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Abstract: Meandering rivers are complex geomorphic systems that play an important role in the
environment. They provide habitat for a variety of plants and animals, help to filter water, and reduce
flooding. However, meandering rivers are also susceptible to changes in flow, sediment transport, and
erosion. These changes can be caused by natural factors such as climate change and human activities
such as dam construction and agriculture. Studying meandering rivers is important for understanding
their dynamics and developing effective management strategies. However, traditional methods such
as numerical and analytical modeling for studying meandering rivers are time-consuming and/or
expensive. Machine learning algorithms can be used to overcome these challenges and provide a
more efficient and comprehensive way to study meandering rivers. In this study, we used machine
learning algorithms to study the migration rate of simulated meandering rivers using semi-analytical
model to investigate the feasibility of employing this new method. We then used machine learning
algorithms such as multi-layer perceptron, eXtreme Gradient Boost, gradient boosting regressor, and
decision tree to predict the migration rate. The results show ML algorithms can be used for prediction
of migration rate, which in turn can predict the planform position.

Keywords: meandering river; machine learning; morphodynamics; planform prediction

1. Introduction

The term “meandering river” refers to the natural process that many lowland single-
thread rivers go through as a result of intermittent erosion and accretion of streamwise
opposite banks, giving these rivers their characteristically wavy pattern [1,2]. Stated differ-
ently, the majority of alluvial rivers tend to meander as they run downslope [3]. Numerous
factors, including vegetation, sediment supply, flow conditions, and the geological features
of the channel margins, influence the evolution of platforms [4]. As it can be seen in
Figure 1, the satellite images of four different meanders (free and confined meandering
rivers) show some of the morphological and geological features typical of meandering
rivers. Because of the spatial patterns of flow and sediment transport, meander bends
shift laterally as a result of increased flow velocity at the banks’ toe, which makes the flow
capable of removing the bank material that fails from steep, concave banks and that is
further deposited on mild, convex banks further downstream during floods [2,5,6]. This
meandering process is accelerated not only by the alteration in flow velocity that removes
material from the banks, but also by the presence of secondary helical flow that occurs in
the bends (e.g., [7]). The secondary flow is produced by the combination of the transverse
pressure gradient (caused by the transverse slope of the water surface), the vertical gradient
of the main flow velocity, and the centrifugal force caused by the curvature of the channel.
The principal longitudinal flow and its transverse circulation combine to create the helical
flow characteristic of meander bends [8]. When a bed lacks cohesion, as typical of alluvial
channels, the secondary flow pushes sediment particles inward, creating a transverse bed
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slope [8] and promoting lateral meander migration through alternate sequences of convex
bank advance and opposite concave bank retreat.

Figure 1. Examples of fluvial meandering pattern. (a) Rio Mamore, wandering in alluvial fans in
Bolivia, (b) Rio Santa maria evolving in a flat valley in Brazil, (c) Reka Chuya, constrained moderately
in confinement in Altai republic, Russia, and (d) White river developing in a confined valley in south
Dakota, US. Source: Bing.com/maps.

Prediction of the lateral migration rate of meandering rivers has been partially achieved
through physics-based analytical and numerical approaches [9-13]. On one hand, numeri-
cal solutions are heavily time-consuming in the same case study compared to analytical
solutions, but they can provide more accurate representation of the system behavior [14].
On the other hand, analytical solutions provide more approximate representation of the me-
andering processes because of their simplifying assumptions, but they facilitate exploring
the behavior of the solution in the parameter space and also understanding the role of the
different parameters on the processes [3,5,15-17]. Although the current models are effective,
they are time consuming and computationally demanding, which makes it necessary to
investigate alternative data-driven approaches. Moreover, the continuous global collec-
tion of hydrological and river morphology data is an invaluable resource for developing
data-science-based methodologies, as well as for validating models. Comprehensive hydro-
logical data (drainage, sediment properties, etc.) is gathered in certain areas in conjunction
with remotely sensed imagery, which has 16-day update intervals and worldwide coverage.
With the help of this extensive information, it may be possible to pinpoint recurring trends
in river morphology, which could lead to more accurate predictions. Furthermore, the
intrinsic uncertainty and complexity of natural systems frequently make it difficult to fully
parameterize all pertinent aspects in conventional models. However, a more manageable
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way to include these significant aspects into future predictions of river evolution is through
data-driven methodologies.

Only very recently have the growing, promising methods of artificial intelligence (Al
hereafter) been considered in the context of geomorphological processes through machine
learning (ML hereafter), but little attention has been given so far to its use for meandering
river migration [18-21]. The aim of the present work is to explore the feasibility of using
ML methods for the prediction of meander migration rate.

To determine whether employing machine learning (ML) methods is feasible for this
purpose, we focus on replicating idealized meandering planform using semi-analytical
models (based on the solution proposed by [3] and developed by [15]). It is based on a fully
coupled hydrodynamic and morphodynamic model that has been shown to realistically
reproduce many commonly observed of meandering bend shapes and their evolutions
(complex bends, simple bends, and multiple loops), consistently with observations in
alluvial meanders (e.g., [5,22,23]).

This work examines the growing topic of meandering river morphodynamics, where
artificial intelligence (Al) models are being applied. This research is driven by two main
motivations. First, there is still much to learn about the effectiveness and potential of Al
models in this field. Second, the numerical prediction models that are now in use are
computationally expensive despite their excellent accuracy. The primary goal of recent Al
developments in many engineering disciplines has been to maximize model accuracy [24].
Notably, Al model development and assessment have not yet reached the field of river
morphodynamics. This work, which is a trailblazing endeavor in this field, focuses on
using Al to infer river centerline motion. Our goal is to determine the relationship between
important flow- and planform-dependent factors and centerline migration. These variables
include the reach-averaged dimensionless parameters and the spatial series of the channel
centerline curvature, which characterize the hypothetical uniform flow in a straight channel
with the same hydro-morphological features.

2. Material and Methods
2.1. Planform Evolution Processing

The simulations were conducted using the semi-analytical MCMM model [15], which
enables the complete range of morphodynamic regimes (sub- and super-resonant) typical
of single-thread meandering rivers to be reproduced. We ran simulations taking into
account a laterally unconfined homogeneous floodplain for each combination of the relevant
input dimensionless parameters, enabling the meander belt to grow naturally. The input
parameters are the dimensionless Shields stress (sediment mobility parameter) and the
relative roughness (i.e., the ratio of the median grain size to the uniform flow depth), which
were set to typical values of 0.1 and 0.01, respectively (e.g., [25]). The third dimensionless
input parameter is the half-width to depth ratio, and it was adjusted within the range of
10-50 to encompass both the super-resonant and sub-resonant regimes.

River meandering patterns are the result of the mutual interaction between water
flow, riverbed dynamics, sediment transport and of the interplay between the channel and
the nearby floodplain, which can be summarized by the processes of floodplain removal
by bank erosion and floodplain formation through bank accretion and further riparian
vegetation establishment [26]. Meandering is one of the most complex and highly dynamic
processes occurring in sedimentary riverine environments [2,5,27]. The characterization of
meandering rivers has been a subject for researchers throughout the past decades in both
river engineering and geomorphological investigations (e.g., [1,11]). It is now established
that rivers” hydrodynamics erode sediments in an outer, concave bank, a so-called cut bank,
and deposit the eroded sediments on an inner, convex bank, thus creating a so-called point
bar, due to the curvature of streamlines that develop in the flow field and that have been
shown also theoretically to result from a “bend instability” process [16]. Moreover, the
channel curvature forces a secondary helical flow circulation on a cross-sectional plane,
which affects the energy that is transferred by the river flow [7]. Cornerstone studies [3,16]
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could analytically model a meandering river. They were able to establish relationships with
the Fourier series to obtain the amount of displacement of the centerline and the speed of
its movement. Firstly, the reference system from a Cartesian system of (x*, y*, z*) should
change into an orthogonal system of (s*, n*, z*), and the dimensional quantities like the
geometry of the channel should be dimensionless.

Researchers in the study [28] illustrated that the planimetric evolution at the generic
location “S” along the river axis is expressed by the integro-differential equation, which is
solved analytically if the planform is sine-generated, below:

9 90 90 [*08
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where the lateral migration rate is ¢ and should be scaled with some typical speed U
(average uniform flow speed). Also, in dimensionless form of the relations, the migration
rate equals to:

{ = EU, ()

where E is a dimensionless erosion coefficient and U, = U, /Uy is dimensionless excess
near-bank velocity.

The prediction of the lateral meander migration rate in meandering rivers is examined
in this work. The method makes use of a semi-analytical model that makes use of later
planform data gleaned via simulations. A constant lateral migration coefficient acts as
a mediator between the lateral migration rate and the excess near-bank velocity (with
respect to the mean cross-sectional velocity) in the model (Figure 2b). The framework for
computing the (x, y) coordinates of a generic point on the meander centerline at a future
time step (k + 1) using the migration rate (z) and the prior coordinates at time step (k) is
shown in Equations (1) and (2). Additionally, the angle between the centerline tangent and a
set reference direction (such as the x-axis) is included, which is known as the local meander
direction angle (). The model predicts the position of the planform in the following time
steps by fusing data from the previous time step with the direction and rate of migration.
The new centerline position, which is essential to determining the planform placement, is
calculated numerically. This is accomplished by multiplying the projected values by the
coefficient of lateral migration and then entering the results into Equations (3) and (4).
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The models that have been used for this study are based on different components/pillars.

The mathematical framework is based on the combination of existing theories developed
by [3,16], i.e., The equations that describe the planform migration in time. As was previ-
ously mentioned and shown in the Figure 2, the model employs dimensionless forms of the
equations to ensure scalability and applicability to various river systems. The numerical
solution is used to discretize the centerline into a series of points, and the migration of these
points is calculated using finite differences. In terms of handling cutoffs and floodplain
features, this model simulates the natural processes such as neck cutoff, where bends in
the river are approaching each other and forming an oxbow lake. Since it is highly impor-
tant to differentiate between geomorphic units on the floodplain, this model is capable of
handle differing oxbow lake scroll bars, each with their own erosion characteristics (for the
mathematics behind this, readers are recommended to check [3,15,23].
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Figure 2. In the numerical and analytical solutions there are: (a) a reference system and notations for
a river planform and the cross section and (b) a schematic migration of a point on the channel axis be-
cause of displacement from the last timestep centerline position and new timestep centerline position.
Through this system of notation and planform migration, it is possible to calculate the migration.
In the plot (b), the dashed line shows the last position of the bend, the solid blue line illustrates the
current position of the bend. Also, in the plot (a), the asterisk shows dimensionless parameters.

2.2. Artificial Intelligence (Al)

Substantial improvement has recently been made in the use of artificial intelligence
(after this Al), machine learning (hereinafter ML), and, more recently, deep learning (here-
inafter DL) for the modeling of natural phenomena [29,30]. Concisely speaking, to track
the subjects from leaf to root, DL is a subset of ML and ML itself is considered a subclass of
Al Recently, the availability of a large number of multi-temporal datasets coupled with the
development in algorithms and the exponential increase in computing power has led to
a remarkable surge of interest in the topic of artificial intelligence, from ML [31] to deep
learning [20,30,32]. Artificial neural networks (ANNSs) are computer techniques that mimic
how human brains function [24,33,34]. They do not need to be specifically programmed to
adhere to regulations in order to accomplish their tasks [24]. In a nutshell, ANNs are made
up of units that communicate information through synapses. These components, which
resemble the nervous system, are referred to as “neurons”. In mathematical terms, a neuron
functions as a parametrized, nonlinear system that takes in input data from the outside
environment and produces an output, like the values of a target variable. An outline for the
artificial neural network is shown in Figure 3. The image illustrates the different machine
learning models, multi-layer perceptron, eXtreme Gradient Boosting, and decision tree
model. The algorithms that have been shown in the Figure 3 illustrate the process for every
ML method from loading the data to the model deployment. This study used a variety
of ML techniques, including multi-layer perceptron (MLP), eXtreme Gradient Boosting
(XGBoost), gradient boosting resgressor (GBR), and decision tree (DT) [20,30,35,36]. To
enlighten how schematically input data comes to the model until, it is compared with
output data. Figure 3 shows, for example, the decision tree, where every branch is an an-
swer of yes or no and goes to another branch until reaching the result. The artificial neural
network architectures that are most commonly used are multi-layer perceptrons (MLPs).
Backpropagation techniques are used to iteratively traverse the network with data in order
to minimize overfitting and attain maximum accuracy [37,38]. The most common paradigm
for network education is supervised learning. Learning in the context of artificial intelli-
gence involves minimizing the difference between the output values that are predicted and
the actual values. Finding local minima in this optimization process entails experimenting
with different hyperparameter setups, which in turn affects computing cost. eXtreme
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Gradient Boosting, or XGBoost, is a potent method for regression work. It is particularly
good at creating decision tree ensembles in which each tree aims to fix the mistakes of the
preceding ones (Figure 3b). By using a step-by-step method, you may create a strong model
that can identify intricate correlations in your data [39]. The versatility of XGBoost and its
speedy processing of big datasets are its main advantages. It also offers useful features like
regularization to avoid overfitting and perceptive tools to determine which aspects have
the biggest impact on your forecasts [40-42]. GBR, or gradient boosting regressor, uses an
ensemble learning methodology that is sequential. Every iteration creates a weak learner,
usually a shallow decision tree, by fitting to the loss function’s negative gradient in relation
to the current ensemble’s predictions [43,44]. Compared to alternative boosting algorithms,
this method has been empirically shown to provide competitive predictive performance
with fewer base learners. Unfortunately, due to the sequential nature of tree construction,
GBR has several limitations, such as its sensitivity to overfitting and the possibility of
performance decrease as a result of this sequential process [43,45]. Decision tree (DT) is
another ensemble learning algorithm. In decision tree frameworks, statistical performance
indicators like accuracy are given priority during the model selection process [46,47]. All
data-driven methods, meanwhile, might not necessarily produce the best model. Although
decision trees have a high degree of statistical power, little study has been conducted to
improve end-user interpretability. Decision trees frequently yield good statistical validation
in environmental applications, but their intricacy makes implementation difficult. In a
sense there is a trade-off, where a more interpretable, simpler model with 5 leaves may
not be chosen over a statistically superior one with 29 leaves, with the accuracies of 0.958
and 0.959, respectively [48]. Moreover, in order to evaluate the prediction procedure and
enlighten the machine learning model in the prediction phase, we have used interpretability
model, in this case “SHAP value”. In essence, SHAP values indicate the contribution of
each feature to a particular model prediction.

The input data, as has been mentioned earlier, is the output of a semi-analytical model
that is designed for the planform evolution developed by [15]. This model is a further
development of the analytical solution that was performed by [3]. This model produces
planforms in different time steps and the first/initial time steps cannot be used as they
have not reached the steady state condition. After employing an ADF test, it turns out
that after time step 180 the condition is the steady state. The models are trained with one
time step divided into train, test, and validate datasets. Then, the model is used to predict
the near-bank velocity in the next time step. The input in this training is X, Y, the intrinsic
coordinate system S, theta (angle), curvature, and Excess Near-Bank Velocity.

It is important to ensure that the input and output data are correlated when using
machine learning (ML) and to eliminate redundant data from the dataset. Many strategies
are used to accomplish this task; in this study, the correlation between the characteristics
of the water quality role players—which demonstrates the impact of each input data on
the output data—was taken into consideration. This has to do with the fact that various
predictor combinations can make a big difference in how well the target is predicted. A
“correlation matrix” is a typical way to describe the relative weight of each parameter in
the prediction of other parameters of interest.

To guarantee the best performance, the model architecture must be optimized. This
means figuring out which hyperparameters have a significant impact on the dataset’s
pattern replication, recognition, and learning process [42]. There are several hyperparam-
eter optimization methods available to do this. The most appropriate hyperparameter
configuration was found in the current investigation by using Grid Search, and for ev-
ery model this has been employed; the optimum architecture has been shown in Table 1.
Within the architecture development in every ML model, one of the key role players is the
activation function. The activation function ensures the knowledge transfer from the input
until reaching the output. This knowledge transfer is conducted based on the number of
iterations that is set. For example, in the multi-layer perceptron model, there are a couple
of activation functions that are performing this knowledge transfer. In this study, for MLP,
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Input Layer

the optimum activation function based on the grid search was the hyperbolic tangent or
“Tanh”. This function transforms the value of an element to the interval between —1 and 1.
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Figure 3. General scheme for (a) multi-layer perceptron model including the layers and how they

are connected. The number of hidden layers can vary depending on the optimum architecture.

(b) An overview on the XGBoost algorithm and Gradient Boosting Algorithm, which are ensem-

ble learning models and (c) how the decision tree algorithm tries to find the best prediction in

regression/classification problems using sub samples. The colors in the plot (c) are hypothetical but

basically it tries to show that in the decision based models, there are differences between answers

that makes the branches and the whole tree and final result comes based on the comparison between

the prediction and the actual data.

Table 1. Comparison of different supervised\architectures including MLP, XGBoost, gradient boost-

ing regressor (GBR), and decision tree (DT).

MLP
Activation function =~ Alpha Hidden layer size Solver
Tanh 0.0005 10 Ibfgs
XGBoost
Learning rate Max depth Objective Sub sample Col sample Min child weight
0.2 Uniform Auto 40 2 Minkowsiki
Gradient Boosting Regressor (GBR)
Min sample split Min sample leaf Max variable Learning rate Number of estimators ~ Sub sample
6 Uniform Auto 0.1 150 Minkowski
Decision Tree
Criterion Max depth Splitter ccp_alpha
Friedman_mse 5 Best 0.1
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Load Data

Also, the training method (optimizing algorithm) for this method, as can be seen, is
“lbfgs”, which stands for “Limited memory Broyden Fletcher Goldfrab Shanno”, a quasi-
Newton method that approximates the Hessian matrix using past gradient information.
In the decision tree method, also the criterion that has been chosen is “friedman_mse”,
which is used to measure the impurity of a node and guide the decision tree’s splitting
process. It basically mixes two different concepts: (a) minimizing or lessening the MSE,
and (b) focusing on the enhancement. This goes beyond simply calculating the MSE, while
in every step it tries to reduce the MSE that is achieved in previous steps. This process of
training, testing and comparing with the actual data is shown schematically in the Figure 4
as the flowchart or the pipeline.

Prep! Data I I Train Model l—bl Evaluate Model l—bl Optimize Hyperp. I I Deploy Model |

Figure 4. The general pipeline/flowchart for the data analysis that is performed in this study. In
other words, the journey from loading the input data to deploying the model in every machine
learning algorithm.

In order to project the localized migration rate at a given spatiotemporal coordinate s’
along the centerline of a meandering channel, this study used a two-stage methodology.
Two artificial, theoretically derived channel centerlines that have been produced using a
semi-analytical model were used to train the machine learning models.

A meander dynamics simulator was used to create a large ensemble of simulated
centerlines from which the training channel centerlines were chosen. The following non-
dimensional control parameters were used in the simulations: r (r) = 0.5,  (aspect ratio) = 10,
0 (shields parameter) = 0.1, and ds (relative roughness) = 0.01. In addition, the two chan-
nel shapes were selected based on steady state condition, in the sense that the selected
planforms are after reaching steady state condition.

Three metrics of Mean Absolute Error (MAE), Root-Mean Square Error (RMSE), and F1
Score (Score) were employed in this study to assess and compare several machine learning
models. The formulae for these measures are provided below:

1 n
RMSE = Ei—zl (H, — Hp)/ (6)
MAE = Y| (H, ~ Hy)], 7)
i=1

2 X Precision x Recall
F1 Score = Precision x Recall ®)

where H, is the observed data, H, is the data predicted (or simulated data) by the ML,
and n is the total number of observed data (or actual data). As a gauge of a test’s accuracy
in machine learning, the F1 Score is the harmonic mean of the precision and recall. The
precision is calculated by dividing the number of true positive results by the total number
of positive results, including those that were incorrectly identified. The recall is calculated
by dividing the number of true positive results by the total number of samples that should
have been classified as positive. The more accurate the model, the closer it is to zero for the
RMSE and MAE measures and to one for the Score measure.

For every pair of centerlines used in the training process, a 70/30 data split was
used; each centerline normally comprised about 1000 data points. Because of this random
selection, the 70% training data included points with a variety of attributes that were
dispersed along the whole centerline. The second analytical phase involved reserving 30%
of the data points from these identical centerlines for model testing. In order to evaluate
the model’s competency, the migration rate for a future time step was predicted using just
planform data from the previous time step. The model’s generalizability was then verified
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using an external validation phase. This entailed giving the model a totally new planform
that it had never seen before during training and giving it the responsibility of forecasting
the migration rate based on historical time step data.

3. Results and Discussion

As has been mentioned earlier, the dataset was divided into different parts, including
the train dataset with the portion of 70 percent and 30 percent for validation and testing.
Also, after ensuring the model’s results using the split dataset, the external validation was
used. The first set of results is related to the divided dataset. The distributions of the three
important factors in meander planform evolution have been shown in the Figure 5. All
three distributions appear to be unimodal, meaning they have a single peak. The curvature
distribution has its peak at around 0.5, while the theta and near-bank distributions have
their peaks closer to 0.

Normalized Distribution of Curvature = Normalized Distribution of Theta  Normalized Distribution of Near-ban

60 60 60

50 50 50
40 40 40
3 3 3
© 30 © 30 © 30
20 20 20
10 10 10
0 0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Curvature Theta Near-bank

Figure 5. An illustration of the normalized distribution of “Theta”, “Curvature”, and “Near Bank
velocity”.

The correlation of all investigated components with respect to the target, which is
“Near Bank velocity”, as assessed according to the Pearson correlation coefficient method;
the results are presented in Figure 6. It shows the Pearson correlation coefficient between
six variables: near bank, curvature, X, theta, Y, and S. The color intensity in the heatmap
indicates the strength and direction of the correlation. The curvature shows a negative
correlation, which means that higher theta values are associated with lower chances of
being “Near-bank velocity”.

We train the models using the simulated meander data and assess the models’ per-
formances using several metrics. Table 2 shows the results of the models’ performances.
After the regression models were evaluated, it was found that eXtreme Gradient Boosting
(XGBoost) produced the best results in terms of performance measures. The clearly lower
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error
(RMSE) in comparison to the other models serve as proof of this. When taken as a whole,
these measures show that the target variable may be predicted with more accuracy in terms
of the squared and absolute errors. As a result, XGBoost is the model that is best able to
forecast the target values with accuracy. In contrast, out of all the metrics examined, the
multi-layer perceptron (MLP) regressor performed the worst. This indicates that it is not
a good fit for the current regression task. However, the decision tree regressor showed
impressive performance, even if its R-squared (R?) value lagged somewhat behind that of
XGBoost. The low MAE, MSE, and RMSE scores and the high R? value point to a good
balance between the model’s ability to fit the data successfully and its correctness.
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Figure 6. Heatmap matrix visualizing the correlation between different variables on near-bank
velocity based on the Pearson correlation coefficient.

Table 2. The performances of different models based on the RMSE, R2, MAE, and MSE.

Metric eXtreme Gradient Boosting MLP Regressor Gradient Boosting Regressor Decision Tree Regressor
MAE 0.0264 0.2042 0.0424 0.0343
MSE 0.0023 0.0647 0.0054 0.0064
RMSE 0.0475 0.2545 0.0733 0.0802
R? 0.9197 0.4171 0.9516 0.9021

Excess Near Bank Velocity

/

!

A
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By replacing the values predicted by the models with the actual one and comparing
the outcome with the actual values, analysis of the near-bank velocity trend revealed
spatiotemporal fluctuations across various planform points. Figure 7 specifically depicts
the predictions of the target variable (velocity) using different machine learning algorithms.
This velocity, or migration rate, will be subsequently employed within a numerical scheme
to forecast the platform’s position. Visual inspection of Figure 7 suggests a demonstrably
superior performance for the eXtreme Gradient Boosting (XGBoost) model compared to
the other employed machine learning algorithms.

1 . \ -
) __J/\, Ir'l \J/\ fr\\L__J/{ i
\l \\/ \ [U

200 800 1000 1200 1400

Figure 7. The overall trend of excess near-bank velocity together with 4 different non-linear ML
algorithms. Different colors and different markers represent different machine learning models. This
figure shows the actual and predicted values of near-bank velocity that are used in the numerical
Equations (1) and (2) to predict the planform. The predicted values of near-bank velocity through the
ML models have been replaced with the actual values and, with the remaining actual values, this has
been plotted.

Figure 8 illustrates the residuals and validation curve for the XGBoost model. The
terminology of residuals refers to the difference between the actual target values and the
predicted values from the model. The residuals should ideally be dispersed randomly
about the horizontal line at zero, indicating that the model’s predictions are free from
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systematic bias. Some dispersal is to be expected in the absence of a perfect model, but the
closer the cluster is to the zero line, the better. Also, the validation curve, demonstrates
how a hyperparameter affects the model’s performance (as determined by a scoring metric)
on a validation set. You may determine the ideal hyperparameter value for the model with
the use of the validation curve. The XGBoost model’s maximum depth for each tree is
controlled by the x-axis labeled “max_depth” in the graphic you submitted. Figure 8a,b
confirms that how accurate the model is in terms of prediction.

b)

Validation Curve for XGBRegressor
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Figure 8. (a)The residuals for both the train and test datasets using XGBoost model. This plot shows
the residuals between the predicted value and the actual value and the result shows good accuracy
between prediction and real values (b) Shows the max depth for XGBoost with respect to the score of
the model for both train and test. In the plot (b), the shadows represent the confidence intervals.

This study explores the intrinsic opacity of prediction models for machine learning
(ML), with a focus on platform migration. The conventional methods primarily concentrate
on loading data and using models to achieve target prediction; however, they frequently
overlook the critical step of determining the feature importance inside the underlying
machine learning algorithms. This has the consequence of leaving the reasoning behind
the forecasts mysterious, resulting in a “black box” situation. This research goes beyond
just making predictions. We hope to shed light on the inner workings of the ML model and
clarify the relative contributions of different data qualities (features) to the target prediction
by utilizing feature importance analysis. This comprehensive approach not only facilitates
successful platform migration but also fosters a deeper understanding of the factors driving
the predictive outcomes. The distribution of the SHAP values for curvature and theta, two
characteristics employed in an XGBoost machine learning model, are shown in the Figure 9.
The number of occurrences (data points) that fall within a given range of SHAP values
is shown by the vertical axis, while the horizontal axis represents the SHAP value. The
SHAP values for curvature from —0.6 (negative impact) to 0.2 (positive impact). A value
of 0 denotes that the feature has no bearing on the forecast. The positive SHAP values
on the right side of the distribution imply that the model’s prediction tends to rise with
larger curvature values. On the other hand, the left side, which displays negative SHAP
values, indicates that the prediction tends to decline with decreasing curvature values.
Theta’s SHAP values vary greatly; they might be as low as —0.4 (negative impact) or as high
as 15 (positive impact). The positive SHAP values on the righthand side show that, like
curvature, greater theta values typically result in higher model predictions. It is interesting
to note that the distribution appears to plateau on the right, which could indicate a limit
on how much theta can favorably affect the forecast. The left side’s negative SHAP values
suggest that while high theta values have a favorable influence on the prediction, lower
theta levels might also have a little detrimental effect.
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Figure 9. (a,b)Theta and curvature’s distribution of SHAP values, two variables used in an XGBoost
machine learning model. The horizontal axis shows the SHAP value, while the vertical axis shows
the number of occurrences (data points). This plot tries to open the ML model black box to show how
the prediction of the target which is Excess near-bank velocity is influenced by curvature and how
the curvature and inflection angle is characterized by curvature within this prediction.

In a strictly geometric framework, this paper investigates the possibilities of using
the migration rates predicted by machine learning (ML). Through the integration of these
forecasts into Equations (1) and (2), we develop a procedure to convert the output of the
model into an accurate channel centerline. The really encouraging outcomes show that
this strategy is effective. The calculated centerlines, as shown in Figure 10, show a high
level of agreement with the real platform configurations, indicating the applicability of
this method.

300

200

100

—-100

—-200

-300;

——— Predicted planform
—— Actual planform

T T T T

200 400 600 800
Meander points

1000

Figure 10. Comparison between predicted planform and actual planform in a confined meander reach.
The black line represents the actual planform that was the output of the semi-analytical solution, and
the red line corresponds a planform that is plotted using the predicted values of excess near-bank
velocity. The accuracy between the actual and predicted planforms is reporting the feasibility of using
the model for planform migration prediction.
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A visual comparison of the system’s actual centerline and the expected centerline based
on the migration rate calculation is shown in Figure 10. There is a great deal of agreement
between the two in terms of the general direction of migration. Moreover, the estimated
centerline shows the minimum variations in certain localized places and a strong correlation
with the observed position. These variations could be explained by localized bank material
variability, unanticipated flow disruptions, or the model’s inability to accurately depict
extremely complex meander bends. The calculation of the Root Mean Squared Error (RMSE)
was performed to measure the model’s performance. The resultant value, which is less
than 0.1, indicates that the model’s meander migration predictions are highly accurate.
This translates to an accuracy of about 0.9, meaning that the centerline positions that were
predicted and those that were observed closely match. As demonstrated by the effective
conversion of forecasts into numerical representations of the actual planform using accepted
numerical formulas, this high accuracy is especially encouraging for constrained meanders.
The model’s ability to accurately forecast the centerline migration for limited meanders
provides a solid framework for future improvements. On the other hand, we can expand
its scope to include free-meandering rivers as well, in order to obtain a fully comprehensive
picture of river behavior. Due to their less restricted character, these dynamic systems offer
a valuable challenge that will enable the model to reach its maximum potential.

4. Conclusions

This work investigated the traditionally difficult task of anticipating planform evolu-
tion in meandering rivers using machine earning (ML) techniques. The adopted strategy
effectively used machine learning’s predictive power as a useful tool to measure meander
migration rates. Although more analytical, empirical, and environmental research is still
necessary to identify unanticipated environmental consequences, the computationally de-
manding and time-consuming nature of these studies emphasizes the promise of Al-driven
methods, such as planform prediction, for accurate and insightful river dynamics predic-
tion. As a result, this technology has the potential to assist successful river management
plans. Our results offer initial support for the notion that ML integration can be highly
advantageous for the field of meandering river research, which has not historically applied
state-of-the-art techniques. This opens the door for more advancements in the industry by
taking this useful tool into account.
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