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Introduction

Let X be a smooth and projective curve over an algebraically closed field K
of characteristic 0. A holomorphic triple on X is a triple (E1, E2, ϕ), where
E1 and E2 are vector bundles on X and ϕ is a morphism in Hom(E2, E1).

The study of holomorphic triples has been started by Bradlow and Garćıa-
Prada in [11, 7] where the authors deal with the search for solutions to some
gauge theoretic equations on X obtained by dimensional reduction of the
Hermitian-Einstein equation on X × P1.

For those objects it is possible to introduce a notion of stability, depending
on a real parameter α, and consequently to deal with the moduli spaces of
α-stable triples. These spaces depends on some parameters, as the ranks
and degrees of the vector bundles involved in the definition of holomorphic
triple, besides of course α itself. The main properties of these triples and
of their moduli spaces have been further investigated by the same authors
with Gothen in [8] and, more recently, in [9] and in [12] by Garćıa-Prada,
Hernández Ruipérez, Pioli and Tejero Prieto. Many different problems have
been faced and solved in the papers cited above, in particular the authors
have shown that some constraints on the parameter α must exist in order for
a triple to be α-stable. Moreover, when for some fixed values of the parameters
the moduli space is non empty, irreducibility and smoothness is proved and
a computation for the dimension is provided. Several techniques are used
to achieve these results, but probably one of the most valuable is that of
flips. This method, which takes advantage of the theory of deformations and
extensions for triples, takes care of how the α-stability of a holomorphic triple
varies for fixed ranks and degrees as α varies in the admissible range, hence
with this tool it is possible to prove non-emptiness of the moduli spaces for
particular and convenient values of α (usually for “large” values of α), and
then to extend this result also to the remaining cases.

However, although the general theory developed in the aforementioned pa-
pers is mainly independent of the genus g of the curve X, in fact for some
particular results it is necessary to require that g > 2, since the cases of the
projective line (g = 0) and of elliptic curves (g = 1) deserve some special
treatment. This is due mainly to the fact that in these last two cases stable
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and semistable vector bundles are rare to appear, hence the would-be solver
has to face the problem of the lack of “good” objects to use for building holo-
morphic triples for which it is easier to prove α-stability. Moreover in low
genus the technique of flips described above, even if it is still sensible, unfor-
tunately fails to provide useful information, thus problems like non-emptiness
and irreducibility of moduli spaces in these cases are still open.

The aim of this work is then to try to answer some of the questions here
mentioned precisely in the two cases of the projective line and of elliptic curves.
While we emerge victorious from the challenge with elliptic curves (and in
fact from the results we obtain we are also able to prove analogous results
for bielliptic curves) we can obtain only partial results for the projective line,
which hence deserves some more attention to be rendered in future works.

More in details in Chapter 1 we collect the preliminary definitions and
results concerning holomorphic triples and we present the main results on
their moduli spaces. Here we discuss the constraints on the range of admis-
sible α in order for α-stable triples to exist, we note that even if α is a real
parameter, in fact only a finite number of different moduli spaces exists, and
we introduce the general technique of flips. Also using this technique it is
possible to prove several results on the moduli spaces of holomorphic triples,
such as irreducibility, smoothness and dimension computation.

Chapter 2 introduces the notion of coherent system (namely a pair (E, V )
where E is a vector bundle on X and V is a vector subspace of the vector
space of global sections of E), presents the main theory of these objects and
stresses the relationships between holomorphic triples and coherent systems.

The motivations for this introduction are that the situation for those new
objects is analogous to that of triples: the general theory has been developed
since about 1993 in several papers, but the cases g = 0 and g = 1 deserve
a special treatment. For coherent systems the theory has been improved
recently to cover also these last two cases by Lange and Newstead in the two
papers [15, 16] (and in fact further developed by the same authors in [17, 18]
in the case of curves of genus 0, since the results so far known are not yet
exhaustive). The results we can obtain for holomorphic triples are analogous
to the results obtained in the previously cited papers, and summarized in an
appropriate section of this chapter, hence our interest in them.

Here we discuss briefly also a way of seeing both holomorphic triples and
coherent systems as particular augmented bundles, that is as particular objects
made up with one or more vector bundles on X with some extra data of some
kind (prescribed sections, a map,. . . ). A more comprehensive introduction to
this point of view can be seen in [5], where also other classes of augmented
bundles are taken into consideration.
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Introduction

Chapter 3 is devoted to study the particular case of holomorphic triples
on the projective line. This is probably the most difficult case we take into
consideration, an evidence of this being the fact that the results here obtained
are not completely exhaustive, hence not as good as one would dream. In
fact we are able to obtain some necessary conditions for non-emptiness, but in
general not sufficient conditions. Some particular cases are considered (namely
those corresponding to some particular values for the ranks and degrees of the
two vector bundles) and more precise answers are provided with these extra
hypotheses. The cases n2 = 1 and n2 = 2 are in fact completely solved
and reveal that the necessary conditions previously proved for the projective
line are in fact also sufficient, but, so far, it is not known whether this is
true in general. The results presented in this Chapter have been obtained
in collaboration with Francesco Prantil of the University of Trento; our main
results are the existence of some stronger constraints on the values of the
parameter α in order for α-stable triples to exist (see Propositions 3.2.1 and
3.2.2), the proof of some properties of the general α-stable triple (Theorems
3.3.6 and 3.3.12) and the existence results already mentioned (see Section 3.4).

Chapter 4 deals with the study of the particular case of holomorphic
triples on elliptic and bielliptic curves. The results here obtained are in some
sense more interesting, since for g = 1 it is possible to provide necessary
and sufficient conditions for the moduli spaces of α-stable triples to be non
empty, and in these cases some further properties of the moduli spaces, such
as irreducibility, can be shown. The next natural step is to consider bielliptic
curves, that is curves X which are a double covering through a map f of an
elliptic curve C, to extend (hopefully!) the results on the moduli spaces also
to this case. In fact it turns out that α-stability behaves well in respect with
the double covering map, and hence the main properties of the moduli spaces
of elliptic curves are still true for bielliptic ones. Here we consider also ele-
mentary transformations and investigate how these transformations make the
α-stability of a triple worse. Also in this case one finds out that the elementary
transformation of a sufficiently general α-stable triple is still α-stable. The
results presented in this Chapter have been obtained in collaboration with
Edoardo Ballico and Francesco Prantil of the University of Trento; the main
results are summarized in the following Theorems.

Theorem 1 (Thms 4.4.6 and 4.4.8). Let E1, E2 be polystable vector bundles
with rankE2 < rankE1, and µ(E2) < µ(E1). Then there exists a homo-
morphism ϕ ∈ Hom(E2, E1) such that the triple T = (E1, E2, ϕ) is α-stable
for any α ∈ (αm, αM ). Moreover Nα(n1, n2, d1, d2) is irreducible, smooth of
dimension −n1d2 + n2d1 + 1, for every α ∈ (αm, αM ).
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Theorem 2 (Thms 4.5.4, 4.5.5 and 4.5.10). Let α ∈ R, C be an elliptic
curve, f : X −→ C a double covering with X a smooth curve of genus g > 2,
σ : X −→ X the involution and (E1, E2, ϕ) an α-stable triple on C with E1

and E2 polystable vector bundles with pairwise non-isomorphic indecomposable
direct factors. Then the triples (f∗(E1), f∗(E2), f∗(ϕ)), (F ′

1, f
∗(E2), f∗(ϕ))

and (F ′
1, F

′
2, ψ

′) are 2α-stable, where F ′
1 and F ′

2 are obtained from f∗(E1) and
f∗(E2) making a general positive elementary transformation supported in a
point p ∈ X where f is not ramified.

Chapter 5, in the end, presents some results on coherent systems, in
particular on elliptic and bielliptic curves and on the projective line. Using as
main tools the results of Lange and Newstead [15, 16] some spannedness-like
properties are proved for sufficiently general σ-stable coherent systems. An
existence result is also proved for curves of any genus g using a dimensional
estimation provided by the analysis of rational curves in Grassmannians and
of their Plücker embeddings performed by Ballico in [3]. This can be seen as
a first step of a longer path in the direction of those values of the parameters
which are not yet covered by the general theory summarized in Chapter 2.
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Chapter 1
Holomorphic triples and their

moduli space

In this Chapter we recall the definitions of holomorphic triple on a curve X
and α-(semi)stability and collect some general results on α-stable triples and
on their moduli spaces. The results here presented are independent of the
genus g, only in the last section, where we discuss the main properties of
the moduli spaces of holomorphic triples, we will require g > 2, since some
results regarding non-emptiness and irreducibility rely on some dimensional
estimations which in fact do not work for g = 0 or g = 1. For more details on
the result here collected refer e.g. to [5, 7, 8].

1.1 Setting

Let X be a smooth and projective curve over an algebraically closed field K
of characteristic 0.

Definition 1.1.1. We call holomorphic triple over the curve X a triple
T = (E1, E2, ϕ) where E1 and E2 are two vector bundles on X and ϕ : E2 → E1

is a holomorphic map between them. If rank(Ei) = ni and deg(Ei) = di,
i = 1, 2 we say that T is of type (n1, n2, d1, d2).

If T and T ′ are two triples on X, then a homomorphism from T to T ′ is
made up of two maps ψ1 and ψ2 such that the following diagram commutes:

E2
ϕ−−−−→ E1

ψ2

x xψ1

E′
2

ϕ′−−−−→ E′
1.
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1.1. Setting

In order to introduce a notion of stability for holomorphic triples we need to
precise what are sub-objects and to give a definition of slope which, differently
from the case of vector bundles, depends on a parameter α.

Definition 1.1.2. Let T be a triple on the curve X. A subtriple of T is a
triple T ′ = (E′

1, E
′
2, ϕ

′) such that for i = 1, 2, E′
i is a subbundle of Ei and the

following diagram commutes:

E2
ϕ−−−−→ E1x x

E′
2

ϕ′−−−−→ E′
1.

The subtriple (0, 0, 0) is the trivial subtriple. A subtriple T ′ is proper if
T ′ 6= (0, 0, 0) and T ′ 6= T .

Note that, in general, it would be possible to let E′
1 and E′

2 be coherent
subsheaves of E1 and E2, but when dealing with stability criteria it is sufficient
to consider only saturated subsheaves and in our situation those are exactly
the subbundles. As we said earlier, differently from the case of vector bundles,
the definition of stability for holomorphic triples that we are going to introduce
depends on a real parameter, thus there is (a priori) a 1-parameter family of
stability criteria for triples.

Definition 1.1.3. Let T = (E1, E2, ϕ) be a triple on X and α ∈ R. The
α-degree of T is

degα(T ) := deg(E1) + deg(E2) + α rank(E2),

and the α-slope of T is

µα(T ) :=
degα(T )

rank(E1) + rank(E2)
= µ(E1 ⊕ E2) +

rank(E2)
rank(E1) + rank(E2)

.

In the remainder we will always write ni = rank(Ei), di = deg(Ei),
n′i = rank(E′

i) and d′i = deg(E′
i), i = 1, 2.

Definition 1.1.4. A holomorphic triple T is said to be α-stable (resp. α-
semistable) if, for all proper subtriples T ′ of T , µα(T ′) < µα(T ) (resp.
µα(T ′) 6 µα(T )). T is said to be α-polystable if it is the direct sum of
α-stable triples of the same α-slope.

Remark 1.1.5. Equivalently the notion of (semi)stability for triples can be
defined as follows. Let T ′ be a subtriple of T and τ ∈ R and write

θτ (T ′) := µ(E′
1 ⊕ E′

2)− τ − n′2(n1 + n2)
n2(n′1 + n′2)

(
µ(E1 ⊕ E2)− τ

)
.
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Holomorphic triples and their moduli space

Then the triple T is τ -(semi)stable if, for any proper subtriple T ′, θτ (T ′) < 0
(resp. θτ (T ′) 6 0).

It is an easy computation to show that a triple T is α-(semi)stable if and
only if it is τ -(semi)stable and α and τ are related by

α =
n1 + n2

n2

(
τ − µ(E1 ⊕ E2)

)
τ = µα(T ).

In the following we will mainly use the former definition, but of course any
result we will prove can be rephrased in terms of the latter.

If T is a holomorphic triple, for any subtriple T ′ and for any α ∈ R it is
sometimes convenient to write

∆α(T ′, T ) := µα(T ′)− µα(T )

and
∆α(T ) := max

{T ′ proper
subtriple of T }

∆α(T ′, T ),

hence T is α-(semi)stable if and only if ∆α(T ) < 0 (respectively ∆α(T ) 6 0).

In some particular cases the notion of stability is particularly simple, for
example when the map ϕ is the zero homomorphism.

Example 1.1.6 ([7, Lm. 3.4]). Let T = (E1, E2, ϕ) be a holomorphic triple
and assume that ϕ = 0. Then T is α-semistable if and only if α = µ(E1)−µ(E2)
and both E1 and E2 are semistable bundles. T cannot be α-stable for any α.
For note that in this case the subtriples of T are of the form (E′

1, E
′
2, 0), where

E′
1 and E′

2 are any subbundles of E1 and E2 respectively. In particular we can
consider the proper subtriples (E1, 0, 0) and (0, E2, 0). The α-semistability
conditions for these triples are respectively

d1

n1
6
d1 + d2 + αn2

n1 + n2

d2 + αn2

n2
6
d1 + d2 + αn2

n1 + n2
,

which are equivalent respectively to α 6 µ(E1)−µ(E2) and α > µ(E1)−µ(E2).
Hence T cannot be α-stable for any α and it is α-semistable if and only if
α = µ(E1)−µ(E2). In this case let E′

1 be a proper subbundle of E1. Then we
can consider the proper subtriple (E′

1, 0, 0): the (µ(E1)−µ(E2))-semistability
condition for this triple is

d′1
n′1

6
d1 + d2 + (µ(E1)− µ(E2))n2

n1 + n2

- 3 -



1.1. Setting

which after some easy computations is equivalent to µ(E′
1) 6 µ(E1), proving

the semistability of E1. The semistability of E2 can be proved in an analogous
way.

According to the Definition of α-stability 1.1.4 the moduli spaces of α-
stable holomorphic triples have been built, first by Bradlow and Garćıa-Prada
and then by Schmitt with the methods of geometric invariant theory of Mum-
ford. See [20] for a survey on moduli spaces and their construction and [7, 22]
for details of the two constructions of the moduli spaces above; the main prop-
erties of these moduli spaces are collected in the following Sections, and in
particular in Section 1.7.

In the following we will denote by Nα(X;n1, n2, d1, d2) the moduli space
of α-stable holomorphic triples of type (n1, n2, d1, d2) on the curve X and by
N ss
α (X;n1, n2, d1, d2) the moduli space of S-equivalence classes of α-semistable

holomorphic triples of type (n1, n2, d1, d2). We will omit to specify the curve
X whenever no ambiguities seems like to arise, hence we will write simply
Nα(n1, n2, d1, d2) and N ss

α (n1, n2, d1, d2).

If T = (E1, E2, ϕ) is a triple of type (n1, n2, d1, d2) it is always possi-
ble to consider the dual triple T ∗ = (E∗

1 , E
∗
2 , ϕ

∗) which is a triple of type
(n2, n1,−d2,−d1). It turns out that the properties of being α-(semi)stable for
these two triples are strictly related.

Proposition 1.1.7 ([7, Prop. 3.12]). The triple T is α-(semi)stable if and
only if T ∗ is α-(semi)stable or, equivalently,

N (ss)
α (n1, n2, d1, d2) ∼= N (ss)

α (n2, n1,−d2,−d1).

As a consequence of the previous Proposition, when no additional hypoth-
esis on the nature of the vector bundles E1 and E2 are assumed, the study of
α-stable triples can be restrict (e.g.) to the case n2 6 n1: the corresponding
results for n2 > n1 can be recovered appealing to duality.

In the following we will need also some further result on vector bundles on
curves; we collect them here for future reference.

Definition 1.1.8. A vector bundle E on a curve X is said to be generated
by its global sections if the evaluation map H0(X,E) −→ Ex is surjective for
all x ∈ X, or equivalently if there exists an exact sequence

0 −→ F −→ O ⊗W −→ E −→ 0,

where W is a vector space.

- 4 -



Holomorphic triples and their moduli space

Proposition 1.1.9 ([23, Prop. 6]). Let E and F be semistable vector bundles
on the curve X. Then the following facts hold.

i) If µ(F ) < µ(E), then Hom(E,F ) = { 0 }.

ii) If E and F are both stable and µ(E) = µ(F ), then either E ∼= F or
Hom(E,F ) = { 0 }.

iii) If E is stable, then it is simple, i.e. End(E) ∼= K.

Proposition 1.1.10 ([23, Lm. 20]). Let E be a semistable vector bundle of
rank n and degree d such that d > n(2g−1). Then E is generated by its global
sections and, moreover, H1(X,E) = { 0 }.

1.2 Bounds on the range of α

According to our definition of α-stability a priori α can be any real number.
In fact it turns out that some constraints exist in order for α-stable triples
to exist. In particular a lower bound on α always exists and, provided that
n1 6= n2, an upper bound also exists, as stated by the following Proposition.

Proposition 1.2.1 ([7, Prop. 3.13 and 3.14]). Let T be an α-stable triple.
Then

0 < µ(E1)− µ(E2) < α.

Moreover, if n1 6= n2, then

α <

(
1 +

n1 + n2

|n1 − n2|

)(
µ(E1)− µ(E2)

)
.

Proof. The proof relies on the existence of some particular subtriples of T .
This is a quite standard way to produce bounds on α (see e.g. 3.2.1 and
3.2.2). In particular in this case the lower bound comes from the α-stability
of the proper subtriple (0, E2, 0), while the upper bound from the α-stability
of (0, kerϕ,ϕ) and (imϕ,E2, ϕ); see [7] for further details.

In the following we will usually write µ1 := µ(E1), µ2 := µ(E2),

αm = αm(n1, n2, d1, d2) := µ1 − µ2

αM = αM (n1, n2, d1, d2) :=
(

1 +
n1 + n2

|n1 − n2|

)(
µ1 − µ2

)
.

Note that, if µ1 = µ2 and n1 6= n2, then αm = αM = 0, hence α-stable triples
cannot exist and α-semistable triples can exist only for α = 0.

Some easy consequences of the Proposition above are the following.
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1.3. Stability, simplicity and irreducibility

Corollary 1.2.2 ([7, Cor. 3.15]). If n1 6= n2, then a necessary condition for
T to be α-stable is µ1 > µ2.

Corollary 1.2.3 ([7, Cor. 3.16]). Let T be an α stable triple such that
n1 = n2. Then, if ϕ is not an isomorphism, d1 > d2. Moreover in any
α-stable triple T ϕ is an isomorphism if and only if n1 = n2 and d1 = d2.

Proposition 1.2.4 ([7, Lm. 4.5]). For any α > 0 the triple T = (E1, E1, ϕ)
is α-stable if and only if ϕ is an isomorphism and E1 is stable.

Example 1.2.5 ([7, Prop 3.17]). When n1 = n2 the range of the possible
values of α can in fact fail to be bounded: this is illustrated in this example.
Let E1 and E2 be two stable bundles of rank n and degree d and ϕ : E2 −→ E1

be non trivial. Then for any α > αm the triple T = (E1, E2, ϕ) is α-stable.
For note first of all that since ϕ is a non trivial map between two stable
vector bundles of the same rank and degree, then by 1.1.9, it must be a scalar
multiple of the identity, and hence, in particular, it is injective. Let now
T ′ = (E′

1, E
′
2, ϕ

′) be a proper subtriple of T . Since E1 and E2 are stable of
the same slope, we have µ(E′

1 ⊕ E′
2) < µ(E1 ⊕ E2), and from the injectivity

of ϕ it follows n′2 6 n′1, and hence

n′2
n′1 + n′2

6
1
2
.

Therefore we have

µα(T ′) = µ(E′
1 ⊕ E′

2) + α
n′2

n′1 + n′2
< µ(E1 ⊕ E2) + α

1
2

= µα(T ),

proving the α-stability of T .

1.3 Stability, simplicity and irreducibility

As it happens for vector bundles (see e.g. Proposition 1.1.9) it turns out
that the notion of α-stability is deeply bounded to those of simplicity and
irreducibility. Let us start by making precise what it is meant for simplicity
and irreducibility in the case of holomorphic triples.

Definition 1.3.1. Let T = (E1, E2, ϕ) be a holomorphic triple and write

End(E1, E2, ϕ) := { (u, v) ∈ End(E1)⊕ End(E2) | u ◦ ϕ = ϕ ◦ v } .

T is said to be simple if End(E1, E2, ϕ) = K, i.e. if the only endomorphisms
of T are the scalar multiples of the pair (idE1 , idE2).
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Holomorphic triples and their moduli space

Definition 1.3.2. A triple T = (E1, E2, ϕ) is said to be reducible if there exist
direct sum decompositions Ei =

⊕n
j=1E

(j)
i , and ϕ =

⊕n
j=1 ϕj, i = 1, 2 such

that, for each 1 6 j 6 n, ϕj ∈ Hom
(
E

(j)
2 , E

(j)
1

)
. We adopt the convention

that if either E(j)
1 = 0 or E(j)

2 = 0, then ϕj is the zero-map. We will write
Tj := (E(j)

1 , E
(j)
2 , ϕj) and T :=

⊕n
j=1 Tj. If T is not reducible it is said to be

irreducible.

Proposition 1.3.3 ([7, Prop. 2.12]). Let T be a simple triple. Then T is
irreducible.

Again, as it happens for vector bundles, an important consequence of α-
stability is that α-stable triples are simple and, hence, irreducible. This is a
Corollary of the following Proposition.

Proposition 1.3.4 ([7, Prop. 3.9]). Let T = (E1, E2, ϕ) be an α-stable triple
and let (u, v) ∈ End(T ). Then either (u, v) = (idE1 , idE2) or both u and v are
isomorphisms.

Corollary 1.3.5. Let T be an α-stable triple for some values of α. Then T
is simple.

Remark 1.3.6. Note that irreducibility of α-stable holomorphic triples can
be easily proved also directly. For assume by contraposition that T is a
reducible triple and write T :=

⊕n
j=1 Tj . For any j = 1, 2, . . . , n it is possible

to consider the proper subtriples T ′ := Tj and T ′′ := T /Tj which are triples
of type (nj1, n

j
2, d

j
1, d

j
2) and (n1−nj1, n2−nj2, d1−dj1, d2−dj2) respectively. The

α-stability conditions for these subtriples are respectively

dj1 + dj2 + αnj2
nj1 + nj2

<
d1 + d2 + αn2

n1 + n2

d1 − dj1 + d2 − dj2 + α(n2 − nj2)

n1 + n2 − nj1 − nj2
<
d1 + d2 + αn2

n1 + n2

which are equivalent respectively to

α(n2n
j
1 − n1n

j
2) > (dj1 + dj2)(n1 + n2)− (d1 + d2)(n

j
1 + nj2)

α(n2n
j
1 − n1n

j
2) < (dj1 + dj2)(n1 + n2)− (d1 + d2)(n

j
1 + nj2)

and show that T is not α-stable for any α.
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1.4 Relationships between α-stable triples and the

stability of vector bundles

It is natural to ask whether some kind of connection between the notion of
α-stability for a triple T = (E1, E2, ϕ) and the stability of the vector bundles
E1 and E2 exists. The answer is provided by the following Propositions, at
least for some special values of the parameter α, namely when α is close to
α0 and, in the case n2 6= n1, when α is close to αM .

Proposition 1.4.1 ([7, Prop. 3.19]). Let T = (E1, E2, ϕ) be a holomorphic
triple. There exists ε > 0 such that, for any α ∈ (αm, αm+ε), if T is α-stable,
then E1 and E2 are both semistable vector bundles. Vice versa, if one of E1,
E2 is stable and the other is semistable, then the triple (E1, E2, ϕ) is α-stable
for any choice of ϕ ∈ Hom(E2, E1), ϕ 6= 0.

Proof. Note that in the statement of [7] it is in fact required that both the
vector bundles E1 and E2 are stable to prove the α-stability of T . From the
proof it turns out, however, that our assumption is enough.

Proposition 1.4.2 ([8, Prop. 7.5]). Assume n2 < n1 and let T = (E1, E2, ϕ)
be an α-semistable triple for large enough α. Then T is of the form

0 −→ E2
ϕ−→ E1 −→ F −→ 0,

where F is locally free and both E2 and F are semistable.

Proposition 1.4.3 ([9, Prop. 4.13]). Let T = (E1, E2, ϕ) be a triple of the
form

0 −→ E2
ϕ−→ E1 −→ F −→ 0,

with F locally free and such that the extension is not trivial. If E2 and F are
stable then T is α-stable for large enough values of α.

Proposition 1.4.4 ([8, Prop. 8.1]). Let T = (E1, E2, ϕ) be a triple of type
(n, n, d, d) and α > 0. Then T is α-stable if and only if E1 and E2 are stable
and ϕ is an isomorphism.

1.5 Critical values

So far we know that some constraints on α exists, even if we have shown in
Example 1.2.5 that, in general, α can fail to be bounded. In fact something
stronger is true: as α varies in the admissible range described by Proposition
1.2.1 the α-stability condition does not vary continuously, but it varies only
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at a finite number of critical values, due to the fact that the numerical quan-
tities involved in the definition of α-stability are rational numbers and the
denominators are bounded by n1 and n2.

Fix a real number α. If a triple T is strictly α-semistable, then there exists
a proper subtriple T ′ of T such that

µα(T ′) =
d′1 + d′2
n′1 + n′2

+ α
n′2

n′1 + n′2
=
d1 + d2

n1 + n2
+ α

n2

n1 + n2
= µα(T ).

If n′2/(n
′
1 + n′2) = n2/(n1 + n2), then the previous condition is in fact inde-

pendent of α, hence T can be α-stable for no values of α and it is strictly
α-semistable for any values of α for which it is not α-unstable. Of course
it can also happen that n′2/(n

′
1 + n′2) 6= n2/(n1 + n2); the values of α for

which this happens are precisely the critical values, as stated by the following
definition.

Definition 1.5.1. Let α ∈ [αm,+∞). We say α is a critical value for T if
there exist integers n′1, n

′
2, d

′
1, d

′
2 such that

d′1 + d′2
n′1 + n′2

+ α
n′2

n′1 + n′2
=
d1 + d2

n1 + n2
+ α

n2

n1 + n2

where 0 6 n′i 6 n1, (n′1, n
′
2, d

′
1, d

′
2) 6= (n1, n2, d1, d2), (n′1, n

′
2) 6= (0, 0) and

n′1n2 6= n1n
′
2.

We say that α is generic if it is not critical.

It is possible to prove the following

Proposition 1.5.2 ([8, Prop. 2.6]). Let T be a triple of type (n1, n2, d1, d2).
Then the following is true.

i) The critical values of T form a discrete subset of [αm,+∞). Moreover
if n1 6= n2 the number of critical values is finite and lies in the interval
[αm, αM ].

ii) The α-stability criteria for two generic values of α lying between two
consecutive critical values are equivalent, hence the corresponding mod-
uli spaces are isomorphic.

iii) If α is generic and gcd(n2, n1 + n2, d1 + d2) = 1, then α-stability and
α-semistability are equivalent.

So far we do not know of any upper bound on α in the case n1 = n2. In
fact it turns out that also in this situation the number of critical values is
finite and hence there exist only finitely many different moduli spaces. This
is made clear by the following Stabilization Theorem.
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Theorem 1.5.3 (Stabilization Theorem, [8, Thm 8.6]). Assume n1 = n2 =: n
and d1 > d2 and write α0 = d1 − d2. Then, for any real numbers α1, α2 such
that α0 < α1 6 α2,

Nα1(n, n, d1, d2) ⊆ Nα2(n, n, d1, d2).

Moreover there exists a real number αL > α0 such that

Nα1(n, n, d1, d2) = Nα2(n, n, d1, d2)

for all αL < α1 6 α2.

According to the previous results it is possible to divide the range [αm,+∞)
into a finite set of subintervals whose extremes are precisely the critical values:

0 6 α0 = αm < α1 < · · · < αL < +∞,

where αL = αM if n1 6= n2.
For any critical value αj we will write α+

j := αj+ε and α−j := αj−ε, where
ε > 0 is small enough so that the interval (αj , α+

j ) or, respectively, (α−j , αj),
does not contain any critical value. Occasionally we will speak of “small” α
to refer to values of α of the form α+

m and of “big” or “large” α to refer to
values of the form α−M when n1 6= n2, or of the form α+

L when n1 = n2.

1.6 Flip loci

We have already observed that if α1 and α2 are two generic values in the inter-
val (αi, αi+1) between two consecutive critical values, then the moduli spaces
Nα1(n1, n2, d1, d2) and Nα2(n1, n2, d1, d2) are isomorphic. In this section we
deepen our study on how the moduli spaces Nα(n1, n2, d1, d2) vary for fixed
(n1, n2, d1, d2) as α crosses a critical value αi. This turns out to be quite useful
in proving non-emptiness results for moduli spaces, since it permits to prove
this property for particular values of the parameter α, and then to extend the
results to all the remaining values.

Remark 1.6.1. It is easy (but useful) to describe here how the α-stability
property for a holomorphic triple T = (E1, E2, ϕ) of type (n1, n2, d1, d2) can
change as α varies in the admissible range. The basic observation is that, if
T ′ = (E′

1, E
′
2, ϕ

′) is a proper subtriple of T , then

∆α(T ′, T ) =
d1 + d2

n1 + n2
− d′1 + d′2
n′1 + n′2

+ α

(
n2

n1 + n2
− n′2
n′1 + n′2

)
,

hence ∆(T ′, T ) is a linear function of α. Moreover, if n2
n1+n2

− n′2
n′1+n′2

> 0 then

∆(T ′, T ) is strictly increasing, if n2
n1+n2

− n′2
n′1+n′2

< 0 then ∆(T ′, T ) is strictly

decreasing and if n2
n1+n2

− n′2
n′1+n′2

= 0 then ∆(T ′, T ) is constant.
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Definition 1.6.2. Let T be a triple and αi ∈ (αm, αM ) a critical value for
T . We write Sα+

i
for the subset of Nαi(n1, n2, d1, d2) made up of triples which

are α+
i -stable but not α−i -stable and Sα−i for the subset of Nαi(n1, n2, d1, d2)

made up of triples which are α−i -stable but not α+
i -stable.

Using techniques coming from the theory of deformation of holomorphic
triples (see [8, § 3]) it is possible to show that, under suitable hypotheses,
the flip loci Sα±i are contained in subvarieties of positive codimension in
Nα±i

(n1, n2, d1, d2). In particular the following is true.

Proposition 1.6.3. Let T be a holomorphic triple of type (n1, n2, d1, d2) and
let αi ∈ (αm, αM ) be a critical value. Then the following holds.

i) Nα+
i
(n1, n2, d1, d2)\Sα+

i
= Nαi(n1, n2, d1, d2) = Nα−i

(n1, n2, d1, d2)\Sα−i
ii) If αi > 2g − 2, then the loci Sα±i ⊆ Nα±i

(n1, n2, d1, d2) are contained
in subvarieties of codimension at least g − 1. In particular they are
contained in subvarieties of strictly positive codimension if g > 2. If
αi = 2g − 2 the same is true for Sα+

i
.

Remark 1.6.4. The proof of the previous Proposition relies on the fact that
it is possible to give a lower bound on the codimension of the subvarieties in
which the flip loci are contained. In particular the codimension is bounded
from below by

min
{
n′′1d

′
1 + n′′2d

′
2 + n′2d

′′
1+n

′′
1d

′
2 − n′1d

′′
1 − n′2d

′′
2+

+(g − 1)
(
n′1n

′′
1 + n′2n

′′
2 − n′2n

′′
1

)}
where the minimum is to be taken over all the quadruples (n′1, n

′
2, d

′
1, d

′
2) and

(n′′1, n
′′
2, d

′′
1, d

′′
2) such that the following relations are fulfilled:

(n1, n2, d1, d2) = (n′1, n
′
2, d

′
1, d

′
2) + (n′′1, n

′′
2, d

′′
1, d

′′
2),

d′1 + d′2
n′1 + n′2

+ αi
n′2

n′1 + n′2
=
d′′1 + d′′2
n′′1 + n′′2

+ αi
n′′2

n′′1 + n′′2
,

n′2
n′1 + n′2

<
n′′2

n′′1 + n′′2
in the case of Sα+

i
,

n′2
n′1 + n′2

>
n′′2

n′′1 + n′′2
in the case of Sα−i .

Having achieved this result, the general strategy to prove non-emptiness
of moduli spaces is then to prove it for a particular and convenient value of
the parameter α (usually for large values of α), then to deduce the analogous
result for all the other values of α noticing that crossing each critical value
does not “throw away” all the stable triples from Nα(n1, n2, d1, d2), but it
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“preserves” some of them. Note, however, that in the particular cases of
curves of genus 0 and 1 the hypothesis of Proposition 1.6.3 are always fulfilled,
but the Proposition itself does not provide any useful information, since the
bound on the codimension of the flip loci is always trivial.

1.7 Moduli spaces of holomorphic triples

Here we summarize the main results on moduli spaces of α-stable holomorphic
triples.

Theorem 1.7.1 ([7, Thm 6.1]). Let X be a curve of genus g and fix n1,
n2, d1, d2. Then the moduli space Nα(n1, n2, d1, d2) of α-stable triples of
type (n1, n2, d1, d2) is a complex quasi-projective variety and it is projective
if n1 + n2 and d1 + d2 are coprime and α is generic. The dimension of the
moduli space at a smooth point is

ρ(n1, n2, d1, d2) := 1 + n2d1 − n1d2 + (n2
1 + n2

2 − n1n1)(g − 1). (1.1)

Remark 1.7.2. Note that ρ(n1, n2, d1, d2) > 0 is a necessary condition for
Nα(n1, n2, d1, d2) to be non-empty. In the following we will refer to this in-
equality as Brill-Noether condition.

Proposition 1.7.3 ([7, Prop. 6.3]). Let T = (E1, E2, ϕ) be an α-stable triple
and assume that ϕ is either injective or surjective. Then T corresponds to a
smooth point of Nα(n1, n2, d1, d2).

From now on assume that g > 2. The following result states some prop-
erties of moduli spaces for large values of α.

Theorem 1.7.4 ([8, Thm 7.7]). Let n1 > n2, µ1 > µ2 and α = α−M . Then the
moduli space Nα(n1, n2, d1, d2) is smooth of dimension ρ(n1, n2, d1, d2) and it
is birationally equivalent to a PN -fibration overM(n1−n2, d1−d2)×M(n2, d2),
where M(n, d) denotes the moduli space of stable vector bundles of rank n

and degree d and N = n2d1 − n1d2 + n1(n1 − n2)(g − 1) − 1. In par-
ticular Nα(n1, n2, d1, d2) is non-empty and irreducible. Moreover whenever
gcd(n1−n2, d1− d2) = 1 and gcd(n2, d2) = 1, the birational equivalence is an
isomorphism.

From the previous result and using the technique of flips presented in
Section 1.6, it is possible to extend the results also to other values of α,
provided that they are big enough in comparison with the genus g of the
curve.
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Theorem 1.7.5 ([8, Thm 7.9]). Let α be such that αm < 2g − 2 6 α < αM
and assume n2 6 n1. Then Nα(n1, n2, d1, d2) is birationally equivalent to
Nα−M

(n1, n2, d1, d2), hence, in particular, it is non-empty and irreducible.
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Chapter 2
Coherent systems and their moduli

spaces

In this Chapter we recall the definition of coherent system and we introduce
the notion of σ-(semi)stability for those objects. We collect the main results
on σ-stable coherent systems and the main properties of their moduli spaces.

Coherent systems, introduced by Le Potier in [19] and known also as Brill-
Noether pairs (see [14]), present many analogies with holomorphic triples,
and in fact the treatment here deserved to these objects is similar to that
of holomorphic triples discussed in the previous Chapter. For the sake of
precision one would say that the oldest notion is probably that of coherent
systems, or, at least, that the study of coherent systems and their properties
has started earlier, due to its relationships with the study of Brill-Noether loci
(see Section 2.5). It would be more correct, hence, to say that it is the theory
of triples which follows in its footsteps. Here however we choose this order of
presentation since in the following holomorphic triples will be our main topic
of discussion, whilst some result on coherent systems will only occasionally
be proved. Both of them, moreover, can be seen in a unitary way as different
examples of the so called augmented bundles, as (briefly) discussed at the end
of Section 2.7.

For the results reported in this Chapter refer, e.g., to [6, 5].

2.1 Setting

Let X be a smooth curve on an algebraically closed field K of characteristic
0.

Definition 2.1.1. A coherent system on the curve X is a pair (E, V ) where
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E is a vector bundle on X and V is a vector subspace of the vector space
H0(X,E) of the global sections of E. If rank(E) = n, deg(E) = d and
dim(V ) = k then we speak of coherent systems of type (n, d, k).

Definition 2.1.2. A coherent subsystem of a coherent system (E, V ) is a
coherent system (E′, V ′) where E′ is a subbundle of E and V is a vector
subspace of V ∩H0(X,E′). The subsystem (0, 0) is the trivial coherent system.
A coherent subsystem is proper if it is not trivial and (E′, V ′) 6= (E, V ).

As we did for holomorphic triples we introduce now a notion of stability
for those objects which depends on a real parameter σ.

Definition 2.1.3. Let (E, V ) be a coherent system and σ ∈ R. The σ-degree
of (E, V ) is

degσ(E, V ) = deg(E) + σ dim(V )

and the σ-slope is

µσ(E, V ) :=
degσ(E, V )
rank(E)

=
deg(E) + σ dim(V )

rank(E)
.

In the following we will always write d := deg(E), n := rank(E) and
k := dim(V ).

Definition 2.1.4. A coherent system (E, V ) is said to be α-(semi)stable
if, for all proper coherent subsystems (E′, V ′), µσ(E′, V ′) < µσ(E, V ) (resp.
µσ(E′, V ′) 6 µσ(E, V )). (E, V ) is said to be σ-polystable if it is the direct
sum of σ-stable coherent systems of the same σ-slope.

According to Definition 2.1.4 the moduli spaces of σ-stable coherent sys-
tems and of S-equivalence classes of σ-semistable coherent systems have been
built (see [22]). In the following we will denote by Gσ(X;n, d, k) (or simply
by Gσ(n, d, k) if no confusion can arise on the curve X) the moduli space of
σ-stable coherent systems and by Gssσ (X;n, d, k) (or simply Gssσ (n, d, k)) the
moduli space of S-equivalence classes of σ-semistable coherent systems.

2.1.1 Constraints on the parameter σ

In general σ cannot be any real number: some necessary conditions hold in
order for σ-stable coherent systems to exist. These conditions are stated in
the next Proposition.

Proposition 2.1.5 ([6, Lm. 4.2 and 4.3]). Let (E, V ) be a σ-stable coherent
system. Then σ > 0. Moreover, if k < n, then σ < d/(n − k), hence in
particular we must have d > 0 in order for σ-stable coherent systems to exist.
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If k > n, then d > 0 is a necessary condition for σ-semistable coherent systems
to exist and, moreover, we must have d > 0 in order for σ-stable coherent
systems to exist except in the case (n, d, k) = (1, 0, 1).

2.2 Critical values

As it happens for holomorphic triples the numerical quantities involved in
the definition of σ-stability are rational numbers with bounded denominators,
hence the σ-stability condition varies only at certain critical values.

Definition 2.2.1. We say that σ ∈ R is a critical value for a coherent system
of type (n, d, k) if either σ = 0 or there exist integers 0 < n′ 6 n, 0 6 k′ 6 k

and d′ such that
d′

n′
+ σ

k′

n′
=
d

n
+ σ

k

n
,

and k′/n′ 6= k/n. We say that σ is generic if it is not critical.

From the definition above it is clear that the critical values lie in the set{
nd′ − n′d

n′k − nk′

∣∣∣∣ 0 6 k′ 6 k, 0 < n′ 6 n, n′k 6= nk′
}
∩ [0,+∞).

A result analogous to Proposition 1.5.2 holds also for coherent systems. In
particular it is possible to prove that if σ is generic and gcd(n, d, k) = 1, then
σ-stability and σ-semistability are equivalent.

Moreover, as it happens for holomorphic triples, even if in the case k > n

the stability condition does not provide an upper bound on σ, in fact beyond
a certain value σL the moduli spaces do not change. This is stated in the
following Proposition which plays the same role of the Stabilization Theorem
1.5.3 and is a consequence of the fact that in a σ-stable coherent system
(E, V ), if σ is big enough, the vector bundle E is generically generated by its
global sections in V .

Proposition 2.2.2. Let k > n. There exists a critical value σL such that
Gσ1(n, d, k) = Gσ2(n, d, k) for any σL < σ1 6 σ2. The σ-range is then divided
into a finite set of intervals bounded by critical values:

0 = σ0 < σ1 < · · · < σL < +∞

such that

i) if σi and σi+1 are two consecutive critical values, the moduli spaces for
any two different values of σ in the interval (σ1, σi+1) coincide;

ii) for any two different values of σ in the range (σL,+∞) the moduli
spaces coincide.
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For small values of σ a result analogous to Proposition 1.4.1 holds.

Proposition 2.2.3 ([6, Prop. 2.5]). Let (E, V ) be a coherent system, σ1 be
the first critical value after 0 and 0 < σ < σ1. If (E, V ) is σ-stable, then E is
semistable. Conversely if E is a stable vector bundle, then (E, V ) is σ-stable.

2.3 Flip loci

As we did for holomorphic triples, if σi is a critical values for (E, V ) we write
σ±i := σi ± ε, where ε > 0 is such that σi is the only critical value in the
interval (σ−i , σ

+
i ). We will speak of “small” σ to refer to values of σ of the

forms σ+
0 = 0+ and of “large” σ to refer to values of the form σ−L if k < n, or

of the form σ+
L if k > n.

Definition 2.3.1. Let (E, V ) be a coherent system of type (n, d, k) and let
σi ∈ (σ0, σL) be a critical value for (E, V ). We write Sσ+

i
for the subset of

Gσi(n, d, k) made up of coherent systems which are σ+
i -stable but not σ−i -stable

and Sσ−i for the subset of Gσi(n, d, k) made up of coherent systems which are

σ−i -stable but not σ+
i -stable.

The idea now is to operate as we did in the previous Chapter for holomor-
phic triples, that is to search for some estimates on the codimensions of the
flip loci, in order to prove that crossing a critical value does not change the
birational structure of a moduli space. This, however, turns out to be a more
difficult effort in this situation, and in fact a result similar to Proposition 1.6.3
does not exist.

Once a critical value σi is fixed we will say that the flip at σi is good if
Sσ+

i
has positive codimension in Gσi(n, d, k). Some rather technical results

which show sufficient conditions for a flip to be good exist, and come from the
theory of infinitesimal deformations and of extensions for coherent systems.
In fact these results involve some numerical quantities, and require to show
that convenient inequalities are fulfilled; see [6, Lm. 6.8, Cor. 6,9] for details.

2.4 Moduli spaces of coherent systems

Here we collect the main results on the moduli space of σ-stable coherent
systems. First of all we introduce the following definition, which is related to
the question of smoothness, as stated in Proposition 2.4.2.

Definition 2.4.1. Let (E, V ) be a coherent system. The Petri map of (E, V )
is the map

V ⊗H0(E∗ ⊗K) −→ H0(End(E)⊗K)
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given by multiplication of sections.
A curve is said to be a Petri curve if the Petri map

H0(L)⊗H0(L∗ ⊗K) −→ H0(K)

is injective for every line bundle L over X.

Proposition 2.4.2 ([6, Prop. 3.10]). Let (E, V ) be an α-stable coherent sys-
tem of type (n, d, k). Then the moduli space Gσ(n, d, k) is smooth of dimension

β(n, d, k) := n2(g − 1) + 1− k(k − d+ n(g − 1))

at the point corresponding to (E, V ) if and only if the Petri map is injective.

The main results concerning the moduli space for large values of σ depend
on the parameters n and k, and are stated in the following Theorems.

Theorem 2.4.3 ([6, Thm 5.4]). Let 0 < k < n, d > 0 and g > 2. Then
the moduli space Gσ−L (n, d, k) is birationally equivalent to a fibration over the
moduli space M(n−k, d) with fibre the Grassmannian Gr(k, d+(n−k)(g−1)).
In particular Gσ−L (n, d, k) is non-empty if and only if k 6 d+(n−1)(g−1), and
it is then always irreducible and smooth of dimension β(n, d, k). If moreover
gcd(n− k, d) = 1 the the birational equivalence is an isomorphism.

Note that the cases g = 0 and g = 1 deserve a particular treatment since
M(n− k, d) may be empty. We deal with these cases in Section 2.6.

Theorem 2.4.4 ([6, Thm 5.6]). Let k = n > 2. If d > n G̃σ+
L
(n, d, k)

is irreducible and Gσ+
L
(n, d, k) is smooth of dimension β(n, d, k). If d = n,

Gσ+
L
(n, d, k) is empty and G̃σ+

L
(n, d, k) is irreducible of dimension n. If d = 0

Gσ+
L
(n, d, k) is empty and G̃σ+

L
(n, d, k) consists of a single point.

Theorem 2.4.5 ([6, Thm 5.11]). Suppose that X is a Petri curve and that
k = n + 1. Then Gσ+

L
(n, d, k) is non-empty if and only if β(n, d, n + 1) > 0.

Moreover Gσ+
L
(n, d, k) has dimension β(n, d, n+ 1) and it is irreducible when-

ever β(n, d, n+ 1) > 0.

The idea is now to use again the flips technique to extend these results.
The success, however, is subjected to the capability of proving that the flips
are good in the sense of Section 2.3. This is known so far only for particular
types of coherent systems, namely those with few sections (k = 1, 2, 3) or of
small rank (n = 2); for details on these results see e.g. [6, § 7–10]. Note
also that all these results have been proved under the further assumption that
g > 2.
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Some other existence results are proved in [2] without the use of flips; in
particular there it is shown that σ-stable coherent systems exist for all σ > 0
provided that g > 2, k > n and d is big enough:

Theorem 2.4.6 ([2, Thm 1]). For all integers g > 2, n > 2 and k > n set

d(g, n, k) :=
(
k̃

n

)
+ (n+ 1)g + k̃ − n− 1,

where k̃ := max { k, 2g + 2n }, and let X be a smooth curve of genus g. Then
for every d > d(g, n, k) there exists a coherent system (E, V ) of type (n, d, k)
with the following properties:

i) V spans E and E is stable;

ii) (E, V ) is σ-stable for all σ > 0;

iii) the Petri map of (E, V ) is injective;

iv) the natural map
∧n(V ) −→ H0(X, det(E)) is injective.

2.5 Coherent systems and Brill-Noether loci

Definition 2.5.1. Let M(n, d) denote the moduli space of stable vector bun-
dles of rank n and degree d on a curve X and let k > 0. The Brill-Noether
loci of stable vector bundles are defined by

B(n, d, k) :=
{
E ∈M(n, d) | dimH0(E) > k

}
.

Similarly one can define the Brill-Noether loci Bss(n, d, k) of semistable bun-
dles.

It is possible to prove that the Brill-Noether loci are closed subschemes
of the corresponding moduli space. The aim of Brill-Noether theory is to
inspect the main properties of these subschemes (non-emptiness, irreducibil-
ity, connectedness,. . . ). The main results are summarized in the following
statement.

Theorem 2.5.2 ([6, Thm 2.8]). If the Brill-Noether locus B(n, d, k) is non-
empty and B(n, d, k) 6= M(n, d), then

i) every irreducible component B of B(n, d, k) has dimension

dimB > β(n, d, k),

where β(n, d, k) := n2(g − 1) + 1 − k(k − d + n(g − 1)) is called the
Brill-Noether number.
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ii) B(n, d, k + 1) ⊆ SingB(n, d, k).

iii) The tangent space of B(n, d, k) at a point E with dimH0(E) = k can
be identified with the dual of the cokernel of the Petri map

H0(E)⊗H0(E∗ ⊗K) −→ H0(EndE ⊗K).

iv) B(n, d, k) is smooth of dimension β(n, d, k) at E if and only if the Petri
map is injective.

The Brill-Noether loci are deeply bounded with the moduli space of σ-
stable coherent systems: every vector bundle which occurs as part of a coher-
ent system must have at least a prescribed number of linearly independent
sections and, vice versa, a vector bundles E in B(n, d, k) determines naturally
a coherent system of type (n, d, k).

It is evident that in order to achieve a direct correspondence between
Brill-Noether loci and coherent systems a precise relationship between vector
bundles stability and coherent systems σ-stability is needed. In this case the
key step is provided by Proposition 2.2.3, which permits to define a map

Ψ :

{
Gσ0(n, d, k) −→ Bss(n, d, k)

(E, V ) 7−→ E

whose image contains B(n, d, k). In general, hence, it is possible to obtain
information on B(n, d, k) from properties of Gσ0(n, d, k) (as an example if
gcd(n, d) = 1, then B(n, d, k) and Bss(n, d, k) coincide and the map above is
also surjective), and this motivates the interest in studying the properties of
the moduli space Gσ0(n, d, k). We have the following results.

Theorem 2.5.3 ([6, § 11]). Assume g > 2, β(n, d, k) 6 n2(g−1), Gσ0(n, d, k)
is irreducible and B(n, d, k) 6= ∅. Then the following facts hold.

i) B(n, d, k) is irreducible.

ii) Ψ is one-to-one over B(n, d, k) \ B(n, d, k + 1).

iii) dimB(n, d, k) = dimGσ0(n, d, k).

iv) For any E ∈ B(n, d, k) \ B(n, d, k + 1) the linear map

dΨ : T(E,H0(E))Gσ0(n, d, k) −→ TEB(n, d, k)

of Zariski tangent spaces is an isomorphism.

v) Assume Gσ0(n, d, k) is smooth. Then Ψ is an isomorphism and more-
over, if gcd(n, d, k) = 1, then Gσ0(n, d, k) is a desingularization of the
closure of B(n, d, k) in the projective variety Mss(n, d).
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Applying these techniques provides information on the irreducibility, the
dimension and the birational structure of B(n, d, k). Of course in order to ap-
ply this method we need a good understanding of the moduli space Gσ0(n, d, k),
which we can obtain, as already observed, by combining the study of the mod-
uli space of σ-stable holomorphic triples for large values of σ, and the use of
flips to “move” the information to small values of σ. The known results, hence,
are mainly in the cases presented in the previous Sections and in which we
have good estimates for the codimensions of the flips (see [6, § 11.2] for details
on the results).

2.6 Coherent systems in low genus

The general theory of coherent systems is true for vector bundles on curves
of any genus, but some of the results presented therein, in particular those
regarding the moduli spaces and their properties, requires g > 2. In fact co-
herent systems on the projective line and on elliptic curves deserve a particular
treatment. This is mainly due to the particularity of these two cases in respect
with the stability of vector bundles. In fact in both these cases it is true that
we have a more or less complete classification of stable and semistable vector
bundles, but it is also true that, from this classification, it turns out that quite
often stable (or even semistable) object are rare to appear.

The study of coherent systems in genus 0 and 1 has been carried on by
Lange and Newstead in [15, 16] (and it is still in active development for the
case of the projective line, see [17, 18]). Here we summarize their main results,
since we will use them later to prove analogous results for holomorphic triples
on curves of low genus.

Before starting recall that in [13] it has been proved that every vector
bundle E on the projective line P1 can be written uniquely as

E ∼=
n⊕
i=1

O(ai),

with a1 > a2 > . . . > an. Such a bundle is stable if and only if n = 1 and is
semistable if and only if a1 = a2 = . . . = an. A vector bundle E is said to be
of generic splitting type if it can be written in the form

E ∼= O(a)n−t ⊕O(a− 1)t,

where a and t are defined by d = an− t with 0 6 t < n. It can be shown that
a bundle E is of generic splitting type if and only if h1(P1,End(E)) = 0.

Dealing with vector bundles on elliptic curves recall that in [1] a complete
classification of indecomposable vector bundles on elliptic curves is given, in
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particular it is proved that the indecomposable bundles of any fixed rank
and degree form a family parametrized by X. An indecomposable bundle is
always semistable and it is stable if and only if its rank and degree are coprime.
Moreover in [24] it is shown that the moduli space of S-equivalence classes
of semistable vector bundles of rank n and degree d is isomorphic to the hth
symmetric product ShX of X, where h = gcd(n, d). In particular every point
of ShX is represented by a polystable vector bundle

E = E1 ⊕ · · · ⊕ Eh (2.1)

where each direct summand is stable of rank n/h and degree d/h.

2.6.1 Coherent systems on the projective line

The main results for coherent systems on the projective line are here sum-
marized. Note that they are still partial results: necessary conditions for
non-emptiness are provided and it is shown that the moduli space, whenever
non-empty, is smooth and irreducible of the expected dimension. A complete
classification is provided when the dimension of V is 1 or 2 and sufficient con-
ditions are provided in some other particular cases. In fact it turns out that
the case g = 0 is the most difficult to deal with, a situation that will still be
true also for holomorphic triples, as we will see in Chapter 3.

One of the more useful tools is provided by the following Lemma.

Lemma 2.6.1 ([15, Lm. 3.1]). Let (E, V ) be a σ-stable coherent system of
type (n, d, k) for some σ > 0 and assume k > 0. Then E ∼=

⊕n
i=1O(ai), where

for all i = 1, 2, . . . , n ai > 0, hence E is generated by its global sections.

Moving from this result it is possible to prove the following.

Theorem 2.6.2 ([15, Thm 3.2]). Suppose k > 0 and Gσ(n, d, k) non-empty.
Then Gσ(n, d, k) is smooth and irreducible and has dimension β(n, d, k). More-
over, for a general (E, V ) ∈ Gσ(n, d, k), E is of generic splitting type.

It is known that when σ is close to 0 the σ-stability of a coherent system
(E, V ) implies the semistability of E, but semistable vector bundles on the
projective line can exist if and only if n|d, hence one could expect that quite
often the moduli space for small values of σ would be empty and thus, hope-
fully, it would be possible to provide a better lower bound on σ. In fact this
is true and, whenever k < n, also a better upper bound exists. Note that in
the following Proposition we recover the standard lower bound precisely when
t = 0, that is when n|d and hence semistable vector bundles of type (n, d)
exist.
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Proposition 2.6.3 ([15, Props 4.1 and 4.2]). Suppose Gσ(n, d, k) is non-empty
and let the numbers a and t be defined by d = na− t with 0 6 t < n. Then

σ >
t

k
.

If, moreover, 0 < k < n, and l,m are defined by ka − t = l(n − k) +m with
0 6 m < n− k, then

σ <
d

n− k
− mn

k(n− k)
.

As previously stated in some particular cases more precise results can be
proved; they are summarized in the following Theorem.

Theorem 2.6.4 ([15, 5.1, 5.4, 6.1, 6.3, 6.4]). The following facts hold.

i) If k = 1 and n > 2, then Gσ(n, d, 1) is non-empty if and only if

t < σ <
d

n− k
− mn

n− 1
,

hence in this case the constraints on σ expressed by Proposition 2.6.3
are optimal.

ii) If k = 2 and n > 3, then Gσ(n, d, 2) is non-empty if and only if
(n, d) 6= (4, 6),

t

2
< σ <

d

n− 2
− mn

2(n− 2)

and

β(n, d, 2) > 0,

hence in this case the constraints on σ expressed by Proposition 2.6.3
are optimal.

iii) If k = n− 1, then Gσ(n, d, n− 1) is non-empty for some σ if and only
if d > n and in this case an upper bound for σ is precisely d.

iv) If k = n, then Gσ(n, d, n) is non-empty for some σ if and only if d > n

and in this case there is no upper bound on σ.

v) If k = n+ 1, then Gσ(n, d, n+ 1) is non-empty for some σ if and only
if d > n and in this case if we write d = na − t with 0 6 t < n, then
Gσ(n, d, n+ 1) is always non-empty if σ > t.
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2.6.2 Coherent systems on elliptic curves

The results for elliptic curves are definitively more exhaustive, since in this
case it is possible to prove that the moduli space of σ-stable coherent sys-
tems of type (n, d, k), if non-empty, is smooth and irreducible of the expected
dimension and, moreover, precise conditions for non-emptiness can be shown.

Similarly to what happens for the projective line, the following can be
proved.

Lemma 2.6.5 ([16, Lm. 4.1]). Suppose n > 2 and k > 0 and let (E, V ) be
a σ-stable coherent system of type (n, d, k). Then every indecomposable direct
summand of E is of positive degree.

Theorem 2.6.6 ([16, Thm 4.3]). Suppose n > 2, k > 0 and Gσ(n, d, k) non-
empty. Then Gσ(n, d, k) is smooth and irreducible of dimension β(n, d, k).
Moreover, for a general (E, V ) ∈ Gσ(n, d, k),

E ∼= E1 ⊕ · · · ⊕ Eh,

where h = gcd(n, d) and Ei are stable and pairwise non-isomorphic vector
bundles of the same slope.

Theorem 2.6.7 ([16, 3.1, 3.2, 4.5, 5.1, 5.2, 5.4]). The following facts hold.

i) If k = 0, then for all σ, Gσ(n, d, 0) ∼= M(n, d), where we write M(n, d)
for the moduli space of stable vector bundles of rank n and degree d; in
particular it is non-empty if and only if gcd(n, d) = 1.

ii) If k = d and gcd(n, d) > 1, then Gσ(n, d, d) is empty for all σ.

iii) If 0 < k < n and either k < d or k = d and gcd(n, d) = 1, then
Gσ(n, d, k) is non-empty if and only if

0 < σ <
d

n− k
.

iv) If k > n and either k < d or k = d and gcd(n, d) = 1, then Gσ(n, d, k)
is non-empty for all σ > 0.

Note in particular that, in fact, Gσ(n, d, k) is non-empty for the full range
of admissible values of σ.

In the following we will need also this Lemma from [16]; we collect it here
for future reference.

Lemma 2.6.8 ([16, Lm 2.2]). Suppose that E = E1 ⊕ · · · ⊕ Eh with all Ei
indecomposable. Then dim Aut(E) > h. Moreover equality holds if and only
if E is polystable and the Ei are pairwise non-isomorphic.
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2.7 Holomorphic triples and coherent systems as

augmented bundles

It is interesting and useful to note that coherent systems can be seen as “spe-
cialized” holomorphic triples. The two notions of σ-stability and α-stability,
however, are not exactly equivalent even if, of course, they are deeply related.

If (E, V ) is a coherent system of type (n1, d1, n2) and

V := span { ϕ1, . . . , ϕn2 } ,

then it is possible to consider the evaluation map ϕ : V ⊗ O −→ E, where
V ⊗O is a trivial vector bundle of rank n2, and hence to recover a holomorphic
triple (E,On2 , ϕ). Moreover the map H0(X,ϕ) induced by ϕ on the global
sections of On2 is injective. Vice versa, if (E1,On2 , ϕ) is a holomorphic triple
such that H0(X,ϕ) : H0(X,On2) −→ H0(X,E1) is injective, then by setting
V := H0(X,ϕ)(H0(X,On2)) it is possible to recover a coherent system (E1, V )
of type (n1, d1, n2).

The following can be easily proved (see also [5, Prop. 1.14]).

Lemma 2.7.1. Let On2
ϕ−→ E1 be a triple such that H0(X,On2) maps

injectively into H0 (X,E1). Then the corresponding coherent system is σ-
(semi)stable if and only if the triple is α-(semi)stable in the restricted sense
that the stability condition is fulfilled by those subtriples which have a trivial
second component, where the numbers σ and α are related by

α = µ(E1) + σ
n2 + n1

n1
σ = −µ(On2 ⊕ E1) + α

n1

n2 + n1
.

Remark 2.7.2. Note that, as explicitly stated in the previous Lemma, the
two notions of α-stability and σ-stability are not equivalent. In particular it
is obvious that α-stability is a stronger condition, in the sense that a σ-stable
coherent system can fail to be α-stable as a holomorphic triple since, in general,
a proper subtriple with a non trivial second component and which violates
the α-stability condition can exist, but such a triple does not correspond to
a coherent subsystem. Some further discussions on the connections between
the two definitions of stability are carried on in Section 4.2.

In fact the hypothesis on the injectivity of H0(X,ϕ) can be dropped as
far as we are interested in α-stable holomorphic triples, since the following is
true.

Lemma 2.7.3. Let T = (E1,On2 , ϕ) be α-stable for some α. Then the map
H0(X,ϕ) induced on the global sections is injective. The same holds for α-
semistable triples provided that α 6= αm.
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Proof. Assume by contraposition that H0(X,ϕ) is not injective and write
∅ 6= N := ker(H0(X,ϕ)) and t := dimN > 0. Then N ⊗ O is a trivial
subbundle of On2 of rank t, hence the triple T ′ = (0,Ot, ϕ|Ot) is a proper
subtriple of T . The α-semistability condition for T ′ is

µα(0,Ot, ϕ|Ot) = α 6
d1 + αn2

n1 + n2
= µα(T )

which is equivalent to α 6 αm(n1, n2, d1, 0), and hence T is not α-stable for
any α and can be α-semistable only if α = αm.

According to these Lemmas the study of α-(semi)stable holomorphic triples
with a trivial second component can always be related to the study of σ-
(semi)stable coherent systems. In fact in the following we will often start
from results that are known to be true for coherent systems and deduce from
them the corresponding results for holomorphic triples by keeping somehow
into consideration also the subtriples with a non trivial second component (see
e.g. Remark 3.4.9).

More in general, note that both coherent systems and holomorphic triples
are part of the so called augmented bundles (also known as decorated bundles
in [22]). This term denotes in general an object which consists of one or more
vector bundles on a curve X together with certain extra data, which are in
our cases some prescribed global sections of the vector bundle for coherent
systems, or a map between the vector bundles for holomorphic triples. Even
if, of course, every different class of augmented bundles has special and par-
ticular properties, there are important aspects common to all of these kinds of
objects, as suggested by the two particular cases we considered in these first
two Chapters. In particular those properties related to the notion of stability
and to the construction of moduli spaces are rather similar for all the aug-
mented bundles. A treatment of augmented bundles from a sort of “unified”
point of view is carried on extensively in [5], to which the Reader is referred
for more details.
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Chapter 3
Holomorphic triples on the

projective line

In the previous Chapters we have introduced the definition of holomorphic
triple and the main properties of these objects. As we observed many times the
general theory of triples is independent of the genus g of the curve on which the
vector bundles are considered, however some results concerning moduli spaces
and their properties need the further assumption that g > 2. In particular the
problems of non-emptiness and of irreducibility deserve a particular treatment
on the projective line and on elliptic curves. An analogous problem arises in
the study of Coherent Systems and has been faced by Lange and Newstead
in two papers ([15, 16]). In this Chapter and in the following one we extend
(mutatis mutandis) the results already known for holomorphic triples to cover
also the case of triples on curves of low genus.

In particular in this Chapter we consider a curve X of genus 0, hence
isomorphic to the projective line P1. This is doubtless the hardest case we
consider, mainly because the situation is complicated by the fact that on the
projective line stable and semistable vector bundles are rare to appear. We
can provide only partial results: necessary conditions for non-emptiness which
show that the range of admissible values of α is in fact smaller than the usual
one, but sufficient conditions only in some particular cases and quite often
only for a subset of the whole admissible range of values of α. Note that
also the case of coherent systems of genus 0 is still under development since
it presents the same difficulties. In fact our results parallelize the results of
[15] (even if it is worth to observe that in the case of coherent systems the
study of the 0 genus case has been further improved in the two recent preprint
[17, 18]).

All the results proved in this Chapter have been obtained in collaboration
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with Francesco Prantil of the University of Trento.

3.1 Setting

Before starting note that if g = 0, then α is always bigger that 2g−2, hence the
hypothesis of Theorem 1.7.5 are always fulfilled. Moreover in this particular
case the Brill-Noether condition expressed by Theorem 1.7.1 can be restated
in the following way.

Corollary 3.1.1. Assume that T ∈ Nα(n1, n2, d1, d2) 6= ∅; then T is smooth
and

d1 >
n2

1 + n2
2 − n1n2 + n1d2 − 1

n2
.

In the following we will need also the following Lemma. Note that it is
independent of the genus of the curve X, hence we will make use of it freely
also for elliptic and bielliptic curves in Chapter 4. If E is a vector bundle on a
curve X and L is a line bundle, then the α-(semi)stability for E is equivalent
to the α-(semi)stability for E ⊗ L. The Lemma shows that the same holds
also for holomorphic triples.

Lemma 3.1.2. Let X be a curve of any genus g and L be a line bundle over
X. Then, for any α ∈ R, the triple T = (E1, E2, ϕ) is α-(semi)stable if and
only if the triple T ⊗ L = (E1 ⊗ L, E2 ⊗ L, ϕ⊗ idL) is α-(semi)stable.

Proof. The proof follows easily from the fact that

deg(Ei ⊗ L) = deg(Ei) + rank(Ei) deg(L).

Note that the requirement that L is a line bundle is necessary to have a 1-1
correspondence between the subtriples of T and those of T ⊗ L.

As a consequence of this Lemma we can always assume that degEi > 0,
i = 1, 2.

3.2 Constraints on α

As it happens for coherent systems, in the particular case of curves of genus
0 both the upper and lower bound of Proposition 1.2.1 can be improved, as
shown by the following results.

Proposition 3.2.1. Let
⊕n2

i=1O(bi) −→
⊕n1

i=1O(ai) be an α-stable holomor-
phic triple for some α. Then the following inequalities hold:

α > a1 +
na1 − a− b

m
, (3.1)
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α >
b+ a− (m+ n)bm

n
. (3.2)

where a = deg (
⊕n1

i=1O(ai)) and b = deg (
⊕n2

i=1O(bi)).

Proof. The triple (O(a1), 0, 0) is a proper subtriple and it is a straightfor-
ward computation to see that the α-stability condition for it gives the first
inequality.

Consider now the proper subtriple
(⊕n1

i=1O(ai), E′
2, ϕ|E′2

)
, where E′

2 is
the direct sum of all the O(bi) except O(bm). The α-stability condition for
this subtriple is

a+ b− bn2 + (n2 − 1)α
n1 + n2 − 1

<
a+ b+ n2α

n1 + n2
.

and it is equivalent to inequality (3.2).

Proposition 3.2.2. Let
⊕n2

i=1O(bi) −→
⊕n1

i=1O(ai) be an α-stable triple for
some α and assume that n2 < n1. Then

α < 2
a+ b− (n1 + n2)b1

n1 − n2
. (3.3)

Proof. Consider the subtriple
(
im
(
ϕ|O(b1)

)
,O(b1), ϕ|O(b1)

)
. The inequality fol-

lows from the α-stability condition for this triple.

Remark 3.2.3. Note that n1a1 > a, so the lower bound in (3.1) is always
better or equal than the standard αm. Moreover this bound is equivalent to
α > µ1−µ2 if and only if, for all i = 1, . . . , n1, ai = a/n1, that is if and only if⊕n1

i=1O(ai) is semistable. In the same way the lower bound in (3.2) is always
better or equal to the standard one, equality holding if and only if

⊕n2
i=1O(bi)

is semistable. Note also the similarity to what happens for coherent systems
(see Proposition 2.6.3 and the considerations immediately before it).

In the same way the upper bound in (3.3) is always stricter than that
given by αM and equality holds if and only if

⊕n2
i=1O(bi) is semistable and

im
(
ϕ|O(b1)

)
is saturated (under the assumption that im

(
ϕ|O(b1)

)
is not satu-

rated, the upper bound above can be further improved).
In the following we will denote the bounds above by

αm = a1 +
n1a1 − a− b

n2

αm =
a+ b− (n1 + n2)bn2

n1

αM = 2
a+ b− (n1 + n2)b1

n1 − n2
.
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Corollary 3.2.4. Let
⊕n2

i=1O(bi) −→
⊕n1

i=1O(ai) be an α-stable triple for
some α and assume that a1 > 0. Then, for all i = 1, 2, . . . , n2, bi > −α, and
thus b > −n2α.

Proof. Our assumption on the existence of at least one ai > 0 is equivalent
to require that a + b + n2α > 0. In fact an easy computation shows that, if
a1 > 0, then

µ1 − µ2 − a
n1 + n2

n1n2
6 a1 +

n1a1 − a− b

n2
= αm

so, in particular, α is greater than or equal to the first term in the above
inequality, which is equivalent to our claim.

It follows therefore from the previous Proposition that

a+ b+ n2α

n1 + n2
6
a+ b+ n2α

n1 + n2 − 1
<
a+ b+ n2α

n1 + n2
+

bn2 + α

n1 + n2 − 1

and so bn2 > −α.

3.3 Triples with E2 semistable

In this section we prove some results for holomorphic triples on the projective
line under the further assumption that one of the vector bundles is semistable.
In particular in the remainder we will assume that E2 is semistable, since the
case in which E1 is semistable can be dealt with by duality.

If E2 is a semistable vector bundle, then we have the following Corollary
of Lemma 3.1.2.

Corollary 3.3.1. The triple O(b)n2
ϕ−→

⊕n1
i=1O(ai) is α-(semi)stable if

and only if the triple On2
ϕ−→
⊕n1

i=1O(ci) is α-(semi)stable, where for all
i = 1, 2, . . . n1, ci := ai − b.

According to this Corollary in the following, if O(b)n2
ϕ−→
⊕n1

i=1O(ai) is
an α-stable triple, we can assume without loss of generality thatO(b)n2 ∼= On2 .
First of all we can prove an analogous of Lemma 2.6.1.

Proposition 3.3.2. Let On2
ϕ−→
⊕n1

i=1O(ci) be an α-stable triple for some
α ∈ R. Then, for all i = 1, 2, . . . n1, ci > 1.

Proof. Assume that there exists cj < 0 and consider the composition map

On2
ϕ−→

n1⊕
i=1

O(ci)
π−→ O(cj). (3.4)
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It is a classical result that a necessary condition for this map to be different
from zero is ci > 0, so the map is the zero map, that is O(cj) ∩ im(ϕ) = ∅.
The subtriples (O(cj), 0, 0) and (E′

1,On2 , ϕ), where E′
1 is the direct sum of all

O(ci) except O(cj), are thus proper subtriples which contradict α-stability for
every α.

Assume now that cn = 0. Then the subtriple
(⊕n−1

i=1 O(ci),Om−1, ϕ|Om−1

)
is a proper subtriple and contradicts the α-stability condition.

The previous result is in fact a particular case of a more general Theorem,
in fact its proof relies on the fact that the composition map (3.4) is zero, and
hence the holomorphic triple (

⊕n1
i=1O(ci),On2 , ϕ) splits into the direct sum

of two non trivial holomorphic triples, contradicting the α-stability. In the
same way as above but dropping the hypothesis on E2, it is thus possible to
prove also the following.

Proposition 3.3.3. Let T = (
⊕n1

i=1O(ai),
⊕n2

i=1O(bi), ϕ) be an α-stable
triple for some α. Then ai > bn2 for all i = 1, 2, . . . , n1.

In the next Theorem we obtain a characterization of the general α-stable
triples analogous to that obtained on the projective line for σ-stable coherent
systems in Theorem 2.6.2.

Theorem 3.3.4. Fix α ∈ R and let On2
ϕ−→
⊕n1

i=1O(ci) be a general α-stable
triple. Then the vector bundle

⊕n1
i=1O(ci) is of generic splitting type, i.e.

n1⊕
i=1

O(ci) ∼= O(q)n1−t ⊕O(q − 1)t

where the integers q and t are defined by

c = n1q − t, with 0 6 t < n1.

Proof. If n2 6 n1, then the result follows from the results on coherent systems
in Theorem 2.6.2. Assume now that n2 > n1 and write Fc :=

⊕n1
i=1O(ci) and

c := degFc =
∑n1

i=1 ci. It is a standard result (see [21, Thm 2.1] for a recent
formulation) that there always exists a surjective map between On2 and Fc,
so we can assume without loss of generality that the map ϕ is surjective.
Therefore we have the exact sequence

0 −→ K −→ On2
ϕ−→ Fc −→ 0

whereK := ker(ϕ), which shows that rank(K) = n2−n1 and k := deg(K) = −c.
Let us now consider the subscheme U of Nα(n1, n2, c, 0) defined by the exact
sequences

0 −→ K −→ E′ −→ Fc −→ 0.
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Thus we have

dim(U) =dim Ext1(Fc,K)− dim Aut(K)− dim Aut(Fc) + 1 =

=h1(P1,K ⊗ F ∗
c )− (n2 − n1)2 − h1(P1,End(K))+

− n2
1 − h1(P1,End(Fc)) + 1 =

=h0(P1,K ⊗ F ∗
c )− n1(n2 − n1)− n1k + (n2 − n1)c− (n2 − n1)2+

− n2
1 + 1− h1(P1,End(K))− h1(P1,End(Fc)) =

=ρ(n1, n2, c, 0)− h1(P1,End(K))− h1(P1,End(Fc)),

where h0(P1,K ⊗ F ∗
c ) = 0 because for every i, j, kj − ci < 0. Hence we have

h1(P1,End(K)) = h1(P1,End(Fc)) = 0.

Corollary 3.3.5. Let O(b)n2
ϕ−→
⊕n1

i=1O(ai) be a general α-stable triple.
Then the vector bundle

⊕n1
i=1O(ai) is of the form

n1⊕
i=1

O(ai) ∼= O(q)n1−t ⊕O(q − 1)t

where the integers q and t are defined by

a = n1q − t, with 0 6 t < n1.

In the general case, with the same technique, and observing that by ten-
sorization with a suitable line bundle one can always obtain that bm > 0, it is
also possible to prove the following.

Theorem 3.3.6. Let
⊕n2

i=1O(bi)
ϕ−→
⊕n1

i=1O(ai) be a general α-stable triple
such that n2 < n1. Then

⊕n2
i=1O(bi) is of generic splitting type.

Proof. Write Fa =
⊕n1

i=1O(ai), Fb =
⊕n2

i=1O(bi), a = degFa and b = degFb.
Without loss of generality we can assume that ϕ is injective, therefore we have
the exact sequence

0 −→ Fb
ϕ−→ Fa −→ C −→ 0

where C = coker(ϕ), thus we have rank(C) = n1 − n2 and deg(C) = a − b.
Let us now consider the subscheme U of Nα(n1, n2, a, b) define by the exact
sequences

0 −→ Fb
ϕ−→ E′ −→ C −→ 0.

In an analogous way as in the proof of the previous result we can compute

dim(U) = ρ(n1, n2, a, b)− h1(P1,End(Fb))− h1(P1,End(C))

and conclude h1(P1,End(Fb)) = 0.
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The following Proposition shows that in an α-stable triple T = (E1, E2, ϕ)
the image of the map ϕ in some sense reaches all the direct summands of E1.

Proposition 3.3.7. Let T :
⊕n2

i=1O(bi)
ϕ−→ O(a)n1 be an α-stable triple.

Then, for any direct summand O(a), im(ϕ) ∩ O(a) 6= ∅.

Proof. By contraposition let O(a) be such that im(ϕ) ∩ O(a) = ∅. Then the
subtriple On2

ϕ−→ O(a)n1−1 is a proper subtriple and the α-stability condition
for it is

(n1 − 1)a+ n2α

n1 + n2 − 1
<
n1a+ n2α

n1 + n2
,

which leads to α < a = µ1 − µ2 = αm. Thus the triple T is not α-stable for
any α.

Fix now n1, n2 and a triple T of the form On2
ϕ−→
⊕n1

i=1O(ci), and write
Fc :=

⊕n1
i=1O(ci), c := degFc. It is an easy computation using Riemann-Roch

formula to see that a necessary condition for T to be related to a coherent
system is n2 6 n1 + c. For the general α-stable triple this is, in fact, also a
sufficient condition as follows from 2.7.3. This can be deduced also directly
from the exact sequences that are proved to exist in the following Lemmas.

Lemma 3.3.8. Let On2
ϕ−→
⊕n1

i=1O(ci) be a general α-stable triple such that
n2 < n1. Then there exists an exact sequence

0 −→ On2 −→
n1⊕
i=1

O(ci) −→ G −→ 0. (3.5)

In particular H0(P1,On2) maps injectively into H0(P1,
⊕n1

i=1O(ci)).

Proof. By Proposition 3.3.2,
⊕n1

i=1O(ci) is generated by its global sections.
So, by a classical result of Atiyah (see [1, Thm. 2]), we obtain the exact
sequence of the statement. The last claim is immediate.

Lemma 3.3.9. Let On2
ϕ−→ Fc be a general α-stable triple such that n1 = n2.

Then there exists an exact sequence

0 −→ On2 −→ Fc −→ T −→ 0, (3.6)

where T is a torsion sheaf. In particular H0(P1,On2) maps injectively into
H0(P1, Fc).

Proof. Again, by Proposition 3.3.2, Fc is generated by its global sections. Fix-
ing a point x of P1 and a basis for On2

x defines an injective map On2
x −→ Fcx,

and therefore an exact sequence (3.6).
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Lemma 3.3.10. Let On2
ϕ−→ Fc be a general α-stable triple such that n2 > n1.

Then there exists an exact sequence

0 −→ G −→ On2 −→ Fa −→ 0. (3.7)

Moreover, if n1 < n2 6 n1 + c, H0(P1,On2) maps injectively into H0(P1, Fc).

Proof. In general, by Proposition 3.3.2, the existence of an exact sequence
(3.7) is a standard result (again see [21, Thm 2.1] for a recent proof). Assume
now that n1 < n2 6 n1+c and let V be a dimension n2 subspace ofH0(P1, Fc).
Then the sheaf V ⊗O defines a map from the global sections of On2 to that
of Fc which is injective (in fact an isomorphism) into V .

Remark 3.3.11. Note that from Lemma 2.7.3 it follows that, for any α > αm,
α-stable holomorphic triples of type (n1, n2, c, 0) with a trivial second com-
ponent cannot exist unless n2 6 n1 + c. Consequently α-stable holomorphic
triples of type (n1, n2, a, n2b) cannot exist unless n2 + n1(b− 1) 6 a.

In the case in which n2 6 n1 + c we can inherit some properties for the
triple T by the case of coherent systems (see Theorem 2.6.4).

Theorem 3.3.12. Let T = (
⊕n1

i=1O(ci),On2 , ϕ) be an α-stable triple and
write c :=

∑n1
i=1 ci. Then the following is true:

1. for all i = 1, 2, . . . , n1, ci > 1;

2. if T is general, then
⊕n1

i=1O(ci) is of generic splitting type:

n1⊕
i=1

O(ci) ∼= O(q)n1−t ⊕O(q − 1)t;

3. if T is general and n2 < n1, then the vector bundle G of (3.5) is of the
form

G ∼= O(q + l + 1)u ⊕O(q + l)n1−n2−u.

4. α > µ1 + n1+n2
n1n2

t;

5. if n2 < n1 then α < 2 c
n1−n2

− u(n1+n2)
n2(n1−n2) = αM − u(n1+n2)

n2(n1−n2) ;

6. the bounds at the previous items are sharp in the case n2 = 1,

where t, q, l and u are defined by

c = n1q−t with 0 6 t < n1, and n2q−t = l(n1−n2)+u with 0 6 u < n1−n2.

Proof. All the results above can be easily deduced from the respective results
in 2.6.4 using Lemma 2.7.1.
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Corollary 3.3.13. Let T = (
⊕n1

i=1O(ai),O(b)n2 , ϕ) be an α-stable triple and
write a :=

∑n1
i=1 ai. Then the following is true:

1. for all i = 1, 2, . . . , n1, ai > b+ 1;

2. if T is general
⊕n1

i=1O(ai) is of generic splitting type:

n1⊕
i=1

O(ai) ∼= O(q)n1−t ⊕O(q − 1)t;

3. if T is general and n2 < n1, then the vector bundle G of (3.5) is of the
form

G ∼= O(q + l + 1)u ⊕O(q + l)n1−n2−u.

4. α > µ1 − µ2 + n1+n2
n1n2

t;

5. if n2 < n1, then α < 2 a−n1b
n1−n2

− u(n2+n1)
n2(n1−n2) ;

6. the bounds at the previous items are sharp in the case n2 = 1,

where t, q, l and u are defined by

a = n1q−t with 0 6 t < n1, a−n2b = (l+q)(n1−n2)+u with 0 6 u < n1−n2.

Remark 3.3.14. Note that if
⊕n1

i=1O(ai) is of generic splitting type, then
the lower bound above coincides with the lower bound of Proposition 3.2.1.

3.4 Some special cases

In the final part of this Chapter we deal with the analysis of some special cases,
with the goal of proving, at least in these particular situations, some sufficient
conditions for non-emptiness, and hence obtaining a deeper understanding of
the moduli spaces. In particular we take into consideration many of the cases
Lange and Newstead investigated in [15] for coherent systems, mainly for two
reasons. First of all we can make comparisons between the results we prove
for holomorphic triples and those that have been proved for coherent systems.
Second and more important, our strategy is mainly to refer back to coherent
systems to deal with subtriples with a trivial component and then to arrange
in some way the remaining cases (see also Remark 3.4.9).

In the following we will write Fa :=
⊕n1

i=1O(ai), Fb :=
⊕n2

i=1O(bi),
Fc :=

⊕n1
i=1O(ci), a := degFa, b := degFb and c := degFc. Note that,

as usual, the cases with n1 and n2 interchanged can be dealt with appealing
to duality.
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The case n2 = 1

The triple (
⊕n1

i=1O(ai),O(b), ϕ) can always be thought as a coherent system
(E, V ) with dim(V ) = 1 and the two notions of stability for the two different
structures are in this case exactly the same, so the results from [15] apply:

Theorem 3.4.1. Suppose n > 2. Then the moduli space of α-stable triples
with parameters (n1, 1, a, b) is non-empty if and only if

µ1 − µ2 +
n1 + 1
n1

t < α < 2
a− n1b

n1 − 1
− (n1 + 1)

n1 − 1
u.

where t, q, l and u are defined by

a = n1q−t with 0 6 t < n1, and a−b = (l+q)(n1−1)+u with 0 6 u < n1−1.

The case n2 = 2

Note that, again, if the vector bundle E2 is semistable and n1 > 3, then
the triples (

⊕n1
i=1O(ai),O(b)2, ϕ) can be related to coherent systems of type

(n1, a − n1b, 2) but the two notions of α-stability and σ-stability are not, a
priori, equivalent. We would like to prove that the bounds of Theorem 3.3.12
are sharp also in this case, that is

Conjecture 3.4.2. Suppose n1 > 3. Then the moduli space of α-stable
triples with parameters (n1, 2, a, 2b) is non-empty if and only if α satisfies

αm +
n1 + 2
2n1

t < α < αM − u(n1 + 2)
2(n1 − 2)

,

a, b and n1 satisfy the Brill-Noether condition

a− n1b >
1
2
n1(n1 − 2) +

3
2

and (n1, a− n1b) 6= (4, 6).

Unfortunately so far we do not have a complete proof of this fact (see
Remark 3.4.5 for details and comments). A useful tool for the proof could be
the following Lemma, which is a generalization of [15, Lm. 5.3].

Definition 3.4.3. Let T = (Fc,O2, ϕ) be a general triple as in 3.3.12, that is
Fc ∼= O(q)n1−t⊕O(q−1)t. For t > 1 and d 6 0 we define the d-invariant δd(T )
of the triple as the minimal rank of a direct factor of O(q− 1)t containing the
image of some O(d) ⊆ O2 under the composed map

O(d) −→ O2 ϕ−→ Fc −→ O(q − 1)t.
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Lemma 3.4.4. Let q > 1 and t > 1. Then the general triple T = (Fc,O2, ϕ)
satisfies

δd(T ) =


t, q > t− 2d+ 1,
t− 1, q = t− 2d,
q + 2d, 1 6 q 6 t− 2d− 1.

Proof. The composition map O(d) −→ Fc is of the form(
f1 . . . fn1−t g1 . . . gt
f ′1 . . . f ′n1−t g′1 . . . g′t

)T
·

(
h

h′

)

where fi, f ′i are binary forms of degree q, gi, g′i are binary forms of degree q−1
and h, h′ are binary forms of degree −d. The pair h, h′ corresponds naturally
to the matrix

H =

(
h1 . . . h−d+1

h′1 . . . h′−d+1

)
whose elements are complex numbers such that every 2 × 2 minor has full
rank. Thus the composition map is given by the vector

(hg1 + h′g′1, . . . , hgt + h′g′t)
T .

The proof now is a slight variation of [15, Lm. 5.3]; for the sake of completeness
we report here the details. Note that, by definition of δd(T ) we have

t− δd(T ) = max
A∈GL(t,K), H as above

{ number of 0 entries in Av } ,

which is equivalent to the maximum number of linearly independent vectors
(λ1, . . . , λt) ∈ Kt such that

(λ1hg1 + λ1h
′g′1) + . . .+ (λthgt + λth

′g′t) = 0, (3.8)

the maximum to be taken over all matrices H as above. Consider the Segre
embedding

ι : P−2d+1 × Pt−1 −→ P−2dt+2t−1

and note that the conditions on the minors ofH define open subsets of the pro-
jective space P−2d+1. Consider now the map ψ : K−2dt+2t −→ H0(P1,O(a−1))
defined by

(x1, y1, . . . , xt, yt) 7→ x1g1 + y1g
′
1 + . . . xtgt + ytg

′
t,

where xi, yi ∈ K−d+1, and write W for its kernel. We have

t− δd(T )− 1 6 dim
(
P(W ) ∩ ι(P−2d+1 × Pt−1)

)
. (3.9)
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By varying T generically the vector space W can be chosen arbitrarily, and
for a general choice of gi and g′i we have dimW = max { 2t− 2dt− q, 0 }.

If q > t− 2d+ 1 then

(2t− 2dt− q) + (−2d+ 1 + t− 1) < −2dt+ 2t− 1,

hence W can be chosen so that P(W ) ∩ ι(P−2d+1 × Pt−1) = ∅ and thus, by
(3.9), δd(T ) = t.

If q = t−2d, then we can choose W so that P(W )∩ι(P−2d+1×Pt−1) is finite
and non-empty, hence by (3.9) δd(T ) > t − 1. Any point in the intersection
P(W ) ∩ ι(P−2d+1 × Pt−1) is in fact a solution of (3.8), thus t− δd(T ) > 1.

If 1 6 q 6 t− 2d− 1 we can choose W so that

dim
(
P(W ) ∩ ι(P−2d+1 × Pt−1)

)
= t− q − 2d,

and this intersection is irreducible, hence the maximal dimension of a linear
space contained in it is exactly t− q − 2d− 1, which concludes the proof.

Remark 3.4.5. Note that, according to Theorem 2.6.4, all the conditions
we assume in the statement of Conjecture 3.4.2 are necessary conditions for
the existence of a σ-stable coherent system, and so, by Remark 2.7.2, are
necessary conditions also in the case of triples. Moreover these conditions
are also sufficient for a coherent system to exist, so to show sufficiency of the
conditions we have only to show that the corresponding triple is α-stable for a
proper subtriple T ′ = (F ′, E′, ϕ′) where E′ is a rank 1 non trivial subbundle of
O2, and so E′ ∼= O(d) for some d < 0. Denote h = rank(F ′) and f = deg(F ′).
Let us compute

∆α(T ′, T ) =µα(T ′)− µα(T ) =
f + d+ α

h+ 1
− n1q − t+ 2α

n1 + 2
=

=α
n1 − 2h

(h+ 1)(n1 + 2)
+
f + d

h+ 1
− n1q − t

n1 + 2
. (3.10)

Note that if t > 0 and we write S for the image of F in O(q − 1) and
s = rank(S), then, by the definition of the invariant δd(T ), h0(S∗(q−1)) > δd(T )
and, by Riemann-Roch, h0(S∗(q − 1)) = −deg(S) + sq, hence

f 6 (h− s)q + sq − δd(T ) = hq − δd(T ).

Moreover from 2q − t = l(n1 − 2) + u > n1 − 2 > 0 it follows that 2q > t.
So far we are able to prove the Conjecture only under the further assump-

tion that n1 6 2h, while the remaining case needs a deeper analysis.

Case n1 < 2h. The coefficient of α is strictly negative, so we obtain a strict
upper bound for (3.10) by considering α = αm = 2q+t

2 , therefore we can
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prove
(2q + t)(n1 − 2h)
2(h+ 1)(n1 + 2)

+
f + d

h+ 1
− n1q − t

n1 + 2
6 0,

or equivalently,
t− 2qh+ 2(f + d) 6 0. (3.11)

If t = 0 the α-stability condition for the subtriples is always fulfilled as
α > q = αm, so we can assume t > 1. In this case we have

t− 2qh+ 2(f + d) 6 t− 2δd + 2d

and we are now in position for applying the previous Lemma.

If q > t−d+1 then δd = t, so condition (3.11) is δ > 2d which is always
true for d < 0. If q = t− d then condition (3.11) is 2d 6 t− 2 which is
true because 2d 6 −2 and t− 2 > −1. Finally if q 6 t− d− 1, condition
(3.11) is 2q − t > 0 which is always fulfilled as already observed.

Case n1 = 2h. In this case (3.10) is

f + d

h+ 1
− 2hq − t

2(h+ 1)
.

Assume first that t 6= 0, so we have to prove

2d− 2δ + t < 0

which follows in the same way of the previous case.

Let now t = 0, so that Fc ∼= O(q)n1 . In this case the α-stability for T ′

is
d+ rq + α

r + 1
<
rq + α

r + 1
,

which is equivalent to d < 0, always true under our assumptions.

The case n2 = n1 − 1

In this case we have results only for the moduli space for large α. We will
show that for large enough α the moduli space is always non-empty.

In particular we can show the following.

Proposition 3.4.6. There exists α for which Nα

(
n1, n1 − 1, a, (n1 − 1)b

)
is

non-empty if and only if a > n1(b+ 1)

Proof. In Theorem 2.6.4 it has been proved that there exists an α-stable co-
herent system (Fc, V ) of type (n1, c, n1−1) provided that α is sufficiently large
and c > n1. Let us consider the exact sequence

0 −→ On1−1 ϕ−→ Fc −→ G −→ 0
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associated to such a coherent system.
We claim that the triple T = (Fc,On1−1, ϕ) is α-stable for large alpha. If

it is so, then the triple O(b)n1−1 ϕ−→ Fa, where as usual ci = ai−b, is α-stable
for large α, proving the Proposition.

Let us prove our claim. From the stability of the corresponding coherent
system we already know that α-stability condition is fulfilled by all subtriples
(F ′, E′, ϕ′) where E′ is a trivial subbundle of On1−1, so consider a proper
subtriple

0 −−−−→ On1−1 ϕ−−−−→ Fcx x
E′ ϕ′−−−−→ F ′

where E′ is non-trivial, denote it by T ′ and write l = rank(E′), e = deg(E′),
h = rank(F ′) and f = deg(F ′). For large enough α, there exists ε > 0 such
that α = αM − ε = 2c− ε. We therefore have

∆α(T ′, T ) =
f + e+ lα

l + h
− c+ (n1 − 1)α

2n1 − 1
=

=ε
h(n1 − 1)− n1l

(l + h)(2n1 − 1)
+
c(l − h) + f + e

l + h
. (3.12)

Provided that e 6 0 and f 6 c, we have

c(l − h) + e+ f 6 c(l − h) + c = c(l − h+ 1),

so, whenever l < h − 1, the second term in (3.12) is strictly negative, hence
for small enough ε α-stability condition is fulfilled for T ′. Note that l 6 h, so
we have to analyse only two more cases to complete the proof.

Case l = h − 1. In this case we have for the second term in (3.12)

−c+ f + e

2h− 1
6

e

2h− 1
6 0

and equality holds if and only if c = f + e, from which follows c = f

and e = 0. In this case E′ ∼= Oh−1, hence α-stability is guaranteed by
the result on coherent systems.

Case l = h. We have for the second term in (3.12)

f + e

2h
=
e

h
6 0.

Moreover the first term is

ε
−1

2h(2n− 1)
< 0,

thus we are done.
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Holomorphic triples on the projective line

Remark 3.4.7. Note that if E2 is a non-semistable vector bundle, then the
previous argument does not apply, in fact the bound αM is always better than
αM , hence ε > 0 cannot be too small, or, in other words, we cannot be sure
to reach a value of α sufficiently close to αM , as it is required by the previous
proof.

The case n2 = n1

Also in this case we can obtain a partial result: an α-stable triple exists
provided that α is sufficiently large and a is sufficiently large in respect to b.
Write n := n1 = n2.

Theorem 3.4.8. The moduli space Nα

(
n, n, a, nb

)
is non-empty for suffi-

ciently large α if and only if a > n(b+ 1), and in this case there is no upper
bound on α.

Proof. Let
On ϕ−−−−→ Fcx x
E′ ϕ′−−−−→ F ′

be a proper subtriple of T , and denote it by T ′. Write Fc = O(q)n−t⊕O(q−1)t

and, as usual, write r = rank(E′), h = rank(F ′), e = deg(E′), f = deg(F ′)
and compute

∆α(T ′, T ) =
f + e+ rα

r + h
− nq − t+ nα

2h
=

=α
n(r − h)
2n(r + h)

− q

2
+

2n(f + e) + t(r + h)
2n(r + h)

. (3.13)

If r − h < 0 then the coefficient of α in (3.13) is strictly negative, so (3.13) is
itself strictly negative, provided that α is sufficiently large.

If r = h, we have to show that

−nhq + n(f + e) + th < 0. (3.14)

We distinguish two cases.

Case f + e > 0. In this case the first part of the inequality (3.14) is big for
small h, so let us assume h = 1 This leads to show that n(f+e)−nq+t < 0.
We have

n(f + e)− nq + t 6 nhq − nq + t+ ne = t+ ne,

and this, provided that t < n, is always true if e 6 −1. If e = 0 then
the α-stability follows from the σ-stability of the corresponding coherent
system.
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3.4. Some special cases

Case f + e 666 0. In this case we have

−nhq + n(f + e) + th 6 t− nq,

so it suffices to show that t−nq < 0. This is always true if deg(Fc) > 1.
If deg(Fc) = 0, then f = 0, and α-stability for T ′ follows from the
σ-stability of the corresponding coherent system.

Remark 3.4.9. Assume that Fb is semistable, and so, according to our con-
vention, Fb ∼= On2 . In all the cases we have analyzed the strategy was the
same: to refer back to the coherent system related to the triple to guarantee
the α-stability condition for all those subtriples with a trivial second compo-
nent, and then to check in some way all the remaining subtriples. The result
is that in all the cases we took into consideration the α-stability condition
for the subtriples of the second kind above does not ever provide a stronger
condition than the α-stability for coherent system does, so it is natural to ask
whether this is always true for n2 6 n1 + a and for all α in the admissible
range. A good question but, unfortunately, so far we do not have a good
answer for it.

Conjecture 3.4.10. Let g = 0 and n2 6 n1 + a. Then α-stable triples
(E1,On2 , ϕ) with E2 semistable are equivalent to σ-stable coherent systems,
where α and σ are related by Lemma 2.7.1.

In the next Chapter a positive answer to the question above is provided
for curves of any genus g, but only when α = α+

m (see Theorem 4.2.4).
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Chapter 4
Holomorphic triples on elliptic and

bielliptic curves

In this Chapter we study the α-stability for holomorphic triples over curves
of genus g = 1 and on bielliptic curves, hence in the remainder X will al-
ways denote an elliptic curve. We are able to prove necessary and sufficient
conditions for the moduli space of α-stable triples on elliptic curves to be
non-empty and, in these cases, we can show that it is smooth and irreducible.
We deepen also the analysis of the relationships that exist between the two
stability conditions for holomorphic triples and coherent systems, at least in
some particular cases. This is interesting by its own, but here will be used as
a tool to prove the existence results for elliptic triples.

From these results we move to deduce properties of the moduli spaces on
bielliptic curves, studying in particular pullbacks of holomorphic triples and
elementary transformations.

The results on elliptic curves are due to a collaboration with Francesco
Prantil of the University of Trento, while the results on bielliptic curves have
been proved in a joint work with Francesco and Edoardo Ballico of the Uni-
versity of Trento.

4.1 First results

First of all we collect some general results concerning α-stability for holomor-
phic triples on elliptic curves.

Remark 4.1.1. Note that, by tensorization for a suitable line bundle accord-
ing to Lemma 3.1.2, it is possible to operate as we did for triples on the pro-
jective line and to reduce to the case in which deg(E2) = 0 if and only if n2|d2
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4.2. Links between triples and coherent systems

i.e. if and only if µ(E2) ∈ Z. If we assume that E2 =
⊕k

j=1E
j
2 is polystable

with all the direct summands Ej2 with the same slope, then gcd(dj2, n
j
2) = 1,

so we can reduce to the degree 0 case if and only if nj2 = 1.
In any case, again according to Lemma 3.1.2, we can always assume with-

out loss of generality that d1 > 0 and d2 > 0. Moreover if we write E1 and
E2 as direct sums of indecomposable vector bundles, we can always assume
that every direct summand which appears in the decomposition has positive
degree, and so H1(X,E1) = H1(X,E2) = 0.

Remark 4.1.2. Note that, for any integer l, gcd(n1, d1) = gcd(n1, d1 + ln1),
so the number of direct summands in the “canonical decomposition” of a
semistable vector bundle E1 is the same as in the decomposition of E1⊗L for
any line bundle L.

Lemma 4.1.3. Suppose that the triple T = (E1, E2, ϕ) is α-stable for some
α. Then the set

I(T ) := {α ∈ R | T is α-stable}

is an open, non-empty interval in (αm,+∞); if, moreover, n1 6= n2, then
I(T ) ⊆ (αm, αM ).

Proof. I(T ) is obviously non-empty. Fix a subtriple T ′ of T . The stability
condition for T ′ gives a condition on α, which can be either α > a or α < b,
where a, b belong to the discrete set of the critical values of α. The set I(T ) is
thus the intersection of semi-infinite open intervals, hence it is itself open.

4.2 Links between triples and coherent systems

This section is devoted to deepen the relationship between holomorphic triples
and coherent systems. Note that the results here proved are independent of
the genus g of X, hence they remain true also for non-elliptic curves.

Recall also that in Lemma 2.7.3 we have proved that for a holomorphic
triple T = (E1, E2, ϕ) the condition that the map induced by ϕ on the global
sections is injective is a necessary condition for α-stability, and that in Section
1.5 we agree to denote by α+

m a value of α which lies in the interval between
αm = µ1 − µ2 and the first critical value for T and by α−M a value of α in the
interval between the last critical value and αM . The next results are based
on the fundamental observation stated in the following Lemma.

Lemma 4.2.1. Let T = (E1, E2, ϕ) be a holomorphic triple such that E1

and E2 are semistable vector bundles and assume that α = α+
m. Then in a

subtriple T ′ = (E′
1, E

′
2, ϕ

′) that contradicts α+
m-stability either E′

1 = 0 and E′
2

has maximum slope, or both E′
1 and E′

2 have maximum slope.
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Holomorphic triples on elliptic and bielliptic curves

Proof. Write as usual d′1 = deg(E′
i) and n′i = rank(E′

i), i = 1, 2. The α-
stability condition for T ′ is

d′1 + d′2 + αn′2
n′1 + n′2

<
d1 + d2 + αn2

n1 + n2
,

which is equivalent to

(d′1 + d′2)(n1 + n2)− (d1 + d2)(n′1 + n′2) < α(n2n
′
1 − n1n

′
2). (4.1)

Write α := (d′1+d′2)(n1+n2)−(d1+d2)(n′1+n′2)
n2n′1−n1n′2

. We distinguish three cases.

Case n2n′
1 − n1n′

2 > 0. The equation (4.1) is

α < α,

so it is enough to show that α 6 µ1 − µ2. This is equivalent to

d′1 + d′2 6 d1
n′1
n1

+ d2
n′2
n2

which is always true by the semistability of E1 and E2.

Case n2n′
1 − n1n′

2 = 0. In this case the equation (4.1) is

(d′1 + d′2)(n1 + n2)− (d1 + d2)(n′1 + n′2) < 0.

By the semistability of E1 and E2 d
′
1 6 d1

n′1
n1

and d′2 6 d2
n′2
n2

, hence if
either E1 or E2 are not of maximum slope, then it is enough to prove
that (

d1
n′1
n1

+ d2
n′2
n2

)
(n1 + n2)− (d1 + d2)(n′1 + n′2) 6 0,

which is always true as a straightforward computation shows.

Case n2n′
1 − n1n′

2 < 0. The equation (4.1) is α > α, so it is enough to
show that α > µ1 − µ2. This is equivalent to

d′1 + d′2 < d1
n′1
n1

+ d2
n′2
n2

which is true whenever at least one between E′
1 and E′

2 is not of maxi-
mum slope or, in the case E′

1 = 0, E′
2 is not of maximum slope.

Remark 4.2.2. Note that from the first case of the previous proof it follows
that if (E1, E2, ϕ) is a triple such that E1 and E2 are semistable vector bundles
and there exists α̂ such that T is α̂-stable, then T is α-stable for all α in the
open interval (αm, α̂). More in detail it is possible to prove the following
Proposition, which in fact is independent of the genus g of the curve involved
and provides sufficient conditions for extending the α-stability of a triple T
for which α-stability is known for a fixed value of α, to a whole subinterval of
(αm, αM ).
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4.2. Links between triples and coherent systems

Proposition 4.2.3. Let X be a curve of any genus g and T = (E1, E2, ϕ) be a
α̂-stable triple for α̂ ∈ (αm, αM ) such that ϕ is injective. Write E3 := coker(ϕ),
so to have an exact sequence

0 → E2 → E1 → E3 → 0.

The following facts hold:

i) if E1 and E2 are semistable, then T is α-stable for all α ∈ (αm, α̂];

ii) if E2 and E3 are semistable, then T is α-stable for all α ∈ [α̂, αM );

iii) if E1, E2, E3 are semistable, then T is α-stable for all α ∈ (αm, αM ).

Proof.

i) The result follows from 4.2.1.

ii) Consider the subtriple T̃ = (ϕ(E2), E2, ϕ), and the quotient triple
T̂ = (E3, 0, 0), hence we have an exact sequence

0 → T̃ → T → T̂ → 0.

It is easy to see that T̃ and T̂ are α-semistable for any α > 0 and that
µαM (T̃ ) = µαM (T̂ ); this implies the αM -semistability of T . Hence we
cannot have a subtriple of T giving a condition like α < a for a < αM ,
proving ii).

iii) It follows from i) and ii).

As a consequence of Lemma 4.2.1 above we can prove the following result.

Theorem 4.2.4. Let (E, V ) be a coherent system of type (n, d, k) and let
T = (E,Ok, ϕ) be the corresponding holomorphic triple. Then (E, V ) is 0+-
stable if and only if T is α+

m-stable.

Proof. One implication is obvious. Assume now that (E, V ) is 0+-stable.
By Proposition 2.2.3 the vector bundle E is semistable. If, by the sake of
contradiction, (E′, F ′, ϕ′) is a proper subtriple of T that violates α+

m-stability,
then by the previous Lemma both E′ and F ′ must have maximum slope,
hence, in particular µ(F ′) = 0, which shows that F ′ ∼= Ok′ for a suitable
k′ 6 k. This contradicts 0+-stability for (E, V ), concluding the proof.

It is possible to prove a similar result also for α−M -stability, but so far only
in a very particular case.
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Holomorphic triples on elliptic and bielliptic curves

Proposition 4.2.5. Let (E1, V ) be a coherent system of type (n1, d1, n2), and
T = (E1,On2 , ϕ) the corresponding holomorphic triple. Assume moreover that
n2 = n1 − 1, ϕ is injective, E1 is semistable and σ is close enough to the last
critical value σM = d1/(n1−n2). If (E1, V ) is σ−M -stable, then T is α−M -stable.

Proof. Let (E′
1, E

′
2, ϕ

′) be a proper subtriple of T that violates α−M -stability.

If degE′
1 6 0, then the proper subtriple

(
ϕ(On′2),On′2 , ϕ

)
corresponds to a

coherent subsystem which violates the σ−M -stability, so we can assume that
degE′

1 > 0. Moreover if n′1 = n′2, then E′
1
∼= E′

2, hence degE′
1 = degE′

2 6 0,
so we can assume also n′2 < n′1. As in the proof of Lemma 4.2.1, the condition
µα(T ′) < µα(T ) is equivalent to the condition

d′1 + d′2 < d1
n′1 − n′2
n1 − n2

.

Note that

n2n
′
1 − n1n

′
2 = (n1 − 1)n′1 − n1n

′
2 = n1(n′1 − n′2)− n′1 > n1 − n′1 > 0

which shows that n′1
n1

6 n′1−n′2
n1−n2

, hence it is enough to prove

d′1 + d′2 < d1
n′1
n1
.

By the semistability of E1, this is true whenever µ(E′
2) < 0 and µ(E′

1) < µ(E1),
hence in the triple T ′ both E′

1 and E′
2 must have maximum slope. In partic-

ular µ(E′
2) = 0, hence E′

2
∼= On′2 for a suitable n′2 6 n2, a contradiction with

the σ−M -stability of (E1, V ).

4.3 Holomorphic triples with a trivial second com-

ponent

Throughout this section we assume that E2
∼= On2 , the general case will be

considered in 4.4.

Remark 4.3.1. Note that, according to Lemma 2.7.3, any α-stable holomor-
phic triple with trivial second component is linked with a σ-stable coherent
system, hence, by Lemma 2.6.5, every indecomposable direct summand of E1

has positive degree.

An immediate consequence of the Remark above is the following Corollary.

Corollary 4.3.2. If (E1,On2 , ϕ) is an α-stable triple, then n2 6 d1.
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4.3. Holomorphic triples with a trivial second component

Proof. According to Lemma 2.7.3 the map on the global sections is injective,
hence, by Riemann-Roch and Remark 4.3.1,

n2 = h0(X,On2) 6 h0(X,E1) = d1.

Let now T = (E1,On2 , ϕ) be a holomorphic triple and assume n2 < n1.
Then recall that by [16, Thm 3.3 and Prop 3.6] for a general σ-stable coherent
system (and hence for a general α-stable triple with trivial second component)
we have an exact sequence

0 → On2
ϕ→ E1 → F → 0,

where E1 and F are polystable vector bundles with pairwise non-isomorphic
indecomposable direct summands of the same slope.

Theorem 4.3.3. The general triple T = (E1,On2 , ϕ) is α-stable for every α
in the admissible range (αm, αM ).

Proof. In this situation αm = µ(E1) and αM =
(

2n1
n1−n2

)
µ(E1).

The α+
m-stability for T follows from Proposition 4.2.4 and Theorem 2.6.7.

We now follow the idea of [9, Prop. 4.13] and consider the subtriple
T ′ = (ϕ(On2),On2 , ϕ) (which determines the upper bound on α), which gives
rise to the following commutative diagram:

On2
ϕ−−−−→ ϕ (On2)∥∥∥ y

On2
ϕ−−−−→ E1y y

0 −−−−→ F

If we write T ′′ for the quotient triple given by the bottom line of the
diagram above we can consider the triple T as an extension

0 → T ′ → T → T ′′ → 0.

The triples T ′ and T ′′ are α-semistable for every α > 0 (the α-semistability
of the first one is a consequence of [8, Prop 8.1]), in particular they are αM -
semistable. Moreover an easy calculation shows that µαM (T ′) = µαM (T ′′). It
is a general fact that an extension of α-semistable triples of the same α-slope
is itself α-semistable. Thus T is αM -semistable. Let T̃ be a subtriple of T ,
so we have a commutative diagram:

On2
ϕ−−−−→ E1x x

Ẽ2
eϕ−−−−→ Ẽ1
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Holomorphic triples on elliptic and bielliptic curves

We write ñ2 = rank Ẽ2 and ñ1 = rank Ẽ1. We have to show that the subtriple
is not α-destabilizing for any αm < α < αM . We divide this check in three
cases. If en2en1

< n2
n1

, then the stability condition of T̃ gives a condition α > a

where a ≤ αm because of the α+
m-stability of T . If en2en1

= n2
n1

the subtriple gives
a condition independent of α which must be always true for the same reason
of the previous case. If en2en1

> n2
n1

we have a condition α < b and we note that
b ≥ αM because of the αM -semistability of T .

4.4 The general case

In this section we drop the hypothesis that E2 is semistable and prove the
existence of α-stable holomorphic triples for any α in the admissible range
(αm, αM ).

Remark 4.4.1. Note that, by duality, we can assume that n2 6 n1. Moreover,
unless n1 = n2, to have α-stability for some α a necessary condition for E1

and E2 is µ(E2) < µ(E1). From this follows that a necessary condition for
the non-emptiness of Nα(n1, n2, d1, d2) is d1 > d2.

Remark 4.4.2. Assume E1 and E2 polystable with pairwise non isomorphic
direct summands. Note that for a map from E2 to E1 to exist, the two vector
bundles have to fulfill µ(E2) 6 µ(E1).

If, in particular, µ(E2) = µ(E1), then the triple T is not α-stable for any
α unless E1 and E2 are stable and n1 = n2, d1 = d2. For, if E1 =

⊕h
i=1E

i
1

and E2 =
⊕k

j=1E
j
2, write for any 1 6 j 6 k, ϕj := ϕ|Ej

2
: Ej2 −→ E1. By

[23, Prop. 8], coker(ϕj) has no torsion and µ(ker(ϕj)) = µ(Ej2) = µ(E2). By
the semistability of E2 we deduce that either ker(ϕj) = Ej2 or ker(ϕj) = 0.
In the first case ϕj = 0, hence the triple T admits the subtriples (0, Ej2, ϕj)
and (E1, E2/E

j
2, ϕ) which contradict α-stability for any α. Assume now that

ker(ϕj) = 0, that is ϕj is injective. From the fact that ϕj(E
j
2) is a stable

vector sub-bundle of E1 of maximum slope, we deduce that Ej2 ∼= Ei1 for some
1 6 i 6 h. If we now fix i and denote by E′

2 the direct sum of all those Ej2
such that ϕj(E

j
2) = Ei1, the triple T admits the two subtriples (Ei1, E

′
2, ϕ

′)
and (E1/E

i
1, E2/E

′
2, ϕ

′′) which contradict α-stability.

From now on and until different stated we will always assume that E1 and
E2 are both polystable vector bundles with pairwise non-isomorphic direct
summands of the same slope and n2 < n1.
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4.4. The general case

Remark 4.4.3. Note that, if n′1, n
′
2, n

′′
1, n

′′
2 are integers such that

n2n
′
1 − n1n

′
2 > 0

n2n
′′
1 − n1n

′′
2 > 0

then, adding member to member, n2(n′1 + n′′1)− n1(n′2 + n′′2) > 0.

Proposition 4.4.4. Let T = (E1, E2, ϕ) be a holomorphic triple. Write
h = gcd(n1, d1), k = gcd(n2, d2) and assume that α = α+

m, h < k, both E1

and E2 are polystable vector bundles of the form (2.1) with non-isomorphic
direct summands and ϕj 6= 0 for any 1 6 j 6 k, where ϕj := ϕ|Ej

2
. Then the

triple T is α+
m-stable.

Proof. Let T ′ = (E′
1, E

′
2, ϕ

′) be a subtriple of T and write α = αm + ε, ε > 0.
By Lemma 4.2.1 we can consider only those subtriples in which both the
vector bundles have maximum slope, that is those subtriples in which E′

1 and,
respectively, E′

2 are direct sums of some of the Ei1 or, respectively, Ej2. Note
that, in this case,

∆α(E′
1, E

′
2, ϕ

′) := µα(E′
1, E

′
2, ϕ

′)− µα(E1, E2, ϕ) = ε
n1n

′
2 − n′1n2

(n1 + n2)(n′1 + n′2)

so we have to show that subtriples that verify condition n1n
′
2 − n′1n2 > 0 do

not exist.
Moreover, according to Remark 4.4.3, we can assume without loss of gener-

ality that E′
1 = Ei1 and E′

2 = Ej2 for fixed i, j. It is now enough to observe that
rank(Ei1) = n1/h and rank(Ej2) = n2/k, and hence, under our assumptions,

n1n
′
2 − n2n

′
1 = n1

n2

k
− n2

n1

h
= n1n2

(
1
k
− 1
h

)
< 0

to conclude.

If we agree to renounce to prove the result for any triple which fulfills
the hypothesis of the previous Proposition, but we consider only the triples
where ϕ is a general map of Hom(E2, E1), then we can avoid the limitation of
assuming that the number of direct summands of E1 is smaller than that of
E2, as shown by the following results.

Lemma 4.4.5. Let E1 =
⊕h

i=1E
i
1 and E2 =

⊕k
j=1E

j
2 be polystable vec-

tor bundles with pairwise non-isomorphic direct summands, let ϕ be a gen-
eral map of Hom(E2, E1) and write ϕj := ϕ|Ej

2
. Then, for any 1 6 j 6 k,

im(ϕj) ∩ Ei1 6= ∅.
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Proof. We first claim that the set of the homomorphisms ϕ ∈ Hom(E2, E1)
such that every restriction map ϕj is general in Hom(Ej2, E1) is an open dense
subset of Hom(E2, E1). For, let A =

⊕
j∈J1

Ej2 and B =
⊕

j∈J2
Ej2 such

that J1, J2 ⊂ {1, . . . , k} and J1 ∩ J2 = ∅. An easy calculation shows that
h0(X,Hom(A,B)) = h1(X,Hom(A,B)) = 0.

Consider a generic fA ∈ Hom(A,E1), hence an exact sequence

0 → A
fA−→ E1 → E1/fA(A)︸ ︷︷ ︸

semistable

→ 0.

A homomorphism f̃B : B → E1/fA(A) induces an exact sequence

0 → Hom(B,A) → Hom(B,E1) → Hom(B,E1/fA(A)) → 0

which gives the following cohomology sequence:

H0(X,Hom(B,A))︸ ︷︷ ︸
0

→H0(X,Hom(B,E1)) →

→H0(X,Hom(B,E1/fA(A))) → H1(X,Hom(B,A))︸ ︷︷ ︸
0

.

Hence if we have two generic maps fA : A→ E1, fB : B → E1, we obtain an
injective map fA ⊕ fB : A ⊕ B → E1. If we write Uj for the open subset of
the generic homomorphism in Hom(Ej2, E1), then we have a map:

ψ : U1 × · · · × Uh → Hom(E2, E1).

Clearly this map is injective and its image has the right dimension and this
proves the claim.

Fix now 1 6 j 6 k and assume the existence of a subtriple of the form
Ej2 −→ ⊕i∈IEi1, where I is a proper subset of {1, . . . , h}. We have the following
commutative diagram:

0 −−−−→ Ej2
ϕj−−−−→ E1 −−−−→ G −−−−→ 0x x γ

x
0 −−−−→ Ej2

ϕj−−−−→
⊕
i∈I

Ei1 −−−−→ G′ −−−−→ 0

where G is semistable for the assumption of ϕj to be generic. An easy calcu-
lation shows that µ(G′) > µ(G), and this together with the injectivity of the
map γ (by the Snake Lemma) gives a contradiction, hence such a subtriple
cannot exist.
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4.4. The general case

Theorem 4.4.6. Let E1, E2 be two polystable vector bundles with n2 < n1,
and µ(E2) < µ(E1). Then there exists a homomorphism ϕ ∈ Hom(E2, E1)
such that the triple T = (E1, E2, ϕ) is α-stable for any α ∈ (αm, αM ).

Proof. Let ϕ be a general map of Hom(E2, E1). By Lemma 4.2.1 a subtriple
(E′

1, E
′
2, ϕ) which violates α+

m-stability is such that E′
2 has maximum slope

and either E′
1 = 0 or it has maximum slope too. By Lemma 4.4.5 both these

cases cannot occur, thus T is α+
m-stable.

The stability for the other values of α now follows as in the proof of
Theorem 4.3.3.

Let us now consider the moduli space Nα = Nα(n1, n2, d1, d2) of α-stable
triple E2

ϕ−→ E1. Recall that in [4] the following Proposition is proved.

Proposition 4.4.7 ([4, Prop 2.3]). Let F and G be polystable vector bundles
on an elliptic curve X, with rank(F ) > rank(G) and µ(F ) < µ(G). Assume
that no two among the indecomposable factors of F (respectively of G) are
isomorphic. Then we have the following.

i) If rank(F ) 6 rank(G), then a general f ∈ Hom(F,G) is injective.

ii) If rank(F ) < rank(G), then a general f ∈ Hom(F,G) is injective, and
coker(f) is torsion-free.

We can now prove the following result.

Theorem 4.4.8. If n2 < n1 and µ(E2) < µ(E1), then Nα(n1, n2, d1, d2) is
non-empty, irreducible, smooth of dimension

ρ(n1, n2, d1, d2) = −n1d2 + n2d1 + 1

for every α ∈ (αm, αM ). Moreover the general element of Nα(n1, n2, d1, d2)
gives rise to an exact sequence

0 −→ E2
ϕ−→ E1 −→ G −→ 0

where E1, E2 and G are polystable vector bundles with non-isomorphic direct
summands of the same slope.

Proof. The non-emptiness of Nα follows from Theorem 4.4.6 together with the
existence of polystable vector bundles of any degree and rank. The smoothness
and the dimension ρ(n1, n2, d1, d2) follow from the general theory [8, Thm 3.8].

Note that by [7, Prop 4.4] a necessary condition for the existence of an
α-stable triple T = (E1, E2, ϕ) is h0(X,Hom(E1, E2)) = 0, which is equivalent
to h1(X,Hom(E2, E1)) = 0 by the Serre duality (now we are not assuming
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E1, E2 semistable). Write as usual E1 = ⊕hi=1E
i
1 and E2 = ⊕kj=1E

j
2; set

nji = rankEji and dji = degEji , i = 1, 2. By Lemma 3.1.2 and the previous
discussion we can always suppose dji > 1. Fix nji and dji such that

∑
dji = di

and
∑
nji = ni. Then the sequences (E1

i , . . . , E
h
i ) of indecomposable vector

bundles of the fixed degree and rank form a family parametrized by Xh. Write
Z for the projective bundle of homomorphism over Xh ×Xk, and U for the
open subset of α-stable objects. If we denote by

Ψ : U → Nα(n1, n2, d1, d2)

the canonical morphism, it follows that

dim Ψ−1(T ) = dim Aut(E1) + dim Aut(E2)− 1

for every T = (E2, E1, ϕ) ∈ im Ψ. Hence

dim im Ψ = h0(X,Hom(E2, E1)) + h+ k−
−mindim Aut(E2)−mindim Aut(E1) + 1

= −n1d2 + n2d1 + h+ k−
−mindim Aut(E2)−mindim Aut(E1) + 1

= β + h+ k −mindim Aut(E2)−mindim Aut(E1).

It is clear that if min dim Aut(E2)+min dim Aut(E1) > h+ k we cannot have
an open set of a component of Nα(n1, n2, d1, d2). By Lemma 2.6.8 we note
that E1 and E2 have to be polystable with factors pairwise non-isomorphic
if the closure of im Ψ is an irreducible component of Nα(n1, n2, d1, d2). This
together with the property (2.1) of page 23 determine uniquely U , thus giving
the irreducibility of the moduli space.

Now, for the general α-stable triple, it is clear that E1 andE2 are semistable
vector bundles. Moreover we have h1(X,Hom(E2, E1)) = 0, hence the dimen-
sion of H0(X,Hom(E2, E1)) is independent of the vector bundles E1 and E2

and, by semicontinuity, the same holds in a neighborhood of E1 and E2. If
we fix ϕ ∈ Hom(E2, E1) we can deform the vector bundles E1 and E2 into
two vector bundles with the required properties. From Proposition 4.4.7 it
follows that ϕ is injective and G is semistable. Now the same argument of
above applies for G.

Assume now that the triple (E1, E2, ϕ) is such that n1 = n2 and write n
for this common value.

Remark 4.4.9. Note that, in general when rankE1 = rankE2, by [7, Prop.
3.18], we cannot have α-stable triples with d2 > d1, and if d2 = d1, then a
necessary condition for the α-stability is that ϕ is injective.
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Proposition 4.4.10. Let T = (E1, E2, ϕ) be a triple with d1 = d2. Then T
is α-stable for any α > 0 if and only if E1 and E2 are stable vector bundles
and ϕ is an isomorphism; T is α-semistable for all α > 0 if and only if E1,
E2 are polystable and ϕ is an isomorphism.

Proof. The first part follows from Remark 4.4.2. For the second part the proof
is analogous to that of the case of curves of genus g > 2: see [8, Prop 8.1].

Theorem 4.4.11. Let T = (E1, E2, ϕ) be a triple such that d2 < d1. Then the
moduli space Nα(n, n, d1, d2) is non-empty and irreducible for every α > αm.

Proof. Take E1 =
⊕h

i=1 and E2 =
⊕k

j=1 two rank n polystable vector bundles
of degree d1 and d2 respectively. By Proposition 4.4.7 and the construction
made in the case rankE2 < rankE1, the general ϕ ∈ Hom(E2, E1) is in-
jective and such that every restriction of ϕ to Ei is general. So the triple
T = (E1, E2, ϕ) is α+

m-stable. Let T ′ = (E′
1, E

′
2, ϕ

′) be a subtriple; the injec-
tive condition on ϕ implies rankE′

2 6 rankE′
1. Such a triple cannot give an

upper bound condition on α, so T is α-stable for every α ∈ (αm,∞). The
proof of the irreducibility follows as in the proof of Theorem 4.4.8.

4.5 Holomorphic triples on bielliptic curves

In this section we study the α-stability for holomorphic triples on bielliptic
curves, deducing, in particular, some existence theorems for α-stable triples
from the results proved in Section 4.4 for holomorphic triples on elliptic curves.
To pursue this task we investigate whether for a triple the property of being
α-stable is preserved through pullbacks. Note that in this way we can provide
results for moduli spaces of triples of type (n1, n2, 2d1, 2d2) since the pullback
of a vector bundle through a double covering map has even degree. In order to
extend the results to the remaining cases we use elementary transformations
and take into consideration how α-stability gets worse when we apply such a
transformation on some of the vector bundles involved. This is done in the
particular case of bielliptic curves in the proofs of Theorems 4.5.5 and 4.5.10,
and in the last section some results are proved for double coverings of curves
of any genus g.

Recall that a (positive) elementary transformation E′ of a vector bundle
E on a curve X supported at a point p ∈ X is defined by an exact sequence

0 −→ E
j−→ E′ −→ K(p) −→ 0

where K(p) is the skyscraper sheaf with support in p and fibre K. The set of
elementary transformations of E is parametrized by pairs (p, j), where p ∈ X
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and j : Ep −→ K is a linear form of the vector space Ep, and hence is a vector
bundle on the curve X of rank rank(E). If E′ is an elementary transformation
of E, then rank(E′) = rank(E) and deg(E′) = deg(E) + 1.

Recall also that in [4] the following has been proved.

Lemma 4.5.1 ([4, Lm 3.2]). Let X be a curve of genus g and let f : X → C

be a double covering on an elliptic curve C. Let M,N be two semistable
vector bundles on C, with rank(M) = rank(N), deg(M) = deg(N) + 1 and
N ↪→M . Then every vector bundles E on X with f∗(N) ↪→ E ↪→ f∗(M) and
length(E/f∗(N)) = 1 is semistable.

From now on let C be an elliptic curve, f : X −→ C be a double covering
of C with X a smooth curve of genus g > 2 and σ : X −→ X the bielliptic
involution. In Section 4.4 it has been shown that, if T = (E1, E2, ϕ) is the
general α-stable holomorphic triple on C, then E1 and E2 are polystable vector
bundles with pairwise non isomorphic direct summands. The next Lemmas
show how these properties behave through pullback, and will be used later in
the proofs of the existence results.

Lemma 4.5.2. Let C be an elliptic curve, f : X −→ C a double covering
with X a smooth curve of genus g > 2 and E a stable vector bundle on C.
Assume f∗(OX) ∼= OC ⊕M with M ∈ Pic−g+1(C). If h0(C,End(E)) = 1,
then h0(X,End(f∗(E))) = 1.

Proof. We have

h0(X,End(f∗(E))) = h0(C, f∗(End(f∗(E)))) =

= h0(X,End(E)) + h0(C,End(E)(−M)).

Since E is a stable vector bundle End(E) is semistable of degree 0, and since
deg(M) = −g + 1 < 0, h0(C,End(E)(−M)) = 0, proving the Lemma.

Lemma 4.5.3. Let C be an elliptic curve, f : X −→ C a double covering
with X a smooth curve of genus g > 2 and E a polystable vector bundle on
C with pairwise non-isomorphic direct summands. Then f∗(E) is polystable
with the same property.

Proof. Note that, by [4, Rmk 2.6], f∗(E) is a polystable vector bundles. More-
over, if A and B are non-isomorphic indecomposable factors of E, then the
vector bundles f∗(A) and f∗(B) are polystable and, by Lemma 4.5.2, sim-
ple, and hence stable. Moreover Hom(f∗(A), f∗(B)) = f∗(Hom(A,B)) and
Hom(A,B) is semistable of degree 0 on C by [1], hence by the proof of lemma
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4.5.2, since A 6= B,

H0(X,Hom(f∗(A), f∗(B))) = 0,

and so f∗(A) and f∗(B) are non-isomorphic.

The next Theorem shows that α-stability is preserved through pullbacks
provided that the vector bundles are polystable with pairwise non isomorphic
direct summands.

Theorem 4.5.4. Let α ∈ R, C be an elliptic curve, f : X −→ C a double
covering with X a smooth curve of genus g > 2 and σ : X −→ X the in-
volution. If (E1, E2, ϕ) is an α-stable triple on C with E1 and E2 polystable
vector bundles with pairwise non-isomorphic indecomposable direct factors,
then (f∗(E1), f∗(E2), f∗(ϕ)) is 2α-stable on X.

Proof. Assume by the sake of contradiction that (f∗(E1), f∗(E2), f∗(ϕ)) is
not 2α-stable and let T = (F 1, F 2, ϕ = f∗(ϕ)|F 2

) be a proper subtriple
with maximal 2α-slope and such that rank(F 1) is minimal. Note that, since
(f∗(E1), f∗(E2), f∗(ϕ)) is σ-invariant, the subtriple

σ∗
(
T
)

:=
(
σ∗(F 1), σ∗(F 2), σ∗(ϕ)

)
has the same property. Consider now the exact sequence

0 −→ T ∩ σ∗
(
T
)
−→ T ⊕ σ∗

(
T
)
−→ T + σ∗

(
T
)
−→ 0. (4.2)

By the minimality of F 1, both T and σ∗
(
T
)

are 2α-stable and, moreover,

µ2α

(
T + σ∗

(
T
))

6 µ2α

(
T ⊕ σ∗

(
T
))
.

Assume first that T ∩ σ∗
(
T
)
6= (0, 0) and T 6= σ∗(T ). Then, by the

maximality of µ2α(T ), µ2α(T ∩ σ∗(T )) < µ2α(T ) and by the exact sequence
(4.2), µ2α(T +σ∗(T )) > µ2α(T ), which contradicts the maximality of µ2α(T ).

Assume now T = σ∗(T ). Then, by [4, Rmk 3.1], there exists a triple T ′

on C such that T = f∗(T ′), but this contradicts the α-stability of (E1, E2, ϕ).
Assume in the end that T 6= σ∗(T ) and T ∩ σ∗(T ) = (0, 0). Again there

exists a triple T ′′ on C such that T + σ∗(T ) = f∗(T ′′), and T ′′ contradicts
the α-stability of (E1, E2, ϕ) whenever

T ⊕ σ∗(T ) ∼= T + σ∗(T ) 6= (f∗(E1), f∗(E2), f∗(ϕ)),

but this is always true by the decomposition of f∗(E1) and f∗(E2) and Lemma
4.5.3.
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Our next effort now is to understand how the 2α-stability of a holomorphic
triple behaves when an elementary transformation is performed on one of the
vector bundles involved. The answer is provided by the following Theorem
and by Corollary 4.5.6.

Theorem 4.5.5. Let C be an elliptic curve, f : X −→ C a double covering
with X a smooth curve of genus g > 2 and σ : X −→ X the involution. Fix
integers d1, d2, n1 and n2, write α̃m = 2αm + 2

n1
, and fix α ∈ R such that

α̃m/2 < α and, if n1 6= n2, α < αM . Then N2α(X;n1, n2, 2d1 + 1, 2d2) is
non-empty.

Proof. By Theorem 4.4.6 let T = (E1, E2, ϕ) be in Nα(C;n1, n2, d1, d2). Let
p ∈ X be a point such that p 6= σ(p), that is p is not a ramification point for f ,
and let F ′

1 be the general vector bundle obtained from f∗(E1) making a pos-
itive elementary transformation supported in p. We have a natural inclusion
ι1 : f∗(E1) −→ F ′

1 and deg(F ′
1) = deg(f∗(E1)) + 1. In a natural way we can

define a map ψ′ := ι1 ◦ψ and we can consider the triple T ′ := (F ′
1, f

∗(E2), ψ′).
We claim that this triple is 2α-stable.

First of all note that, since p is not a ramification point for f , we can
identify the fibers of f∗(E1) over p and of E1 over f(p), hence there exists
a vector bundle E′′

1 on C obtained from E1 making a positive elementary
transformation supported at f(p) such that F ′

1 is a subsheaf of f∗(E′′
1 ) and

length(f∗(E′′
1 )/F ′

1) = length(F ′
1/f

∗(E1)) = 1.

By the generality of the elementary transformation we can assume that E′′
1

is polystable with pairwise non-isomorphic direct summands, and hence the
same is true also for f∗(E′′

1 ) by Lemma 4.5.3. Note also that if we write
j : E1 −→ E′′

1 for the natural inclusion and ϕ′′ := j ◦ ϕ, then the triple
T ′′ := (E′′

1 , E2, ϕ
′′) is α-stable since E′′

1 is semistable and T is α-stable, and
hence, by Theorem 4.5.4, the triple (f∗(E′′

1 ), f∗(E2), f∗(ϕ′′)) is 2α-stable. The
situation is sketched by the following diagrams:

f∗(E2)
f∗(ϕ′′)−−−−→ f∗(E′′

1 )∥∥∥ xι2
f∗(E2)

ψ′−−−−→ F ′
1∥∥∥ xι1

f∗(E2)
f∗(ϕ)−−−−→ f∗(E1)

E2
ϕ′′−−−−→ E′′

1∥∥∥ xj
E2

ϕ−−−−→ E1

Assume now, by the sake of contradiction, that the tripe T ′ is not 2α-stable
and let T be a proper subtriple with maximum 2α-slope. Again note that the
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same holds also for the triple σ∗(T ) as a subtriple of (σ∗(F ′
1), f

∗(E2), σ∗(ϕ′)).
If F 1 ∩ f∗(E1) = F 1, then T is a proper subtriple of (f∗(E1), f∗(E2), f∗(ϕ))
and

µ2α(T ) > µ2α(F ′
1, f

∗(E2), ψ′) =

= µ2α(f∗(E1), f∗(E2), f∗(ϕ)) +
1

n1 + n2
>

> µ2α(f∗(E1), f∗(E2), f∗(ϕ)),

which contradicts the 2α-(semi)stability of (f∗(E1), f∗(E2), f∗(ϕ)). Hence we
can assume that F 1∩f∗(E1) 6= F 1, and deg(F 1) = deg(F 1∩f∗(E1))+1. Write
n1 := rank(F 1), n2 := rank(F 2) and let F be the saturation of F1 in f∗(E′′

1 ).
Since F1 ∩ f∗(E1) 6= F1, f∗(E1) = F ′

1 ∩ σ∗(F ′
1) and F ′

1 + σ∗(F ′
1) = f∗(E′′

1 ),
then σ∗(F1) is not saturated in f∗(E′′

1 ) at p, and hence F1 is not saturated at
σ(p), thus F 6= F1 and deg(F ) = deg(F1) + 1. Therefore we have

µ2α(F, F2, ψ) =µ2α(F1, F2, ψ) +
1

n1 + n2
>

>µ2α(F ′
1, f

∗(E2), ψ′) +
1

n1 + n2
=

=µ2α(f∗(E′′
1 ), f∗(E2), f∗(ϕ′′))−

1
n2 + n2

+
1

n1 + n2
>

>µ2α(f∗(E′′
1 ), f∗(E2), f∗(ϕ′′)),

and this contradicts the 2α-(semi)stability of (f∗(E′′
1 ), f∗(E2), f∗(ϕ′′)), con-

cluding the proof.

Corollary 4.5.6. Let C be an elliptic curve, f : X −→ C a double covering
with X a smooth curve of genus g > 2 and σ : X −→ X the involution. Fix
integers d1, d2, n1 and n2, write α̃m = 2αm + 2

n2
, and fix α ∈ R such that

α̃m/2 < α and, if n1 6= n2, α < αM . Then N2α(X;n1, n2, 2d1, 2d2 − 1) is
non-empty.

Proof. It follows from Theorem 4.5.5 by duality.

Remark 4.5.7. Here we want to give a motivation for the bounds on α that
appear in the statement of the previous Theorem. Note that for a triple of
type (n1, n2, 2d1 + 1, 2d2) the classical bounds on α are

αm := 2αm +
1
n1

αM :=


2αM +

2
n1 − n2

if n1 > n2,

2αM +
2n2

n1(n2 − n1)
if n1 < n2,
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hence the bounds on α of Theorem 4.5.5 are not the best possible since
α̃m > αm and αM > 2αM . However we need to assume these bounds be-
cause in the proof we can obtain contradictions by violating the 2α-stability
of triples either of type (n1, n2, 2d1, 2d2) or of type (n1, n2, 2d1 + 2, 2d2) and

α̃m = αm(n1, n2, 2d1 + 2, 2d2), 2αM = αM (n1, n2, 2d1, 2d2).

Note that we have inequalities αm < αm/2 < α̃m/2 and αM < αM/2 < α̃M/2.

Remark 4.5.8. Here we want to give a bound on the degree of α-instability
of a triple that fails to be α-stable in the whole range of admissible values of
α. In the particular case of bielliptic curves these results can be improved, as
shown in Theorem 4.5.9 which proves that the triple T of Theorem 4.5.5 is in
fact α-stable for any α ∈ (αm, αM ), but the calculations here carried on do
not rely on the fact that C is an elliptic curve, and hence they remain true
for any curve Y and for any double covering f : X 2:1−→ Y of Y with a smooth
curve X.

To fix the notation assume now n2 < n1. Note that in this case

αM = 2αM +
2

n1 − n2
.

With the notation of the previous proof, if (F 1, F 2, ψ) is a proper subtriple of
(F ′

1, f
∗(E2), ψ′) that fails the 2α-stability test for 2αM < 2α < αM , then

µ2αM (F 1, F 2, ψ) = µ2αM (f∗(E1), f∗(E2), f∗(ϕ)).

Moreover

µαM (F 1, F 2, ψ) = µ2αM (F 1, F 2, ψ) +
2n2

(n1 − n2)(n1 + n2)

and

µαM (f∗(E1), f∗(E2), f∗(ϕ)) =

= µ2αM (f∗(E1), f∗(E2), f∗(ϕ)) +
2n2

(n1 − n2)(n1 + n2)
.

So we can exhibit an estimate on how badly the stability can fail outside the
α-range of the statement of Theorem 4.5.5:

∆αM (F 1, F 2, ψ) := µαM (F 1, F 2, ψ)− µαM (F ′
1, f

∗(E2), ψ′) =

= µαM (F 1, F 2, ψ)− µαM (f∗(E1), f∗(E2), f∗(ϕ))− 1
n1 + n2

=

=
2n2

(n1 − n2)(n1 + n2)
− 2n2

(n1 − n2)(n1 + n2)
− 1
n1 + n2

=

=
1

n1 − n2
· n2 − n1

n1 + n2
6

1
n1 − n2

.
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In the same way if, instead, n2 > n1, then

αM = 2αM +
2n2

n1(n2 − n1)
,

and hence, from

µαM (F 1, F 2, ψ) = µ2αM (F 1, F 2, ψ) +
2n2n2

n1(n2 − n1)(n1 + n2)

µαM (f∗(E1), f∗(E2), f∗(ϕ)) =

=µ2αM (f∗(E1), f∗(E2), f∗(ϕ)) +
2n2

2

n1(n2 − n1)(n2 + n1)
we can recover:

∆αM (F 1, F 2, ψ) =

= µαM (F 1, F 2, ψ)− µαM (f∗(E1), f∗(E2), f∗(ϕ))− 1
n1 + n2

=

=
2n2n2

n1(n2 − n1)(n1 + n2)
− 2n2

2 + n1n2 − n2
1

n1(n2 − n1)(n2 + n1)
.

In general, thus,

∆αM (F 1, F 2, ψ) 6 max
{

1
n1 − n2

,

2n2n2

n1(n2 − n1)(n1 + n2)
− 2n2

2 + n1n2 − n2
1

n1(n2 − n1)(n2 + n1)

}
.

For small values of α, the comparison is made for α̃m = αm(n1, n2, 2d1+2, 2d2).
We have

α̃m = αm +
1
n1
,

hence from

µeαm
(F, F 2, ψ) = µeαM

(f∗(E′′
1 ), f∗(E2), f∗(ϕ′′)),

µαm(F 1, F 2, ψ) = µαm(F, F 2, ψ)− 1
n1 + n2

=

= µeαm
(F, F 2, ψ)− n2 + n1

n1(n1 + n2)
,

µαm(f∗(E′′
1 ), f∗(E2), f∗(ϕ′′)) =

=µeαm
(f∗(E′′

1 ), f∗(E2), f∗(ϕ′′))−
2n2

2n1(n1 + n2)
.

we can obtain

∆αm(F 1, F 2, ψ) := µαm(F 1, F 2, ψ)− µαm(F ′
1, f

∗(E2), ψ′) =

=
n1 − n1

n1(n1 + n2)
.
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Note in particular that this last case is independent of what is the biggest
between n1 and n2, and, moreover, ∆αm(F 1, F 2, ψ) 6 0, hence a subtriple
which contradicts 2α-stability for αm < 2α < α̃m cannot exist (as already
observed this can be deduced also from the proof of Lemma 4.2.1, as shown
in Proposition 4.2.3).

Appealing to Proposition 4.2.3 the result of Theorem 4.5.5 can be extended
to the whole range of admissible α, as shown in Theorem 4.5.9 below.

Theorem 4.5.9. Let X be as in Theorem 4.5.5. Then the moduli space
N2α(X;n1, n2, 2d1 + 1, 2d2) is non-empty for all possible α.

Proof. With the same notations of the proof of Theorem 4.5.5, by Proposi-
tion 4.2.3 it is sufficient to prove the semistability of f∗(E2), F ′

1 and coker(ψ′).
f∗(E2) is semistable by Lemma 4.5.3. The semistability of F ′

1 follows from
Lemma 4.5.1 since by construction we have inclusions f∗(E1) ↪→ F ′

1 ↪→ f∗(E′′
1 )

and length(F ′
1/f

∗(E1)) = 1. Now write E3 := coker(ϕ) and E′′
3 := coker(ϕ′′).

E3 is semistable by construction and E′′
3 is semistable by [4] and the gen-

erality of the elementary transformation ι1, hence also f∗(E3) and f∗(E′′
3 )

are semistable. It is now easy to check that we have a chain of inclusions
f∗(E3) ↪→ coker(ψ′) ↪→ f∗(E′′

3 ), which give the semistability of coker(ψ′),
concluding the proof.

Now we deal with the case an elementary transformation is performed on
both the vector bundles of a 2α-stable holomorphic triple obtained as pullback
of an α-stable triple on C. The result is analogous to the one we achieved
before: a priori the α-stability is guaranteed in a subinterval of (αm, αM ), but
with a little effort it is possible to extend the result to the whole admissible
α-range.

Theorem 4.5.10. Let C be an elliptic curve, f : X −→ C a double covering
with X a smooth curve of genus g > 2 and σ : X −→ X the involution. Fix
integers d1, d2, n1 and n2, write α̃m = 2αm−2n1−n2

n1n2
, α̃M = 2αM− 4

n2
, and fix

α ∈ R such that max{α̃m/2, αm} < α and, if n1 6= n2, α < max{α̃M/2, αM}.
Then N2α(X;n1, n2, 2d1 + 1, 2d2 + 1) is non-empty.

Proof. The proof is similar to the proof of Theorem 4.5.5. Let (E1, E2, ϕ)
be an α-stable triple of type (n1, n2, d1, d2) by Theorem 4.4.6 and p ∈ X be
a point such that p 6= σ(p). Let F ′

1 and F ′
2 be the general vector bundles

obtained from f∗(E1) and f∗(E2) respectively making a positive elementary
transformation supported in p and consider the triple T ′ = (F ′

1, F
′
2, ψ

′). We
claim that T ′ is 2α-stable.

In the same way of the proof of Theorem 4.5.5 we have two polystable vec-
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tor bundles E′′
1 and E′′

2 on C with pairwise non-isomorphic direct summands
such that the following diagrams commute:

f∗(E′′
2 )

f∗(ϕ′′)−−−−→ f∗(E′′
1 )x x

F ′
2

ψ′−−−−→ F ′
1x x

f∗(E2)
f∗(ϕ)−−−−→ f∗(E1)

E′′
2

ϕ′′−−−−→ E′′
1x x

E2
ϕ−−−−→ E1

and the triple (f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)) is 2α-stable by Theorem 4.5.4.

Assume now that the triple T ′ = (F ′
1, F

′
2, ψ

′) is not 2α-stable, let T be a
proper subtriple with maximum 2α-slope and consider the triple σ∗(T ) which
is a proper subtriple of (σ∗(F ′

1), σ
∗(F ′

2), σ
∗(ψ′)) with maximum 2α-slope.

If F 1 ∩ f∗(E1) = F 1 and F 2 ∩ f∗(E2) = F 2 then T is a subtriple also
of (f∗(E1), f∗(E2), f∗(ϕ)) which contradicts the α-stability as happens in the
proof of Theorem 4.5.5.

If F 1 ∩ f∗(E1) 6= F 1 and F 2 ∩ f∗(E2) 6= F 2 then a contradiction can be
recovered considering the saturation of T in (f∗(E′′

1 ), f∗(E′′
2 ), f∗(ϕ′′)) as in

the proof of Theorem 4.5.5.

Assume now F 1∩f∗(E1) 6= F 1 and F 2∩f∗(E2) = F 2. Write n1 = rank(F 1),
n2 = rank(F 2) and let F be the saturation of F 1 in f∗(E′′

2 ). Note that, since
F1 ∩ f∗(E1) 6= F1, f∗(E1) = F ′

1 ∩ σ∗(F ′
1) and F ′

1 + σ∗(F ′
1) = f∗(E′′

1 ), F1 is not
saturated in f∗(E′′

1 ) at σ(p), hence deg(F ) = deg(F1)+1. We distinguish now
two cases.

Case n1 + n2 > 2(n1 + n2). We have

µ2α(F, F2, ψ) = µ2α(F 1, F 2, ψ) +
1

n1 + n2
>

> µ2α(F ′
1, F

′
2, ψ

′) +
1

n1 + n2
=

= µ2α(f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′))− 2
n1 + n2

+
1

n1 + n2
>

> µ2α(f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)),

which contradicts the 2α-(semi)stability of (f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)).

- 64 -



Holomorphic triples on elliptic and bielliptic curves

Case n1 + n2 666 2(n1 + n2). We have

µ2α(F 1 ∩ f∗(E1), F 2, ψ) = µ2α(F1, F 2, ψ)− 1
n1 + n2

>

> µ2α(F ′
1, F

′
2, ψ

′)− 1
n1 + n2

=

= µ2α(f∗(E1), f∗(E2), f∗(ϕ)) +
2

n1 + n2
− 1
n1 + n2

>

> µ2α(f∗(E1), f∗(E2), f∗(ϕ)),

which contradicts the 2α-stability of (f∗(E1), f∗(E2), f∗(ϕ)).

In the end the situation F 1∩f∗(E1) = F 1 and F 2∩f∗(E2) 6= F 2 can be dealt
with in an analogous way.

Remark 4.5.11. Again we want to motivate the bounds in the statement
of Theorem 4.5.10. For a triple of type (n1, n2, 2d1 + 1, 2d2 + 1) the classical
bounds on α are

αm := 2αm +
n2 − n1

n1n2

αM :=


2αM − 2

n2
if n1 > n2,

2αM +
2
n1

if n1 < n2.

If we write

α̃m = αm(n1, n2, 2d1 + 2, 2d2 + 2)

α̃M = αM (n1, n2, 2d1 + 2, 2d2 + 2),

then, depending on n1 and n2, we have the following inequalities:

α̃m/2 < αm/2 < αm and α̃M/2 < αM/2 < αM if n1 > n2 (4.3)

αm < αm/2 < α̃m/2 and αM < αM/2 < α̃M/2 if n1 < n2 (4.4)

which give rise to the bounds on α.

Remark 4.5.12. With the notation of the previous proof, let (F 1, F 2, ψ) be a
proper subtriple of (F ′

1, F
′
2, ψ

′) that fails the 2α-stability test. To compute an
estimate on ∆αm(F 1, F 2, ψ) and ∆αM (F 1, F 2, ψ) is a little bit more difficult
in this situation rather than in the situation of Remark 4.5.8 because we have
more cases to take into consideration depending on inequalities (4.3) and (4.4).
Note again that these calculations are true for any curve Y and any double
covering f : X 2:1−→ Y .
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Assume first n2 < n1. In this situation

αm = 2αm +
n2 − n1

n1n2
, α̃m = 2αm + 2

n2 − n1

n1n2
, (4.5)

αM = 2αM − 2
n2
, α̃M = 2αM − 4

n2
.

Case 1. Assume first F 1 ∩ f∗(E1) = F 1, F 2 ∩ f∗(E2) = F 2 and α small.
In this case in the proof of Theorem 4.5.10 we compare the triple (F 1, F 2, ψ)
with (f∗(E1), f∗(E2), f∗(ϕ)), hence we can assume

µ2αm(F 1, F 2, ψ) = µ2αm(f∗(E1), f∗(E2), f∗(ϕ)).

We compute

µαm(F 1, F 2, ψ) = µ2αm(F 1, F 2, ψ) +
n2(n2 − n1)
n1n2(n1 + n2)

,

µαm(f∗(E1), f∗(E2), f∗(ϕ)) =

=µ2αm(f∗(E1), f∗(E2), f∗(ϕ)) +
n2 − n1

n1(n1 + n2)
, (4.6)

and thus

∆αm(F 1, F 2, ψ) := µαm(F 1, F 2, ψ)− µαm(F ′
1, F

′
2, ψ

′) =

= µαm(F 1, F 2, ψ)− µαm(f∗(E1), f∗(E2), f∗(ϕ))− 2
n1 + n2

=

=
n2(n2 − n1)
n1n2(n1 + n2)

− n2 − n1

n1(n1 + n2)
− 2
n1 + n2

=

=
n2(n2 − n1)
n1n2(n1 + n2)

− 1
n1

< 0.

Case 2. Assume F 1 ∩ f∗(E1) 6= F 1, F 2 ∩ f∗(E2) 6= F 2 and α big. We have:

µeαM
(F1, F2, ψ) = µeαM

(f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)),

and

µαM (F 1, F 2, ψ) = µαM (F1, F2, ψ)− 2
n1 + n2

=

= µeαM
(F1, F2, ψ) + 2

n2 − n2

n2(n1 + n2)
,

µαM (f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)) =

=µeαM
(f∗(E′′

1 ), f∗(E′′
2 ), f∗(ϕ′′)) +

2
n1 + n2

, (4.7)
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hence

∆αM (F 1, F 2, ψ) := µαM (F 1, F 2, ψ)− µαM (F ′
1, F

′
2, ψ

′) =

= µαM (F 1, F 2, ψ)− µαM (f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)) +
2

n1 + n2
=

= 2
n2 − n2

n2(n1 + n2)
− 2
n1 + n2

+
2

n1 + n2
=

= 2
n2 − n2

n2(n1 + n2)
6 0.

Case 3. Assume F 1 ∩ f∗(E1) 6= F 1, F 2 ∩ f∗(E2) = F 2 and α big. We have:

µeαM
(F1, F 2, ψ) = µeαM

(f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)),

and

µαM (F 1, F 2, ψ) = µαM (F1, F 2, ψ)− 1
n1 + n2

=

= µeαM
(F1, F 2, ψ) +

2n2 − n2

n2(n1 + n2)
,

hence, considering (4.7),

∆αM (F 1, F 2, ψ) =

= µαM (F 1, F 2, ψ)− µαM (f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)) +
2

n1 + n2
=

=
2n2 − n2

n2(n1 + n2)
− 2
n1 + n2

+
2

n1 + n2
=

=
2n2 − n2

n2(n1 + n2)
6 0.

Case 4. Assume F 1∩f∗(E1) 6= F 1, F 2∩f∗(E2) = F 2 and α small. We have:

µ2αm(F 1 ∩ f∗(E1), F 2, ψ) = µ2αm(f∗(E1), f∗(E2), f∗(ϕ)),

and

µαm(F 1, F 2, ψ) = µαm(F 1 ∩ f∗(E1), F 2, ψ) +
1

n1 + n2
=

= µ2αm(F 1 ∩ f∗(E1), F 2, ψ) +
(n2 − n1)n2 + n1n2

n1n2(n1 + n2)
,
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hence, considering (4.6),

∆αm(F 1, F 2, ψ) =

= µαm(F 1, F 2, ψ)− µαm(f∗(E1), f∗(E2), f∗(ϕ))− 2
n1 + n2

=

=
(n2 − n1)n2 + n1n2

n1n2(n1 + n2)
− n2 − n1

n1(n1 + n2)
− 2
n1 + n2

=

=
−n1n2 + n1n2 − n2n1

n1n2(n1 + n2)
.

Assume now n2 > n1. In this situation αm and α̃m are the same as in
(4.5) and

αM = 2αM +
2
n1
, α̃M = 2αM +

4
n1
.

Case 5. Assume F 1 ∩ f∗(E1) = F 1, F 2 ∩ f∗(E2) = F 2 α big. We have:

µ2αM (F 1, F 2, ψ) = µ2αM (f∗(E1), f∗(E2), f∗(ϕ)),

and

µαM (F 1, F 2, ψ) = µ2αM (F 1, F 2, ψ) +
2n2

n1(n1 + n2)
,

µαM (f∗(E1), f∗(E2), f∗(ϕ)) =

=µ2αM (f∗(E1), f∗(E2), f∗(ϕ)) +
2n2

n1(n1 + n2)
, (4.8)

hence

∆αM (F 1, F 2, ψ) := µαM (F 1, F 2, ψ)− µαM (F ′
1, F

′
2, ψ

′) =

= µαM (F 1, F 2, ψ)− µαM (f∗(E1), f∗(E2), f∗(ϕ))− 2
n1 + n2

=

=
2n2

n1(n1 + n2)
− 2n2

n1(n1 + n2)
− 2
n1 + n2

=

=
−2n1

n1(n1 + n2)
6 0.

Case 6. Assume F 1∩f∗(E1) 6= F 1, F 2∩f∗(E2) 6= F 2 and α small. We have:

µeαm
(F1, F2, ψ) = µeαm

(f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)),

and

µαm(F 1, F 2, ψ) = µαm(F1, F2, ψ)− 2
n1 + n2

=

= µeαm
(F1, F2, ψ)− n2(n2 − n1)

n1n2(n1 + n2)
− 2
n1 + n2

,

µαm(f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)) =

=µeαm
(f∗(E′′

1 ), f∗(E′′
2 ), f∗(ϕ′′))− n2 − n1

n1(n1 + n2)
, (4.9)
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hence

∆αm(F 1, F 2, ψ) := µαm(F 1, F 2, ψ)− µαm(F ′
1, F

′
2, ψ

′) =

= µαm(F 1, F 2, ψ)− µαm(f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)) +
2

n1 + n2
=

= − n2(n2 − n1)
n1n2(n1 + n2)

− 2
n1 + n2

+
n2 − n1

n1(n1 + n2)
+

2
n1 + n2

=

=
n1n2 + n2n1 − 2n1n2

n1n2(n1 + n2)
6 0.

Case 7. Assume F 1 ∩ f∗(E1) 6= F 1, F 2 ∩ f∗(E2) = F 2 and α big. We have:

µ2αM (F 1 ∩ f∗(E1), F 2, ψ) = µ2αM (f∗(E1), f∗(E2), f∗(ϕ)),

and

µαM (F 1, F 2, ψ) = µαM (F 1 ∩ f∗(E1), F 2, ψ) +
1

n1 + n2
=

= µ2αM (F 1 ∩ f∗(E1), F 2, ψ) +
2n2 + n1

n1(n1 + n2)
,

hence, considering (4.8),

∆αM (F 1, F 2, ψ) =

= µαM (F 1, F 2, ψ)− µαM (f∗(E1), f∗(E2), f∗(ϕ))− 2
n1 + n2

=

=
2n2 + n1

n1(n1 + n2)
− 2n2

n1(n1 + n2)
− 2
n1 + n2

=

=
n1 − 2n1

n1(n1 + n2)
.

Case 8. Assume in the end F 1 ∩ f∗(E1) 6= F 1, F 2 ∩ f∗(E2) = F 2 and α

small. We have:

µeαm
(F1, F 2, ψ) = µeαm

(f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)),

and

µαm(F 1, F 2, ψ) = µαm(F1, F 2, ψ)− 1
n1 + n2

=

= µeαm
(F1, F 2, ψ)− (n2 − n1)n2 + n1n2

n1n2(n1 + n2)
,
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hence, considering (4.9),

∆αm(F 1, F 2, ψ) =

= µαm(F 1, F 2, ψ)− µαm(f∗(E′′
1 ), f∗(E′′

2 ), f∗(ϕ′′)) +
2

n1 + n2
=

= −(n2 − n1)n2 + n1n2

n1n2(n1 + n2)
+

n2 − n1

n1(n1 + n2)
+

2
n1 + n2

=

=
n2n1 + n2n1 − n1n2

n1n2(n1 + n2)
6 0.

Summarizing we have obtained the following bounds:

∆αm(F 1, F 2, ψ) 6 max
{

2n2 − n2

n2(n1 + n2)
,
n2n1 + n1n2 − n1n2

n1n2(n1 + n2)

}
,

∆αM (F 1, F 2, ψ) 6 max
{
n1n2 − n1n2 − n2n1

n1n2(n1 + n2)
,

n1 − 2n1

n1(n1 + n2)

}
.

Again the result of Theorem 4.5.10 can be further improved to cover all
the possible α in the admissible range (αm, αM ).

Theorem 4.5.13. Let X be as in Theorem 4.5.10. Then the moduli space
N2α(X;n1, n2, 2d1 + 1, 2d2 + 1) is non-empty for all possible α ∈ (αm, αM ).

Proof. This proof is analogous to that of Theorem 4.5.9.

4.6 Stability and elementary transformations

In this section, as anticipated, we face the general problem to give an esti-
mate on the behaviour of α-stable holomorphic triples when subjected to an
elementary transformation. This will be done for curves of any genus g. The
results here presented are in some sense inspired by the problems considered in
[10] for vector bundles by Brambila-Paz and Lange; they are still in progress
and are the aim of further future investigations.

LetX be a smooth curve of any genus g, x ∈ X, α ∈ R and T = (E1, E2, ϕ)
a holomorphic triple on X. Let T ′ = (E′

1, E2, ϕ
′) be the holomorphic triple ob-

tained from T making a positive elementary transformation supported in x on
E1. Write S(T ;n1, n2) for the set of all the proper subtriples T = (E1, E2, ϕ)
of T such that rank(E1) = n1 and rank(E2) = n2, consider the map

Φ :

{
S(T ′;n1, n2) −→ S(T ;n1, n2)

T 7−→ T ∩ T

and write ∆α(T , T ) := µα(T ) − µα(T ) and ∆α(T ) := max∆α(T , T ), where
the maximum is taken among all the proper subtriples T of T .
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Lemma 4.6.1. The map Φ defined above is a bijection.

Proof. The proof is a slight variation of [10, Lm. 1.3]. It is enough to observe
that the inverse map is the map that associates to any T ∈ S(T ;n1, n2) the
triple generated by T in T ′.

Note that, if Φ
(
T
)

= T , then

∆α(T , T ′) = ∆α(T , T )− 1
n1 + n2

< ∆α(T , T ),

while, if Φ
(
T
)
6= T , then

∆α(T , T ′) = ∆α

(
Φ
(
T
)
, T
)
− 1
n1 + n2

+
1

n1 + n2
> ∆α

(
Φ
(
T
)
, T
)
.

Lemma 4.6.2. Let X be a smooth curve of any genus g, x ∈ X, α ∈ R and
T = (E1, E2, ϕ) a holomorphic triple on X. Let T ′ = (E′

1, E2, ϕ
′) be the holo-

morphic triple obtained from T making a positive elementary transformation
supported in x on E1. Fix integers n1 and n2 and let T be a proper subtriple
of T with maximal α-degree among all the triples of S(T , n1, n2). Then either
Φ−1

(
T
)

has maximal α-degree in S(T ′;n1, n2) or one less than the maximal
degree of a triple of S(T ′, n1, n2).

Proof. By contraposition let T ′ be a proper subtriple of T ′ of maximum α-
degree in S(T ′;n1, n2) and assume that degα Φ−1(T ) < degα T

′ − 1. Then

degα T 6 degα Φ−1(T ) < degα T
′ − 1 6 degα Φ(T ′).

Lemma 4.6.3. Let X be a smooth curve of any genus g, x ∈ X, α ∈ R and
T = (E1, E2, ϕ) a holomorphic triple on X. Let T ′ = (E′

1, E2, ϕ
′) be the holo-

morphic triple obtained from T making a positive elementary transformation
supported in x either on E1 or on E2 and T be a subtriple of T ′ such that
Φ(T ) = T . If T is a proper subtriple with maximum α-slope, then Φ(T ) is a
proper subtriple of T with maximum α-slope, and vice versa.

Proof. By the sake of contradiction assume that there exists a proper subtriple
T̃ of T such that ∆α(T̃ , T ) > ∆α(T , T ). Then

∆α(T ′) > ∆α(Φ−1(T̃ ), T ′) > ∆α(T̃ , T ′) = ∆α(T̃ , T )− 1
n1 + n2

>

> ∆α(T , T )− 1
n1 + n2

= ∆α(T , T ′) = ∆α(T ′),

a contradiction. The vice versa is analogous.
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Proposition 4.6.4. Let X be a smooth curve of any genus g, x ∈ X, α ∈ R
and T = (E1, E2, ϕ) a holomorphic triple on X. Let T ′ = (E′

1, E2, ϕ
′) be the

holomorphic triple obtained from T making a positive elementary transforma-
tion supported in x either on E1 or on E2. If there exists a proper subtriple T
of T ′ with maximal α-slope such that T ∩ T = T (or, equivalently, a proper
subtriple T̃ of T with maximum α-slope such that Φ−1(T̃ ) = T̃ ), then

∆α(T ′) = ∆α(T )− 1
n1 + n2

.

Otherwise, let T be a proper subtriple of T ′ with maximal α-slope and max-
imum n1 + n2, and T̃ be a proper subtriple of T with maximum α-slope and
minimum ñ1 + ñ2. Then

∆α(T )− 1
n1 + n2

+
1

ñ1 + ñ2
6 ∆α(T ′) 6 ∆α(T )− 1

n1 + n2
+

1
n1 + n2

.

Proof. Assume first that there exists a proper subtriple T of T of maximum
α-slope such that T ∩ T = T , i.e. Φ(T ) = T . Then, by Lemma 4.6.3, T is a
maximal subtriple of T , and hence

∆α(T ) = ∆α(T , T ) = ∆α(T , T ′) +
1

n1 + n2
= ∆α(T ′) +

1
n1 + n2

.

Assume now that none of the maximal subtriples of T ′ is also a subtriple
of T . Then

∆α(T ) > ∆α(Φ(T ), T ) = ∆α(T , T ′) +
1

n1 + n2
− 1
n1 + n2

=

= ∆α(T ′) +
1

n1 + n2
− 1
n1 + n2

. (4.10)

and

∆α(T ) = ∆α(T̃ , T ) = ∆α(Φ−1(T̃ ), T ′) +
1

n1 + n2
− 1
ñ1 + ñ2

6

6 ∆α(T ′) +
1

n1 + n2
− 1
ñ1 + ñ2

.

which concludes the proof.

Remark 4.6.5. Note that if T is a proper maximal subtriple of T ′ such that
Φ(T ) 6= T and Φ(T ) is a maximal subtriple of T (i.e. an analogous of Lemma
4.6.3 is true also in the second situation of the Proposition above), then the
inequalities in the statement of the previous Proposition are in fact equalities
since

∆α(T ′) = ∆α(T , T ′) = ∆α(Φ(T ), T )− 1
n1 + n2

+
1

n1 + n2
=

= ∆α(T )− 1
n1 + n2

+
1

n1 + n2
.
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We are able to exclude that a maximal proper subtriple T̃ of T such that
∆α(T̃ , T ) > ∆α(Φ(T ), T ) exists whenever ñ1 + ñ2 6 n1 + n2, but so far not
in the remaining case.

For, if ñ1 + ñ2 = n1 +n2 then degα(T̃ ) > degα(Φ(T )) = degα(T )−1, thus
∆α(T̃ , T ′) > ∆α(T , T ′) = ∆α(T ′), hence T̃ is maximal in T ′, a contradiction
since Φ

(
T̃
)

= T̃ .

If now ñ1 + ñ2 < n1 + n2, then by Lemma 4.6.2, degα(T̃ ) = degα(T )− 1
where T is a subtriple with maximum α-degree in S(T ′, ñ1, ñ2), hence

∆α(T ) = ∆α(T̃ , T ) = ∆α(T̃ , T ′) +
1

n1 + n2
=

= ∆α(T , T ′) +
1

n1 + n2
− 1
ñ1 + ñ2

6

6 ∆α(T ′) +
1

n1 + n2
− 1
ñ1 + ñ2

<

< ∆α(T ′) +
1

n1 + n2
− 1
n1 + n2

,

which contradicts (4.10).
If ñ1 + ñ2 > n1 + n2 then we cannot exclude that

∆α(Φ−1(T̃ ), T ′) < ∆α(T , T ′)

∆α(T̃ , T ) > ∆α(Φ(T ), T ).
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Chapter 5
Some results on coherent systems

This final Chapter presents some few more results concerning the moduli space
of coherent systems, mainly on curves of low genus and on bielliptic curves.
These are in some sense only preliminary results: we plan for the future further
investigations of the cases therein presented.

5.1 Geometric properties (strong t-spannedness) of

generic σ-stable coherent systems

In this section we study the geometric properties of general σ-stable coherent
systems (E, V ) on curves of genus 0 and 1 using as a main tool the results
on coherent systems proved by Lange and Newstead in [15, 16] and collected
in Section 2.6. We prove also some results for coherent systems on curves of
genus g > 2 provided that E is stable and general in its moduli space.

Definition 5.1.1. Let X be a smooth and connected projective curve and
(E, V ) a coherent system on X such that V 6= {0}. Fix an integer t > 0. We
will say that (E, V ) is generically strongly t-spanned if

dim(V ∩H0(X,E(−(t+ 1)P ))) = dim(V )− (t+ 1) rank(E)

for a general P ∈ X. We will say that (E, V ) is strongly t-spanned if

dim(V ∩H0(X,E(−Z))) = dim(V )− (t+ 1) rank(E)

for every effective divisor Z of X such that length(Z) = t + 1. We will say
that E is generically strongly t-spread if

h0(X,E(−P0 − · · · − Pt)) = h0(X,E)− (t+ 1) rank(E)

for a general (P0, . . . , Pt) ∈ Xt+1.
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Obviously, without changing the definition of strongly t-spannedness we
could write length(Z) 6 t + 1 instead of length(Z) = t + 1 in the previous
definition. If X ∼= P1, then strongly t-spanned is equivalent to generically
strongly t-spanned.

In the following, for any finite-dimensional vector space W and any integer
k such that 0 6 k 6 dim(W ), let Grass(k,W ) denote the Grassmannian of
all k-dimensional linear subspaces of W . If E is a vector bundle on X and
V ⊆ H0(X,E) a linear subspace we will denote by eE,V : V ⊗OX −→ E the
evaluation map. We will often write eE instead of eE,V when V = H0(X,E).

Remark 5.1.2. Assume that X has genus g > 2. For all integers r, d

such that r > 0 let M(X; r, d) denote the moduli space of all stable vec-
tor bundles on X with rank r and degree d. The scheme M(X; r, d) is
non-empty, irreducible and dim(M(X; r, d)) = r2(g − 1) + 1. Fix a gen-
eral E ∈ M(X; r, d). We have h0(X,E) = 0 and h1(X,E) = r(g − 1) − d if
d 6 r(g−1). We have h0(X,E) = d+r(1−g) and h1(C,E) = 0 if d > r(g−1).
If r(g− 1) + 1 6 d 6 r(g− 1) + r− 1, then the evaluation map eE is injective
and with a locally free cokernel. If d = rg, then eE is injective and hence E
is generically strongly 0-spanned. If d > rg+ 1 , then eE is surjective. Notice
that for general P ∈ X when E moves in M(X; r, d) the vector bundle E(−P )
may be considered as a general element of M(X; r, d). Hence if d > r(g−1+t)
for some integer t > 0, we see that E is generically strongly t-spanned, while
if d > r(g − 1 + t)− 1, then E is strongly t-spanned.

Remark 5.1.3. Let X be an elliptic curve and E a semistable vector bundle
on X with rank r and degree d. By Atiyah’s classification of vector bundles
on an elliptic curve [1, Part II] we have h0(X,E) = 0 and h1(X,E) = −d if
d < 0, 0 6 h0(X,E) = h1(X,E) 6 r if d = 0, h0(X,E) = d and h1(X,E) = 0
if d > 0. Furthermore, if d = 0, then h0(X,E ⊗M) = h1(X,E ⊗M) = 0 for
a general M ∈ Pic0(X). Hence we immediately obtain that if d > r(t + 1)
for some integer t > 0, then E is generically strongly t-spanned (and hence
generically strongly t-spread), while if d > r(t + 1) + 1, then E is strongly
t-spanned.

Remark 5.1.4. Let E a rigid vector bundle on P1 with rank r and degree
d. Obviously, E is strongly t-spanned for some integer t > 0 if and only if
d > (t+ 1)r. Fix integers n, d, k and σ ∈ R such that Gσ(P1;n, d, k) 6= ∅. By
[15, Thm 3.2] the moduli space Gσ(P1;n, d, k) is irreducible and for a general
(E, V ) ∈ Gσ(P1;n, d, k) the vector bundle E is rigid. Hence we may apply to
E the first part of this remark.

Remark 5.1.5. Fix σ ∈ R such that σ > 0 and an σ-stable (resp. σ-
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semistable) coherent system (E, V ) on X of type (n, d, k). By the open-
ness of σ-stability (resp. σ-semistability) the coherent system (E,W ) is σ-
stable (resp. σ-semistable) for a general k-dimensional linear subspace W of
H0(X,E).

Lemma 5.1.6. Let t be a non-negative integer, X a smooth and connected
projective curve and (E, V ) a generically t-spanned coherent system of type
(n, d, k). Then the coherent system (E,W ) is generically t-spanned for a gen-
eral k-dimensional linear subspace W of H0(X,E).

Proof. Fix any k-dimensional linear subspace W of H0(X,E). Note that
(E,W ) is generically t-spanned if and only if for a general P ∈ X the restric-
tion map

ρ(t+1)P,W : W −→ H0((t+ 1)P,E|(t+ 1)P ) ∼= Kn(t+1)

is surjective. This is obviously an open condition on W .

Lemma 5.1.7. Let t be a non-negative integer, X a smooth and connected
projective curve and (E, V ) a generically t-spread coherent system of type
(n, d, k). Then the coherent system (E,W ) is generically t-spanned for a gen-
eral k-dimensional linear subspace W of H0(X,E).

Proof. The proof is analogous to that of Lemma 5.1.6.

Lemma 5.1.8. Fix integers n > 0 and t > 0. Let X be a smooth and
connected projective curve and E a rank n strongly t-spanned vector bundle
on X such that h0(X,E) > (t+ 1)n. Fix any integer k such that

n(t+ 1) + 1 6 k 6 h0(X,E)

and take a general V ∈ Grass(k,H0(X,E)). Then (E, V ) is strongly t-
spanned.

Proof. If k = h0(X,E), then the Lemma is obviously true, hence we may
assume k < h0(X,E).

Fix P ∈ X and let A(P ) be the set of all W ∈ Grass(k,H0(X,E)) such
that the restriction map

W −→ H0((t+ 1)P,E|(t+ 1)P ) ∼= Kn(t+1)

is not surjective. See H0(X,E(−(t+ 1)P )) as a linear subspace of H0(X,E).
Since E is strongly t-spanned, H0(X,E(−(t+1)P )) has codimension n(t+1)
in H0(X,E). Hence

A(P ) = {W ∈ Grass(k,H0(X,E)) :

dim(W ∩H0(X,E(−(t+ 1)P )) > k − t(n+ 1))}.
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Since k > n(t + 1) the Schubert cell A(P ) has codimension at least two in
Grass(k,H0(X,E)). Since dim(X) = 1, a general V ∈ Grass(k,H0(X,E)) is
not contained in

⋃
P∈X A(P ), hence we are done.

Theorem 5.1.9. Fix integers d > k > n > 0, t > 0, σ ∈ R, σ > 0, and
a smooth and connected elliptic curve X. Assume Gσ(X;n, d, k) 6= ∅ and
take a general (E, V ) ∈ Gσ(X;n, d, k). Then (E, V ) is generically strongly
t-spanned if and only if k > (t + 1)n. If d > k > n(t + 1), then (E, V ) is
strongly t-spanned.

Proof. By [16, Thm 3.3] Gσ(n, d, k) is irreducible, hence it makes sense to
consider its general element. Moreover E is polystable and thus in particular
it is semistable. By Remark 5.1.5 we may assume that V is a general k-
dimensional linear subspace of H0(X,E). Since d > k > (t+ 1)n, the vector
bundle E is generically strongly t-spanned (Remark 5.1.3). Since k > t + 1,
(E, V ) is generically strongly t-spanned by Lemma 5.1.6, proving the first
part. The last assertion follows from Lemma 5.1.8.

Remark 5.1.10. By Remark 5.1.4 both Theorem 5.1.9 and its proof are
true with only trivial modification if we take P1 instead of an elliptic curve.
The only missing tool to extend it to the case of curves with genus g > 2 is a
stability theorem for coherent systems (E, V ) with E general in someM(n, d).

Theorem 5.1.11. Fix integers n > ρ > 0, t > 0, k > (t + 1)n. Let X
be a smooth and connected curve, E a rank n generically strongly t-spread
vector bundle on X such that h0(X,E) > k and V a general element of
Grass(k,H0(X,E)). Then for all rank ρ subsheaves F of E we have

dim(H0(X,F ) ∩ V ) 6 k − (t+ 1)(n− ρ).

Proof. Fix any rank ρ subsheaf F of E and take a general (P0, . . . , Pt) ∈ Xt+1.
Since (E, V ) is generically strongly t-spread (Lemma 5.1.7), we have

dim(V ∩H0(X,E(−P0 − · · · − Pt))) = k − (t+ 1)n.

Since rank(F ) = ρ, the vector space H0(X,F (−P0−· · ·−Pt)) has codimension
at most (t+ 1)ρ in H0(X,F ). Hence

dim(V ∩H0(X,F (−P0 − · · · − Pt))) > dim(V ∩H0(X,F ))− (t+ 1)ρ.

Since

dim(V ∩H0(X,F (−P0 − · · · − Pt))) 6 dim(V ∩H0(X,E(−P0 − · · · − Pt))),

we are done.
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Theorem 5.1.12. Fix integers n > ρ > 0, t > 0, k < (t + 1)n. Let X
be a smooth and connected curve, E a rank n generically strongly t-spread
vector bundle on X such that h0(X,E) > k and V a general element of
Grass(k,H0(X,E)). Then for all rank ρ subsheaves F of E we have

dim(H0(X,F ) ∩ V ) 6 (t+ 1)ρ.

Proof. Fix any rank ρ subsheaf F of E and take a general (P0, . . . , Pt) ∈ Xt+1.
By assumptionH0(X,E(−P0−· · ·−Pt)) has codimension (t+1)n inH0(X,E).
Since k < (t+ 1)n and V is general in Grass(k,H0(X,E)), we have

V ∩H0(X,E(−P0 − · · · − Pt)) = {0}.

Hence V ∩ H0(X,F (−P0 − · · · − Pt)) = {0}. Since rank(F ) = ρ, the vector
space H0(X,F (−P0−· · ·−Pt)) has codimension at most (t+1)ρ in H0(X,F ).
Hence dim(H0(X,F ) ∩ V ) 6 (t+ 1)ρ.

Theorem 5.1.13. Let X be a smooth and projective curve of genus g > 2. Fix
integers k > n > 2, t > 0, d > k+n(g−1) and take a general E ∈M(X;n, d).
Fix a general V ∈ Grass(k,H0(X,E)). Let F be a subsheaf of E such that
1 6 ρ := rank(F ) 6 n− 1. Then

dim(V ∩H0(X,F )) 6 max{(t+ 1)ρ, k − (t+ 1)(n− ρ)}.

Proof. Note that t is a non-negative integer. By Remark 5.1.2 the vector
bundle E is generically t-spread. Apply Theorems 5.1.11 and 5.1.12.

Theorem 5.1.14. Let X be a smooth and projective curve of genus g > 2.
Fix integers n > 2, t > 0, d > n(g + t) and take a general E ∈ M(X;n, d).
Fix a general V ∈ Grass(n(t+ 1),H0(X,E)). Then (E, V ) is σ-stable for all
σ > 0.

Proof. Fix a real number σ > 0, an integer ρ such that 1 6 ρ 6 n − 1 and a
rank ρ subsheaf F of E. Since E is stable, we have µ(F ) < µ(E). By Theorem
5.1.13 we have dim(V ∩H0(X,F )) 6 (t+ 1)ρ. Hence

µσ(F, V ∩H0(X,F )) 6 σ(t+ 1) + µ(F ) < σ(t+ 1) + µ(E) = µσ(E, V ),

concluding the proof.

5.2 Rational curves in Grassmannians and their

Plücker embeddings

In [3] the following Theorem is proved.
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Theorem 5.2.1 ([3, Thm 1]). Fix integers k > n > 2 and a1 > · · · > an such
that an >

⌊((
k
n

)
− 1
)
/n
⌋

and a1 + · · ·+an+1 >
(
k
n

)
. Set E :=

⊕n
i=1OP1(ai).

Let V be a general k-dimensional linear subspace of H0(P1, E). Then for all n-
dimensional linear subspaces W of V the evaluation map W⊗OP1 −→ E is an
injection of sheaves. Equivalent, the natural map

∧k(V ) −→ H0(P1,det(E))
is injective.

Here we prove the following Corollary of the previous Theorem, which
provides sufficient conditions for the existence of σ-stable coherent systems of
type (n, d, k) for some k > n.

Proposition 5.2.2. Fix σ ∈ R and integers integers n > 2, a1 > · · · > an > 0
and k such that

(
k
n

)
6 1 + nan and σ > (na1 −

∑n
i=1 ai)/(k − n). Set

E :=
⊕n

i=1OP1(ai) and take a general k-dimensional linear subspace V of
H0(P1, E). Then the coherent system (E, V ) is σ-stable. Furthermore, for
all coherent subsystems (F,W ) of (E, V ) such that 1 6 rank(F ) < n we have
µσ(E, V )− µσ(F,W ) > (

∑n
i=1 ai)/n+ (k − n)σ/n− an.

Proof. By the previous Theorem for all integers r such that 1 6 r < n and all
rank r subsheaves F of E we have dim(V )∩H0(P1, F )) 6 r. Since µ+(E) = a1,
we have µ(F ) 6 a1. Thus µσ(F,W ) 6 a1 + σ < (

∑n
i=1 ai)/n + (k/n)σ,

concluding the proof.

- 80 -



Bibliography

[1] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math.
Soc. 7 (1957), 414–452.

[2] E. Ballico, Coherent systems with many sections on projective curves,
Internat. J. Math. 17 (2006), no. 3, 263–267. MR MR2215150
(2006k:14059)

[3] E. Ballico, Rational curves in Grassmannians and their Plücker embed-
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