.

This is not to say that intuitionists deny all instances of TND, or
even that they assume its negation. In fact, the following holds:

1An easy way to produce an undecidable statement is to take any theory and
drop some axiom; unless the axiom is redundant, it is undecidable in the resulting
theory.

5



1. Introduction

Theorem 1.1.2. In intuitionistic logic, ¬¬(P ∨¬P ) is provable.

Proof.

[a : ¬(P ∨¬P )]

[a : ¬(P ∨¬P )]

[p : P ]

(0,p) : P ∨¬P
a((0,p)) : ⊥

qa ≡ p 7→ a((0,p)) : ¬P
(1,qa) : P ∨¬P

a((1,qa)) : ⊥
a 7→ a((1,qa)) : ¬¬(P ∨¬P )

As we found a realiser of ¬¬(P ∨¬P ), it is provable. ■

Also intuitionists may use some instances of TND, but only
those that they have proved. For instance, if we have a realiser p : P
or a realiser q : ¬P , then we can easily get a realiser of P ∨¬P ; and it
can be shown from the axioms of Peano Arithmetic PA that any two
natural numbers are equal or not equal.

One might think mistakenly that intuitionism adopts the exis-
tence of a “third” possibility, i.e. of some Q such that ¬Q ∧ ¬¬Q.
This statement is intuitionistically false because it states both ¬Q
and its negation ¬¬Q, which is made impossible by the following:

Theorem 1.1.3 (Principium contradictionis). There is no proposition
P such that P ∧¬P .

Proof. If there were a proposition P such that both p : P and q : ¬P ,
then q(p) would be a realiser of ⊥. ■

In classical logic, the reasoning principle of proof by contradic-
tion, or reductio ad absurdum (RAA), can be used:

[q : ¬P ]
...

f (q) : ⊥
q 7→ f (q) : P

6



1.1. A brief introduction to constructive reasoning

In fact, suppose that by assuming the existence of a realiser q : ¬P
one can reach a realiser f (q) : ⊥. By TND there is a realiser of P ∨¬P ,
which is either of the form (0,p) where p : P or of the form (1,q)
where q : ¬P , but we must exclude the latter case if ¬¬P since oth-
erwise by assumption we would get a realiser of ⊥.

Proof of negation and RAA look and feel similar, but notice that
in one case the conclusion has a negation removed and in the other
added

[p : P ]
...

f (p) : ⊥
p 7→ f (p) : ¬P

[q : ¬P ]
...

f (q) : ⊥
q 7→ f (q) : P

Unless we already believe in ¬¬P ⊃ P , known as double nega-
tion elimination or duplex negatio affirmat (DNA), we cannot get one
from the other by exchanging P and ¬P . The proof of a negation
is not a proof by contradiction: they really are different reasoning
principles.

We know that the proof of a negation is admissible in intuitionis-
tic logic and mathematics. What about ¬¬P ⊃ P ? If it were the case,
then by ¬¬(P ∨¬P ) we would get P ∨¬P . Therefore, in intuitionistic
logic, proofs by contradiction are not admitted in general.

We now present a couple of theorems, known in classic times,
whose proofs are often said to be examples of proofs by contradic-
tion but actually are proofs of negations.

Theorem 1.1.4. Let p be a prime number, i.e. an integer that satisfies2

p|a · b ⇐⇒ p|a or p|a.

Then the number
√
p is irrational.

“From the assumption that the diagonal is commen-
surate, it follows that odd numbers are equal to evens.”

Aristotle [9]
2Here a|b stands for “there is n such that a · n = b”. We often say that a is a

divisor of b or that b is a multiple of a.

7



1. Introduction

Proof. Suppose that
√
p = a

b for some integers a,b. Assume without
loss of generality that they have no common prime divisor. Then
p · b2 = a2. Since a2 is a multiple of the prime number p, then also
a is a multiple of p. Then we can write a = p · c for some integer c.
Now p · b2 = (2 · c)2 = 4 · c2, thus b2 = 2 · c2. Since b2 is a multiple of
the prime number p, then also b is a multiple of p. This contradicts
the hypothesis that a and b have no common prime divisor. ■

Theorem 1.1.5. There are infinitely many primes.

“Prime numbers are more than any assigned multi-
tude prime numbers.”

Euclid [62]

Proof. Suppose there is just a finite number k of primes p1 = 2, p2 =
3, ..., pk and consider n = p1 · ... · pk + 1. Choose a prime divisor pi of
n, i.e. such that n = pi · n1 for some n1 ∈ N. By definition, we can
also write n = pi ·n2 +1 for some n2 ∈N. Therefore pi ·n1 = pi ·n2 +1,
i.e. pi · (n1 − n2) = 1. In natural numbers, whenever a · b = 1 we
have a = b = 1, which contradicts the hypothesis that pi is a prime
number. ■

Many widely used principles of modern mathematics are in-
compatible with intuitionism since they imply TND over e.g. CZF.
These include the axiom of choice [54] and and the generalised con-
tinuum hypothesis [27]. However, some weaker versions of these
axioms are compatible with intuitionism, e.g. the axiom of countable
choice [145]:

“Any family of inhabited sets indexed by the natural
numbers has a choice function.”

It’s worth pointing out that this form of choice suffices for many
arguments that one encounters in analysis, so not all is lost. Fur-
thermore, Richman [151] claims that the arguments for assuming
countable choice are not compelling, and argues that it is possible
to do mathematics even without it.

8



1.1. A brief introduction to constructive reasoning

A turning point was 1967, when Bishop’s book on Constructive
Analysis [20] was published.

“The thrust of Bishop’s work was that both Hilbert
and Brouwer had been wrong about an important point
on which they had agreed. Namely both of them thought
that if one took constructive mathematics seriously, it
would be necessary to “give up” the most important
parts of modern mathematics (such as, for example,
measure theory or complex analysis). Bishop showed
that this was simply false, and in addition that it is not
necessary to introduce unusual assumptions that appear
contradictory to the uninitiated.”

M. Beeson [13]

It is well worth pointing out that intuitionistic mathematics is
a generalisation of classical mathematics, as was emphasised by
Richman [149, 150], for a proof which avoids excluded middle and
choice is still a classical proof. We thus have a shift of perspec-
tive in foundations: rather than developing constructive and clas-
sical mathematics separately, as in Brouwer’s program, one studies
which parts of classical mathematics can be directly translated into
constructive terms.

It is in this frame that we see the importance of results about
conservativity of classical logic over intuitionistic logic. The most
well-known is surely Glivenko’s Theorem [81, 82], which says that,
in propositional logic, classical provability of a formula entails in-
tuitionistic provability of the double negation of that formula.

1.1.2 A very short survey on proof systems

“The main concern of proof theory is to study and
analyze structures of proofs. A typical question in it
is ‘what kind of proofs will a given formula A have, if
it is provable?’, or ‘is there any standard proof of A?’.
In proof theory, we want to derive some logical prop-

9



1. Introduction

erties from the analysis of structures of proofs, by an-
ticipating that these properties must be reflected in the
structures of proofs. In most cases, the analysis will be
based on combinatorial and constructive arguments. In
this way, we can get sometimes much more information
on the logical properties than with semantical methods,
which will use set-theoretic notions like models, inter-
pretations and validity.”

H. Ono [135]

Gentzen set as the task of his doctoral thesis [77, 78] to develop
a system of logic as close as possible to theorem proving in math-
ematics. He arguably succeeded, and came up with two different
approaches: natural deduction and sequent calculus.

A system of natural deduction is specified by giving, for each log-
ical connective and quantifier, introduction and elimination rules.
The aim of natural deduction is to give a system of proof as close
as possible to the “strategy of human reasoning”. For instance, the
introduction rule for ∧ is given as

A B
∧I

A∧B

which can be read as “If we have a proof of A and a proof of B,
then we have a proof of A∧B”, which is exactly the clause for con-
junction in the BHK Interpretation. Elimination rules, on the other
hand, are obtained from introduction rules by applying the inver-
sion principle:3

“Whatever follows from the direct conditions/grounds
for introducing a formula, must follow from that for-
mula.”

Again, we take conjunction as an example. For conjunction A∧ B,
the direct grounds are proofs of A and of B. Given that C follows

3Here we state the version by Negri and von Plato [132].

10



1.1. A brief introduction to constructive reasoning

when both A and B are assumed, we find the elimination rule

A∧B

[u : A] [v : B]
...

C
∧E,u,v

C

which of course is tantamount to the more common “special elimi-
nation rules” obtained by setting C ≡ A and C ≡ B:

A∧B
∧E1A

A∧B
∧E2B

When we do a proof in natural deduction, however, we lose trace
of the compositions in the derivation. To be able to represent the
composition of two derivations formally and to reason about its
properties, we need a sequent calculus.

In a sequent calculus system, the open assumptions of each for-
mula A in a derivation

Γ

...

A

are written out as a finite multiset4 Γ in a sequent Γ → A. The in-
troduction rules of natural deduction become right rules of sequent
calculus, and the elimination rules of natural deduction become left
rules of sequent calculus. For instance, the rules for conjunction
become:

Γ → A ∆→ B
R∧

Γ ,∆→ A∧B
A,B,Γ → C

L∧
A∧B,Γ → C

The calculus is then completed by the initial sequent (sometimes re-
ferred to as axiom, e.g. in [55])

P ,Γ → P ,
4That is, a list with multiplicity but no order.

11



1. Introduction

which affirms that a propositional variable P can prove itself. One
proves admissibility of the structural rules, which assure (among
other things) that derivations can be composed (rule of Cut) and
that the multiset of assumptions can be enlarged (rule of Weaken-
ing).

Of course, there is no unique way to state the rules: there are
several different calculi, of which the ones used in this thesis are
collected in Appendix B. We just point out a few possible variants.

Rules of sequent calculus can have independent or shared con-
texts. For instance, rule R∧ stated as above has independent con-
texts Γ and ∆, but it can be stated as

Γ → A Γ → B
R∧

Γ → A∧B

The two styles are equivalent in the presence of the structural rules.
A multisuccedent sequent has contexts both on the left and on

the right, i.e. it is of the form Γ → ∆. The interpretation is that the
conjunction of formulae in Γ implies the disjunction of formulae
in ∆. This provides a natural representation of the division into
cases often found in mathematical proofs. To illustrate, we give the
shared-context multisuccedent version of L∧ and R∧:

A,B,Γ → ∆
L∧

A∧B,Γ → ∆

Γ → ∆,A Γ → ∆,B
R∧

Γ → ∆,A∧B

We can view sequent calculus as the formal theory of the deriv-
ability relation→.

Another important class of calculi are those known as labelled
sequent calculi. The basic idea of a labelled sequent calculus is the
syntactical internalisation of Kripke semantics, which we are going
to introduce.

A Kripke model [102] (X,R,val) is a set X of possible worlds to-
gether with an accessibility relation R, i.e. a binary relation between
elements of X, and a valuation val, i.e. a function assigning one of
the truth values 0 or 1 to an element x of X and an atomic formula
P . The pair (X,R) is dubbed Kripke frame. The usual notation for

12



1.1. A brief introduction to constructive reasoning

val(x,P ) ≡ 1 is x ⊩ P . We read “xRy” as “y is accessible from x” and
we read “x ⊩ P ” as “formula P is true at world x” or just “x forces P ”.

Valuations are extended in a unique way to arbitrary formulae
by means of inductive clauses, which depend on the logic. For in-
stance, the usual inductive clause for conjunction and implication
are

x ⊩ A∧B if and only if x ⊩ A and x ⊩ B,
x ⊩ A ⊃ B if and only if y ⊩ A⇒ y ⊩ B for all y such that x ⩽ y.

We assume that x ⊩ P is decidable for every x ∈ X and each atomic
formula P , which carries over to arbitrary formulae by the inductive
clauses. Given a Kripke frame (X,R), we say that a formulaA is valid
in X if val(x,A) = 1 for every valuation val and for every x ∈ X.

An important feature of Kripke semantics is that a logic can be
characterised by the mathematical properties of the accessibility re-
lation R, such as reflexivity (∀x(xRx)), irreflexivity (∀x(x ̸Rx)), transi-
tivity (∀x∀y∀z.(xRy&yRz) ⇒ xRz). This will be further expanded
in Chapter 2.

A labelled sequent calculus operates on labelled formulae x : A,
to be read as “x forcesA”, and on relational formulae xRy. Inductive
clauses are turned into formal rules. For instance, the inductive
clause for conjunction stated above becomes

x : A,x : B,Γ → ∆
L∧

x : A∧B,Γ → ∆

Γ → ∆,x : A Γ → ∆,x : B
R∧

Γ → ∆,x : A∧B

Also mathematical properties of the accessibility relation R can be
turned into rules. For instance, reflexivity becomes

xRx,Γ → ∆
ReflR

Γ → ∆

1.1.3 Avoiding circularity through induction

Consider Richard’s paradox [148], here stated in the English version
from [50]:

13



1. Introduction

“Let us consider all the real numbers which are de-
finable in English by a finite number of words and let D
be their collection. D is countable. We can then list all
the elements of D, and mimic Cantor’s diagonal proof of
the non-denumerability of the real numbers to produce
a new real number, r, which is different from each ele-
ment of D. However, one can easily express in English a
rendering of the “algorithm” that allows for the defini-
tion of r, so that r turns out to be a definable real number
after all, and a contradiction arises.”

Richard’s paradox is engendered by a form of circularity: we
define r by reference to the whole D, and therefore, so it is claimed,
by reference to r itself.

Russell introduced the vicious circle principle to prevent the for-
mation of collections such as D, and claimed that these are ill-
formed [161]:

“Whatever in any way concerns all or any or some of
a class must not be itself one of the members of a class.”

More examples of circularity:

(i) The liar paradox: I’m lying.

(ii) The Russell class R ≡ {x : x < x}, that is the class of all sets that
do not contain themselves. See also Theorem 1.1.1.

(iii) The logicist definition of natural number:

N (n) ≡ ∀F(F(0) & ∀x(F(x)⇒ F(succx))⇒ F(n))

This urges us to distinguish between predicative and impred-
icative definitions [50]. A definition is impredicative if it defines an
entity by reference to a class to which the entity itself belongs. A
definition is predicative if it is not impredicative. Intuitively, pred-
icative entities are those which are “built up from within”.

One can avoid vicious circularity in the definition of N by defin-
ing it as the “smallest” class such that:

14



1.1. A brief introduction to constructive reasoning

— 0 is a natural number,

— if n is a natural number, then succn is a natural number.

Similarly, one can give the definition of R-ideal. Given a commuta-
tive ring R and A ⊆ R, the R-ideal ⟨A⟩ generated by A is defined as
the “smallest” class such that:

— each element of A is in ⟨A⟩,

— if x and y are in ⟨A⟩, then x+ y is in ⟨A⟩,

— if x is in ⟨A⟩ and r is in R, then x · r is in ⟨A⟩.

These are prime examples of inductive definitions.
Formally, we should understand an inductively defined class X as

being freely generated by a certain finite collection of constructors,
each of which is a function f : Xn → X, where n ∈ N can also be
0, in which case f is a constant. That is, the elements of X can be
obtained by starting from nothing and applying the constructors
repeatedly.

We briefly introduce entailment relations. More details will be
presented in Section 5.2. Let S be a set. A (single-conclusion) entail-
ment relation is a relation ▷ ⊆ Fin(S)× S such that

(R)
a,U ▷ a

U ▷ a
(M)

U,U ′ ▷ a

U ▷ a V ,a▷ b
(T)

U,V ▷ b

for all finite U,V ⊆ S and a,b ∈ S, where as usual U,V ≡ U ∪ V
and V ,a ≡ V ∪ {a}. These rules are known as reflexivity, monotonic-
ity and transitivity, respectively, and are collectively referred to as
structural rules. Our focus thus is on finite subsets of S, for which
we reserve the letters U,V ,W , . . .; we sometimes write a1, . . . , an in
place of {a1, . . . , an} even if n = 0. Quite often an entailment relation
is inductively generated from axioms by closing up with respect to
the three rules above [157]. As we will see in Chapter 5, entailment
relations were conceived as an abstract version of the derivability
relation→.
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1. Introduction

When we consider an inductively defined class X, we can de-
fine its generating relation ▷ ⊆ Fin(S) × S as the entailment relation
generated by all axioms of the form

a1, ..., an ▷ f (a1, ..., an)

for each constructor f . Intuitively, U ▷ a means that a can be ob-
tained by applying the constructors a finite numbers of times (pos-
sibly zero) to elements of U .

Consider a class S endowed with a relation R ⊆ S × S. A predi-
cate P on S is said to be progressive with respect to R if, whenever it
holds for all predecessors (w.r.t. R) of a given element b ∈ S, then it
also holds for b. As usual, P is said to be universal if it holds for all
elements of S. The (Noetherian) induction principle for a relation R
states that, whenever a predicate P is progressive, then it is univer-
sal. More explicitly, R satisfies the (Noetherian) induction principle
if, for any given predicate P ,

∀b ∈ S(∀a ∈ S.aRb⇒ (P (a)⇒ P (b)))⇒∀b ∈ S P (b).

Similarly, the (Noetherian) induction principle for a relation ▷ ⊆
Fin(S)× S states that, for any given predicate P ,

∀b ∈ S(∀U ∈ Fin(S).U ▷ b⇒ (P [U ]⇒ P (b)))⇒∀b ∈ S P (b), (1.1)

where P [U ] is an abbreviation for ∀u ∈U P (u).
Notice that one can define an entailment relation ▶P over S by

postulating that U ▶P b if and only if P [U ]⇒ P (b); it is straightfor-
ward to check that ▶P satisfies reflexivity, monotonicity and transi-
tivity. Therefore, using this notation, we can rewrite (1.1) as

▷ ⊆ ▶P ⇒∀b ∈ S P (b).

This can be useful in proof practice, since ▷ ⊆ ▶P is tantamount to
the condition that ▶P satisfies all axioms and rules in the inductive
definition of ▷.

The induction principle, also known as elimination rule [185], for
an inductively defined class X is then defined as the Noetherian
induction principle for its generating relation ▷.
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1.1. A brief introduction to constructive reasoning

This principle describes how to prove a proposition P (x) about
an arbitrary element x ∈ X. Such a proof is called proof by induc-
tion. Induction principles are a main tool for capturing the infi-
nite by representing potentially incomplete processes of generation,
and are usually more constructive than other classically equivalent
principles. This well relates to Brouwer’s conception of mathemat-
ics: mathematical construction can only be realised in a finite pro-
cess, step by step like counting in arithmetic.

Here are a few formalised examples:

(i) Inductive definition of the Boolean ring 2:

0 : 2
1: 2

The only elements of 2 are 0 and 1. If constructors are all
constant, then the class is said to be extensionally defined. The
induction principle for 2 states:

(P (0) & P (1))⇒∀x ∈ 2 P (x).

(ii) Inductive definition of the class of Natural numbers N:

0 : N
succ : N→N

Every element of N is either 0 or obtained by applying succ to
some “previously constructed” element of N. The induction
principle for N states:

(P (0) & ∀x ∈N(P (x)⇒ P (succx)))⇒∀x ∈N P (x).

(iii) Inductive definition of the R-ideal ⟨A⟩ generated by A ⊆ R,
where R is a ring:

a : ⟨A⟩ for each a ∈ A
+: ⟨A⟩ × ⟨A⟩ → ⟨A⟩
· r : ⟨A⟩ → ⟨A⟩ for each r ∈ R

17
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Every element of ⟨A⟩ is either an element of A, or obtained
by summing two “previously constructed” elements of ⟨A⟩, or
obtained by multiplying a “previously constructed” element
of ⟨A⟩ with an element of R. The induction principle for ⟨A⟩
states:

(∀a ∈ AP (a) & ∀a,b ∈ ⟨A⟩ ((P (a) & P (b))⇒ P (a+ b))
& ∀a ∈ ⟨A⟩∀r ∈ R (P (a)⇒ P (a · r)))

⇒∀a ∈⟨A⟩P (a).

1.2 Content and structure of the thesis,
published material

Part I. Induction principles in labelled calculi for
non-classical logics

The aim of this part is to investigate the properties of calculi that
correspond to Kripke frame which satisfy induction principles. By
doing so, we also get some insights on induction itself.

Chapter 2. Modal logic for induction We use modal logic to ob-
tain syntactical, proof-theoretic versions of transfinite induction as
axioms or rules within an appropriate labelled sequent calculus.
While transfinite induction proper, also known as Noetherian in-
duction, can be represented by a rule, the variant in which induc-
tion is done up to an arbitrary but fixed level happens to corre-
spond to the Gödel–Löb axiom of provability logic. To verify the
practicability of our approach in actual practice, we sketch a fairly
universal pattern for proof transformation and test its use in sev-
eral cases. Among other things, we give a direct and elementary
syntactical proof of Segerberg’s theorem that the Gödel–Löb axiom
characterises precisely the (converse) well-founded and transitive
Kripke frames.

This chapter is based on joint work with Sara Negri and Peter
Schuster, and is a revised version of the following paper:
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1.2. Content and structure of the thesis, published material

[67] Fellin, G., Negri, S. & Schuster, P. Modal logic for induction.
Advances In Modal Logic. 13 pp. 209-227 (2020), Advances in
Modal Logic 2020, Helsinki, Finland (on-line), August 24–28,
2020

Chapter 3. A terminating intuitionistic calculus In the labelled
sequent calculus G3I for intuitionistic logic, we modify rule R⊃, by
adding a variant of the principle of a fortiori in the left-hand side of
premiss. In the resulting calculus G3It , it is decidable whether any
given sequent is derivable. In the negative case, the failed proof
search gives a finite countermodel to the sequent on a reflexive,
transitive and Noetherian Kripke frame.

This chapter is based on a joint work with Sara Negri and is still
unpublished.

Part II. Conservation: Glivenko-style results

In the second part of the thesis, we apply methods based on induc-
tion in order to obtain a number of generalisations of Glivenko’s
theorem.

Chapter 4. Glivenko classes and constructive cut elimination in
infinitary logic A constructivisation of the cut-elimination proof
for sequent calculi for classical, intuitionistic and minimal infini-
tary logics with geometric rules—given in earlier work by Sara
Negri [131]—is presented. This is achieved through a procedure
where the non-constructive transfinite induction on the commuta-
tive sum of ordinals is replaced by two instances of Brouwer’s Bar
Induction. The proof of admissibility of the structural rules is made
ordinal-free by introducing a new well-founded parameter called
proof embeddability. Additionally, we extend to the infinitary case
the proof of conservativity for the finitary Glivenko sequent classes
given in earlier work by Negri [130].
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1. Introduction

This chapter is based on joint work with Sara Negri and Eugenio
Orlandelli, and is a revised and extended version of the following
paper:

[66] Fellin, G., Negri, S. & Orlandelli, E. Constructive cut-
elimination in geometric logic. 27th International Conference
On Types For Proofs And Programs (TYPES 2021). (2021)

That paper presented only the constructive cut elimination for
classical and intuitionistic geometric logics based on Brouwer’s
Bar Induction. The main novelties of this chapter are that also
minimal geometric logic is considered, that transfinite inductions
on ordinals are replaced by well-founded induction with proof-
embeddability, and that proofs of conservativity for the infinitary
Glivenko classes are given.

Chapter 5. A general Glivenko–Gödel theorem for nuclei
Glivenko’s theorem says that, in propositional logic, classical prov-
ability of a formula entails intuitionistic provability of the double
negation of that formula. We generalise Glivenko’s theorem from
double negation to an arbitrary nucleus, from provability in a calcu-
lus to an inductively generated abstract consequence relation, and
from propositional logic to any set of objects whatsoever. The re-
sulting conservation theorem comes with precise criteria for its va-
lidity, which allow us to instantly include Gödel’s counterpart for
first-order predicate logic of Glivenko’s theorem. The open nucleus
gives us a form of the deduction theorem for positive logic, and the
closed nucleus prompts a variant of the reduction from intuitionis-
tic to minimal logic going back to Johansson.

This chapter is based on joint work with Peter Schuster, and is a
revised version of the following paper:

[68] Fellin, G. & Schuster, P. A General Glivenko-Gödel Theorem
for Nuclei. Proceedings Of The 37th Conference On The Math-
ematical Foundations Of Programming Semantics, MFPS 2021,
Salzburg, Austria, August 29–September 3, 2021. (2021)
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1.2. Content and structure of the thesis, published material

The starting point for this chapter is previous joint work with Peter
Schuster and Daniel Wessel, which was published in the paper

[70] Fellin, G., Schuster, P. & Wessel, D. The Jacobson Radical of a
Propositional Theory. The Bulletin Of Symbolic Logic. pp. 1-20
(2021)

and in turn emerged from Fellin’s MSc thesis [65] and Wessel’s PhD
thesis [191].

Chapter 6. Universal translation methods for nuclei Negative
translations are well-known methods that turn classically valid for-
mulae into intuitionistically valid ones. The most common are
translations due to Kolmogorov, Gentzen, Kuroda and Krivine. As
the name suggests, they rely on double negation, also known as the
Glivenko nucleus. An attempt to generalise a variant of the Kuroda
translation to arbitrary nuclei in logic was already done by van den
Berg in [187]. The aim of this chapter is to further generalise nega-
tive translations from double negation to an arbitrary nucleus, from
provability in a calculus to an inductively generated abstract conse-
quence relation, and from propositional logic to any set of objects
whatsoever.

This chapter is the continuation of the joint work with Peter
Schuster presented in Chapter 5, and is still unpublished.

Contributions to publications

In publication [67], Fellin elaborated on co-author Schuster’s idea
to convert induction principles into modal formulae, and obtained
the main results of Sections 2.3–2.4, which provide a general proof
transformation pattern.

Publication [66] is mostly based on previous work by co-authors
Negri and Orlandelli. In particular, it follows two earlier publica-
tions by Negri [130, 131]. The idea to define proof-embeddability
(Section 4.4) is due to Fellin, who also took care of its applications
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in the proofs of structural rules (Section 4.5), cut-elimination (Lem-
mata 4.6.2–4.6.5) and Orevkov’s theorems on infinitary Glivenko
classes (Section 4.7).

Of publication [68], whereas the main idea goes back to Wessel
and co-author Schuster, it was Fellin who came up with Example
5.3.6 and showed the importance of distinguishing between axioms
and rules; thus introduced the concept of compatibility, which is
crucial in the statement of the main results (Theorem 5.3.8 and
Corollary 5.3.11) and developed the applications in logic (Section
5.5).
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Induction principles in
labelled calculi for
non-classical logics
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2 Modal logic for induction

2.1 Introduction

At least since Peano formalised what we all know as mathematical
induction, induction as a proof principle has been the main tool
for tidily unwrapping the potential infinite as generated by an a
priori incomplete process. This is well reflected by the ubiquity
of definitions and proofs by induction in today’s ever more formal
sciences.

Transfinite induction is a generalisation of mathematical induc-
tion from the natural numbers to less down-to-earth well-founded
orders, such as the ordinal numbers. More precisely, if (and only if)
any given order is well-founded, then induction holds: in the sense
that a predicate holds everywhere in the given order provided that
the predicate is progressive, i.e. propagates from all predecessors of
a given element to the element itself.

As a rule of thumb, instances of induction are applicable more
directly, and are better behaved proof-theoretically, than the corre-
sponding instances of well-foundedness, which come as extremum
principles or chain conditions (see, e.g., Proposition 2.4.2 below).
Characteristic examples include Aczel’s Set Induction [1–3,6,7] ver-
sus von Neumann and Zermelo’s Axiom of Foundation or Regular-
ity, and Raoult’s Open Induction [15, 35, 143] as opposed to Zorn’s
Lemma.
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2. Modal logic for induction

Awareness of this phenomenon brought us to carry over to the
inductive side some occurrences of well-foundedness in the modal
logic of provability. Perhaps Segerberg’s theorem [173], which
stood right at the beginning of an impressive development [26], is
the most prominent case: the Gödel–Löb axiom characterises ex-
actly the (converse) well-founded and transitive Kripke frames.1

The observation that those occurrences are rather about induction
prompted the present investigation.

Inasmuch as instances of induction are about predicates or sub-
sets, they typically go beyond the given logical level, and actu-
ally have a somewhat semantic flavour [41, 51]. By modal logic
[21, 138, 142] we now obtain syntactical, proof-theoretic variants
of induction: they are expressed as axioms or rules within an ade-
quate labelled sequent calculus [125,133]. While induction proper,
for which we say Noetherian induction, can be mirrored by a rule
(Lemma 2.3.3), the variant in which induction is done up to an ar-
bitrary but fixed point of the given order, which we dub Gödel–Löb
induction, happens to correspond (Lemma 2.3.1) to the homony-
mous axiom of provability logic [23, 24, 107, 178, 188].2 In fact the
usual way to define validity in a Kripke model for the modal op-
erator □ lends itself naturally to capture universal validity up to a
point.

To verify the practicability of our approach in proof practice,
we give a fairly universal pattern for proof transformation, from
rather algebraic inductive proofs to formal proofs with the required
rules, and test this in several cases. Among other things, we prove
with the corresponding modal rules that induction necessitates the
order under consideration to be irreflexive (Lemma 2.4.1), and
that every meet-closed inductive predicate on a poset propagates
from the irreducible elements to any element whatsoever (Exam-
ple 2.3.5) [153, 166, 167]. As a by product we gain the curiosity
that Noetherian induction is tantamount to the corresponding chain

1See also, for example, Theorem 3.5 of [179], Example 3.9 of [21] and Teorema
7.2 of [138].

2This was also called axiom A3 [179], the Löb formula L [21] and axiom G or
axiom W [84, 133].
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2.2. Basic modal logic K

condition plus irreflexivity (Proposition 2.4.2).3 Last but not least
we give a direct and elementary syntactical proof (Theorem 2.4.3)
of Segerberg’s aforementioned theorem that the Gödel–Löb axiom
holds exactly in the (converse) well-founded and transitive Kripke
frames. All this can also be useful in proof practice: while it might
be cumbersome to prove directly that an induction principle holds
for a given order, it is often easier to check properties such as ir-
reflexivity and transitivity, or even chain conditions.

2.2 Basic modal logic K

Modal logic is obtained from propositional logic by adding the
modal operator □ to the language of propositional logic. A Kripke
model [102] (X,R,val) is a set X together with an accessibility relation
R, i.e. a binary relation between elements of X, and a valuation val,
i.e. a function assigning one of the truth values 0 or 1 to an element
x of X and an atomic formula P . The usual notation for val(x,P ) ≡ 1
is x ⊩ P .

We read “xRy” as “y is accessible from x” and we read “x ⊩ P ” as
“x forces P ”. Valuations are extended in a unique way to arbitrary
formulae by means of inductive clauses:

x ⊮⊥
x ⊩ A ⊃ B if and only if x ⊩ A⇒ x ⊩ B

x ⊩ A∧B if and only if x ⊩ A and x ⊩ B
x ⊩ A∨B if and only if x ⊩ A or x ⊩ B
x ⊩ □A if and only if ∀y(xRy⇒ y ⊩ A)

We assume that x ⊩ P is decidable for every x ∈ X and each atomic
formula P , which carries over to arbitrary formulae by the induc-
tive clauses. With the intended applications in mind, in place of
R we use the inverse accessibility relation <, i.e. we stipulate that
y < x if and only if xRy . The pair (X,<) is then dubbed Kripke frame.

3Needless to say, this requires some countable choice.

27



2. Modal logic for induction

We adopt the variant G3K< (see Table 2.1) of the calculus G3K
introduced in [125] for the basic modal logic K with the additional
initial sequents

y < x,Γ → ∆, y < x (σ<)
y = x,Γ → ∆, y = x (σ=)

and the rules for equality (see Table 2.1). With ¬A defined as A ⊃ ⊥,
the rules L¬,R¬ are special cases of L ⊃,R ⊃, and we do not give
them explicitly.

The basic idea of the calculus is the syntactical internalisation of
Kripke semantics: the calculus operates on labelled formulae x : A,
to be read as “x forces A”, and on relational formulae y < x. For each
connective and for the modality □ the rules are obtained directly
from the inductive forcing clauses for compound formulae.

As is common, we denote by G3K∗< the extension of G3K< with
additional rules corresponding to frame properties ∗. The situation
is as as laid out in Table 2.2, in which we use the common abbrevi-
ation ∀y < xA for ∀y(y < x⇒ A).

Theorem 2.2.1. The calculus G3K< satisfies the following structural
properties:

(i) Sequents of the forms

x : A,Γ → ∆,x : A
x : A ⊃ B,x : A,Γ → ∆,x : B

→ x : □(A ⊃ B) ⊃ (□A ⊃ □B)

are derivable in G3K∗< for arbitrary modal formulae A and B.

(ii) The rule of substitution

Γ → ∆
Subs

Γ [y/x]→ ∆[y/x]

is height-preserving admissible in G3K∗< .
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Initial sequents
x : P ,Γ → ∆,x : P
x : □A,Γ → ∆,x : □A
y < x,Γ → ∆, y < x

x = y,Γ → ∆,x = y

Propositional rules
x : A,x : B,Γ → ∆

L∧
x : A∧B,Γ → ∆

Γ → ∆,x : A Γ → ∆,x : B
R∧

Γ → ∆,x : A∧B
x : A,Γ → ∆ x : B,Γ → ∆

L∨
x : A∨B,Γ → ∆

Γ → ∆,x : A,x : B
R∨

Γ → ∆,x : A∨B
Γ → ∆,x : A x : B,Γ → ∆

L⊃
x : A ⊃ B,Γ → ∆

x : A,Γ → ∆,x : B
R⊃

Γ → ∆,x : A ⊃ B
L⊥

x : ⊥,Γ → ∆

Modal rules
y : A,x : □A,y < x,Γ → ∆

L□
x : □A,y < x,Γ → ∆

y < x,Γ → ∆, y : A
R□ (y fresh)

Γ → ∆,x : □A

Rules for equality
x = x,Γ → ∆

Ref=
Γ → ∆

x = z,x = y,y = z,Γ → ∆
Trans=x = y,y = z,Γ → ∆

y < z,x = y,x < z,Γ → ∆
Repl<1x = y,x < z,Γ → ∆

x < y,z = y,x < z,Γ → ∆
Repl<2z = y,x < z,Γ → ∆

y : P ,x = y,x : P ,Γ → ∆
ReplAtx = y,x : P ,Γ → ∆

Table 2.1: The sequent calculus G3K<.
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2. Modal logic for induction

Frame property Rule

Reflexivity x < x,Γ → ∆
Ref

Γ → ∆∀x(x < x)

Irreflexivity
Irref

x < x,Γ → ∆∀x(x ≮ x)

Transitivity x < z,x < y,y < z,Γ → ∆
Trans

x < y,y < z,Γ → ∆∀x∀y < x∀z < y(z < x)

Table 2.2: Additional rules for G3K∗< and the corresponding frame
properties.

(iii) The rules of weakening

Γ → ∆
LW

x : A,Γ → ∆

Γ → ∆
RW

Γ → ∆,x : A

are height-preserving admissible in G3K∗< .

(iv) The rules of contraction

x : A,x : A,Γ → ∆
LC

x : A,Γ → ∆

Γ → ∆,x : A,x : A
RC

Γ → ∆,x : A
y < x,y < x,Γ → ∆

LC<y < x,Γ → ∆

Γ → ∆, y < x,y < x
RC<

Γ → ∆, y < x

are height-preserving admissible in G3K∗< .

(v) The rule of replacement

y : A,x = y,x : A,Γ → ∆
Repl

x = y,x : A,Γ → ∆

is height-preserving admissible in G3K∗< .
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2.2. Basic modal logic K

(vi) The rule of necessitation

→ x : A
N

→ x : □A

is admissible in G3K∗< .

(vii) All the rules of the system G3K∗< are height-preserving invertible.

(viii) The cut rule

Γ → ∆,x : A x : A,Γ ′→ ∆′
Cut

Γ ,Γ ′→ ∆,∆′

is admissible in G3K∗< .

For a proof see Section 11.4 of [133].
Since we add the initial sequents σ<,σ=, we also need the follow-

ing:

Lemma 2.2.2. Rules
Γ → ∆, y < x y < x,Γ ′→ ∆′

Cut<
Γ ,Γ ′→ ∆,∆′

Γ → ∆, y = x y = x,Γ ′→ ∆′
Cut=

Γ ,Γ ′→ ∆,∆′

are admissible in G3K∗< .

Proof. The proof is induction as the proof of admissibility of Cut
(see [133], Theorem 11.9), from which we exclude the cases in which
the cut formula is principal as no rule has instances of =,< as prin-
cipal formulae. All the remaining cases are completely analogous
to their counterparts in the proof of admissibility of Cut. ■

Two important results, to which we will collectively refer as com-
pleteness, carry over from [127]:

Theorem 2.2.3. Let Γ → ∆ be a sequent in the language of G3K∗< . Then
either the sequent is derivable in G3K∗< or it has a Kripke countermodel
with properties ∗.

Corollary 2.2.4. If a sequent Γ → ∆ is valid in every Kripke model with
the frame properties ∗, then it is derivable in the system G3K∗<.
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2. Modal logic for induction

2.2.1 Connective-like rules for propositional
variables

In some of the applications below, we will need to add a proposi-
tional variable P to the language of K that will have a “connective-
like” behavior. For instance, suppose that we want a variable P to
behave at x as Q(x)⇒ R(x). In order to avoid self-referential defini-
tions, we ask Q and R not to contain P . We then add the following
clause to the definition of val:

x ⊩ P if and only if Q(x)⇒ R(x)

Doing so, we further add to G3K∗< a pair of rules that mirror the
logical rules:

Γ → ∆,Q(x) R(x),Γ → ∆
LP

x : P ,Γ → ∆

Q(x),Γ → ∆,R(x)
RP

Γ → ∆,x : P

In order to get height-preserving invertibility, we require that the
bottom sequent is not an initial sequent with x : P principal; in other
words, ∆ does not contain x : P in LP , and Γ does not contain x : P
in RP .

Since they have the same behaviour as the logical connectives,
all proofs given or referred to in the last section can easily be gener-
alised to extensions of G3K< by rules of this kind.

We just need to point out that in the proof of admissibility of
Cut, we need to do induction on a different notion of the size of the
cut formula:

size(x = y)≡ size(x < y) ≡ size(x : A) ≡ size(x : ⊥) ≡ 0 A , P atomic

size(x : A ◦B)≡ sup(size(x : A), size(x : B)) + 1 ◦ ∈ {⊃,∧,∨}
size(x : □A)≡ size(x : A) + 1

size(x : P )≡ sup(size(Q(x)), size(R(x))) + 1

We then need to be careful when considering the case in which the
cut formula is principal in both premisses. For instance when we
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2.3. Induction principles

transform

Q(x),Γ → ∆,R(x)
RP

Γ → ∆,x : P

Γ ′→ ∆′,Q(x) R(x),Γ ′→ ∆′
LP

x : P ,Γ ′→ ∆′
Cut

Γ ,Γ ′→ ∆,∆′

into

Γ ′→ ∆′,Q(x)

Q(x),Γ → ∆,R(x) R(x),Γ ′→ ∆′
Cut(<,=)

Q(x),Γ ,Γ ′→ ∆,∆′
Cut(<,=)

Γ ,Γ ′,Γ ′→ ∆,∆′,∆′
LC,RC (multiple times)

Γ ,Γ ′→ ∆,∆′

we have to take into consideration that Q(x),R(x) may be instances
of <,=.

2.3 Induction principles

Induction principles are typically not expressible within a first-order
language. We now present them as ordinary rules of labelled se-
quent calculus. To start with, we recall Noetherian Induction and
define Gödel–Löb Induction:

∀y(∀z < y Ez⇒ Ey)⇒∀y Ey (N-Ind)
∀x(∀y < x(∀z < y Ez⇒ Ey)⇒∀y < xEy) (GL-Ind)

They prompt us to consider two rules and an axiom on top of G3K<
:4

y : □A,Γ → ∆, y : A
NI

Γ → ∆, y : A

y < x,y : □A,Γ → ∆, y : A
R□-GLI

Γ → ∆,x : □A

□(□A ⊃ A) ⊃ □A (W)

Both rules come with the variable condition that y does not appear
in Γ ,∆.

4Rule R□-GLI is called R□-L in [133].
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2. Modal logic for induction

Lemma 2.3.1. Let a Kripke frame (X,<) be given. The following are
equivalent:

(a) Axiom W is valid in X for every formula A.

(b) Axiom W is valid in X for every propositional variable A.

(c) Gödel–Löb Induction holds in X, i.e.

∀x(∀y < x(∀z < y Ez⇒ Ey)⇒∀y < xEy) (GL-Ind)

for any given predicate E(x) on X.

Proof. (a)⇒(b). Trivial.
(b)⇒(c). Given E(x), pick a propositional variable A and take a

valuation such that x ⊩ A if and only if E(x). Then by expanding the
definitions we have the following:

x ⊩ □(□A ⊃ A) ⊃ □A
=⇒x ⊩ □(□A ⊃ A)⇒ x ⊩ □A

=⇒∀y < xy ⊩ □A ⊃ A⇒∀y < xy ⊩ A
=⇒∀y < x (y ⊩ □A⇒ y ⊩ A)⇒∀y < xy ⊩ A
=⇒∀y < x (∀z < y z ⊩ A⇒ y ⊩ A)⇒∀y < xy ⊩ A
=⇒∀y < x (∀z < y Ez⇒ Ey)⇒∀y < xEy

(c)⇒(a). Given a formula A, define E(x) as x ⊩ A. Then:

∀y < x (∀z < y Ez⇒ Ey)⇒∀y < xEy
=⇒∀y < x (∀z < y z ⊩ A⇒ y ⊩ A)⇒∀y < xy ⊩ A
=⇒∀y < x (y ⊩ □A⇒ y ⊩ A)⇒∀y < xy ⊩ A
=⇒∀y < xy ⊩ □A ⊃ A⇒∀y < xy ⊩ A
=⇒x ⊩ □(□A ⊃ A)⇒ x ⊩ □A

=⇒x ⊩ □(□A ⊃ A) ⊃ □A ■

Lemma 2.3.2. The following are equivalent over G3K< without R□ (in-
cluding the structural rules):
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2.3. Induction principles

(i) Rule R□-GLI,

(ii) Rule R□ plus axiom W.

Proof. Claim 1: R□-GLI⇒R□.

y < x,Γ → ∆, y : A
LW

y < x,y : □A,Γ → ∆, y : A
R□-GLI

Γ → ∆,x : □A

Claim 2: R□-GLI⇒W.

y < x,y : □A ⊃ A,y : □A,x : □(□A ⊃ A)→ y : A
L□

y < x,y : □A,x : □(□A ⊃ A)→ y : A
R□-GLI

x : □(□A ⊃ A)→ x : □A
R⊃

→ x : □(□A ⊃ A) ⊃ □A

Claim 3: R□+W⇒R□-GLI.

y < x,y : □A,Γ → ∆, y : A
R⊃

y < x,Γ → ∆, y : □A ⊃ A
R□

Γ → ∆,x : □(□A ⊃ A) x : □(□A ⊃ A)→ x : □A
Cut

Γ → ∆,x : □A

where x : □(□A ⊃ A)→ x : □A is derivable from Axiom W by invert-
ibility of R⊃. ■

Therefore the sequent calculus G3KGL< obtained by replacing
R□ by R□-GLI is an extension of G3K<. If we further add the mathe-
matical rules Trans and Irref and remove the initial sequents σ<,σ=,
we get the calculus G3KGL [125].

Lemma 2.3.3. Let a Kripke frame (X,<) be given. The following are
equivalent:

(a) Rule
y : □A,Γ → ∆, y : A

NI
Γ → ∆, y : A
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2. Modal logic for induction

where y does not occur in Γ ,∆, is sound in X. That is, whenever
the top sequent is valid in X, then also the bottom sequent is valid
in X.

(b) For every propositional variable A, in X we have

∀y (y ⊩ □A⇒ y ⊩ A)⇒∀y y ⊩ A

for any given valuation ⊩ on X.

(c) Noetherian Induction holds in X, i.e.

∀y(∀z < y Ez⇒ Ey)⇒∀y Ey (N-Ind)

for any given predicate E(x) on X.

Proof. (a)⇒(b). Suppose that, for all y, y ⊩ □A implies y ⊩ A. It fol-
lows that the sequent y : □A→ y : A is valid, hence, by hypothesis,
also→ y : A is valid, which means that for all y, y ⊩ A.

(b)⇒(c). Given E(x), pick a propositional variable A and take a
valuation such that x ⊩ A if and only if E(x). Then:

∀y (y ⊩ □A⇒ y ⊩ A)⇒∀y y ⊩ A
=⇒∀y (∀z < y z ⊩ A⇒ y ⊩ A)⇒∀y y ⊩ A
=⇒∀y (∀z < y Ez⇒ Ey)⇒∀y Ey

(c)⇒(a). Given a formula A, define E(x) as x ⊩ A. Suppose that
the sequent y : □A,Γ → ∆, y : A, where y does not occur in Γ ,∆, is
valid. By the variable condition, we can leave out the contexts and
get ∀y (∀z < y z ⊩ A⇒ y ⊩ A). By N-Ind on E(x) ≡ x ⊩ A, this yields
∀y y ⊩ A By bringing the contexts back in, we conclude that Γ →
∆, y : A is valid. ■

The lemmata proved in this section allow us to transform rather
algebraic proofs using induction into tree-like derivations in modal
logic, following a certain pattern:
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2.3. Induction principles

Proof transformation pattern Let X be a set endowed with a bi-
nary relation <. Suppose that we need to show either

(i) a statement of the form ∀y E(y) by way of N-Ind, or

(ii) a statement of the form ∀x∀y < xE(y) by way of GL-Ind.

We consider (X,<) as a Kripke frame, and build a Kripke model as
follows. First, we consider a suitable subformula U (x) of E(x) such
that it can be encoded in a sequent Q(x)→ R(x), and fix a proposi-
tional variable P . We define a valuation such that val : (x,P ) ≡ 1 if
and only if U (x). This is done by adding (variants of) the following
rules to the calculus:

Γ → ∆,Q(x) R(x),Γ → ∆
LP

x : P ,Γ → ∆

Q(x),Γ → ∆,R(x)
RP

Γ → ∆,x : P

By means of P , we find a formula A such that x ⊩ A if and only if
E(x). We then proceed as follows:

(i) For N-Ind: Derive the sequent y : □A→ y : A by using G3K<
plus RP and LP , then apply rule NI:

...

y : □A→ y : A
NI

→ y : A

(ii) For GL-Ind: Derive the sequent y < x,y : □A→ y : A by using
G3K< plus RP and LP , then apply rule R□-GLI:

...

y < x,y : □A→ y : A
R□-GLI

Γ → ∆,x : □A

We point out that this pattern is not fully general, as we do not
yet have a universal method to find the subformula U (x) needed to
define the valuation.
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2. Modal logic for induction

2.3.1 Examples

Example 2.3.4. GL-Ind implies that ∀y < x(y , x).5

Proof (algebraic). In order to apply GL-Ind, we need to show that
∀y < x(∀z < y(z , x)⇒ y , x). Fix y < x such that ∀z < y(z , x). We
need to show that y , x. Suppose y = x. Then x < x and ∀z < x(z , x),
from which we derive x , x. Therefore y , x and we proved our
claim. ■

Proof (modal). Fix x. Pick P such that y ⊩ P if and only if y = x. This
corresponds to the rules

y = x,Γ → ∆
LP

y : P ,Γ → ∆

Γ → ∆, y = x
RP

Γ → ∆, y : P

Then our thesis is equivalent to say that→ x : □¬P is derivable
in G3K< plus R□-GLI, LP and RP :

y = x,y < y,y : □¬P → y : ⊥, y = x
RP

y = x,y < y,y : □¬P → y : ⊥, y : P
L¬

y : ¬P ,y = x,y < y,y : □¬P → y : ⊥
L□

y = x,y < y,y : □¬P → y : ⊥
Repl

y = x,y < x,y : □¬P → y : ⊥
LP

y < x,y : □¬P ,y : P → y : ⊥
R⊃

y < x,y : □¬P → y : ¬P
R□-GLI

→ x : □¬P ■

Example 2.3.5. What follows is a somewhat more general formu-
lation of the fact that by Noetherian induction every meet-closed
predicate on a poset propagates from the irreducible elements to
any element whatsoever [153, 166, 167].

5If we observe that ∀y < x(y , x) is just a variant of irreflexivity ∀x(x ≮ x),
then this result will be for free once we have proved Lemma 2.4.1 and Theorem
2.4.3.
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Consider a ternary predicate x = y◦z. We say that x is ◦-reducible
(for short R◦(x)) if there are y < x and z < x such that x = y ◦ z.

Let E(x) be a predicate satisfying

x = y ◦ z E(y) E(z)

E(x) (∗)

for every y,z. Then N-Ind implies ∀x(R◦(x)∨E(x))⇒∀xE(x).

Proof (algebraic). Assume that ∀x(R◦(x) ∨ E(x)). In order to apply
induction, we need to show that ∀x(∀y < xE(y)⇒ E(x)). Fix x such
that ∀y < xE(y). It now suffices to show E(x). By assumption, we
can distinguish two cases:

— Case E(x): Trivial.

— Case R◦(x): Take y < x and z < x such that x = y ◦ z. By ∀y <
xE(y) we know that E(y) and E(z). From this we deduce E(x)
by (∗). ■

Proof (modal). Pick a propositional variable P such that x ⊩ P if and
only if E(x). The hypothesis (∗) can be written as:

x : P ,y : P ,z : P ,x = y ◦ z,Γ → ∆
(∗)

y : P ,z : P ,x = y ◦ z,Γ → ∆

The definition of being ◦-reducible can be used in the calculus via
the rule

x = y ◦ z,y < x,z < x,Γ → ∆
LR◦

R◦(x),Γ → ∆

where y,z are fresh, together with the appropriate RR◦ rule. The
thesis becomes that from the sequent → R◦(x),x : P we can derive
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2. Modal logic for induction

→ x : P in G3K< using NI, (∗), LR◦ and RR◦. In fact:

→ R◦(x),x : P

x = y ◦ z,y < x,z < x,x : P ,z : P ,y : P ,x : □P → x : P
(∗)

x = y ◦ z,y < x,z < x,z : P ,y : P ,x : □P → x : P
L□

x = y ◦ z,y < x,z < x,y : P ,x : □P → x : P
L□

x = y ◦ z,y < x,z < x,x : □P → x : P
LR◦

R◦(x),x : □P → x : P
Cut

x : □P → x : P
NI

→ x : P ■

2.4 Consequences

In this section we apply the tools that we have just developed, in
order to revisit certain common properties of the accessibility re-
lation <. In particular, this will lead us to useful characterisations
of the induction principles that can simplify the task of controlling
that they hold in a given structure. We will further shed some more
light on the role of transitivity in the calculus.

2.4.1 Irreflexivity & Noetherianity

The binary relation < on X is said to be irreflexive if ∀x(x ≮ x), which
corresponds to the following rule

Irref
x < x,Γ → ∆

Lemma 2.4.1. Noetherian Induction implies irreflexivity.6

Proof. To show this claim, we use the syntactical proof pattern in-
troduced in Section 2.3. Pick P such that x ⊩ P if and only if x < x,
i.e. such that

x < x,Γ → ∆
LP

x : P ,Γ → ∆

Γ → ∆,x < x
RP

Γ → ∆,x : P

6This lemma is a formal direct version of “every well-founded relation is ir-
reflexive”, to be compared with “Set Induction implies ∀x(x < x)” [1–3, 6, 7] as a
direct version of “Foundation implies ∀x(x < x)” in axiomatic set theory.
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Then we just need to show→ x : ¬P in G3K plus NI, LP and RP :

x : □¬P ,x < x→ x < x
RP

x < x,x : □¬P → x : P
L¬

x : ¬P ,x < x,x : □¬P →
L□

x < x,x : □¬P →
LP

x : P ,x : □¬P →
R¬

x : □¬P → x : ¬P
NI

→ x : ¬P

From this we also get admissibility of the rule version of irreflexiv-
ity:

→ x : ¬P

x < x,Γ → ∆,x < x
RP

x < x,Γ → ∆,x : ¬P
L¬

x : ¬P ,x < x,Γ → ∆
Cut

x < x,Γ → ∆ ■

As in mathematical practice one often talks about ascending
chains, we now occasionally switch back to R. So let y < x if and
only if xRy: that is, < and R are converse to each other. Notice that
< is irreflexive if and only if so is R.

An infinite R-sequence is a sequence (xi)i∈N of elements of X such
that xiRxi+1 for all i ∈N. An infinite R-sequence (xi)i∈N is conver-
gent if there is i ∈N such that xj = xi for all j > i. We say that R is
well-founded if there is no infinite R-sequence; and that R is Noethe-
rian—for short, R satisfies Noeth—if every infinite R-sequence con-
verges.

While the first and second item of the next lemma are well-
known to be equivalent, the occurrence of irreflexivity in the third
item is due to the fact that a priori R and < need not possess this
feature of an order relation.

Proposition 2.4.2. The following are equivalent:

(a) < satisfies Noetherian Induction.
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2. Modal logic for induction

(b) R is well-founded.

(c) R is irreflexive and Noetherian.

Proof. The equivalence of the first and the second item is folklore.
See Lemma 2.4.1 for a formal proof that Noetherian Induction im-
plies irreflexivity. If R is well-founded, i.e. there are no infinite R-
sequences at all, then R is trivially Noetherian. As for the converse,
if R is irreflexive, then no infinite R-sequence converges; whence if,
in addition, R is Noetherian, then R is well-founded. ■

Notice in this context that if R is Noetherian, it is not always the
case that < satisfies N-Ind. In fact, the relation R with the following
graph

x

does not satisfy N-Ind because it is not irreflexive, but R is Noethe-
rian because the only infinite R-sequence, which is xRxRxR..., con-
verges.

2.4.2 Transitivity & Induction

The binary relation < on X is said to be transitive if ∀x∀y < x∀z <
y(z < x), which corresponds to the following rule

z < x,z < y,y < x,Γ → ∆
Trans

z < y,y < x,Γ → ∆

In the light of Proposition 2.4.2, what we prove next in G3K<
is a formal version of Segerberg’s theorem [173] that the Gödel–
Löb axiom describes exactly the (converse) well-founded transitive
Kripke frames.

Theorem 2.4.3. The following are equivalent:
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(i) Gödel–Löb Induction,

(ii) Noetherian Induction + Transitivity.

Proof. Claim 1: GL-Ind⇒N-Ind. It suffices to show that NI is ad-
missible in G3KGL< :

x : □A,Γ → ∆,x : A
Subs

y : □A,Γ → ∆, y : A
LW

y < x,y : □A,Γ → ∆, y : A
R□-GLI

Γ → ∆,x : □A x : □A,Γ → ∆,x : A
Cut

Γ ,Γ → ∆,∆,x : A
LC,RC (multiple times)

Γ → ∆,x : A

Claim 2: GL-Ind⇒Trans. To show this claim, we use the syntac-
tical proof pattern introduced in Section 2.3. Fix x. Pick P such that
y ⊩ P if and only if y < x, i.e. such that

y < x,Γ → ∆
LP

y : P ,Γ → ∆

Γ → ∆, y < x
RP

Γ → ∆, y : P

It suffices to show that rule Trans is admissible in G3KGL< plus LP
and RP :

→ x : □(□P ∧ P )

z < x,z < y,y < x,Γ → ∆
LW

z < x,y : □P ,y : P ,x : □(□P ∧ P ), z < y,y < x,Γ → ∆
LP

z : P ,y : □P ,y : P ,x : □(□P ∧ P ), z < y,y < x,Γ → ∆
L□

y : □P ,y : P ,x : □(□P ∧ P ), z < y,y < x,Γ → ∆
L∧

y : □P ∧ P ,x : □(□P ∧ P ), z < y,y < x,Γ → ∆
L□

x : □(□P ∧ P ), z < y,y < x,Γ → ∆
Cut

z < y,y < x,Γ → ∆
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where→ x : □(□P ∧ P ) is derived as follows:7

y < x,y : □(□P ∧ P )→ y : □P

y < x,y : □(□P ∧ P )→ y < x
RP

y < x,y : □(□P ∧ P )→ y : P
R∧

y < x,y : □(□P ∧ P )→ y : □P ∧ P
R□-GLI

→ x : □(□P ∧ P )

where y < x,y : □(□P ∧ P )→ y : □P is derived as follows:

z : □P ,z : P ,z < y,z : □P ,y < x,y : □(□P ∧ P )→ z : P
L∧

z : □P ∧ P ,z < y,z : □P ,y < x,y : □(□P ∧ P )→ z : P
L□

z < y,z : □P ,y < x,y : □(□P ∧ P )→ z : P
R□-GLI

y < x,y : □(□P ∧ P )→ y : □P

Claim 3: N-Ind+Trans⇒GL-Ind. It suffices to show that Axiom
W is derivable in G3K< plus NI and Trans:

y : A,y < x,x : □(□(□A ⊃ A) ⊃ □A),x : □(□A ⊃ A)→ y : A D1 L⊃
y : □A ⊃ A,y < x,x : □(□(□A ⊃ A) ⊃ □A),x : □(□A ⊃ A)→ y : A

L□
y < x,x : □(□(□A ⊃ A) ⊃ □A),x : □(□A ⊃ A)→ y : A

R□
x : □(□(□A ⊃ A) ⊃ □A),x : □(□A ⊃ A)→ x : □A

R⊃
x : □(□(□A ⊃ A) ⊃ □A)→ x : □(□A ⊃ A) ⊃ □A

NI
→ x : □(□A ⊃ A) ⊃ □A

whereD1 is the following derivation:

y : □A,y < x,x : □(□(□A ⊃ A) ⊃ □A),x : □(□A ⊃ A)→ y : A,y : □A D2 L⊃
y : □(□A ⊃ A) ⊃ □A,y < x,x : □(□(□A ⊃ A) ⊃ □A),x : □(□A ⊃ A)→ y : A,y : □A

L□
y < x,x : □(□(□A ⊃ A) ⊃ □A),x : □(□A ⊃ A)→ y : A,y : □A

7Notice that the sequent→ x : □(□P ∧ P ) corresponds to ∀x∀y < x(∀z < y(z <
x)&y < x), which is a redundant version of transitivity as y < x is repeated both in
the premisses and in the conclusions. The reason why we need this version and
not the “standard” one (as, for instance, in the case of Irref in Lemma 2.4.1), will
become clear in the next subsection.
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whereD2 is the following derivation:

z : □A ⊃ A,z < x,z < y,y < x,x : □(□(□A ⊃ A) ⊃ □A),x : □(□A ⊃ A)→ y : A,y : □A,z : □A ⊃ A
L□

z < x,z < y,y < x,x : □(□(□A ⊃ A) ⊃ □A),x : □(□A ⊃ A)→ y : A,y : □A,z : □A ⊃ A
Trans

z < y,y < x,x : □(□(□A ⊃ A) ⊃ □A),x : □(□A ⊃ A)→ y : A,y : □A,z : □A ⊃ A
L⊃

y < x,x : □(□(□A ⊃ A) ⊃ □A),x : □(□A ⊃ A)→ y : A,y : □A,y : □(□A ⊃ A)
R□

y < x,x : □(□(□A ⊃ A) ⊃ □A),x : □(□A ⊃ A)→ y : A,y : □A,y : □(□A ⊃ A) ■

Proposition 2.4.2 and Theorem 2.4.2 help to see that N-Ind⇏GL-
Ind. In fact, the structure

y xz

satisfies both Noeth and Irref, but not Trans.

2.4.3 Transitivity & Cut

The rule Cut is known to be admissible in the calculus G3GL and
thus, by equivalence, in G3KGL [133, Theorem 12.20]. As a conse-
quence, Cut is also admissible in G3KGL< if we add Trans and Irref.
Are these two rules really needed for Cut admissibility?

Lemma 2.4.4. The following sequents are Cut-free derivable in
G3KGL<:

(i) x : □A→ x : □(A∧□A),8

(ii) x : □(A∧□A)→ x : □□A.

Proof. (i)

y : A,y < x,y : □(A∧□A),x : □A→ y : A
L□

y < x,y : □(A∧□A),x : □A→ y : A D
R∧

y < x,y : □(A∧□A),x : □A→ y : A∧□A
R□-GLI

x : □A→ x : □(A∧□A)
8This is actually the redundant version of transitivity that we had in the proof

of Theorem 2.4.3. Here, the definition of y ⊩ A as y < x is gained by the addition
of the premiss x : □A.
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2. Modal logic for induction

whereD is the following derivation:

z : A,z : □A,z < y,z : □A,y < x,y : □(A∧□A),x : □A→ z : A
L∧

z : A∧□A,z < y,z : □A,y < x,y : □(A∧□A),x : □A→ z : A
L□

z < y,z : □A,y < x,y : □(A∧□A),x : □A→ z : A
R□-GLI

y < x,y : □(A∧□A),x : □A→ y : □A

(ii)

y : A,y : □A,y < x,y : □□A,x : □(A∧□A)→ y : □A
L∧

y : A∧□A,y < x,y : □□A,x : □(A∧□A)→ y : □A
L□

y < x,y : □□A,x : □(A∧□A)→ y : □A
R□-GLI

x : □(A∧□A)→ x : □□A ■

Theorem 2.4.5. The Cut rule is not admissible in G3KGL< without
Trans.

Proof. If Cut were admissible, then by Lemma 2.4.4 the sequent
x : □A → x : □□A would be Cut-free derivable. 9 Let’s try to give
a Cut-free proof:

y : A,z < y,z : □A,y < x,y : □□A,x : □A→ z : A
L□

y : A,z < y,z : □A,y < x,y : □□A,x : □A→ z : A
R□-GLI

y < x,y : □□A,x : □A→ y : □A
R□-GLI

x : □A→ x : □□A

Observe, however, that the upper-most sequent is not derivable in
general. In fact, we have a countermodel:

x ⊩ □Ay ⊩ A,y ⊩ □□Az ⊩ □A,z ⊮ A

9The sequent x : □A→ x : □□A corresponds to transitivity the same way the
sequent x : □A→ x : □(A∧□A) corresponds to redundant transitivity from foot-
note 7. What we are showing is actually that the “standard” version of transitivity
can be deduced from the redundant version by using Cut and that Cut is neces-
sary in any proof of transitivity. This is why we needed the redundant version in
the first place.
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Notice that this is a non-transitive model. ■

As a consequence, we get that the assumption of Trans is neces-
sary in the aforementioned proof of Cut-admissibility in G3KGL<.
10

10At first glance, this may look a bit counterintuitive: a mathematical princi-
ple, transitivity, corresponds to a derivable sequent, but is also equivalent, mod-
ulo irreflexivity, to a structural rule. However, this is not really astonishing: Cut
can be viewed as a form of transitivity, as it is a generalisation of the following:

∀C∀B(B ⊃ C⇒∀A(A ⊃ B⇒ A ⊃ C))

which is just transitivity of ⊃ seen as a relation. This is also the reason for which
the Cut in literature is sometimes called Trans, e.g. when dealing with Scott-style
entailment relations (cf [171]; for recent work see, e.g., [30, 65, 70, 154, 155, 168,
192]).
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3 A terminating intuitionistic
calculus

3.1 Introduction

In his doctoral thesis [77, 78], Gentzen introduced sequent calculi
for classical and intuitionistic logic. In particular, he solved the de-
cision problem for intuitionistic propositional logic (Int ) with a cal-
culus that he called LI. However, Gentzen’s original calculus lacked
some desirable properties, such as the invertibility of rules which
would eliminate the need for backtracking. Ever since then, many
other approaches were proposed; we refer to [55] for an extended
survey.

The labelled calculus G3I by Dyckhoff and Negri [56, 126, 133]
reported in table 3.1 solves the problem of backtracking but loses
the property of termination, see for instance the example of Peirce’s
Law in Subsection 3.3.3. In order to solve this problem, Negri
[128, 129] showed how to add a loop-checking mechanism to en-
sure termination. However, it is desirable to avoid loop-checking
since its effect on complexity isn’t clear.

Corsi [47, 48] presented a calculus for Int which fulfils the ter-
mination property. The key to get termination is the addition of the
following rule:

Γ → ∆,B
a fortiori

Γ → ∆,A ⊃ B

49



3. A terminating intuitionistic calculus

Initial sequent

x ⩽ y,x : P ,Γ → ∆, y : P

Logical Rules
x : A,x : B,Γ → ∆

L∧
x : A∧B,Γ → ∆

Γ → ∆,x : A Γ → ∆,x : B
R∧

Γ → ∆,x : A∧B
x : A,Γ → ∆ x : B,Γ → ∆

L∨
x : A∨B,Γ → ∆

Γ → ∆,x : A,x : B
R∨

Γ → ∆,x : A∨B
x ⩽ y,x : A ⊃ B,Γ → ∆, y : A x ⩽ y,x : A ⊃ B,y : B,Γ → ∆

L⊃
x ⩽ y,x : A ⊃ B,Γ → ∆

L⊥
x : ⊥,Γ → ∆

x ⩽ y,y : A,Γ → ∆, y : B
R⊃

Γ → ∆,x : A ⊃ B

Mathematical Rules
x ⩽ x,Γ → ∆

Ref⩽
Γ → ∆

x ⩽ z,x ⩽ y,y ⩽ z,Γ → ∆
Trans⩽x ⩽ y,y ⩽ z,Γ → ∆

Table 3.1: The sequent calculus G3I. Rule R⊃ has the condition that
y is fresh.

This rule is logically equivalent to the formula B ⊃ (A ⊃ B), which is
the principle of a fortiori.

In the present chapter, we consider the labelled calculus G3I
instead, and show that, a way to reach termination consists in mod-
ifying rule R⊃ as follows:

x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B
R⊃t (y fresh)

Γ → ∆,x : A ⊃ B

Although the idea comes from a similar terminating procedure [57]
for the calculus G3Grz for the provability logic Grz , into which
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3.2. Structural properties

Initial sequent As in G3I .

Logical Rules L∧, R∧, L∨, R∨, L⊃, L⊥ as in G3I .
x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B

R⊃t (y fresh)
Γ → ∆,x : A ⊃ B

Mathematical Rules As in G3I .

Table 3.2: The sequent calculus G3It .

there Int is embeddable as detailed in Section 3.4, we notice that
what we do is actually incorporating a fortiori into R⊃.

3.2 Structural properties

Consider sequent calculi G3I and G3It as presented in Tables 3.1
and 3.2, respectively.

Theorem 3.2.1. G3I and G3It are equivalent in the sense that

G3I ⊢ Γ → ∆ if and only if G3It ⊢ Γ → ∆

Proof. Suppose G3I ⊢ Γ → ∆. We transform it into a proof in G3It
by using height-preserving weakening to add whenever needed the
extra formula of the form y : B ⊃ (A ⊃ B) in the premiss of R⊃. So
G3It ⊢ Γ → ∆.

If G3It ⊢ Γ → ∆, consider the steps of R⊃t with a Cut with the ex-
tra (derivable) sequent→ y : B ⊃ (A ⊃ B). We turn it into a premiss
of R⊃. We conclude by admissibility of Cut in G3I . ■

Theorem 3.2.2. All the structural properties hold for G3It . In partic-
ular,

(i) All sequents of the following form are derivable in G3It :
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3. A terminating intuitionistic calculus

a) x ⩽ y,x : A,Γ → ∆, y : A,

b) x : A,Γ → ∆,x : A.

(ii) If G3It ⊢ Γ → ∆, then G3It ⊢ Γ (x/y) → ∆(x/y) with the same
derivation height.

(iii) The rules of weakening,

Γ → ∆
LW

x : A,Γ → ∆

Γ → ∆
RW

Γ → ∆,x : A

Γ → ∆
LW⩽x ⩽ y,Γ → ∆

are height-preserving admissible in G3It .

(iv) All rules of G3It are height-preserving invertible.

(v) The rules of contraction,

x : A,x : A,Γ → ∆
LC

x : A,Γ → ∆

Γ → ∆,x : A,x : A
RC

Γ → ∆,x : A

x ⩽ y,x ⩽ y,Γ → ∆
LC⩽x ⩽ y,Γ → ∆

are height-preserving admissible in G3It .

(vi) The rule of cut,

Γ → ∆,x : A x : A,Γ ′→ ∆′
Cut

Γ ,Γ ′→ ∆,∆′

is admissible in G3It .

Proof. The proofs of (i)–(v) are similar to those of [133, 12.25–
12.29].

For the proof of (vi) we also follow [133, 12.30]. First, we ob-
serve that in all the cases of permutation of cuts that may give a
clash with the variable conditions in the implication rules, and in
the rules for ⩽ in the case of geometric extensions, an appropriate
substitution (see (ii)) prior to the permutation is used. The proof is
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3.2. Structural properties

thus by induction on the length of the cut formula, with a subinduc-
tion on the sum of the heights of the derivations of the premisses of
cut. We consider in detail only the case of a cut with the cut formula
principal in implication rules in both premisses. If the cut formula
is w : A ⊃ B, the derivation is

x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B
R⊃t

Γ → ∆,x : A ⊃ B
x : A ⊃ B,x ⩽ z,Γ ′→ ∆′, z : A x : A ⊃ B,x ⩽ z,z : B,Γ ′→ ∆′

L⊃
x : A ⊃ B,x ⩽ z,x : B,Γ ′→ ∆′

Cut
x ⩽ z,Γ ,Γ ′→ ∆,∆′

We apply the usual permutation and transform it into:

x ⩽ z2, z : B ⊃ (A ⊃ B),Γ 2,Γ ′→ ∆2,∆′ , z : B x ⩽ z,z : B,Γ ,Γ ′→ ∆,∆′
Cut

x ⩽ z3, z : B ⊃ (A ⊃ B),Γ 3,Γ ′2→ ∆3,∆′2
LC,RC (multiple times)

x ⩽ z,z : B ⊃ (A ⊃ B),Γ ,Γ ′→ ∆,∆′

where the right sequent has been derived as follows

x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B
R⊃t

Γ → ∆,x : A ⊃ B x : A ⊃ B,x ⩽ z,z : B,Γ ′→ ∆′
Cut

x ⩽ z,z : B,Γ ,Γ ′→ ∆,∆′

and the left sequent has been derived as follows

x ⩽ z,Γ ,Γ ′→ ∆,∆′ , z : A

x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B
Subs

x ⩽ z,z : B ⊃ (A ⊃ B), z : A,Γ → ∆, z : B
Cut

x ⩽ z2, z : B ⊃ (A ⊃ B),Γ 2,Γ ′→ ∆2,∆′ , z : B

with
x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B

R⊃t
Γ → ∆,x : A ⊃ B x : A ⊃ B,x ⩽ z,Γ ′→ ∆′ , z : A

Cut
x ⩽ z,Γ ,Γ ′→ ∆,∆′ , z : A

The two upper cuts, those on x : A ⊃ B are of smaller derivation
height, the other two on the smaller cut formulae z : A and z : B. ■

Remark 3.2.3. As a consequence of admissibility of weakening, rule
R⊃ of G3I is admissible in G3It .

We now prove a few lemmata that will be useful later.
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3. A terminating intuitionistic calculus

Lemma 3.2.4. The rule

x ⩽ y,Γ → ∆,x : A

x ⩽ y,Γ → ∆, y : A

is admissible in G3It .

Proof. We prove it by induction on the height of the derivation of
the premiss, with a subinduction on the length of A.1

n = 0: The only nontrivial case is the one in which the premiss
is an initial sequent and x : A is principal. In this case, we can write
the sequent as

x ⩽ y,w ⩽ x,w : A,Γ ′→ ∆,x : A,

where Γ ≡ w ⩽ x,w : A,Γ ′. Observe that the sequent

w ⩽ y,x ⩽ y,w ⩽ x,w : A,Γ ′→ ∆, y : A

is initial. By transitivity, we get a derivation of

x ⩽ y,w ⩽ x,w : A,Γ ′→ ∆, y : A,

which is just x ⩽ y,Γ → ∆, y : A, as wanted.
n > 0: The only nontrivial cases are those in which the last rule

applied is a right rule and x : A is principal. If the last rule applied
is R∧ and A ≡ B∧C, then we have

x ⩽ y,Γ → ∆,x : B x ⩽ y,Γ → ∆,x : C
R∧

x ⩽ y,Γ → ∆,x : B∧C

We can apply the induction hypothesis on the premisses and get

x ⩽ y,Γ → ∆, y : B,
x ⩽ y,Γ → ∆, y : C.

1While both Lemmata 3.2.4 and 3.2.5 could simply be seen as applications
of Cut with the monotonicity sequent x ⩽ y,x : A,Γ → ∆, y : A (which is derivable
by Theorem 3.2.2(i)(a)), we prefer to do a direct proof: as we are going to notice
later, from these we will obtain an alternative proof of cut-elimination.
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We conclude by an application of R∧. If the last rule applied is R∨
and A ≡ B∨C, then we have

x ⩽ y,Γ → ∆,x : B,x : C
R∨

x ⩽ y,Γ → ∆,x : B∨C

We can apply the induction hypothesis on the premiss and get

x ⩽ y,Γ → ∆, y : B,y : C.

We conclude by an application of R∨. If the last rule applied is R⊃t
and A ≡ B ⊃ C, then we have

x ⩽ z,x ⩽ y,z : C ⊃ (B ⊃ C), z : B,Γ → ∆, z : C
R⊃tx ⩽ y,Γ → ∆,x : B ⊃ C

We can apply hp-weakening on the premiss and get

y ⩽ z,x ⩽ z,x ⩽ y,z : C ⊃ (B ⊃ C), z : B,Γ → ∆, z : C,

which, by an application of transitivity leads to

y ⩽ z,x ⩽ y,z : C ⊃ (B ⊃ C), z : B,Γ → ∆, z : C.

We conclude with an application of R⊃t. ■

Lemma 3.2.5. The rule

x ⩽ y,x : A,y : A,Γ → ∆

x ⩽ y,x : A,Γ → ∆

is admissible in G3It .

Proof. We prove it by induction on the height of the derivation of
the premiss, with a subinduction on the length of A.2

n = 0: The only nontrivial case is the one in which the premiss
is an initial sequent and y : A is principal. In this case, we can write
the sequent as

x ⩽ y,y ⩽ z,x : A,y : A,Γ ′→ ∆′, z : A,
2See footnote 1.
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where Γ ≡ y ⩽ z,Γ ′ and ∆ ≡ ∆′, z : A. Observe that the sequent

x ⩽ y,y ⩽ z,x ⩽ z,x : A,Γ ′→ ∆′, z : A

is initial. By transitivity, we get a derivation of

x ⩽ y,y ⩽ z,x : A,Γ ′→ ∆′, z : A,

which is just x ⩽ y,x : A,Γ → ∆, as wanted.
n > 0: The only nontrivial cases are those in which the last rule

applied is a left rule and y : A is principal. If the last rule applied is
L∧ and A ≡ B∧C, then we have

x ⩽ y,x : B∧C,y : B,y : C,Γ → ∆
L∧

x ⩽ y,x : B∧C,y : B∧C,Γ → ∆

Then, by hp-invertibility of L∧, we get

x ⩽ y,x : B,x : C,y : B,y : C,Γ → ∆,

to which the induction hypothesis can be applied:

x ⩽ y,x : B,x : C,Γ → ∆.

We conclude by an application of L∧. If the last rule applied is L∨
and A ≡ B∨C, then we have

x ⩽ y,x : B∨C,y : B,Γ → ∆ x ⩽ y,x : B∨C,y : C,Γ → ∆
L∨

x ⩽ y,x : B∨C,y : B∨C,Γ → ∆

Then, by hp-invertibility of L∨, we get

x ⩽ y,x : B,y : B,Γ → ∆

x ⩽ y,x : C,y : C,Γ → ∆,

to which the induction hypothesis can be applied:

x ⩽ y,x : B,Γ → ∆

x ⩽ y,x : C,Γ → ∆.
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We conclude by an application of L∨. If the last rule applied is L⊃
and A ≡ B ⊃ C, then we have

x ⩽ y,x : B ⊃ C,y : B ⊃ C,y ⩽ z,Γ ′ → ∆, z : B x ⩽ y,x : B ⊃ C,y : B ⊃ C,z : C,y ⩽ z,Γ ′ → ∆
L⊃

x ⩽ y,x : B ⊃ C,y : B ⊃ C,y ⩽ z,Γ ′ → ∆

where Γ ≡ y ⩽ z,Γ ′. Then we can apply the induction hypothesis on
the premisses:

x ⩽ y,x : B ⊃ C,y ⩽ z,Γ ′→ ∆, z : B
x ⩽ y,x : B ⊃ C,z : C,y ⩽ z,Γ ′→ ∆.

By hp-weakening, these lead to

x ⩽ z,x ⩽ y,x : B ⊃ C,y ⩽ z,Γ ′→ ∆, z : B
x ⩽ z,x ⩽ y,x : B ⊃ C,z : C,y ⩽ z,Γ ′→ ∆.

Now we can apply L⊃ in order to get

x ⩽ z,x ⩽ y,x : B ⊃ C,y ⩽ z,Γ ′→ ∆.

We conclude by an application of transitivity. ■

Lemma 3.2.6. The rule

x ⩽ y,x : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B,y : A ⊃ B

x ⩽ y,x : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B

is admissible.

Proof. Direction “⇑” is just an instance of weakening. By invertibil-
ity of R⊃t we get

x ⩽ y,x : B ⊃ (A ⊃ B), y : B ⊃ (A ⊃ B), y : A,y : A,Γ → ∆, y : B,y : B
RC

x ⩽ y,x : B ⊃ (A ⊃ B), y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B
Lemma 3.2.5

x ⩽ y,x : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B ■
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3.3 Soundness and completeness

3.3.1 Semantics

A Kripke model [102] (X,R,val) is a set X together with an accessi-
bility relation R, i.e. a binary relation between elements of X, and a
valuation val, i.e. a function assigning one of the truth values 0 or 1
to an element x of X and an atomic formula P . The usual notation
is for val(x,P ) ≡ 1 is x ⊩ P . In Kripke models for intuitionistic logic,
the accessibility relation is a preorder, that is reflexive

∀x(xRx)

and transitive
∀x∀y(yRx⇒∀z(zRy⇒ zRx)),

and therefore it is denoted by ⩽. For convenience, we assume to
have equality = and a binary relation < on X which is transitive and
irreflexive, i.e.

∀x(x ≮ x),

and we define ⩽ as its reflexive closure:

x ⩽ y ⇐⇒ (x < y or x = y).

As usual, we denote by ⩾ the inverse relation of ⩽. The inductive
definition of truth of a proposition in Int in terms of Kripke seman-
tics is:

x ⊮⊥
x ⊩ A∧B if and only if x ⊩ A and x ⊩ B
x ⊩ A∨B if and only if x ⊩ A or x ⊩ B
x ⊩ A ⊃ B if and only if y ⊩ A⇒ y ⊩ B for all y such that x ⩽ y

Let x ∈ X. We say that ⩽ satisfies the semantic a fortiori property
for x if

∀y ⩾ x(y ⊩ B ⊃ (A ⊃ B)&y ⊩ A⇒ y ⊩ B). (SAFx)
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Let R be a relation on X. An infinite R-sequence is a sequence
(xi)i∈N of elements of X such that xiRxi+1 for all i ∈N. An infinite
R-sequence (xi)i∈N is convergent if there is i ∈N such that xj = xi for
all j > i. We say that R is Noetherian—for short, R satisfies Noeth—if
every infinite R-sequence converges.

Lemma 3.3.1. Let x ∈ X. If ⩽ is Noetherian and satisfies SAFx, then

∀y > x(y ⊩ B ⊃ (A ⊃ B)).

Proof. Notice that the relation < is transitive, irreflexive and
Noetherian. Therefore it follows from Theorem 2.4.3 and Propo-
sition 2.4.2 that its inverse > satisfies the Gödel–Löb Induction, that
is

∀x(∀y > x(∀z > y Ez⇒ Ey)⇒∀y > xEy) (GL-Ind)

for any given predicate E(x) on X. Therefore, if we let E(x) ≡ x ⊩ B ⊃
(A ⊃ B), it suffices to show that

∀y > x(∀z > y(z ⊩ B ⊃ (A ⊃ B))⇒ y ⊩ B ⊃ (A ⊃ B)). (3.1)

So let y > x such that

∀z > y(z ⊩ B ⊃ (A ⊃ B)). (3.2)

We claim that y ⊩ B ⊃ (A ⊃ B), i.e.

∀z ⩾ y(z ⊩ B⇒ z ⊩ A ⊃ B). (3.3)

So let z ⩾ y such that z ⊩ B. We have to prove z ⊩ A ⊃ B, i.e.

∀w ⩾ z(w ⊩ A⇒ w ⊩ B). (3.4)

So let w ⩾ z such that w ⊩ A. The claim is w ⊩ B.

— If w = z, then we already know that z ⊩ B.

— If w > z, then by transitivity w > y and by (3.2) we get w ⊩ B ⊃
(A ⊃ B). Since w ⊩ A and by transitivity w ⩾ x, we can apply
SAFx and derive w ⊩ B.

59



3. A terminating intuitionistic calculus

Now unroll the proof to get claims (3.4), (3.3) and (3.1), and thus
the main claim. ■

Lemma 3.3.2. Fix x ∈ X. If ⩽ is Noetherian and satisfies SAFx, then
x ⊩ B ⊃ (A ⊃ B).

Proof. The claim is equivalent to

∀y ⩾ x(y ⊩ B⇒ y ⊩ A ⊃ B). (3.5)

Fix y ⩾ x such that y ⊩ B. We claim that y ⊩ A ⊃ B, i.e.

∀z ⩾ y(z ⊩ A⇒ z ⊩ B). (3.6)

Fix z ⩾ y such that z ⊩ A. We need to prove that z ⊩ B.

— If z = y, then we already know that y ⊩ B.

— If z > y, then by transitivity z > x and by Lemma 3.3.1 we get
z ⊩ B ⊃ (A ⊃ B). Since z ⊩ A and by transitivity z ⩾ x, we can
apply SAFx and derive z ⊩ B.

Now unroll the proof to get claims (3.6), and (3.5), and thus the
main claim. ■

Lemma 3.3.3 (Semantic Lemma). Fix x ∈ X. If ⩽ is Noetherian, then
the following are equivalent:

(i) SAFx.

(ii) ∀y ⩾ x(y ⊩ A⇒ y ⊩ B).

Proof. (ii)⇒(i): A fortiori.
(i)⇒(ii): Fix y ⩾ x such that y ⊩ A. We claim that y ⊩ B.

— If y = x, then by Lemma 3.3.2 we get that x ⊩ B ⊃ (A ⊃ B).

— If y > x, then by Lemma 3.3.1 we get that y ⊩ B ⊃ (A ⊃ B).

In either case we have y ⊩ B ⊃ (A ⊃ B) and y ⊩ A, thus we can apply
SAFx and get y ⊩ B. ■
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3.3.2 Proof search

Consider the proof search procedure as defined in [57]. We have the
analogous of 5.3–6:

Theorem 3.3.4 (Soundness). If G3It ⊢ Γ → ∆, then Γ → ∆ is valid in
every reflexive transitive and Noetherian frame.

Proof. If G3It ⊢ Γ → ∆, then G3I ⊢ Γ → ∆ is valid in every reflexive
transitive frame, a fortiori in every Noetherian one. ■

Theorem 3.3.5. Let Γ → ∆ be a sequent in the language of G3It . Then
it is decidable whether it is derivable in G3It . If it is not derivable,
the failed proof search gives a finite countermodel to the sequent on a
reflexive, transitive and Noetherian frame.

Proof. We adapt the proof of [57, Theorem 5.4], which in turn is
an adaptation to labelled sequents of the method of reduction trees
detailed for Gentzen’s LK by Takeuti [182, Chapter 1, Paragraph 8].

For an arbitrary sequent Γ → ∆ in the language of G3It we ap-
ply, whenever possible, root-first the rules of G3It , in a given order.
The procedure will construct either a derivation in G3It or a coun-
termodel.
1. Construction of the reduction tree: The reduction tree is defined
inductively in stages as follows: Stage 0 has Γ → ∆ at the root of the
tree. For each branch, stage n > 0 has two cases:
Case I: If the top-sequent is either an initial sequent or has some
x : A, not necessarily atomic, on both left and right, or is a conclu-
sion of L⊥, the construction of the branch ends.
Case II: Otherwise we continue the construction of the branch by
writing, above its top-sequent, other sequents that are obtained by
applying root-first the rules of G3It (except L⊥) whenever possible,
in a given order and under suitable conditions.

There are 8 different stages: one for each logical rule, Ref and
Trans. At stage 8 + 1 we repeat stage 1, at stage 8 + 2 we repeat stage
2, and so on until an initial sequent, or a conclusion of L⊥, or a
saturated branch (defined below) is found.
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The stages for the rules other than R⊃t are similar to those in
[133, Theorem 11.28]. Note that all rules but L⊃ discard the prin-
cipal formula; all such formulae however are available somewhere
on the branch for when we need to discuss the counter model con-
struction.

At the stage of construction relative to R⊃t, we consider all la-
belled formulae of the form x : A ⊃ (B ⊃ A) in the succedent. If
the succedent of the top-sequent contains y : B, y : (A ⊃ B) and the
antecedent contains x ⩽ y,x : B ⊃ (A ⊃ B), y : A, then we need not
further analyse y : A ⊃ B; this is justified by Lemma 3.2.6. More
generally, if x : B is in the succedent of any sequent on the branch,
we do the same. For each of the remaining labelled boxed formulae
xi : Bi ⊃ (Ai ⊃ Bi) for i ∈ {1, ...,m}, we apply several times the rule
R ⊃t, that is, we construct the step

x1⩽y1,...,xm⩽ym,y1 : B1⊃(A1⊃B1),...,ym : Bm⊃(Am⊃Bm),y1 : A1,...,ym : Am,Γ→∆,y1 : B1,...,ym : Bm

Γ → ∆,x1 : A1 ⊃ B1, ...,xm : Am ⊃ Bm

Finally, we consider the cases of the frame rules Ref and Trans.
As detailed in [56, 57], it is enough to instantiate Ref only on terms
in the top-sequent.

Observe also that, because of height-preserving admissibility of
contraction, once a rule has been considered, it need not be instan-
tiated again on the same principal formulae (for L⊃ such principal
formulae are pairs of the form x ⩽ y,x : A ⊃ B and it need not be
applied whenever its application produces a duplication of labelled
formulae or relational atoms.

To show that the procedure terminates, it is enough to show that
every branch in the reduction tree for a sequent Γ → ∆ is finite.
Every branch contains one or more chains of labels x1 ⩽ y1, ...,xm ⩽
ym, ...; each label that was not already in the endsequent is intro-
duced by a step of R⊃t. By inspection of the rules of G3It , it is clear
that all the formulae that occur in the branch are subformulae of
Γ ,∆ or formulae of the form A ⊃ (B ⊃ A) for some subformula B ⊃ A
of Γ ,∆. To ensure that all proper chains of labels in the reduction
tree are finite, it is therefore enough to prove that rule R⊃t need not
be applied twice to the same formula along a chain of labels.
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Suppose that we have a chain x0 ⩽ x1, ...,xn−1 ⩽ xn in the an-
tecedent and x0 : A ⊃ B,xn : A ⊃ B in the succedent of a branch in the
proof search and that R⊃t has been applied to x0 : A ⊃ B. We need
to show that there is no need to apply R⊃t to xn : A ⊃ B. Suppose for
simplicity that we have a chain of length 2, with x0 ≡ x,x1 ≡ y,x2 ≡ z:

x ⩽ y,y ⩽ z,y : B ⊃ (A ⊃ B),Γ ′→ ∆′, z : A ⊃ B
...

x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B
R⊃t

Γ → ∆,x : A ⊃ B

and assume that the top-sequent is closed under all the available
rules (excluding R⊃t) of the reduction procedure. By the closure
properties for L⊃, the proof search continues with

x ⩽ y,y ⩽ z,y : B ⊃ (A ⊃ B),Γ ′→ ∆′, z : B,z : A ⊃ B (3.7)

and

x ⩽ y,y ⩽ z,y : B ⊃ (A ⊃ B), z : A ⊃ B,Γ ′→ ∆′, z : A ⊃ B (3.8)

Observe that, as observed above, by Lemma 3.2.6 we need not fur-
ther analyse (3.8), and (3.7) follows from

x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B

by admissibility of weakening (Theorem 3.2.2(iii)) and Lemma
3.2.4.

We can conclude that all the chains of labels in the tree are fi-
nite. To conclude that the branch is finite, it is enough to observe
that it contains only a finite number of such chains (the number of
chains is bounded by a function of the number of disjunctions or
commas in the positive part of the endsequent; observe that this ar-
gument would break down in the labelled calculus for intuitionistic
logic because here we rely on the fact that propositional rules have
premisses in which the active formulae are strictly simpler than the
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principal formula). The general case, where the chain is longer than
just x ⩽ y,y ⩽ z, is similar.

A branch which either ends in an initial sequent or in a sequent
with the same labelled formula, even compound, in both the an-
tecedent and succedent, or at the conclusion of L⊥, or has a top-
sequent amenable to any of the reduction steps, is called unsatu-
rated. Every other branch is said to be saturated.
2. Construction of the countermodel: If the reduction tree for Γ → ∆

is not a derivation, it has at least one saturated branch. Let Γ ∗→ ∆∗

be the union (respectively, of the antecedents and succedents) of all
the sequents Γi → ∆i of the branch up to its top-sequent. We define
a Kripke model that forces all the formulae in Γ ∗ and no formula in
∆∗ and is therefore a countermodel to the sequent Γ → ∆.

Consider the frame X, the nodes of which are the labels that ap-
pear in the relational atoms in Γ ∗ and the order on which is given
by these relational atoms. Clearly, the construction of the reduction
tree imposes the frame properties on the countermodel: Ref and
Trans hold because the branch is saturated. Morever, any label that
appears in the sequent will appear in a relational atom (and thus
in the frame X), because the rule Ref has been applied. Noetheri-
anity clearly holds because all the strictly ascending chains in the
countermodel are finite by construction.

The model is defined as follows. First, the interpretation [[x]] of
each label x is just x itself. As for the valuation, for each labelled
atomic formula x : P in Γ ∗ we stipulate that x ⊩ P . Since the top-
sequent is not initial, for all labelled atomic formulae y : Q in ∆∗ we
infer that y ⊮ Q. We then show by induction on size(A) that x ⊩ A
if x : A is in Γ ∗ and that x ⊮ A if x : A is in ∆∗. Therefore we have a
countermodel to the endsequent Γ → ∆.

— If A is atomic, then the claim holds by the definition of the
model.

— If A ≡ ⊥, it cannot be in Γ ∗, by definition of saturated branch:
so x ⊮ A.
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— If A ≡ B∧C is in Γ ∗, then by the saturation of the branch we
also have x : B and x : C in Γ ∗. By the induction hypothesis,
x ⊩ B and x ⊩ C, and therefore x ⊩ B∧C.

— If A ≡ B∧C is in ∆∗, then by the saturation of the branch either
x : B or x : C in ∆∗. By the induction hypothesis, x ⊮ B or x ⊮ C,
and therefore x ⊮ B∧C.

— If A ≡ B∨C is in Γ ∗, then by the saturation of the branch either
x : B or x : C in Γ ∗. By the induction hypothesis, x ⊩ B or x ⊩ C,
and therefore x ⊩ B∨C.

— If A ≡ B∨C is in ∆∗, then by the saturation of the branch we
also have x : B and x : C in ∆∗. By the induction hypothesis,
x ⊮ B and x ⊮ C, and therefore x ⊮ B∨C.

— If A ≡ B ⊃ C is in Γ ∗, then for any occurrence of x ⩽ y in Γ ∗ we
find, by saturation and by the construction of the reduction
tree, either an occurrence of y : B in ∆∗ or an occurrence of
y : C in Γ ∗. By the induction hypothesis, in the former case
y ⊮ B, and in the latter y ⊩ C, so in both cases x ⊩ B ⊃ C.

— If A ≡ B ⊃ C is in ∆∗, we consider the step where it is analysed.
If x : C is in the succedent of that step (or any succedent below
it), then by the induction hypothesis x ⊩ B. Since x ⩽ x is
also in Γ ∗ by construction of the reduction tree, it follows that
x ⊩ B ⊃ C. Otherwise there is x ⩽ y in Γ ∗ and y : C in ∆∗. By the
induction hypothesis y ⊮ C, and therefore x ⊮ A. ■

Corollary 3.3.6. If a sequent Γ → ∆ is valid in every reflexive, transi-
tive and Noetherian frame, then it is derivable in G3It .

Corollary 3.3.7. A formula A is provable in Int if and only if the se-
quent→ x : A is derivable in G3It for some (or any) label x.

We observe that completeness implies in particular closure of
our sequent calculus with respect to Cut, so we have an indirect
proof of admissibility of the Cut rule, which was proved directly
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in Theorem 3.2.2, see also footnote 1. The proof of Theorem 3.3.5
is also of interest because it establishes the finite model property
for Int and gives a constructive decision procedure for it, i.e. an
algorithm that, given a sequent, constructs either a derivation or a
countermodel.

3.3.3 An example: Peirce’s Law

Consider Peirce’s Law:

((P ⊃Q) ⊃ P ) ⊃ P .

If we try to do a derivation of→ x : ((P ⊃Q) ⊃ P ) ⊃ P in G3I , we get

...
R⊃

y ⩽ w,z ⩽ w,y ⩽ z,y ⩽ y,x ⩽ y,w : P ,z : P ,y : (P ⊃Q) ⊃ P → y : P ,z : Q,w : Q
Trans

z ⩽ w,y ⩽ z,y ⩽ y,x ⩽ y,w : P ,z : P ,y : (P ⊃Q) ⊃ P → y : P ,z : Q,w : Q
R⊃

y ⩽ z,y ⩽ y,x ⩽ y,z : P ,y : (P ⊃Q) ⊃ P → y : P ,z : Q,z : P ⊃Q
...

L⊃
y ⩽ z,y ⩽ y,x ⩽ y,z : P ,y : (P ⊃Q) ⊃ P → y : P ,z : Q

R⊃
y ⩽ y,x ⩽ y,y : (P ⊃Q) ⊃ P → y : P ,y : P ⊃Q

...
L⊃

y ⩽ y,x ⩽ y,y : (P ⊃Q) ⊃ P → y : P
Ref⩽

x ⩽ y,y : (P ⊃Q) ⊃ P → y : P
R⊃

→ x : ((P ⊃Q) ⊃ P ) ⊃ P

We see that the left branch is generating a loop and therefore does
not terminate. If we try to do a derivation of→ x : ((P ⊃Q) ⊃ P ) ⊃ P
in G3It instead, we get

y ⩽ z,y ⩽ y,x ⩽ y,z : P ⊃ ((P ⊃Q) ⊃ P ), z : P ,y : P ⊃ (((P ⊃Q) ⊃ P ) ⊃ P ), y : (P ⊃Q) ⊃ P → y : P ,z : Q,z : P ⊃Q ...
L⊃

y ⩽ z,y ⩽ y,x ⩽ y,z : P ⊃ ((P ⊃Q) ⊃ P ), z : P ,y : P ⊃ (((P ⊃Q) ⊃ P ) ⊃ P ), y : (P ⊃Q) ⊃ P → y : P ,z : Q
R⊃ty ⩽ y,x ⩽ y,y : P ⊃ (((P ⊃Q) ⊃ P ) ⊃ P ), y : (P ⊃Q) ⊃ P → y : P ,y : P ⊃Q ...

L⊃
y ⩽ y,x ⩽ y,y : P ⊃ (((P ⊃Q) ⊃ P ) ⊃ P ), y : (P ⊃Q) ⊃ P → y : P

Ref⩽x ⩽ y,y : P ⊃ (((P ⊃Q) ⊃ P ) ⊃ P ), y : (P ⊃Q) ⊃ P → y : P
R⊃t→ x : ((P ⊃Q) ⊃ P ) ⊃ P

This time, the proof search algorithm defined in the proof of Theo-
rem 3.3.5 tells us that the top-sequent of the left branch need not be
further analysed, and it helps us in constructing a countermodel:
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x y ⊮ P z ⊩ P ,z ⊮Q

Let’s check that actually x ⊮ ((P ⊃ Q) ⊃ P ) ⊃ P , which is equivalent
to the statement that

∀x1 ⩾ x(∀x2 ⩾ x1(∀x3 ⩾ x2(x3 ⊩ P ⇒ x3 ⊩Q)⇒ x2 ⊩ P )⇒ x1 ⊩ P )

does not hold. We check that this does not hold for x1 ≡ y. Since
y ⊮ P , we just need to show that

∀x2 ⩾ y(∀x3 ⩾ x2(x3 ⊩ P ⇒ x3 ⊩Q)⇒ x2 ⊩ P ).

We have two cases: if x2 ≡ y, then our claim follows from y ⩽ z and
z ⊩ P ⇏ z ⊩Q; if x2 ≡ z, then our claim follows a fortiori from z ⊩ P .

3.4 Embedding into Grzegorczyk logic

We recall that modal logic is obtained by adding the modal operator
□ to the language of propositional logic, and inductive clauses for
valuations of Kripke frames are the following:

x ⊮⊥
x ⊩ A ⊃ B if and only if x ⊩ A⇒ x ⊩ B

x ⊩ A∧B if and only if x ⊩ A and x ⊩ B
x ⊩ A∨B if and only if x ⊩ A or x ⊩ B
x ⊩ □A if and only if ∀y(x ⩽ y⇒ y ⊩ A)

The provability logic Grz (Grzegorczyk logic) [10, 57, 86] is an
extension of basic modal logic K with the additional schemata

□A ⊃ A (Ax. T)
□A ⊃ □□A (Ax. 4)

□(G(A) ⊃ A) ⊃ A (Ax. Grz)
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Initial sequent

x : P ,Γ → ∆,x : P

Propositional rules
x : A,x : B,Γ → ∆

L∧
x : A∧B,Γ → ∆

Γ → ∆,x : A Γ → ∆,x : B
R∧

Γ → ∆,x : A∧B
x : A,Γ → ∆ x : B,Γ → ∆

L∨
x : A∨B,Γ → ∆

Γ → ∆,x : A,x : B
R∨

Γ → ∆,x : A∨B
Γ → ∆,x : A x : B,Γ → ∆

L⊃
x : A ⊃ B,Γ → ∆

x : A,Γ → ∆,x : B
R⊃

Γ → ∆,x : A ⊃ B
L⊥

x : ⊥,Γ → ∆

Modal rules
x ⩽ y,y : A,x : □A,Γ → ∆

L□
x ⩽ y,x : □A,Γ → ∆

x ⩽ y,y : G(A),Γ → ∆, y : A
R□Z

Γ → ∆,x : □A

Mathematical rules
x ⩽ x,Γ → ∆

Ref⩽
Γ → ∆

x ⩽ z,x ⩽ y,y ⩽ z,Γ → ∆
Trans⩽x ⩽ y,y ⩽ z,Γ → ∆

Table 3.3: The sequent calculus G3Grz . Rule R□ has the condition
that y is fresh.

where G(A) ≡ □(A ⊃ □A). Grz is characterised by reflexive, transi-
tive and Noetherian frames [57]. The sequent calculus G3Grz for
Grz (see table B.6) satisfies all usual structural rules, including hp-
invertibility of its rules [57].

As shown in [57], an indirect decision procedure for Int is ob-
tained through faithfulness of the embedding of Int into Grz via
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the translation □ inductively defined as

P □ ≡ □P
⊥□ ≡ ⊥

(A∧B)□ ≡ A□ ∧B□

(A∨B)□ ≡ A□ ∨B□

(A ⊃ B)□ ≡ □(A□ ⊃ B□)

Labels and relational atoms are left unchanged.

Remark 3.4.1. The translation of R⊃t is the following:

x ⩽ y,y : □(B□ ⊃ □(A□ ⊃ B□)), y : A□,Γ □→ ∆□, y : B□
(y fresh)

Γ □→ ∆□,x : □(A□ ⊃ B□)

If we set A ≡ ⊤, this is equivalent to

x ⩽ y,y : □(B□ ⊃ □B□),Γ □→ ∆□, y : B□
(y fresh)

Γ □→ ∆□,x : □B□

which is an instance of R□Z, the rule that allows decidability in the
calculus G3Grz for Grzegorczyk logic.

We now want to give a proof of faithfulness alternative to the
one is given in [57] by using G3It in place of G3I . We first need a
few lemmata:

Lemma 3.4.2. If there is a derivation of

x : A ⊃ B,Γ → ∆ (3.9)

in G3Grz of height n, then there are derivations of

Γ → ∆,x : A (3.10)
x : B,Γ → ∆ (3.11)

in G3Grz of height at most n. If, moreover, x : A ⊃ B is used as the
principal formula somewhere in the given derivation of (3.9), then the
derivations of (3.10) and (3.11) have height at most n− 1.
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Proof. We slightly modify the usual argument for hp-invertibility
of L⊃ (see, e.g. [125, Proposition 4.11]). The proof proceeds by in-
duction on n.

n = 0: Trivial.
n > 0: If x : A ⊃ B is principal in the last rule applied in the

derivation of (3.9), then the two branches are derivations of (3.10)
and (3.11) of height at most n− 1. If it is not principal and the last
rule applied is rule, then we proceed as usual by applying the in-
duction hypothesis to the previous step(s) followed by rule. ■

Lemma 3.4.3. The rule

x ⩽ y,x : A□, y : A□,Γ → ∆

x ⩽ y,x : A□,Γ → ∆

with the condition that the top-sequent is saturated under transitivity,
is hp-admissible in G3Grz .

Proof. We prove it by induction on the height of the derivation of
the premiss, with a subinduction on the length of A.

n = 0: Trivial.
n > 0: The only nontrivial cases are those in which the last rule

applied is a left rule and y : A□ is principal. Cases L∧ and L∨ are
dealt with as in Lemma 3.2.5, and L□ as in [57, Lemma 3.14]. The
assumption of saturation under transitivity makes the application
of Trans in [57, Lemma 3.14] unnecessary, thus ensuring height
preservation. ■

Lemma 3.4.4. The rule

x : A□,x : □((A□ ⊃ B) ⊃ C),Γ → ∆

x : A□,x : □(B ⊃ C),Γ → ∆

with the condition that the top-sequent is saturated under transitivity,
is hp-admissible in G3Grz .

Proof. Suppose that there is a derivation of

x : A□,x : □((A□ ⊃ B) ⊃ C),Γ → ∆ (3.12)
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of height n. We prove by induction on n that there is a derivation of

x : A□,x : □(B ⊃ C),Γ → ∆ (3.13)

of height n.
n = 0: All cases are trivial.
n > 0: The cases in which the principal formula is in Γ or ∆ are

trivial.
Suppose that the principal formula is x : A□, and consider the case
in which A ≡ A1 ∧A2, which means that we have a derivation

x : A□1 ,x : A□2 ,x : □((A□ ⊃ B) ⊃ C),Γ → ∆
L∧

x : A□,x : □((A□ ⊃ B) ⊃ C),Γ → ∆

We can apply hp-weakening on the premiss and get

x : A□,x : A□1 ,x : A□2 ,x : □((A□ ⊃ B) ⊃ C),Γ → ∆,

to which we can apply the induction hypothesis:

x : A□,x : A□1 ,x : A□2 ,x : □(B ⊃ C),Γ → ∆.

We conclude by L∧ and contraction.
Suppose that the principal formula is x : A□, and consider the case
in which A ≡ A1 ∨A2, which means that we have a derivation

x : A□1 ,x : □((A□ ⊃ B) ⊃ C),Γ → ∆ x : A□2 ,x : □((A□ ⊃ B) ⊃ C),Γ → ∆
L∨

x : A□,x : □((A□ ⊃ B) ⊃ C),Γ → ∆

We can apply hp-weakening on the premisses and get

x : A□,x : A□1 ,x : □((A□ ⊃ B) ⊃ C),Γ → ∆

x : A□,x : A□2 ,x : □((A□ ⊃ B) ⊃ C),Γ → ∆

to which we can apply the induction hypothesis:

x : A□,x : A□1 ,x : □(B ⊃ C),Γ → ∆

x : A□,x : A□2 ,x : □(B ⊃ C),Γ → ∆
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We conclude by L∨ and contraction.
Suppose that the principal formula is x : A□, and consider the case
in which A ≡ A1 ⊃ A2 or A ≡ P , which means that we have a deriva-
tion

y : A,x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆
L□

x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆

where Γ ≡ x ⩽ y,Γ ′. We can apply the induction hypothesis to the
premiss:

y : A,x : A□,x : □(B ⊃ C),x ⩽ y,Γ ′→ ∆

We conclude by L⊃.
Now suppose that the principal formula is x : □((A□ ⊃ B) ⊃ C). This
means that we have

y : (A□ ⊃ B) ⊃ C,x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆
L□

x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆

where Γ ≡ x ⩽ y,Γ ′. We can assume that y : (A□ ⊃ B) ⊃ C is used
as the principal formula somewhere above this instance of L□: if
not, then we could find a derivation of (3.12) without this instance
of L□, this would have lesser height and therefore we could apply
the induction hypothesis to it. By applying hp-weakening to the
premiss, we obtain a derivation of

y : A□, y : (A□ ⊃ B) ⊃ C,x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆

of height n−1 and such that y : (A□ ⊃ B) ⊃ C is used as the principal
formula somewhere above. Now by Lemma 3.4.2 on invertibility of
L⊃ we get derivations of

y : C,y : A□,x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆ (3.14)
y : A□,x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆, y : A□ ⊃ B,

(3.15)

both of height n− 2. Now we can apply the induction hypothesis to
(3.14) and get a derivation of

y : C,y : A□,x : A□,x : □(B ⊃ C),x ⩽ y,Γ ′→ ∆ (3.16)

72



3.4. Embedding into Grzegorczyk logic

of height n − 2. By applying hp-invertibility of R⊃ and hp-
contraction to (3.15), we get a derivation of

y : A□,x : A□,x : □((A□ ⊃ B) ⊃ C),x ⩽ y,Γ ′→ ∆, y : B

of height n−2, to which we can apply the induction hypothesis and
get a derivation of

y : A□,x : A□,x : □(B ⊃ C),x ⩽ y,Γ ′→ ∆, y : B (3.17)

of height n− 2. Now we can apply L⊃ to (3.16) and (3.17) and get a
derivation of

y : B ⊃ C,y : A□,x : A□,x : □(B ⊃ C),x ⩽ y,Γ ′→ ∆

of height n− 1, which by an application of L□ gives a derivation of

y : A□,x : A□,x : □(B ⊃ C),x ⩽ y,Γ ′→ ∆

of height n. We conclude by Lemma 3.4.3. ■

Now we are able to prove faithfulness:

Theorem 3.4.5 (Faithfulness). Let Γ → ∆ be a sequent in the language
of G3It . If

G3Grz ⊢ Γ □→ ∆□,

then
G3It ⊢ Γ → ∆.

Proof. By induction on the height of the derivation of Γ □→ ∆□. We
assume that Γ □ → ∆□ is saturated under transitivity: this can be
done without loss of generality since it is equivalent to apply Trans
in the proof search as soon as possible, and it is innocuous because
the rule operates on labels already introduced.

n = 0: If it is an initial sequent or the conclusion of L⊥, then it
can be translated smoothly into the corresponding initial sequent
or rule in G3It .

n > 0: First, notice that rules for ⊃ cannot produce a sequent of
this form. If it is the conclusion of a rule for ⊥,∧,∨, then it can be
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translated smoothly into the corresponding initial sequent or rule
in G3It . If it is derived by a modal rule, then the principal formula
can be of the form □P or of the form □(A□ ⊃ B□). We have four cases:

— If □P is principal on the left, we have

x ⩽ y,y : P ,x : □P ,Γ ′□→ ∆′□
L□

x ⩽ y,x : □P ,Γ ′□→ ∆′□

which is translated into the admissible G3It step

x ⩽ y,y : P ,x : P ,Γ ′→ ∆′

x ⩽ y,x : P ,Γ ′→ ∆′

— If □P is principal on the right, we have

x ⩽ y,y : G(P ),Γ ′□→ ∆′□, y : P
R□Z

Γ ′□→ ∆′□,x : □P

which, as seen in Remark 3.4.1, is the translation of a step of
rule R⊃t with ⊤ ⊃ P as the principal formula.

— If □(A□ ⊃ B□) is principal on the left, we have

x ⩽ y,y : A□ ⊃ B□,x : □(A□ ⊃ B□),Γ ′□→ ∆′□
L□

x ⩽ y,x : □(A□ ⊃ B□),Γ ′□→ ∆′□

from which, by hp-invertibility of L⊃ in G3Grz we have

G3Grz ⊢ x ⩽ y,y : B□,x : □(A□ ⊃ B□),Γ ′□→ ∆′□

G3Grz ⊢ x ⩽ y,x : □(A□ ⊃ B□),Γ ′□→ ∆′□, y : A□

to which the induction hypothesis applies:

G3It ⊢ x ⩽ y,y : B,x : A ⊃ B,Γ ′→ ∆′

G3It ⊢ x ⩽ y,x : A ⊃ B,Γ ′→ ∆′, y : A

We conclude by an application of L⊃.
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— If □(A□ ⊃ B□) is principal on the right, we have

x ⩽ y,y : G(A□ ⊃ B□),Γ ′□→ ∆′□, y : A□ ⊃ B□
R□Z

Γ ′□→ ∆′□,x : □(A□ ⊃ B□)

from which, by hp-invertibility of R⊃ in G3Grz we have

G3Grz ⊢ x ⩽ y,y : G(A□ ⊃ B□), y : A□,Γ ′□→ ∆′□, y : B□.

By Lemma 3.4.4, it follows that

G3Grz ⊢ x ⩽ y,y : □(B□ ⊃ □(A□ ⊃ B□)), y : A□,Γ ′□→ ∆′□, y : B□,

to which the induction hypothesis applies:

G3It ⊢ x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ ′→ ∆′, y : B

We conclude by R⊃t. ■
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Part II

Conservation: Glivenko-style
results

77





4 Glivenko classes and
constructive cut elimination
in infinitary logic

4.1 Introduction

Notable parts of algebra and geometry can be formalised as coher-
ent theories over first-order classical or intuitionistic logic. Their
axioms are coherent implications—i.e., universal closures of implica-
tions D1 ⊃D2, where both D1 and D2 are built up from atoms using
conjunction, disjunction and existential quantification. Examples
include all algebraic theories, such as group theory and ring theory,
all essentially algebraic theories, such as category theory [72], the
theory of fields, the theory of local rings, lattice theory [177], pro-
jective and affine geometry [133,177], the theory of separably closed
local rings (aka “strictly Henselian local rings”) [98, 133, 194].

Although wide, the class of coherent theories leaves out cer-
tain axioms used in algebra—such as the axioms of torsion abelian
groups or of Archimedean ordered fields, or in the theory of con-
nected graphs, as well as in the modelling of epistemic social no-
tions such as common knowledge. All the latter examples can how-
ever be axiomatised by means of geometric axioms: a generalisation
of coherent axioms that admits infinitary disjunctions.
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Coherent and geometric implications give a Glivenko sequent
class [137], as shown by Barr’s Theorem:

Theorem 4.1.1 (Barr’s Theorem [11]). If T is a coherent (geometric)
theory and A is a coherent (geometric) sentence provable from T with
(infinitary) classical logic, then A is provable from T with (infinitary)
intuitionistic logic.

Barr’s Theorem1 has its origin, through appropriate completeness
results, in the theory of sheaf models, with the following formula-
tion:

Theorem 4.1.2 ( [112], Ch.9, Thm.2). For every Grothendieck topos
E there exists a complete Boolean algebra B and a surjective geometric
morphism Sh(B) −→ E .

Barr’s theorem provides an important conservativity result for
classical and intuitionistic geometric theories. Orevkov [137] has
established some well-known conservativity results of classical
logic over intuitionistic and minimal first-order logics with equality.
These results generalise the finitary Barr’s Theorem by considering
further classes of sequent for which conservativity holds. In partic-
ular, [137] isolates seven classes of single-succedent sequents—the
so-called Glivenko sequent classes—defined in terms of the absence
of positive or negative occurrence of particular logical symbols (in a
first-order language with equality) where classical derivability im-
plies intuitionistic or even minimal derivability. The same paper
also shows that these classes are optimal:2 any class of sequents
for which classical derivability implies intuitionisitc derivability is
contained in one of these seven classes. The interest of such con-
servativity results is twofold. First, since proofs in intuitionistic

1 Barr’s theorem is often alleged to achieve more in that it also allows to elimi-
nate uses of the axiom of choice. That such formulations of Barr’s theorem should
be taken with caution is demonstrated in [146] where internal vs. external ad-
dition of the the axiom of choice is considered and it is shown that the latter
preserves conservativity whereas the former does not.

2Barr’s Theorem corresponds to Orevkov’s first class.
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logic obtain a computational meaning via the Curry-Howard cor-
respondence, such results identify some classical theories having a
computational content. Second, since it may be easier to prove the-
orems in classical than in intuitionistic or minimal logic and since
there are more well-developed automated theorem provers for clas-
sical than for sub-classical logics, such results simplify the search
for theorems in intuitionistic (and minimal) theories.

Orevkov’s results on Glivenko sequent classes have not received
much attention despite their usefulness in analysing the computa-
tional content of classical theories. One of the main reasons for this
is the complexity of Orevkov’s [137] proofs. In recent year simpler
proofs of conservativity results for some Glivenko sequent classes
has been given [93, 121, 169]. An extremely simple and purely log-
ical proof of the first-order Barr’s Theorem for coherent theories
has been given in [124] by means of G3-style sequent calculi: it
is shown how to express coherent implications by means of rules
that preserve the admissibility of the structural rules of inference.
As a consequence, Barr’s theorem is proved by simply noticing that
a proof in G3C.G—i.e. the calculus for classical logic extended with
rules expressing geometric implications—is also a proof in the in-
tuitionistic multisuccedent calculus G3I.G. A purely logical proof
of Barr’s Theorem for infinitary geometric theories has been given
[131]. This work considers the G3-style calculi for classical and in-
tuitionistic infinitary logic G3[CI]ω.

This simple and purely logical proof of Barr’s Theorem has
been extended to geometric theories in [131]. This work consid-
ers the G3-style calculi for classical and intuitionistic infinitary
logic G3[CI]ω (with finite sequents instead of countably infinite se-
quents) and their extension with rules expressing geometric impli-
cations G3[CI]ω.G. To illustrate, the geometric axiom of torsion
abelian groups

∀x.
∨
n>0

nx = 0
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is expressed by the infinitary rule:

{nx = 0,Γ → ∆ | n > 0}
Γ → ∆

The main results in [131] are that in G3[CI]ω.G all rules are height-
preserving invertible, the structural rules of weakening and con-
traction are height-preserving admissible, and cut is admissible.
Hence, Barr’s Theorem for geometric theories is proved in [131] as
it was done in [124] for coherent ones: a proof in G3Cω.G is also a
proof in the intuitionistic multisuccedent calculus G3Iω.G.

The aforementioned proof of first-order Barr’s Theorem has fur-
ther been extended to cover all other first-order Glivenko sequent
classes in [130]. In this chapter we extend the purely logical proof
of the infinitary Barr’s Theorem given in [131] to cover all other in-
finitary Glivenko sequent classes: for each class we give a purely
constructive proof of conservativity of classical infinitary logic and
of a class of classical geometric theories over intuitionistic and min-
imal infinitary logics and geometric theories, respectively.

We observe that the cut-elimination procedure given in Sect. 4.1
of [131] is not constructive. This is an instance of a typical limita-
tion of cut eliminations in infinitary logics [64,111,182] since these
proofs use the ‘natural’ (or Hessenberg) commutative sum of ordi-
nals α#β:

(ωαm + · · ·+ωα0)#(ωβn + · · ·+ωβ0) = (ωγm+n+1 + · · ·+ωγ0)

where γm+n+1, . . . ,γ0 is a decreasing permutation of αm, . . . ,α0,βn, . . . ,β0;
see [184, 10.1.2B]. The resort to the natural sum is inescapable for
proofs using the cut-height—i.e., the sum of the derivation-height
of the premisses of cut—as inductive parameter: it ensures that we
can apply the inductive hypothesis when permuting the cut up-
wards in the derivation of one of the premisses. Nevertheless, it
makes the proof non-constructive since

[its] definition utilises the Cantor normal form of ordi-
nals to base ω. This normal form is not available in CZF
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(or IZF) and thus a different approach is called for. [146,
p. 369]

This makes the conservativity results about infinitary Glivenko
classes less appealing from the perspective of constructivists: cut is
necessary to prove completeness of geometric theories—since they
are axiomatised via geometric rules—and a non-constructive proof
of cut elimination implies that we are working in a classical meta-
theory.

To overcome this drawback we constructivise3 the proof
of (height-preserving) admissibility of the structural rules for
G3[CIM]ω.G by giving procedures that avoid completely the need
for ordinal numbers: transfinite inductions on (sums of) ordinals
are replaced by inductions on well-founded trees and by Brouwer’s
principle of Bar Induction—see Theorem 4.6.7.4 In particular, we
capture the fact that a derivation D1 is “smaller” than D2 if each
branch ofD1 is “smaller” than a branch ofD2 by introducing a new
well-founded inductive parameter called proof embeddability. This
allows us to compare derivations without explicitly giving them an
height, and thus to replace the transfinite inductions on the height
of derivations used in [66, 131] with well-founded inductions on
this new parameter. This will allow us to give an ordinal-free proof
of invertibility and of the admissibility of the structural rules of
weakening and contraction.5 Next, we build on these results to give
a constructive and ordinal free proof of cut-elimination for geomet-
ric logics. In order to do so we replace the Dragalin-style proof
adopted in [131] with a (modification of a) proof strategy intro-
duced in [118] for fuzzy logics. This strategy replaces the induc-

3By “constructive” here we mean not relying on classical logical principles
such as excluded middle or linearity of ordinals but we do not mean acceptable
in all schools of constructive mathematics.

4See [146, §7] for a different proof, based on constructive ordinals, of cut
elimination in infinitary logic. The proof in [8] does not use ordinals, but it is
inherently classical in that it uses a one-sided calculus based on De Morgan’s
dualities.

5Even if all proofs in [66] make no use of non-constructive assumptions about
ordinals, we prefer to avoid completely the assumption of total ordering.
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tion on the natural sum of the heights of the derivations of the two
premisses of Cut with two separate well-founded inductions with
proof embeddability on the derivation of the right and left premiss,
respectively. Finally, we use an instances of Brouwer’s Bar Induction
to prove that an uppermost instance of Cut is admissible and than
another instance to prove that all instances of Cut are admissible.
Bar Induction is needed to avoid considering a Cut of maximal rank
as in [118]—since this would need the trichotomy of ordinals—and,
hence, to obtain a constructive and ordinal-free proof of the admis-
sibility of Cut in G3[CIM]ω.G.

The chapter is organised as follows. Sections 4.2 and 4.3 intro-
duce sequent calculi for infinitary logics and for geometric theo-
ries, respectively. Next, Section 4.4 introduces the notion of proof-
embeddability and Section 4.5 proves that all rules of G3[CIM]ω.G
are proof embeddable invertible and that the structural rules
of weakening and contraction are proof embeddable admissible.
Building on these results Section 4.6 presents an ordinal-free and
constructive proof of the admissibility of Cut. Finally, Section 4.7
proves conservativity results of classical logic (theories) over intu-
itionistic and minimal logics (theories) for the infinitary Glivenko
sequent classes.

4.2 Syntax and sequent calculi for
infinitary logics

Let S be a signature containing, for every n ∈ N, a countable
(i.e., finite, possibly empty, or countably infinite) set RELSn of n-
ary predicate letters P n1 , P

n
2 , . . . , and a countable set CON of indi-

vidual constants c1, c2, . . . . Let VAR be a denumerable set of vari-
ables x1,x2, . . . . The language contains the following logical sym-
bols: =,⊤,⊥, ∧, ∨, ⊃, ∀, ∃, as well as countable conjunction

∧
n>0

and countable disjunction
∨
n>0.

The sets T ER of the of terms is the union of VAR and CON . The
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set of formulae of the languageL Sω is generated by:

A ::= P ni t1, . . . , tn | t1 = t2 | ⊤ | ⊥ | A∧A | A∨A | A ⊃ A | ∀xA | ∃xA

|
∧
n>0

An |
∨
n>0

An

where ti ∈ T ER, P ni ∈ REL
S
n , and x ∈ VAR.

We use the following metavariables:

— x,y,z for variables and x⃗, y⃗, z⃗ for lists thereof;

— t, s, r for terms;

— P ,Q,R for atomic formulae;

— A,B,C for formulae.

We use A(x⃗) to say that the variables having free occurrences in A
are included in x⃗. We follow the standard conventions for paren-
theses. The formulae ⊤, ¬A and A ⊃⊂ B are defined as expected.
When considering (infinitary) classical logic we can shrink the set
of primitive logical symbols by means of the well-known De Mor-
gan’s dualities (including

∨
n>0An ⊃⊂ ¬

∧
n>0¬A), however also in

the classical case we consider a language where all operators (ex-
cluding ¬ and ⊃⊂) are taken as primitive. This is not just useful but
even necessary since our purpose is to extract the constructive con-
tent of classical proofs and many of the interdefinabilities do not
hold in intuitionistic logic.

The notions of free and bound occurrences of a variable in a for-
mula are the usual ones. We posit that no formula may have in-
finitely many free variables. A sentence is a formula without free
occurrences of variables. Given a formula A, we use A[t/x] to de-
note the formula obtained by replacing each free occurrence of x in
A with an occurrence of t, provided that t is free for x in A—i.e., no
new occurrence of t is bound by a quantifier.

Sequents Γ → ∆ have a finite multiset of formulae on each side.
The inference rules for

∨
n>0 are thus:

{Γ ,An→ ∆ | n > 0}
Γ ,
∨
n>0An→ ∆

L
∨ Γ → ∆,

∨
n>0An,Ak

Γ → ∆,
∨
n>0An

R
∨
.

85



4. Glivenko classes and constructive cut elimination in

infinitary logic

Observe that L
∨

has countably many premisses, one for each n > 0.
The rules for

∧
n>0 are dual to the above ones.

Derivations built using these rules are thus (in general) infinite
trees, with countable branching but where (as may be proved by
induction on the definition of derivation) each branch has finite
length. The leaves of the trees are those where the two sides have
an atomic formula in common, and also instances of rules L⊥, R⊤.
To make this precise, we give a formal definition of the notion of
derivationD and its end-sequent.

Definition 4.2.1 (Derivations and their end-sequent).

(i) Any sequent Γ → ∆, where some atomic formula occurs in
both Γ and ∆, is a derivation with end-sequent Γ → ∆.

In minimal logic, any sequent ⊥,Γ → ∆,⊥, is a derivation with
end-sequent ⊥,Γ → ∆,⊥.

(ii) Let β ⩽ ω. If each Dn, for 0 < n < β, is a derivation with end-
sequent Γn→ ∆n and

. . . Γn→ ∆n . . .
Γ → ∆

R

is an instance of a rule with β premisses, then

. . .
Dn

 ...

Γn→ ∆n . . .
R

Γ → ∆

is a derivation with end-sequent Γ → ∆.6 If X is a calculus, we
use X ⊢ Γ → ∆ to say that Γ → ∆ is derivable in the calculus X.

6Derivations can thus be represented as (infinite) trees, where the nodes are
the sequents in the derivation, and a nodes that corresponds to a premiss of a
rule is an immediate successor of the node that corresponds to the conclusion of
such rule. Therefore, a node that corresponds to the conclusion of a rule with β
premisses has β immediate successors.
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Derivations and formulae can be associated with ordinals, but we
don’t need this association here and actually depart from the ordi-
nal approach for the reasons explained above. For the definition
of ordinal height of a derivation and ordinal depth of a formula in
infinitary logic we refer the reader to [131].

Definition 4.2.2 (Sequent calculi for infinitary logics with equality).

(i) G3Cω is defined by the rules in Table 4.1;

(ii) G3Iω is defined as G3Cω with the exception of rules L⊃, R⊃,
R∀, and R

∧
that are defined as in Table 4.2.

By G3[CI]ω we denote any one of the two calculi above. Observe
that a multi-succedent intuitionistic calculus as the one we use is
closer to a classical calculus than the usual calculus with the restric-
tion that the succedent of sequents should consist of at most one
formula (used, for example in [146]). As in the finitary case such a
multi-succedent choice is particularly useful for proving Glivenko-
style results [130].

As usual, we consider only derivations of pure sequents—i.e., se-
quents where no variable has both free and bound occurrences. We
say that Γ → ∆ is G3[CI]ω-derivable, and we write G3[CI]ω ⊢ Γ → ∆,
if there is a G3[CI]ω-derivation of Γ → ∆ or of an alphabetic variant
of Γ → ∆. A rule is said to be admissible in G3[CI]ω, if, whenever its
premisses are G3[CI]ω-derivable, also its conclusion is G3[CI]ω-
derivable. A rule is said to be invertible in G3[CI]ω, if, whenever its
conclusion is G3[CI]ω-derivable, also its premisses are G3[CI]ω-
derivable. In each rule depicted in Tables 4.1, 4.2, and 4.3 the mul-
tisets Γ and ∆ are called contexts, the formulae occurring in the con-
clusion are called principal, and the formulae occurring in the pre-
miss(es) only are called active.
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Initial sequent

P ,Γ → ∆, P

Propositional rules

⊥,Γ → ∆
L⊥

Γ → ∆,⊤ R⊤

A,B,Γ → ∆

A∧B,Γ → ∆
L∧ Γ → ∆,A Γ → ∆,B

Γ → ∆,A∧B R∧

A,Γ → ∆ B,Γ → ∆

A∨B,Γ → ∆
L∨ Γ → ∆,A,B

Γ → ∆,A∨B R∨

Γ → ∆,A B,Γ → ∆

A ⊃ B,Γ → ∆
L ⊃ A,Γ → ∆,B

Γ → ∆,A ⊃ B R ⊃

Rules for quantifiers
A[y/x],∀xA,Γ → ∆

∀xA,Γ → ∆
L∀

Γ → ∆,A[z/x]
Γ → ∆,∀xA R∀ (y fresh)

A[z/x],Γ → ∆

∃xA,Γ → ∆
L∃ (y fresh)

Γ → ∆,A[y/x],∃xA
Γ → ∆,∃xA R∃

Infinitary rules
Ak ,

∧
An,Γ → ∆∧

An,Γ → ∆
L
∧ {Γ → ∆,Ai | i > 0}

Γ → ∆,
∧
An

R
∧

{Ai ,Γ → ∆ | i > 0}∨
An,Γ → ∆

L
∨ Γ → ∆,

∨
An,Ak

Γ → ∆,
∨
An

R
∨

Rules for equality

s = s,Γ → ∆

Γ → ∆
Ref

P [t/x], s = t,P [s/x],Γ → ∆

s = t,P [s/x],Γ → ∆
Repl

Table 4.1: The calculus G3Cω.
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Initial sequent As in G3Cω.

Rules As in G3Cω, except for the following:

A ⊃ B,Γ → ∆,A B,Γ → ∆

A ⊃ B,Γ → ∆
L ⊃ A,Γ → B

Γ → ∆,A ⊃ B R ⊃

Γ → A[z/x]
Γ → ∆,∀xA R∀

{Γ → Ai | i > 0}
Γ → ∆,

∧
An

R
∧

Table 4.2: The calculus G3Iω.

Initial sequent As in G3Iω, plus

⊥,Γ → ∆,⊥

Rules As in G3Iω, except for L⊥.

Table 4.3: The calculus G3Mω.

. . . Qn1
(x⃗, y⃗n), . . . ,Qnm(x⃗, y⃗n), P1(x⃗), . . . , Pk(x⃗),Γ → ∆ . . .

P1(x⃗), . . . , Pk(x⃗),Γ → ∆
LG

Table 4.4: Geometric rule LG expressing the geometric sentence (G)
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4.3 From geometric implications to
geometric rules

By a geometric implication we mean the universal closure of an im-
plicative formula whose antecedent and consequent are positive for-
mulae (i.e., formulae constructed from atomic formulae and ⊥,⊤
using only ∧, ∨, ∃, and

∨
n>0). More precisely

Definition 4.3.1 (Geometric implication).

— A formula is Horn iff it is built from atoms and ⊤ using only
∧;

— A formula is geometric iff it is built from atoms and ⊤,⊥ using
only ∧, ∨, ∃, and

∨
n>0;

— A sentence is a geometric implication iff it is of the form ∀x⃗(A⊃
B) where A and B are geometric formulae.

By a coherent implication we mean a geometric implication with-
out occurrences of

∨
n>0.

As is well known, for geometric implications we have a normal
form theorem.

Theorem 4.3.2 (Geometric normal form (GNF)). Any geometric im-
plication is equivalent to a possibly infinite conjunction of sentences of
the form

∀x⃗(A⊃B)

where A is Horn and B is a possibly infinite disjunction of existentially
quantified Horn formulae.

This normal form theorem is important because, as shown in [124]
for coherent implications and in [131] for geometric ones, we can
extract from a sentence G in GNF a geometric rule LG (where the
name LG indicates that it is a left rule) that can be added to a sequent
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calculus without altering its structural properties. To be more pre-
cise, let us consider the following sentence G in GNF:

∀x⃗(P1(x⃗)∧ · · · ∧ Pk(x⃗)⊃
∨
n>0

∃y⃗(Qn1
(x⃗, y⃗)∧ · · · ∧Qnm(x⃗, y⃗))) (G)

Such a sentence G determines the (finitary or infinitary) geometric
rule given in Table 4.4 with one premiss for each of the countably
many disjuncts in

∨
n>0(Qn1

(x⃗, y⃗)∧· · ·∧Qnm(x⃗, y⃗)). The variables in y⃗n
are chosen to be fresh, i.e. are not in the conclusion; and without loss
of generality they are all distinct. The list y⃗n of variables may vary
as n varies, and maybe no finite list suffices for all the countably
many cases. The variables x⃗ (finite in number) may be instantiated
with arbitrary terms. Henceforth we shall normally omit mention
of the variables.

We need also a further condition:

Definition 4.3.3 (Closure condition). Given a calculus with geomet-
ric rules, if it has a rule with an instance with repetition of some
principal formula such as:

. . . Q1, . . . ,Qn, P1, . . . , Pk−2, P ,P ,Γ → ∆ . . .
P1, . . . , Pk−2, P ,P ,Γ → ∆

LcG

then also the contracted instance

. . . Q1, . . . ,Qm, P1, . . . , Pk−2, P ,Γ → ∆ . . .
P1, . . . , Pk−2, P ,Γ → ∆

LcG

has to be included in the calculus.

As for the finitary case [124], also in the infinitary case the condition
is unproblematic, since each atomic formula contains only a finite
number of variables and therefore so are the instances; it follows
that, for each geometric rule, the number of rules that have to be
added is finite. Moreover, in many cases contracted instances need
not be added since they are admissible in the calculus without them.
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To illustrate, we consider the coherent rule Repl for equality given
in Table 4.1:

P [t/x], s = t,P [s/x],Γ → ∆

s = t,P [s/x],Γ → ∆
Repl

This rule generates contracted instances only when its two princi-
pal formulae (as well as its active formula) are copies of the same
reflexivity atom t = t. In this case, after having applied contraction,
we can replace the instance of Repl with an instance of Ref (instead
of Replc). That is we can transform:

t = t, t = t, t = t,Γ → ∆

t = t, t = t,Γ → ∆
Repl

into

t = t, t = t, t = t,Γ → ∆

t = t, t = t,Γ → ∆
LC

t = t,Γ → ∆
Ref

But this does not hold in general. For example, if < is an Eu-
clidean relation, we must add both of the following rules:

s < r, t < s, t < r,Γ → ∆

t < s, t < r,Γ → ∆
Euc and

s < s, t < s,Γ → ∆

t < s,Γ → ∆
Eucc

otherwise the valid sequent t < s→ s < s would not be contraction-
free derivable. In presence of Ref, no added rule is needed.

Theorem 4.3.4 ( [131]). If we add to the calculus G3[CI]ω a finite or
infinite family of geometric rules LG, then we can prove all of the geo-
metric sentences G from which they were determined.

In the following, we shall denote with G3[CI]ω.G any extension
of G3[CI]ω with a finite or infinite family of geometric rules LG
(together with all needed contracted instances thereof).

Before proceeding with the structural properties, we give some
examples of geometric axioms and their corresponding rules.

Example 4.3.5 (Geometric axioms and rules).

(i) The axiom of torsion Abelian groups, ∀x.
∨
n>1(nx = 0), be-

comes the rule

. . . nx = 0,Γ → ∆ . . .
Γ → ∆

RTor
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(ii) The axiom of Archimedean ordered fields, ∀x.
∨
n⩾1(x < n),

becomes the rule

. . . x < n,Γ → ∆ . . .
Γ → ∆

RArc

(iii) The axiom of connected graphs,

∀xy.x = y ∨
∨
n⩾1

∃z0 . . .∃zn(x = z0∧ y = zn∧ z0Rz1∧ · · · ∧ zn−1Rzn)

becomes the rule

x = y,Γ → ∆ xRy,Γ → ∆ . . . x = z0, y = zn, z0Rz1, . . . , zn−1Rzn,Γ → ∆ . . .
Γ → ∆

RConn

4.4 Embeddable derivation

The proofs given in [66, 131] make use of transfinite inductions on
the height of derivations, which are quite powerful tools. We claim,
however, that they are in a certain sense too powerful: they are often
non-constructive and, as it will be shown, can be avoided.

Usually, in order to compare two derivations, one assigns ordinal
numbers, called heights, to them, then compares these parameters.
As heights are inductively defined by means of the branches of the
derivation, this becomes a comparison between branches. Our main
observation is that, in order to compare two derivations, what we
actually need is just the fact that D is “smaller” than D ′ if each
branch of D is “smaller” than a branch of D ′, without explicitly
“measuring” them.

We make this precise by inductively defining simultaneously the
relations ≺ and ≼ between derivations. We read D ≼ D ′ as “D is
embeddable in D ′” and D ≺ D ′ as “D is strictly embeddable in
D ′”.

In what follows, we say that a derivationD is

— trivial if it is an initial or empty sequent;
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— composite, or nontrivial, if has the following form:

D
{ {Di}
Γ → ∆

It is decidable whetherD is trivial or composite, and the two prop-
erties are mutually exclusive.

Definition 4.4.1 (proof-embeddability).

(i) IfD andD ′ are trivial, thenD ≼D ′.

(ii) If

D
{ {Di}
Γ → ∆

and D ′
{ {D ′j }
Γ ′→ ∆′

and for eachDi there isD ′j such thatDi ≼D ′j , thenD ≼D ′.7

(iii) IfD ≼D ′ and

D ′′
{ ... D ′ ...

Γ → ∆

thenD ≺D ′′.

(iv) IfD ≺D ′ thenD ≼D ′.

This is a compact but unusual way to do parallel inductive def-
initions. An equivalent, more standard way to do this is to first
define ≼ by taking clauses (i)–(iii), where in the latter ≺ is replaced
by ≼, and then to define ≺ by taking clause (iii) alone. In this way,
clause (iv) becomes automatic.

Remark 4.4.2.

(i) By definition,D ≺D ′ impliesD ≼D ′.

7One may be mislead here by assuming that the correspondence between
branches implies that the two derivations have the same structure. However, this
is not the case as the correspondence is not required to be injective nor surjective.
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(ii) Note that, in general, D ≺D ′ is not the same as the conjunc-
tion of D ≼D ′ and D ,D ′; and similarly D ≼D ′ is not the
same as the disjunction of D ≺ D and D = D ′. However, it
can be shown thatD ≺D ′ if and only ifD ≼D ′ andD ′ $D .

Lemma 4.4.3. LetD be a trivial derivation.

(i) D ′ ≼D if and only if D ′ is trivial, and there is no D ′′ such that
D ′′ ≺D .

(ii) D ≼D ′ for everyD ′, andD ≺D ′′ for every nontrivialD ′′.

Proof. Straightforward. ■

Lemma 4.4.4. The relation ≼ is a (non-strict) preorder, i.e. it is reflex-
ive and transitive.

Proof. Reflexivity: Take a derivationD . We prove that

D ≼D (4.1)

by structural induction onD . IfD is trivial, thenD ≼D by clause
(i) of the definition. If

D
{ {Di}
Γ → ∆

with each Di satisfying (4.1), then D ≼D by clause (ii) of the defi-
nition.

Transitivity: Take a derivationD . We prove that

∀D ′∀D ′′.(D ≼D ′&D ′ ≼D ′′)⇒D ≼D ′′ (4.2)

by structural induction onD . IfD is trivial, see Lemma 4.4.3. Sup-
pose that

D
{ {Di}
Γ → ∆

with each Di satisfying (4.2). Consider D ′,D ′′ such that D ≼ D ′

andD ′ ≼D ′′. By Lemma 4.4.3, sinceD is composite, then so must
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beD ′, and similarly sinceD ′ is composite, then so must beD ′′:

D ′
{ {D ′j }
Γ ′→ ∆′

and D ′′
{ {D ′′k }
Γ ′′→ ∆′′

For everyDi∗ , we show that there is a (finite) chain

Di∗ ≼ ... ≼D
′′
k∗

for some D ′′k∗ . We do a proof by cases, depending on whether D ≼
D ′ andD ′ ≼D ′′ are witnessed by clause (ii) or (iii):

— Suppose that both D ≼ D ′ and D ′ ≼ D ′′ are witnessed by
clause (ii). In particular, there is D ′j∗ such that Di∗ ≼ D ′j∗ , for
which in turn there isD ′′k∗ such that

Di∗ ≼D
′
j∗ ≼D

′′
k∗ .

— Suppose thatD ≼D ′ is witnessed by clause (iii) and thatD ′ ≼
D ′′ is witnessed by clause (ii). This means that there is Dj∗
such thatD ≼D ′j∗ and for eachD ′j there isD ′′k such thatD ′j ≼
D ′′k . In particular, there isD ′′k∗ such that

Di∗ ≼D ≼D
′
j∗ ≼D

′′
k∗ ,

whereDi∗ ≼D because of reflexivity and clause (iii).

— Suppose thatD ′ ≼D ′′ is witnessed by clause (iii). This means
that there isD ′′k∗ such thatD ′ ≼D ′′k∗ . It follows that

Di∗ ≼D ≼D
′ ≼D ′′k∗ ,

whereDi∗ ≼D because of reflexivity and clause (iii).

We apply (4.2) to the chain, possibly multiple times, and get Di∗ ≼
D ′′k∗ . We can now apply clause (ii) to conclude thatD ≼D ′′. ■

Lemma 4.4.5.
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(i) IfD ≼D ′ andD ′ ≺D ′′, thenD ≺D ′′.

(ii) IfD ≺D ′ andD ′ ≺D ′′, thenD ≺D ′′.

(iii) IfD ≺D ′ andD ′ ≼D ′′, thenD ≺D ′′.

Proof.

(i) By definition of ≺, we haveD ∗ such thatD ′ ≼D ∗ and

D ′′
{ ... D ∗ ...

Γ → ∆

By transitivity of ≼ (Lemma 4.4.4), we have that D ≼D ∗. We
conclude thatD ≺D ′′ by clause (iii) of the definition.

(ii) If D ≺ D ′, then in particular D ≼ D ′, so the claim follows
from (i).

(iii) We do a proof by cases, depending on whether D ′ ≼ D ′′ is
witnessed by clause (i), (ii) or (iv), whereas clause (iii) does
not apply:

— If it is witnessed by clause (i), i.e. D ′ and D ′′ are triv-
ial, then there is no such D , and the claim is vacuously
satisfied.

— Suppose that it is witnessed by clause (ii), i.e.

D ′
{ {D ′j }
Γ ′→ ∆′

and D ′′
{ {D ′′k }
Γ ′′→ ∆′′

and for each D ′j there is D ′′k such that D ′j ≼D
′′
k . By def-

inition of D ≺D ′, we have D ≼D ′j∗ for some D ′j∗ , hence
by transitivityD ≼D ′′k∗ for the correspondingD ′′k∗ . It fol-
lows thatD ≺D ′′.

— If it is witnessed by clause (iv), i.e. D ′ ≺ D ′′, then D ≺
D ′′ follows from (ii). ■
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We say that a property E of derivations is progressive, if

∀D .(∀D ′ ≺D (ED ′))⇒ ED .

Theorem 4.4.6. Strict proof embeddability ≺ satisfies Noetherian in-
duction, i.e. it satisfies ∀D (ED ) for every progressive property E.

Proof. Consider a progressive property E. It is enough to show that

∀D ′ ≺D (ED ′) (4.3)

for every derivation D . We proceed by structural induction on D .
If D is trivial, then it has no predecessors (Lemma 4.4.3) and the
claim holds. Suppose that

D
{ {Di}
Γ → ∆

with each Di satisfying (4.3). Consider D ′ ≺ D . By definition,
D ′ ≼ Di∗ for some Di∗ . We claim that ED ′′ for each D ′′ ≺ D ′. In
fact, given any such D ′′, by Lemma 4.4.5 we have that D ′′ ≺ Di∗ .
The claim follows by the fact that Di∗ satisfies (4.3). Since E is pro-
gressive, we get ED ′. ■

Corollary 4.4.7. The relation ≺ is a strict partial order, i.e. it is irreflex-
ive and transitive.

Proof. Transitivity is Lemma 4.4.5(ii), while irreflexivity follows
from Noetherian induction (see e.g. Lemma 2.4.1). ■

Given a calculus G, by G ⊢D Γ → ∆ we mean that there is a
derivationD with end-sequent Γ → ∆ in calculus G.

We say that a rule
Γ → ∆

Γ ′→ ∆′

is proof embeddable admissible (for short pe-admissible) if for each
derivationD of Γ → ∆ there is a derivationD ′ of Γ ′→ ∆′ such that
D ′ ≼D .

The notion of pe-admissibility is used in place of hp-admissibility
for the calculi G3[CI]ω.G, and is studied in the following sections.

98



4.5. Structural rules

4.5 Structural rules

We present here the results concerning the admissibility of the
structural rules, cut excluded, in the calculi G3[CI]ω.G. All these
results have been proved in Sect. 4 of [131] by simple transfinite
induction on ordinals, either on the depth of a formula or on the
height of a derivation, here replaced by proof-embeddability both
in the statement of the results and in their proofs.

Lemma 4.5.1 (α-conversion). If G3[CI]ω.G ⊢D1 Γ → ∆ then

G3[CI]ω.G ⊢D2 Γ ′→ ∆′

withD2 ≼D1, for Γ ′→ ∆′ a bound alphabetic variant of Γ → ∆.

Proof. Similar to the proof of hp-α-conversion in [169]. ■

Lemma 4.5.2 (Substitution). If G3[CIM]ω.G ⊢D1 Γ → ∆ then

G3[CIM]ω.G ⊢D2 Γ [t/x]→ ∆[t/x]

(for t free for x in Γ ,∆) withD2 ≼D1.

Proof. Similar to the proof of hp-substitution in [169]. ■

Theorem 4.5.3 (Weakening). The left and right rules of weakening:

Γ → ∆
A,Γ → ∆

LW Γ → ∆
Γ → ∆,A RW

are pe-admissible in G3[CIM]ω.G.

Proof. Similar to the proof of hp-weakening in [169]. ■

Lemma 4.5.4 (Invertibility).

(i) Each rule of G3Cω.G is pe-invertible.

(ii) Each rule of G3[IM]ω.G except R⊃, R∀, and R
∧

is pe-invertible.
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Proof. The proof for rules L∀, R∃, L
∧

and R
∨

follows from Theo-
rem 4.5.3. For the other rules we proceed by well-founded induc-
tion with proof-embeddability.

We consider the case of L
∨

, i.e. a sequent
∨
n>0An,Γ → ∆. If it is

an initial sequent, then each An,Γ → ∆ is also an initial sequent. If it
is an instance of L⊥, then there’s nothing to prove. Let us consider
the last (proper) rule and distinguish the case in which

∨
n>0An is a

side formula and the case in which it is the principal formula. In the
former case the last rule can have one, two or denumerably many
premisses. The derivationD has the form

Dm

 ...
{
∨
n>0An,Γm→ ∆m |m ∈ I}∨

n>0An,Γ → ∆
rule

where I is either {1}, {1,2} or N. Clearly Dm ≺ D for each m. By
inductive hypothesis, we have derivations Dmn ≼ Dm of An,Γm →
∆m. Then we get derivations

Dmn

 ...
{An,Γm→ ∆m |m ∈ I}

An,Γ → ∆
rule

which are embeddable in D . If instead
∧
n>0An is principal, the

derivationD has the form

Dn

 ...
{An,Γ → ∆ | n > 0}∨

n>0An,Γ → ∆
L
∨

and we just need to observe thatDn ≼D .
The proof for other rules is similar. ■

Theorem 4.5.5 (Contraction). The left and right rules of contraction:

A,A,Γ → ∆

A,Γ → ∆
LC

Γ → ∆,A,A
Γ → ∆,A RC
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are pe-admissible in G3[CIM]ω.G.

Proof. By simultaneous Noetherian induction with ≺ on the left and
right contraction rule. Consider the left rule. If it is an initial se-
quent, then the conclusion is also an initial sequent and is embed-
dable. If the contraction formula A is not principal in the last rule,
we have the derivationD

Dm

 ...
{A,A,Γm→ ∆m |m ∈ I}

A,A,Γ → ∆
rule

where I is either {1}, {1,2} or N. Clearly Dm ≺ D for each m. By
induction hypothesis we have derivations D ′m ≼Dm of A,Γm→ ∆m.
Then the derivation

D ′m

 { ...
A,Γm→ ∆m |m ∈ I}

A,Γ → ∆
rule

is as wanted.
We’re left with the case in which the contraction formula is prin-

cipal in the last rule. Consider the case of
∨
n>0An in L

∨
. We have

the derivationD

Dn

 ...
{
∨
n>0An,An,Γ → ∆ | n > 0}∨
n>0An,

∨
n>0An,Γ → ∆

L
∨

where clearly Dn ≺D . By pe-invertibility of L
∨

we obtain deriva-
tions D ′n ≼ Dn of An,An, Γ → ∆, and thus D ′n ≺ D by clause (ii)
of proof-embeddability, cf. Def. 4.4.1. By induction hypothesis,
we now get derivations D ′′n ≼ D

′
n of An,Γ → ∆. By transitivity,
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D ′′n ≼Dn. In conclusion, we get the derivationD ′

D ′′n

 ...
{An,Γ → ∆ | n > 0}∨

n>0An,Γ → ∆
L
∨

which is embeddable in D . The proof for other invertible rules is
similar.

Consider the case of A ⊃ B principal in intuitionistic R⊃. We
have the derivationD

D −

 ...
A,Γ → B

Γ → ∆,A ⊃ B,A ⊃ B R ⊃

where clearlyD − ≺D . We easily get the derivationD ′

D −

 ...
A,Γ → B

Γ → ∆,A ⊃ B R ⊃

which is embeddable in D . Again, the proof for other non-
invertible rules is similar. ■

4.6 Constructive cut-elimination

We are now ready to prove that the following context-sharing rule
of cut:

Γ → ∆,C C,Γ → ∆

Γ → ∆
Cut

is eliminable to the calculus G3[CI]ω.G + {Cut} obtained by extend-
ing G3[CI]ω.G with Cut. In order to give a proof of cut elimination
that uses only constructively admissible proof-theoretical tools we
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must avoid the ‘natural’ (or Hessenberg) commutative sum of or-
dinals: we cannot use the cut-height as inductive parameter as is
done in Gentzen- and Dragalin-style proofs. In order to avoid it,
we make use of a proof strategy introduced in [118] for fuzzy log-
ics that has been extensively used in the context of hypersequent
calculi; see [31, 92, 105]. This proof strategy can be seen as a sim-
plified and local version of the proof given by H.B. Curry in [52].
The proof is based on two main lemmata (Lemmata 4.6.4 and 4.6.5
below) that are proved by induction on the derivation of the right
and of the left premiss of cut, respectively. Moreover, (almost) all
non-principal instances of cut are taken care by separate lemmata
(Lemma 4.6.2 and 4.6.3) which shows that Cut can be permuted
upwards with respect to rule instances not having the cut formula
among their principal formulae.

Observe that, differently from [31, 105, 118], we will not con-
sider an arbitrary instance of Cut of maximal rank (i.e., such that
its cut formula has maximal depth among the cut formulae occur-
ring in the derivation), but we will always consider an uppermost
instance of Cut, i.e. a cut the premisses of which are cut-free deriva-
tions. Otherwise, in Lemmata 4.6.4 and 4.6.5 as well as in Theorem
4.6.7, we would have to assume that ordinals are linearly/totally
ordered; but in a constructive setting this assumption implies the
law of excluded middle [6]. In Theorem 4.6.7 we will proceed, in-
stead, by using two instances of Brouwer’s principle of Bar Induc-
tion, the first one will be used to show that an uppermost instance
of Cut is eliminable and the second to show that all instances of Cut
are eliminable. Note that although it is a constructively admissi-
ble principle, Bar Induction increases the proof-theoretic strength
of CFZ, cf. [146].

Definition 4.6.1 (Cut-substitutive rule). A sequent rule Rule is cut-
substitutive if each instance of cut with cut formula not principal
in the last rule instance Rule of one of the premisses of cut can be
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permuted upwards w.r.t. Rule as in the following example:

A,Γ → ∆,B,C
Γ → ∆,A ⊃ B,C R ⊃

C,Γ → ∆,A ⊃ B
Γ → ∆,A ⊃ B Cut {

A,Γ → ∆,B,C
C,Γ → ∆,A ⊃ B
A,C,Γ → ∆,B

pe-inv

A,Γ → ∆,B
Cut

Γ → ∆,A ⊃ B R ⊃

Lemma 4.6.2. Each rule of G3Cω.G is cut-substitutive.

Proof. By inspecting the rules in Tables 4.1 it is immediate to re-
alise that each of them is cut-substitutive because they are all pe-
invertible (using Lemma 4.5.2 for rules L∃, R∀, and for geometric
rules with a variable condition). ■

Lemma 4.6.3. Each rule of G3[IM]ω.G except R⊃, R∀ and R
∧

is cut-
substitutive.

Proof. Same as for G3Cω. ■

Lemma 4.6.4 (Right reduction). If we are in G3[CIM]ω.G and all of
the following hold:

(i) D1 ⊢ Γ → ∆,A

(ii) D2 ⊢ A,Γ → ∆

(iii) A is principal in the last rule instance applied inD1

(iv) If A ≡ ∃xB or A ≡
∨
n>0Bn, then A is not principal in the last rule

instance applied inD2

Then there is a G3[CIM]ω.G + {Cut}-derivation D concluding Γ → ∆

containing only cuts on proper subformulae of A.

Proof. By Noetherian induction with proof-embeddability in the
derivationD2 of A,Γ → ∆.

IfD2 is a one node tree, since A cannot be principal in the initial
sequent, then the conclusion of Cut is also initial.

Else, we have two cases depending on whether A is principal in
the last rule instance applied inD2 or not.
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In the latter case, if we are in G3Cω.G + {Cut}, the lemma holds
thanks to Lemma 4.6.2. If we are in G3Iω.G + {Cut} and the last
step ofD2 is not by one of R⊃, R∀, and R

∧
then it holds by Lemma

4.6.3. In the remaining three cases, we have two cases according to
whether D1 ends with a step by an invertible rule or not. In the
latter case, D1 ends with one of R⊃, R∀, and R

∧
. We permute the

cut upwards in the right premiss. To illustrate, we consider the case
of R

∧
. We transform

D11

 ...

Γ → B[y/x]
R∀

Γ → ∆′,
∧
n>0

An,∀xB

D2i

 ...

{∀xB,Γ → Ai | i > 0}
R
∧

∀xB,Γ → ∆′,
∧
n>0

An

Cut
Γ → ∆′,

∧
n>0

An

into

D11

 ...

Γ → B[y/x]
R∀

Γ →∀xB
D2i

 ...

{∀xB,Γ → Ai | i > 0}
i.h.i , i > 0

{Γ → Ai | i > 0}
R
∧

Γ → ∆′,
∧
n>0

An

If, instead, D1 ends by an invertible rule, then we apply invertibil-
ity, thus transforming the derivation into one having only cuts on
proper subformulae of A. For example, if D1 ends with a step by
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R∧, we transform

D11


...

Γ → ∆′ ,
∧
n>0

An,B
D12


...

Γ → ∆′ ,
∧
n>0

An,C

R∧
Γ → ∆′ ,

∧
n>0

An,B∧C
D2


...

B∧C,Γ → ∆′ ,
∧
n>0

An

Cut
Γ → ∆′ ,

∧
n>0

An

into

D12


...

Γ → ∆′ ,
∧
n>0

An,C

D11


...

Γ → ∆′ ,
∧
n>0

An,B

LW
C,Γ → ∆′ ,

∧
n>0

An,B

D2


...

B∧C,Γ → ∆′ ,
∧
n>0

An

pe-inv
B,C,Γ → ∆′ ,

∧
n>0

An

Cut
C,Γ → ∆′ ,

∧
n>0

An

Cut
Γ → ∆′ ,

∧
n>0

An

Next, we consider the case with A is principal in the last rule
instance applied inD2. We have cases according to the shape of A.

If A ≡ P for some atomic formula P , then the last rule instance in
D2 is by a geometric rule (rules for equality included) LG conclud-
ing P1, . . . , P , . . . , Pk ,Γ

′′ → ∆′, P and D1 is the one node tree P ,Γ ′ →
∆′, P . The conclusion of cut is the initial sequent P ,Γ ′→ ∆′, P which
is cut-free derivable.

The cases with A ≡ ⊥, A ≡ ⊤ or A ≡ B◦C, for (◦ ∈ {∧∨,⊃}), are left
to the reader.

If A ≡ ∀xB we transform (if we are in G3[IM]ω.G + {Cut}, ∆ is
not in the premiss of R∀)

D11

 ...

Γ → ∆,B[y/x]
R∀

Γ → ∆,∀xB

D21

 ...

B[t/x],∀xB,Γ → ∆
L∀

∀xB,Γ → ∆
Cut

Γ → ∆
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into the following derivation having only cuts on proper subformu-
lae of A (if we are in G3[IM]ω.G + {Cut} then ∆ is introduced inD11
by pe-weakenings):

D11

 ...

Γ → ∆,B[y/x]
Subs

Γ → ∆,B[t/x]

D11

 ...

Γ → ∆,B[y/x]
R∀

Γ → ∆,∀xB
D21

 ...

B[t/x],∀xB,Γ → ∆
i.h.

B[t/x],Γ → ∆
Cut

Γ → ∆

If A ≡
∧
n>0Bn we transform (∆ not in the premisses of R

∧
if we

are in G3[IM]ω.G + {Cut})

D1i

 ...

{Γ → ∆,Bi | i > 0}
R
∧

Γ → ∆,
∧
n>0

Bn

D21


...

Bk ,
∧
n>0

Bn,Γ → ∆

L
∧∧

n>0

Bn,Γ → ∆

Cut
Γ → ∆

into the following derivation having only cuts on proper subformu-
lae of A (if we are in G3[IM]ω.G + {Cut} then ∆ is introduced inD1k
by pe-weakenings):

D1k

 ...

Γ → ∆,Bk

D1i

 ...

{Γ → ∆,Bi | i > 0}
R
∧

Γ → ∆,
∧
n>0

Bn

LW
Bk ,Γ → ∆,

∧
n>0

Bn
D21


...

Bk ,
∧
n>0

Bn,Γ → ∆

i.h.
Bk ,Γ → ∆

Cut
Γ → ∆ ■

Lemma 4.6.5 (Left reduction). If we are in G3[CIM]ω.G and all of
the following hold:
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(i) D1 ⊢ Γ → ∆,A

(ii) D2 ⊢ A,Γ → ∆

Then there is a G3[CIM]ω.G-derivationD concluding Γ → ∆ contain-
ing only cuts on proper subformulae of A

Proof. By Noetherian induction with proof-embeddability in the
derivationD1 of Γ → ∆,A.

IfD1 is a one node tree, the lemma obviously holds.
Else, we have two cases depending on whether A is principal in

the last rule instance applied inD1 or not.
In the latter case, the lemma holds thanks to Lemma 4.6.2 or

4.6.3 (if the last step ofD1 is by an intuitionistic non-invertible rule
we proceed as in the analogous case of Lemma 4.6.4). In the former
case we have cases according to the shape of A.

If A is an atomic formula, or ⊥, or ⊤ or B ◦ C (◦ ∈ {∧,∨ ⊃}), or
∀xB, or

∧
Bn, the lemma holds thanks to Lemma 4.6.4.

If A ≡ ∃xB we transform:

D11

 ...

Γ → ∆,∃xB,B[t/x]
R∃

Γ → ∆,∃xB
D2

 ...

∃xB,Γ → ∆
Cut

Γ → ∆

into the following derivation having only cuts on proper subformu-
lae of A:

D11

 ...

Γ → ∆,∃xB,B[t/x]
D2

 ...

∃xB,Γ → ∆
i.h.

Γ → ∆,B[t/x]

D2

 ...

∃xB,Γ → ∆
pe-inv

B[t/x],Γ → ∆
Cut

Γ → ∆
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If A ≡
∨
Bn we transform:

D11


...

Γ → ∆,
∨
n>0

Bn,Bk

R
∨

Γ → ∆,
∨
n>0

Bn
D2


...∨

n>0

Bn,Γ → ∆

Cut
Γ → ∆

into the following derivation:

D11


...

Γ → ∆,
∨
n>0

Bn,Bk
D2


...∨

n>0

Bn,Γ → ∆

i.h.
Γ → ∆,Bk

D2


...∨

n>0

Bn,Γ → ∆

pe-inv
Bk ,Γ → ∆

Cut
Γ → ∆ ■

In order to prove Cut elimination in a constructive way we use
Bar Induction as done in [174, p. 18] forω-arithmetic. This strategy
avoids the assumption of total ordering of ordinal numbers. Before
proving the theorem we introduce Brouwer’s principle of (decid-
able) Bar Induction.

Definition 4.6.6 (Bar Induction). Let B and I be unary predicates
(the so-called ‘base predicate’ and ‘inductive predicate’, respec-
tively) of finite lists of natural numbers (to be denoted by u,v, . . . ).
If:

(i) B is decidable;

(ii) Every infinite sequence of natural numbers has a finite initial
segment satisfying B;

(iii) B(u) implies I(u) for every finite list u;

(iv) If I(u ∗n) holds for all n ∈N then I(u) holds;
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Then I holds for the empty list of natural numbers.

Theorem 4.6.7 (Cut elimination). Cut is admissible in G3[CI]ω.

Proof. Throughout this proof, we use finite lists of natural numbers
to index (partial) branches of trees, i.e. directed paths from the root
to a node, possibly a leaf. Consider a tree such that each node has
immediate successors either indexed by ω or else by some k < ω,
and such that each branch has finite length, then:

— The empty list {} indexes the root of the tree.

— Given any infinite sequence of numbers, we have B(u) for ev-
ery finite initial segment u that represents a full branchR of
the tree, i.e., a root-to-leaf path (simply because every leaf is
either an atomic formula, or ⊤ or ⊥) and by construction of
the representation there are such u.

— Suppose that u indexes a partial branch R of the tree and
that the last node a has immediate successor nodes indexed by
k < ω, and let a natural number n be given. Let m = n mod k:
that is, m is the remainder of n after division by k. Then u ∗ n
indexesR extended with themth immediate successor node of
a. For example, in the case of a 2-premiss rule, odd numbers
index the left premiss, even numbers the right premiss.

Notice that the above gives a partial surjective map, with decid-
able domain, from sequences of natural numbers to branches in the
given tree. Moreover, this ensures that every infinite sequence has
an initial segment that indexes a branch of the tree.8

Let d be a derivation in the calculus G3[CI]ω.G + {Cut}. The
proof consists of two parts, each building on an appropriate Bar
Induction.

8Since the number of nodes of the tree is at most countable, one may also
define an encoding such that the correspondence is unique. This however would
require more effort and we would lose the property that every infinite sequence
has an initial segment that indexes a branch of the tree.
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— Part 1. We use Bar Induction to show that an uppermost in-
stance of Cut with cut-formula C occurring in d is admissible.
We use the method defined above to index the branches of the
formation tree of the formula C—where C is the root of the
tree and atomic formulae or ⊤ or ⊥ are its leaves. Let B(u)
hold if u indexes a branch whose last element is an atom or ⊥
or ⊤; let I(u) hold if and u indexes a partial branch whose last
element is a formula D such that an uppermost cut on D in
G3[CI]ω.G + {Cut} is eliminable.

The following hold:

(i) B(u) is decidable by simply comparing the list with the
formation tree;

(ii) By definition of the indexing, the nth element of the se-
quence identifies the nth node in a branch of the forma-
tion tree of a formula. After a finite number of steps from
the root we find an atom or ⊥ or ⊤ since all branches of
the tree are finite and this identifies an initial segment of
the infinite sequence that satisfies B.

(iii) B(u) implies I(u) since cuts on atomic formulae, ⊤, or ⊥
are admissible;

(iv) I(u ∗ n) for all n implies I(u): by Lemma 4.6.5 an upper-
most cut on some formula E can be reduced to cuts on
proper subformulae of E.

By Bar Induction we conclude that the uppermost cut with
cut-formula C is eliminable from G3[CI]ω.G + {Cut}.

— Part 2. We show that all cuts can be eliminated from D . We
consider a derivation D in G3[CI]ω.G + {Cut} and, as above,
we use lists of natural numbers to index branches of D . Let
B(u) hold if u indexes a branch ending in a leaf of D ; let I(u)
hold if u indexes a partial branch whose last element has a cut-
free derivation (i.e., it is G3[CI]ω.G-derivable). All conditions
of Bar Induction are satisfied by this choice of B and I :
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(i) B(u) is decidable;

(ii) Given any infinite sequence of numbers, we have B(u) for
every finite initial segment u that represents a full branch
R of the tree, i.e., a root-to-leaf path; and by construction
of the representation there are such u.

(iii) B(u) implies I(u) since the leaves of D trivially have a
cut-free derivation;

(iv) I(u ∗n) for all n implies I(u): having shown in part 1 that
uppermost instances of Cut are admissible, if all the pre-
misses of a rule instance inD have a cut-free derivation,
then also its conclusion has a cut-free derivation.

By Bar Induction we conclude that the conclusion of D has a
cut-free derivation. ■

Corollary 4.6.8. The rule of context-free cut:

Γ → ∆,A A,Π→ Σ

Π,Γ → ∆,Σ
Cutcf

is admissible in G3[CI]ω.G.

Proof. This is an immediate consequence of Theorem 4.6.7 since
rules Cut and Cutcf are equivalent when weakening and contrac-
tion are admissible. ■

4.7 Orevkov’s theorems on infinitary
Glivenko classes

We follow Orevkov’s notation and denote by ◦+ positive and by ◦−
negative occurrences of the connective or quantifier ◦ in a sequent.

Theorem 4.7.1 (Glivenko Class 1). If neither⊃ +, nor ∀+, nor
∧+ oc-

curs in Γ → ∆ and G3Cω.G ⊢D Γ → ∆, then G3Iω.G ⊢D
′
Γ → ∆ with

D ′ ≼D .
If, moreover, ⊥− does not occur in Γ → ∆ then G3Mω.G ⊢D

′
Γ → ∆.
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Proof. Any derivation in G3Cω.G uses only rules that follow the
(infinitary) geometric rule scheme and logical rules. Observe that
geometric implications contain no ⊃, nor ∀, nor

∧
in the scope of

∨ nor of
∨

, which means that no instance of the rules that vio-
lates the intuitionistic restrictions is used, so the derivation directly
gives (through the addition, where needed, of the missing implica-
tions in steps of L⊃) a derivation in G3Iω.G of the same conclusion.
Moreover, if ⊥− does not occur in Γ → ∆ the derivation is a G3Iω.G-
derivation. ■

This is actually Barr’s theorem.
Orevkov’s theorem for most other Glivenko classes works only if

we restrict ourselves to geometric rules with at most one premiss –
i.e., rules expressing geometric implications without disjunction in
the succedent. Hence we introduce the following piece of notation.

Definition 4.7.2. LGS stands for a one premiss geometric rule and
G3[CIM]ω.S stands for any extension of G3[CIM]ω with a finite or
infinite family of such rules LGS .

Lemma 4.7.3. If neither ⊃ +, nor ∨−, nor
∨− occurs in Γ → ∆ and

G3Cω.S ⊢D Γ → ∆, then

— if ∆ is inhabited, then G3Iω.S ⊢D
′
Γ → A for some A ∈ ∆;

— if ∆ is empty, then G3Iω.S ⊢D
′
Γ → ∆;

withD ′ ≼D .
The same holds with respect to G3Mω.S if we assume additionally

that no instance of ⊥− occurs in Γ → ∆.

Proof. By induction.
If Γ → ∆ is an initial sequent with principal formula some

atomic formula P , the lemma holds by taking A ≡ P . If D ends
with an instance of L⊥, we have two cases: if ∆ , ∅ we take A ≡ D
for some D ∈ ∆; else we have that G3Iω.S ⊢ Γ → ∆.
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If the last step ofD is an instance of L∧, thenD has the form:

D1

 ...
B,C,Γ ′→ ∆

B∧C,Γ ′→ ∆
L∧

We apply the inductive hypothesis toD1 and we obtain a derivation
D ′1 ≼D1 in G3Iω.S of either B,C,Γ ′→ A for some A ∈ ∆ or B,C,Γ ′→
∆, depending on whether ∆ is inhabited or not. In both cases, we
get a derivationD ′ ≼D via an application of L∧:

D ′1

 ...
B,C,Γ ′→ A
B∧C,Γ ′→ A

L∧

D ′1

 ...
B,C,Γ ′→ ∆

B∧C,Γ ′→ ∆
L∧

If the last step ofD is an instance of R∧, thenD has the form:

D1

 ...
Γ → ∆′ ,B

D2

 ...
Γ → ∆′ ,C

Γ → ∆′ ,B∧C R∧

By applying the inductive hypothesis to D1 and D2, we obtain
G3Iω.S ⊢D

′
1 Γ → B′ with B′ ∈ ∆′,B and G3Iω.S ⊢D

′
2 Γ → C′ with

C′ ∈ ∆′,C, such that D ′1 ≼ D1 and D ′2 ≼ D2. If B′ ≡ B and C′ ≡ C
we get the following derivationD ′ ≼D in G3Iω.S:

D ′1

 ...
Γ → ∆′,B

D ′2

 ...
Γ → ∆′,C

Γ → ∆′,B∧C R∧

Else we set A ≡ B′ or, if B ≡ B′, A ≡ C′, and we are done.
If D ends with an instance of R∨ with premiss Γ → ∆′,B,C and

conclusion Γ → ∆′,B∨C, then we have G3Cω.S ⊢D1 Γ → ∆′,B,C with
D1 ≺ D . By induction hypothesis, we get G3Iω.S ⊢D

′
1 Γ → D with
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D ′1 ≼D1 and D is either A, B, or in ∆. If D ∈ ∆, then we’re already
done. IfD is A or Bwe conclude by applying pe-weakening and R∨.

IfD ends with the following instance of L⊃:

D1

 ...
Γ ′→ ∆,B

D2

 ...
C,Γ ′→ ∆

B⊃C,Γ ′→ ∆
L ⊃

and ∆ inhabited, by inductive hypothesis we have G3Iω.S ⊢D
′
1 Γ ′ →

B′ with B′ ∈ ∆,B and G3Iω.S ⊢D
′
2 C,Γ ′ → D with D ∈ ∆, such that

D ′1 ≼D1 and D ′2 ≼D2. When B′ ≡ B we use the left and right right
rules of weakening to obtain a derivation D ′′1 ≼ D

′
1 of B ⊃ C,Γ ′ →

D,B and we obtainD ′ ≼D as follows:

D ′′1

 ...
B ⊃ C,Γ ′→D,B

D ′2

 ...
C,Γ ′→D

B⊃C,Γ ′→D
L ⊃

When, instead, B′ ≡ E for some E . B, we conclude C⊃B,Γ → E by
applying an instance of left weakening to the first derivation.

Next we consider the case with ∆ = ∅. By induction we have
derivations G3Iω.S ⊢D

′
1 Γ ′ → B and G3Iω.S ⊢D

′
2 C,Γ ′ → ∆, such that

D ′1 ≼ D1 and D ′2 ≼ D2. By weakening to obtain a derivation D ′′1 ≼
D ′1 of B ⊃ C,Γ ′→ ∆,B and we obtainD ′ ≼D as follows:

D ′′1

 ...
B ⊃ C,Γ ′→ ∆,B

D ′2

 ...
C,Γ ′→ ∆

B⊃C,Γ ′→ ∆
L ⊃

The cases with D ending by a rule for the quantifiers are
straightforward and can thus be omitted.

If D ends with an instance of L
∧

, we have simply to apply the
inductive hypothesis to its premiss and an instance of L

∧
to get a

derivation (in G3Iω.S) D ′ ≼D of either Γ → ∆ or Γ → A for A ∈D
(depending on whether ∆ is empty or not).
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IfD ends with the following instance of R
∧

:

Di


...

{Γ → ∆′,Bi | i > 0}
R
∧

Γ → ∆′,
∧
n>0

Bn

we apply the inductive hypothesis to obtain, for each i > 0,
G3Iω.S ⊢D

′
i Γ → Ci with Ci ∈ ∆′,Bi , such that D ′i ≼ Di . If for some

j > 0 we have Cj ∈ ∆′, then by taking A ≡ Cj we observe that D ′i is
as wanted. Else D ′i is an intuitionistic derivation of Γ → Bi for all
i > 0 and we conclude by an intuitionistic instance of R

∧
:

D ′i

 ...

{Γ → Bi | i > 0}
R
∧

Γ →
∧
n>0

Bn

IfD ends with the following instance of R
∨

:

D1


...

Γ → ∆′,
∨
n>0

Bn,Bk

R
∨

Γ → ∆′,
∨
n>0

Bn

by inductive hypothesis G3Iω.S ⊢D
′
1 Γ → D with D ∈ ∆,

∨
Bn,Bk and

D ′1 ≼ D1. If D ∈ ∆,
∨
Bn, we conclude by taking A ≡ D. Else D ′1 is

a derivation of Γ → Bk and, by right weakening we get a derivation
D ′′1 ≼ D

′
1 of Γ → Bk ,

∨
Bn. Finally, we get a derivation D ′ ≼ D in
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G3Iω.S:

D ′′1


...

Γ →
∨
n>0

Bn,Bk

R
∨

Γ →
∨
n>0

Bn

If D ends with a one-premiss geometric rule (rules for equality
included) LGS , then we have simply to apply the inductive hypoth-
esis to the premiss and then an instance of LGS to obtain the desired
conclusion. Observe that we had to exclude geometric rules with
more than one premiss since the inductive hypothesis would have
given us sequents with a possibly different succedent (for the same
reason we had to exclude ∨− and

∨−). ■

Theorem 4.7.4 (Glivenko Class 2). If neither ⊃ +, nor ∨−, nor
∨−

occurs in Γ → A and G3Cω.S ⊢D Γ → A, then G3Iω.S ⊢D
′
Γ → A with

D ′ ≼D .
If, moreover, no instance of ⊥− occurs in Γ → ∆ then G3Mω.S ⊢D

′
Γ →

A.

Proof. An immediate corollary of Lemma 4.7.3. ■

We list here two other corollaries of Lemma 4.7.3, the latter be-
ing an infinitary version of the result proved in [169].

Corollary 4.7.5. If neither ⊃ +, nor ∨−, nor
∨− occurs in Γ → ∆ and

G3Cω.S ⊢D Γ → ∆, then G3Iω.S ⊢D
′
Γ → ∆ withD ′ ≼D .

If, moreover, no instance of ⊥− occurs in Γ → ∆ then G3Mω.S ⊢D
′
Γ →

∆.

Corollary 4.7.6. Assume that no instance of ⊃ occurs in A and that no
instance of ⊥+, ∨+,

∨+, and⊃− occurs in Γ . If G3Cω.S ⊢D Γ → A, then
G3Mω.S ⊢D

′
Γ → A withD ′ ≼D .
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Lemma 4.7.7. If neither ⊃ +, nor ∀− occurs in Γ → ∆ and G3Cω.S ⊢
Γ → ∆, then there is a classical derivation of Γ → ∆ such that all in-
stances of rules in G1 = {LGS ,R∧,R∨,R∀,R∃, R

∧
,R

∨
} precede all in-

stances of rules in G2 = {L∧,L∨,L⊃,L∃,L
∧
,L

∨
}.

Proof. First notice that in general it is possible to permute rules in
G2 below rules in G1 since, having excluded instances of rule R⊃,
the principal formula of rules in G2 cannot be active in rules in G1.
In particular, instances of geometric rules have atomic formulae as
active and, having excluded instances of R⊃, all active formulae of
logical rules in G1 occur in the antecedents while principal formu-
lae of rules in G2 occur in the succedents. Moreover instances of
rule L∃ can be permuted down with respect to instances of R∀ and
of geometric rules with a variable condition since their eigenvari-
ables are necessarily distinct. ■

Theorem 4.7.8 (Glivenko class 3).

(i) If neither⊃+, nor ∀− occurs in Γ → A and G3Cω.S ⊢ Γ → A, then
G3Iω.S ⊢ Γ → A.
If, moreover, no instance of ⊥− occurs in Γ → A then G3Mω.S ⊢
Γ → A.

(ii) If neither⊃+, nor ∀− occurs in Γ → ∆ and G3Cω.S ⊢ Γ → ∆, then
G3Iω.S ⊢ Γ → ∆.
If, moreover, no instance of ⊥− occurs in Γ → ∆ then G3Mω.S ⊢
Γ → ∆.

Proof. We begin with item 1. By Lemma 4.7.7 we can transform the
classical derivation of Γ → ∆ into a classical derivation where all in-
stances of rules in group G1 precede instances of rules in G2. Then
the lemma holds for the upper G1-component of this derivation by
Theorem 4.7.4 and it holds for the lower G2-component since all
rules instances applied therein are instances of rules identical in
classical, intuitionistic and minimal logics.

Item 2 can be proved analogously using Corollary 4.7.5 instead
of Theorem 4.7.4. ■
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Theorem 4.7.9 (Glivenko class 4). If neither⊃ −, nor ∨+, nor ∃+ nor∨+ occurs in Γ → A and G3Cω.S ⊢D Γ → A, then G3Iω.S ⊢D
′
Γ → A

withD ′ ≼D .
If, moreover, no instance of ⊥− occurs in Γ → A then G3Mω.S ⊢D

′
Γ →

A.

Proof. Rules L⊃, ∨+, ∃+, and
∨+ are the only rules of G3Cω.G having

instances with a single-succedent conclusion and a multi-succedent
premiss. This implies that all sequents in the classical derivationD
of Γ → A are single-succedent ones, hence all rule instances occur-
ring inD satisfy the intuitionistic (and minimal) restriction. ■

Next we move to Glivenko classes 5, 6, and 7 which, roughly, are
versions of classes 1,2, and 3 where the restriction on occurrences of
⊃+ is relaxed by allowing occurrences of⊃+ having ⊥ as succedent.

Lemma 4.7.10. If Γ → ∆ does not contain ⊥−, ∨+,⊃+, or
∨+ and ∆ is

either empty or ⊥+ occurs in each one of its formulae, then G3Cω.G ⊬

Γ → ∆.

Proof. Since ⊥− cannot occur in Γ → ∆ and since all formulae in
∆ must contain an occurrence of ⊥+, Γ → ∆ cannot be the conclu-
sion of an instance of L⊥ nor an initial sequent (atomic formulae
do not contain occurrences of ⊥+). Having excluded the applicabil-
ity of rules R∨, R⊃ and

∨+, we know that at least one branch of a
proof-search tree for Γ → ∆ is such that ⊥+ occurs in each formula
occurring in its succedents, hence that branch cannot reach an ini-
tal sequent. The lemma follows by the invertibility of the rules of
G3Cω.G. ■

Corollary 4.7.11. If Γ → A does not contain ¬−, ∨+,⊃, or
∨+, Γ does

not contain⊥, and Γ → A contains an occurrence of ¬+, then G3Cω.G ⊬

Γ → A.

Proof. Γ → A satisfies the conditions of Lemma 4.7.10 since, by the
restiction on implications, ⊥+ occurs in A. ■
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infinitary logic

Corollary 4.7.12. If Γ → A does not contain ¬−, ∨+, ⊃, or
∨+, but it

contains an occurrence of ¬+, if G3Cω.G ⊢D Γ → A, then G3Iω.G ⊢D
′

Γ → A withD ′ ≼D .
If, moreover, no instance of⊥− occurs in Γ → A, then G3Mω.SD

′
Γ → A.

Proof. IfD is an initial sequent, then there’s nothing to prove. Sup-
pose it’s not. If ⊥ occurs in Γ , then the corollary holds because
Γ → A is a conclusion of L⊥, thus we obtain a one-step derivation
D ′ which is embeddable in any nontrivial derivation. Else it fol-
lows from Corollary 4.7.11. If no instance of ⊥− occurs in Γ → A,
then we’re always in the latter case. ■

Theorem 4.7.13 (Glivenko class 5). If neither⊃−, nor ∨+, nor ∀+ nor∨+ occurs in Γ → A, and ⊃ + occurs in Γ → A only in negations, and
G3Cω.S ⊢D Γ → A, then G3Iω.S ⊢D

′
Γ → A withD ′ ≼D .

Proof. If⊥+ does not occur in Γ → A, then the sequent is in Glivenko
class 1 (see Theorem 4.7.1), else the theorem follows by Corollary
4.7.12. ■

Theorem 4.7.14 (Glivenko class 6). If neither⊃−, nor ∨, nor
∨

occurs
in Γ → A, and⊃ + occurs in Γ → A only in negations, and G3Cω.S ⊢D
Γ → A, then G3Iω.S ⊢D

′
Γ → A withD ′ ≼D .

Proof. If⊥+ does not occur in Γ → A, then the sequent is in Glivenko
class 2 (see Theorem 4.7.4), else the theorem follows by Corollary
4.7.12. ■

Theorem 4.7.15 (Glivenko class 7). If neither⊃−, nor ∨+, nor ∀− nor∨+ occurs in Γ → A, and ⊃ + occurs in Γ → A only in negations, and
G3Cω.S ⊢ Γ → A, then G3Iω.S ⊢ Γ → A.

Proof. If⊥+ does not occur in Γ → A, then the sequent is in Glivenko
class 3 (see Theorem 4.7.8), else the theorem follows by Corollary
4.7.12. ■
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5 A general Glivenko–Gödel
theorem for nuclei

5.1 Introduction

Double negation over intuitionistic logic is a typical instance of a
nucleus [5, 88, 97, 123, 159, 175, 176, 187]. Glivenko’s theorem says
that, in propositional logic, classical provability of a formula en-
tails intuitionistic provability of the double negation of that for-
mula [82]. This stood right at the beginning of the success story
of negative translations, which have been put into the context of
nuclei [187] or monads [60]. As compared to recent literature on
Glivenko’s theorem [61, 69, 70, 75, 87, 95, 109, 124, 130, 136, 140],1

the purpose of the present chapter is to generalise Glivenko’s theo-
rem from double negation to an arbitrary nucleus, from provability
in a calculus to an abstract consequence relation, and from propo-
sitional logic to any set of objects whatsoever.

To this end we move to a nucleus j over a Hertz–Tarski conse-
quence relation in the form of a (single-conclusion) entailment rela-
tion ▷ à la Scott [30,171]. Assuming that ▷ is inductively generated
by axioms and rules, we propose two natural extensions (Section
5.3.1): ▷j generalises the provability of double negation, and ▷j is
inductively defined by adding the generalisation of double nega-

1This list of references is by no means meant exhaustive.
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tion elimination to the inductive definition of ▷. By their very def-
initions, ▷j satisfies all axioms and rules of ▷, and ▷j satisfies all
axioms of ▷. But when does ▷j also satisfy all rules of ▷? Our main
result, Theorem 5.3.8, says that ▷j extends ▷j , and that the two re-
lations coincide precisely when ▷j is closed under the non-axiom
rules that are used to inductively generate ▷, which of course is the
case whenever there are no such non-axiom rules (Corollary 5.3.9).

In logic this gives us a multi-purpose conservation criterion
(Theorem 5.5.2), by which propositional and predicate logic can be
handled in parallel. The prime instance of course is Glivenko’s the-
orem (Application 5.5.3(i)) as a syntactical conservation theorem
(see also [69, 70]):

Γ ▷c ϕ ⇐⇒ Γ ▷i ¬¬ϕ
where ▷c and ▷i denote classical and intuitionistic propositional
logic. Simultaneously we re-obtain Gödel’s theorem (Application
5.5.3(ii)) which states that

Γ ▷
Q
c ϕ ⇐⇒ Γ ▷Q∗ ¬¬ϕ

where ▷Qc denotes classical predicate logic, and ▷Q∗ is any extension
(by additional axioms) of intuitionistic predicate logic that satisfies
the double negation shift:

∀x¬¬ϕ ▷¬¬∀xϕ

While the double negation nucleus jϕ ≡ ¬¬ϕ is an instance of the
continuation monad, it is tantamount to the same case jϕ ≡ ¬ϕ ⊃
ϕ of the Peirce monad [60]. What does our main result mean for
other nuclei in logic? The Dragalin–Friedman nucleus jϕ ≡ ϕ ∨⊥,
a case of the closed nucleus, yields a variant of the reduction from
intuitionistic to minimal logic going back to Johansson (Application
5.5.4). Last but not least, the open nucleus jϕ ≡ A ⊃ ϕ prompts a
form of the deduction theorem for positive logic (Application 5.5.5).

Preliminaries

We intend to proceed in a constructive and predicative way, keeping
the concepts elementary and the proofs direct. If a formal system
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is desired, our work can be placed in a suitable fragment of Aczel’s
Constructive Zermelo–Fraenkel Set Theory (CZF ) [1–3, 6, 7] based on
intuitionistic first-order predicate logic.

By a finite set we understand a set that can be written as
{a1, . . . , an} for some n ⩾ 0. Given any set S, let Pow(S) (respectively,
Fin(S)) consist of the (finite) subsets of S. We refer to [155] for fur-
ther provisos to carry over to the present work.2

5.2 Entailment relations

Entailment relations are at the heart of this chapter. We briefly re-
call the basic notions, closely following [154, 155].

Let S be a set and ▷ ⊆ Pow(S) × S. Once abstracted from the
context of logical formulae, all but one of Tarski’s axioms of conse-
quence [183] 3 can be put as

U ∋ a
U ▷ a

∀b ∈U (V ▷ b) U ▷ a

V ▷ a

U ▷ a

∃U0 ∈ Fin(U )(U0 ▷ a)

where U,V ⊆ S and a ∈ S. These axioms also characterise a fini-
tary covering or Stone covering in formal topology [162];4 see fur-
ther [33, 34, 122, 123, 163, 164]. The notion of consequence has pre-
sumably been described first by Hertz [89–91]; see also [16, 106].

Tarski has rather characterised the set of consequences of a set
of propositions, which corresponds to the algebraic closure operator
U 7→U▷ on Pow(S) of a relation ▷ as above where

U▷ ≡ {a ∈ S :U ▷ a} .
2For example, we deviate from the terminology prevalent in constructive

mathematics and set theory [6, 7, 18–20, 110, 119]: to reserve the term ‘finite’
to sets which are in bijection with {1, . . . ,n} for a necessarily unique n ≥ 0. Those
exactly are the sets which are finite in our sense and are discrete too, i.e. have
decidable equality [119].

3Tarski has further required that S be countable.
4This is from where we have taken the symbol ▷, used also [32,189] to denote

a ‘consecution’ [147].
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5. A general Glivenko–Gödel theorem for nuclei

Rather than with Tarski’s notion, we henceforth work with its (tan-
tamount) restriction to finite subsets, i.e. a (single-conclusion) entail-
ment relation. 5 This is a relation ▷ ⊆ Fin(S)× S such that

U ∋ a
(R)

U ▷ a

V ▷ b V ′,b▷ a
(T)

V ,V ′ ▷ a

U ▷ a
(M)

U,U ′ ▷ a

for all finite U,U ′,V ,V ′ ⊆ S and a,b ∈ S, where as usual U,V ≡
U ∪ V and V ,b ≡ V ∪ {b}. Our focus thus is on finite subsets of
S, for which we reserve the letters U,V ,W , . . .; we sometimes write
a1, . . . , an in place of {a1, . . . , an} even if n = 0.

Remark 5.2.1. The rule (R) is equivalent, by (M), to the axiom a▷a.

Redefining

T ▷ ≡ {a ∈ S : ∃U ∈ Fin(T )(U ▷ a)}

for arbitrary subsets T of S gives back an algebraic closure opera-
tor on Pow(S). By writing T ▷ a in place of a ∈ T ▷, the entailment
relations thus correspond exactly to the relations satisfying Tarski’s
axioms above.

Given an entailment relation ▷, by setting a ⩽ b ≡ a▷ b we get a
preorder on S; whence the conjunction a ≈ b of a ⩽ b and b ⩽ a is an
equivalence relation.

Quite often an entailment relation is inductively generated from
axioms by closing up with respect to the three rules above [157].
Some leeway is required in the present chapter by allowing for gen-
erating rules other than (R), (M), and (T). If, however, these three
rules are the only rules employed for inductively generating an en-
tailment relation, we stress this by saying that this is generated only

5In the present chapter there is no need for abstract multi-conclusion conse-
quence or entailment à la Scott [170–172], Lorenzen’s contributions to which are
currently under scrutiny [42, 44]. The relevance of multi-conclusion entailment
to constructive algebra, point-free topology, etc. has been pointed out in [30], and
has widely been used, e.g. in [36–40, 45, 46, 110, 134, 134, 152, 154–156, 165, 168,
192, 193].
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by axioms. Given an inductively generated entailment relation ▷
and a set of axioms and rules P , then we call ▷ plus P the entail-
ment relation inductively generated by all axioms and rules that
either are used for generating ▷ or belong to P .

A main feature of inductive generation is that if ▷ is an entail-
ment relation generated inductively by certain axioms and rules,
then ▷ ⊆ ▷′ for every entailment relation ▷′ satisfying those axioms
and rules. By an extension ▷′ of an entailment relation ▷ we mean
in general an entailment relation ▷′ such that ▷ ⊆ ▷′. We say that
an extension ▷′ of ▷ is conservative if also ▷ ⊇ ▷′ and thus ▷ = ▷′

altogether [69, 70, 154, 155].

5.3 Nuclei over entailment relations

Throughout this section, fix a set S endowed with an entailment
relation ▷. We say that a function j : S ⊃ S is a nucleus (over ▷) if for
all a,b ∈ S and U ∈ Fin(S) the following hold:

U,a▷ jb
Lj

U,ja▷ jb

U ▷ b
Rj

U ▷ jb

Unlike Lj, by (R) and (T) the rule Rj can be expressed by an axiom,
viz.

b▷ jb (5.1)

Remark 5.3.1. The above notion of a nucleus includes as a special
case the notion of a nucleus on a locale [5, 97, 123, 159, 175, 176],
which is well-known as a point-free way to put subspaces. In fact,
if S is a locale with partial order ≤, then

U ▷ a ⇐⇒
∧

U ≤ a

defines an entailment relation [46] such that any given map j : S ⊃ S
is a nucleus on ▷ precisely when j is a nucleus on the locale S. The
latter means that j satisfies

ja∧ jb ≤ j(a∧ b) (5.2)
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5. A general Glivenko–Gödel theorem for nuclei

on top of the conditions for j being a closure operator on S, which
can be put as a ≤ ja and

a ≤ jb =⇒ ja ≤ jb . (5.3)

In the presence of a ≤ ja, which is nothing but (5.1), the conjunction
of (5.2) and (5.3) is equivalent to

c∧ a ≤ jb =⇒ c∧ ja ≤ jb ,

which in turn subsumes Lj. So the two notions of a nucleus coin-
cide.

Example 5.3.2.

(i) Every entailment relation ▷ has the trivial nucleus j ≡ id.

(ii) Consider an algebraic structure S with a unary self-inverse
function j (e.g. take a group as S and the inverse as j). The en-
tailment relation ▷ of S-substructures is inductively defined
by

a1, ..., an ▷ f (a1, ..., an) (5.4)

for every n-ary function f in the language of S, including j.
We want to show that j is a nucleus on ▷. Axiom (5.1) is just
(5.4) for f ≡ j, therefore rule Rj holds. In particular, j2 = id
implies j(a) ▷ a, which, together with (T), gives rule Lj. In
conclusion, j is a nucleus on ▷.

(iii) Double negation ¬¬ is a nucleus over intuitionistic logic ▷i as
an entailment relation (see Subsection 5.5.1 for further details
and Subsections 5.5.2–5.5.3 for more nuclei in logic).

5.3.1 Entailment relations induced by a nucleus,
and conservation

Consider a nucleus j over an entailment relation ▷. We define
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— the weak j-extension (or Kleisli extension) of ▷ as the relation
▷j ⊆ Fin(S)× S defined by

U ▷j a ⇐⇒ U ▷ ja

— the strong j-extension as the entailment relation ▷j ⊆ Fin(S)×S
inductively generated by the axioms and rules of ▷ plus the
stability axiom for j:

ja▷j a (5.5)

In the terminology coined before, ▷j is nothing but ▷ plus the
stability axiom for j.

Remark 5.3.3. By (R) in the form of a▷ a (Remark 5.2.1), stability
holds for ▷j too, that is, ja▷j a.

Under appropriate circumstances Remark 5.3.3 will help to obtain
▷j ⊆ ▷j ; see Theorem 5.3.8 and Corollary 5.3.9.

Lemma 5.3.4. Let S be a set with an entailment relation ▷ and let j be
a nucleus on ▷.

(i) ▷j is an entailment relation that extends ▷.

(ii) ▷j is an entailment relation that extends ▷.

Proof. (i) holds by the very definition of ▷j . As for (ii): By (5.1)
and Remark 5.2.1, rule (R) is bestowed from ▷ to ▷j . Rule (M) is
inherited from ▷, and so is rule (T) in view of Lj:

U ▷ ja

V ,a▷ jb
Lj

V , ja▷ jb
(T)

U,V ▷ jb

Finally, also ▷ ⊆ ▷j is a consequence of (5.1). ■
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Remark 5.3.5. The nucleus j on ▷ is a nucleus also on ▷j and ▷j .
In fact, by Lemma 5.3.4 both extensions inherit axiom (5.1) from ▷,
and actually satisfy the following strengthening of Lj:

U,a▷ b
Lj+

U,ja▷ b .

While Lj+ for ▷j is just Lj for ▷, stability ja▷a is tantamount to Lj+

for any entailment relation ▷ whatsoever.

To understand better whether and when ▷j coincides with ▷j ,
we first consider a concrete example.

Example 5.3.6. Consider deduction in minimal logic ▷m with the
nucleus jϕ ≡ ϕ ∨⊥ (see Subsection 5.5.2 below for details). Propo-
sitional minimal logic▷m is inductively generated by certain axioms
plus the rule

Γ ,ϕ ▷m ψ R⊃
Γ ▷mϕ ⊃ ψ

which cannot be expressed as an axiom. By its very definition, ▷jm
too satisfies R⊃. Does also ▷mj satisfy this rule? If this were the case,
then by definition of ▷mj we would have

Γ ,ϕ ▷m ψ ∨⊥
Γ ▷m (ϕ ⊃ ψ)∨⊥

As ⊥ ▷m ψ ∨ ⊥, we would obtain ▷m(⊥ ⊃ ψ) ∨ ⊥. However, since
minimal logic has the disjunction property and neither disjunct is
provable in general, this cannot be the case. So ▷j does not satisfy
rule R⊃.

The moral of Example 5.3.6 is that ▷ may already have non-
axiom rules, such as R⊃, which carry over to ▷j by its very defi-
nition, and thus need to hold in ▷j too for the former to be conser-
vative over the latter. To deal with this issue, we say that a rule r
that holds for ▷ is compatible with j if r also holds for ▷j .
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Remark 5.3.7.

(i) Rules (R), (M), (T) are compatible with every nucleus j, by
Lemma 5.3.4.

(ii) Every composition r of compatible rules is compatible. In fact,
the derivation that gives r in ▷ can be translated smoothly into
▷j , as all applied rules are compatible.

This is very useful: if we want to check compatibility for all
rules of an entailment relation ▷, it suffices to check compati-
bility for any set of rules that generate ▷.

(iii) Every axiom a1, ..., an ▷ b can be viewed as a rule with no pre-
miss, and as such is compatible with every nucleus j, simply
by Rj. Moreover, rules

U,b▷ c

U,a1, ..., an ▷ c

U ▷ a1 ... U ▷ an
U ▷ b

which are known respectively as left and right rule [65, 157] 6

are provably equivalent to the axiom a1, ..., an▷b and therefore
are compatible with j.

(iv) If an entailment relation ▷ is generated only by axioms, then
every rule that holds for ▷ is compatible with any nucleus j
over ▷.

Theorem 5.3.8 (Conservation for nuclei). Let S be a set with an en-
tailment relation ▷ inductively generated by axioms and rules, and let j
be a nucleus on ▷. Then ▷j extends ▷j , that is ▷j ⊆ ▷j . Moreover, the
following are equivalent:

(a) ▷j is conservative over ▷j , that is, ▷j ⊆ ▷j ;

(b) All non-axiom rules that generate ▷ are compatible with j.
6A reader familiar with structural proof theory may be reminded of the no-

tion of left and right rules in sequent calculus [132,133]. Though they look simi-
lar, the two concepts are not to be confused.
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Proof. First recall that, by its very definition, ▷j is inductively gener-
ated by rules (R), (M), (T), stability (5.5), and all rules that generate
▷. In particular, ▷ ⊆ ▷j .

Now suppose that U ▷j b, i.e. U ▷ jb. Since ▷ ⊆ ▷j , also U ▷j jb.
Then apply

U ▷j jb jb▷j b
(T)

U ▷j b

to show ▷j ⊆ ▷j .
(a)⇒(b) (b) follows directly from (a) and the fact that ▷j satisfies

all rules that generate ▷.
(b)⇒(a) Let us consider one by one the axioms and rules that

generate ▷j :

— ▷j satisfies (R), (M), (T), since ▷j is an entailment relation by
Lemma 5.3.4.

— ▷j satisfies stability (5.5) by Remark 5.3.3.

— ▷j satisfies all rules that generate ▷ since they are either com-
patible with j by hypothesis or axioms and thus compatible
with j by Remark 5.3.7.

As ▷j is the smallest extension of ▷ satisfying these axioms and
rules, we get ▷j ⊆ ▷j . ■

Corollary 5.3.9. Let S be a set with an entailment relation ▷ induc-
tively generated only by axioms, and let j be a nucleus on ▷. Then
▷j = ▷j , that is, ▷j is a conservative extension of ▷j .

Let j be a nucleus over an entailment relation ▷ inductively gen-
erated by axioms and rules, and let ▷∗ be an extension of ▷. We say
that ▷∗ is an intermediate j-extension of ▷ if ▷∗ is ▷ plus ∗where ∗ is a
collection of axioms that are valid in ▷j . In particular, ▷ ⊆ ▷∗ ⊆ ▷j .

Remark 5.3.10. Since▷ ⊆ ▷∗, we have▷j ⊆ ▷j∗. On the other hand, as
all axioms in ∗ already hold for ▷j , we also have ▷j∗ ⊆ ▷j . Therefore
▷
j
∗ = ▷j .
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Corollary 5.3.11 (Conservation for intermediate j-extensions). Let
S be a set with an entailment relation ▷ inductively generated by axioms
and rules, let j be a nucleus on ▷, and let ▷∗ be an intermediate j-
extension of ▷. Then ▷j extends ▷∗j , that is ▷∗j ⊆ ▷j . Moreover, the
following are equivalent:

(a) ▷j is conservative over ▷∗j , that is, ▷j ⊆ ▷∗j ;

(b) All non-axiom rules that generate ▷ hold for ▷∗j .

Proof. Follows from Theorem 5.3.8 for ▷∗ by noticing that ▷j∗ = ▷j

(Remark 5.3.10) and that all additional rules of ▷∗ are axioms and
thus already compatible with j (Remark 5.3.7). ■

The following characterisation will prove useful in several ap-
plications:

Lemma 5.3.12. Let S be a set with an entailment relation ▷, and let
j be a nucleus on ▷. Let r be a rule holding for ▷. The following are
equivalent:

(a) Rule r is compatible with j.

(b) For every instance

U1 ▷ b1 ... Un ▷ bn
U ▷ b

of rule r, there is β ∈ S such that β ▷ jb and

U1 ▷ jb1 ... Un ▷ jbn
U ▷ β

(5.6)

Proof. (a)⇒(b) If we take β ≡ jb, then (b) immediately follows by
reflexivity and compatibility.

(b)⇒(a) Recall that b▷ jb, and that from U ▷β and β▷ jb follows
U ▷ jb by (T). ■
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5. A general Glivenko–Gödel theorem for nuclei

5.4 Logic as entailment

Throughout this section, the overall assumption is that S is a set
of propositional or (first-order) predicate formulae containing ⊤,⊥,
and closed under the connectives ∨,∧,⊃,¬ for propositional logic
and also under the quantifiers ∀,∃ for predicate logic. Follow-
ing [17, 144], by (propositional) positive logic ▷p we mean the pos-
itive fragment of propositional intuitionistic logic. More precisely,
we define ▷p as the least entailment relation ▷ that satisfies the de-
duction theorem

Γ ,ϕ ▷ψ
R⊃

Γ ▷ϕ ⊃ ψ

and the following axioms:

ϕ,ψ ▷ϕ ∧ψ ϕ∧ψ ▷ϕ ϕ ∧ψ ▷ψ
ϕ ▷ϕ ∨ψ ψ ▷ϕ ∨ψ ϕ∨ψ,ϕ ⊃ δ,ψ ⊃ δ▷ δ

ϕ,ϕ ⊃ ψ ▷ψ
▷⊤

Of course, we understand this as an inductive definition. The above
system for positive logic [144] is equivalent to the G3-style calculus
in Table B.11 taken from [17]; they inductively generate the same
entailment relation.

On top of ▷p we consider the following additional axioms:

ϕ ⊃ ⊥ ≈ ¬ϕ (PC)
⊥▷ϕ (EFQ)

¬¬ϕ ▷ϕ (RAA)

They are known as principium contradictionis, ex falso quodlibet se-
quitur and reductio ad absurdum. The two directions of PC can also
be expressed via the rules

Γ ▷ϕ Γ ,⊥▷ψ
L¬

Γ ,¬ϕ ▷ψ
Γ ,ϕ ▷⊥

R¬
Γ ▷¬ϕ
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In the presence of EFQ, the rule L¬ can be simplified as

Γ ▷ϕ
L¬

Γ ,¬ϕ ▷ψ

Axiom EFQ is sometimes considered as a rule without premises:

L⊥
Γ ,⊥▷ϕ

We define:

— minimal logic ▷m as ▷p plus PC,

— intuitionistic logic ▷i as ▷m plus EFQ,

— classical logic ▷c as ▷i plus RAA.

Let ▷∗ be ▷p plus additional axioms. In particular, ▷∗ satisfies

the deduction theorem R⊃. The (first-order) predicate version ▷Q∗
of ▷∗, which we also refer to as ▷∗ plus quantifiers, is then obtained
by adding quantifiers ∀ and ∃ to the language and the following
rules to the inductive definition of ▷∗:

ϕ[t/x],Γ ,∀xϕ ▷ δ
L∀

Γ ,∀xϕ ▷ δ
Γ ▷ϕ[y/x]

R∀
Γ ▷∀xϕ

Γ ,ϕ[y/x]▷ δ
L∃

Γ ,∃xϕ ▷ δ
Γ ▷ϕ[t/x]

R∃
Γ ▷∃xϕ

with the condition that y has to be fresh in L∃ and R∀. Rules L∀
and R∃ can be expressed as axioms:

∀xϕ ▷ϕ[t/x]
ϕ[t/x]▷∃xϕ

The definition of a nucleus j given in [187] requires j to be compat-
ible with substitution, that is,

j(ϕ[t/x]) ≡ (jϕ)[t/x]

We prefer not to have this as a general assumption, but to make
explicit whenever we need it.
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5. A general Glivenko–Gödel theorem for nuclei

5.5 Conservation for nuclei in logic

Among the usual logical rules, R⊃, R∀ and L∃ are the only ones
that cannot be expressed as axioms. Rule L∃ is compatible with j
for every nucleus j as it does not affect the right-hand side of the
sequent. Therefore, when checking compatibility of rules with j, if
we do not add other rules that cannot be expressed as axioms, then
the only rules we have to check are R⊃ and R∀.

Lemma 5.5.1. Let ▷∗ be ▷p plus additional axioms, and let j be a nu-
cleus on ▷∗. Consider ▷∗ as ▷.

(i) R⊃ is compatible with j if and only if

ϕ ⊃ jψ ▷∗ j(ϕ ⊃ ψ)

(ii) If j is compatible with substitution, then R∀ is compatible with j
if and only if

∀xjϕ ▷Q∗ j∀xϕ

Proof. We prove (i), the proof of (ii) is analogous. As for “if”, by
Lemma 5.3.12, R⊃ is compatible with j if and only if for every in-
stance

sake

Γ ,ϕ ▷∗ ψ

Γ ▷∗ϕ ⊃ ψ
of R⊃ there is β ∈ S such that β ▷∗ j(ϕ ⊃ ψ) and

Γ ,ϕ ▷∗ jψ

Γ ▷∗ β

By R⊃, the latter condition is satisfied if we set β ≡ ϕ ⊃ jψ, for which
the former condition reads as

ϕ ⊃ jψ ▷∗ j(ϕ ⊃ ψ).

As for “only if”, compatibility directly entails the desired crite-
rion. In fact, as an instance of modus ponens we have

ϕ ⊃ jψ,ϕ ▷∗ jψ,
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which by the very definition of ▷j is nothing but

ϕ ⊃ jψ,ϕ ▷∗j ψ.

By compatibility, the deduction theorem carries over from ▷∗ to ▷∗j .
Hence we get

ϕ ⊃ jψ ▷∗j ϕ ⊃ ψ,

which again by the definition of ▷j yields the desired criterion:

ϕ ⊃ jψ ▷∗ j(ϕ ⊃ ψ). ■

This gives us the following version of Corollary 5.3.11:

Theorem 5.5.2 (Conservation for nuclei in logic). Let ▷ be ▷p plus
additional axioms, let j be a nucleus on▷, and let▷∗ be▷ plus additional
axioms such that ▷∗ ⊆ ▷j .

(i) The following are equivalent in propositional logic:

a) Γ ▷j ϕ ⇐⇒ Γ ▷∗ jϕ for all Γ ,ϕ

b) ▷∗ satisfies the following axiom:

ϕ ⊃ jψ ▷∗ j(ϕ ⊃ ψ)

(ii) Let ▷Q, ▷Q∗ , ▷Qj be ▷, ▷∗, ▷j plus quantifiers. If j is compatible
with substitution, then the following are equivalent in predicate
logic:

a) Γ ▷Qj ϕ ⇐⇒ Γ ▷
Q
∗ jϕ for all Γ ,ϕ

b) ▷Q∗ satisfies the following axioms:

ϕ ⊃ jψ ▷Q∗ j(ϕ ⊃ ψ)

∀xjϕ ▷Q∗ j∀xϕ
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5. A general Glivenko–Gödel theorem for nuclei

5.5.1 The Glivenko nucleus

Take intuitionistic logic ▷i as ▷, and define

jϕ ≡ ¬¬ϕ .

This j is well-known to be a nucleus over ▷i [159, 187], which we
call the Glivenko nucleus. As stability (5.5) equals RAA, the strong
extension ▷ji of intuitionistic logic ▷i is nothing but classical logic
▷c.

Since ϕ ⊃ ¬¬ψ ▷i ¬¬(ϕ ⊃ ψ) follows, e.g., from [186, Lemma
6.2.2], and the Glivenko nucleus is compatible with substitution,
we get the following instance of Theorem 5.5.2 where ▷ is ▷i :

Application 5.5.3.

(i) (Glivenko’s Theorem) Γ ▷cϕ ⇐⇒ Γ ▷i¬¬ϕ for all Γ ,ϕ in propo-
sitional logic.

(ii) (Gödel’s Theorem) Let ▷∗ be ▷i plus additional axioms such that
▷∗ ⊆ ▷c, and let ▷Qi , ▷Q∗ and ▷Qc be ▷i , ▷∗ and ▷c plus quantifiers.
The following are equivalent in predicate logic:

a) Γ ▷
Q
c ϕ ⇐⇒ Γ ▷

Q
∗ ¬¬ϕ for all Γ ,ϕ;

b) ∀x¬¬ϕ ▷Q∗ ¬¬∀xϕ for all ϕ.

Condition (b) in Application 5.5.3 is called Double Negation Shift
(DNS) and is known to define a proper intermediate logic ▷QDNS, that
is, ▷Qi ⊊ ▷

Q
DNS ⊊ ▷

Q
c [61].

Now let jϕ ≡ ¬ϕ ⊃ ϕ. This j is a nucleus [159, 187], which we
call the Peirce nucleus, as it is a special case of the Peirce monad [60].
Over intuitionistic logic, it is easy to show that the Glivenko nucleus
is equivalent to the Peirce nucleus, i.e., ¬¬ϕ ≈i ¬ϕ ⊃ ϕ for every ϕ.

5.5.2 The Dragalin–Friedman nucleus

Take minimal logic ▷m as ▷, and define

jϕ ≡ ϕ ∨⊥ .
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This j is a nucleus, in fact a closed nucleus [159,187]. We refer to this
j as the Dragalin–Friedman nucleus. As stability (5.5) is equivalent
to EFQ, the strong extension ▷jm of minimal logic ▷m is nothing but
intuitionistic logic ▷i .

Since the Dragalin–Friedman nucleus is compatible with substi-
tution, we get the following instance of Theorem 5.5.2 where ▷ is
▷m:

Application 5.5.4. Let ▷∗ be ▷m plus additional axioms such that ▷∗ ⊆
▷i .

(i) The following are equivalent in propositional logic:

a) Γ ▷i ϕ ⇐⇒ Γ ▷∗ϕ ∨⊥ for all Γ ,ϕ;

b) ϕ ⊃ (ψ ∨⊥)▷∗ (ϕ ⊃ ψ)∨⊥ for all ϕ,ψ.

(ii) Let ▷Qm, ▷Q∗ and ▷Qi be ▷m, ▷∗ and ▷i plus quantifiers. The follow-
ing are equivalent in predicate logic:

a) Γ ▷
Q
i ϕ ⇐⇒ Γ ▷

Q
∗ ϕ ∨⊥ for all Γ ,ϕ;

b) ϕ ⊃ (ψ∨⊥)▷Q∗ (ϕ ⊃ ψ)∨⊥ and ∀x(ϕ∨⊥)▷Q∗ (∀xϕ)∨⊥ for
all ϕ,ψ.

5.5.3 The deduction nucleus

Let ▷ be ▷p or ▷Qp plus additional axioms. We fix a propositional
formula A and set

jϕ ≡ A ⊃ ϕ .

This j, which we call the deduction nucleus, is an instance of the open
nucleus [159, 187]. As for this j stability (5.5) is equivalent to ▷A,
the strong extension ▷j is the smallest extension of ▷ in which A is
derivable.

The deduction nucleus is compatible with substitution, and the
following axioms are easy to show (see, e.g., [186, Lemma 6.2.1] for
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5. A general Glivenko–Gödel theorem for nuclei

the case of intuitionistic logic):

ϕ ⊃ (A ⊃ ψ)▷A ⊃ (ϕ ⊃ ψ)
∀x(A ⊃ ϕ)▷A ⊃ ∀xϕ

Hence we get the following instance of Theorem 5.5.2 where ▷ = ▷∗
is ▷p or ▷Qp plus additional axioms:

Application 5.5.5. Let ▷ be ▷p or ▷Qp plus additional axioms. Then

Γ ▷j ϕ ⇐⇒ Γ ▷A ⊃ ϕ

that is, A ⊃ ϕ is derivable from Γ if and only if ϕ is derivable from Γ

when assuming that A is derivable.

As Γ ▷jϕ also means that ϕ is derivable from Γ ∪{A}, Application
5.5.5 is a variant of the deduction theorem:

Γ ,A▷ϕ ⇐⇒ Γ ▷A ⊃ ϕ
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6 Universal translation
methods for nuclei

6.1 Introduction

Negative translations are well-known methods that turn classically
derivable formulae into intuitionistically derivable ones. More pre-
cisely, a negative translation is a mapping k that operates on formu-
lae in predicate logic such that

(i) if ϕ is classically derivable from Γ , then kϕ is intuitionistically
derivable from kΓ , with kΓ ≡ {kψ : ψ ∈ Γ }, and

(ii) ϕ and kϕ are classically equivalent.

These translations have proved to be useful also in computer sci-
ence [85], set theory [4], arithmetic, and analysis [180]. The first
such translation is allegedly due to Kolmogorov [100], who ob-
served that defining

kϕ ≡ ¬¬ϕ, for ϕ ∈ {⊥,⊤} or atomic,
k(ϕ ∗ψ) ≡ ¬¬(kϕ ∗ kψ), for ∗ ∈ {∧,∨,⊃},
k(Qxϕ) ≡ ¬¬(Qxkϕ), for Q ∈ {∃,∀},

it follows that classical provability of ϕ is equivalent to intuitionis-
tic provability of kϕ. This translation is known as the Kolmogorov
negative translation.
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6. Universal translation methods for nuclei

A somewhat simpler version was developed by Gentzen [79,80].
Again, if one defines

kϕ ≡ ¬¬ϕ, for ϕ ∈ {⊥,⊤} or atomic,
k(ϕ ∗ψ) ≡ kϕ ∗ kψ, for ∗ ∈ {∧,⊃},
k(ϕ ∨ψ) ≡ ¬¬(kϕ ∨ kψ),
k(∀xϕ) ≡ ∀xkϕ,
k(∃xϕ) ≡ ¬¬(∃xkϕ),

then classical provability of ϕ is equivalent to intuitionistic prov-
ability of kϕ. This translation is usually referred to as the Gödel–
Gentzen negative translation, even though Gödel’s original transla-
tion [83] was somewhat in between Kolmogorov’s and Gentzen’s, as
he defined

k(ϕ ⊃ ψ) ≡ ¬(kϕ ∧¬kψ),

which is intuitionistically equivalent to ¬¬(kϕ ⊃ kψ).
Kuroda [104] proposed a different translation, which can be de-

composed as k ≡ ¬¬J , where J is defined as

Jϕ ≡ ϕ, for ϕ ∈ {⊥,⊤} or atomic,
J(ϕ ∗ψ) ≡ Jϕ ∗ Jψ, for ∗ ∈ {∧,∨ ⊃},
J(∃xϕ) ≡ ∃x Jϕ,
J(∀xϕ) ≡ ¬¬(∀x Jϕ).

As before, classical provability of ϕ is equivalent to intuitionistic
provability of kϕ ≡ ¬¬Jϕ. This translation is known as the Kuroda
negative translation. Murthy [120] defined a variant of the Kuroda
translation by setting

J(ϕ ⊃ ψ) ≡ Jϕ ⊃ ¬¬Jψ.

This has been studied in the literature for having somewhat nicer
properties than Kuroda’s original version, and is called minimal
Kuroda negative translation [71, 187].
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Streicher and Reus [181] introduced a translation inspired by
Krivine’s work [103]. By defining

Dϕ ≡ ¬ϕ, for ϕ ∈ {⊥,⊤} or atomic,
D(ϕ ⊃ ψ) ≡ ¬Dϕ ∧Dψ,
D(ϕ ∧ψ) ≡Dϕ ∨Dψ,
D(ϕ ∨ψ) ≡Dϕ ∧Dψ,
D(∃xϕ) ≡ ¬∃x¬Dϕ,
D(∀xϕ) ≡ ∃xDϕ,

classical provability of ϕ is equivalent to intuitionistic provability
of kϕ ≡ ¬Dϕ. This translation is known as the Krivine negative
translation.

Finally, Ferreira and Oliva [71] showed that the aforementioned
minimal Kuroda, Krivine and Gödel–Gentzen negative translations
are what they call maximal simplifications of the Kolmogorov nega-
tive translation, and observed that there is a fourth one: by defining

Eϕ ≡ ¬ϕ, for ϕ ∈ {⊥,⊤} or atomic,
E(ϕ ⊃ ψ) ≡ ¬Eϕ ∧Eψ,
E(ϕ ∧ψ) ≡ ¬Eϕ ⊃ Eψ,
E(ϕ ∨ψ) ≡ Eϕ ∧Eψ,
E(∃xϕ) ≡ ∀xEϕ,
E(∀xϕ) ≡ ¬∀x¬Eϕ,

classical provability of ϕ is equivalent to intuitionistic provability
of kϕ ≡ ¬Eϕ. We do not consider this in what follows, as in our
approach this cannot be treated in the same way as the others.

Double negation over intuitionistic logic is a typical instance of
a nucleus [5,88,97,123,159,175,176,187]. As also observed by van
den Berg [187] and Escardó and Oliva [59, 60], a generalised ver-
sion of the Gödel–Gentzen negative translation for arbitrary nuclei
has already been known in logic [4], in locale theory [97] and in
topos theory [98], and van den Berg himself gives a generalisation
of the minimal Kuroda negative translation for arbitrary nuclei in
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6. Universal translation methods for nuclei

logic. These generalisations are called j-translations. Our aim is to
give a somewhat more general and wider insight on j-translations,
by considering arbitrary sets endowed with abstract consequence
relations.

6.2 Preliminaries

For the the sake of reader’s convenience, we briefly recall a few key
concepts from Chapter 5 and [68].

Let S be a set and ▷ ⊆ Fin(S)×S. A (single-conclusion) entailment
relation as considered in [154, 155] is a relation ▷ ⊆ Fin(S) × S such
that

(R)
a,U ▷ a

V ▷ b V ′,b▷ a
(T)

V ,V ′ ▷ a

U ▷ a
(M)

U,U ′ ▷ a

for all finite U,U ′,V ,V ′ ⊆ S and a,b ∈ S, where as usual U,V ≡
U ∪ V and V ,b ≡ V ∪ {b}. Our focus thus is on finite subsets of
S, for which we reserve the letters U,V ,W , . . .; we sometimes write
a1, . . . , an in place of {a1, . . . , an} even if n = 0.

Remark 6.2.1. The rule (R) is equivalent, by (M), to the axiom a▷a.

Given an entailment relation ▷, by setting a ⩽ b ≡ a▷ b we get a
preorder on S; whence the conjunction a ≈ b of a ⩽ b and b ⩽ a is an
equivalence relation.

Quite often an entailment relation is inductively generated from
axioms by closing up with respect to the three rules above [157].
Some leeway is required in the present paper by allowing for gen-
erating rules other than (R), (M), and (T). Given an inductively gen-
erated entailment relation ▷ and a set of axioms and rules P , then
we call ▷ plus P the entailment relation inductively generated by all
axioms and rules that either are used for generating ▷ or belong to
P .

A main feature of inductive generation is that if ▷ is an entail-
ment relation generated inductively by certain axioms and rules,
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then ▷ ⊆ ▷′ for every entailment relation ▷′ satisfying those axioms
and rules. By an extension ▷′ of an entailment relation ▷ we mean
in general an entailment relation ▷′ such that ▷ ⊆ ▷′. We say that
an extension ▷′ of ▷ is conservative if also ▷ ⊇ ▷′ and thus ▷ = ▷′

altogether [69, 70, 154, 155].
We say that a function j : S ⊃ S is a nucleus (over ▷) if for all

a,b ∈ S and U ∈ Fin(S) the following hold:

U,a▷ jb
Lj

U,ja▷ jb

U ▷ b
Rj

U ▷ jb

Unlike Lj, by (R) and (T) the rule Rj can be expressed by an axiom,
viz.

b▷ jb .

Given a nucleus j over an entailment relation ▷, we have the
following extensions of ▷:

— the weak j-extension (or Kleisli extension) of ▷ as the relation
▷j ⊆ Fin(S)× S defined by

U ▷j a ⇐⇒ U ▷ ja

— the strong j-extension as the entailment relation ▷j ⊆ Fin(S)×S
inductively generated by the axioms and rules of ▷ plus the
stability axiom for j:

ja▷j a

In the terminology coined before, ▷j is nothing but ▷ plus the
stability axiom for j.

Since ▷ may already have non-axiom rules, which carry over to ▷j

by its very definition, they need to hold in ▷j too for the former to
be conservative over the latter. To deal with this issue, we say that a
rule r that holds for ▷ is compatible with j if r also holds for ▷j .

The main result in Chapter 5 is the following
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Theorem 6.2.2 (Conservation for nuclei). Let S be a set with an en-
tailment relation ▷ inductively generated by axioms and rules, and let j
be a nucleus on ▷. Then ▷j extends ▷j , that is ▷j ⊆ ▷j . Moreover, the
following are equivalent:

(a) ▷j is conservative over ▷j , that is, ▷j ⊆ ▷j ;

(b) All non-axiom rules that generate ▷ are compatible with j.

6.3 General j-translations

Let a set S endowed with an entailment relation ▷ inductively gen-
erated by rules, and let j be a nucleus on ▷.

We say that a function k : S→ S is a

(i) (weak) j-translation if

U ▷j b

kU ▷ kb (6.1)

where kU ≡ {ku : u ∈U };

(ii) strong j-translation if it satisfies the following two conditions:

U ▷j b

kU ▷ kb (6.2)

a ≈j ka. (6.3)

where ≈j is the intersection of the two directions of ▷j .

Remark 6.3.1. Let k : S → S be a strong j-translation. Then k is a
j-translation. In fact, direction “only if” of (6.1) is just (6.2) and,
since ▷j extends ▷, we have that kU ▷ kb implies kU ▷j kb, which is
equivalent to U ▷j b by means of a ≈j ka.
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Remark 6.3.2. Let k : S→ S be a strong j-translation. Then it satis-
fies

a,U ▷ kb
Lk

ka,U ▷ kb

In fact:
a,U ▷ kb

ext.
a,U ▷j kb

(6.3)
kb▷j b

(T)
a,U ▷j b

(6.2)
ka,kU ▷ kb

(T) with u ▷ ku for each u ∈U
ka,U ▷ kb

It follows that a strong j-translation k : S → S is a nucleus if and
only if a▷ ka.

Theorem 6.3.3. Let S be a set with an entailment relation ▷ inductively
generated by axioms and rules, and let j be a nucleus on ▷. Then the
following are equivalent:

(a) The nucleus j is a strong j-translation;

(b) The nucleus j is a weak j-translation;

(c) All non-axiom rules that generate ▷ are compatible with j.

As one may see from the proof, this is a variant of Theorem 6.2.2
where, instead of conservation, we have the equivalent condition
that the nucleus j is a j-translation.

Proof. First, notice that from Theorem 6.2.2, (c) is equivalent to

U ▷j b

U ▷ jb

which, by simple applications of Lj and Rj, is equivalent to (6.2) for
k ≡ j.

(a)⇒(b) follows from Remark 6.3.1. If j is a weak j-translation,
then in particular it satisfies (6.2), so (b)⇒(c). Since (6.3) holds for
all nuclei, (c)⇒(a). ■
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6.3.1 The Kolmogorov condition

Let a function k : S→ S and a rule

{Ui ▷ bi : i ⩽ n} r
U ▷ b

that holds for ▷. We say that k satisfies the Kolmogorov condition on
r if the following holds:

{kUi ▷ kbi : i ⩽ n} rkkU ▷ kb

Remark 6.3.4. Let a function k : S→ S.

(i) k trivially satisfies the Kolmogorov condition on the three
structural rules.

(ii) k satisfies the Kolmogorov condition on any composition of
rules on each of which k satisfies the Kolmogorov condition.

(iii) If k satisfies the Kolmogorov condition on all non-structural
rules that generate ▷, then k satisfies the Kolmogorov condi-
tion on all admissible rules of ▷.

Theorem 6.3.5. Let S be a set with an entailment relation ▷ inductively
generated by axioms and rules, and let j be a nucleus on ▷. A function
k : S → S such that a ≈j ka for every a ∈ S is a strong j-translation if
and only if the following two conditions hold:

(i) k satisfies the Kolmogorov condition on all non-structural rules in
the inductive definition of ▷,

(ii) kja▷ ka for every a ∈ S.

Proof. Suppose that (i) and (ii) hold. We need to prove that U ▷j b
is equivalent to kU ▷ kb. If kU ▷ kb, then kU ▷j kb since ▷j is an
extension of ▷. Then U ▷j b follows by applications of transitivity
with instances of u ▷j ku for each u ∈ U and with kb ▷j b. Suppose
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that U ▷j b. We show that kU ▷ kb by induction on the derivation
of U ▷j b. The cases involving structural rules are trivial. The case
of the stability axiom ja▷j a is tantamount to kja▷ ka, which holds
by hypothesis. Consider the case of a non-structural rule r in the
inductive definition of ▷, i.e.

{Ui ▷j bi : i ⩽ n} r
U ▷j b

Then {
Ui ▷

j bi ind.hyp.
kUi ▷ kbi

: i ⩽ n
}
rkkU ▷ kb

where rk can be applied because of the Kolmogorov condition.
Now suppose that k is a j-translation. Notice that (ii) follows

from ja▷j a by the fact that k is a j-translation. To prove (i), consider
a rule

{Ui ▷ bi : i ⩽ n} r
U ▷ b

in the inductive definition of ▷. We need to show that k satisfies the
Kolmogorov condition on this rule, which—as k is a j-translation—
means that the rule also holds for ▷j in place of ▷. The latter is the
case by the very definition of ▷j . ■

6.3.2 The Kuroda condition

Let a function J : S→ S and a rule

{Ui ▷ bi : i ⩽ n} r
U ▷ b
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that holds for ▷. We say that J satisfies the Kuroda condition on r if
the following holds1

{JUi ▷ jJbi : i ⩽ n} rJJU ▷ jJb

Remark 6.3.6. Consider a function J : S→ S.

(i) J satisfies the Kuroda condition on the three structural rules.
The only nontrivial case is (T):

JU ▷ jJa

Ja, JV ▷ jJb
Lj

jJa, JV ▷ jJb
(T)

JU,JV ▷ jJb

(ii) J satisfies the Kuroda condition on any composition of rules
on each of which J satisfies the Kuroda condition.

(iii) If J satisfies the Kuroda condition on all non-structural rules
that generate ▷, then J satisfies the Kuroda condition on all
admissible rules of ▷.

(iv) If J satisfies the Kolmogorov condition on an axiom, then J
also satisfies the Kuroda condition on this axiom by means of
Rj.

Lemma 6.3.7. Let S be a set with an entailment relation ▷ inductively
generated by axioms and rules, and let j be a nucleus on ▷. Let J : S→ S
satisfy the Kuroda condition on all rules that generate ▷, and suppose
that Jja▷j Ja for every a ∈ S. Then2

U ▷j b =⇒ JU ▷j Jb.

1Compare this definition with Lemma 5.3.12: the Kuroda condition for r can
be viewed as compatibility of r with j modulo J .

2This can be viewed as conservation of ▷j over ▷j modulo J .
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Proof. Suppose that U ▷j b. We show that JU ▷j Jb by induction on
the derivation of U ▷j b. If U ▷j b is an instance of stability, then it is
of the form jb ▷j b, and the claim is tantamount to Jjb ▷j Jb, which
holds by assumption.

Suppose that
{Ui ▷ bi : i ⩽ n} r

U ▷ b

is a structural rule or a rule in the inductive definition of ▷. Then{
ind.hyp.

JUi ▷ jJbi
: i ⩽ n

}
rJJU ▷ jJb ■

Theorem 6.3.8. Let S be a set with an entailment relation ▷ induc-
tively generated by axioms and rules, and let j be a nucleus on ▷. Let
J satisfy the Kuroda condition on all rules that generate ▷, and sup-
pose that a ≈j Ja and Jja▷j Ja for every a ∈ S. Then k ≡ jJ is a strong
j-translation.

Proof. (6.3) follows from Lemma 6.3.7 by direct applications of rule
Lj. As for (6.3):

a▷j Ja Ja▷j jJa
(T)

a▷j jJa

jJa▷j Ja Ja▷j a
(T)

jJa▷j a ■

6.4 Seminuclei

Let a set S endowed with an entailment relation ▷ inductively gen-
erated by rules. A function d : S → S is a seminucleus on ▷ if d2 is a
nucleus on ▷.

Example 6.4.1.

(i) The motivating example is of course negation ¬ in logic. Dou-
ble negation is in fact a well-known nucleus, to which we refer
as the Glivenko nucleus.
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(ii) Since identity is a nucleus, every function which is self-
inverse, i.e. that satisfy f 2a = a, is a seminucleus.

(iii) Pseudo-complements in lattice theory are an example of
seminuclei.

Given p ∈ S, a pseudo-complement seminucleus (for short PCSN)
relative to p is a function ¬p : S→ S such that:

U ▷ a p,U ▷ b
L¬p¬pa,U ▷ b

a,U ▷ p
R¬p

U ▷¬pa

The intuition behind this is that ¬pa mimics the behaviour of the
implication a ⊃ p. In literature, this is commonly known as pseudo-
complement [53, 58, 144]. Notice that, if b ≡ p, then rule L¬p can be
simplified as

U ▷ a
L¬′p¬pa,U ▷ p

which actually turns to be equivalent to L¬p itself. Moreover, it can
also be expressed by an axiom, viz.

a,¬pa▷ p,

which is kind of modus ponens for conclusion p. By modifying the
rules for PCSN as

U ▷ a
L−

−a,U ▷ b
a,U ▷−a

R−
U ▷−a

one gets that −a mimics the behaviour of a ⊃ p for all p together,
which is intuitionistic negation:

U ▷−a ⇐⇒ ∀b ∈ S(a,U ▷ b). (6.4)

We call this − a negative seminucleus. Similarly to L¬p, rule L− can
also be expressed by an axiom, viz.

a,−a▷ b.
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Remark 6.4.2.

(i) Let p ∈ S. If there is a PCSN relative to p, then it is unique
modulo equivalence ≈. In fact, if both ¬p and ∼p are PCSN
relative to p, then we can apply R∼p to the axiom a,¬pa ▷ p
and obtain ¬pa▷∼p a.

(ii) Analogously to (i), one proves that if there is a negative
seminucleus −, then it is unique modulo equivalence ≈.

(iii) If there is a unit e ∈ S (also known as convincing element [153,
154]), i.e. an element such that

∀a ∈ S(e▷ a),

e.g. e ≡ ⊥, then − is just ¬e modulo equivalence ≈.

Proposition 6.4.3. Let ▷ be an entailment relation on S, and let d be
either a PCSN relative to p or a negative seminucleus on ▷. Then d
satisfies the following rules:

a,U ▷ b
Cp

db,U ▷ da

U,a▷ d2b
Ld2

U,d2a▷ d2b

U ▷ b
Rd2

U ▷ d2b

In particular, d is a seminucleus.

Proof. We only prove the case in which d ≡ ¬p, the other is similar.
Rules Cp (contraposition) and Rd2 are just obtained by subsequent
applications of Ld′ and Rd. As for Ld2:

(R)
db▷ db

Ld′
d2b,db▷ p

Rd
db▷ d3b

a,U ▷ d2b
Ld′

a,d3b,U ▷ p
(T)

a,db,U ▷ p
Rd

db,U ▷ da
Cp

d2a,U ▷ d2b ■
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Remark 6.4.4. Let ▷ be an entailment relation on S, and let d be
either a PCSN relative to p or a negative seminucleus on ▷.

(i) We have a generalisation of Ld2:

a,U ▷ db
Ld2

dd2a,U ▷ db

We prove its admissibility in the case in which d ≡ ¬p, the
other is similar:

a,U ▷ db

(R)
b▷ b

Ld′
b,db▷ p

(T)
a,b,U ▷ p

Rd
b,U ▷ da

Ld′
b,d2a,U ▷ p

Rd
d2a,U ▷ db

(ii) We have d3a ≈ da. In fact, da▷ d3a and d3a ≈ da follow from
direct applications of Rd2 and Ld2

d , respectively.

(iii) U ▷ da if and only if U ▷d2 da. In fact, “only if” follows from
▷ ⊆ ▷d2 , while “if” is a direct application of (T) of U ▷ d3a
with d3a▷ da. While the former is equivalent to U ▷d2 da by
definition of ▷d2 , the latter holds by (ii).

Theorem 6.4.5. Let S be a set with an entailment relation ▷ inductively
generated by (axioms and) rules, and let d be a either a PCSN od a
negative seminucleus on ▷. If all rules that generate ▷ are compatible
with d2, then

U ▷d
2
da ⇐⇒ U ▷ da

Proof. Direction “⇒” holds in general since ▷ ⊆ ▷d2
. By Theorem

6.2.2, if all rules that generate ▷ are compatible with d2, then ▷d
2 ⊆

▷d2 which, together with Remark 6.4.4(iii), gives “⇐”. ■

152



6.4. Seminuclei

Let S be a set with an entailment relation ▷. The closure of U ∈
Fin(S) with respect to ▷ is

⟨U⟩▷ ≡ {a ∈ S : U ▷ a}.

Lemma 6.4.6. Let S be a set with an entailment relation ▷, and let d be
a either PCSN or a negative seminucleus on ▷. Let U ∈ Fin(S). Then:

⟨U⟩▷d2 =
{
a ∈ S : ∀b ∈ S

a▷ db

U ▷ db

}
. (6.5)

Proof. Take a ∈ ⟨U⟩▷d2 , which means that U ▷ d2a. If a ▷ db, then
d2a▷ db by Ld2

d . We conclude U ▷ db by (T). Now take a such that
∀b ∈ S(a ▷ db ⇒ U ▷ db). From a ▷ d2a thus follows U ▷ d2a, i.e.
a ∈ ⟨U⟩▷d2 . ■

The Jacobson radical 3 of U ∈ Fin(S) with respect to ▷ is

Jac▷(U ) ≡
{
a ∈ S : ∀b ∈ S

∀c ∈ S(a,b▷ c)

∀c ∈ S(U,b▷ c)

}
.

Remark 6.4.7. If there is a unit e ∈ S, then by (T) we have

Jac▷(U ) =
{
a ∈ S : ∀b ∈ S

a,b▷ e

U,b▷ e

}
.

Theorem 6.4.8. Let S be a set with an entailment relation ▷, and let d
be a negative seminucleus on ▷. Let U ∈ Fin(S). Then

⟨U⟩▷d2 = Jac▷(U )

Proof. Apply (6.4) to (6.5). ■

The latter is sort of a generalisation of [70, Proposition 3 and Corol-
lary 1].

3The notion of Jacobson radical originates in commutative ring theory [110]
and carries over to distributive lattices [22, 43, 96]. Recent work [65, 70, 191]
relates it to logic and arbitrary entailment relations.
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6.5 j-translations in logic

In order to make this chapter more self-contained, we briefly recall
how logic can be obtained as an entailment relation. We closely
follow Section 5.4 and [68]. However, in the present chapter we only
consider extensions of minimal predicate logic in place of positive
propositional logic.

Throughout this section, the overall assumption is that S is a
set of formulae of (first-order) predicate logic containing ⊤,⊥, and
closed under the connectives ∨,∧,⊃ and the quantifiers ∀,∃.4 We
consider by minimal (predicate) logic ▷m, which is the fragment of
intuitionistic predicate logic without the principle of ex falso quodli-
bet sequitur. More precisely, ▷m is defined as the least entailment
relation ▷ that satisfies the following rules

Γ ,ϕ ▷ψ
R⊃

Γ ▷ϕ ⊃ ψ
Γ ,ϕ[y/x]▷ δ

L∃
Γ ,∃xϕ ▷ δ

Γ ▷ϕ[y/x]
R∀

Γ ▷∀xϕ

with the condition that y has to be fresh in L∃ and R∀, and the
following axioms:

ϕ,ψ ▷ϕ ∧ψ ϕ ∧ψ ▷ϕ ϕ ∧ψ ▷ψ
ϕ ▷ϕ ∨ψ ψ ▷ϕ ∨ψ ϕ∨ψ,ϕ ⊃ δ,ψ ⊃ δ▷ δ

ϕ,ϕ ⊃ ψ ▷ψ ϕ[t/x]▷∃xϕ ∀xϕ ▷ϕ[t/x]
▷⊤

Of course, we understand this as an inductive definition. In this
setting, negation ¬ is not given as a primitive operator, but it is
rather defined by

¬ϕ ≡ ϕ ⊃ ⊥.

The above system for minimal logic is equivalent to the G3-style
calculus in Table B.11; the two systems inductively generate the

4It is worth noting that, while we explicitly talk about logic, anything in this
section can easily be transferred into any setting with logic-like operators, such
as lattice theory, locale theory [97], topos theory [98] and such.
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same entailment relation. On top of ▷m we consider the following
additional axioms:

⊥▷ϕ (EFQ)
¬¬ϕ ▷ϕ (RAA)

They are known as ex falso quodlibet sequitur and reductio ad absur-
dum. As usual, we define:

— intuitionistic logic ▷i as ▷m plus EFQ,

— classical logic ▷c as ▷i plus RAA.

Throughout this section, we also suppose that the nucleus j is
compatible with substitution, that is,

j(ϕ[t/x]) ≡ (jϕ)[t/x].

Since this section contains many lengthy proofs by induction on
either formulae or derivations, in order to facilitate the reading we
decided to move the details to Appendix A.

We start by noticing that Theorem 6.3.3 already gives us some
simple examples of j-translations.

Application 6.5.1.

(i) Let ▷ be ▷i plus the double negation shift [60]

∀x¬¬ϕ ▷¬¬∀xϕ.

Then the Glivenko nucleus j ≡ ¬¬ is a strong j-translation.

(ii) Let ▷ be ▷m plus

ϕ ⊃ (ψ ∨⊥)▷ (ϕ ⊃ ψ)∨⊥, and
∀x(ϕ ∨⊥)▷ (∀xϕ)∨⊥.

Then the Dragalin–Friedman nucleus j : ϕ 7→ ϕ ∨⊥ is a strong
j-translation.
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(iii) Let ▷ be ▷m plus additional axioms, and fix a formula A. Then
the deduction nucleus j : ϕ 7→ A ⊃ ϕ is a strong j-translation.

Proof. By Theorem 6.3.3, each claim is tantamount to the condition
that all non-axiom rules in the inductive definition of ▷, i.e. R⊃,
R∀ and L∃, are compatible with the nucleus j under consideration.
Rule L∃ is compatible with j for every nucleus j as it does not affect
the right-hand side of the sequent. Therefore, the only rules we
have to check are R⊃ and R∀. By Lemma 5.5.1, their compatibilities
with j are equivalent to

ϕ ⊃ jψ ▷ j(ϕ ⊃ ψ), (6.6)
∀xjϕ ▷ j∀xϕ, (6.7)

respectively. Now we can prove all three parts:

(i) (6.6) holds as observed in Subsection 5.5.1, while (6.7) holds
by hypothesis.

(ii) Both (6.6) and (6.7) hold by hypothesis.

(iii) Both (6.6) and (6.7) hold, as observed in Subsection 5.5.3. ■

6.5.1 Translations à la Kolmogorov and à la
Gödel–Gentzen

Let ▷ be an extension of ▷m. Given a nucleus j on ▷, we inductively
define

(i) the Kolmogorov j-function k as

(i) kϕ ≡ jϕ, for ϕ ∈ {⊥,⊤} or atomic,
(ii) k(ϕ ∗ψ) ≡ j(kϕ ∗ kψ), for ∗ ∈ {∧,∨,⊃},

(iii) k(Qxϕ) ≡ j(Qxkϕ), for Q ∈ {∃,∀}.

This is named after the Kolmogorov negative translation,
which k is obtained for j ≡ ¬¬, as seen in Application 6.5.4(i).
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(ii) the Gödel–Gentzen j-function k as

(i) kϕ ≡ jϕ, for ϕ ∈ {⊥,⊤} or atomic,
(ii) k(ϕ ∗ψ) ≡ kϕ ∗ kψ, for ∗ ∈ {∧,⊃},

(iii) k(ϕ ∨ψ) ≡ j(kϕ ∨ kψ),
(iv) k(∀xϕ) ≡ ∀xkϕ,
(v) k(∃xϕ) ≡ j(∃xkϕ).

This is named after the Gödel–Gentzen negative translation,
which is k obtained for j ≡ ¬¬, as seen in Application 6.5.4(i).

Let k be either the Kolmogorov j-function or the Gödel–Gentzen
j-function. Notice that, since the nucleus j is compatible with sub-
stitution, a straightforward proof by induction gives that also k is
compatible with substitution, that is

k(ϕ[t/x]) ≡ (kϕ)[t/x].

Remark 6.5.2. If k is the Kolmogorov j-function or the Gödel–
Gentzen j-function, then

α,Γ ▷ kβ
Ljkjα,Γ ▷ kβ

In fact, if k is the Kolmogorov j-function, kβ ≡ jβ′ for some β′ ∈ S,
therefore rule Lj can be applied whenever we have kβ on the right-
hand side; if k is the Gödel–Gentzen j-function, then the claim is
proved by induction, see Appendix A.1 for details.

Proposition 6.5.3. Let ▷ be an extension of either ▷m or ▷i with addi-
tional rules R, let j be a nucleus on ▷ and let k be either the Kolmogorov
j-function or the Gödel–Gentzen j-function. Suppose that k satisfies the
Kolmogorov condition on all elements of R. Then k is a j-translation if
and only if

kjα ▷ kα

for all α ∈ S. In such case, k is a strong j-translation.
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Proof. First, α ≈j kα is proved by induction on α. While it is
straightforward to prove that k satisfies the Kolmogorov condition
for every rule in the inductive definition of ▷i , k satisfies the Kol-
mogorov condition for every rule in R by hypothesis. We conclude
by Theorem 6.3.5. See Appendix A.1 for details. ■

Application 6.5.4.

(i) Let ▷ ≡ ▷i , let j ≡ ¬¬ be the Glivenko nucleus and let k be ei-
ther the Kolmogorov j-function or the Gödel–Gentzen j-function.
Then k is a strong j-translation, known as the Kolmogorov neg-
ative translation [71, 100] in the Kolmogorov j-function case or
as the Gödel–Gentzen negative translation [71, 79, 80] in the
Gödel–Gentzen j-function case.

(ii) Let ▷ ≡ ▷m, let j be the Dragalin–Friedman nucleus

j : α 7→ α ∨⊥

and let k be either the Kolmogorov j-function or the Gödel–
Gentzen j-function. Then k is a strong j-translation. In the
Gödel–Gentzen j-function case, it is known as the Friedman’s A-
translation of the negative translation [60, 74]

(iii) Let ▷ be an extension of either ▷m or ▷i with additional rules R.
Let A ∈ S and let j be the deduction nucleus

j : α 7→ A ⊃ α.

Suppose that the Kolmogorov j-function k satisfies the Kol-
mogorov condition on all elements of R. Then k is a j-translation
if and only if ▷ kA. In particular, if k is a j-translation, then it is
a strong j translation and ▷j A.

Proof.

(i) By Proposition 6.5.3, the claim is tantamount to k¬¬α ▷ kα.
Notice that j⊥ ≡ ¬¬⊥ ≈ ⊥ and thus k(¬ϕ) ≈ ¬kϕ. Then our
claim is tantamount to jkα ▷ kα, which follows from kα ▷ kα
by applying Ljk.
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(ii) By Proposition 6.5.3, the claim is tantamount to k(α∨⊥)▷kα.
Notice that j⊥ ≡ ⊥∨⊥ ≈ ⊥ and thus k(α∨⊥) ≈ kα∨⊥. Then our
claim is tantamount to j2kα▷ kα, which follows from kα▷ kα
by applying Ljk.

(iii) By Proposition 6.5.3, k is a j-translation if and only if k(A ⊃
α)▷ kA for every α. Case Kolmogorov j-function: Notice that
the claim can be written as A ⊃ (kA ⊃ kα) ▷ kA for every α,
which is equivalent to ▷ kA:

(R)
A,kA▷ kA

R⊃
A▷ kA ⊃ kA

R⊃
▷A ⊃ (kA ⊃ kA) A ⊃ (kA ⊃ kA)▷ kA

(T)
▷ kA

▷kA
(R)

kα ▷ kα
L⊃

kA ⊃ kα ▷ kα
Ljk

j(kA ⊃ kα)▷ kα

Case Gödel–Gentzen j-function: Notice that the claim can be
written as kA ⊃ kα ▷ kA for every α, which is equivalent to
▷ kA:

(R)
kA▷ kA

R⊃
▷ kA ⊃ kA kA ⊃ kA▷ kA

(T)
▷ kA

▷kA
(R)

kα ▷ kα
L⊃

kA ⊃ kα ▷ kα ■

6.5.2 Translations à la Kuroda

Let ▷ be an extension of ▷m. Given a nucleus j on ▷, define J : S→ S
inductively as follows:

(i) Jϕ ≡ ϕ, for ϕ ∈ {⊥,⊤} or atomic,
(ii) J(ϕ ⊃ ψ) ≡ Jϕ ⊃ jJψ,

(iii) J(ϕ ∗ψ) ≡ Jϕ ∗ Jψ, for ∗ ∈ {∧,∨},
(iv) J(∃xϕ) ≡ ∃x Jϕ,
(v) J(∀xϕ) ≡ ∀x jJϕ.

We call this J the Kuroda j-function. This definition follows van den
Berg [187], and is based on the minimal Kuroda negative trans-
lation, which is k ≡ jJ for j ≡ ¬¬, see Application 6.5.6 below.
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Since the nucleus j is compatible with substitution, a straightfor-
ward proof by induction gives that also the Kuroda j-function J is
compatible with substitution, that is

J(ϕ[t/x]) ≡ (Jϕ)[t/x].

Proposition 6.5.5. Let ▷ be an extension of either ▷m or ▷i with addi-
tional rules R, let j be a nucleus on ▷ and let J be the Kuroda j-function.
Suppose that J satisfies the Kuroda condition on all elements of R and
that

Jjα ▷ jJα

for all α ∈ S. Then k ≡ jJ is a j-translation. In such case, k is a strong
j-translation.

Proof. First, α ≈j Jα is proved by induction on α. While it is
straightforward to prove that J satisfies the Kuroda condition for
every rule in the inductive definition of ▷i , J satisfies the Kuroda
condition for every rule in R by hypothesis. We conclude by Theo-
rem 6.3.8. See Appendix A.2 for details. ■

Application 6.5.6.

(i) Let ▷ ≡ ▷i and let j ≡ ¬¬ be the Glivenko nucleus. Let J be the
Kuroda j-function. Then k ≡ jJ is a strong j-translation, known
as the minimal Kuroda negative translation [71,104,120,187].

(ii) Let ▷ ≡ ▷m, let j be the Dragalin–Friedman nucleus

j : α 7→ α ∨⊥.

Let J be the Kuroda j-function. Then k ≡ jJ is a strong j-
translation.

(iii) Let ▷ be an extension of either ▷m or ▷i with additional rules R.
Let A ∈ S and let j be the deduction nucleus

j : α 7→ A ⊃ α.
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Suppose that the Kuroda j-function J satisfies the Kuroda condi-
tion on all elements of R. Then k ≡ jJ is a j-translation if and only
if A▷ JA. In particular, if k is a j-translation, then it is a strong j
translation.

Proof.

(i) By Proposition 6.5.5, the claim is tantamount to J¬¬α▷¬¬Jα.
Notice that j⊥ ≡ ¬¬⊥ ≈ ⊥ and thus J(¬ϕ) ≈ ¬Jϕ.

(ii) By Proposition 6.5.5, the claim is tantamount to J(α∨⊥)▷Jα∨
⊥, which holds since J(α ∨⊥) ≡ Jα ∨⊥ by definition of J .

(iii) By Proposition 6.5.5, k is a j-translation if and only if J(A ⊃
α)▷A ⊃ Jα for every α. Notice that the latter can be written
as JA ⊃ (A ⊃ Jα)▷A ⊃ Jα, for every α, which is equivalent to
A▷ JA:

(R)
JA,A▷ JA

R⊃
JA▷A ⊃ JA

R⊃
▷JA ⊃ (A ⊃ JA) JA ⊃ (A ⊃ JA)▷A ⊃ JA

(T)
▷A ⊃ JA

ax.
A,A ⊃ JA▷ JA

(T)
A▷ JA

and:
ax.

A ⊃ Jα,A▷ Jα A▷ JA

JA ⊃ (A ⊃ Jα),A▷ Jα
R⊃

JA ⊃ (A ⊃ Jα)▷A ⊃ Jα ■

6.5.3 Translations à la Krivine

Let ▷ be an extension of ▷m, fix a formula π and consider the PCSN
¬π. As for j, we assume that ¬π is compatible with substitution,
that is

¬π(ϕ[t/x]) ≡ (¬πϕ)[t/x].
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Define D : S→ S inductively as follows:

(i) Dϕ ≡ ¬πϕ, for ϕ ∈ {⊥,⊤} or atomic,
(ii) D(ϕ ⊃ ψ) ≡ ¬πDϕ ∧Dψ,

(iii) D(ϕ ∧ψ) ≡Dϕ ∨Dψ,
(iv) D(ϕ ∨ψ) ≡Dϕ ∧Dψ,
(v) D(∃xϕ) ≡ ¬π∃x¬πDϕ,

(vi) D(∀xϕ) ≡ ∃xDϕ.

We call this D the Krivine ¬π-function. This is named after the Kriv-
ine negative translation which is k ≡ ¬πD for π ≡ ⊥, as seen in
Application 6.5.8(i). Since ¬π is compatible with substitution, a
straightforward proof by induction gives that also the Krivine ¬π-
function D is compatible with substitution, that is

D(ϕ[t/x]) ≡ (Dϕ)[t/x].

Proposition 6.5.7. Let ▷ be an extension of either ▷m or ▷i with ad-
ditional rules R, let ¬π be a PCSN on ▷ and let D be the Krivine ¬π-
function. Suppose that D satisfies the Kolmogorov condition on all ele-
ments of R. Then k ≡ ¬πD is a ¬2

π-translation if and only if

k¬2
πα ▷ kα

for all α ∈ S. In such case, k is a strong ¬2
π-translation.

Proof. Analogous to Proposition 6.5.3. See Appendix A.3 for de-
tails. ■

Application 6.5.8. Let ▷ ≡ ▷i and ϕ ≡ ⊥, which means ¬π ≡ ¬. Let D
be the Krivine ¬π-function. Then k ≡ ¬πD is a strong ¬2

π-translation,
known as the Krivine negative translation [71, 181].

Proof. By Proposition 6.5.7, the claim is tantamount to

¬D¬¬α ▷¬Dα.
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We have:

(R)
D⊥,Dα ▷Dα

L¬′
¬Dα,D⊥,Dα ▷⊥

L∧
¬Dα ∧D⊥,Dα ▷⊥

dfn.
D¬α,Dα ▷⊥

R¬
Dα ▷¬D¬α

(R)
⊥,Dα ▷⊥

R¬
Dα ▷¬⊥

dfn.
Dα ▷D⊥

R∧
Dα ▷¬D¬α ∧D⊥

dfn.
Dα ▷D¬¬α

Cp
¬D¬¬α ▷¬Dα ■
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Conclusive remarks, future
and related work

The calculus G3K used as a basis for the results of Chapter 2 is
classical, but the applications studied up to now have a purely con-
structive proof in their algebraic counterpart. This makes us confi-
dent that we can replace G3K by an intuitionistic modal calculus,
such as the one presented in [113].

Furthermore, those applications have not yet suggested a gen-
eral method to find the subformula U (x) required to define the val-
uation; whence we will next try to pin down such a general method.

Other principles related to induction are worth a closer look.
Apart from the notions of Noetherianity discussed in [51,139], also
the principles of transitivity and irreflexivity deserve further inves-
tigation, especially in connection with Cut-elimination, as well as
the variant GH of the Gödel–Löb axiom [25].

There is already some work in progress on relating this approach
with induction on ordinals, as ordinals can be characterised by
Gödel–Löb Induction and some additional properties of the rela-
tion <. For instance, ω is characterised by Gödel–Löb Induction,
the property that each node has a successor (seriality) and the prop-
erty that each node is either zero or a successor.

Since the logic Grz studied in Chapter 3 is characterised by
reflexive, transitive and Noetherian frames, we also intend to use
the approach of Chapter 2 to define a variant of induction princi-
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ple, which we may dub Grzegorczyk induction corresponding to rule
R□Z:

∀x.∀y < x(GE(y) =⇒ E(y)) =⇒∀y < x E(y),

where GE(y) is an abbreviation for ∀z < y(E(z) =⇒ ∀w < z E(w)).
This can be considered a weak form of induction compatible with
reflexivity, and may give a different perspective of the semantics of
both Grz and Int and may give some insights on the properties of
the accessibility relation.

We then plan to extend the approach of Chapter 3 to extensions
of Int, such as intermediate logics [56, 129], modal intuitionistic
logic [113] and possibly bi-intuitionistic logic [141].

In Chapter 4, we have proved that classical derivability en-
tails intuitionistic or even minimal derivability for seven infini-
tary Glivenko sequent classes. This result naturally extends the
results presented in [130] for the finitary Glivenko sequent classes
and those in [131] for the Barr’s theorem for infinitary geometric
theories. Moreover, we have also shown how to constructivise the
cut-elimination procedure for geometric logics given in [131]: by
introducing the notion of proof embeddability and by making use
of Brouwer’s principle of Bar Induction we have given an ordinal-
free proof of cut-elimination that works within IZF (but not within
CZF). The present proof strategy should allow to constructivise the
cut-elimination procedure for other infinitary calculi such as those
in [64, 111, 182].

One question that remains open is whether the seven infinitary
Glivenko sequent classes considered here are optimal for conserva-
tivity or not. Orevkov [137] proved that this holds for the finitary
case by listing the other possible classes of sequent and founding
a sequent that is classically but not intuitionistically derivable in
each class. We leave this question for future research.

In propositional lax logic (PLL) [63] the modality ⃝ is charac-
terised by axioms and rules corresponding [63, p. 2, (2)] to the ones
of a (logical) nucleus. Also the rules Lj and Rj of Chapter 5 are
counterparts of the rules ⃝L and ⃝R of PLL [63, p. 5]. We expect
to gain insight by relating our approach to PLL, its semantics and
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applications. To start with, in the vein of [63, Lemma 2.1] rule Rj is
tantamount to the inverse of Lj.

We will further study nuclei about other forms of negation:
weak negation over positive logic [17], co-negation over dual log-
ics [14] and strong negation over extensions of intuitionistic logic
[101, 190]. It will be a challenge to include also other proof trans-
lation methods. For instance, Friedman’s A-translation [73] makes
use of the closed nucleus to prove Markov’s rule; and Ishihara and
Nemoto [94] use the same translation but work with the open nu-
cleus to prove the independence-of-premiss rule.
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A Details of the inductive
proofs in Section 6.5

For the sake of brevity, we often write “(T) w/ stab.” as the label of
a rule if we are applying (T) and omit a branch which only consists
of a leaf that is an instance of stability. Similarly, we often write
“(T) w/ i.h.” as the label of a rule if we are applying (T) and omit a
branch which only consists of a leaf that is an instance of the induc-
tion hypothesis.

A.1 Translations à la Kolmogorov and à la
Gödel–Gentzen

Proof of Remark 6.5.2

Proof by induction that the Gödel–Gentzen j-function k satisfies
rule Ljk:

— If β ∈ {⊥,⊤,ϕ ∨ψ,∃xϕ} or atomic, then kβ ≡ jβ′ for some β′ ∈
S, so rule Lj can be applied.

— Suppose that β ≡ ϕ ∧ ψ. We have α,Γ ▷ kϕ ∧ kψ, which is
equivalent to have both α,Γ ▷ kϕ and α,Γ ▷ kψ. By induction
hypothesis, we have jα,Γ ▷ kϕ and jα,Γ ▷ kψ, which together
yield to jα,Γ ▷ kϕ ∧ kψ.
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A. Details of the inductive proofs in Section 6.5

— Suppose that β ≡ ϕ ⊃ ψ. We have α,Γ ▷ kϕ ⊃ kψ, which is
equivalent to α,Γ , kϕ ▷ kψ. By induction hypothesis, we have
jα,Γ , kϕ ▷ kψ, which yields to jα,Γ ▷ kϕ ⊃ kψ.

— Suppose that β ≡ ∀xϕ. We have α,Γ ▷ ∀xkϕ, which is equiv-
alent to α,Γ ▷ kϕ[t/x] for all terms t. By induction hypoth-
esis, we have jα,Γ ▷ kϕ[t/x] for all terms t, which yields to
jα,Γ ▷∀xkϕ. ■

Proof of Proposition 6.5.3

Case k Kolmogorov j-function Proof of α ≈j kα by induction on
α:

— If α ∈ {⊥,⊤} or is atomic, then α ≈j kα directly follows from
kα ≡ jα.

— Suppose α ≡ ϕ ∧ψ.

i.h.
ϕ ▷j kϕ

(M)
ϕ,ψ ▷j kϕ

i.h.
ψ ▷j kψ

(M)
ϕ,ψ ▷j kψ

R∧
ϕ,ψ ▷j kϕ ∧ kψ

L∧
ϕ ∧ψ ▷j kϕ ∧ kψ

Rj
ϕ ∧ψ ▷j j(kϕ ∧ kψ)

and
i.h.

kϕ ▷j ϕ
(M)

kϕ,kψ ▷j ϕ

i.h.
kψ ▷j ψ

(M)
kϕ,kψ ▷j ψ

R∧
kϕ,kψ ▷j ϕ ∧ψ

L∧
kϕ ∧ kψ ▷j ϕ ∧ψ

(T) w/ stab.
j(kϕ ∧ kψ)▷j ϕ ∧ψ

In conclusion, ϕ ∧ψ ≈j k(ϕ ∧ψ).
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A.1. Translations à la Kolmogorov and à la Gödel–Gentzen

— Suppose α ≡ ϕ ∨ψ.

i.h.
ϕ ▷j kϕ

R∨
ϕ ▷j kϕ ∨ kψ

i.h.
ψ ▷j kψ

R∨
ψ ▷j kϕ ∨ kψ

L∨
ϕ ∨ψ ▷j kϕ ∨ kψ

Rj
ϕ ∨ψ ▷j j(kϕ ∨ kψ)

and
i.h.

kϕ ▷j ϕ
R∨

kϕ ▷j ϕ ∨ψ

i.h.
kψ ▷j ψ

R∨
kψ ▷j ϕ ∨ψ

L∨
kϕ ∨ kψ ▷j ϕ ∨ψ

(T) w/ stab.
j(kϕ ∨ kψ)▷j ϕ ∨ψ

In conclusion, ϕ ∨ψ ≈j k(ϕ ∨ψ).

— Suppose α ≡ ϕ ⊃ ψ.

i.h.
kϕ ▷j ϕ

i.h.
ψ ▷j kψ

(M)
ψ,kϕ ▷j kψ

L⊃
ϕ ⊃ ψ,kϕ ▷j kψ

R⊃
ϕ ⊃ ψ ▷j kϕ ⊃ kψ

Rj
ϕ ⊃ ψ ▷j j(kϕ ⊃ kψ)

and

i.h.
ϕ ▷j kϕ

i.h.
kψ ▷j ψ

(M)
kψ,ϕ ▷j ψ

L⊃
kϕ ⊃ kψ,ϕ ▷j ψ

R⊃
kϕ ⊃ kψ ▷j ϕ ⊃ ψ

(T) w/ stab.
j(kϕ ⊃ kψ)▷j ϕ ⊃ ψ

In conclusion, ϕ ⊃ ψ ≈j k(ϕ ⊃ ψ).
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— Suppose α ≡ ∀xϕ.

i.h.
ϕ ▷j kϕ

Subs.
ϕ[y/x]▷j kϕ[y/x]

L∀
∀xϕ ▷j kϕ[y/x]

R∀ (y fresh)
∀xϕ ▷j ∀xkϕ

Rj
∀xϕ ▷j j∀xkϕ

and

i.h.
kϕ ▷j ϕ

Subs.
kϕ[y/x]▷j ϕ[y/x]

L∀
∀xkϕ ▷j ϕ[y/x]

R∀ (y fresh)
∀xkϕ ▷j ∀xϕ

(T) w/ stab.
j∀xkϕ ▷j ∀xϕ

In conclusion, ∀xϕ ≈j k∀xϕ.

— Suppose α ≡ ∃xϕ.

i.h.
ϕ ▷j kϕ

Subs.
ϕ[y/x]▷j kϕ[y/x]

R∃
ϕ[y/x]▷j ∃xkϕ

L∃ (y fresh)
∃xϕ ▷j ∃xkϕ

Rj
∃xϕ ▷j j∃xkϕ
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and
i.h.

kϕ ▷j ϕ
Subs.

kϕ[y/x]▷j ϕ[y/x]
R∃

kϕ[y/x]▷j ∃xϕ
L∃ (y fresh)

∃xkϕ ▷j ∃xϕ
(T) w/ stab.

j∃xkϕ ▷j ∃xϕ

In conclusion, ∃xϕ ≈j k∃xϕ.

Proof that k satisfies the Kolmogorov condition for every rule in the
inductive definition of ▷i :

— Consider R⊃. We have to show that

kΓ , kϕ ▷ kψ
R⊃kkΓ ▷ k(ϕ ⊃ ψ)︸    ︷︷    ︸

j(kϕ⊃kψ)

which is an application of R⊃ followed by Rj. Case R∀ is sim-
ilar.

— Consider ϕ,ϕ ⊃ ψ▷ψ. We have to show that kϕ,k(ϕ ⊃ ψ)▷kψ,
i.e. kϕ,j(kϕ ⊃ kψ)▷ kψ, which follows from kϕ,kϕ ⊃ kψ ▷ kψ
by an application of Ljk. Cases ϕ ∧ψ ▷ϕ; ϕ ∧ψ ▷ψ; ⊥ ▷ϕ;
∀xϕ ▷ϕ[t/x] are similar.

— Consider ϕ,ψ▷ϕ∧ψ. We have to show that kϕ,kψ▷k(ϕ∧ψ),
i.e. kϕ,kψ▷j(kϕ∧kψ), which follows from kϕ,kψ▷kϕ∧kψ by
an application of Rj. Casesϕ▷ϕ∨ψ; ψ▷ϕ∨ψ; ▷⊤; ϕ[t/x]▷∃xϕ
are similar.

— Consider ϕ ∨ψ,ϕ ⊃ δ,ψ ⊃ δ ▷ δ. We have to show that k(ϕ ∨
ψ), k(ϕ ⊃ δ), k(ψ ⊃ δ) ▷ kδ, i.e. j(kϕ ∨ kψ), j(kϕ ⊃ kδ), j(kψ ⊃
kδ)▷ kδ, which follows from kϕ∨ kψ,kϕ ⊃ kδ,kψ ⊃ kδ▷ kδ by
applying Ljk three times.
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— Consider L∃. We have to show that

kΓ , kϕ[y/x]▷ kδ
L∃kkΓ , k∃xϕ︸︷︷︸

j∃xkϕ

▷kδ

with y fresh, which is an application of L∃ followed by Ljk.

Case k Gödel–Gentzen j-function In the proof of α ≈j kα by in-
duction on α, cases that involve ∨ or ∃ are dealt with as in the case
of the Kolmogorov j-function, while the remaining cases are trivial.
Any Gödel–Gentzen j-function k satisfies the Kolmogorov condi-
tion for every rule in the inductive definition of ▷ ∈ {▷m,▷i}: Again,
cases that involve ∨ or ∃ are dealt with as in the case of the Kol-
mogorov j-function, while the remaining cases are trivial. ■

A.2 Translations à la Kuroda

Proof of Proposition 6.5.5

The proof of α ≈j Jα proceeds as the proof of α ≈j kα in Proposition
6.5.3 with slight adjustments in the derivations: we replace k by J ,
and apply (T) either with stability or with (5.1) in order to introduce
j on the leaves to which we otherwise would not have the induction
hypothesis. We give the proof of α ≈j jJα in the case α ≡ ϕ ⊃ ψ as
an example. Here the induction hypothesis states that ϕ ≈j jJϕ and
ψ ≈j jJψ:

(5.1)
Jϕ ▷ jJϕ

i.h.
jJϕ ▷j ϕ

(T)
Jϕ ▷j ϕ

i.h.
ψ ▷j jJψ

(M)
ψ,Jϕ ▷j jJψ

L⊃
ϕ ⊃ ψ,Jϕ ▷j jJψ

R⊃
ϕ ⊃ ψ ▷j Jϕ ⊃ jJψ

Rj
ϕ ⊃ ψ ▷j j(Jϕ ⊃ jJψ)
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and

i.h.
ϕ ▷j jJϕ

stab.
jJϕ ▷ Jϕ

(T)
ϕ ▷j Jϕ

i.h.
jJψ ▷j ψ

(M)
jJψ,ϕ ▷j ψ

L⊃
Jϕ ⊃ jJψ,ϕ ▷j ψ

R⊃
Jϕ ⊃ jJψ ▷j ϕ ⊃ ψ

(T) w/ stab.
j(Jϕ ⊃ jJψ)▷j ϕ ⊃ ψ

Proof that J satisfies the Kuroda condition for every rule in the in-
ductive definition of ▷i :

— Consider R⊃. We need to show that

JΓ , Jϕ ▷ jJψ
R⊃JJΓ ▷ j J(ϕ ⊃ ψ)︸    ︷︷    ︸

(Jϕ⊃jJψ)

which is an application of R⊃ followed by Rj. Case R∀ is sim-
ilar.

— Consider ϕ,ϕ ⊃ ψ▷ψ. We have to show that Jϕ,J(ϕ ⊃ ψ)▷jJψ,
i.e. Jϕ,Jϕ ⊃ jJψ▷jJψ, which is an instance of an axiom. Cases
ϕ ∨ψ,ϕ ⊃ δ,ψ ⊃ δ▷ δ; ⊥▷ϕ; ∀xϕ ▷ϕ[t/x] are similar.

— Consider ϕ,ψ▷ϕ∧ψ. We have to show that Jϕ,Jψ▷ jJ(ϕ∧ψ),
i.e. Jϕ,Jψ▷ j(Jϕ∧ Jψ), which follows from Jϕ,Jψ▷ Jϕ∧ Jψ by
an application of Rj. Cases ϕ ∧ψ ▷ϕ; ϕ ∧ψ ▷ψ; ϕ ▷ϕ ∨ψ;
ψ ▷ϕ ∨ψ; ▷⊤; ϕ[t/x]▷∃xϕ are similar.

— Consider L∃. We have to show that

JΓ , Jϕ[y/x]▷ jJδ
L∃JJΓ , J∃xϕ︸︷︷︸

∃x Jϕ

▷jJδ

with y fresh, which is an application of L∃. ■
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A. Details of the inductive proofs in Section 6.5

A.3 Translations à la Krivine

Proof of Proposition 6.5.7

Proof of α ≈j kα by induction on α:

— If α ∈ {⊥,⊤} or atomic, then α ≈¬2
π ¬πDα directly follows from

¬πDα ≡ ¬2
πα.

— Suppose α ≡ ϕ ∧ ψ. By induction hypothesis we have ϕ ≈¬2
π

¬πDϕ and ψ ≈¬2
π ¬πDψ. Then

(R)
Dϕ,ψ ▷¬

2
π Dϕ

L¬′π
Dϕ,¬πDϕ,ψ ▷¬

2
π π

(T) w/ i.h.
Dϕ,ϕ,ψ ▷¬

2
π π

(R)
Dψ,ϕ ▷¬

2
π Dψ

L¬′π
Dψ,ϕ,¬πDψ ▷¬

2
π π

(T) w/ i.h.
Dψ,ϕ,ψ ▷¬

2
π π

L∨
Dϕ ∨Dψ,ϕ,ψ ▷¬

2
π π

R¬π
ϕ,ψ ▷¬

2
π ¬π(Dϕ ∨Dψ)

L∧
ϕ ∧ψ ▷¬

2
π ¬π(Dϕ ∨Dψ)

and

i.h.
¬πDϕ ▷¬2

π
ϕ

Cp
¬πϕ ▷¬

2
π ¬2

πDϕ (T) w/ stab.
¬πϕ ▷¬

2
π Dϕ

R∨
¬πϕ ▷¬

2
π Dϕ ∨Dψ

Cp
¬π(Dϕ ∨Dψ)▷¬

2
π ¬2

πϕ (T) w/ stab.
¬π(Dϕ ∨Dψ)▷¬

2
π ϕ

i.h.
¬πDψ ▷¬2

π
ψ

Cp
¬πψ ▷¬

2
π ¬2

πDψ (T) w/ stab.
¬πψ ▷¬

2
π Dψ

R∨
¬πψ ▷¬

2
π Dϕ ∨Dψ

Cp
¬π(Dϕ ∨Dψ)▷¬

2
π ¬2

πψ (T) w/ stab.
¬π(Dϕ ∨Dψ)▷¬

2
π ψ

R∧
¬π(Dϕ ∨Dψ)▷¬

2
π ϕ ∧ψ

In conclusion, ϕ ∧ψ ≈¬2
π ¬πD(ϕ ∧ψ).
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A.3. Translations à la Krivine

— Suppose α ≡ ϕ ∨ ψ. By induction hypothesis we have ϕ ≈¬2
π

¬πDϕ and ψ ≈¬2
π ¬πDψ. Then

(R)
Dϕ,Dψ,▷¬

2
πDϕ

L¬′π
Dϕ,Dψ,¬πDϕ ▷¬

2
π π

(T) w/ i.h.
Dϕ,Dψ,ϕ ▷¬

2
π π

(R)
Dϕ,Dψ,▷¬

2
πDψ

L¬′π
Dϕ,Dψ,¬πDψ ▷¬

2
π π

(T) w/ i.h.
Dϕ,Dψ,ψ ▷¬

2
π π

L∨
Dϕ,Dψ,ϕ ∨ψ ▷¬

2
π π

L∧
Dϕ ∧Dψ,ϕ ∨ψ ▷¬

2
π π

R¬π
ϕ ∨ψ ▷¬

2
π ¬π(Dϕ ∧Dψ)

and
i.h.

¬πDϕ ▷¬
2
π ϕ

R∨
¬πDϕ ▷¬

2
π ϕ ∨ψ

C.p.
¬π(ϕ ∨ψ)▷¬

2
π ¬2

πDϕ (T) w/ stab.
¬π(ϕ ∨ψ)▷¬

2
π Dϕ

i.h.
¬πDψ ▷¬

2
π ψ

R∨
¬πDψ ▷¬

2
π ϕ ∨ψ

C.p.
¬π(ϕ ∨ψ)▷¬

2
π ¬2

πDψ (T) w/ stab.
¬π(ϕ ∨ψ)▷¬

2
π Dψ

R∧
¬π(ϕ ∨ψ)▷¬

2
π Dϕ ∧Dψ

Cp
¬π(Dϕ ∧Dψ)▷¬

2
π ¬2

π(ϕ ∨ψ)
(T) w/ stab.

¬π(Dϕ ∧Dψ)▷¬
2
π ϕ ∨ψ

In conclusion, ϕ ∨ψ ≈¬2
π ¬πD(ϕ ∨ψ).

— Suppose α ≡ ϕ ⊃ ψ. By induction hypothesis we have ϕ ≈¬2
π

¬πDϕ and ψ ≈¬2
π ¬πDψ. Then

i.h.
¬πDϕ ▷¬

2
π ϕ

(M)
¬πDϕ,Dψ ▷¬

2
π ϕ

(R)
¬πDϕ,Dψ ▷¬

2
π Dψ

L¬′π
¬πDϕ,Dψ,¬πDψ ▷¬

2
π π

(T) w/ i.h.
¬πDϕ,Dψ,ψ ▷¬

2
π π

L⊃
¬πDϕ,Dψ,ϕ ⊃ ψ ▷¬

2
π π

L∧
¬πDϕ ∧Dψ,ϕ ⊃ ψ ▷¬

2
π π

R¬π
ϕ ⊃ ψ ▷¬

2
π ¬π(¬πDϕ ∧Dψ)

179
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and

i.h.
ϕ ▷¬

2
π ¬πDϕ (M)

¬πψ,ϕ ▷¬
2
π ¬πDϕ

i.h.
¬πDψ ▷¬

2
π ψ

(M)
¬πDψ,ϕ ▷¬

2
π ψ

Cp
¬πψ,ϕ ▷¬

2
π ¬2

πDψ (T) w/ stab.
¬πψ,ϕ ▷¬

2
π Dψ

R∧
¬πψ,ϕ ▷¬

2
π ¬πDϕ ∧Dψ Cp

¬π(¬πDϕ ∧Dψ),ϕ ▷¬
2
π ¬2

πψ (T) w/ stab.
¬π(¬πDϕ ∧Dψ),ϕ ▷¬

2
π ψ

R⊃
¬π(¬πDϕ ∧Dψ)▷¬

2
π ϕ ⊃ ψ

In conclusion, ϕ ⊃ ψ ≈¬2
π ¬πD(ϕ ⊃ ψ).

— Suppose α ≡ ∀xϕ. By induction hypothesis we have ϕ ≈¬2
π

¬πDϕ, which in view of substitution can be written as
ϕ[y/x] ≈¬2

π ¬πDϕ[y/x]. Then

(R)
Dϕ[y/x],∀xϕ ▷¬

2
π Dϕ[y/x]

L¬′π
¬πDϕ[y/x],Dϕ[y/x],∀xϕ ▷¬

2
π π

(T) w/ i.h.
ϕ[y/x],Dϕ[y/x],∀xϕ ▷¬

2
π π

L∀
Dϕ[y/x],∀xϕ ▷¬

2
π π

L∃
∃xDϕ,∀xϕ ▷¬

2
π π

R¬π
∀xϕ ▷¬

2
π ¬π∃xDϕ
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and
i.h.

¬πDϕ[y/x]▷¬
2
π ϕ[y/x]

Cp
¬πϕ[y/x]▷¬

2
π ¬2

πDϕ[y/x]
(T) w/ stab.

¬πϕ[y/x]▷¬
2
π Dϕ[y/x]

R∃
¬πϕ[y/x]▷¬

2
π ∃xDϕ

Cp
¬π∃xDϕ ▷¬

2
π ¬2

πϕ[y/x]
(T) w/ stab.

¬π∃xDϕ ▷¬
2
π ϕ[y/x]

R∀
¬π∃xDϕ ▷¬

2
π ∀xϕ

In conclusion, ∀xϕ ≈¬2
π ¬πD∀xϕ.

— Suppose α ≡ ∃xϕ. By induction hypothesis we have ϕ ≈¬2
π

¬πDϕ, which in view of substitution can be written as
ϕ[y/x] ≈¬2

π ¬πDϕ[y/x]. Then

i.h.
ϕ[y/x]▷¬

2
π ¬πDϕ[y/x]

R∃
ϕ[y/x]▷¬

2
π ∃x¬πDϕ L∃

∃xϕ ▷¬
2
π ∃x¬πDϕ R¬2

π
∃xϕ ▷¬

2
π ¬2

π∃x¬πDϕ

and
i.h.

¬πDϕ[y/x]▷¬
2
π ϕ[y/x]

R∃
¬πDϕ[y/x]▷¬

2
π ∃xϕ

L∃
∃x¬πDϕ ▷¬

2
π ∃xϕ

(T) w/ stab.
¬2
π∃x¬πDϕ ▷¬

2
π ∃xϕ

In conclusion, ∃xϕ ≈¬2
π ¬πD∃xϕ.

Proof that k satisfies the Kolmogorov condition for every rule in the
inductive definition of ▷i :
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— Consider R⊃. We need to show that

¬πDΓ ,¬πDϕ ▷¬πDψ R⊃¬πD¬πDΓ ▷¬πD(ϕ ⊃ ψ)︸     ︷︷     ︸
¬πDϕ∧Dψ

In fact

(R)
Dψ ▷Dψ

R¬2
π

Dψ ▷¬2
πDψ

¬πDϕ,¬πDΓ ▷¬πDψ L¬′π¬πDϕ,¬2
πDψ,¬πDΓ ▷π

(T)
¬πDϕ,Dψ,¬πDΓ ▷π

L∧
¬πDϕ ∧Dψ,¬πDΓ ▷π

R¬π¬πDΓ ▷¬π(¬πDϕ ∧Dψ)

— Consider ϕ,ϕ ⊃ ψ ▷ψ. We have to show that ¬πDϕ,¬πDψ ▷
¬πD(ϕ ⊃ ψ), i.e. ¬πDϕ,¬πDψ ▷¬π(¬πDϕ ∧Dψ). We have

(R)
¬πDϕ,Dψ,¬πDϕ ▷Dψ L¬′π¬πDϕ,Dψ,¬πDϕ,¬πDψ ▷π L∧

¬πDϕ ∧Dψ,¬πDϕ,¬πDψ ▷π R¬π¬πDϕ,¬πDψ ▷¬π(¬πDϕ ∧Dψ)

— Consider ϕ,ψ ▷ϕ ∧ψ. We have to show that ¬πDϕ,¬πDψ ▷
¬πD(ϕ ∧ψ), i.e. ¬πDϕ,¬πDψ ▷¬π(Dϕ ∨Dψ). We have

(R)
Dϕ,¬πDψ ▷Dϕ L¬′πDϕ,¬πDϕ,¬πDψ ▷π

(R)
Dψ,¬πDϕ ▷Dψ L¬′πDψ,¬πDϕ,¬πDψ ▷π L∨

Dϕ ∨Dψ,¬πDϕ,¬πDψ ▷π R¬π¬πDϕ,¬πDψ ▷¬π(Dϕ ∨Dψ)

— Consider ϕ∧ψ▷ϕ. We have to show that ¬πD(ϕ∧ψ)▷¬πDϕ,
i.e. ¬π(Dϕ∨Dψ)▷¬πDϕ, which follows from Dϕ▷Dϕ∨Dψ
by an application of Cp. Cases ϕ∧ψ▷ψ; ϕ▷ϕ∨ψ; ψ▷ϕ∨ψ;
∀xϕ ▷ϕ[t/x]; are similar.
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— Consider ϕ ∨ ψ,ϕ ⊃ δ,ψ ⊃ δ ▷ δ. We have to show that
¬πD(ϕ ∨ ψ),¬πD(ϕ ⊃ δ),¬πD(ψ ⊃ δ) ▷ ¬πDδ, i.e. ¬π(Dϕ ∧
Dψ),¬π(¬πDϕ ∧Dδ),¬π(¬πDψ ∧Dδ)▷¬πDδ. We have

Axiom
Dϕ,Dψ ▷Dϕ ∧Dψ

(M)
Dϕ,Dψ,Dδ▷Dϕ ∧Dψ

Cp
Dψ,Dδ,¬π(Dϕ ∧Dψ)▷¬πDϕ

(R)
Dδ, ...▷Dδ

R∧
Dψ,Dδ,¬π(Dϕ ∧Dψ)▷¬πDϕ ∧Dδ Cp

Dδ,¬π(Dϕ ∧Dψ),¬π(¬πDϕ ∧Dδ)▷¬πDψ
(R)

Dδ, ...▷Dδ
R∧

Dδ,¬π(Dϕ ∧Dψ),¬π(¬πDϕ ∧Dδ)▷¬πDψ ∧Dδ Cp
¬π(Dϕ ∧Dψ),¬π(¬πDϕ ∧Dδ),¬π(¬πDψ ∧Dδ)▷¬πDδ

— Consider ▷ ⊤. We have to show that ▷ ¬πD⊤, i.e. ▷ ¬2
π⊤,

which follows from ▷⊤ by R¬2
π. Case ϕ[t/x]▷∃xϕ is similar.

— Consider ⊥ ▷ ϕ. We have to show that ¬πD⊥ ▷ ¬πDϕ, i.e.
¬2
π⊥▷¬πDϕ, which follows from ⊥▷¬πDϕ by L¬2

π¬π .

— Consider R∀. We have to show that
¬πDΓ ▷¬πDϕ[y/x]

R∀¬πD¬πDΓ ▷¬πD∀xϕ︸ ︷︷ ︸
∃xDϕ

with y fresh. In fact

(R)
Dϕ[y/x]▷Dϕ[y/x]

R¬2
π

Dϕ[y/x]▷¬2
πDϕ[y/x]

¬πDΓ ▷¬πDϕ[y/x]
L¬′π¬2

πDϕ[y/x],¬πDΓ ▷π
(T)

Dϕ[y/x],¬πDΓ ▷π
L∃

∃xDϕ,¬πDΓ ▷π
R¬π¬πDΓ ▷¬π∃xDϕ

— Consider L∃. We have to show that
¬πDΓ ,¬πDϕ[y/x]▷¬πDδ L∃¬πD¬πDΓ ,¬π D∃xϕ︸ ︷︷ ︸

¬π∃x¬πDϕ

▷¬πDδ
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with y fresh, which is an instance of L∃ followed by L¬2
π¬π . ■
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B Tables

In this appendix we collect the various calculi that are used in the
present thesis.

185



B. Tables

Initial sequents
x : P ,Γ → ∆,x : P x : □A,Γ → ∆,x : □A
y < x,Γ → ∆, y < x x = y,Γ → ∆,x = y

Propositional rules
x : A,x : B,Γ → ∆

L∧
x : A∧B,Γ → ∆

Γ → ∆,x : A Γ → ∆,x : B
R∧

Γ → ∆,x : A∧B
x : A,Γ → ∆ x : B,Γ → ∆

L∨
x : A∨B,Γ → ∆

Γ → ∆,x : A,x : B
R∨

Γ → ∆,x : A∨B
Γ → ∆,x : A x : B,Γ → ∆

L⊃
x : A ⊃ B,Γ → ∆

x : A,Γ → ∆,x : B
R⊃

Γ → ∆,x : A ⊃ B
L⊥

x : ⊥,Γ → ∆

Modal rules
y : A,x : □A,y < x,Γ → ∆

L□
x : □A,y < x,Γ → ∆

y < x,Γ → ∆, y : A
R□ (y fresh)

Γ → ∆,x : □A

Rules for equality
x = x,Γ → ∆

Ref=
Γ → ∆

x = z,x = y,y = z,Γ → ∆
Trans=x = y,y = z,Γ → ∆

y < z,x = y,x < z,Γ → ∆
Repl<1x = y,x < z,Γ → ∆

x < y,z = y,x < z,Γ → ∆
Repl<2z = y,x < z,Γ → ∆

y : P ,x = y,x : P ,Γ → ∆
ReplAtx = y,x : P ,Γ → ∆

Table B.1: The sequent calculus G3K<.
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Frame property Rule

Reflexivity x < x,Γ → ∆
Ref

Γ → ∆∀x(x < x)

Irreflexivity
Irref

x < x,Γ → ∆∀x(x ≮ x)

Transitivity x < z,x < y,y < z,Γ → ∆
Trans

x < y,y < z,Γ → ∆∀x∀y < x∀z < y(z < x)

Noetherian induction y : □A,Γ → ∆, y : A
NI

Γ → ∆, y : A∀y(∀z < y Ez⇒ Ey)⇒∀y Ey

Gödel–Löb induction y < x,y : □A,Γ → ∆, y : A
R□-GLI

Γ → ∆,x : □A∀x(∀y < x(∀z < y Ez⇒ Ey)⇒∀y < xEy)

Table B.2: Additional rules for G3K∗< and the corresponding frame
properties. Rule NI has the condition that y is not in Γ ,∆, rule R□-
GLI has the condition that y is fresh.

Initial sequents As in G3K∗< .

Propositional Rules As in G3K∗< .

Modal Rules L□ as in G3K∗< , R□-GLI.

Rules for equality As in G3K∗< .

Table B.3: The sequent calculus G3KGL< .
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B. Tables

Initial sequent

x ⩽ y,x : P ,Γ → ∆, y : P

Logical Rules
x : A,x : B,Γ → ∆

L∧
x : A∧B,Γ → ∆

Γ → ∆,x : A Γ → ∆,x : B
R∧

Γ → ∆,x : A∧B
x : A,Γ → ∆ x : B,Γ → ∆

L∨
x : A∨B,Γ → ∆

Γ → ∆,x : A,x : B
R∨

Γ → ∆,x : A∨B
x ⩽ y,x : A ⊃ B,Γ → ∆, y : A x ⩽ y,x : A ⊃ B,y : B,Γ → ∆

L⊃
x ⩽ y,x : A ⊃ B,Γ → ∆

L⊥
x : ⊥,Γ → ∆

x ⩽ y,y : A,Γ → ∆, y : B
R⊃

Γ → ∆,x : A ⊃ B

Mathematical Rules
x ⩽ x,Γ → ∆

Ref⩽
Γ → ∆

x ⩽ z,x ⩽ y,y ⩽ z,Γ → ∆
Trans⩽x ⩽ y,y ⩽ z,Γ → ∆

Table B.4: The sequent calculus G3I. Rule R⊃ has the condition that
y is fresh.
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Initial sequent As in G3I .

Logical Rules L∧, R∧, L∨, R∨, L⊃, L⊥ as in G3I .
x ⩽ y,y : B ⊃ (A ⊃ B), y : A,Γ → ∆, y : B

R⊃t (y fresh)
Γ → ∆,x : A ⊃ B

Mathematical Rules As in G3I .

Table B.5: The sequent calculus G3It .
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B. Tables

Initial sequent

x : P ,Γ → ∆,x : P

Propositional rules
x : A,x : B,Γ → ∆

L∧
x : A∧B,Γ → ∆

Γ → ∆,x : A Γ → ∆,x : B
R∧

Γ → ∆,x : A∧B
x : A,Γ → ∆ x : B,Γ → ∆

L∨
x : A∨B,Γ → ∆

Γ → ∆,x : A,x : B
R∨

Γ → ∆,x : A∨B
Γ → ∆,x : A x : B,Γ → ∆

L⊃
x : A ⊃ B,Γ → ∆

x : A,Γ → ∆,x : B
R⊃

Γ → ∆,x : A ⊃ B
L⊥

x : ⊥,Γ → ∆

Modal rules
x ⩽ y,y : A,x : □A,Γ → ∆

L□
x ⩽ y,x : □A,Γ → ∆

x ⩽ y,y : G(A),Γ → ∆, y : A
R□Z

Γ → ∆,x : □A

Mathematical rules
x ⩽ x,Γ → ∆

Ref⩽
Γ → ∆

x ⩽ z,x ⩽ y,y ⩽ z,Γ → ∆
Trans⩽x ⩽ y,y ⩽ z,Γ → ∆

Table B.6: The sequent calculus G3Grz . Rule R□ has the condition
that y is fresh.
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Initial sequent

P ,Γ → ∆, P

Propositional rules

⊥,Γ → ∆
L⊥

Γ → ∆,⊤ R⊤

A,B,Γ → ∆

A∧B,Γ → ∆
L∧ Γ → ∆,A Γ → ∆,B

Γ → ∆,A∧B R∧

A,Γ → ∆ B,Γ → ∆

A∨B,Γ → ∆
L∨ Γ → ∆,A,B

Γ → ∆,A∨B R∨

Γ → ∆,A B,Γ → ∆

A⊃B,Γ → ∆
L⊃ A,Γ → ∆,B

Γ → ∆,A⊃B R⊃

Rules for quantifiers
A[y/x],∀xA,Γ → ∆

∀xA,Γ → ∆
L∀

Γ → ∆,A[z/x]
Γ → ∆,∀xA R∀ (y fresh)

A[z/x],Γ → ∆

∃xA,Γ → ∆
L∃ (y fresh)

Γ → ∆,A[y/x],∃xA
Γ → ∆,∃xA R∃

Infinitary rules
Ak ,

∧
An,Γ → ∆∧

An,Γ → ∆
L
∧ {Γ → ∆,Ai | i > 0}

Γ → ∆,
∧
An

R
∧

{Ai ,Γ → ∆ | i > 0}∨
An,Γ → ∆

L
∨ Γ → ∆,

∨
An,Ak

Γ → ∆,
∨
An

R
∨

Rules for equality

s = s,Γ → ∆

Γ → ∆
Ref

P [t/x], s = t,P [s/x],Γ → ∆

s = t,P [s/x],Γ → ∆
Repl

Table B.7: The calculus G3Cω.
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B. Tables

Initial sequent As in G3Cω.

Rules As in G3Cω, except for the following:

A⊃B,Γ → ∆,A B,Γ → ∆

A⊃B,Γ → ∆
L⊃ A,Γ → B

Γ → ∆,A⊃B R⊃

Γ → A[z/x]
Γ → ∆,∀xA R∀

{Γ → Ai | i > 0}
Γ → ∆,

∧
An

R
∧

Table B.8: The calculus G3Iω.

Initial sequent As in G3Iω, plus

⊥,Γ → ∆,⊥

Rules As in G3Iω, except for L⊥.

Table B.9: The calculus G3Mω.

. . . Qn1
(x⃗, y⃗n), . . . ,Qnm(x⃗, y⃗n), P1(x⃗), . . . , Pk(x⃗),Γ → ∆ . . .

P1(x⃗), . . . , Pk(x⃗),Γ → ∆
LG

Table B.10: Geometric rule LG expressing the geometric sentence
(G)
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Generating axiom/rule Sequent calculus-like rule

ϕ,ψ ▷ϕ ∧ψ
Γ ▷ϕ Γ ▷ψ

R∧
Γ ▷ϕ ∧ψ

ϕ ∧ψ ▷ϕ Γ ,ϕ,ψ ▷ δ
L∧

Γ ,ϕ ∧ψ ▷ δϕ ∧ψ ▷ψ

ϕ ▷ϕ ∨ψ
Γ ▷ϕ

R∨1
Γ ▷ϕ ∨ψ

ψ ▷ϕ ∨ψ
Γ ▷ψ

R∨2
Γ ▷ϕ ∨ψ

ϕ ∨ψ,ϕ ⊃ δ,ψ ⊃ δ▷ δ
Γ ,ϕ ▷ δ Γ ,ψ ▷ δ

L∨
Γ ,ϕ ∨ψ ▷ δ

Γ ,ϕ ▷ψ
R⊃

Γ ▷ϕ ⊃ ψ

ϕ,ϕ ⊃ ψ ▷ψ
Γ ▷ϕ Γ ,ψ ▷ δ

L⊃
Γ ,ϕ ⊃ ψ ▷ δ

▷⊤
R⊤

Γ ▷⊤

ϕ ⊃ ⊥▷¬ϕ
Γ ,ϕ ▷⊥

R¬
Γ ▷¬ϕ

¬ϕ ▷ϕ ⊃ ⊥
Γ ▷ϕ Γ ,⊥▷ψ

L¬
Γ ,¬ϕ ▷ψ

⊥▷ϕ
L⊥

Γ ,⊥▷ϕ
¬¬ϕ ▷ϕ (not given)

Γ ▷ϕ[y/x]
R∀ (y fresh)

Γ ▷∀xϕ

∀xϕ ▷ϕ[t/x]

ϕ[t/x],Γ ,∀xϕ ▷ δ
L∀

Γ ,∀xϕ ▷ δ

ϕ[t/x]▷∃xϕ
Γ ▷ϕ[t/x]

R∃
Γ ▷∃xϕ

Γ ,ϕ[y/x]▷ δ
L∃ (y fresh)

Γ ,∃xϕ ▷ δ

Table B.11: Axioms and rules that generate ▷p and its common ex-
tensions; with corresponding sequent calculus-like rules.
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[16] Jean-Yves Béziau. Les axiomes de Tarski. In Roger Pouivet and
Manuel Resbuschi, editors, La philosophie en Pologne 1919-1939. Li-
brairie Philosophique J. VRIN, Paris, 2006.
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de Heitmann des treillis distributifs et des anneaux commutatifs.
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[115] Per Martin-Löf. An intuitionistic theory of types: Predicative part.
In H. E. Rose and J. Sheperdson, editors, Studies in Logic and the
Foundations of Mathematics, volume 80, pages 73–118. Elsevier,
1975.
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