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Chapter 1

Introduction

Noise is ubiquitous in nature. For this reason, it makes up a widely inves-
tigated topic [1]. Taking into account experimental physics, whatever the
measurement process under investigation, noise, defined as a random fluctu-
ation of the measured signal, is usually considered to be detrimental. Thus,
many techniques have been developed to reduce its impact: for example, the
most common post–processing procedure to improve a noisy measurement
consists in averaging the measured signal over repeated sessions.

Rather surprisingly, the opposite, non–detrimental effect has been also
observed: the response of a nonlinear system to a weak input signal is, under
suitable conditions, optimized by the presence of a particular, non–vanishing
noise level. In the last decades, the wide spectrum [2] of such phenomena
has been referred to as stochastic resonance [3].

With regard to neuroscience, noise can be considered ubiquitous also Noise in

neurosciencein the brain processes. Theoretical considerations, as well as a robust ex-
perimental evidence, demonstrate its role in many phenomena occuring at
different levels in neural system [4]: for example, firing rate of neurons is not
predictable by reason of their intrinsic variability [1, 5, 6]; measurements of
brain activity with imaging techniques, like EEG [7], MEG [8] or fMRI [9],
are always affected by inner, noisy mechanisms.

Recently, neuroscientists put forward the idea that stochastic fluctua-
tions of neural activity have a functional role in brain dynamics [10, 11].
However, this functional role has been thus far observed in very few exper-
imental situations [12]. Regarding the human behaviour, decision making
(representing our main field of investigation) is also influenced by several
noisy processes [13]. Also in this case, random fluctuations of brain pro-
cesses typically have a detrimental role, limiting, for example, the possibility
to exactly predict the human behaviour not only in everyday life, but also
under controlled conditions, such as psychophysical experiments [14, 15].

1



Aim of this work is to gain insight into the problem of how noise influ-
ences the decisional mechanisms. In this framework, two different kinds of
noise were investigated, namely endogenous and exogenous. The endogenousDifferent kinds

of noise noise refers to stochastic fluctuations that are present within the neural sys-
tem [4], whereas with exogenous some form of enviromental noise, external
to the perceptual system, are meant. These two distinct types of noise de-
fine two indipendent research fields, that were both investigated by means of
behavioural experiments. In other words, we were interested in investigating
how noise acts on human behavior, in particular in case of discrimination
processes. To this purpose, psychophysical experiments were carried out,
addressing both the acoustic and the visual modality.

To investigate how a proper amount of exogenous noise can act
positively on human perception, improving performance in detec-
tion experiments, – an effect that, as mentioned above, is interpreted as an
occurence of stochastic resonance – we carried out experiments in the acous-
tic modality. This is the topic of the first part of this work. In particular, we
used a detection paradigm where pure tone stimuli were superimposed with
different levels of noise and subjects were requested to signalize the pres-
ence of the tone. Usually a sufficient noise level masks the signal. However,
what we observed [16] was a tiny, yet statistically significant improvement ofNoise improves

perception stimulus detection ability in correspondence to a specific noise level.
The used experimental approach – “Yes/No” experiments – is usually

interpreted in terms of Signal Detection Theory (SDT) [14, 15]. The two
most important SDT parameters are the sensitivity d′ and the decisional
criterion. Since improvement of detection ability driven by noise is, if any,
a tiny effect, all the ingredients combined to formulate a decision must lay
under the experimenter’s control. In particular, in addition to the stimulus
detectability, also the knowledge of the decisional strategy at any time is
crucial so as to achieve reliable data.

In other words, the demand of criterion stability, and more in
general the problem of its dynamics, turned out to have a critical
role and urged us to focus our attention to the specific topic of
criterion dynamics. The scientific literature on the possibility to condition
the subject’s criterion and reconstruct its dynamics with the highest possible
time resolution (the single trial) is extremely scant: the only two works on
this subject do not provide robust methods to tackle the issue. The second
part of the dissertation is completely focused on our theory of criterion setting
dynamics and the related experimental evidence.Criterion setting

dynamics An ad-hoc experiment involving the visual perceptual modality allowed
to test a model for trial–by–trial criterion dynamics based on the theory
of feedback [17]. Feedback loop were implemented by informing the sub-
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1. INTRODUCTION

ject, after each trial, relatively to his/her performance. When requested to
maximize the rate of correct response in an orientation discrimination ex-
periment, subjects showed the ability to continuosly change their internal
criterion. More in detail, the optimal criterion position oscillates at a cer-
tain frequency, set a-priori by the experimenter; we observed that subjects
were able to modify their decisional criterion in order “to follow” the optimal
position. Two main assumptions of our model are that the subject stores in-
formation coming from previous trials, and is willing of in improving his/her
performance.

One of the most important assumption of SDT is that the adopted strat-
egy, i.e. the criterion positioning, by an observer performing a task is com-
pletely indipendent from his/her discrimination ability. We implemented
this consideration in a model for criterion dynamics so that this parameter
turns out to be completely indipendent from d′. The possibility to disen-
tangle sensitivity and criterion allows the experimenter to force the subject’s
inclination to be more liberal or conservative, indipendently from his/her
ability in performing the task, and monitor at each trial the result of this
conditioning.

The problem of how the human neural system set and maintain a de-
cision criterion over time is still an open question. This problem recently Criterion setting

&

decision making

received particular attention, within the more general context of the neural
mechanisms underlying the decision process [13]. Our approach, based on
behavioural experiments, provides an novel investigation tool to tackle the
issue.

The present dissertation is organized as follows: the model relative to the
experimental situation decribed by a stimulus presentation and a decision
between two mutually–exclusive classes of response is presented in Chap. 2.
This model was applied to an experiment in which noise showed a positive
role in acoustic perception. The phenomenon we were interested in, referes
to as stochastic resonance, corresponds to an improvement of the subject’s
ability to perceive stimuli when a certain amount of noise is superimposed
to the stimulus itself. Experimental results are discussed in Chap. 3: the
effect we observed was tiny – a weak drop of the perceptual threshold only
for specific levels of noise – but very robust from the statistical point of view.

In the second part of the work (Chap. 4 and Chap. 5), the attention is
focussed to dynamical aspects of the SDT decisional mechanism. This mech-
anism is modeled by two main ingredients: the intrinsic variability of the
neural activity evoked by a stimulus presentation and a threshold, usually
called decision criterion: in particular, in Chap. 4 we provide an overview
of SDT, whereas two experiments performed to investigate the criterion dy-
namics are presented in Chap. 5.

3



Final conclusions and remarks are reported in Chap. 6.
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Part I

Stochastic Resonance in
Acoustic Perception
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Chapter 2

“Yes/No” discrimination
paradigms

Abstract The present chapter provides a description of the process of dis-
crimination in the human brain by applying a black-box perspective.
The model presented here accounts both for the encoding within the
brain of the stimulus–related information, and the subject ability to
produce a response. The neural activity evoked by the stimulus pre-
sentation is interpreted in terms of a stochastic variable, whereas for
the choice between two mutually exclusive classes of response is intro-
duced a threshold. Within this theoretical framework we provide also
a definition of perceptual threshold and a model for the psychometric
function.
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2.1. INTRODUCTION

2.1 Introduction: link between stimuli and

responses

The link between perception of a stimulus and decision making is a widely
investigated topic in the field of neuroscience [13]. Depending on the dif-
ferent techniques used to measure the brain response to a stimulus, at least
three different approaches can be identified. In this section we present these
investigation techniques moving from a microscopic to a macroscopic point
of view.

With microscopic we mean the electrophysiological approach. The di-Electrophysiological

approach rect measurement of neuronal electrical activity, through arrays of electrodes
implanted into well–defined areas of an animal brain1, started in 1959 with
the work by the Nobel laureates David Hubel and Torsen Wiesel [18, 19, 20],
and still represents a promising research field. Many recent works discuss the
possibility to correlate variations of the measured electrical activity with dif-
ferent stimuli and/or experimental conditions [21, 22, 23, 24]. Unfortunately,
unresolved problems strongly limit the possibility to provide a complete and
exaustive view of the discrimination process by using this methodology. In
addition to the local degeneration of involved brain tissue [25], the most im-
portant constrains regard both the high number of neurons involved into the
computation and the high complexity of the network of connections into the
brain [26].

A second interesting approach to the problem of how the brain interprets
stimuli, is the study of specific functions of different areas into the cerebral
cortex. The main hypothesis underlying this approach is that the brain is
organized in specific functional areas, each of them carries out a specific
task [27]. After a long period in which this type of investigation was lim-
ited to the study of how well–known brain damages2 affect the behaviour,
some recent technological improvements provide the possibility to investi-
gate living and healthy brains. Two important examples are the Magneto-
Encephalography (MEG) [28] and the functional-Magnetic Resonance Imag-
ing (f-MRI) [29]. In this context, f-MRI represents the most important andImaging

techniques popular contribution both to anatomical investigations and to studies of the
functional organization of the brain.

Despite its popularity and its recently–acquired importance in neuro-

1The most frequently used used animal in this type of experiments are monkeys or rats.
2Before the advent of the possibility to study the living brain with imaging technologies

like the functional magnetic resonance, this type of investigation was only possible by look-
ing post-mortem to the brain of the patient and subsequently correlating the anomalous
behaviour with brain damages.

8



2. “YES/NO” DISCRIMINATION PARADIGMS

science, the functional magnetic resonance imaging is intrisically strongly
limited by the nature of the detected signal. The quantification of the blood
flow variations in well–defined brain areas offers only an indirect measure of
the neuronal activity: a robust model linking toghether the electrical activity
with the blood perfusion is not yet available [30, 31, 32, 33, 34]. In addition,
the temporal dynamics of the signal measured by the fMRI is typically three
order of magnitude slower than the firing rate of the neurons.

A third possible approach to investigate the human ability to interpret
a stimulus and provide a response is the so called “black-box” analysis per-
formed through psychophysical behavioural experiments [35]. A model is Behavioural

experimentsbuilt by taking into account some statistical properties of the entire neu-
ronal activity, in response to a stimulus presentation, without considering its
local properties. Each stimulus/response couple is interpreted on the basis
of the parameters of a model [36], as discussed in details in the rest of the
present chapter. Many psychophysical studies are based on this experimental
methodology. The standard way to implement a behavioural experiment is
schematically shown in Fig. 2.1.

Figure 2.1: Schematic view of a standard behavioural experiment: the par-
ticipant’s neural system is represented by the green rectangle.

In the rest of the present chapter we present the details of the standard
model used to interpret the discrimination ability in psychophysical experi-
ments. The model provides an answer to two important questions related to
this topic:

1. How does the brain encode the stimulus-related information?

9



2.2. MODEL FOR DISCRIMINATION

2. How does the model represent the ability to produce a response to a
task?

2.2 Model for discrimination

Psychophysical experiments primarily differ on the basis of the type of stimuli
presented to the subject. Depending on the goal of the experiment, different
sensorial modalities can be involved in the perceptual process: for example,
possible stimuli involving the acoustic modality can be pure tones [16] or
more complex acoustic pattern, like speech [37, 38] or music [39, 41, 40].
Similarly, two or more perceptual modalites can be exploit at the same time:
in this case stimuli are referred to as cross-modal [42].Stimuli

&

task
In addition to the stimulus presentation, a behavioural experiment is

characterized by the task the subject is requested to solve [43]. For example,
a possible question, concerning either an acoustic or visual stimulus, is: did
you perceive it? For this reason, this type of discriminations are usually
referred to as “Yes/No” experiments.

2.2.1 Neural encoding

Stimuli are physical events characterized by one or more physical quantities
and linked to the sensorial perceptual modality with which they interact into
the observer’s brain. For example, a pressure wave acting to the subject’s
ear defines an acoustic stimulus. Similarly, a visual pattern appearing on
a screen and characterized by the luminosity or color of a set of pixels is
associated with a visual stimulus.

So, stimuli are classified by the intensity of their physical parameters
(in the previously cited examples, the acoustic intensity and the contrast
with the background lunimosity). These physical features have to be under
the experimenter’s control. In order to investigate the effect of a stimulus
presentation on the subject’s response it is important to control and possi-
ble stabilize the influence of the boundary conditions (enviromental noise or
uncontrolled variations of the luminosity, for example).

In a standard “Yes–No” discrimination experiment, on each trial a single
stimulus3 per trial is presented to the subject. The stimulus presented to
the subject evokes a certain neural response, which is commonly consideredNeural

activity slightly different from the basal brain activity. This neural response can

3“Single stimulus” does not necessarly means “single object” in case of visual stimuli, or
“single tone” in case of acoustic experiment. More complex stimuli can be used, depending
on the aim and the design of the experiment.
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2. “YES/NO” DISCRIMINATION PARADIGMS

be encoded into a variable, that we labeled with x [36]. Here we assume
that, although each stimulus is characterized by many physical features (for
example, in case of acoustic stimuli, intensity, frequency, duration, etc.) only
a single feature is of interest for the experimenter.

Because of the presence of noise, ubiquitous in the neural activity, x is a
stochastic variable. For the sake of clarity, in the rest of the discussion we
will use a pure tone of a well–defined duration and intensity as an example of
acoustic stimulus: the physical features of that stimulus are, in general, under
the experimenter’s control. Repeated presentations of the same stimulus to
a subject, evoke different values of x at each trial. More in particular, the
distribution underlying this variable is assumed to be Gaussian (or normal),
with mean value µ and standard deviation σ. In other words, the probability
distribution P (x) associated with the variable x is

P (x) =
1

σ
√

2π
exp

[

−(x− µ)2

2σ2

]

. (2.1)

The link between neural activity and the physical features of the stimuli
is modelled by the statistical parameters of its distribution. In particular, the
mean µ is proportional to the amplitude of the stimulus intensity, whereas σ
is usually assumed to be indipendent from the stimulus presentation.

It is important to remark a strong argument supporting the assumption of
normally–distibuited neural responses. The intrinsic variability of x is mainly Why Gaussian

distributions?caused by internal sources of noise. Thus, if noise derives from a number of
indipendent sources that combine additively, a Gaussian-distributed random
variable is produced by virtue of the Central Limit Theorem [44]. Embedding
a signal into this noise is assumed to shift the noise distribution by a positive
quantity4, reflecting the strength of the signal.

In Fig. 2.2 the effect of multiple repetition of a restricted number of classes
of stimuli (here labeled with the numbers “0”, “1” “2” and “3”), on the
variable x supposed to encode the neural activity is shown. The presentation
of the i–th class of stimuli evokes an occurence probability Pi (x) for the
neuronal activity x. Pi (x) distributions differ by small variations of the
parameter µi. It is important to note that the model accounts also for the
case of trials in which the stimulus is absent and only background noise is no–stimulus

trialspresented to the subject: in Fig. 2.2, the class of stimuli labelled with “0”
can be considered as the “no–stimulus” case. During “only–noise” trials the
variable x encodes the basal neuronal activity.

4This quantity is linked with the d′–parameter of the Signal Detection Theory [14, 15].
More details about this point will be provided in Chap. 4.
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2.2. MODEL FOR DISCRIMINATION

Figure 2.2: Neural activity related with the physical feature of the stimu-
lus. In part a of Fig. 2.2 the dots represent multiple repetition of the same
stimulus. For the sake of clarity, each amplitude of the physical feature that
characterizes the stimulus (e.g. the intensity of acoustic stimuli) is drawn
with a different color. Then, as shown in part b, each stimulus evokes a
neural response encoded in a normally–distribuited stochastic variable x.
Standard deviation σ of the probability distributions P (x) is supposed to be
indipendent from the stimulus intensity, whereas the shift of the mean µ of
the different distributions is proportional to the intensity of the stimulus.

A generalization of the unidimensional case presented so far is given when
more features are considered at the same time [45]. Then, the variable x
becomes the vectorial quantity ~x, whose components behave singularly asMultidimensional

case the unidimensional case described above [15]. For example, the internal
representation of an acoustic stimulus can be modulated by changing its
intensity and duration. Regarding the underlying probability distribution
of the ~x components, all the arguments supporting the model based on a
normal distribution remain valid.

In Fig. 2.3, the two different stimulus characteristics are labeled with
xa and xb. The resulting occurrence probability distribution Pocc is a two–
dimensional Gaussian distribution.

12
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Figure 2.3: In the multidimensional case the decision variable x is general-
ized to a random vector ~x, whose components correspond to the perceived
attributes of the presented stimulus.

To investigate the multidimensional level of neuronal encoding, it is nec-
essary to ask the subject to produce an answer relative to all features of
interest. The work presented in this dissertation is completely focused on
the unidimensional case5.

2.2.2 Discrimination ability

In case of behavioural experiments, the only possibility to monitor a subject’s
perception of a certain stimulus is to formulate a question the subject has
to answer. A “Yes/No” discrimination paradigm is defined on the basis of
the type of response the subject has to provide: only two mutually exclusive
classes of response are possible. This is defined as a dichotomic answer. Dichotomic

answersFor example, the question Did you perceive the stimulus? is very common
in “Yes/No” experiments and only one of the two possible response (the
stimulus was present/absent) is allowed.

It is important to point out, that for healthy human subjects, it is always

5Traditionally, in psychophysical experiments only very few characteristics of the dif-
ferent classes of stimuli are investigated at the same time. The reason is the need to reduce
the dimensionality of the experimental design, and, as a consequence, to limit the duration
of each experimental session.
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2.2. MODEL FOR DISCRIMINATION

possible to produce an outcome, in form of a motor (verbal) response, by
performing this type of discrimination tasks. Subjects choose one of the
two possible classes of responses, indipendently from the correctness of their
answers or their confidence about it. The ability to produce an answer is a
very basic characteristic, not only in humans.

The most automatic way to implement the decision mechanism in the
model is to set a threshold (labeled with χ in Fig. 2.4), usually defined asPerceptual

threshold perceptual threshold [14, 15]. If the neural activity evoked by the stimulus
overcomes the threshold, the subject will produce a certain response (“Yes,
the signal was present”). On the contrary if the value of the variable x
remains below the threshold the subject will choose the opposite class of
outcomes (“No, there was merely a presentation of noise alone”).

Figure 2.4: Effect of threshold χ on the rates of both the classes of responses:
in b and c are drawn two possible values of neural activity x, associated with
a single presentation of a certain stimulus (a), whose intensity is given in
arbitrary unitns (a.u.). Depending on criterion position, subject provides two
possible responses: “No” (b) or “Yes” (c). In the right part, the same stimulus
is presented many times to the subject (d). The blue and red shaded areas of
part e and f represent the rates of “No” and “Yes” responses, respectively.

The pictures in the left part of Fig. 2.4, labeled with a, b and c, represent
the case of single presentation of a certain stimulus (a). The stimulus evokes

14



2. “YES/NO” DISCRIMINATION PARADIGMS

a stochastic neural response, that can be smaller (b) or larger (c) than the
threshold χ. The blue dot (b) represents the response “No”, whereas the red
one (c) represent the response “Yes”. In the right part is represented the case
of multiple repetition (d) of the same stimulus, whereas e and f represent
the probability of “No” and “Yes” response, respectively. It is important to
note that the threshold χ is not necessarily set to the mean value µ of the
distribution relative to the evoked neural activity.

2.3 Psychometric function and perceptual thresh-

old

Aim of the present section is to introduce the psychometric function, widely
used to measure the subject’s discrimination ability in “Yes/No” experi-
ments. In addition the perceptual threshold, defined as the stimulus intensity
at which the probability to obtain a response “Yes” assumes a well–defined
value, will be compared with the threshold χ, assumed in the model presented
in Sec. 2.2.2.

Trial time-line The trial time-line, defined as the sequence of events oc-
curring at each trial, depends on the aim and the structure of the experiment.
The picture in Fig. 2.5 schematizes the most basic implementation of a typ-
ical single trial: after each stimulus presentation the subject is requested to A single trial

produce a response; prior to the stimulus, an attentional cue can be pre-
sented while, after the response, a feedback with information about subject’s
performance can be provide to the subject.

t

Attentional cue Stimulus Response Feedback

Figure 2.5: Schematic view of the standard trial time-line in “Yes/No” ex-
periments: with solid (dashed) lines two basic (optional) blocks are shown.
After the presentation of an attentional cue, for example a fixation cross in
the center of a screen, the stimulus is presented. Then, the subject pro-
vides his/her response. Finally, in particular cases, an additional feedback
containig information about the performance is provided to the subject.
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2.3. PSYCHOMETRIC FUNCTION AND PERCEPTUAL THRESHOLD

The trial time-line can be repeated as long as the initial experimental
conditions remain unchanged: typically, after around one hour, subjects get
tired or meet difficulties to focus their attention to the task [46].

Psychometric function: In the previus section we presented the case of
multiple repetition of the same stimulus. As shown in Sec. 2.2.1, the prob-
ability distribution of the evoked neural activity x is given by a Gaussian
distribution with standard deviation σ and mean µI , depending on the in-
tensity I,

P (x|I) =
1

σ
√

2π
exp

[

−(x− µI)
2

2σ2

]

. (2.2)

Given a certain threshold χ on the axis of the neural activity x, the parame-
ters µ and σ of the distribution define the rates (or probability) of response
“Yes”, given by the cumulative function of the underlying distribution. InRates of

response “Yes” particular

Pyes =

∫ +∞

χ

P (x) dx = Φ

[

µI − χ

σ

]

(2.3)

where

Φ (x) =
1 + erf (x)

2
(2.4)

Multiple repetitions of stimuli belonging to four distinct classes of inten-
sity (from “0” to “3”) are drawn in the upper part of Fig. 2.6. At each stim-
ulus presentation subjects provide their response: the number of response
“Yes” depends on the stimulus intensity, as showed in the intermediate plot
of Fig. 2.6.

As usual,

lim
N→∞

#Y es

N
= Pyes (2.5)

whereN is the number of repetition of the stimulus presentation and “#Y es”
the number of response “Yes”.

Given the definition provided in the previous section of “Yes/No” exper-
imental paradigm, with mutually exclusive classes of responses, it is Pno =
1 − Pyes.

The possibility of multiple repetition of either the same stimulus or stimuli
of different classes allows the experimenter to interpret the “stimulus/response”
couples in terms of occurence probability of a certain class of response. Thus,Definition of

psychometric

function

the psychometric function is defined as the probability to obtain a well–
defined class of responses as a function of the intensity of the physical fea-
ture that characterizes the stimulus. In other words, if “Yes” is the response
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2. “YES/NO” DISCRIMINATION PARADIGMS

Figure 2.6: (Upper part) four classes of stimuli. Hystograms (middle part)
represent the number of “Yes” responses as a function of the stimulus inten-
sity I. The psychometric function is shown in the bottom part. Both the
perceptual threshold µ, set between stimulus “1”and stimulus “2”, and the
standard deviation σ of the distribution are schematically drawn.

of interest and I the intensity of the stimulus, the psychometric function is
defined by the probabilty Pyes (I).

The most frequently adopted model for this function is the Gaussian
cumulative distribution as in Eq. (2.3), so that

Pyes (I) = Φ

(

I − Ith
σ

)

. (2.6)

Then, an operative definition of perceptual threshold can be introduced by
comparing Eq. (2.3) with Eq. (2.6), as follows.

Perceptual threshold: Ith is defined as the intensity level at which the Definition of

perceptual

threshold

probability to obtain a response “Yes” is 0.5. Of course, the choice of this rate
is complitely arbitrary: sometimes, in the literature the proportion of 75%
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2.3. PSYCHOMETRIC FUNCTION AND PERCEPTUAL THRESHOLD

of detection rate is alternatively used to set the perceptual threshold6 [47].
The psychometric function is typically used to compare the ability of dif-

ferent subjects to perform a task. By comparing parameters µ and σ for each
subject of the experimental sample, it is possible to quantify the discrimina-
tion ability and to interpret a posteriori the results of the experiment, for
example, through an ad hoc renormalization of the data.

A critical point to this aim regards the fitting procedure that has to be
applied in order to evaluate the parameters of the psychometric function.
The distribution of each rate value is binomial. For this reason, the standard
method based on χ2 minimization, by means of the Levemberg–Marquardt
algorhytm [48] are not allowed to fit the experimental data. We instead usedMaximum

Likelihood

Estimation
computational techniques based on Maximum Likelihood Estimation (MLE ).

For each stimulus intensity I, the probability to obtain KI “Yes” re-
sponses depends on Pyes (I). Given a couple of parameters Ĩth and σ̃, the
likelihood for the data, at each intensity I, is given by

L
(

I; Ĩth, σ̃
)

=

[

Φ

(

I − Ĩth
σ̃

)]KI

·
[

1 − Φ

(

I − Ĩth
σ̃

)]N−KI

(2.7)

where N , the number of repetitions, is taken to be the same for each
stimulus intensity I. The likelihood L relative to the entire sample of KI is
then

L
(

Ĩth, σ̃
)

=

Imax
∏

I=Imin

L
(

I; Ĩth, σ̃
)

(2.8)

The method generally adopted in our work consists in looking for the

maximum of L
(

Ĩth, σ̃
)

by varying the parameters Ith and σ on a pre–assigned

two–dimensional lattice.
Finally, regarding the errors dI and dσ on the psychometric function’sErrors on

parameters parameter I and σ, they are defined as the interval causing a variation of the
5% of the likelihood L, so that

L (|Ith + dI|, σ) = 0.95 · L (Ith, σ)

L (Ith, |σ + dσ|) = 0.95 · L (Ith, σ) .

(2.9)

6Here and the subsequent chapters the perceptual threshold is intended as the intensity
level corresponding to the 50% of the proportion of response “Yes”.
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2. “YES/NO” DISCRIMINATION PARADIGMS

2.4 Conclusions

We provided mathematical details of a model widely used to interpret the
discrimination process. By adopting a black-box perspective, only the stimu-
lus/response pairs are object of investigation. The model presented here ac-
counts both for the encoding, into the human brain, of the stimulus–related
information and the subject ability to produce a response. The neural activ-
ity evoked by the stimulus presentation is interpreted in terms of a stochatic
variable, whereas the decision is modeled by a simple threshold model.

In addition, a possible definition of perceptual threshold, related to the
psychometric function, has been provided.

Finally, mathematical and computational problems linked to the evalu-
ation of the psychometric function have been presented, with the solution
adopted in the rest of the present dissertation.
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Chapter 3

The role of exogenous noise in
human auditory perceptual
system

Abstract In perception, exogenous noise is known to yield a masking effect,
i.e. an increase of the perceptual threshold proportional to the noise
intensity superimposed to the stimulus. However, somehow counter–
intuitively, the opposite mechanism can occasionally occur: a decrease
of the perceptual threshold for a non–vanishing, virtuous amount of
noise. This phenomenon, that is referred to as stochastic resonance, is
deemed to provide important information about the role of noise in the
human brain.
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3.1. INTRODUCTION

3.1 Introduction

In the previous chapter, we presented the general framework of our inves-
tigation: decisional processes allowing the subject to produce a dichotomic
response were interpreted in terms of the neural activity evoked by a stimulus
presentation and an inner threshold. Noise was considered as the source of
variability for the evoked neural response, encoded into the stochastic vari-
able x. In addition to that, it is interesting to investigate the effect of noise
on perception when the stimulus itself is superimposed to exogenous noise.

Aim of the present chapter is to study the phenomenon of stochastic res-
onance (SR) within the human auditory perceptual system. The main ideaStochastic

Resonance
&

acoustic

perception

underlying SR in psychophysical experiments is that a certain amount of
external noise can improve the ability to detect stimuli: the most straight-
forward way to test this hypothesis is to measure the subject’s performance
detecting stimuli without superimposed noise and to compare his/her per-
formance with the results of a similar experiment where stimuli are super-
imposed with noise. We applied this strategy by testing the effect on the
human perception of pure tones.

It must be remarked that we implemented several experimental approaches
to study SR in the acoustic modality. The experiment described here makes
up our best attempt to this goal, from the point of view of repeatability and
thus of scientific reliability.

The present chapter is organized as follows: we first describe the masking
effect occuring when noise detrimentally acts on the stimulus perception in
Sec. 3.2. Then, we present the phenomenon of SR: besides psychophysics
of perception, this effect has been observed in different fields. A review of
experimental situations in which SR–like phenomena have been observed is
presented in Sec. 3.3. The experiment aimed to test the occurrence of SR
in acoustic modality is described in details in Sec. 3.4, 3.5 and 3.6. Possible
future perspectives are discussed in Sec. 3.7

3.2 General framework for experiments with

exogenous noise

In the model for decision making described in Sec. 2.2, noise was taken
into account by considering the intrinsic variability of the neural activity
evoked by a stimulus presentation. In this case noise was defined as being
endogenous.Endogenous

noise Fig. 3.1 shows a schematic graphical representation of the discrimination
process: in the upper part (a) the experimental situation described in the
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3. NOISE AND ACOUSTIC PERCEPTION

previous section is presented. From left to right, a stimulus presented to the
observer enters into the discrimination block (the green rectangle in Fig. 3.1)
and evokes a certain neural response. Internal (or “endogenous”) noise is
included by summation. The resulting noisy neural response, labeled with
x, is compared with the perceptual threshold, previously labeled with χ, in
order to produce an outcome (response).

In Fig. 3.1.b the experimental situation in which additional noise is su-
perimposed to the stimulus is shown. This type of noise is external to the Exogenous

noisesubject and for this reason it is usually called exogenous. It is important to
point out that with exogenous noise only a special kind of external noise is
meant: for example, for acoustic stimuli it is impossible to completely avoid
enviromental noise, or in case of visual patches the screen itself produces a
certain amount of noise. With “exogenous” we rather mean the amount and
kind of noise that can be manipulated by the experimenter and is also under
his/her control.

Aim of this type of experiments is to investigate how exogenous noise acts
on the subject’s response.
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3.2. EXPERIMENTS WITH EXOGENOUS NOISE

Figure 3.1: Response changes when exogenous noise is added. a) The dis-
crimination block encoded in the human brain has here a different graphic
representation of the same model described in the previsious chapter and
shown in Fig. 2.4: the stimulus evokes a noisy neural activity. The response
is produced by comparison with the perceptual threshold. b) Exogenous
noise is added to the stimulus presented to the subject. In the experimental
situation described here, the amount and type of exogenous noise added to
the stimulus is under the experimenter’s control.
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3. NOISE AND ACOUSTIC PERCEPTION

3.2.1 Two opposite mechanisms: detrimental and non–
detrimental role of noise

In the rest of the present chapter we will focus our attention to behavioural
experiments based on a detection task. Thus, subject’s performance is in-
terpreted in terms of psychometric function, as shown in Sec. 2.3. If noise is
superimposed to the stimulus two opposite effects occur, namely the masking
effect and the stochastic resonance.

Masking effect
The most frequent effect of noise on detection is usually referred to in the

literature as masking effect: in this case, noise detrimentally acts on subject’s
performance and makes more difficult (masks) the perception of a stimulus. Noise masks

the signalThe subject’s ability to detect the stimulus generally decreases proportionally
to the exogenous noise amplitude. The masking effect typically takes place
for values of noise intensity In higher than a critical value Inc

, and is measured
as an increase of the perceptual threshold. Fig. 3.2 shows a typical profile of
the perceptual threshold µ as a function of noise intensity.

Figure 3.2: Masking effect: for noise intensities (In) smaller than Inc
, the per-

ceptual threshold is noise–independent. In the masking regime, i.e. for noise
intensities In > Inc

, the perceptual threshold µ typically increases linearly
with In. If reported in a log–log scale, µ (In) has then unitary slope.

If logarithimic intensity scales are used (dB), the slope coefficient of µ (In)
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is unitary ( dµ
dIn

= 1) in the range of noise intensities in which the masking
effect takes place. In other words, if In > Inc

µ (In) = µ0 + (In − Inc
) , (3.1)

where µ0 is the perceptual threshold without superimposed noise.
The masking effect in acoustic modality was investigated for the firstMasking in

acoustic modality time, to our knowledge, in 1950 by J.E. Hawkins and S.S. Stevens [49]. In
their work the effect occuring when pure tones or speech were superimposed
by white noise of different intensities was analyzed. The authors observed a
profile of the masking effect similar to Fig. 3.2. Over the intervening years,
many papers have taken inspiration from this seminal work: for example,
studies focused on speech perception [50] or cochlear signal processing [51].

In the literature, the profile of Fig. 3.2 is also called Threshold versus
Contrast , or TvC, function. Because of its generality1, TvC function re-Threshold

versus

Contrast
cently received attention not exclusively in the field of acoustic perception:
as an example, L.A. Lesmes and collegues [54] proposed a Bayesian adaptive
procedure, named quick TvC, to rapidly estimate multiple TvC functions in-
dependently from the sensorial modality. In this case the three parameters
characterizing the TvC function are the perceptual threshold without noise,
also called optimal threshold, the noise critical value (Inc, in Fig. 3.2) and
the slope of the masking as a function of noise.

Although the masking effect seems to be robust, to our knowledge no sat-
isfactory theory was so far devised to interpret TvC function so as schema-
tized in Fig. 3.2. An example of unresolved problem regarding the TvC
function is the presence of a discontinuity around Inc of difficult interpreta-
tion. On the other hand, a physical model for this effect is out of the scope of
our work. We focused our attention to the occurence of stochastic resonance
phenomena in acoustic perception.

3.3 Stochastic Resonance: a positive role of

noise in non–linear systems

3.3.1 Introduction: a counterintuitive phenomenon

In physics, an important parameter widely used to quantify to goodness of
a measurement is the so–called Signal–to–Noise ratio

(

S
N

)

, defined as the
ratio between the amplitudes, typically expressed in dB, of signal and noise,

1The profile of the perceptual threshold as a function of noise can be determined also in
different sensorial modalities like, for example, in visual perception experiments [52, 53].
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respectively. In case of linear systems, since the output signal directly propor-
tional to the input, the S

N
ratio decreases if exogenous noise is superimposed,

as in Fig. 3.1.b. Conversely, in case of non–linear systems, though the same Noise in

non – linear

systems

detrimental effect generally takes place, there are particular situations in
which a positive role of noise has been observed. An example was reported
by L. Gammaitoni et al. [3]: the system under investigation was modelled by
a quartic double–well potential, and a sinusoidal modulation was applied to
the input of the system. If the modulation amplitude was kept slightly under
the threshold defining the switch of the system from a state to another one,
the output spectrum showed a pronunced peak at a suitable noise intensity.

The phenomenon of stochastic resonance was described, for the first time, First evidence

of SRin 1981. The work by Benzi et al. [55] showed that a dynamical system
subject to both a periodic forcing and a random perturbation may show a
resonance that vanishes when either the forcing or the perturbation is absent.
In that case, the resonance was observed as a peak in the outpout power
spectrum. The mechanism of noise improving the information trasfer through
a nonlinear system was theoretically investigated in different conditions [56,
57, 58, 59, 60]: the general case of improved signal transmission through a
static nonlinear system was investigated by F. Chapeau-Blondeau [61, 62].
In a different work [63], J. Tougaard studied the occurence of SR in energy
detectors, as a model for biological systems.

Although the main ingredients of SR, as resulting in the most important
reference on this topic [3], are a bistable system, an incoming signal slightly
under the threshold, and noise, SR was theoretical predicted also in monos-
table systems [56] or in case of supra–threshold input signals [64, 65, 66].

SR, first described in the framework of non–linear physics, was demon-
strated in a very wide range of research fields [3], all of them characterized
by noise playing a non–detrimental role2: more in particular, SR was first SR in

different

research fields

described by looking at the dynamics of climate changes [69, 70]. More re-
cently the phenomenon was studied in different experimental situations and
theoretical approaches [2], from laser dynamics [71] to nanomechanical res-
onators [72], to quantum mechanical systems [73]. During 2009 a special
issue of European Physics Journal B (Vol. 69, Nr. 1) was published, en-
tirely dedicated to new observations of the SR phenomenon. The results of
our work are included in this volume [16].

2Recently, many reviews on SR were published. In addition to the previously cited
reference [3], the topic was reviewed with particular attention to the sensory information
processing [67], to its occurence in the human brain [68].
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3.3.2 Stochastic resonance in biological systems

SR like effects are observed in many biological systems. Here we present
an overview of experiments in which physiology or behaviour of different
kinds of animals were interpreted as an improvement of performance driven
by noise. As an example of investigation relative to the role of noise in
animal physiology, in 2007 L. Martinez et al. [74] showed that the catAnimal

physiology motor system, and in particular the pathway of monosynaptic reflex in the
spinal cord, can be optimally driven by an external stimulation superimposed
by a proper amount of noise. Of particular interest is also the work by K.
Funke and collegues [102], in which the results of physiological investigations
showing SR effects in the cat primary visual cortex were reported.

In addition to physiology, experiments involving animal behaviour were
carried out: in 2000, P. E. Greenwood et al. [75] claimed that the paddlefish
prey capture system receives an optimal amount of information at specific
noise intensities, depending on the distance of the prey. Few months later an
analogous effect was observed also in juvenile paddlefish [76]. In these cases,
the mechanism by which paddlefish locates, tracks and captures its prey
remains largely unknown; nevertheless, it has been experimentally shown
that it can be improved by noise.

Similarly, the possible occurence of SR was investigated also in the mating
behaviour: temporal and spectral analysis of calling song of Nezara Viridula
(L.) female individuals were monitored by looking at noise–driven shifts of
the threshold level for signal detection [77].

A new, promising research field relative to SR are medical applications. InMedical

applications this field, many studies are devoted to possible role of noise in therapy [78]
or, at least, in controlling diseases [79]. For example, M. Rusconi et al.

published in 2008 a work [80] in which SR–like effects were studied during
bone formation in case of patients under osteopenic conditions.

Of particular interest because of their wide application are studies on pos-
ture [81, 82] and human balance control, also in connection with pathological
states such as diabetes or strokes [83]. Other types of health problems, in
which noise was shown to act either positively or simply as an indicator of
dysfunction, are the sensorimotor system’s problems [84], and the pathologic
cardiac dynamics [85].

Noise recently revealed its central role in pathological states involving
the central neural system (CNS ): Y. Yamamoto et al. in 2005 showed that
noisy vestibular stimulations can improve responsiveness in central neurode-
genarative disorders [86].

In the rest of the present section we will focus our attention to SR in the
human brain, not only in case of specific pathologies, but also by looking at
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the effect on healthy subjects.

3.3.3 Stochastic resonance and the human brain

In addition to behavioural experiments in which one or more perceptual
modalities are involved, SR was observed at different levels in brain dinam-
ics [68]. In 2000 a work by I. Hidaka et al. [12] documented the functional
role of SR in human baroreflex system. This work attracted strong interest Baroreflex

systemin subsequent years because it represents, according to the authors, the first
evidence of a functional role of noise in human brain.

Similarly to the previously cited work, the experiment carried out by
A. Priplata and collegues [87], demonstrated a noise–enhanced balance con-
trol in humans. Differently from the work cited in the previous section [83],
here the authors carried out their experiments on healthy, young and elderly
individuals.

In addition, the electric brain activity was also monitored as a function SR

&

EEG

of noise: an overall large–scale phase synchronization of brain activity, mea-
sured with EEG tecniques [88], was observed when specific values of noise
were superimposed to external signals.

3.3.4 Stochastic resonance within the human percep-

tual system

This section is devoted to some results reported in the literature, that show a
noise–driven improvement of a subject’s performance in case of behavioural
experiments.

Tactile sensation
Perhaps, the most famous work on this topic was published in 1996 by J.J.

Collins et al. [47]. They showed that detection of tactile stimuli, a stepwise
profile of variable height, improved when a certain amount of noise was added
to the stimulus on the same perceptual modality. A similar experiment was
also reported one year later [89].

An improvement of tactile sensation was also observed by C. Wells et

al. [90] in an experiment in which stimuli of intensity closed to the perceptual
threshold were presented on the foot sole of old and young (mean age 26(3)
and 88(5), respectively) healthy subjects.

Finally, also EEG components elicited by tactile stimuli [91] were observed
to increase at an optimal amount of superimposed noise.
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Visual modality
Evidence of SR was shown also in experiments addressing the visual modal-

ity. In 1997, E. Simonotto et al. [92] described a SR–like effect in an ex-
periment of visual stimuli detection. The subject was presented a digitalizedVisual

detection picture, composed by modulating the grey scale of each pixel of a screen;
noise was introduced by fluctuations on the grey scale. The decoding of the
picture was measured to be optimal at a non–zero value of noise.

Detection and discrimination of bidimensional visual stimuli were inves-
tigated in noisy conditions [93, 94, 95, 96]. In addition, the case of SR
like effects was reported also in three–dimensional autostereograms percep-
tion [97].

Recent experiments in the visual modality tackled the problem of the role
of noise on cognitive assement [98, 99]: for example, a work by K. Kitajo etSR in

cognition al. [100] was focused on the effect of SR in the framework of the attentional
control. Incidentally, the role of internal noise was also investigated in this
framework [101].

In addition to the unimodal case, in which noise and stimulus act on
the same perceptual modality, some experiments addressed the case of a
cross–modal interference occuring within the brain. For example, visual dis-
crimination ability can be improved by acoustic noise: this is the so–called
cross modal SR [42].

SR in acoustic modality
As mentioned above, our investigation was mainly focused on the occurence

of SR in human brain, with particular attention to the acoustic percep-
tion. SR in the human auditory system was observed at a physiological
level [103, 104, 105]. In this works, it was investigated how transduction
of mechanical stimulations into electrical signals depends on the amount of
stochastic, mechanical fluctuations of hair cells. With regard to perception
experiments, the first evidence of SR in the human auditory modality was de-Behavioural

experiments scribed by Zeng et al. [106], in both normal hearing individuals and cochlear
or brainstem implant recipients3. Subjects were asked to detect the presence
of a signal superimposed to a specific level of white noise. The authors de-
termined the perceptual threshold via a two–interval, forced–choice adaptive
staircase procedure (three–down, one–up, pointing at a correct detection rate
of 79.4 % [14]) and reported a non–monotonic profile of perceptual thresh-
old vs. noise intensity, with a minimum at a non–vanishing noise value. A

3In the literature several works are available, concerning SR in cochlear implants re-
cipients [107, 108]. Conversely, we investigated the effect only in case of healthy subjetcs.
Thus, we limit here our overview to the literature relative to this type of experiments only.
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similar experiment, with normal hearing subjects only, was carried out by
Long et al. [109, 110]. Authors reported a somehow impressive improvement
of human perception near the acoustic threshold. Finally, another recent
work [111] addressed the role of different types of noise on acoustic percep-
tion, showing results similar to the work by Long [109].

All the works mentioned above claimed evidence of the occurence of SR
in human acoustic perception. However, the statistical robustness of these Open

problemsanalyses appears to be questionable. In the work by Zeng [106], the standard
deviation of the data collected from the normal hearing subjects was one
order of magnitude larger than the claimed threshold shift, whereas in the
work by Long [109] a quantification of the effect over the entire sample of
subjects was lacking. Moreover, the conspicuous threshold shift presented by
Long [109] seems to be incompatible with the faint effect shown by Zeng [106].
With regard to the work by Ries [111], the statistical test used did not show
SR unless data were heavily a–posteriori rearranged.

The main goal of our investigation regarded a crucial question that was
apparently overlooked by the previous works on the same topic [106, 109,
111]: whether the observed profiles of the subject’s performance, with a
maximum at a non–vanishing level of noise, are due to SR or, more soberly,
to fluctuations.

Differently from the works available in the literature, we investigated
shifts of the entire psychometric function as a funtion of noise intensity and
described a statistically robust assessment of SR within the human auditory
modality.

3.4 The experiment

3.4.1 Introduction

We investigated SR in the auditory modality, carrying out an extensive anal-
ysis of sensory response in the presence of white noise on 11 normal–hearing
subjects. We founded SR in the auditory modality to be a tiny effect, largely
masked by statistical fluctuations. Subjects performed an experiment, whose
task consisted in the detection of an acoustic signal in presence of a vary- The task

ing amount of white noise. Rather than using adaptive methods for the
assessment of the sensory threshold, we used a straightforward Yes–No pro-
cedure to determine the functional dependence of the entire psychometric
function on the signal and noise intensity. Data were analyzed by means of a
modified version of the Levenberg–Marquardt algorithm; we fitted the whole
threshold–vs–contrast (TvC) curve [49]. Thus, the evidence of SR based on
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χ2 statistics can rely on a significant degree of confidence, rather than on a
simple visual inspection4.

3.4.2 Participants and experimental setup

A set of 11 normal–hearing participants were recruited to take part in the ex-
periment (7 female, 4 male, age from 19 to 27, average 22, standard deviation
3); 9 subjects were näıve as to the purpose of the experiment. Participants
were students or members of the University of Trento; they all provided
informed consent before taking part to the experiment. Two subjects per-
formed the experiment two and three times, respectively. The experiment
was conducted in a sound–attenuated room (Amplifon, Sispe Mod. G), lo-
cated at the CIMeC’s Psychophysics Laboratories in Rovereto. Acoustic
stimuli were generated by means of C++ routines through an Audiophile
2496 PCI D/A converter (dynamic range 104 dB, dB relative to the full–
scale) and monoaurally presented to the left ear of each participant through
circumaural headphones (Sennheiser HD 580).

Figure 3.3: Schematic view of experimental setup

4In the previously cited works on the same topic [106, 109, 111], SR was often detected
by simply observing a dip in the spectrum of noise–dependent perceptual threshold.
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Each acoustic stimulus consisted of a signal and a noise component of Stimuli

intensity Is and In, respectively. The signal was a pure tone of frequency
4000 Hz and duration 400 ms, whereas the noise was white Gaussian; hence-
forth, a stimulus will be identified by specifying the pair (In, Is) of acoustic
intensities of the noise and signal components, expressed in dB relatively
to the full audio equipment range. After each stimulus presentation, the
observer responded by pressing alternatively the “S” or “N” key on a com-
puter keyboard, where “S” (Śı) represented the response “Yes, the signal
was present” and “N” (No) represented the opposite one: “No, there was
merely a presentation of noise alone”. Reaction time was not taken into
account in our experimental design. A new stimululs was presented 200 ms
after the subject response. Attentional cue before the stimulus presentation
and feedback about the subject’s performance were not included in the trial
time–line (see Sec. 2.3).

3.4.3 The model

For each level of noise intensity In, the psychometric function was assumed
to be modelled by a Gaussian cumulative distribution function with mean
µ and standard deviation σ. The mean µ was considered, as shown in the
previous chapter, as the subjective perceptual threshold, and assumed to be
noise dependent. This is mathematically expressed by the function µ (In).
Conversely, the standard deviation σ was assumed to be independent from
the noise intensity.

We developed a model for parameter µ as a function of noise intensity Model for

masking and

SR

by taking into account the two main effects occurring when stimuli are su-
perimposed by noise: the masking effect and the stochastic resonance. The
following session is focused on the masking effect.

Masking effect

With masking we mean the effect occuring when noise covers the signal
(stimulus) and makes the detection by the subject more difficult. We assumed
the mean of the psychometric function to vary as an hyperbolic function of
the noise level (see Fig. 3.4, top):

µ (In) = µ0 +
1

2
· (In − Inc

) +
1

2
·
√

(In − Inc
)2 +D2 (3.2)

This shape was chosen upon the following considerations: first, µ (In)
tends to µ0 if In << Inc

. Second, µ linearly depends on In if In > Inc
. Finally,

the function has to be continuous. The profile of the TvC is significantly
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modified with respect to the standard case [54]: the additional parameter D
was here introduced in order to avoid, in the case D 6= 0, the discontinuity
(in the derivative) around Inc

.
Fig. 3.4 shows a color map of the Threshold versus Contrast (TvC) func-Our model

for the TvC tion, defined as the probability of a “Yes” response as a function of the noise
and stimulus intensities (In, Is).

Stochastic resonance

Stochastic Resonance (SR) was experimentally highlighted by a decrement
of the perceptual threshold around a certain noise intensity level (see bottom
part of Fig. 3.4). Former works in the literature, based on behavioural exper-
iments in acoustic modality [106, 109, 111], suggested to focus our analysis
on the noise intensity interval around Inc

.
On the strength of phenomenological considerations and in absence of any

theoretical clue, we built a model for the TvC considering a family of psy-
chometric functions with constant standard deviation and noise–dependent
perceptual threshold; in particular, we assumed the following hyperbolic pro-
file for the threshold:

µ (In) = µ0 +
1

2
[(1 − k) (In − Inc)] +

1

2

[

(1 + k)

√

(In − Inc)
2 +D2

]

(3.3)

where, analogously to Eq. (3.2), µ0 is the subjective threshold in absence
of external noise, Inc represents the critical noise intensity at which the mask-
ing effect starts to take place and D, as in Eq. 3.2, is proportional to the
distance between the focus of the hyperbola and the point of coordinates
(Inc, µ0); as discussed above, this last parameter avoids the discontinuity in
(Inc, µ0), usually overlooked in the scientific literature [54]. In addition, k
corresponds to the slope of the negative (if k > 0) asymptote.

Fig. 3.4 shows a color map of our model for the TvC as reported in
Eq. (3.2) (top), and in the case of occurence of SR (bottom), expressed by
Eq. (3.3).

For In > Inc, the threshold is expected to linearly increase with the noise
intensity [54]. Since the intensities are expressed in dB, the slope of the
rightmost asymptote (In → +∞) is unitary. On the contrary, the slope k
of the leftmost asymptote, is a free parameter for the fit procedure of the
experimental data. Under standard circumstances, i.e. if masking is the
only effect of noise, the parameter k would vanish: if k = 0, then Eq. (3.3)
corresponds to Eq. (3.2). Moreover, there is no reason to expect negative
values for k. On the other hand, a positive value of the parameter k would
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Figure 3.4: Color map of the TvC function; white solid lines correspond to
the profile of µ(In). The surface parameters are µ0 = 0 dB, Inc = 0 dB,
σ = 3.0 dB, and D = 2.0 dB. In a), k = 0 and the TvC does not show SR.
In b) k = 0.05; the profile shows a minimum, i.e. a clear evidence of SR.

correspond to a negative slope for the asymptote, yielding a minimum of
Eq. 3.3 for In closed to Inc. As SR is expected to occur if there is a minimum Occurrence of SR

of the function µ = µ (In) for a non–vanishing In value, a positive k value
would be a sign of SR. The position of the minimum for k > 0, turns out to
be closed to Inc, in agreement with previous works [106, 109, 111].

3.5 Experimental procedure

We measured the TvC function on a suitable set of intensity values (In, Is):
for each experimental run, the 2–dimensional region of interest was chosen by
taking as a reference the point (Inc, µ0). To this purpose, prior to the main Preliminary

partexperimental phase, we first measured the psychometric function without
noise in order to obtain numerical values for µ0 also defined as I th

s0
, and σ0
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parameters5. Averaging the data over the entire set of experimental sessions
yields 〈µ0〉 = 〈I th

s0
〉 = −73(8) dB and 〈σ0〉 = 4(3) dB.

Then, we repeated the procedure with superimposed noise of intensity
In = µ0 + 30 dB: we empirically found that, once this noise value was set,
the resulting new threshold µ1, or I th

s1
lay within the masking region. New

estimation of the psychometric function parameters µ1 = I th
s1

and σ1 provided
on average the numerical results 〈µ1〉 = −61(8) dB and 〈σ1〉 = 6(6) dB.
Since the slope in the masking region is unitary, disregarding SR effects
(k = 0) and considering D = 0, it is easy to see that the critical noise
value can be estimated by Inc = 2µ0 + 30− µ1. To speed–up this preliminar
measurement and thus circumvent the need for a break before the main
experimental session, we developed a quick adaptive procedure that, starting
from a set of 3 signal intensities (each presented 4 times), rapidly converged
to the subjective psychometric parameters by choosing step–by–step new
signal intensities according to a maximum likelihood estimation (MLE). The
average duration of this preliminary measurements was 6(1) minutes.

The second session addressed the presence of SR by superimposing dif-Main

part ferent levels of acoustic white Gaussian noise In to different stimulus in-
tensities Is in a two-dimensional region around (Inc

, I th
s0

). More precisely,
the region was defined as follows: the signal intensity interval was divided
in 11 equispaced points covering the range from I th

s0
− 5 dB to I th

s0
+ 5 dB

(δIs=1 dB). Similarly, the noise intensity range ∆In0
was divided in a num-

ber N of equispaced points, the single step δIn = 2.5 dB, covering three
different intervals: from Inc

− 3/4∆In0
to Inc

+ 1/4∆In0
(one single sub-

ject); from Inc
− 2/3∆In0

to Inc
+ 1/3∆In0

(two different subjects); from
Inc

− 3/4∆In0
+ δIn to Inc

+ 1/4∆In0
− δIn (three subjects). The number N

was equal to 11 for each interval. The covered span was ∆In0
= 25 dB.

Subsequently, three additional versions of the experiment were carried
out, varying the number N of the noise values and keeping δIn constant.
Possible values for N were 12, 14 or 15, thus covering a range of ∆In = 27.5,
32.5 or 35 dB, respectively. The intervals of noise values around Inc

were
selected as follows: from Inc

− 3/4∆In0
+ δIn to Inc

+ 1/4∆In0
(N = 12, two

subjects), from Inc
− 3/4∆In0

+ 4 · δIn to Inc
+ 1/4∆In0

− δIn (N = 14, four
subjects) and, finally, from Inc

− 3/4∆In0
+4 · δIn to Inc

+1/4∆In0
(N = 15,

two subjects). Fig 3.5 summarizes the number of different experimental
sessions in which each value of noise intensity, relative to Inc

, was presented.

To sum up, each stimulus was defined by a pair (In, Is) and a matrix-like
sequence of 121, 132, 154 or 165 stimuli in case of N equal to 11, 12, 14 15,
respectively, were presented.

5With the subscript “0” we mean without superimposed noise.
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Figure 3.5: Histogram of the number of experimental sessions in which a
particular value of noise intensity In was presented, measured relatively to
Inc

. The vertical black line shows the position of Inc
on the x-axis.

In addition, 3 stimuli without signal for each In value (for a total number
of 33, 36, 42 or 45, respectively) were included into the sequence of trial
presented to the subject for further investigation. However, we did not taken
into account the outcome of these stimuli for the data analysis presented in
the rest of the present chapter. In conclusion, the total number of stimuli
per each sequence was 154, 168, 196 or 210, depending on whether N =
11, 12, 14 or 15, respectively.

In order to avoid any possible attentional bias we randomized the order
of presentation of the stimuli. To improve statistics, the same sequence was
presented four times to each subject within the same experimental session.
No pauses were allowed during the experimental session.

The final result was a matrix of P (yes| (Is, In)) values. The possible
scores for each matrix element were 0, 0.25, 0.5, 0.75, 1. The average duration
of the whole experiment was 25(5) minutes.
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3.6. DATA ANALYSIS

3.6 Data Analysis

Two different procedures were used to analyze the subject responses: in
Sec. 3.6.1 we present the procedure, based on a modified version of the χ2

analysis, applied to highlight the occurrence of SR in each data set (14 dif-
ferent results).

Subsequently, we developed a second data analysis technique, presented
in Sec. 3.6.2, in order to investigate the occurence of the effect by averaging
the data over the entire sample of subjects.

3.6.1 Analysis on single subject

Results were summarized by a N × M hystogram Rn,s corresponding to
the number of “Yes” responses provided for each stimulus on the grid; the
possible values for each bin are 0, 1, 2, 3, 4. We fitted the results by means ofFit

procedure a chi–square (χ2) test: as a matter of fact, although the distribution events
within a single bin is binomial and the number of events for each bin is only
4, we could use the χ2 test because of the large number of bins involved in the
fit (N ·M ≥ 121) [48]. We computed the χ2 function of merit by comparing
each entry of Rn,s with the expected value rn,s, obtained from the TvC model
and normalized so that

∑

n,sRn,s =
∑

n,s rn,s. To minimize the χ2 we used
the Levenberg–Marquardt algorithm, suitably changed in order to take into
account the modified statistics (binomial rather than Gaussian).

Results
Tab. 3.1 shows the values of k for each experimental run.
The right column reports the probability p of the null hypothesis k = 0,

given the measured k value and its error, computed by means of the χ2

distribution. Subjects DT and AV performed the experiment twice and
three times, respectively. Results of their different experimental sessions are
reported as DT1, DT2, AV1, AV2, AV3.

There is a single result with negative k. Other data are grouped according
to whether the null hypothesis k = 0 is higher than 1 − 68.3 % = 31.7 %.

The fit procedure yields new values of Inc, µ0, and σ. To compare theseComparison of

the results values with those determined during the preliminary measurement of the
two psychometric functions (with and without noise), we henceforth rename
the former values as Ipre

nc , µpre
0 , and σpre, respectively. In order to test the

reliability of the fit procedure we computed for parameters Inc and µ0 the
deviation between values estimated during the preliminary measurement and
during the fit procedure. The results averaged over the entire sample of
experimental runs are 〈|Inc − Ipre

nc |〉 = 4 ± 17 dB and 〈|µ0 − µpre
0 |〉 = 55 ±
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3. NOISE AND ACOUSTIC PERCEPTION

Subject k p(k = 0) %
MC 0.14(5) 0.4
DT1 0.27(1) 2.0
AV1 0.10(5) 3.2
RS 0.03(2) 16.1
AV2 0.6(5) 20.2
AV3 0.2(2) 30.3
RT 0.04(6) 57.0
DG∗ 0.1(2) 67.9
MF∗ 0.4(9) 70.2
AL∗ 0.2(7) 76.6
SD 0.01(5) 77.4
LN∗ 1(2) 82.7
DT2 0.00(6) 99.5
EZ -0.01(2) 54.8

Table 3.1: Values of the parameter k estimated by the fit of the TvC on the
hystograms Rn,s for each participant. Four experimental runs are highlighted
by an asterisk: these experiments show a strong discrepancies of the values
of Inc, µ0 with the corresponding values computed during the preliminary
assesment, as well as a large value of σ.

15 dB. The latter result is significantly, and unexpectedly, different from
zero. However, by ruling out the four worst cases, i.e. the experimental
runs showing the maximum deviation of µ0 (DG, MF , AL and LN , marked
by an asterisk in Tab. 3.1.), we obtaine 〈|Inc − Ipre

nc |〉 = 4 ± 1.5 dB and
〈|µ0 − µpre

0 |〉 = 1.6± 1.5 dB. Similar results were obtained with regard to σ:
the average of this parameter over the entire sample is 20±35 dB; however, by
ruling out the four experimental runs mentioned above, 〈σ〉 becomes 4±1 dB.
The rest of the sample can be considered homogenous.

Tab. 3.2 shows the absolute and relative occurence of the SR effect in the Occurence

of SRentire sample of experimental sessions. In 93% of the sessions, the parameter
k assumes positive values; however, these are statistically significant only in
the 43 % of the experimental runs. In addition, the improvement of stimuli
detection is small in comparison with the shift of the perceptual threshold
caused by the masking effect.

Fig. 3.6 shows three color maps of the experimentally–determined Rn,s

matrix as well as the profiles of µ (In) and µ (In) ± σ/3.

For the subject MC, the profile of the µ (In) shows a pronunced minimum
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3.6. DATA ANALYSIS

condition occurrence occurrence rate (%)
k > 0 , p(k = 0) ≤ 31.7 % 6 43
k > 0 , p(k = 0) > 31.7 % 7 50
k <= 0 , p(k = 0) ≤ 31.7 % 0 0
k <= 0 , p(k = 0) > 31.7 % 1 7

Table 3.2: A summary of the occurence of SR in the sample of subjects: SR
effect is present if k is significantly larger than zero.

below the onset of the masking effect, that can be interpreted as evidence
of SR. On the contrary, both subject RT and subject EZ show either a
less detectable minimum or a flat profile. In all the three shown cases, the
occurrence of the masking effect is evident.
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3.6.2 Average procedure

In order to improve the statistical robustness of our analysis we developed a
method to assess the occurence of SR in the data collected from the entire
sample of subjects. The method workes as follows.

Let us consider an experimental session of a particular subject. Let alsoa-posteriori

rearrangement

of the data
In be a given noise level. We estimated both the parameters µ (In) and
σ (In) of the psychometric function ψ(Is, In) by applying a MLE procedure
to the data set corresponding to In. To this purpose, we used the standard
cumulative function:

ψ(Is, In) =
1

2

[

1 + erf

(

Is − µ (In)

σ (In)

)]

. (3.4)

This first step was pepeated for all In values so as to produce a set of
(µ (In) , σ (In)). Subsequently, we assumed σ to be independent from the
noise intensity In, as for the previously reported analysis procedure. Thus
we estimated 〈σ〉 by averaging σ (In) over the In values. The average 〈σ〉
was used in a new MLE to estimate the µ (In) parameter of the psychometric
function at each In:

ψ(Is, In) =
1

2

[

1 + erf

(

Is − µ (In)

〈σ〉

)]

. (3.5)

Once obtained this new set of µ (In), the TvC given by Eq. 3.2 was fitted to
the set in order to estimate the numerical value of I th

so
and Inc

.
In order to average data sets from different subjects we considered the

relative distances ∆Is,∆In of each Is and In values with respect to I th
s0

and
Inc

.
We fixed the signal intensity resolution (1 dB), whereas three differentLattices

of data noise intensity resolution were chosen to average the data from all subjects:
low, middle, and high, correspond to In steps of 2.5 dB, 1.875 dB, and 1.25
dB, respectively. Both Fig. 3.7 and Fig. 3.8 refer to the low lattice resolution:
Fig. 3.7 shows the number of subject answers (experimental data) at each
(∆In,∆Is) value, whereas Fig. 3.8 shows the detection rates.
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Figure 3.8: Low resolution lattice for the detection rate P (yes| (Is, In)).
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Results
Visual inspection of the data reported in Fig. 3.8 led us to hypothesize the

lack of a well–marked shift of the perceptual threshold around Inc
(∆In = 0

dB). Results show that, whereas the masking effect is quite evident, the
occurrence of SR is not clearly observable.

However, the results of the fit reported both in Fig. 3.9 and in Tab. 3.3Evidence

of SR show that the profile of the perceptual thereshold as a function of the noise
is in agreement with the occurrence of SR effects.
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Figure 3.9: Result of the fit to low–resolution in case of the average lattice:
the perceptual threshold µ reaches a minimum at a noise intensity value In
= -16(1) dB. The SR effect is 0.7 dB.
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In resolution 1.25dB 1.875dB 2.5dB

k 0.03(2) 0.04(2) 0.04(2)
D 5.4(9) 5.8(9) 6(1)
σ 4.0(1) 3.9(1) 3.9(1)
Is0

-1.4(5) -1.7(5) -1.8(5)
Inc

-1.0(3) -1.2(3) -1.7(3)
χ2 0.42 0.23 0.14

Table 3.3: Numerical values of the fit parameters of the fit: the positive
values of the paramenter k is considered as an evidence of SR.

In Tab. 3.3, the numerical values of the fit parameters k, D, σ, Is0
and

Inc
are presented. Positive values of the parameter k for each of the selected

resolutions confirm the occurrence of SR.

3.7 Conclusions

Our data show that SR produces a weak, though significant improvement
in sound detection driven by an optimal, non-vanishing level of noise. As
asserted in previous works [106, 109, 111], our results highlight that the effect
of stimuli detection improvement is tiny in comparison with the dynamical
range of the perceptual threshold. In order to quantify the effect of SR in
this experimental context, it is also crucial to reduce as much as possible
fluctuations of the threshold.

Both the methods we proposed and tested are statistically robust and
have an additional advantage with respect to the results available in the
literature: they offer the possibility to investigate the change of the entire
psychometric curve as a function of the exogenous noise intensity. The choice
of 50% of the correct detection as the value for the threshold is arbitrary.

In conclusion, the problem of whether and possibly which part of the hu-
man auditory system uses the effect of SR to improve the overall ability to
detect stimuli remains unclear. Nevertheless, the methodological approach
described in the present work can provide a starting point for further investi-
gation, expecially in relation with specific characteristics of the subjects (e.g.
age, deficits such as deafness).

Our findings have two main implications: first, they reveal that SR in
the auditory modality is a small effect, easily masked by fluctuations of the
perceptual threshold. This conclusion poses some serious constraints to the
suggested applications of auditory SR for earing–aid devices or prosthesis
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(such as cochlear implants [107, 108]). Second, it calls for a re–examination
of the SR effect in vision and somatosensation using our statistically–robust
methodology. This could help disentangle whether the difference in SR size
between audition and the other sensory modalities reflects different method-
ological approaches or, rather, some fundamental difference between the var-
ious perceptual systems.
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Criterion Setting Dynamics
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Chapter 4

Signal Detection Theory

Abstract Aim of the present chapter is to introduce the reader to the Sig-
nal Detection Theory (SDT), representing a widely diffused model used
to interpreted “Yes/No” experiments with only two possible classes of
stimuli. After a brief introduction regarding the hystorical evolution
over the last two centuries of psychophysics, SDT quantities are pre-
sented in detail. Special attention is devoted to the role of the criterion;
this part can be considered introductory for the next chapter, focused
on criterion setting dynamics in human brain.
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4.1 Introduction

In this section we present a brief overview of the historical development of
psychophysics.

Fechner’s work
Starting point of psychophysics is usually considered the work carried out

by the German experimental psychologist Gustav Theodor Fechner (April
19, 1801 – November 28, 1887). The main goal of his investigation was to
connect the experience occurring within the human brain at a stimulus pre-
sentation with the physical feature of the stimulus itself. Fechner’s most
important contribution to this aim is the introduction of the concept of dif-
ference threshold or just noticable difference (JND). From a methodologicalJND

point of view, his approach represents an effort to apply an atomistic view in
the field of perception. Fechner’s main question can be formulated as follows:
how does the human brain implement a fundamental unit for perception?

In Fechner’s view, if stimuli are physical identical, there is no way for
an observer to notice any difference. On the other hand, if the experimenter
slightly change one of the two stimuli, there is a minimal difference that leads
to a change in experience. This difference is defined as JND.

Problems with JND
In the decades after Fechner’s formulation, the concept of JND was recon-

sidered on the basis of new experimental evidence of perception. Investiga-
tions focused on measuring JND in different experimental conditions led to
two main problematic results:

1. JND measured by using different experimental procedures assumes dif-
ferent numerical values,

2. perception of difference between stimuli, measured as an increase in cor-
rect discrimination’s rate, does not increase linearly with the physical
difference.

With regard to the second point, a solution was proposed by the joint
effort of Ernst Heinrich Weber (Wittenberg, June 24, 1795 – Leipzig, January
26, 1878) and Gustav Fechner himself. They founded that minimal variations
of the perceived intensity ∆I linearly depend on the stimulus intensity I. In
other words, ∆I/I is a constant, independent from I. This relation allowed
the two scientists to formulate the logarithmic relation, known as Weber–Weber–Fechner

law Fechner law [15].
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4. SIGNAL DETECTION THEORY

However, the variability of JND in different experimental situations re-
vealed that the assuption of a fixed brain response evoked by a constant
stimulus presentation was wrong.

Noise and criterion
A step further, in direction to SDT, was carried out by Louis Leon Thur-

stone (Chicago, May 29, 1887 – Chapel Hill, September 30, 1955). His work
was focused on the high variability intrinsic in the JND measurement. In
1927 [112, 113] he suggested that multiple repetitions of the same stimulus
are encoded by different internal representations. In particular, this noisy normally

distribuited

neural response

neural response can be considered to vary into a continous range and to be
normally distribuited. This assumption is now considered fundamental for
the subsequent development of SDT.

In addition to the work of Thurstone, the definitive formulation of SDT
received an important impulse during the 40’s and the early 50’s, mainly
due to develop military applications. Scientists focused their attention to
the problem of disentangle the subjective ability of a radarists to detect a
danger from the strategy adopted. In this context the concept of criterion
was introduced and, as a consequence, the subject’s tendency to be more
liberal or conservative, independently from his/her own sensitivity.

The first application of SDT to a psychophysical investigation dates back SDT

to 1953. In that year, Wilson P. Tanner and John A. Swets performed a
set of visual discrimination experiments [114, 115, 116] interpreted by using
SDT.

Signal Detection Theory (SDT) is presently the most successful theory
used to interpret psychophysical experiments on human [14, 15] and ani-
mal [123] perception. SDT is applied in a wide range of situations, from
the interpretation of perceptual tasks involving the discrimination of a single
stimulus feature [124] to more complex cognitive tasks [125].

The present chapter is organized as follows: the two main assumption of
SDT are presented in Sec. 4.2. Then, we introduce the Stimulus/Response
matrix in Sec. 4.3, whereas definition of d′ and criterion are reported in
Sec. 4.4. Receiver Operating Characteristcs are the topic of Sec. 4.5. Finally,
the central role of criterion is pointed in evidence in Sec. 4.6.

4.2 SDT assumptions

SDT, similarly to the model presented in Ch. 2, is mainly based on two
fundamental assumptions: first, the neural response evoked by a stimulus
presentation is noisy. Second, the choice between two possible responses is
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the result of a comparison between the neural activity and a threshold set
within the subject’s brain.

4.2.1 Noise

Upon the presentation of a stimulus to a subject, many areas of the cerebral
cortex are activated. On the other hand, SDT parametrize only an average
value of this activation, without taking into account its spatial and temporal
distribution, by means of a single quantity called evoked neural activity. In
the present dissertation this activity is labelled with the letter x. Evoked
neural activity is assumed to be influenced by noise which, as mentioned in
Sec. 2.2.1, is normally distribuited. In the following, its standard deviation σ
is assumed to be stimulus independent, whereas the mean µ is proportional
to the stimulus intensity1.

4.2.2 Criterion

The possibility to discriminate between two mutually exclusive responses is
modelled by a comparison between the evoked neural activity and a thresh-
old, also called criterion in SDT language. If the neural activity x does (does
not) overcome the threshold, then the subject will provide a certain response
(the opposite one).

While many works in the literature report important results relative to
the encoding of neural activity evoked by a stimulus presentation [119, 120,
121, 122], very few works adress the topic of how the SDT criterion is encodedCriterion

encoding within the brain. In the next chapter we will tackle this issue providing a
model, also tested by ad-hoc experiments, for the criterion setting dynamics
under feedback–controlled conditions.

4.3 Stimulus/Response matrix and probabil-

ity of correct answer

The experimental situation described by SDT is slightly different from that
one described in Ch. 2 and Ch. 3. In that case, an unspecified number of
classes of stimuli were included in the experimental design. In the example
of Sec. 3.4, the psychometric function was investigated by providing to the

1With intensity we mean the value assumed by the physical feature that characterizes
the stimulus. For example, in case of visual stimuli of different inclinations, the tilting
angle is the feature linked with the value of µ.
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subject 13 different acoustic intensities of the stimulus. In the rest of our
work, if not differently reported, we will take into account the situation in
which only two possible stimuli, s1 and s2, are presented at each trial. As
in the previous case, the possible responses r1 and r2 are again mutually
exclusive.

The starting point for further considerations to this type of experiments
is the Stimulus/Response matrix of Tab. 4.1.

r2 r1

s2
hit miss

H ≡ p(r2|s2) M ≡ p(r1|s2)

s1
false alarm correct rejection

F ≡ p(r2|s1) CR ≡ p(r1|s1)

Table 4.1: Stimulus–Response matrix in a “Yes–No” experiment. A motor
response of the type r2 (r1) after the presentation of a stimulus s2 corrisponds
to a hit (miss); on the contrary, the same response to a stimulus s1 is defined
as false alarm (correct rejection).

If the subject provides a response r2 (r1) to a stimulus s2 (s1), this is
considered as a correct one and defined as hit (correct rejection); on the Hit

&

false alarm

contrary, a response r2 (r1) to a stimulus s1 (s2) is an error defined as false
alarm (miss).

From Tab. 4.1, we can write the relation between H (F ) and M (CR) as
follows:

M = 1 −H

CR = 1 − F

Another important quantity, widely used in psychophysical experiments,
is the percentage of correct answer p(c), defined as: p(c)

p(c) =







p(s2)H + p(s1) (1 − F )

p(s1) + p(s2) = 1
, (4.1)
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where p(sk) is the a priori presentation probability of stimuli sk, k = 1, 2.
The quantity p(c) is often used to measure the subject perfomance at the end
of an experimental session. In the following section, two additional quantities
will be introduced, sensitivity (d′) and criterion (χ), both related with the
subject’s perfomance.

4.4 Definition of d′ and χ

The two main assumptions of the SDT described in Sec. 4.2 allow us to inter-
pret hit rate and false alarm rate as a function of the neural activity evoked
by the stimuli presentation, p(x|s2) and p(x|s1), and of the criterion cr. More
in detail, H and F correspond to:

H = p(r2|s2) =

∫

∞

cr

p(x|s2) dx = Φ

[

µ2 − cr
σ

]

(4.2)

F = p(r2|s1) =

∫

∞

cr

p(x|s1) dx = Φ

[

µ1 − cr
σ

]

, (4.3)

where the standard normal cumulative distribution Φ is defined as

Φ(x) ≡ 1 + erf (x)

2
=

∫ x

−∞

e−
y2

2

√
2π

dy . (4.4)

Fig. 4.1 shows the area corresponding to H and F underlying s2 and s1

distributions.
H and F depend on the relative position on the x–axis of the mean of the

two distributions associated with the stimuli. The measure of the relative
distance between the two distribution is d′, defined asd′ (µ1, µ1, σ)

d′ ≡ µ2 − µ1

σ
. (4.5)

The parameter χ is defined, in term of the parameters of the distributions, asχ (µ1, µ1, σ)

χ ≡ 1

σ

[

cr −
µ2 + µ1

2

]

. (4.6)

By linking togheter Eqq. (4.2) and (4.3) with Eqq. (4.5) and (4.6), we obtain
the operative definition of d′ and χ:
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4. SIGNAL DETECTION THEORY

Figure 4.1: Hit rate and False alarm rate: in (a) the red area corresponds
to the hit rate given by Eq.(4.2), whereas the blue area in (b) corresponds
to the false alarm rate given by Eq.(4.3).

d′ = z(H) − z(F ) (4.7)

χ = −1

2
[z(H) + z(F )] , (4.8)

where z(x) is the inverse of the standard normal cumulative distribution:
z [Φ(x)] = x.

Optimal criterion position
Although the sensitivity d′ does not depend on the criterion, both H and

F depend on χ. As a consequence, it can be shown that p (c) varies as a
function of χ.

p (c) = [1 − p (s1)] · Φ
(

d′

2
− χ

)

+ p (s1) · Φ
(

d′

2
+ χ

)

. (4.9)
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Considerations relative to the simmetry of the system allow us to assume
a non monotonical profile for p (c) as a function of χ. By letting dp(c)

dχ
= 0,Prior

presentation

probabilities
we found a maximum for p (c) for χ = χ0 at the value for χ = χ0

χ0 =
1

d′
ln

[

p(s1)

1 − p(s1)

]

. (4.10)

It is interesting to note that, if p(s1) = p(s2) = 0.5, then the optimal crite-
rion position is to the midpoint of the two Gaussian distributions (χ0 = 0).
Eq. (4.10) shows a possibility to modify the optimal criterion position by sim-
ply acting on the prior presentation proabilities of the two classes of stimuli.
An additional possibility to shift χ0 is related with the introduction of a
pay–off/loss matrix in the experimental paradigm. Being Vij coefficients ofPay–off / loss

matrix pay–off (or, if negative, loss), the criterion position that maximizes reward
can be shown to be given by

χ0 =
1

d′
ln

[

V11 − V12

V22 − V21
· p(s1)

1 − p(s1)

]

. (4.11)

Both the two results of Eqq. (4.10) and (4.11) are applied to induce a
criterion shift by simply acting on p(si) or Vij [14, 15].

4.5 H-F space

As shown in Sec. 4.3, given two classes of stimuli and a discrimination task,
the result of each experimental session is completely described by the rates
of hit and false alarm. A possible way to link toghether the information
relative to this quantities is the assessment of p (c), d′ and χ, as reported in
Sec. 4.4. On the other side, each couple of numerical values of H and F can
be represented by a point in the bidimensional (H,F ) – space, bounded by
the conditions Hǫ [0 : 1] and Fǫ [0 : 1].
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4. SIGNAL DETECTION THEORY

4.5.1 Receiver Operating Characteristics (ROC)

Given the definition of p (c), d′ and χ as functions of H and F , the loci of
points in the (H,F )–space corresponding to constant values of these quan-
tities are defined as iso–p (c), iso–d′ and iso–bias curves, respectively. These
curves are referred to in the literature as Receiver Operating Characteristics, ROC curves

or ROC – curves [14, 15].
If p (s1) = p (s2) = 0.5 (balanced a–priori presentations), Eq. (4.1), (4.7)

and (4.8) can be rewritten as follow:

H(F, p(c) ) = 2p(c) − (1 − F ) (4.12)

H(F, χ) = Φ [−z(F ) − 2χ] (4.13)

H(F, d′) = Φ [z(F ) + d′] . (4.14)

Fig. 4.2 shows the graphical representations of the ROC – curves of Eqq. (4.12),
(4.13) and (4.14), respectively.
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Figure 4.2: Receiver Operating Characteristics curves in (H,F )-space: (a)
iso–p (c) curves; (b) iso–bias curves; (c) iso–d′ curves.

Of particular interest for our investigation are the plots of Fig. 4.2(c); iso–d′ curves

here we observe the effect of different strategies (or criteria, in SDT terms),
that maintain the sensitivity of the observer constant. If a more liberal
strategy is adopted, both the Hit and the False alarm rate increase: then the
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4.6. THE ROLE OF CRITERION

subject performance, in terms of numerical value of the H–F couple, will be
represented by a point on the iso–d′ curve closed to the upper right angle
of the H–F space. On the contrary, if the subject is more conservative, the
point on the same iso–d′ will be more closed to the lower left angle.

A ROC iso–d′ curve can be measured by keeping d′ fixed and inducing
the subject to adopt different strategies. The implementation of the rating
procedure represents a different way to measure iso–d′ curves. In this type
of experiments the subject is asked to provide not only a response to the
task, but also to select a degree of confidence on a scale2. The original
experiments testing this hypothesis has been performed in the first half of
the 60’s [117, 118]

4.6 The role of Criterion

We report a summary of the work by Gong et al. [126], providing a model
based on SDT for stochastic resonance in perception. Particular attention is
devoted to the role of criterion.

4.6.1 A model for stochastic resonance in perception

The model by Gong et al. [126] uses SDT to interpret the phenomenon of
SR in “Yes/No” experiments. An important difference with our experimental
setup (see Ch. 3) is that only two possible classes of stimuli are given. The
main hypothesis underlying the model is that noise does not act to the meanRole of

exogenous

noise
of the distribution relative to the evoked neural activity, but only to their
standard deviation: an increase of the level of noise superimposed to the
signal causes a broadening of the relative distribution of the evoked neural
activity.

The increase of σ, proportionally to the noise intensity In, acts both on
H and on F , as shown in Eqq. (4.2) and (4.3). The trend predicted for d′

as a function of σ by Eq. (4.5) is a monotonical decrease. Thus, Gong et

al. [126] describe a SR-like effect in terms of percent of correct answer. In
particular

P (c) = 50

∫

∞

cr

p(x|s2) dx + 50

∫ cr

−∞

p(x|s1) dx (4.15)

or

P (c) = 50 + 25

[

erf

(

cr − µ1

σ ·
√

2

)

− erf

(

cr − µ2

σ ·
√

2

)]

. (4.16)

2Often discrete scales are adopted, for example from “1” (I have randomly chosen) to
“10” (I am completely sure).
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4. SIGNAL DETECTION THEORY

Fig.4.3 shows the profile of P (c) as a function of both σ and the criterion
cr. For each cr value, a maximum of P (c) as a function of noise (expressed Evidence

of SRin terms of σ) is considered evidence of SR.
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Figure 4.3: Profile of P (c) as a function of both σ and cr. Numerical values
of the parameters of Eq.(4.16) are µ1 = 0 and µ2 = 2. P (c) is computed for
σǫ [0.5, 5] and crǫ [2, 5].

By letting dP (c)
dσ

= 0, they find that the percent of correct answer has a Conditions

posed to

the criterion

maximum in correspondence to

σmax =

√

√

√

√

(2cr − µ1 − µ2) (µ2 − µ1)

2ln
[

cr−µ1

cr−µ2

] (4.17)

that, as shown in Fig. 4.4, has real positive solutions only in the case

cr > µ2. (4.18)

The condition posed to the criterion position, far from the optimality de-
fined in Eq.(4.10), and the demand of stability represent two important lim-
itations to test experimentally the prediction by Gong et al. [126]. Small
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Figure 4.4: For each cr value, SR is reported as a maximum of percent of
correct response at a specific value of σ = σmax. Values of σmax exist only if
cr > µ2.

fluctuations of cr drammatically reduce the effect and consequently the pos-
sibility to measure it. Fluctuations are here meant on the time scale of the
same order of magnitude of the trial time–line.

4.7 Conclusions

Signal Detection Theory (SDT) represents a robust model usually adopted to
interpret results of discrimination experiments. If only two mutually exclu-
sive classes of response are provided, SDT allows to interpret the Stimulus-
Response matrix in terms of sensitivity and criterion.

Sensitivity, or d′ in SDT language, is considered as a measure of the
subject ability to solve the task: it is also independent from the strategy
adopted to respond. In the present chapter particular attention was devoted
to the central role of criterion in discrimination. The definition of optimal
criterion position, related to the possibility to maximize the rate of correct
answer, was introduced in Sec. 4.4.
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4. SIGNAL DETECTION THEORY

Finally, a model based on SDT for stochastic resonance in perception
was presented in Sec. 4.6. An important condition to test this model in real
experimental situations is the demand of criterion stability: thus, we focused
our attention to an extensive investigation on criterion dynamics. Results of
our investigation are reported in the following chapter.
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Chapter 5

Feedback Control over
Criterion Setting

Abstract Signal detection theory (SDT) provides a reliable model for ex-
periments on discrimination, perhaps the most basic implementation
of decision making. However, the knowledge of how SDT parameters
are encoded in brains is still poor. Given a discrimination task, SDT
assumes the existence of an internal criterion: responses provided by
the observer are the result of a comparison between this criterion and
the neural response evoked by the stimulus. Despite its important role,
it is still largely unknown how this criterion is set and maintained. To
gain insight on this crucial, but yet unresolved, issue, we focused our
attention to dynamical aspects of criterion setting. We used an ex-
perimental phase–detection technique and modelled feedback–induced
criterion shifts by means of a linear response system.
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5.1 Introduction

In the previous chapter, the fundamental role of criterion in decisional pro-
cesses [14, 15] was highlighted. The existence of a criterion represents one of
the two fundamental assumptions of SDT: its position, with respect to the
neural activity evoked by the stimulus presentation, determines the subject’s
response in “Yes/No” experiments. Shifts of the criterion from its optimal
position are related to a more liberal or conservative attitude of the subject.
During a measurement session, this attitude, and consequently the rate of
responses “Yes” or “No”, can change depending on several factors external
or internal to the subject. For example, a change of the presentation prob-Criterion

shifts abilities of the two classes of stimuli induces a shift of the optimal criterion
position; in this case, the subject should readjust his/her response strategy,
with respect to the case of equal prior presentation probabilities, in order to
improve his/her performance.

This chapter concerns experiments we carried out, in which dynamical
aspects of criterion setting were investigated.

Our experiments on the stochastic resonance in perception has revealed
how the topic of criterion dynamics is crucial to the psychophysical investi-
gation of the role of the noise in the brain.

In this thesis, the word experiment is used according to its common mean-
ing in physics : an experiment coincides with an experimental setup rather
then with a variation of a given experimental design. These experiments
were expected to shed a new light on the problem of how a criterion is set,
maintained and, in some circumstances, modified within the brain. More in
general, the problem we were interested in was related to the encoding of the
criterion in the human brain. To tackle this issue, we induced a well–knownCriterion

dynamics shift of the optimal criterion position at each single trial and reconstructed
the criterion dynamics on the basis of a physical model.

Experimental data consisted in a set of of a stimulus s [i], each belong-
ing to one of two distinct classes, and a dichotomic response r [i] (i repre-
sents the trial number). They were analyzed by means of a maximum likeli-
hood estimation (MLE) procedure and interpreted by assuming a single–pole,
feedback–loop model [17] characterized by a time constant and a gain term.
The experimental approach was essentially a standard phase–detection tech-
nique [127].

The chapter is organized as follows: two works representing, to our knowl-
edge, the main contributions relative to the problem under examination are
presented in Sec. 5.2. Then, we present in detail our model for the criterion
dynamics in Sec. 5.3, reporting both the technique used to induce a criterion
shift and some physical considerations about the model. Details of the two
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5. FEEDBACK CONTROL OVER CRITERION SETTING

experiments we carried out are reported in the two following sections: in the
first experiment, presented in Sec. 5.4, we monitored the criterion dynamics
entailed by a shift imposed through the techniques presented in Sec. 5.3. In
a second experiment, described in Sec. 5.5, an additonal control over the
subject’s head motion was introduced. In addition, we present a merging of
the results relative to the two experimental procedures in Sec. 5.6. Finally,
a test used to evaluate the goodness of our linear model for criterion set-
ting is presented in Sec. 5.7. Final remarks and conclusions are presented in
Sec. 5.8.

5.2 State of the art

Perhaps for the sake of simplicity in interpreting results, criterion is assumed
to be constant in almost every psychophysical experiment. However, as
shown in Sec. 4.4, it is well–known that it can be modified also during an ex-
perimental session by changing, for example, prior presentation probabilities
and/or the payoff/loss matrix [14, 15].

Remarkably, very few studies have thoroughly addressed this topic, and
furthermore a satisfactory theory accounting for how these criterion changes
may take place was not yet devised.

In one of these studies [128], a model using correlations between the re-
sponse to a new stimulus and a set of previous responses (sequential effects) Sequential

effectswas proposed to explain how observers optimally adjust their criterion. The
model proposed by Treisman [128], based on correlations between consecutive
responses, has important caveats: for example, this model does not provide
a robust prediction on how a certain response influences the following one.
Different mechanisms, based, for example, on a linear or exponential adap-
tation, are proposed to describe the shift of the criterion position induced
after a trial, but the authors do not provide a definitive argument support-
ing one of the different options, as well as a robust definition of “optimality”
for the criterion position. An additional problem related with the proposed
model [128] is the absence of any physically–based interpretation.

In a more recent work [129], the so–called “block paradigm” was used to Stepwise

criterion

variations

induce criterion shifts and to investigate the corresponding dynamics. Trials
were grouped in blocks; task difficulty (and thus the sensitivity parameter
d′) was kept constant within a block and stepwise changed at each block
transition. At the end of each block, the observer received a feedback on
his/her performance. In this way, a shift of the decision criterion was in-
duced as a mirror effect of the change in task difficulty. The criterion shift
was assumed to occur after a time lag with respect to the d′ modification
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and observed data were fitted using SDT. However, the authors do not pro-
vide any physical interpretation of this model. The stepwise, time–lagged
criterion modification model was explicitly chosen only by virtue of its com-
putational simplicity. Moreover, the chosen paradigm did not allow for a
criterion control independent from d′.

These two works [128, 129] exhibit unresonlved problems in the attempt
of gaining insight into the topic of measurement and modelling criterion
dynamics. The main problem regards the lack of a reliable model, based
on physical considerations: for example, the idea that the brain stepwise
changes the criterion position after a certain time–lag [129] was applied only
by reason of the lack of a model for the trial–by–trial dynamics. In the next
section, we will focus our attention to this problem: the feedback system
analysis will be applied to the mechanism of criterion setting.

5.3 Model for criterion dynamics

Criterion shift

Aim of the present section is to provide an explation of how feedback acts
on criterion position in order to induce a controlled shift. Fig. 5.1 shows two
examples of criterion shifts, represented by arrows, from position “A” to “B”
and, in the opposite direction , from “B” to “C”.

Criterion shifts occur, either because of internal fluctuations, indepen-
dently from the external conditions, or as a consequence of the external
action by the experimenter. In the present chapter we are interested to in-
duce a well–defined criterion shift by changing the physical features of the
stimuli. Different strategies are usually adopted to this purpose: one of theOptimal

criterion

position
most frequently applied [14] is the change of the prior presentation probabil-
ity relative to the two classes of stimuli. As reported in Sec. 4.4, the optimal
criterion position is given by

χ0 =
1

d′
ln

[

p(s1)

1 − p(s1)

]

, (5.1)

where p(s1) is the prior presentation probability of type 1 stimuli. By
changing p(s1), and consequently p(s2), the optimal criterion position χ0

is shifted away from the midpoint of the two distributions underlying the
response evoked by the stimuli.

Although it is always possible a definition of optimal criterion position,
this does not directly imply that during an experimental session the strategy
adopted by the subject performing the task corresponds to the optimal one.
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Figure 5.1: Time evolution of criterion position. In “1” the criterion (red
line) is fixed in “A”. If a shift of the criterion position (red arrow) is somehow
induced to the subject, after a certain amount of time, the criterion moves
to its new position “B” (2). Similarly, if the subject is forced to shift the
criterion back to the initial position the new criterion position moves closer
to the original one.

In particular, if the subject does not maximize the rate of correct responses,
the criterion probably turns out to be different from its optimal position.
However, if the criterion is not optimally positioned, the request of perfor-
mance improvement may induce the subject to use a criterion closer to the
optimal one. The strategy is then to explicitely formulate this request at
the beginning of the experimental session and regularly inform the subject
about his/her performance. This additional information can not be set a pri-
ori by the experimenter, because it depends on the subject’s trial–by–trial
performance.

The implementation of such a procedure, where the subject is informed
on the correctness of his/her responses, inevitably yealds a feedback loop. Feedback

loopFig. 5.2 shows a very general scheme of feedback loop: part of information
contained in the output of the system Vout is fed back to the input. This is
usually called error signal, labelled with e in Fig. 5.2. After the processing
by the block F , the correction signal c is subtracted from the input Vin

1.

1The type of feedback shown in Fig. 5.2 is defined as negative feedback.

67



5.3. MODEL

Figure 5.2: Graphical representation of a feedback loop. From left to right,
Vin represents the input signal for the system A. Part of the output signal Vout

is redirected to the input of the system. The block labelled with F processes
the information contained within the so–called error signal e. Output of the
block F , also called “correction” c, is subtracted, in case of negative feedback,
to Vin.

Given a certain input signal Vin, the output of the system Vout depends on
the behaviour of both the two blocks A and F . In our view, they represent
two distinct phenomena occurring within the human brain. If the feedback
loop is open, i.e. the block F does not play any role in the dynamics, the
scheme of Fig. 5.2 is very similar to Fig. 2.1. In that case, the input is the
stimulus presented to the subject, the intermediate block represents the set
processes allowing the subject to provide a response to the task, and Vout is
the response itself.

To sum up, besides the existence of a criterion, we assume that a different
mechanism for the criterion setting works within the human brain. This
mechanism acquires the feedback information, processes the error signal and
coherently changes the criterion position.

Physical model for feedback loops

In the rest of the chapter, where not differently reported, we assume the
feedback loop to be described by the simplest model used for this type of
systems. The main characteristic of this model is linearity. This means that
if the input sinusoidally oscillates at a specific frequency ω0 with unitary
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amplitude, the output Vout (t) is given by

Vout (t) =
G

√

1 + (ω0τ)
2
sin [ω0 (t− τ)] (5.2)

where G is the amplitude (or ”gain factor“) and τ the phase of the output
oscillation. In other words, no addictional frequency components (ω 6= ω0)
are superimposed to the output2.

A more precise definition of the feedback loop investigated in the present
chapter is depicted in Fig. 5.3.

The blue area in Fig. 5.3 shows the elements under the experimenter’s Feedback

on criterioncontrol: the stimulus and the evaluation about the correctness of the subject’s
response. Conversely, the decisional block, labeled with “SDT element”, and
the mechanism acting on the criterion position, labeled with Γ, are internal
to the subject’s brain.

After the presentation of the stimulus s, evoking a noisy (s + n) neural
activity x, the subject’s brain produces a response r by comparing x with the
internal criterion cr. Then, the experimenter evaluates subject’s response r
and provides a feedback (error signal labeled with e) about the correctness
of the response. The subject’s brain uses this information, by processing
it in the block Γ and setting a new criterion position through a negative
feedback–like mechanism. The output of the Γ–block is a correction for the
criterion position cc that, subtracted from the original criterion c0, yelds the
final criterion cr used for the discrimination at the next trial.

The model described in Fig. 5.3 joints two components for the criterion:
c0 is independent from the feedback loop and allows the observer to produce
a response also in the case in which the error signal e is not provided to the
subject; if this is the case, then cr = c0 at each trial. This does not necessary
means that cr remains fixed at its initial position during the experiment:
internal fluctuation of cr, independent from the feedback loop, are possible,
though not considered in our model.

In the model presented above, there is no way for the experimenter to
act on c0. On the other hand the correction cc on criterion position plays an
important role in inducing shifts of cr.

In the following sections we describe the two experiments carried out to
test the model.

2See Appendix B for mathematical details.
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Figure 5.3: Feedback loop for criterion setting.
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5.4 Experiment 1

Aim of this experiment was to tackle the problem of criterion dynamics in a
simple visual discrimination task. We induced feedback–controlled criterion
shifts and assessed how the observer’s response changed over time. The
discrimination task addressed a single feature, namely the orientation of a
Gabor patch.

5.4.1 Stimuli

The stimuli presented to the subjects were Gabor patches. An example of
this type of stimuli is presented in Fig. 5.4.

Figure 5.4: Example of right–oriented Gabor patch.

A Gabor patch is a monochromatic visual stimulus: the gray intensity is Gabor

patchspatially modulated by a sinusoidal grating convolved with a bidimensional
Gaussian function:

G(x, y) = G0 + G1 cos

[

2π

Ξ
(x cos φ− y sinφ) + α

]

×

× e
−

(x cosφ− y sin φ)2

2σ2
x e

−

(x sinφ+ y cosφ)2

2σ2
y

. (5.3)

In this expression, G0 is the background gray level andG1 the average gray in-
tensity of the stimulus. Conventionally, G(x, y) = 0 for black and G(x, y) = 1
for white. In addition, x and y correspond to the pixel’s position with respect
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to the center of the stimulus, whereas Ξ and α are the wavelength and the
phase, respectively. The standard deviations σx e σy are proportional to the
width of the stimulus along the two axes. Finally, φ is the tilting angle with
respect to the vertical orientation.

G0 0.625

G1 0.078

Ξ 1.5(1)◦

σx 0.7(1)◦

σy 0.7(1)◦

α 0

Table 5.1: Numerical values used in Eq. 5.3 for the stimuli generation. The
values of parameters Ξ, σx and σy are expressed in degrees relative to the
visual angle.

At each trial, a single Gabor patch was presented at the center of the
screen and subjects were requested to evaluate if the stimulus was orientedOrientation

of the stimulus to the left or to the right of a reference line titled by λ with respect to the
vertical axis. Fig. 5.5 shows two example of left – or right – oriented Gabor
patches.

Figure 5.5: Left/right oriented Gabor patches. The tilting angle φ is given
by λ− θ (left) or λ+ θ (right). Here λ = 0.

So, the two classes of stimuli were symmetric with respect to λ, that in
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general could be different from the vertical orientation. Angles are assumed
to be positive if they produce tilting to the right (clockwise direction).

The separation between the two classes of stimuli was defined only by the
parameter θ; in particular, this separation was equal to 2 θ.

Generation and presentation of stimuli was controlled by a home–made
program written in C++, using OpenGL libraries and running under Linux
on a Pentium IV PC. The program defined a 121 × 121 matrix of pixels,
with a resolution of 32 bits, on the basis of Eq. 5.3 and the numerical values
of Tab. 5.1. The stimuli were presented over a grey background (luminosity
density of 39.6 cd/m2).

5.4.2 Criterion shift

According to SDT, a stimulus evokes a neural response whose occurence prob-
ability is Gassian–distribuited. In Fig. 5.6 left (right) stimuli are associated
to a green (blue) distribution. The response is “right” or “left” according to
whether the neural response does or does not overcome a criterion cr encoded
within the observer’s brain. Criterion shifts were induced by changing the
orientation of both the two classes of stimuli while leaving the sensitivity d′

unchanged. In addition, observers were informed about the correctness of
their response after each trial; in this way the feedback loop was established.

Fig. 5.6 shows the effect of the rotation on the evoked neural activity and
the related SDT–quantities. The upper part shows the evoked neural activity
relative to the two Gabors. Given an equal prior presentation probabilities of
left and right stimuli, the percentage of correct answers p (c) was maximized Maximize

p(c)if the criterion cr coincided with the center of mass of the two distributions.
This corresponded to the axis of symmetry coincident with λ. In the lower
part, a change of λ, corresponding to a rigid rotation of both the classes
of stimuli, induced a shift of the means of the two distributions. During
the shift, d′ remained unchanged3, while the optimal criterion position was
shifted to the midpoint of the two new distributions. In order to increase the
rate of correct answer, subjects were therefore implicitely requested to shift
(red arrow) their criterion cr towards the new optimal position.

The mechanism shown in Fig. 5.6 is restricted to only two value of the
tilting angle λ (λ = 0

◦

– vertical – and λ 6= 0
◦

). In general the time evo-
lution of λ (t) can be more complex. Fig. 5.7 shows the case of a sinusoidal
modulation of λ (t). At the beginning of the experiment, the Gabor patch was Sinusoidal

modulationoriented to the left (−θ) or to the right (+θ) with respect to the observer’s
subjective vertical orientation (in the figure λ = 0

◦

). The criterion was as-

3d′ is proportional to the separation ∆φ between the two tilting angles (∆φ = 2 θ).
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Figure 5.6: Effect of a rigid rotation. The upper part shows the experimental
situation refered to the standard vertical orientation (λ = 0◦). The lower part
shows the effect of a rigid rotation (λ 6= 0◦) applied to both the stimuli.

sumed to be placed as the optimal position (χ = χopt, given by Eq. (5.1)).
The two classes of stimuli oscillated around the initial tilting angle at a con-
stant frequency. The amplitude of the modulation was given by the angle
ηmax (see right side). In the left side, the shifts of the relative distributions
are plotted for four possible time steps. In the bottom plot, the red solid
line represents a possible time evolution of the criterion χ as predicted by a
linear model in response to a harmonic χopt modulation (black dashed line):
the oscillation was damped (A < 1 in Eq. (5.2)), the criterion moved with
a non–vanishing delay (τ 6= 0 in Eq. (5.2)); moreover, only the component
having the same frequency of the stimuli modulation is shown, according to
the linear assumption.
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5. FEEDBACK CONTROL OVER CRITERION SETTING

Figure 5.7: Stimulus modulation and criterion evolution. A sinusoidal mod-
ulation of the two classes of stimuli induces a shift of the neural activity
distributions. In order to maximize the rate of correct answers, criterion χ
tends to its optimal position χopt. Bottom: χ oscillates at the same frequency
of χopt.
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5.4.3 Experimental apparatus

Observers sat 46.5 cm in front of a 2070SB Mitsubishi CRT monitor (20”,
1280 x 1024, vertical and horizontal refresh rate of 87.5 Hz and 93.3 kHz,
respectively); head position and orientation with respect to the monitor was
constrained by a chin rest. Fig. 5.8 shows a scheme of the experimental setup.

Figure 5.8: Experimental setup: subject’s head, resting on a chin rest, was
set at 46.5 cm from the screen. The response was given by pressing the keys
S (left) or D (right) on the keyboard.

A personal computer recorded the responses and generated the feedback
signal presented to the subject through the speakers.

5.4.4 Trial time–flow

The trial time–flow is schematically shown in Fig. 5.9.
At the beginning of each trial, a fixation point (black square, 0.1o visual

angle) appeared at the centre of the screen for 300 ms. 100 ms later, the
Gabor patch (Michelson contrast of 20 %) was presented for 100 ms. The
observer was asked to maintain his/her gaze at fixation throughout the trial.
Once the Gabor disappeared, the observer reported whether the Gabor wasThe task

tilted to the left or to the right by pressing the letter “S” (sinistra) or “D”
(destra), respectively. In the “feedback session” the recorded voice informed
the subject about the correctness of his/her response. The correctness was
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5. FEEDBACK CONTROL OVER CRITERION SETTING

Figure 5.9: Time–flow of a single trial. After the presentation of a fixa-
tion point at the center of the screen, the stimulus is shown for 100 msec.
Subsequently, without any constrains on reaction time, the subject provides
his/her response and, if the feedback is activated, a recorded voice informs
about the correctness of the answer.

expressed by the experimenter on the basis of the reference orientation λ. A
new trial started 1500 ms after the observer’s response.

5.4.5 Subjects

A set of 35 observers (15 males and 20 females) participated. All were stu-
dents or staff members of the University of Trento, aged 19 to 45 (mean 26,
standard deviation 6), and reported normal or corrected–to–normal visual
acuity. Prior to the experiment, each observer declared to know nothing
about the experimental procedure and aim. Preliminary and final declara-
tions were collected by filling two distinct, ad–hoc made forms, reported in
App. A.
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5.4.6 Time–line of the experimental session

As shown in Fig. 5.10, the experimental session was divided in three phases,
named with training, psychometric assessment and main experimental phase,
respectively. Instructions were provided separately for each phase (see App. A).

Figure 5.10: Scheme of the experimental time–line. At the end of each phase
the subject took a break and received instructions for the next step. Details
of the main experimental session are shematized above. Feedback was active
only during the practice and the feedback session.

During the training phase, a sequence of 130 stimuli was presented to theSequence of

stimuli subject. Each stimulus was characterized by one of 13 possible angles φi,

φi = ∆θ · i (5.4)

where iǫ [−6 : 6] and ∆θ=0.3◦; each angle was used 10 times. The entire
sequence was randomized.

Training
At the end of the training part, the parameters of the corresponding psy-
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chometric function, assumed to be modelled by a cumulative normal dis-
tribution function, were assessed by means of the data analysis procedure
described in Sec. 2.3. Evaluation of parameters µ and σ allowed the experi-
menter to set ∆θ for the following session. The strategy adopted to possibly
increase ∆θ for the psychometric assessment phase was based on qualitative
considerations: if the L–surface (see Eq. (2.8)) did not show a pronounced Task

difficultypeak in correspondence to its maximum (as in the upper part of Fig. 5.11),
then ∆θ of Eq. 5.4 was increased to 0.6◦. In Fig. 5.11 two examples of L–
surfaceare shown: Likelihood is here defined as joint probability, Pjoint. A
well–defined peak is present only in the bottom plot.
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Figure 5.11: Two examples of grid of numerical values for the parameter
Pjoint as a function of both µ (-4◦≤ µ ≤4◦, step 0.4◦)and σ (0◦≤ σ ≤7◦,
step 0.4◦). Unlike the lower plot (subject SB), Pjoint does not show any
pronounced maximum in the upper plot. Consequently, the task difficulty
in the next part (psychometric assessment) was reduced by increasing ∆θ to
0.6◦.
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Psychometric assessment
The psychometric assessment phase differed from the previous one in the

repetition number of each stimulus, which, in order to improve the statistical
power, was presented 40 times. Also in this case, the entire sequence of
stimuli was randomized before presentation. Fig. 5.12 shows an example of
psychometric function: red dots correspond to the measured values for each
φi, whereas the blue curve corresponds to the fit on the data, obtained by
using the procedure reported in Sec. 2.3.
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Figure 5.12: Example of psychometric function: the rate of response “right”
is measured as a function of the tilting angle φ. In this case, the numerical
values for the psychometric function parameters are µ = 0.1(2)◦ and σ =
2.2(2)◦.

The mean µ – that corresponds to the perceived vertical orientation –
and the standard deviation σ of the psychometric function assessed in this
phase of the experimental session are used in the following, main one.

Main experimental phase
The main phase of the experimental session consisted of 650 trials divided

in three sessions, named practice, feedback, and open-loop session, and con-
taining 50, 300, and 300 trials, respectively. Results of the practice session
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were not included in data analysis. Both in the practice and feedback sessions
the observer was provided with a feedback relative to his/her response: dur-
ing the 1500 ms blank period, a recorded voice reported whether the responseRecorded

voice was correct (s̀ı)“ or incorrect (no). The feedback was absent in the open–
loop session. The average duration of the main experiment was 28(2) min,
corresponding to an average time interval between two consecutive trials of
2.6(2) s.

5.4.7 Instructions

The set of slides presented to the subject, in order to provide to him/her
istructions for each part of the experimental session, is reported in App. A.
Subjects were carefully instructed to maximize the number of correct re-
sponses, and thus p (c). In the “training” and “psychometric assessment”
phases they performed a simple left/right discrimination task, and were pre-
liminary instructed only about the type of stimuli (Gabor patch) and re-
sponses (“S” and “D” keys on the keyboard).

Otherwise, an additional set of instruction was presented preliminarly to
the “main experimental phase”. During this phase stimuli were modulated so
as shown is Sec. 5.4.2. Then, subjects correctly perfom the task if they
do not discriminate the orientation of the stimuli on the basis of
their own vertical. Aim of the additional set of instructions was to suggest
the idea of rotating reference system. Subjects were requested to imagine to
sit on a space sheep, that is travelling in the deep space. In this situation,Reference system

in

deep space
different “vertical orientations” are possible: the direction defined by the
hearth gravitational field is not perceived by the subject. If two distinct
space ships are differently oriented, their idea of verticality is consequently
different.

Then, the subject is informed that his/her ship is in contact with a freely
rotating space station: a recorded voice will help him/her to perceive the
relative tilting angle between the ship and the station. In particular, the
feedback about the correctness of the response will be based on the vertical
orientation perceived by the station. His/her task is also to take in mind the
orientation of the station with respect to his/her ship, and coerently respond
assuming that reference system as the natural one.

In the final form subjects declared if they were able to perform the task,
inclusive the use of the acoustic feedback, to rotate the axis of symmetry
coherently with the immaginary space station. After the experiment com-
pletion, a set of 30 observers declared to have used the feedback. Data
analysis refers to this set only.
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5.4.8 Criterion modulation

During the main experimental phase, the Gabor patch of the i-th trial was
tilted by an angle

φi = ηi + (2si − 1) · θ (5.5)

around the observer’s subjective vertical orientation given by µ where si is
randomly set to 0 (left) or 1 (right) with equal prior probability. The angle ηi

corresponded to the orientation of a “pseudo–vertical” axis that harmonically
oscillated with period T = 100 trials and amplitude A0 = 0.5 σ:

ηi = A0 sin

(

2πi

T

)

. (5.6)

The angle θ was set to 0.8 σ; consequently, the parameter d′ for the dis-
crimination task was expected to remain constant at 1.6 throughout the
experiment. A posteriori, averaging the measured d′ over the entire sample d′ is constant

of subjects provided 1.4(5) for feedback sessions and 1.4(4) for open–loop
sessions.

The maximal excursion of the overall angle with respect to the subjective
vertical orientation was ±1.3 σ. At this value, a linear approximation of the
psychometric function yields a maximum error of 11%. Consequently, a linear
relationship between the orientation of the stimulus and the corresponding
neural response could be assumed.

5.4.9 Data analysis

A given experimental session was represented by the two sets {si}, {ri},
representing the stimuli and response sequences, respectively. Similarly to
si, the elements ri were binary: an outcome 0 (1) for ri corresponded to a
left (right) observer’s choice. According to SDT, an observers was modelled
by a single–bit quantizer with noisy input [130]. At any given time — trial
number i — , the probability H of answering right to a right–oriented Gabor
patch was given by N [(+θ + ηi − χi)/2σ], where N(x) ≡ [1 + erf(x)]/2 and
χi was the criterion used by the observer at the i–th trial. Similarly, the
probability F of answering right to a left–oriented Gabor patch was given by
N [(−θ + ηi − χi)/2σ].

Considering the feedback sessions, the maximum performance (in terms
of p(c)) was achieved when the observer optimally set his/her criterion to ηi

for each trial i. This would have required, however, an infinite bandwidth Model for

criterion dynamics(vanishing response time) and/or infinite gain of the feedback loop. As in-
troduced in Sec. 5.3, we assumed the simplest possible dynamics for a stable
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feedback system, i.e. a linear response described in the frequency domain
by a single–pole, closed–loop gain function [17]. Since discrete–time events
were processed, the model could be implemented within the brain as a stan-
dard low–pass digital filter [131] of the kind y[i] = gy[i− 1] + x[i], where gGain

&

phase
was a gain factor and the sequences x[i], y[i] were proportional to a suitable
error feedback variable and the difference χi − ηi, respectively. Given these
assumptions and the harmonic input, the expected time evolution of the cri-
terion was χi = G ηi−τ + C σ, where τ is a delay, expressed in trials, G an
amplitude gain and C an offset (normalized to σ) accounting for a possible
discrepancy between the subjective vertical orientation occuring during the
assessment of the psychometric function and that one occuring in the main
experimental phase. An ideal observer would yield τ = 0, G = 1, and C = 0.

In order to determine the three parameters τ , G and C, we used a MLE
procedure acting on the two sets {si}, {ri}. For a given trial i, the likelihood
factor Li was given by HsiriF (1−si)ri(1 − H)si(1−ri)(1 − F )(1−si)(1−ri), where
the probabilities H and F depended on the difference χi − ηi between the
instantaneous criterion and the vertical axis orientation. The three param-
eters were estimated by maximizing the whole likelihood L =

∏

i Li on a
three–dimensional lattice. The error on each parameter was determined by
evaluating the range on which the maximum likelihood value dropped by 5%.

5.4.10 Results

Scatter plot
The results of both the feedback and the open–loop sessions are reported

in Tab. 5.2. The likelihood L is reported in terms of L′ ≡ log10 L/Lr, where
log10 Lr = −90.3 is the likelihood of an ideal observer providing random
responses; it can be easily shown that Lr = 2−N , where N is the number
of trials; in the present case, N = 300. At the end of the experiment, the
observer reported, separately for the two sessions, if he/she did or did not
become aware of the stimuli modulation; a filled (empty) circle in each of the
columns a corresponds to a positive (negative) answer.
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feedback session open–loop session
observer τ G L′ a τ G L′ a

NM 43(6) 0.19(8) 30.7 • 23(4) 0.30(7) 26.5 ◦
MR 30(25) 0.06(7) 42.9 ◦ -2(2) 0.78(7) 28.2 ◦
BT 17(2) 0.66(7) 25.7 • -17(4) 0.35(8) 26.7 ◦
GC 17(1) 0.98(8) 33.4 • -47(2) 0.58(9) 39.3 ◦
FB 17(5) 0.26(8) 42.7 • -45(5) 0.25(8) 26.3 •
SS 16(2) 0.51(8) 32.5 • 14(3) 0.44(8) 42.9 ◦
PZ 15(2) 0.57(8) 24.4 • -36(25) 0.06(8) 23.4 ◦
CP 12(2) 0.49(7) 27.9 • 26(9) 0.15(8) 29.4 ◦
FP 7(1) 0.89(7) 13.7 • 40(3) 0.44(8) 25.9 ◦
CV 7(2) 0.72(7) 18.0 • -38(6) 0.20(8) 31.3 ◦
DP 6(2) 0.72(7) 11.1 • 11(3) 0.38(7) 3.2 •
MP 6(2) 0.51(7) 15.7 ◦ -12(2) 0.66(7) 7.2 ◦
MA 6(2) 0.60(7) 30.2 • -31(2) 0.62(8) 26.0 ◦
GF 5(4) 0.32(7) 27.7 • 43(1) 1.18(8) 32.6 ◦
AG 4(2) 0.55(7) 15.3 • -25(6) 0.20(8) 34.3 ◦
SC 3(1) 0.85(7) 5.0 • 27(2) 0.78(7) 15.2 ◦
CD 3(2) 0.74(7) 21.2 • 29(3) 0.49(8) 35.6 ◦
IB 1(2) 0.69(7) -1.0 • 8(1) 1.07(7) 3.9 •
EF 0(1) 0.92(7) 19.8 • 22(1) 0.87(8) 30.9 ◦
SB 0(3) 0.33(7) 4.6 • -5(3) 0.42(7) 4.2 ◦
FD -1(1) 1.00(7) 18.9 • -7(3) 0.35(8) 26.9 ◦
ND -1(1) 1.18(7) 20.9 • -23(1) 0.90(7) 8.9 ◦
MG -1(2) 0.62(7) 19.0 • 16(2) 0.77(7) 14.7 ◦
SF -2(1) 1.24(7) -1.4 • 38(2) 0.51(8) 11.7 ◦
DJ -2(3) 0.38(7) 16.6 • -48(2) 0.75(8) 21.3 ◦
FR -3(1) 0.80(7) 20.2 • -49(1) 0.87(8) 28.6 ◦
LI -4(2) 0.66(7) 16.6 • 37(3) 0.45(8) 35.2 •

MV -4(2) 0.64(7) 6.0 • 13(2) 0.64(7) 5.8 •
LK -15(5) 0.24(7) 19.8 • 45(1) 0.83(8) 32.1 ◦
RT -35(2) 0.60(8) 14.5 • -17(6) 0.20(7) 23.0 •

Table 5.2: Values of the parameters τ and G estimated via MLE on the time
series produced both in the feedback and the open–loop session.
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The measured values of τ and G are also plotted in Fig. 5.13, where red
points correspond to the values obtained in the feedback session and blue
points are relative to the open–loop session.
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Figure 5.13: Scatter plot of parameters τ and G, plotted for each subject.
The data points correspond to the data contained in Tab. 5.2.
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For feedback sessions, data points lie within a well–defined region of the
diagram; averaging phasors of the kind Ge2πiτ/T , each built on an observer’s Effect of

feedbackτ and G pair, yields the average values 〈τ〉 = 4(8) trials and 〈G〉 = 0.5(4).
On the contrary, results corresponding to open–loop sessions are decidedly
scattered, showing that, on average, observers do not adapt their criteria;
in this case, 〈τ〉 = 30(70) trials and 〈G〉 = 0.1(4). Finally, the average
value of offset C is equal to 0.0(1) and 0.0(3) for feedback and open–loop
sessions, respectively. Negative values of τ can be accounted for as statistical
fluctuations intrinsic to the MLE fitting procedure. This was verified by
simulating 200 observers with τ = 4 trials, G = 0.5, C = 0 and reconstructing
the three parameters via a MLE procedure. Average results are 〈G〉 = 0.5(3),
C = 0.0(1) and, more importantly, τ = 4(7) trials.

Grand–average
The grand–average of the evolution of the data relative to the entire sample

of subjects shows the time–course of criterion position. In Fig. 5.24, blue lines
correspond to the criterion shift predicted by the model. Red dots correspond
to the criterion position determined as − [z (H) + z (F )] /2, where H and F
were computed by averaging the responses of all observers within blocks of 5
consecutive trials. Errors are estimated by assuming binomial distributions
for H and F .

The difference ξi ≡ χi − ηi corresponds to the instantaneous position of
the criterion relative to the center of mass of the two Gaussian distributions.
Thus, if the observers do not adapt their criteria, ξ is expected to oscillate
with the same amplitude of η. This is confirmed by the open–loop data,
where the observed oscillation amplitude for ξ, i.e. 0.52 σ is consistent with
the amplitude A0 set for η, i.e. 0.5 σ. Conversely, in the feedback sessions,
as the observers’ criterion χ tends to lock to η, we observe a reduction by a Reduction

of ξfactor ξol/ξfeed
∼= 2 in the ξ oscillation amplitude; ξfeed would vanish in case

of an ideal observer.
Our results show that, when the external feedback loop is closed, the

brain uses the feedback information to maintain the criterion in the optimal
position. On the other hand, when the external loop is open, the observer
criterion χi is no more locked to the oscillating pseudo–vertical orientation ηi.
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Figure 5.14: Grand–average over the entire data set. The criterion dynamics
with respect to the center of mass of the stimulus–evoked distributions is
shown.
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5.5 Experiment 2

5.5.1 Motivations

In the previous experiment, we showed the expected behaviour for the cri-
terion setting: subjects were able to modify their decisional strategy, and
follow with a certain delay (τ) and gain factor (G), the optimal criterion po-
sition. In particular we monitored criterion oscillations induced by external
modulation of the axis of symmetry relative to the two classes of stimuli.

On the other hand, the previous experimental setup did not allow the
experimenter to rule out the possibility that observed criterion shifts
were caused, at least in part, by a tilting of the subject’s head.
This would contradict our model, according to which the criterion position is
controlled by the mechanism of Fig. 5.3, that takes place within the subject’s
brain. Given the experimental apparatus of Fig. 5.8 and the type of stimuli
presented to the subjects, a tilting of the head, though small, could strongly
influence the perceived orientation. For example, if the head is tilted to
the right, the rate of response “left” would increase, and vice versa. Small
oscillations of head position naturally occur during an experimental session.

Aim of the present experiment is to rule out the possibility that perceived Role of

the headvertical orientation could be accounted for by head tilting.
We are interested in replying the previous results relative to criterion

dynamics, while monitoring the head position. Head motion is analized in
terms of frequency components and related amplitude synchronous with the
oscillation of the stimuli.

5.5.2 Experimental setup

First goal of Experiment 2 is to reply the results relative to criterion dynamics
presented in case of Experiment 1. Thus, many part of the experimental
setup of Sec. 5.4 (in particular, the parts described in Sec. 5.4.1, Sec. 5.4.2,
Sec 5.4.4, Sec. 5.4.7, Sec. 5.4.6, Sec. 5.4.8 and Sec. 5.4.9) remained unchanged.

The average duration of the main experiment was 28(3) min, correspond-
ing to an average time interval between two consecutive trials of 2.6(2) s.

The control of head position needed some modifications of the experimen-
tal apparatus, as shown in Fig. 5.15. The main difference in comparison with
the setup described in Fig. 5.8 was the presence of a system of four cameras
pointing to the subject’s head. Picture of Fig. 5.16 shows the placement of
the cameras.

The orientation of the head was monitored by using a Qualisys Motion
Capture System (QMCS), consisting in a set of ProReflex MCU1000 cameras

89



5.5. EXPERIMENT 2

Figure 5.15: Experimental setup for Experiment 2: four cameras were added,
with respect to the setup shown in Fig. 5.8, in order to monitor the head
position.

(maximal measurement frequency: 1000 Hz) based on low–noise, high–speed
CCD sensors. Each camera was equiped with an infrared light source. PartQualisys

Motion Capture

System (QMCS)
of the light emitted by these sources was reflected back to the cameras by
low–mass, retro–reflective targets, or markers, (see Fig. 5.17).

The effective number of pixels for each camera was 20,000 x 15,000, which
corresponded to a spatial resolution as small as 50 µm. Sampling frequency
was set to 20 Hz (20 sample/sec).

The system used the reflected light to calculate the position in space of
each single target. Two markers were placed on the subject’s head at eyebrow
height and fixed with adhesive tape. The system monitored the position of
both the two targets during the three phase (practice, psychometric assess-
ment and main session – see Sec. 5.4.6 –) of each experimental session. We
monitored the position along the x, y and z axes for both markers. The po-Position

of the markers sition of each marker was evaluated with respect to a well–known reference
sytem, that was set through a preliminary calibration step [132].

The QMC system was controlled by a home–made C++ program: the
program triggered the acquisition of the marker position at the start of the
first trial of each session; moreover, the program stored the time at which
the response was given by the subject with a millisecond resolution. In this
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Figure 5.16: Experimental apparatus. Orientation of the axes are reported
in the bottom–right corner.

way, the file on which the QMC system wrote the marker position and the
file produced by the C++ program and containing the responses, and the
related timing are synchronized.

Then, for each trial, an home–made TcL script computed the tilting angle Tilitng angle

of the headof the head with respect to the vertical orientation as follows:

φi = atan





| 〈z1〉i − 〈z2〉i |
√

(〈x1〉i − 〈x2〉i)
2 + (〈y1〉i − 〈y2〉i)

2



 (5.7)

where “1” and “2” corresponded to the two markers, and 〈x〉i, 〈y〉i, 〈z〉i are
the component of the marker position averaged over the time window relative
to the duration4 of each i-th trial.

5.5.3 Subjects

A set of 32 observers (18 males and 14 females) participated. All were stu-
dents or staff members of the University of Trento, aged 19 to 40 (mean
26, standard deviation 6), and reported normal or corrected-to-normal vi-
sual acuity. Prior to the experiment, each observer declared to know nothing
about the experimental procedure and aim. As in Experiment 1, preliminary

4With duration of a single trial we mean the interval of time between two subsequents
stimuli presentations
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Figure 5.17: Marker used to monitor head position.

and final declarations were collected by filling two distinct, ad–hoc made
forms. Finally, after the experiment completion, a set of 30 observers de-
clared to have used the feedback. The ensuing analysis refers to this set
only.

5.5.4 Results

Data analysis was divided in two parts: in the first part we focused our atten-
tion to head motion, performing a spectral analysis. Then, we analyzed the
data relative to the criterion dynamics with the same procedures described
in Sec. 5.4.9.

Head motion
Aim of the analysis relative to the sequences of the tilting angle, φi, com-

puted according to Eq. (5.7), was to rule out the possibility that an oscillation
of the subject’s head occurred coherently with the stimuli modulation and
thus masked the internal criterion shift.

At the beginning of the measurement session, subjects were explicitely
requested to not move the head and, in particular to not tilt it with respect
to the vertical. Nevertheless, small oscillations occurred, typically within a
range of few degrees: an example of plot of the tilting angle (subject DD) as
a function of the trial number is shown in Fig. 5.18.

A FFT (Fast Fourier Transform) analysis was carried out for each sub-Fast Fourie

Transform (FFT) ject. As an example, the frequency spectrum for each of the three phases for
subject DD is reported in Fig. 5.19.

No significant peak is – on average – present at the crucial frequency of
3 periods per session, corresponding to the stimuli modulation: in fact the
total number of trials presented to the subject during both the feedback and
the open–loop is 300 whereas the period T is equal to 100 trials.
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Figure 5.18: Head’s tilting angle, expressed in degrees, as a function of trial
number for subject DD.

In order to reduce the fluctuations, we averaged the results of the entire
set of subjects. The resulting frequency spectra are shown in Fig. 5.20.
Again, the frequency spectrum did not show any peak for the amplitude at
the component at 3 period/session.

We modelled the profiles reported in Fig. 5.20 by means of a superimpo- Fit of

the noisesition of white noise (i.e. with uniform frequency spectrum), and 1/f noise:

A (f) =
K

f
+ c (5.8)

where A is the amplitude of the component at the frequency f , whereas
K and c represent the magnitude of the 1/f and white noise component,
respectively. Numerical value of the fits for the three experimental phases
are reported in Tab. 5.3.

Further investigations on head motion, aimed to provide a model for the
observed noise spectral behaviour are out of the scope of this work.

In conclusion we can assert that the head motion does not influence the
observed dynamics of the criterion, and that this occurs within the subject’s
brain.
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Figure 5.19: Frequency spectrum of the data shown in Fig. 5.18: for the
sake of clarity, we report only the amplitude of the components within the
range [1:50] (periods per session). The dashed line corresponds to the fre-
quency of 3 periods per session, used in the stimuli modulation.

phase K c χ2

psychometric assessment 0.209(3) -0.003(3) 9.9 · 10−6

feedback 0.54(2) -0.012(2) 4.9 · 10−4

open–loop 0.100(3) -0.0020(3) 1.3 · 10−5

Table 5.3: Values of the parameters K and c of Eq. (5.8).
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Figure 5.20: FFT spectrum of head motion averaged over the entire sample
of subjects: in the upper plot, the range considered for the number of periods
per session is [1:50]; whereas, in the lower plot the range is reduced to [1:5].
For the sake of clarity, error bars, computed as standard deviation of the
results relative to the 30 subjects, were reported only in the lower plot.
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5.5. EXPERIMENT 2

Criterion dynamics
Similarly to the previous experiment, we report the numerical values of

the parameters τ and G resulting by the fits on the data of Experiment 2
in Tab. 5.4 and in Fig. 5.21. The shown data refer to the 30 subjects that
reported to have used the feedback information at the end of the experimental
session are considered.
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Figure 5.21: Scatter plot of the parameters τ and G, both for the feedback
(upper diagram, red circles) and open–loop (lower diagram, blue circles)
sessions.

As in Experiment 1, data show a cluster in a restricted range of val-
ues for the parameter τ in case of feedback session (red points); resultsEffect of

the feedback of open–loop sessions show a more scattered behaviour. From a quantita-
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5. FEEDBACK CONTROL OVER CRITERION SETTING

tive point of view, the angular mean on the phasors (computed as in Ex-
periment 1) provides τfeedback = 3 (10) and Gfeedback = 0.5 (3), as well as
τopen−loop = 33 (26) and Gopen−loop = 0.2 (4). With regard to the offset pa-
rameter, Cfeedback = Copen−loop = −0.1 (2).

The damping effect for the parameter ξ, was observed also for this new set
of data. Fig. 5.22 shows the average of the criterion shift dynamics over the
entire sample of subjects. As in Fig. 5.14, the blue lines represent the time
evolution of ξ predicted via the model; the red dots represent the criterion
positions measured, according to SDT, as −[z(H)+z(F )]/2; the rates H and
F are computed by averaging the responses of all observers within 60 blocks
of 5 consecutive trials.
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Figure 5.22: Grand–average of the set of data of Experiment 2.

Similarly to the results of Sec. 5.4.10, it is ξol/ξfeed
∼= 2.
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5.5. EXPERIMENT 2

feedback session open–loop session
observer τ G L′ a τ G L′ a

FD 37(3) 0.33(8) 28.7 • 29(2) 0.52(8) 30.9 •
AD 28(9) 0.14(8) 36.2 • 0(6) 0.18(8) 22.3 ◦
AS 24(4) 0.31(8) 18.6 ◦ 1(6) 0.19(8) 22.6 ◦
BG 23(4) 0.33(8) 32.5 • 40(1) 0.87(8) 28.8 •
DB 18(1) 0.91(8) 24.3 • 12(8) 0.14(7) 4.3 •
AD 16(5) 0.28(8) 28.2 ◦ 43(2) 0.52(8) 23.6 ◦
MG 12(2) 0.48(8) 33.4 • 8(3) 0.39(8) 37.3 •
AB 10(1) 0.85(7) -26.3 • 5(3) 0.35(7) 24.4 ◦
GL 9(1) 0.94(7) 4.7 • -44(1) 0.99(8) 39.1 ◦
DD 8(2) 0.67(8) 22.9 • -36(3) 0.43(8) 24.3 ◦
AY 7(2) 0.62(8) 28.9 • 20(13) 0.09(8) 30.1 •
MF 3(13) 0.09(8) 21.4 • 14(5) 0.25(8) 24.1 ◦
ST 3(1) 0.83(8) 14.5 • 4(2) 0.74(8) 22.4 ◦
FO 3(2) 0.51(7) 18.1 • 39(1) 1.09(8) 36.1 •
GG 2(2) 0.52(8) 20.3 • 46(2) 0.62(8) 28.6 ◦
SB 2(2) 0.60(8) 28.7 • 33(3) 0.45(8) 33.9 •
FF 2(2) 0.51(7) 11.5 • 14(5) 0.26(7) 21.4 •
LF 1(2) 0.53(8) 26.9 • 11(1) 0.80(7) 19.8 •
EV 1(2) 0.74(8) 30.1 • 36(3) 0.37(8) 31.2 ◦
KR 1(2) 0.76(7) 4.7 • 44(2) 0.56(8) 23.4 ◦
FD 1(1) 0.98(8) 11.6 • 36(1) 1.15(8) 24.3 ◦
CP -1(1) 0.99(8) 17.5 • 16(1) 0.82(8) 24.8 •
NS -2(2) 0.58(8) 36.2 • 21(12) 0.12(8) 38.5 ◦
AP -5(2) 0.75(7) 17.9 • -49(8) 0.16(8) 17.8 ◦
AK -6(26) 0.06(8) 32.6 • 0(5) 0.23(8) 35.8 •
PR -6(1) 1.02(7) -8 • 24(1) 1.01(7) -4.0 •
AV -11(2) 0.50(7) 19.7 • -34(2) 0.59(8) 26.4 ◦
SB -13(5) 0.26(7) 5.8 • -46(5) 0.25(8) 15.9 •
SS -15(2) 0.65(8) 34.9 ◦ 33(4) 0.36(8) 41.4 ◦
MT -16(2) 0.69(8) 20.6 • 44(2) 0.52(8) 22.3 ◦

Table 5.4: Values of the parameters τ and G for each single subject. As in
Tab. 5.2, filled (empty) circle in each of the columns a corresponds to the
subject’s awareness (unawareness) of the stimuli modulation.
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5. FEEDBACK CONTROL OVER CRITERION SETTING

5.6 Merging of the Experiments 1 and 2

In the present section we merge the data of Experiment 1 with those of Ex-
periment 2. Experiment 2, described in Sec. 5.5 differed from Experiment 1
of Sec. 5.4 because of the additional control on head motion. With except to
the head motion tracking system, the two experimental setups were equal. In
particular, the time evolution of the optimal criterion position was imposed
to be sinusoidal with a period T = 100 trials in both experiments. As for
each of the two experiments, we collect the results of all the 60 data sets. All
the (τ, G) pairs are plotted in Fig. 5.23.

As in Fig 5.13 and Fig 5.21, the effect of the feedback on criterion dy- Effect of

the feedbacknamics is clearly visible in the clustering of the data (red dots) in a restricted
area, unlike the open–loop sessions, where they show a completely scattered
behaviour.

Similarly to the analysis presented in the previous cases, a grand average
with time resolution of 5 trials was computed for the entire set of 60 subjects.
The result is shown in Fig. 5.24.

As expected, the amplitude of the oscillation in the open–loop session is
higher than in the feedback session. Again, ξol/ξfeed

∼= 2.
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Figure 5.23: Scatter plot of the parameters τ and G, both for the feedback
(upper diagram, red circles) and the open–loop (lower diagram, blue circles)
sessions. Data are collected from both Experiments 1 and 2.
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Figure 5.24: Criterion dynamics averaged over the entire sample of 60 sub-
jects in the feedback and the open–loop case.
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5.7. NON–LINEAR COMPONENTS OF CRITERION DYNAMICS

5.7 Non–linear components of criterion dy-

namics

In this section, we introduce an additional analysis on the data of each subject
evaluated in Experiment 1 (Sec. 5.4) and Experiment 2 (Sec. 5.5). The aim
is to evaluate the goodness of the model formulated in Eq. 5.2.

A single–pole, closed–loop gain function is mathematically expressed by
an output of the system (the criterion position, in our case) that oscillates at
the same frequency as the input modulation ω0

(

= 2π
T

)

, though with different
amplitude G and phase τ . Additional frequency components of period T ∗ 6=Additional

frequency

components
T were then excluded from the analysis described so far.

On the other hand, it is also possible that the model of Eq. 5.2 does not
properly describe the mechanism of criterion setting: additional components
of its dynamics like, for example, a slow drift of criterion position or fluc-
tuations independent from the feedback loop, could play a role. Moreover,
non–linear contributions to the dynamics could result in frequency compo-
nents, i.e. periods different from those characterizing the stimuli modulation.

To explore this possibility, each data set was analyzed with the same
analysis technique described in Sec. 5.4.9, by letting, however, the parame-
ter T ∗ vary from Tmin = 80 trials to Tmax = 120 trials with a resolution of
δT = 2 trials. L (T ∗) values were computed for each of the 60 subjets; if
our model robustly interpret the data, a maximum of L (T ) should occur at
T = 100 trials.

Fig. 5.25 show, for two subjects (MT and EF), a maximum of L in cor-
respondence to T = 100. In Fig. 5.26, the maximum is shifted by ∆T =
+2 trials for subject GB and ∆T = −8 trials for subject AB. Two examples
of critical results, representing the case in which L (T ) spectra do not show a
well–defined peak in the range of possible T value are reported in Fig. 5.27.
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Figure 5.25: L (T ) spectra, relative to two different subjects, showing a max-
imum in correspondence of a period Tmax = 100 trials.
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Figure 5.26: The upper L (T ) profile (subject GB) shows a maximum in
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Figure 5.27: L (T ) profiles for subjects SB and LK. No well–defined maxima,
in the range of T–values considered in our analysis, are present.
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5.7. NON–LINEAR COMPONENTS OF CRITERION DYNAMICS

In addition, we computed L (T ) spectra also for the open–loop session of
each subject. Then, we focussed our attention to the spectra of the types of
Figg. 5.25 and 5.26. Subjects that showed a behaviour similar to Fig. 5.27,
i.e. without a pronounced peak in the range Tmin ≤ T ≤ Tmax, were not
considered for the rest of the analysis procedure. For this reason, the number
of experimental sessions was reduced from 60 to 51.

5.7.1 Results

Thus, we averaged T ∗ values over data set of the resting 51 elements. Results
for 〈T ∗〉 are 99(9) and 100(18) trials, for feedback and open–loop sessions,
respectively. These results induced two possible considerations: because both
〈T ∗〉feedback and 〈T ∗〉open−loop were compatible with the expected value T ∗ =Our model

is robust 100 trials, then the model of Eq. 5.2 robustly describe the criterion dynamics
so as imposed in our experiment.

In addition to that, error values on 〈Tmax〉, computed as standard devi-
ation over the entire data set, confirm the effect of feedback. An increased
standard deviation in open–loop sessions (σfeedback

∼= 0.5 · σopen−loop) is ex-
pected: the model expressed by Eq. 5.2 correctly represent the criterion
dynamics only if the feedback loop is active.
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5. FEEDBACK CONTROL OVER CRITERION SETTING

Scatter plot
The effect of feedback on criterion dynamics can be observed in Fig. 5.28:

as usual, data represent (τ ,G) couples . Fig. 5.28 shows τ and G values,
for feedback (red dots) and open–loop (blue dots) sessions, obtained from a
MLE procedure (so as in Sec. 5.4.9) with T = T ∗.
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Figure 5.28: Scatter plot of the G and τ values obtained by maximizing the
likelihood L also with respect to the parameter T .

As in the previous similar plot of Fig. 5.23, data of feedback sessions show Effect of

feedbacka clustered behaviour, whereas blue dots result more scattered. Average
values for parameters G and τ are G = 0.6(4) and τ = 8(10) trials for
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5.8. FINAL DISCUSSION

feedback sessions andG = 0.2(5) and τ = 28(40) trials for open–loop sessions.
Offset parameter results Cfeedback = −0.1(2) and Copen−loop = −0.1(6). These
values confirm the effect of feedback on criterion dynamics.

5.8 Final discussion

We reported a model for dynamics of criterion setting relying on strong phys-
ical bases and a method to test it with the highest possible time–resolution.
Predictions of the model can be summarized as follows: when the optimal
criterion position is shifted and forced to oscillate at a well–known frequency,
set a-priori by the experimenter, subjects are able to follow this oscillation,
though with a certain phase–delay. They change their criterion at each trial,
if motivated to increase the rate of correct responses.

The proposed model reliably accounts for the criterion setting dynamics,
at least for the visual feature (orientation) tested here: single–pole, closed–
loop gain function is the simplest choice to achieve stable control.

A possible interpretation for the subject ability to shift the criterion,
adapting his/her behaviour strategy to the new external conditions, is learn-
ing. With learning we mean an improvement of subject performance driven
by information about his/her previous responses. Thus, it involves the sub-
ject’s motivation to improve his/her ability and the possibility to store in-
formation from previous experience. In terms of SDT, an improvement of
subject’s ability to perform specific tasks, is usually referred to in the litera-
ture as an increase of sensitivity (d′) [133].

Results presented in this chapter are d′ independent, i.e. the subject
sensitivity to the task remains constant during each experimental session.
Only criterion evolve in time, on the basis of a mechanisms involving both
memory of previous trials and the subject’s willing of increase the rate of
correct answer and also the performance. In this way, subjects continuously
learn to set their criterion to the optimal position.

Our results provide a starting point for further investigation on the en-
coding of criterion within the brain, for example addressing the dependence
of the closed–loop gain function parameters on quantities such as d′ or the
amplitude or frequency of the external modulation.
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General Discussion
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Chapter 6

Conclusions

In the emerging field of neuroscience many topics are characterized by strong
crossdisciplinarity. It frequently occurs that, contributes and approaches
from different research areas converge to tackle specific issues of actual inter-
est, sometimes providing novel investigation tools. An important example of
interdisciplinary topic, representing the trait d’union of our investigations,
is noise. Whatever the physical system under investigation, noise is present
as a stochastic fluctuation of the measured signal. Theoretical considera-
tions, as well as a robust experimental evidence, substantiate its ubiquitous
nature.

The occurence of noisy processes, although not yet exhaustively inves- Noise in

human braintigated, has been also observed in many brain mechanisms. For example,
stochastic fluctuations of the spike’s rate make impossible to predict the ex-
act neuronal behaviour.

Our work was devoted to gain insight into the problem of noise in percep-
tual processes in humans by using psychophysical methods. We developed
two types of behavioural experiments in order to shed light on two distinct
aspects of the issue: the first part of our work was focused on the question
whether exogenous noise superimposed to a stimulus changes per-
ception of the stimulus itself. In particular, we focused our attention to
the occurence, in the acoustic perceptual modality, of an effect referred to in
the literature as stochastic resonance. Depending on noise intensity three dif-
ferent effects were observed. For low intensities, the signal perception is not
affected by the presence of superimposed noise. Conversely, if noise inten-
sity overcomes a critical value, the subjective perceptual threshold is shifted
progressively to higher values. This is the so–called masking effect, that is
widely experienced also in real life.

In an intermediate range of intensities, closed to the noise critical value, it Noise improves

acoustic

perception

has been observed the opposite effect. Detection ability is improved by
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the presence of noise. This was interpreted as an evidence of stochastic
resonance in human acoustic perceptual system.

Although this effect was previously observed – as described in several
works – we obtained results that, from the statistical point of view, are more
robust. Our new data analysis procedure, opens the possibility to investigate
the effect also with other kinds of experiments like, for example, cochlear
implant recipients or subjects with deafness problems. In these particular
cases, a gain in acoustic perception would be of coarse significant.

Our second field of investigation concerns the encoding of Signal Detection
Theory ’s quantities in human brain. In particular, we developed a model for
decisional criterion dynamics. In SDT, discrimination ability is based on
two main elements: the stimulus encoding into neuronal electrical activity
and the definition of a decisional strategy, related to the criterion. While,
on the one hand, electrical activity is affected by noise and consequently to
trial–by–trial variations, on the other hand, criterion is traditionally assumed
to be constant, at least during blocks of subsequent trials. We investigatedTime – evolution

of SDT criterion the trial–by–trial criterion dynamics aiming to tackle the issue of its stability.
So, in the second part of the present dissertation we tested a model for

criterion dynamics based on the theory of feedback. Subjects were requested
to discriminate between two possible responses (left or right) while the tilting
angle characterizing the stimuli, was changing periodically over time. The
optimal criterion position is induced to oscillate at a well–defined frequency;
we observed that subjects were able to follow this dynamics and set their
decisional criterion closed to the optimal position, though with a certain
phase–delay.

The possibility to induce a well-defined criterion dynamics can be in-
terpreted as an unusual form of learning. In the literature, learning is often
associated with an improvement of subject’s ability to perform specific tasks.
In terms of SDT this is usually thought as an increase of sensitivity (d′).

We showed that, by fixing d′, the criterion can evolve in time if a
mechanisms involving both memory of previous trials and the sub-
ject’s willing of improving performance acts on decisional strategy.
The disentanglement of sensitivity and criterion offers the possibility to shape
each subject’s response, during an experimental session, indipendently from
his/her ability in performing the task.

Future possible developments of this result concern investigations on cri-
terion dynamics in different perceptual modalities. In addition, the problem
of criterion stability, with regard to possible internal stochastics fluctuations,
could be coped with by using the experimental techniques presented in the
dissertation.
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Appendix A

Preliminar statement,
instruction and final questions

Figure A.1: Preliminar statement of naiveness to the aim of the experiment.
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Figure A.2: Instruction provided to the participant preliminarly to training
session.
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A. PRELIMINAR STATEMENT, INSTRUCTION AND FINAL
QUESTIONS

Nello spazio, in assenza di gravità, non esiste 
una definizione univoca di verticalità, visto che manca un riferimento 

per definire l'orientazione degli oggetti.

Immagina di essere il pilota di una navicella spaziale 
che deve agganciarsi ad una stazione spaziale.

Per effettuare correttamente la manovra è necessario 
allineare la navicella alla stazione.

Purtroppo, l'orientazione della stazione rispetto alla tua navicella 
può cambiare nel tempo in maniera a te sconosciuta.

Per ovviare a tale problema, la stazione ti fornirà alcune informazioni 
per consentirti di conoscere l'orientazione reciproca 

e la sua evoluzione nel tempo.

La stazione invierà sullo schermo del tuo computer di bordo
degli stimoli visivi (Gabor);

per ogni stimolo la stazione sceglierà in maniera casuale
un'orientazione sinistra o destra rispetto al SUO asse di riferimento.

Esempio di stimolo 
orientato a sinistra

Esempio di stimolo 
orientato a destra

Per ogni stimolo dovrai dichiarare
se esso è orientato a destra (tasto 'D') o sinistra (tasto 'S').

Ricevuta la risposta, la stazione spaziale ti informerà,
tramite una voce registrata,

se l'orientazione da te percepita coincide ('SI') o non coincide ('NO')
con l'orientazione da lei stabilita per quello stimolo.

Sarai un ottimo pilota se riuscirai
ad immaginare via via l'orientazione della stazione

ed a massimizzare quindi il numero di coincidenze ('SI').

Supponiamo ora che ti venga presentato il seguente stimolo

e che la tua risposta sia

SINISTRA!

Supponiamo inoltre che la successiva informazione 
proveniente dalla stazione sia

SÌ

Questo significa che anche per la stazione lo stimolo era orientato a sinistra.

Supponiamo ora che ti venga presentato questo secondo stimolo

e che la tua risposta sia

DESTRA!

... e supponiamo anche che la successiva informazione 
proveniente dalla stazione sia

SÌ

Questo significa che anche per la stazione lo stimolo era orientato a destra.

1 2

3 4
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E' quindi probabile che l'orientazione della stazione spaziale
sia quella indicata dalla barra rossa nella figura sottostante.

Un altro stimolo che ti potrebbe essere presentato è il seguente

supponiamo ora che la tua risposta sia

DESTRA!

mentre l'informazione proveniente dalla stazione sia

NO

Questo vorrà dire che per la stazione lo stimolo era orientato a sinistra.

E' quindi probabile che l'orientazione della stazione spaziale
sia quella indicata dalla barra rossa nella figura sottostante.

Analogamente, se per il seguente stimolo

dichiarando SINISTRA,
avrai ricevuto un NO!

da parte della stazione,

potrai immaginare che l'orientazione della stazione spaziale
sia quella indicata dalla barra rossa nella figura sottostante

Ricorda allora:
dovrai immaginare come cambia nel tempo l'orientazione della stazione;

lo farai bene solo se
MASSIMIZZERAI IL NUMERO DI COINCIDENZE,

ossia il numero di informazioni SÌ che riceverai dalla stazione
in seguito ad ogni tua risposta.

Ad un certo punto nel corso dell'esperimento,
la voce registrata verrà disattivata.

Da quel momento in poi non riceverai più alcuna informazione
dalla stazione spaziale. 

Dovrai comunque
CONTINUARE A RISPONDERE

NEL MODO CHE RITIENI PIU' ACCURATO.
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Figure A.3: Instruction provided preliminarly to main session.118



A. PRELIMINAR STATEMENT, INSTRUCTION AND FINAL
QUESTIONS

QUESTIONARIO DI FINE ESPERIMENTO:

Hai concluso con successo l'esperimento, ti chiediamo ancora pochi minuti per compilare il 

seguente questionario.

Domanda 1

Nel corso dell'esperimento l'orientazione della stazione spaziale rispetto alla tua navicella poteva 

essere soggetta a cambiamenti: hai notato eventuali variazioni? 

sì

no

in caso affermativo, le variazioni erano: 

lente  rapide  

sempre in caso affermativo, le variazioni erano: 

regolari casuali 

Domanda 2

Ti è stata utile l'informazione vocale fornita dalla stazione spaziale? 

sì

no

Domanda 3

Quando l'informazione vocale era assente, hai notato variazioni dell'orientazione della stazione 

spaziale? 

sì

no

in caso affermativo, le variazioni erano: 

lente  rapide  

sempre in caso affermativo, le variazioni erano: 

regolari casuali 

Domanda 4

Nella fase dell'esperimento in cui ti veniva fornita l'informazione vocale, quante volte hai percepito 

un cambiamento dell'orientazione? 

Quante volte hai percepito un cambiamento dell'orientazione nella fase senza l'informazione 

vocale?  

In conclusione ti preghiamo di non divulgare informazioni sull'esperimento che hai appena 

effettuato. Questo al fine di non influenzare l'esecuzione dell'esperimento da parte di futuri 

candidati.

Grazie mille per la tua collaborazione. 

Rovereto, ________________ 

Figure A.4: Questions asked at the end of the experimental session. 119
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Appendix B

Linear model for feedback loops

In control system, feddback consists in comparing the output of the system
with the desired output and making a correction accordingly. In particular,
with negative feedback we mean the process of coupling the output back in
such a way as to cancel some of the input. We will start our mathematical
description of the issue with the study of the open–loop system such as in
Fig. B.

Figure B.1: On the left side is shown a circuit–like scheme of open–loop
system. The right the feedback loop is added to the system.

Open–loop circuit
Being s a complex number of the form s = σ + iω, then, if ω is intended

as the frequency
Vout (s) = Vin (s) · G (s) , (B.1)

that in the time domain, by applying the Laplace anti–trasform, becomes

vout (t) = vin (t) ∗ g (t) =

∫

∞

−∞

g (τ) · vin (t− τ) dτ (B.2)
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where, as usual t is time.

Feedback circuit
As shown in Ch. 5, feedback loop can be schematized as in Fig. 5.2. Then,

similarly to Eq. B.1,

Vout (s) = Vin (s) G (s) − Vout (s) A (s) G (s) , (B.3)

or alternatively

Vout (s) =
Vin (s) G (s)

1 + A (s) G (s)
. (B.4)

Being H (s) = Vout(s)
Vin(s)

, then

H (s) =
G (s)

1 + A (s) G (s)
. (B.5)

In our investigation we are interested to a particular class of input signals,
mathematically expressed by the form vin (t) = est. This type of signals show
a particular behaviour if processed as in Eq. B.2:

vout (t) =

∫

∞

−∞

h (τ) · es(t−τ) dτ = est

∫

∞

−∞

h (τ) · e−sτ dτ = vin (t)H (s) (B.6)

where H (s) =
∫

∞

−∞
h (τ) · e−sτ dτ is the laplace trasform of h (t).

By taking into account the case s = iω (σ = 0), where i =
√
−1, we can

focus our attention to the real part of the signals under investigation: in
particular, Re [eiωτ ] = cos (ωt). In this case, Eq. B.6 that can be written in
the form

vout (t) = eiωt ·H (iω) (B.7)

becomes

Re [vout (t)] = Re
[

eiωt ·H (iω)
]

(B.8)

In polar coordinates, H (iω) = |H (iω) |eiφ, where φ is a generic phase
parameter. It follows that

Re [vout (t)] = |H (iω) | · cos (ωt+ φ) , (B.9)

or, in other words, the amplitude of the output is proportional to the input
shifted of a phase φ and multiplied by a factor |H (iω) |. The single pole,
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B. LINEAR MODEL FOR FEEDBACK LOOPS

closed–loop gain function1 is expressed by the gain function H (s) = G0

1+sτ
,

or, similarly as before,

H (iω) =
G0

1 + iωτ
. (B.10)

If considering only the real part

|H (iω) | =
|G0|

√

(1 + iωτ) (1 − iωτ)
=

G0
√

1 + (ωτ)2
. (B.11)

By linking toghether Eq. B.7 with Eqq. B.9 and B.11 we obtain

vout (t) =
G0

√

1 + (ωτ)2
cos [(ωt) + φ] (B.12)

that is of the same form of Eq. 5.2.

1In Ch. 5 we used this model to interpret the phenomenon and the experimental data.
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