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A B S T R A C T   

While greening becomes a more and more popular strategy to address multiple urban challenges and to enhance 
wellbeing and human-nature connectedness, there is an increasing need for usable methods and indicators to 
monitor its implementation. Earth observations produce a wealth of data on vegetation dynamics, but their use 
for monitoring urban greening policies is still limited. In this article, we develop and test an algorithm for the 
analysis of urban vegetation dynamics based on NDVI time series. Specifically, we focus on yearly greenest pixel 
composites that illustrate the maximum value of NDVI during the year (“greenness”): a key structural attribute to 
monitor urban ecosystems in the European Union. The algorithm is inspired by earlier examples of segmentation 
algorithms but fits the specific requirements of the targeted use in urban areas. It takes the series of NDVI values 
associated to each pixel, detects existing (multiple) break points, and quantifies related abrupt changes, as well as 
significant gradual changes that occurred during a selected period. We tested the algorithm on a 30-year Landsat 
series in Berlin and partially validated the output through a comparison with infrared ortophotos. The results 
reveal a net increase in NDVI between 1988 and 2017 in 84% of the pixels, with an average change over the 
whole city of + 0.096. Around 20% of the pixels show at least one abrupt change. Most abrupt changes (71.5%) 
were positive, but the negative ones had on average a greater absolute value (− 0.170 vs +0.085). However, 
considering the cumulative impacts during the whole period, 97% of the total change is attributable to gradual 
changes. The validation proves that abrupt changes successfully capture variations in the extent of vegetation 
due to land cover changes (e.g., vegetation removal or new greening interventions), while gradual changes can 
be associated to vegetation growth or decline. We discuss the strengths and limitations of the proposed algo
rithm, and how the spatially- and temporally-explicit results can be a step forward in the interpretation of urban 
vegetation dynamics towards an effective monitoring of the impacts of local greening policies.   

1. Introduction 

Greening is gaining popularity as a strategy to increase the sustain
ability and resilience of urban systems (Adem Esmail et al., 2022; Dorst 
et al., 2019). In addition to its biodiversity value (Dearborn and Kark, 
2010), urban vegetation is the closest form of nature experienced by 
most people globally, and it contributes substantially to their health and 
wellbeing (Gómez-Baggethun and Barton, 2013; van den Bosch and Ode 
Sang, 2017). With the aim of strengthening the provision of ecosystem 
services by urban vegetation (Babí Almenar et al., 2021), greening is 
more and more frequently advocated and adopted as a multifunctional 
strategy that, among others, can help to mitigate and adapt to climate 

change (Cortinovis et al., 2022; Kabisch et al., 2017), as well as to 
counterbalance the negative impacts of densification (Madureira and 
Monteiro, 2021), often in an economically advantageous way (Elmqvist 
et al., 2015). Several cities have already set ambitious greening targets 
in their plans (Dong et al., 2020; Lin and Wang, 2021; Mees and 
Driessen, 2011), and more are expected to follow pushed by initiatives 
such as the European Union Biodiversity Strategy for 2030. The Strategy 
calls for all cities with more than 20,000 inhabitants to draft ambitious 
Urban Greening Plans, which should become the main tools to coordinate 
greening actions at the urban scale and to ensure their systematic inte
gration into urban planning and design (European Commission, 2020). 
In addition, the proposal of a new EU Nature Restoration Law currently 
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under scrutiny (European Commission, 2022) promotes urban greening 
by setting three targets to reach by 2050, compared to the situation in 
2021: i) a 5% increase of urban green spaces; ii) a minimum of 10% tree 
canopy cover in every city, town, and suburb; and iii) a net gain of green 
space integrated to buildings and infrastructures. 

These targets demonstrate that, compared to a previous emphasis on 
public green spaces, recent greening policies include a wider range of 
actions that permeate the whole urban environment (Jones et al., 2022). 
Such actions are promoted by multiple actors and implemented at 
different scales, from reconverting large brownfield sites (Mathey et al., 
2015) to planting trees (Lin and Wang, 2021), installing green roofs 
(Dong et al., 2020), or de-sealing both public and private spaces 
(Stobbelaar et al., 2021). It should also be noted that urban green spaces 
show a high temporal variability, due to the frequent changes in land use 
and land cover that happen in urban areas, to the point that greening 
actions are sometimes conceived as temporary uses (Németh and Lan
ghorst, 2014). Overall, these factors result in complex and variable 
vegetation dynamics, which require indicators able to capture changes 
in both public and private areas at high spatial and temporal resolution. 
These specific needs come in addition to more general requirements for 
monitoring methods aimed at supporting policymaking, which must be 
relevant to the issue at hand and responsive to the associated changes; 
scientifically sound, verifiable, and reproducible; simple, usable, and 
cost-effective, and perceived as legitimate by all stakeholders involved 
in the process (Carter et al., 2021; van Oudenhoven et al., 2018). 

Remote-sensing based indicators meet most of these requirements 
and can effectively support vegetation monitoring in urban areas 
(Wellmann et al., 2020a). One of the most popular remote-sensing in
dicators is the Normalized Difference Vegetation Index (NDVI), an index 
calculated using the spectral reflectance measurements stored in the red 
and near infrared bands of satellite images. NDVI is linked to the 
photosynthetic capacity, i.e., the energy absorbed by plant canopies, 
hence to the amount and conditions of vegetation. Small values close to 
0 indicate standing waters, snow, sealed surfaces, and bare soil, while 
higher values indicate progressively denser and healthier vegetation. 
NDVI has been first applied to studies on agricultural areas and forests, 
but it has more recently become popular also for urban applications due 
to its simple formulation and the availability of data at high resolution. 
Many studies have used NDVI as an indicator of the “overall amount” of 
urban vegetation, especially to investigate the relationships with other 
factors. Correlations have been observed not only with environmental 
features such as presence of impervious surfaces (Kaspersen et al., 
2015), but also with several aspects of human health and wellbeing 
(Gascon et al., 2016). 

NDVI has also been adopted as a standalone indicator to investigate 
vegetation dynamics. In this context, the term “greening” commonly 
refers to an increase in NDVI as an indicator of vegetation expansion or 
enhancement, while “browning” indicates a loss of vegetation or its 
degradation. In the literature, it is possible to distinguish three main 
approaches to detect and quantify vegetation changes based on NDVI. 
The first approach is to convert the continuous variable into a categorial 
classification by setting thresholds to discriminate between different 
land covers (Zhu, 2017). This method has been mainly applied to binary 
classifications of vegetated vs non-vegetated areas (Dobbs et al., 2018; 
Mackey et al., 2012; Stathopoulou et al., 2007), but some authors 
extended it to more detailed classifications of land covers characterized 
by different vegetation densities (Abutaleb et al., 2021; Jin et al., 2020; 
Muratet et al., 2013). The approach is very simple and allows comparing 
the extent of different types of vegetation in selected years based on the 
average or maximum yearly NDVI values. On the other hand, thresholds 
vary depending on the location (Jin et al., 2020), and changes within the 
ranges defined by the thresholds are overlooked. This limitation is 
especially critical for urban applications, where low NDVI values and 
associated small changes are frequent, since pixels often include a mix of 
land covers of which vegetated areas are only a fraction (Wellmann 
et al., 2020b). 

The second approach approximates NDVI series, usually seasonal or 
yearly composites (i.e., average or maximum values calculated over the 
year or the in-leaf season), through linear models, where a non-null 
slope indicates the presence of a trend. Since NDVI series do not meet 
the assumptions of independent observations and normal distribution 
required for linear regression, non-parametric methods such as the Sen’s 
slope to approximate the trend and the Mann-Kendall test to assess its 
significance are commonly used. A limitation of the approach is that a 
significant slope may well approximate gradual changes due to vege
tation growth or succession, but it may also hide abrupt changes due to 
urbanization or regreening. Some authors suggest that greater values of 
the slope can be interpreted as an indicator of abrupt change (i.e., a 
major break point in the original series), but thresholds are set arbi
trarily (Zulian et al., 2022). To overcome this limitation, a Pettitt test is 
sometimes used in combination with the Sen’s slope to detect the 
presence of one main break point in each series (Zhou et al., 2020). 
However, this method is unsuitable to capture the multiple trans
formations that may occur in urban locations during a period of two or 
three decades (Forkel et al., 2013). 

The third and most complex approach approximates NDVI series 
with segmented linear models. This allows the identification of multiple 
break points, which correspond to abrupt changes in the series, and of 
trends -or gradual changes- between each pair of consecutive break 
points. Examples of segmentation algorithms are DBEST - Detecting 
Breakpoints and Estimating Segments in Trend (Jamali et al., 2015), 
LandTrendr - Landsat-based detection of Trends in Disturbance and 
Recovery (Kennedy et al., 2010), and BFAST - Breaks for Additive Season 
and Trend (Verbesselt et al., 2010). BFAST is arguably the most popular 
break point detection algorithm applied to NDVI series (Zhu, 2017). It 
decomposes them into three components: a long-term component 
approximated by a piecewise linear trend, a seasonal component defined 
by a sequence of harmonic terms, and a noise component (Verbesselt 
et al., 2010). Break points can be identified in both the long-term and the 
seasonal component. BFAST was originally developed to detect vege
tation changes in 16-day MODIS composite time series, but it is appli
cable to a variety of input datasets. 

The availability of long-term temporal series of high-resolution sat
ellite images and the increasing ease of manipulation through platforms 
such as Google Earth Engine (Gorelick et al., 2017) is rising the interest 
on NDVI as a potential indicator to monitor the implementation of urban 
greening policies. The European Commission has recently published the 
EU-wide methodology to map and assess ecosystem condition, which sets the 
guideline to monitor the progress towards the targets of the EU Biodi
versity Strategy to 2030 and the Nature Restoration Law (Vallecillo 
et al., 2022). The methodology identifies greenness, defined as the 
maximum value of NDVI during the year (also called “greenest pixel 
composite”), as a key structural ecosystem attribute that should be moni
tored in urban ecosystems, and highlights the importance of discrimi
nating between abrupt and gradual changes. However, the method 
proposed for the analysis, based on Zulian et al. (2022), adopts the 
second of the above-described approaches, i.e., the slope approximation. 
No segmentation algorithm suitable for monitoring and with proven 
applicability to urban contexts is currently available to analyze yearly 
NDVI composites such as the greenness indicator. In fact, segmentation 
approaches have been rarely applied to urban areas and mostly to 
analyze large-scale urbanization dynamics from a scientific perspective, 
with no ambition to support policy monitoring (see e.g., the recent 
application of BFAST in the region of Delhi, India, by Chaudhuri et al. 
(2022)). 

Our aim in this article is to develop and test a segmentation algo
rithm for the analysis of NDVI yearly greenest pixel composites time 
series. The algorithm must be able to identify and date multiple break 
points in the series and to quantify gradual and abrupt changes during a 
selected period. To this aim, we take inspiration from earlier examples of 
segmentation approaches applied to NDVI series, but we develop an 
algorithm that fits the different types of input data and the specific 
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requirements posed by the desired use in urban areas. We present the 
workflow of the algorithm, its application to a 30-year Landsat series in 
Berlin, and the validation conducted in the case study. We then discuss 
the potential use of the algorithm to support the monitoring of urban 
greening policies, highlighting its strengths, as well as the limitations 
that should be considered when interpreting the results. 

2. Materials and method 

2.1. NDVI annual greenest pixel composites 

Our approach focuses on the analysis of NDVI greenest pixel com
posites. Such composites are created from all the scenes available for the 
same calendar year, using the pixel with the highest value of the NDVI (i. 
e., the greenest pixel) as the composite value. This process produces a 
series of images already cleaned from the effects of seasonal variability 
and characterized by a complete (or very high) coverage, since the 
presence of clouds and other disturbances is automatically removed. 
NDVI greenest pixel composites offer a picture of the best conditions 
achieved by vegetation during the year, accounting for the fact that, in 
different areas, this may happen in different periods depending on a 
combination of species characteristics and local factors (e.g., due to the 
increasing frequency of draughts in many cities, summer scenes might 
capture the best conditions in some areas but show early signs of 
degradation in others) (Miller et al., 2022). 

While composites can be created from several collections of multi
band satellite images, including MODIS and Sentinel, the most used for 
local-scale applications are composites created from Landsat images 
(Corbane et al., 2020; Zulian et al., 2022). With a spatial resolution of 
30 m and a frequency of acquisition of 16 days, Landsat imagery cap
tures human-scale processes related to urbanization and land cover 
change. Moreover, Landsat missions 4, 5, 7 and 8 provide comparable 
data (see the transformations implemented in Corbane et al. (2020)), 
thus covering a longer period than Sentinel-2. Landsat greenest pixel 
composites, which have the same spatial resolution as the original im
ages, are considered an effective way to synthesize information about 
greenness in urban areas and a suitable basis to analyze the related 
trends (Corbane et al., 2020; Zulian et al., 2022). NDVI annual greenest 
pixel composites based on Landsat are available as ready-made products 
on Google Earth Engine (Gorelick et al., 2017), where they can be 
conveniently and efficiently manipulated. 

2.2. Algorithm for time series analysis 

We developed an algorithm that runs on the individual time series 
corresponding to each pixel. The analysis process consists of five main 
steps (Fig. 1). 

Step 1: identifying potential break points. This step is implemented by 
testing the series for the presence of structural change using an Empir
ical Fluctuation Process (EFP) based on Ordinary Least Square Cumu
lative Sum of Residuals OLS-CUSUM (Zeileis et al., 2002). We run the 
test considering both a null and a linear model. If the test indicates a 
significant change in the series (p ≤ 0.05), potential break points are 
identified as those that correspond to the optimal (minimum BIC) 
partition of the series considering a defined maximum number of breaks 
(Zeileis et al., 2003). After running some tests, and considering the 
length of the analyzed period in the application described in this article 
(Section 2.3), we set the latter to 4. The first step produces a preliminary 
list of potential break points. 

Step 2: testing each candidate break point using Bayesian change point 
analysis (Barry and Hartigan, 1993; Erdman and Emerson, 2007). We 
run the test in the two cases of univariate analysis (i.e., constant mean in 
the segment) and linear regression (i.e., linear models appropriate 
within each segment). The test is based on the distribution of the pos
terior probability of change. We check the values in an interval of ± 1 
year around each candidate break point in the list produced in the 

previous step. If any point within the interval has a probability ≥ 95%, 
the year corresponding to the maximum probability is retained as a 
break point, with associated information about which type of analysis 
gave the results. The outputs of the second step are three lists of po
tential break points: those classified as significant only in the case of 
univariate analysis (null model), those classified as significant only in 
the case of linear regression (linear model), and those classified as sig
nificant in both cases. 

Step 3: testing the trends associated to each break point using a non- 
parametric test. This is necessary as the assumptions of the models used 
to approximate the trends in the previous steps of break point detection 
may not hold for the analyzed series. While being free from autocorre
lation due to seasonality, the greenest pixel composites are character
ized by scattered values and outliers (e.g., due to clouds in the original 
data). We therefore run a non-parametric Mann-Kendall test on each 
segment in which the series is subdivided by the selected break points. 
The test determines whether the trend can be considered monotonic 
(p ≤ 0.05) or not (Kendall, 1975). The results of the Mann-Kendall test 
are used to further refine the selection of break points. Break points 
identified through the Bayesian change point analysis in both the uni
variate and the linear regression cases are retained without further 
investigation, while those found in only one case are retained only if the 
trend in the two segments before and after the break complies with the 
model that had identified the break (i.e., monotonic trend for linear 
regression, non-monotonic trend for univariate analysis). 

Step 4: defining suitable models to approximate the trend in each segment. 
Once the final list of break point and related segments have been iden
tified, we define suitable models to approximate the trend in each 
segment and to calculate the changes corresponding to each break point. 
We repeat the Mann-Kendall test on each of the final segments to 
calculate their parameters (slope and intercept). Segments with a 
monotonic trend are approximated by a linear model (Eq.1) 

y = s*x+ i (1)  

where s is the Sen’s slope (Sen, 1968), and the intercept i is calculated as 
the median of the residuals between the original values and the values 
approximated by the Sen’s slope. Segments with no monotonic trend are 
approximated by a null model taking the average value as intercept. 
Abrupt changes (i.e., jumps) corresponding to each break point are 
calculated as the difference between the values of the two models used 
to approximate the trends before and after the break point. 

Step 5: Refining the results. This might be needed, for example, to filter 
the final list of break points based on the value of the abrupt changes 
associated with them, in order to eliminate those that are considered not 
relevant in the specific application. In the case study described in this 
article, considering the results of the validation, we decided to filter out 
the break points associated with abrupt changes smaller than 0.1 in 
areas with high values of NDVI (i.e., managed forests and natural 
woodlands). Once these break points are removed, the fourth step must 
be repeated on the final list to re-define the models to approximate the 
trends in the new segments and to calculate the related changes corre
sponding to each break point. 

The algorithm is coded in R (R Core Team, 2022) using the packages 
‘strucchange’ for the EFP (Zeileis et al., 2002; 2003), ‘bcp’ for the 
Bayesian change point analysis (Erdman and Emerson, 2007), and ‘rkt’ 
for the Mann-Kendall test (Marchetto, 2021). A version running in 
parallel has been prepared for the application using the package 
‘parallel’. 

2.3. Case study application 

We applied the algorithm to analyze vegetation dynamics during a 
30-year period in the city of Berlin, Germany. With a population of 
around 3.7 million inhabitants (Destatis - German Federal Statistical 
Office, 2022), Berlin is among the largest cities in Europe, marked by a 
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Fig. 1. Workflow of the segmentation algorithm. BP = break points, EFP OLS-CUSUM = Empirical Fluctuation Process with Ordinary Least Square – Cumulative Sum 
of Residuals. Orange boxes indicate processes and decisions; green boxes indicate products. 
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peculiar urban development in the last four decades. After World War II, 
the large territory of the city, covering more than 900 km2, was divided 
into East Berlin, capital of the German Democratic Republic (GDR), and 
West-Berlin, an enclave politically aligned with the Federal Republic of 
Germany, part of the Western Block. During the Cold War, the two parts 
of the city followed separate urban development pathways. In East 
Berlin, GDR policies promoted the construction of large scale 
pre-fabricated housing units and industrial plants, leading to the va
cancy of many Wilhelminian perimeter blocks that, on the contrary, 
were refurbished and remained in constant use in West Berlin (Ara
ndelovic and Bogunovich, 2014; Wellmann et al., 2020b). 

Following the reunification in 1990 and the proclamation of Berlin as 
the capital city of Germany in 1991, intense transformations took place 
in many parts of the city (Schwedler, 2001): in the center, to accom
modate new governmental buildings and transport hubs; along the 
former path of the Wall, where derelict land conveniently located in 
attractive central areas suddenly turned into a valuable real-estate asset; 
in the eastern peripheries, with several interventions to enhance the 
quality of prefabricated buildings and their surroundings; and in the 
many brownfields left all over the city by former industrial plants and 
unused transport infrastructure. These dynamics, unique in the Euro
pean panorama in terms of nature and intensity, included also many 
greening interventions, not limited to the realization of new parks in 
many re-development areas (e.g., Mauerpark along the former path of 
the Wall, Natur-Park Südgelände and Park am Gleisdreieck on former 
railway areas) but including also diffused actions of de-sealing and 
integration of small green areas inside existing residential districts 
(Wellmann et al., 2020b). 

As input data for our application, we used time series of NDVI 
greenest pixel composites derived from Landsat Top-Of-Atmosphere 
reflectance available in GEE. We combine the composites from Land
sat missions 4, 5, 7 and 8 following the procedure in Zulian et al. (2022), 
which implements the transformations suggested by Corbane et al. 
(2020) to allow comparison between the different missions and then 
calculates the median of the values available for each year. The collec
tion produced is downloaded for the area of interest (the bounding box 
around a 1 km buffer of the administrative boundary of Berlin) as a 
raster image with a 30 m resolution in ETRS89, where each band cor
responds to one year. Since a minimum of four points must be available 
to apply the Mann-Kendall test included in the algorithm, break points in 
the first and last four years of the time series are not detected. We 
therefore downloaded a dataset covering the period 1984–2021, which 
allows analyzing the trends in the 30 years from 1988 to 2017. 

The results presented in Section 3 refer to the pixels inside the 
administrative boundary of Berlin, excluding water areas. To mask the 
latter, we used the Copernicus “Water & wetness 2018” product avail
able at 10 m resolution for the whole European Union, selecting only the 
areas classified as “permanent waters”. The final raster maps are 
composed of 942,971 unmasked pixels. 

2.4. Validation and accuracy assessment 

A complete and proper validation was not possible due to the lack of 
a reliable reference that could represent the “ground truth” at the same 
(or ideally higher) spatial and temporal resolution of the results pro
duced by the analysis (Congalton and Green, 2009). This is a common 
challenge for break point detection algorithms (Kennedy et al., 2010), 
which are frequently tested on synthetic time series (Awty-Carroll et al., 
2019; Ben Abbes et al., 2018). While land cover classifications derived 
from remote-sensing data and their changes over time can be easily 
compared with other images, e.g., obtained through aerial photography 
and freely accessible on platforms such as GoogleEarth™, the same 
comparison was not feasible in our case due to two main limitations. 
First, as for most locations, also for Berlin yearly series of georeferenced 
high-resolution color images are available only for the last few years, 
while in the past they were taken with lower frequency, and they hardly 

existed before the turn of the millennium. Second, as it is common 
practice in urban applications, most images have been collected in the 
leaf-off period, so that buildings and soil cover types are more visible. 
This strongly limits the assessment of vegetation type and extent. 
However, we designed a protocol for validation making use of available 
data that could serve at least as a partial reference for the results pro
duced by our analysis. The aim is not to carry out a complete assessment 
of the accuracy of the results, but rather to confirm their interpretation 
and to identify potential error sources. 

Whenever applicable to our case, we referred to the good practices 
described by Olofsson et al. (2014) for assessing the accuracy of land 
cover and related change maps. We mainly focus on the timing and 
trajectory of the abrupt changes. Like Chaudhuri et al. (2022), we 
compared the break points detected by the algorithm with a visual 
interpretation of aerial images. To aid in the interpretation of vegeta
tion, we selected the infrared ortophotos available on the geoportal of 
Berlin for the years 2005, 2010, 2015 and 2020, purposely collected 
during summer to capture the maximum vegetation extent. We con
ducted the validation at the pixel level, selecting pixels through a 
stratified random sampling strategy. The partition was based on the 
presence in our results of at least one abrupt change during the 5-year 
period between two consecutive reference images (or three years in 
the case of the last period, since the analysis covers the years 
1988–2017). For each period, we randomly selected 100 pixels in each 
stratum (with and without abrupt change), for a total of 600 validation 
points. Compared to the proportion of pixels classified in each stratum, 
this selection is unbalanced in favor of pixels affected by an abrupt 
change. The rationale is that, beyond their detection, we wanted to gain 
an understanding of the different possible errors in the estimation of 
abrupt changes. This unbalanced selection affects the quantification of 
the standard error associated to the accuracy estimations but is not ex
pected to produce any bias in the estimated accuracies themselves 
(Olofsson et al., 2014). 

The visual interpretation was conducted by comparing two consec
utive images, focusing on the 30 by 30 m grid cells corresponding to the 
selected pixels. For each cell, an interpreter filled in a form recording the 
presence of vegetation in general and of trees both at the beginning and 
at the end of the period, the presence of visible changes in the area 
covered by vegetation between the two images, and the presence of 
visible signs of vegetation growth (e.g., tree crown expansion). The 
interpreter could fill in the latter entry with a good level of certainty 
only in few cases, which prevented a proper validation of the results 
about gradual changes. We then compared the results of the visual 
interpretation with the results from the algorithm. Besides calculating 
overall, user’s, and producer’s accuracy, we further investigated every 
case of disagreement to understand the underlying reason. More infor
mation on the validation protocol and detailed findings not reported in 
the main text can be found in the Supplementary Material. 

3. Results 

3.1. Thirty years of vegetation dynamics in Berlin 

Most of Berlin shows a net increase in NDVI during the 30 years’ 
period between 1988 and 2017 (Fig. 2). A net positive change charac
terizes 84% of the pixels inside the city boundary, while a net negative 
change can be observed only in 4% of the pixels. The main negative 
changes are visible in the city center and along some infrastructural axes 
departing from the center towards the west and the south, as well as in 
correspondence with new urban expansions close to the north-eastern 
border. Large areas characterized by a net positive NDVI change are in 
the eastern part (former GDR area, where the land use maps show an 
increase in urban green areas), and along the former path of the Berlin 
wall. The latter is clearly marked in the map by areas with a net increase 
in NDVI both along some portions of the current southern and western 
city boundary, and in areas immediately northern and southern to the 
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Fig. 2. Net NDVI change between 1988 and 2017 in Berlin (left) and main land uses close to the beginning and the end of the analyzed period (right). Source of the 
land use maps: Berlin Environmental Atlas (https://www.berlin.de/umweltatlas/en/land-use/actual-land-use/). 

Fig. 3. Net NDVI change due to abrupt changes (i.e., changes corresponding to break points in the temporal series) between 1988 and 2017 in Berlin. On the right: a 
zoom on an illustrative area compared with aerial images before and after the changes. 
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city center. The average change over the whole city during the analyzed 
30 years’ period is + 0.096. The average change in greening and 
browning areas is + 0.12 and − 0.10 respectively. 

The algorithm distinguishes between abrupt and gradual changes 
during the analyzed period. Around 20% of the pixels show at least one 
abrupt change (Fig. 3), while more than one break point -with a 
maximum of 5- was found in the 2.85% of the cases (see Fig. S2 in the 
Supplementary Material). Most net abrupt changes (71.5%) are positive, 
while only 5.6% of the pixels show an overall negative abrupt change. 
However, negative abrupt changes tend to be bigger, with an average 
value of − 0.17, twice as much as that of positive changes (+0.085). The 
map clearly highlights areas of negative abrupt changes in correspon
dence with new transport infrastructures and with new urban de
velopments close to the city boundaries built during the analyzed 
period. The biggest hotspots in the south, outside the city border, 
correspond to a big logistics platform and to the Berlin Brandenburg 
airport opened in October 2020. Positive abrupt changes are more 
scattered, but larger hotspots can be identified in two former mining 
areas close to the western and northern border targeted by environ
mental restoration programs. 

Fig. 3 also shows an example of how the mapped abrupt changes look 
like in reality. A former brownfield close to the city center recently 
refurbished into a large park (Park am Gleisdreieck) with some housing 
estates on its margins is taken as an example. The algorithm identifies 
both positive and negative abrupt changes corresponding respectively to 
regreening activities to create the new park and soil sealing associated 
with new construction. The overall accuracy associated to the estimation 
of abrupt changes, considering the period between 2005 and 2017 (as 
detailed in Section 2.4) is of 0.83. User’s accuracy is 0.91 for pixels with 
no change and 0.75 for pixels with an abrupt change in the period 
considered for validation. Producer’s accuracy is 0.79 and 0.89 for the 

two classes of no change and change, respectively. More details on the 
validation results and on the limitations that apply to these estimations 
can be found in the Supplementary Material. 

A gradual NDVI change (Fig. 4) lasting at least some of the years 
between 1988 and 2017 affected 82% of the analyzed pixels. Indeed, for 
67.7% of them the gradual change was continuous during the whole 30 
years’ period (see Fig. S3 in the Supplementary Material). The large 
majority of the pixels (98.6%) experienced a positive change, with an 
average value of + 0.12. Negative gradual changes instead are detected 
only in 1% of the city area, with an average value of − 0.07. The greatest 
positive gradual changes are concentrated in the eastern part and in 
some areas along the city boundary. Fig. 4 shows an example from one of 
these areas in a former GDR neighborhood where intense gradual 
changes in the last years, adding up to + 0.35, correspond to a pro
gressive increase of canopy cover inside a courtyard after the planting of 
small trees. 

3.2. The temporal dimension of NDVI changes 

The algorithm detects abrupt and gradual NDVI changes in a 
temporally-explicit way, i.e. every change is associated to a specific 
year. Thanks to this feature, it is possible to track variations in vegeta
tion dynamics during the analyzed period (Fig. 5). For example, Fig. 5a 
and Fig. 5b show the number of pixels involved respectively in abrupt 
and gradual changes during each year. Positive abrupt changes peaked 
in 1992, but the number of pixels involved in positive changes consis
tently exceeded that of pixels involved in negative changes between 
1988 and 1993, and then again between 1996 and 1999. On the con
trary, despite the smaller total area involved, the frequency of negative 
changes consistently surpassed that of positive changes in most recent 
years, from 2013 till the end of the analyzed period. The number of 

Fig. 4. Net NDVI change due to gradual changes (i.e., changes corresponding to the slopes of the segments between consecutive break points in the temporal series) 
between 1988 and 2017 in Berlin. On the right: a zoom on an illustrative area compared with aerial images before and after the change. 
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pixels involved in gradual changes shows a sudden increase in 1993: a 
clear consequence of the high number of abrupt changes recorded in 
1992, as the vegetation installed in the new green areas started to grow. 
The frequency of gradual changes grew constantly during the first 
decade of analysis (until 1998) but decreased progressively during the 
last decade (from 2007), while the number of pixels characterized by a 
negative gradual change continued to increase (from 2010). 

If we consider the intensity of the observed changes, we can calculate 
the yearly average of abrupt and gradual changes and monitor the 
evolution of their cumulative impacts (Fig. 5). During the analyzed 30 
years’ period, negative abrupt changes prevailed in 18 years, with the 
longest row of consecutive negative values from 2012 to 2018 (Fig. 5c). 
The cumulative curve calculated over the entire city considering only 
abrupt changes reached its maximum in 1999 with a value of 0.0067, 

not far from the local maximum already reached in 1993. The cumula
tive value at the end of the period is 0.0025, less than half of the 
maximum of 1999. Among gradual changes (Fig. 5d), the positive ones 
linked to vegetation growth largely prevail over the whole period, but 
the constantly decreasing values of the last years brought the average 
close to the minimum observed in 1993, after the jump that followed the 
high number of (abrupt) greening interventions in 1992. That year also 
marked the only exception when the average effect of abrupt changes 
over the city was greater than that of gradual changes (0.005 vs. 0.003). 
In all other years, gradual changes produced a larger average effect 
compared to abrupt changes. This prevalence of gradual changes be
comes even more evident when looking at the cumulative impacts 
(Fig. 6). In a 30 years’ period, vegetation dynamics have produced an 
average cumulative NDVI change of 0.096 over the whole city of Berlin, 

Fig. 5. Temporal evolution of NDVI changes in Berlin between 1988 and 2017: frequency of abrupt (a) and gradual changes (b), and average yearly change over the 
whole city due to abrupt (c) and gradual changes (d). Note that the scale of the y axis differs between panels a) and b), and that panels b) and d) are enlargement of 
the entire graphs, hence the y-axis does not start from 0. To aid in the interpretation of panel a), a zoomed-in version of the graph with y values from 0 to 15,000 is 
available in the Supplementary Material (Fig. S4). 

Fig. 6. Temporal evolution of cumulative impacts of abrupt and gradual changes on the average NDVI value over the city of Berlin between 1988 and 2017.  
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97% of which is attributable to gradual changes. 

4. Discussion 

4.1. Berlin, a gradually greening city 

The results show a net positive change in NDVI (greening) in the 
large majority of the 30 by 30 m pixels within the city of Berlin during 
the last 30 years. The fact that Berlin is becoming greener is not sur
prising and is consistent with findings from previous studies. Kabisch 
and Haase (2013) found a measurable increase in urban green spaces 
between 1990 and 2006 even in the low-resolution CORINE land cover 
data. More recently, Wellmann et al. (2020b) calculated vegetation 
cover and related trends in Berlin based on Landsat data and found that 
many districts showed a prevailing greening trend in the last 30 years. 

A progressive increase in NDVI has been recorded in other cities. In 
their study on more than 10,000 cities across the globe, Corbane et al. 
(2020) compared NDVI greenest pixel composites for the years 1990, 
2000, and 2014 to measure changes in greenness associated to urbani
zation. They found a prevailing positive trend (greening) in most cities, 
including the majority of the 32 analyzed megacities. Fast-growing 
Chinese cities stand out as an exception, in line with the results of pre
vious studies (Sun et al., 2011). However, while confirming the overall 
decline of vegetation during the last four decades in most metropolitan 
areas in eastern and central China, Du et al. (2019) also observed a 
characteristic U-shape in the relationship between urbanization and 
vegetation, with initial negative impacts of urbanization that tend to 
turn into positive ones in the later stages of development. 

The average value of NDVI increase that we found in Berlin, slightly 
less than 0.1 in 30 years, is comparable with the 0.002 yr− 1 observed in 
Seoul (Hwang et al., 2022) and with the values recorded in Las Vegas 
and Seattle by a study focusing on Pacific cities (Jin et al., 2020). Similar 
values were also found in Stockholm, where the average increase in 
NDVI in neighborhoods characterized by different population density 
along an urban-to-rural gradient ranged from 0.0018 yr− 1 to 
0.0029 yr− 1 in the period between 1990 and 2015 (Persson et al., 2018). 
Samuelsson et al. (2021) report an average NDVI increase of 0.028 over 
20 years in Denmark. The lower value can be attributed to the fact that 
they just considered the immediate surroundings of residential ad
dresses, hence changes in green areas are only partially considered. 

While all these studies only looked at overall NDVI trends, our 
analysis distinguished between gradual and abrupt changes. The results 
reveal that, despite the great impacts that abrupt changes may have at 
the small spatial and temporal scale, gradual changes, far more common 
across the city, produce larger effects in the long run. Similar findings 
were obtained by Zhu et al. (2016), who looked at gradual and abrupt 
changes in EVI (Enhanced Vegetation Index) in Guangzhou between 
2000 and 2014. Contrary to their results, however, abrupt changes in 
Berlin had an overall positive impact on vegetation dynamics in the last 
30 years. This speaks to the different urban development trajectories of 
the two cities. Fast urban expansion and associated impacts prevailed in 
Guangzhou during the analyzed period (Zhu et al., 2016). In Berlin, on 
the contrary, the post-reunification period was mainly characterized by 
first a partial abandonment of rail areas and then by a subsequent 
re-development combining densification and greening (Wellmann et al., 
2020b). However, positive abrupt changes prevailed only in the first 
decade, while the overall impact of abrupt changes in more recent years 
was negative, reducing the positive effect of gradual changes. 

4.2. A different perspective on urban vegetation dynamics 

The results presented for the city of Berlin are illustrative of the new 
perspective on urban vegetation dynamics offered by our analysis. We 
highlight here three main aspects in which our approach differs from 
other approaches commonly adopted to analyze urban greening trends, 
and discuss their relevance for monitoring vegetation dynamics in urban 

areas. 
A first aspect is that the analysis based on remote-sensing data covers 

the whole city, contrary to other studies on urban greening that often 
focus on specific types of areas or selected land use classes (e.g., Kabisch 
et al., 2016). Considering only gains and losses in the extent of parks or 
green areas available for public use (net of all the specific barriers that 
may prevent access, see Wolff et al., 2022) fails to capture many other 
components of the urban green infrastructure that are smaller or inte
grated in prevalently non-green areas. Among others, these include 
domestic gardens, street trees, and green roofs, which contribute sub
stantially to the provision of ecosystem services within the city and are 
increasingly targeted by specific urban greening policies (Dong et al., 
2020; Goddard et al., 2010; Lin and Wang, 2021). Indeed, NDVI started 
to be used as an indicator in urban areas to respond to the need of 
investigating not only the quantity and extent of publicly available green 
areas, but the overall “greenness” to which the population is exposed 
(Gascon et al., 2016). 

A second feature of our approach is that it analyzes the continuous 
temporal evolution of vegetation dynamics, as opposed to comparing 
only the values in selected years. The study of the temporal evolution of 
NDVI has recently gained popularity in the scientific research thanks to 
the availability of longer series of remote-sensing imagery and of plat
forms to handle them (see e.g., Corbane et al., 2020; Du et al., 2019; Sun 
et al., 2011). Besides reducing the effect of potential errors that might 
affect individual values, considering the whole trend is of great help in 
the interpretation of the observed changes, since it can reveal if they are 
linked to slowly evolving processes or to specific events. Despite the 
interesting insights that it produces, this type of analysis has been rarely 
applied in urban areas. The few urban applications of BFAST, possibly 
the most popular algorithm for NDVI time series segmentation and break 
point detection, all focused only on identifying abrupt changes linked to 
land cover transitions, disregarding any information about gradual 
changes (Chaudhuri et al., 2022; Pandey et al., 2018; Tsutsumida et al., 
2013). On the contrary, methods based on linear approximations tend to 
emphasize gradual changes and do not capture the presence and impact 
of individual events. 

Linked to the previous aspect, a third key feature of the proposed 
approach is that it can detect multiple break points during the analyzed 
period, corresponding to different abrupt changes. This aligns with the 
concept of non-linearity of land transitions (Pandey et al., 2018) and 
with the observation that interrupted and reverted trends are not un
common, especially in urban areas undergoing fast alterations in pop
ulation dynamics and respective land demand/(over)supply dynamics 
(Chaudhuri et al., 2022; Zhu et al., 2016). While this non-linearity is 
generally assumed for land use changes, we extended the approach to 
local vegetation dynamics, which are not necessarily linked to land use 
transitions. In Berlin, around 20% of the pixels show at least one abrupt 
change during the period between 1988 and 2017, and 2.85% more than 
one. 

These results question the use of linear approximations, such as 
linear regressions or the Sen’s slope, but also of other approaches like 
the Hurst exponent (Geng et al., 2022; Jiang et al., 2015), which predicts 
future trends based on the long-term memory of time series. Those an
alyses are suited to capture the overall trends of NDVI dynamics at the 
city scale (Corbane et al., 2020), where our results show that gradual 
changes prevail in terms of area involved and impact produced. Linear 
approximations can also be instrumental to reveal hotspots of (positive 
or negative) change in specific urban areas (Zulian et al., 2022). How
ever, they fail to capture non linearities and trend reversions (i.e., abrupt 
changes), which produce the greatest impacts at the local level. The 
proposed algorithm therefore fills a gap in the methods available to 
quantitatively estimate changes at the small (down to the pixel) scale, 
where the assumptions underlying the results of linear approximations 
do not always hold. 
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4.3. Peculiarities and limitations of the proposed algorithm 

To distinguish between gradual and abrupt changes in NDVI time 
series, the proposed algorithm builds on previous approaches for break 
point detection and segmentation (Jamali et al., 2015; Kennedy et al., 
2010), with BFAST (Verbesselt et al., 2010) being the main conceptual 
reference for the development of our approach. We note here some key 
similarities and differences, and discuss some limitations of the pro
posed algorithm of which potential users should be aware. 

Considering the type of input data, the proposed algorithm has been 
purposely designed to work on NDVI annual greenest pixel composites, 
contrary to other algorithms such as BFAST developed to analyze dense 
time series (Verbesselt et al., 2010). This implies a loss of information 
related to phenological cycles, but eliminates the associated seasonal 
correlation structure, hence the need for a computationally-intensive 
decomposition of the time series into seasonal and trend components. 
As a result, the algorithm is simpler and faster, and the amount of input 
data that the user must provide is reduced by at least a factor of 10. The 
number of outputs is also reduced, and their interpretation is more 
straightforward, which is an important aspect in view of their potential 
use for policy support. In fact, previous applications in urban areas seem 
to suggest that, if the user is not interested in characterizing the 
phenological cycle, the results of a decomposition such as the one per
formed by BFAST might be difficult to interpret. For example, authors 
were uncertain whether the most suitable piece of information to detect 
land cover changes was the seasonal (Tsutsumida et al.,2013; Pandey 
et al., 2018) or the trend component (Chaudhuri et al., 2022). 

Compared to dense NDVI time series, time series of the annual 
greenest pixel composites are more scattered and may be affected by the 
presence of artifacts due, for example, to masked or missing values 
corresponding to the best conditions during the year. This might intro
duce some errors in the analysis. However, the comparative test per
formed by Forkel et al. (2013) suggest that it is reasonable to expect only 
a marginal loss of overall performance when annual aggregate values 
are used instead of full seasonal series. Moreover, the potential effect of 
artifacts and outliers in the series is mitigated in two ways: i) upstream 
in the selection of input data, by using the median of the greenest pixel 
values from the different Landsat missions running in the same year 
(Zulian et al., 2022; Corbane et al., 2020), and ii) by the segmentation 
approach that does not allow for isolated points. 

Another feature of the proposed algorithm is that it does not require 
any specific parameter to be defined by the user. The only parameter 
that can be adjusted relates to the maximum number of “potential” 
break points that can be detected in the first step of the process, but the 
limit is not strict and the process of testing and validation, which con
siders both a null and a linear model, may produce a larger number of 
final break points. Other algorithms offer more possibilities of custom
ization. For example, DBEST workflow includes both a trend general
ization and a detection algorithm, and the user can control them through 
several parameters, including the generalization percentage, the num
ber of required changes and the change threshold (Jamali et al., 2015). 
Considering the potential use of the algorithm for policy monitoring, we 
believe that a process that does not require tailoring and customization 
is more usable and credible, since it is easy to run in different contexts 
and ensures reproducibility of the results. 

The users should also be aware that, as all other algorithms for break 
point detection and segmentation of time series, also our algorithm runs 
at the pixel level. This prevents errors to spread and guarantees that the 
overall results are produced and valid even if the processing of specific 
pixels encounters some issues or cannot be performed. The drawback is 
that spatial proximity, which can be used as an additional information to 
check the results of close-by pixels likely characterized by contempo
raneous changes, is not considered. 

Finally, it should be noted that, in the described application, we have 
refrained from setting any general threshold for abrupt changes. Any 
statistically significant break point has been retained in the results, 

irrespective on the change in the associated NDVI values. The reason for 
this decision is that, due to the 30 m resolution of the input data, pixels 
in urban areas usually include a mixture of land covers, of which 
vegetated areas are often only a portion (Welmmann et al., 2020b). 
Hence, NDVI values are often small, and the intensity of change is also 
small. The only limitation that we included was a minimum change of 
0.1 for pixels with an NDVI value above 0.6, mainly corresponding to 
forests. This correction was added after a first validation of the results in 
Berlin and helped to remove many break points that seemed unrelated to 
any real change in vegetation. The validation of the results presented 
here still revealed uncertainties related to break points in forested areas, 
which could not be linked to any visible change in land cover. This 
aspect requires further investigation. The possibility and implications of 
setting an absolute or relative threshold below which changes associated 
to break points are considered as not significant should also be explored 
in further applications. 

4.4. Potential use for policy monitoring 

In order to use indicators derived from NDVI trends for policy 
monitoring, we need to connect the observed trends to their specific 
drivers. Our validation confirmed the hypothesis that abrupt changes 
are linked to changes in the extension of vegetation coverage, i.e. to land 
cover changes. This was a common assumption already tested in pre
vious studies (Chaudhuri et al., 2022; Pandey et al., 2018; Zhu et al., 
2016). Positive abrupt changes correspond to the implementation of 
new green infrastructure, such as parks or green roofs. Negative abrupt 
changes are associated to the removal of existing vegetation, mostly due 
to soil sealing and construction. Only for some validation points located 
in forest areas it was impossible to link the abrupt changes detected by 
the algorithm to any visible change in the extension of vegetation 
coverage. 

We also hypothesized that gradual changes are linked to vegetation 
growth or degradation, the latter recently observed in the form of tree 
crown dedensification after summer droughts (Haase and Hellwig, 
2022). While we could not test this assumption systematically, evidence 
obtained by comparing historical pictures and by checking familiar 
places around the city confirms that positive gradual changes corre
spond to vegetation growth or succession in existing green or 
partly-green areas, such as abandoned ruderal brownfields and succes
sion sites (Wolff et al., 2023). This interpretation is also supported by the 
observation that positive gradual changes often follow the establishment 
of new green areas, suggesting that vegetation -and especially tree- 
growth plays a key role in driving gradual changes. 

Previous studies that observed a greening trend in cities have pointed 
at the role of anthropogenic factors and specific urban environmental 
conditions in enhancing vegetation activity, resulting in faster growth in 
urban areas than in their rural counterparts (Pretzsch et al., 2017). These 
factors include warmer temperatures (especially at night) due to the 
urban heat island, which can extend the length of the growing season 
(Dallimer et al., 2016; Zipper et al., 2016), lower ozone concentration 
that limits vegetation growth at rural sites (Gregg et al., 2003), as well as 
greater concentration of tropospheric CO2 and higher deposition of at
mospheric nitrogen that promote faster metabolism (Searle et al., 2012; 
Zhao et al., 2016). 

The fact that similar NDVI changes and trends have been observed in 
distant cities and urban areas across the world have often led authors to 
emphasize large-scale drivers, such as the effect of CO2 fertilization. 
However, it is important to note that associating gradual changes to 
vegetation growth does not mean that they are not correlated to 
anthropogenic processes. This is clearly demonstrated by our results on 
the temporal evolution of the changes. The peak in the frequency and 
total amount of positive abrupt changes observed in 1992 is also re
flected in the evolution of gradual changes, which shows a sudden in
crease in 1993, when the small trees planted in the new green areas 
started to grow. On the other hand, while land cover changes in cities are 
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mostly due to human interventions, we must be aware that natural 
events such as fires, floods, or landslides, can also modify the extent of 
vegetation coverage, although the impacts of such phenomena on urban 
vegetation is still to be quantified. 

The information produced by our approach can support the moni
toring of urban greening policies, revealing both the short-term and 
long-term impacts of their implementation. Combining the results with 
data on land uses and human activities, as done by Hwang et al. (2022), 
can be a way to strengthen the identification of the underlying drivers. 
The possibility of dating the abrupt changes and associating the gradual 
changes to a specific period is certainly helpful in this endeavor. The 
results produced by the algorithm can therefore complement quantita
tive information on the extent of (public) green areas, and enrich with 
spatial and temporal details the outputs of other methods that provide 
only an overview of the main trends. 

5. Conclusions 

Urban greening policies are rising their targets, with actions that 
permeate the whole urban environment. Earth observations provide a 
wealth of data that can be used to investigate vegetation dynamics, but 
supporting policymaking requires innovative methods able to synthesize 
the information into useful indicators (Wellmann et al., 2020a). The 
proposed algorithm has been purposely designed to analyze time series 
of NDVI greenest pixel composites, which represent the “greenness” 
recently identified by the EU-wide methodology to map and assess 
ecosystem condition as a key structural ecosystem attribute to monitor in 
urban ecosystems (Vallecillo et al., 2022). We believe that the spatially- 
and temporally-explicit perspective offered by the results, as illustrated 
by the application to Berlin, can be a step forward in the monitoring and 
interpretation of urban vegetation dynamics and of the urban develop
ment trajectories that they reflect. More applications are needed to 
further validate the approach and the interpretation of the outputs in 
different contexts, and to compare the algorithm with alternative 
methods applicable to the same dataset. 

Funding 

CC and DG received funding from the Alexander von Humboldt 
Foundation. DH was supoorted by the project BiNatUr: Bringing nature 
back - biodiversity friendly nature-based solutions in cities, funded 
through the 2020–2021 Biodiversa and Water JPI joint call under the 
BiodivRestore ERA-NET Cofund [grant agreement: 101003777]. DH’s 
work additionally benefitted from the project CLEARING HOUSE, fun
ded by the European Union’s Horizon 2020 research and innovation 
program [grant agreement: 821242], and from the project Natur
aConnect - Designing a resilient and coherent Trans-European Network 
for Nature and People, funded by the European Union’s Horizon Europe 
research and innovation program [grant agreement: 101060429]. 

CRediT authorship contribution statement 

Chiara Cortinovis: Conceptualization, Methodology, Software, 
Validation, Formal analysis, Visualization, Data curation, Writing - 
original draft, Writing - review & editing. Dagmar Haase: Conceptu
alization, Validation, Formal analysis, Methodology, Writing - review & 
editing. Davide Geneletti: Conceptualization, Formal analysis, Meth
odology, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Research data statement 

The input data and the code to reproduce the results are available 
open-access at the following links: doi:10.6084/m9.figshare.23668842 
(input data), doi:10.6084/m9.figshare.23668941 (code). The maps are 
available for download in raster format at the following link: 
doi:10.6084/m9.figshare.23669142. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.ufug.2023.128030. 

References 

Abutaleb, K., Freddy Mudede, M., Nkongolo, N., Newete, S.W., 2021. Estimating urban 
greenness index using remote sensing data: a case study of an affluent vs poor 
suburbs in the city of Johannesburg. Egypt. J. Remote Sens. Sp. Sci. 24, 343–351. 
https://doi.org/10.1016/j.ejrs.2020.07.002. 

Adem Esmail, B., Cortinovis, C., Suleiman, L., Albert, C., Geneletti, D., Mörtberg, U., 
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