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The M − DSO − ESPRIT Method for Maximum Likeli-hood DoA Estimation
L. Lizzi, F. Viani, M. Benedetti, P. Ro

a, and A. Massa

Abstra
tThe estimation of the dire
tions-of-arrival (DoAs) of multiple signals is a topi
 ofgreat relevan
e in smart antenna synthesis and signal pro
essing appli
ations. Inthis paper, a memory-based method is proposed to 
ompute the maximum likeli-hood (ML) DoA estimates. Su
h a 
on
eptually-simple te
hnique is based on thedata-supported optimization (DSO) and the estimation of signal parameters via ro-tational invarian
e te
hnique (ESPRIT ), but fully exploits a memory me
hanismfor improving the estimation a

ura
y espe
ially when dealing with 
riti
al s
enarios
hara
terized by low signal-to-noise ratios (SNR) or/and small number of snapshots.Simulation results assess the potentialities and limitations of the proposed approa
hthat favorably 
ompares with state-of-the-art methods.
Key-words: Dire
tion-of-Arrival Estimation, Data-Supported Optimization, Smart An-tennas, Wireless Communi
ations 2



1 Introdu
tionSmart antennas are a 
hallenging resear
h topi
 in ele
tromagneti
s and wireless 
ommu-ni
ations. The main reason for the growing interest about su
h an issue when dealingwith multi-users 
ommuni
ation systems, mainly lies in the need of adaptively fa
ing withunknown time-varying s
enarios [1℄[2℄[3℄. In general, smart systems 
onsist of an array ofradiating elements able to steer the main lobe beam towards the desired signal [4℄[5℄[6℄and to lo
ate suitable nulls of the radiation pattern in the dire
tions of the interferen
es[7℄[8℄[9℄. A

ordingly, a relevant step for building a smart re
eiver is 
on
erned with theestimation of the dire
tions of arrival (DoAs) of the re
eived signals. Towards this end,various te
hniques have been developed not only for wireless 
ommuni
ations, but also invarious appli
ations ranging from radar [10℄[11℄[12℄ to sonar [13℄ and spee
h pro
essing[14℄.The maximum likelihood (ML) estimator has been largely used in dire
tion �nding prob-lems be
ause of its 
apability of rea
hing, asymptoti
ally and under regularity 
onditions,the Cramer-Rao Bound (CRB) [15℄. Unfortunately, it is 
hara
terized by an intrinsi

omplexity arising from the multi-modal nature of the likelihood fun
tion (LF ) and bythe high 
omputational load of the involved multivariate nonlinear maximization prob-lem [16℄[17℄[18℄. Therefore, other sub-optimal approa
hes have been proposed in order torea
h a suitable trade-o� between estimation a

ura
y and 
omplexity.Con
erning learning-by-examples (LBE) te
hniques, some methods based on the use ofradial-basis fun
tions (RBF ) [19℄[20℄ and support ve
tor ma
hines [21℄[22℄[23℄ have beene�
iently applied to single- and multiple-sour
e dire
tion �nding, as well.Unlike LBE te
hniques that needs of a learning phase for training the underlying networkar
hite
ture, super-resolution approa
hes dire
tly pro
ess the re
eived signals without anyo�-line pre-pro
essing or training. In su
h a framework, the multiple signal 
lassi�
ationmethod (MUSIC) [24℄ is an eigenstru
ture-based dire
tion �nding te
hnique that employsthe noise-subspa
e eigenve
tors of the data 
orrelation matrix for determining a nullspe
trum, whose minima are iteratively 
omputed to yield the DoA estimates. Althoughit asymptoti
ally 
onverges to the CRB [25℄ for an in
reasing number of snapshots, thestandard implementation of MUSIC still implies high 
omputational and storage 
osts3



[26℄ be
ause of the exhaustive sear
h extended to the whole set of steering ve
tors. Asfar as uniform linear arrays (ULAs) are 
on
erned, the so-
alled ROOT − MUSIC [27℄version 
an be pro�tably used by solving a polynomial rooting problem, thus improvingthe 
omputational performan
es of the MUSIC algorithm [28℄.Likewise MUSIC, the estimation of signal parameters via rotational invarian
e te
hnique(ESPRIT ) [29℄ is a ve
tor subspa
e-based methodology that, instead of identifying thespe
tral peaks, dire
tly determines the DoAs by exploiting the rotational invarian
e ofthe underlying signal subspa
e indu
ed by the translational invarian
e of the sensorsarray. Sin
e the ESPRIT 
omplexity stri
tly depends on the number of sensors, faithfulestimates and a redu
ed 
omputational burden 
an be a
hieved dealing with a limitednumber of array elements, while the size of the 
orrelation matrix be
omes greater thanthose from MUSIC or ROOT − MUSIC when large arrays are 
onsidered [26℄.In order to redu
e the 
omputational 
osts as well as the risk of being trapped in falsemaxima of the LF , the data-supported optimization (DSO) 
an be suitably employedwith ESPRIT [18℄[30℄. Su
h a pro
edure 
onsists in partitioning the data sample in alarge number of "elemental sets" for allowing a simpler 
omputation of the estimates forea
h elemental data set. The so-obtained values 
onstitute a data-supported grid (DSG)over whi
h the LF fun
tion is maximized.Although eigenstru
ture-based approa
hes 
onstitute the state-of-the-art in DoA estima-tion and demonstrated their optimality (as the best 
ompromise between a

ura
y and
omputational load) in dealing with a limited number of in
oming signals and/or limitednumber of re
eivers, unsatisfa
tory performan
es (i.e., with 
onspi
uous di�eren
es 
om-pared to ML) o

ur in the so-
alled threshold region, namely, when the signal-to-noiseratio is low, or alternatively, when the number of snapshots is small.In order to deal with these situations, this paper presents an hybrid approa
h 
alledmemory-based ESPRIT -like (M − DSO − ESPRIT ). Following the guideline of the
DSO − ESPRIT [31℄, the proposed method 
onsiders an ESPRIT -based estimator for
omputing the DSG and a memory me
hanism for enhan
ing the estimation a

ura
ythanks to the reallo
ation of the information a
quired at the previous steps, whi
h is usedas a-priori knowledge for su

essive estimates.4



The paper is organized as follows. In Se
t. 2, the dire
tion �nding problem is mathemat-i
ally formulated. The M −DSO−ESPRIT method is des
ribed in Se
t. 3 by fo
usingon its innovative features. Se
tion 4 is devoted at presenting a set of sele
ted numeri
alresults in order to point out potentialities and limitations of the proposed approa
h alsoin 
omparison with state-of-the-art super-resolution te
hniques. Finally, some 
on
lusionsare drawn (Se
t. 5).2 Mathemati
al FormulationLet us 
onsider a ULA of M equally-spa
ed sensors and L (L < M) un
orrelated narrow-band signals impinging at ea
h time instant ts = t0 + s △ t, s = 1, ..., S, on the antennawith plane wavefronts from di�erent dire
tions, Θ(ts) = {θl (ts) ; l = 1, ..., L} (Fig. 1).Moreover, let us indi
ate with y (ts) = {ym (ts) ; m = 1, ..., M}T the snapshot (i.e., the
olle
tion of data samples at ts) 
olle
ted by the M sensors at ea
h time instant(1) . Underthe assumption that the number of available snapshots is equal to N (N ≥ L), the re
eiveroutput Y (ts) 
an be expressed, a

ording to the matrix notation [17℄[32℄, as follows
Y (ts) = A [Θ (ts)]X (ts) + E (ts) . (1)In parti
ular, Y (ts) =

{
y (ts−N+n) ; n = 1, ..., N

} is a 
omplex matrix of M ×N elements(i.e., Y ∈ CM×N), X ∈ CL×N is the matrix of signal waveforms, and A ∈ CM×L is thesteering matrix given by
A [Θ (ts)] = {a [θl (ts)] ; l = 1, ..., L} (2)being a [θl (ts)] =

{
ej(m−1) 2π

λ
d sin[θl(ts)]; m = 1, ..., M

}T the steering ve
tor of the array to-wards the dire
tion θl (ts). Moreover, E ∈ CM×N is related to the noise modeled bymeans of a stationary and ergodi
 
omplex-valued Gaussian pro
ess of zero-mean 
har-a
terized by an assigned signal-to-noise ratio (SNR). Furthermore, the noise samples atthe re
eivers, em (ts), m = 1, ..., M , s ≥ 1, are assumed to be statisti
ally independent.
(1) The supers
ripts T and H denote the transpose and 
onjugate transpose operation, respe
tively.5



Under these hypotheses, the maximum likelihood lo
alization of the L sour
es at ts [i.e.,the estimation of Θ̂ (ts) =
{
θ̂l (ts) ; l = 1, ..., L

}℄ is obtained as [17℄[32℄
Θ̂ (ts) = arg max

Θ(ts)
[fML {Θ(ts)}] (3)where fML is the likelihood fun
tion given by

fML {Θ(ts)} = tr
{
P [Θ (ts)]R (ts)

}
. (4)and tr {·} indi
ates the tra
e of the matrix. Moreover,

P [Θ (ts)] = A [Θ (ts)]
{
AH [Θ (ts)]A [Θ (ts)]

}
−1

AH [Θ (ts)]and
R (ts) =

1

N

N∑

n=1

y (ts−N+n)yH (ts−N+n)are the proje
tion and the sample 
ovarian
e matrix [17℄, respe
tively.Although the ML lo
alizationmethod allows one to obtain the optimal estimate, it usuallyrequires the evaluation of the LF in 
orresponden
e with ea
h possible 
ombination of the
DoAs. Su
h an event results in a 
omputationally-expensive pro
edure, espe
ially whendealing with multiple sour
es. Consequently, a suitable strategy aimed at optimizing thetrade-o� between lo
alization a

ura
y and 
omputational load 
ould be advantageous.Towards this purpose, a new estimation te
hnique is proposed in the following se
tion.3 The M-DSO-ESPRIT MethodUnlike the optimal ML approa
h, the M − DSO − ESPRIT method resorts to theevaluation of the LF in a limited set of 
ombinations of DoA and it 
onsiders a memoryme
hanism in order to fully exploit the a
quired-knowledge (or experien
e) from previousestimates. More in detail, the following multi-step pro
edure is 
arried out at ea
h time-step ts, s ≥ 1:

6



3.1 Memory Enhan
ementThe M−DSO−ESPRIT operates a memory enhan
ement of the 
olle
ted data. Towardsthis end, a new memory-enhan
ed output matrix D (ts)

D (ts) = {db (ts) ; b = 1, ..., B} ∈ C
M×Bis de�ned from the standard output matrix Y (ts) as des
ribed in the following. At the�rst time-step (s = 1), the pro
ess is initialized by assuming D (t1) = Y (t1), that is

db (t1) = y (ts−N+b) b ∈ [1, B] ; B = Notherwise (s > 1)
db (ts) =






y (ts−N+b) b ∈ [1, N ]

a
[
θ̂b−N (ts−1)

]
b ∈ [N + 1, B]

B = N + L.

3.2 Data-Spa
e Re-SamplingThe so-de�ned data spa
e is then re-sampled. Starting from the matrix D (ts) and 
on-sidering the whole set of 
olumn 
ombinations to obtain a matrix of dimension M ×L, itis possible to de�ne K [being K = B!
L!(B−L)!

℄ matri
es W(k) ∈ CM×L

W(k) (ts) =
{
w

(k)
l = d

c
(k)
l

; l = 1, ..., L
}

k = 1, ..., K (5)where the index c
(k)
l ∈ [1, B] identi�es the 
olumn of D (ts) 
orresponding to the l-thelement of W(k) (ts), a

ording to the iterative generation pro
edure detailed in Tab. I.Moreover, in order to avoid wrong/unne
essary su

essive 
omputations, the matri
eswhose 
ondition numbers η

(k)
s are greater than a �xed stability threshold (i.e., the ill-
onditioned matri
es) are omitted.

7



3.3 Data-Supported Grid GenerationAs in [26℄[31℄, an ESPRIT -like algorithm is used for generating the data-supported gridpoints. Let us 
onsider the matrix Φ(k) ∈ CL×L given by
Φ(k) (ts) =

{[
V(k) (ts)

]H

V(k) (ts)

}
−1 [

V(k) (ts)
]H

U(k) (ts) (6)where V(k) and U(k) are two matri
es obtained from W(k) by eliminating the �rst andlast row, respe
tively. Then, the ESPRIT -like estimates (i.e., the K data-supported gridpoints) turn out to bê
Θ

(k)
(ts) =

{
θ̂

(k)
l (ts) ; l = 1, ..., L

}
k = 1, ..., K (7)

where θ̂
(k)
l = arcsin

{
λ

2πd
arg

(
µ

(k)
l

)} and {
µ

(k)
l ; l = 1, ..., L

} are the eigenvalues ofΦ(k)[29℄.3.4 ML DoA EstimationFinally, the ML estimates of the DoAs of the L signals are 
omputed by maximizing the
LF over the K-sized data-supported grid:

Θ̂ (ts) = arg max
bΘ

(k)
(ts)

[
fML

{
Θ̂

(k)
(ts)

}]
. (8)

4 Numeri
al AssessmentThe numeri
al assessment has been 
arried out by 
omparing the performan
es of the
M −DSO −ESPRIT with those of other state-of-the-art approa
hes, su
h as ROOT −

MUSIC [27℄, ESPRIT [29℄, DSO−ESPRIT [31℄ in order to point out its potentialitiesand 
urrent limitations as well as the range of 
onvenient appli
ability. For 
ompleteness,the asymptoti
 performan
es a
hievable by an unbiased estimator of the parameters θl(i.e., the so-
alled Cramer-Rao bound (CRB) [33℄) are reported, as well.8



Con
erning the estimation a

ura
y, the root-mean-square-error has been assumed asindex of e�
ien
y. Moreover, be
ause of the statisti
al nature of the s
enarios under test,its value averaged over Q = 100 independent realizations of ea
h simulation has been
omputed
RMSE =

1

Q

Q∑

q=1

1

S

S∑

s=1

√√√√ 1

L

L∑

l=1

∣∣∣θ(q)
l (ts) − θ̂

(q)
l (ts)

∣∣∣
2 (9)where the index q denotes the q-th realization (q = 1, ..., Q) of a simulation, S being thetotal number of time-instants (S = 100).As far as the referen
e antenna ar
hite
ture is 
on
erned, a linear array of M = 20omnidire
tional sensors λ

2
-spa
ed has been adopted.The �rst test 
ase deals with �stationary� s
enarios where L un
orrelated signals impingefrom random, but �xed, dire
tions [i.e., θl (ts) = θl, ∀s℄. Under this assumption, a set ofexperiments has been performed in order to show the e�e
t of the size of the snapshotwindow (N), of the signal-to-noise ratio, and of the angular separation (i.e.,△θl = θl+1−θl,

l = 1, ..., L − 1) between the DoAs of the sour
es on the method performan
es evaluatedin terms of angular a

ura
y (i.e., RMSE value) and 
omputational 
osts.In the �rst experiment, the s
enario under test is 
hara
terized by heavy noisy 
onditions(SNR = 2 dB) and L sour
es 
oming from random angular dire
tions equally-spa
ed by
△θl = 10o, l = 1, ..., L−1. Under the assumption that N = L (i.e., the minimum numberof snapshots for a given 
on�guration of sour
es), Figure 2 shows the behavior of theestimation error versus the number of sour
es L. Con
erning the estimation a

ura
y,even though the resolution error is an in
reasing quantity, the M − DSO − ESPRIToutperforms the other dire
tion �nding methods and it results 
loser to the CRB when
L ≤ 4 pointing out a non-negligible robustness to the noise in lo
alizing multiple sour
es.In order to quantify the 
omputational 
ost, the amount of �oating point operationsneeded at ea
h time-instant ts (i.e., Ω) is analyzed (Fig. 3). As expe
ted, be
ause of thememory enhan
ement and the dependen
e of the dimension of the output matrix D (ts)on L, the 
omputational burden required by M − DSO − ESPRIT grows with L, butnot in a linear fashion sin
e the ��ltering� pro
edure at the �Data-Spa
e Re-Sampling�step avoids the pro
essing of ill-
onditioned matri
es. Moreover, whatever the number9



of sour
es, the arising Ω value is greater than that of the DSO − ESPRIT , but of thesame order in magnitude of the standard ESPRIT . Furthermore, the ROOT −MUSICte
hnique results mu
h more expensive in su
h a situation.The se
ond experiment is aimed at evaluating the behavior of the M −DSO−ESPRITin 
orresponden
e with a variation of the number of snapshots. Towards this purpose,the s
enario is the same of the �rst experiment, but the number of sour
es has been �xedto L = 2 (Figs. 4 and 5) and L = 4 (Figs. 6 and 7), respe
tively. Figures 4 and 6 showthe resulted RMSE error as a fun
tion of N . As expe
ted the statisti
al performan
esof the proposed estimator improve as N in
reases sin
e the number of DSO grid pointsgrows thus allowing the sampling of a larger portion of the entire DoA parameter spa
e.Asymptoti
ally, the estimation a

ura
y of the 
ompared methods are quite similar toone another, but the M − DSO − ESPRIT 
on�rms its e�e
tiveness when operating inthe threshold region when N is small.On the other hand, unlike ESPRIT and ROOT − MUSIC, the 
omputational burdenrequired at ea
h iteration by the DSO-based te
hniques depends on N . As a matter offa
t, su
h approa
hes usually 
ompute a number of DoA estimates equal to the numberof 
ombinations between the available temporal snapshots. Therefore, in
reasing thenumber of snapshots N involves a longer response time that 
ould make the advantagesin terms of resolution a

ura
y fruitless. Fortunately, the memory me
hanism of the
M−DSO−ESPRIT positively a
ts allowing an evident (see Fig. 7 - L = 4) improvementover the DSO−ESPRIT in the 
riti
al (from a 
omputational point of view) region (i.e.,
N large).The third experiment deals with a s
enario 
hara
terized by a better signal-to-noise ratio(SNR = 20 dB) in order to study the behavior of the memory-enhan
ed DSO−ESPRITin a region outside (or only partially overlapped, when N is small) the threshold region.As expe
ted, the M − DSO − ESPRIT appears to satisfa
tory perform for a limitednumber of sour
es (L ≤ 3 - Fig. 8). As a matter of fa
t, by keeping L = 2 and varying
N (Fig. 9), it asymptoti
ally guarantees similar results to those of the other methods,while the M −DSO −ESPRIT signi�
antly over
omes the standard DSO −ESPRITimplementation for small values of N ( RMSEDSO−ESPRIT

RMSEM−DSO−ESPRIT

⌋

L=N=2

∼= 10).10



The last set of experiments 
on
erned with a �stationary� s
enario is devoted at testinghow the sour
e separation a�e
ts the dire
tion �nding a

ura
y of the proposed approa
h.Figure 10 shows the root-mean-squared error values versus △θl when SNR = 2 dB, L = 2and N = L. As it 
an be observed, the M−DSO−ESPRIT performs quite well and 
loseto the CRB when△θl > 8o. Moreover, an e�
ien
y degradation veri�es in 
orresponden
ewith smaller separations (△θl < 8o), although a better resolution, 
ompared to the otherte
hniques, is always a
hieved. Similar 
on
lusions on the 
omparative assessment holdtrue by varying the number of snapshots and keeping 
onstant the angular separation to
△θl = 2o (Fig. 11).In order to qualitatively summarize the performan
e of the M−DSO−ESPRIT in termsof both estimation 
apabilities and 
omputational 
osts when dealing with stationary
onditions, Table II pi
torially resumes the behavior of the approa
h versus the numberof sour
es L (1: many, 0: few), the number of snapshots N (1: many - N > L, 0: few -
N = L), the angular sour
e separation ∆θ (1: large, 0: small), and the SNR (1: low levelof noise, 0: high level of noise). A

ording to the indi
ations drawn from the numeri
alexperiments, Table II points out and 
on�rms that the approa
h is an e�e
tive alternativeto standard estimators espe
ially in the threshold region de�ned by a low SNR or/and asmall number of snapshots.The se
ond test 
ase is 
on
erned with a 
omplex environment 
hara
terized by the time-varian
e of the randomly-distributed DoAs of the impinging signals. Figure 12(a) pi
to-rially des
ribes the s
enario under test 
hara
terized by L = 3 sour
es having a variabledire
tion of in
iden
e [θl (ts) ∈ [−40o, 50o]; l = 1, ..., L; s = 1, ..., S; S = 60℄. As far as theestimation pro
ess is 
on
erned, N = 3 snapshots have been 
onsidered and di�erent noisy
onditions have been simulated (i.e., SNR = 2 dB, SNR = 10 dB, and SNR = 20 dB).The a
hieved performan
es in terms of RMSE are shown in Fig. 12 and detailed in Tab.III. As expe
ted, when dealing with the 
ase of SNR = 2 dB, the M −DSO−ESPRITusually a
hieves the best a

ura
y in the estimates [Fig. 12(b)℄ as 
on�rmed by 
omparingthe mean (over the 
omplete temporal window of S = 60 time-steps) values of the RMSEin Tab. III (ςM−DSO−ESPRIT

RMSE = 4.45
⌋

SNR=2 dB
vs. ςROOT−MUSIC

RMSE = 8.59
⌋

SNR=2 dB
, ςESPRIT

RMSE = 12.29
⌋

SNR
,and ςDSO−ESPRIT

RMSE = 12.21
⌋

SNR=2 dB
). Con
erning the s
enario 
hara
terized by SNR =11



10 dB, the reliability of M − DSO − ESPRIT is signi�
antly better than those of
ESPRIT and DSO−ESPRIT [Fig. 12(
) - Tab. III℄ (ςM−DSO−ESPRIT

RMSE = 2.94
⌋

SNR=10 dBvs. ςESPRIT
RMSE = 6.63

⌋
SNR=10 dB

, ςDSO−ESPRIT
RMSE = 6.59

⌋
SNR=10 dB

) and it also over
omes theperforman
e of ROOT − MUSIC (ςROOT−MUSIC
RMSE = 3.59

⌋
SNR=10 dB

). Su
h an event ismostly due to the fast �rea
tion� of the M −DSO −EPSRIT to the s
enario variationsin 
orresponden
e with the time-step transitions (i.e., ts = 10, 50). Finally [SNR = 20 dB- Fig. 12(d)℄, despite the lower noise level and although there is a slight improvement inthe estimation a

ura
y with the in
reasing of SNR (ςM−DSO−ESPRIT
RMSE

⌋
SNR=10 dB

= 2.94vs. ςM−DSO−ESPRIT
RMSE

⌋
SNR=20 dB

= 2.82), the M − DSO − ESPRIT does not rea
hthe e�e
tiveness of the ROOT − MUSIC approa
h (ςROOT−MUSIC
RMSE

⌋
SNR=20 dB

= 1.96).On the other hand, it should be noti
ed that, whatever the noise level, the memory-enhan
ed version of the DSO−ESPRIT always over
omes the standard implementation( ςDSO−ESPRIT

RMSE

ςM−DSO−ESPRIT

RMSE

⌋

SNR=2 dB

∼= 2.74, ςDSO−ESPRIT

RMSE

ςM−DSO−ESPRIT

RMSE

⌋

SNR=10 dB

∼= 2.24, and ςDSO−ESPRIT

RMSE

ςM−DSO−ESPRIT

RMSE

⌋

SNR=20 dB

∼=

1.19).5 Con
lusionsIn this paper, a DoA estimation method has been proposed in order to deal with 
omplexs
enarios belonging to the so-
alled threshold region, thus improving the e�e
tiveness ofdire
tion �nding te
hniques and extending their range of appli
ability. Starting froma simple and 
omputationally-e�
ient data supported optimization for the solution ofthe maximum likelihood estimation problem, a memory me
hanism has been introdu
ed.The approa
h, 
alled M −DSO−ESPRIT , in
reases the number of the data-supportedsamples, over whi
h the likelihood fun
tion is maximized, by extending the data set withthe maximum likelihood estimates of the previous time-steps.Con
erning the main features of the M − DSO − ESPRIT , they 
an be summarized asfollows
• e�e
tive exploitation of the information a
quired during the estimation pro
ess;
• 
omputational simpli
ity in 
omparison with optimal approa
hes.12



As far as the numeri
al validation and the 
omparative study with other state-of-the-artmethods are 
on
erned, the obtained results demonstrated the e�
ien
y of the proposedapproa
h in terms of both estimation a

ura
y and 
omputational burden, espe
ially inthose s
enarios where
• the environmental 
onditions heavily a�e
t the signal-to-noise ratio;
• the number of 
olle
table snapshots is limited.On the other hand, it 
annot be negle
ted that the M − DSO − ESPRIT guaranteesa

eptable performan
es also in the presen
e of low levels of noise or when longer temporalwindows are 
onsidered, thus indi
ating the �exibility of the method.Future works will be devoted at experimentally validating the memory-based DSO −

ESPRIT te
hnique as well as improving its e�e
tiveness in fa
ing with fast time-varyings
enarios.A
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Figure Captions
• Figure 1. Problem Geometry.
• Figure 2. Stationary S
enario (SNR = 2 dB, N = L, △θl = 10o, θ1 = 10o) -

RMSE values versus number of sour
es L.
• Figure 3. Stationary S
enario (SNR = 2 dB, N = L, △θl = 10o, θ1 = 10o) -Computational 
ost Ω versus number of sour
es L.
• Figure 4. Stationary S
enario (SNR = 2 dB, L = 2, △θl = 10o, θ1 = 10o) -

RMSE values versus number of snapshots N .
• Figure 5. Stationary S
enario (SNR = 2 dB, L = 2, △θl = 10o, θ1 = 10o) -Computational 
ost Ω versus number of snapshots N .
• Figure 6. Stationary S
enario (SNR = 2 dB, L = 4, △θl = 10o, θ1 = 10o) -

RMSE values versus number of snapshots N .
• Figure 7. Stationary S
enario (SNR = 2 dB, L = 4, △θl = 10o, θ1 = 10o) -Computational 
ost Ω versus number of snapshots N .
• Figure 8. Stationary S
enario (SNR = 20 dB, N = L, △θl = 10o, θ1 = 10o) -

RMSE values versus number of sour
es L.
• Figure 9. Stationary S
enario (SNR = 20 dB, L = 2, △θl = 10o, θ1 = 10o) -

RMSE values versus number of snapshots N .
• Figure 10. Stationary S
enario (SNR = 2 dB, L = 2, N = L, θ1 = 10o) - RMSEvalues versus sour
e separation distan
e ∆θ.
• Figure 11. Stationary S
enario (SNR = 2 dB, L = 2, △θl = 2o, θ1 = 10o) -

RMSE values versus number of snapshots N .
• Figure 12. Time-Varying S
enario (L = 3, N = L, θl (ts) ∈ [−40o, 50o], S = 60).Referen
e 
on�guration (a). RMSE at ea
h ts, s = 1, ..., S when (b) SNR = 2 dB,(
) SNR = 10 dB, and (d) SNR = 20 dB.
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Table Captions
• Table I. Pro
edure for de�ning the matri
es W(k) ∈ CM×L, k = 1, ..., K.
• Table II. Stationary S
enario - Summary of the M − DSO − ESPRIT perfor-man
es.
• Table III. Time-Varying S
enario (L = 3, N = L, θl (ts) ∈ [−40o, 50o], S = 60).Time-averaged values of the RMSE.
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k = 1

c
(k)
0 = 0for i = 1, ..., L

c
(k)
i = c

(k)
i−1 + 1end

go = TRUEfor k = 1, ..., Kfor l = 1, ..., L

w
(k)
l = s

c
(k)
lend

j = Lwhile ({go}AND {j > 0}) thenif c(k)
j < B − L + j then

c
(k+1)
j = c

(k)
j + 1if j < L thenfor i = j + 1, ..., L

c
(k+1)
i = c

(k+1)
i−1 + 1endend

go = FALSEend
j = j − 1endend
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L N ∆θ SNR RMSE Ω

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

1 0 0 0
1 0 0 1
1 0 1 0

1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0

1 1 1 1

Tab. II - L. Lizzi et al., �The M-DSO-ESPRIT method for maximum likelihood ...�33



SNR [dB]

2 10 20

M − DSO − ESPRIT 4.45 2.94 2.82

DSO − ESPRIT 12.21 6.59 3.37

ESPRIT 12.29 6.63 3.31

ROOT − MUSIC 8.59 3.59 1.96

Tab. III - L. Lizzi et al., �The M-DSO-ESPRIT method for maximum likelihood ...�34


