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The M − DSO − ESPRIT Method for Maximum Likeli-hood DoA Estimation
L. Lizzi, F. Viani, M. Benedetti, P. Roa, and A. Massa

AbstratThe estimation of the diretions-of-arrival (DoAs) of multiple signals is a topi ofgreat relevane in smart antenna synthesis and signal proessing appliations. Inthis paper, a memory-based method is proposed to ompute the maximum likeli-hood (ML) DoA estimates. Suh a oneptually-simple tehnique is based on thedata-supported optimization (DSO) and the estimation of signal parameters via ro-tational invariane tehnique (ESPRIT ), but fully exploits a memory mehanismfor improving the estimation auray espeially when dealing with ritial senariosharaterized by low signal-to-noise ratios (SNR) or/and small number of snapshots.Simulation results assess the potentialities and limitations of the proposed approahthat favorably ompares with state-of-the-art methods.
Key-words: Diretion-of-Arrival Estimation, Data-Supported Optimization, Smart An-tennas, Wireless Communiations 2



1 IntrodutionSmart antennas are a hallenging researh topi in eletromagnetis and wireless ommu-niations. The main reason for the growing interest about suh an issue when dealingwith multi-users ommuniation systems, mainly lies in the need of adaptively faing withunknown time-varying senarios [1℄[2℄[3℄. In general, smart systems onsist of an array ofradiating elements able to steer the main lobe beam towards the desired signal [4℄[5℄[6℄and to loate suitable nulls of the radiation pattern in the diretions of the interferenes[7℄[8℄[9℄. Aordingly, a relevant step for building a smart reeiver is onerned with theestimation of the diretions of arrival (DoAs) of the reeived signals. Towards this end,various tehniques have been developed not only for wireless ommuniations, but also invarious appliations ranging from radar [10℄[11℄[12℄ to sonar [13℄ and speeh proessing[14℄.The maximum likelihood (ML) estimator has been largely used in diretion �nding prob-lems beause of its apability of reahing, asymptotially and under regularity onditions,the Cramer-Rao Bound (CRB) [15℄. Unfortunately, it is haraterized by an intrinsiomplexity arising from the multi-modal nature of the likelihood funtion (LF ) and bythe high omputational load of the involved multivariate nonlinear maximization prob-lem [16℄[17℄[18℄. Therefore, other sub-optimal approahes have been proposed in order toreah a suitable trade-o� between estimation auray and omplexity.Conerning learning-by-examples (LBE) tehniques, some methods based on the use ofradial-basis funtions (RBF ) [19℄[20℄ and support vetor mahines [21℄[22℄[23℄ have beene�iently applied to single- and multiple-soure diretion �nding, as well.Unlike LBE tehniques that needs of a learning phase for training the underlying networkarhiteture, super-resolution approahes diretly proess the reeived signals without anyo�-line pre-proessing or training. In suh a framework, the multiple signal lassi�ationmethod (MUSIC) [24℄ is an eigenstruture-based diretion �nding tehnique that employsthe noise-subspae eigenvetors of the data orrelation matrix for determining a nullspetrum, whose minima are iteratively omputed to yield the DoA estimates. Althoughit asymptotially onverges to the CRB [25℄ for an inreasing number of snapshots, thestandard implementation of MUSIC still implies high omputational and storage osts3



[26℄ beause of the exhaustive searh extended to the whole set of steering vetors. Asfar as uniform linear arrays (ULAs) are onerned, the so-alled ROOT − MUSIC [27℄version an be pro�tably used by solving a polynomial rooting problem, thus improvingthe omputational performanes of the MUSIC algorithm [28℄.Likewise MUSIC, the estimation of signal parameters via rotational invariane tehnique(ESPRIT ) [29℄ is a vetor subspae-based methodology that, instead of identifying thespetral peaks, diretly determines the DoAs by exploiting the rotational invariane ofthe underlying signal subspae indued by the translational invariane of the sensorsarray. Sine the ESPRIT omplexity stritly depends on the number of sensors, faithfulestimates and a redued omputational burden an be ahieved dealing with a limitednumber of array elements, while the size of the orrelation matrix beomes greater thanthose from MUSIC or ROOT − MUSIC when large arrays are onsidered [26℄.In order to redue the omputational osts as well as the risk of being trapped in falsemaxima of the LF , the data-supported optimization (DSO) an be suitably employedwith ESPRIT [18℄[30℄. Suh a proedure onsists in partitioning the data sample in alarge number of "elemental sets" for allowing a simpler omputation of the estimates foreah elemental data set. The so-obtained values onstitute a data-supported grid (DSG)over whih the LF funtion is maximized.Although eigenstruture-based approahes onstitute the state-of-the-art in DoA estima-tion and demonstrated their optimality (as the best ompromise between auray andomputational load) in dealing with a limited number of inoming signals and/or limitednumber of reeivers, unsatisfatory performanes (i.e., with onspiuous di�erenes om-pared to ML) our in the so-alled threshold region, namely, when the signal-to-noiseratio is low, or alternatively, when the number of snapshots is small.In order to deal with these situations, this paper presents an hybrid approah alledmemory-based ESPRIT -like (M − DSO − ESPRIT ). Following the guideline of the
DSO − ESPRIT [31℄, the proposed method onsiders an ESPRIT -based estimator foromputing the DSG and a memory mehanism for enhaning the estimation auraythanks to the realloation of the information aquired at the previous steps, whih is usedas a-priori knowledge for suessive estimates.4



The paper is organized as follows. In Set. 2, the diretion �nding problem is mathemat-ially formulated. The M −DSO−ESPRIT method is desribed in Set. 3 by fousingon its innovative features. Setion 4 is devoted at presenting a set of seleted numerialresults in order to point out potentialities and limitations of the proposed approah alsoin omparison with state-of-the-art super-resolution tehniques. Finally, some onlusionsare drawn (Set. 5).2 Mathematial FormulationLet us onsider a ULA of M equally-spaed sensors and L (L < M) unorrelated narrow-band signals impinging at eah time instant ts = t0 + s △ t, s = 1, ..., S, on the antennawith plane wavefronts from di�erent diretions, Θ(ts) = {θl (ts) ; l = 1, ..., L} (Fig. 1).Moreover, let us indiate with y (ts) = {ym (ts) ; m = 1, ..., M}T the snapshot (i.e., theolletion of data samples at ts) olleted by the M sensors at eah time instant(1) . Underthe assumption that the number of available snapshots is equal to N (N ≥ L), the reeiveroutput Y (ts) an be expressed, aording to the matrix notation [17℄[32℄, as follows
Y (ts) = A [Θ (ts)]X (ts) + E (ts) . (1)In partiular, Y (ts) =

{
y (ts−N+n) ; n = 1, ..., N

} is a omplex matrix of M ×N elements(i.e., Y ∈ CM×N), X ∈ CL×N is the matrix of signal waveforms, and A ∈ CM×L is thesteering matrix given by
A [Θ (ts)] = {a [θl (ts)] ; l = 1, ..., L} (2)being a [θl (ts)] =

{
ej(m−1) 2π

λ
d sin[θl(ts)]; m = 1, ..., M

}T the steering vetor of the array to-wards the diretion θl (ts). Moreover, E ∈ CM×N is related to the noise modeled bymeans of a stationary and ergodi omplex-valued Gaussian proess of zero-mean har-aterized by an assigned signal-to-noise ratio (SNR). Furthermore, the noise samples atthe reeivers, em (ts), m = 1, ..., M , s ≥ 1, are assumed to be statistially independent.
(1) The supersripts T and H denote the transpose and onjugate transpose operation, respetively.5



Under these hypotheses, the maximum likelihood loalization of the L soures at ts [i.e.,the estimation of Θ̂ (ts) =
{
θ̂l (ts) ; l = 1, ..., L

}℄ is obtained as [17℄[32℄
Θ̂ (ts) = arg max

Θ(ts)
[fML {Θ(ts)}] (3)where fML is the likelihood funtion given by

fML {Θ(ts)} = tr
{
P [Θ (ts)]R (ts)

}
. (4)and tr {·} indiates the trae of the matrix. Moreover,

P [Θ (ts)] = A [Θ (ts)]
{
AH [Θ (ts)]A [Θ (ts)]

}
−1

AH [Θ (ts)]and
R (ts) =

1

N

N∑

n=1

y (ts−N+n)yH (ts−N+n)are the projetion and the sample ovariane matrix [17℄, respetively.Although the ML loalizationmethod allows one to obtain the optimal estimate, it usuallyrequires the evaluation of the LF in orrespondene with eah possible ombination of the
DoAs. Suh an event results in a omputationally-expensive proedure, espeially whendealing with multiple soures. Consequently, a suitable strategy aimed at optimizing thetrade-o� between loalization auray and omputational load ould be advantageous.Towards this purpose, a new estimation tehnique is proposed in the following setion.3 The M-DSO-ESPRIT MethodUnlike the optimal ML approah, the M − DSO − ESPRIT method resorts to theevaluation of the LF in a limited set of ombinations of DoA and it onsiders a memorymehanism in order to fully exploit the aquired-knowledge (or experiene) from previousestimates. More in detail, the following multi-step proedure is arried out at eah time-step ts, s ≥ 1:
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3.1 Memory EnhanementThe M−DSO−ESPRIT operates a memory enhanement of the olleted data. Towardsthis end, a new memory-enhaned output matrix D (ts)

D (ts) = {db (ts) ; b = 1, ..., B} ∈ C
M×Bis de�ned from the standard output matrix Y (ts) as desribed in the following. At the�rst time-step (s = 1), the proess is initialized by assuming D (t1) = Y (t1), that is

db (t1) = y (ts−N+b) b ∈ [1, B] ; B = Notherwise (s > 1)
db (ts) =






y (ts−N+b) b ∈ [1, N ]

a
[
θ̂b−N (ts−1)

]
b ∈ [N + 1, B]

B = N + L.

3.2 Data-Spae Re-SamplingThe so-de�ned data spae is then re-sampled. Starting from the matrix D (ts) and on-sidering the whole set of olumn ombinations to obtain a matrix of dimension M ×L, itis possible to de�ne K [being K = B!
L!(B−L)!

℄ matries W(k) ∈ CM×L

W(k) (ts) =
{
w

(k)
l = d

c
(k)
l

; l = 1, ..., L
}

k = 1, ..., K (5)where the index c
(k)
l ∈ [1, B] identi�es the olumn of D (ts) orresponding to the l-thelement of W(k) (ts), aording to the iterative generation proedure detailed in Tab. I.Moreover, in order to avoid wrong/unneessary suessive omputations, the matrieswhose ondition numbers η

(k)
s are greater than a �xed stability threshold (i.e., the ill-onditioned matries) are omitted.
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3.3 Data-Supported Grid GenerationAs in [26℄[31℄, an ESPRIT -like algorithm is used for generating the data-supported gridpoints. Let us onsider the matrix Φ(k) ∈ CL×L given by
Φ(k) (ts) =

{[
V(k) (ts)

]H

V(k) (ts)

}
−1 [

V(k) (ts)
]H

U(k) (ts) (6)where V(k) and U(k) are two matries obtained from W(k) by eliminating the �rst andlast row, respetively. Then, the ESPRIT -like estimates (i.e., the K data-supported gridpoints) turn out to bê
Θ

(k)
(ts) =

{
θ̂

(k)
l (ts) ; l = 1, ..., L

}
k = 1, ..., K (7)

where θ̂
(k)
l = arcsin

{
λ

2πd
arg

(
µ

(k)
l

)} and {
µ

(k)
l ; l = 1, ..., L

} are the eigenvalues ofΦ(k)[29℄.3.4 ML DoA EstimationFinally, the ML estimates of the DoAs of the L signals are omputed by maximizing the
LF over the K-sized data-supported grid:

Θ̂ (ts) = arg max
bΘ

(k)
(ts)

[
fML

{
Θ̂

(k)
(ts)

}]
. (8)

4 Numerial AssessmentThe numerial assessment has been arried out by omparing the performanes of the
M −DSO −ESPRIT with those of other state-of-the-art approahes, suh as ROOT −

MUSIC [27℄, ESPRIT [29℄, DSO−ESPRIT [31℄ in order to point out its potentialitiesand urrent limitations as well as the range of onvenient appliability. For ompleteness,the asymptoti performanes ahievable by an unbiased estimator of the parameters θl(i.e., the so-alled Cramer-Rao bound (CRB) [33℄) are reported, as well.8



Conerning the estimation auray, the root-mean-square-error has been assumed asindex of e�ieny. Moreover, beause of the statistial nature of the senarios under test,its value averaged over Q = 100 independent realizations of eah simulation has beenomputed
RMSE =

1

Q

Q∑

q=1

1

S

S∑

s=1

√√√√ 1

L

L∑

l=1

∣∣∣θ(q)
l (ts) − θ̂

(q)
l (ts)

∣∣∣
2 (9)where the index q denotes the q-th realization (q = 1, ..., Q) of a simulation, S being thetotal number of time-instants (S = 100).As far as the referene antenna arhiteture is onerned, a linear array of M = 20omnidiretional sensors λ

2
-spaed has been adopted.The �rst test ase deals with �stationary� senarios where L unorrelated signals impingefrom random, but �xed, diretions [i.e., θl (ts) = θl, ∀s℄. Under this assumption, a set ofexperiments has been performed in order to show the e�et of the size of the snapshotwindow (N), of the signal-to-noise ratio, and of the angular separation (i.e.,△θl = θl+1−θl,

l = 1, ..., L − 1) between the DoAs of the soures on the method performanes evaluatedin terms of angular auray (i.e., RMSE value) and omputational osts.In the �rst experiment, the senario under test is haraterized by heavy noisy onditions(SNR = 2 dB) and L soures oming from random angular diretions equally-spaed by
△θl = 10o, l = 1, ..., L−1. Under the assumption that N = L (i.e., the minimum numberof snapshots for a given on�guration of soures), Figure 2 shows the behavior of theestimation error versus the number of soures L. Conerning the estimation auray,even though the resolution error is an inreasing quantity, the M − DSO − ESPRIToutperforms the other diretion �nding methods and it results loser to the CRB when
L ≤ 4 pointing out a non-negligible robustness to the noise in loalizing multiple soures.In order to quantify the omputational ost, the amount of �oating point operationsneeded at eah time-instant ts (i.e., Ω) is analyzed (Fig. 3). As expeted, beause of thememory enhanement and the dependene of the dimension of the output matrix D (ts)on L, the omputational burden required by M − DSO − ESPRIT grows with L, butnot in a linear fashion sine the ��ltering� proedure at the �Data-Spae Re-Sampling�step avoids the proessing of ill-onditioned matries. Moreover, whatever the number9



of soures, the arising Ω value is greater than that of the DSO − ESPRIT , but of thesame order in magnitude of the standard ESPRIT . Furthermore, the ROOT −MUSICtehnique results muh more expensive in suh a situation.The seond experiment is aimed at evaluating the behavior of the M −DSO−ESPRITin orrespondene with a variation of the number of snapshots. Towards this purpose,the senario is the same of the �rst experiment, but the number of soures has been �xedto L = 2 (Figs. 4 and 5) and L = 4 (Figs. 6 and 7), respetively. Figures 4 and 6 showthe resulted RMSE error as a funtion of N . As expeted the statistial performanesof the proposed estimator improve as N inreases sine the number of DSO grid pointsgrows thus allowing the sampling of a larger portion of the entire DoA parameter spae.Asymptotially, the estimation auray of the ompared methods are quite similar toone another, but the M − DSO − ESPRIT on�rms its e�etiveness when operating inthe threshold region when N is small.On the other hand, unlike ESPRIT and ROOT − MUSIC, the omputational burdenrequired at eah iteration by the DSO-based tehniques depends on N . As a matter offat, suh approahes usually ompute a number of DoA estimates equal to the numberof ombinations between the available temporal snapshots. Therefore, inreasing thenumber of snapshots N involves a longer response time that ould make the advantagesin terms of resolution auray fruitless. Fortunately, the memory mehanism of the
M−DSO−ESPRIT positively ats allowing an evident (see Fig. 7 - L = 4) improvementover the DSO−ESPRIT in the ritial (from a omputational point of view) region (i.e.,
N large).The third experiment deals with a senario haraterized by a better signal-to-noise ratio(SNR = 20 dB) in order to study the behavior of the memory-enhaned DSO−ESPRITin a region outside (or only partially overlapped, when N is small) the threshold region.As expeted, the M − DSO − ESPRIT appears to satisfatory perform for a limitednumber of soures (L ≤ 3 - Fig. 8). As a matter of fat, by keeping L = 2 and varying
N (Fig. 9), it asymptotially guarantees similar results to those of the other methods,while the M −DSO −ESPRIT signi�antly overomes the standard DSO −ESPRITimplementation for small values of N ( RMSEDSO−ESPRIT

RMSEM−DSO−ESPRIT

⌋

L=N=2

∼= 10).10



The last set of experiments onerned with a �stationary� senario is devoted at testinghow the soure separation a�ets the diretion �nding auray of the proposed approah.Figure 10 shows the root-mean-squared error values versus △θl when SNR = 2 dB, L = 2and N = L. As it an be observed, the M−DSO−ESPRIT performs quite well and loseto the CRB when△θl > 8o. Moreover, an e�ieny degradation veri�es in orrespondenewith smaller separations (△θl < 8o), although a better resolution, ompared to the othertehniques, is always ahieved. Similar onlusions on the omparative assessment holdtrue by varying the number of snapshots and keeping onstant the angular separation to
△θl = 2o (Fig. 11).In order to qualitatively summarize the performane of the M−DSO−ESPRIT in termsof both estimation apabilities and omputational osts when dealing with stationaryonditions, Table II pitorially resumes the behavior of the approah versus the numberof soures L (1: many, 0: few), the number of snapshots N (1: many - N > L, 0: few -
N = L), the angular soure separation ∆θ (1: large, 0: small), and the SNR (1: low levelof noise, 0: high level of noise). Aording to the indiations drawn from the numerialexperiments, Table II points out and on�rms that the approah is an e�etive alternativeto standard estimators espeially in the threshold region de�ned by a low SNR or/and asmall number of snapshots.The seond test ase is onerned with a omplex environment haraterized by the time-variane of the randomly-distributed DoAs of the impinging signals. Figure 12(a) pito-rially desribes the senario under test haraterized by L = 3 soures having a variablediretion of inidene [θl (ts) ∈ [−40o, 50o]; l = 1, ..., L; s = 1, ..., S; S = 60℄. As far as theestimation proess is onerned, N = 3 snapshots have been onsidered and di�erent noisyonditions have been simulated (i.e., SNR = 2 dB, SNR = 10 dB, and SNR = 20 dB).The ahieved performanes in terms of RMSE are shown in Fig. 12 and detailed in Tab.III. As expeted, when dealing with the ase of SNR = 2 dB, the M −DSO−ESPRITusually ahieves the best auray in the estimates [Fig. 12(b)℄ as on�rmed by omparingthe mean (over the omplete temporal window of S = 60 time-steps) values of the RMSEin Tab. III (ςM−DSO−ESPRIT

RMSE = 4.45
⌋

SNR=2 dB
vs. ςROOT−MUSIC

RMSE = 8.59
⌋

SNR=2 dB
, ςESPRIT

RMSE = 12.29
⌋

SNR
,and ςDSO−ESPRIT

RMSE = 12.21
⌋

SNR=2 dB
). Conerning the senario haraterized by SNR =11



10 dB, the reliability of M − DSO − ESPRIT is signi�antly better than those of
ESPRIT and DSO−ESPRIT [Fig. 12() - Tab. III℄ (ςM−DSO−ESPRIT

RMSE = 2.94
⌋

SNR=10 dBvs. ςESPRIT
RMSE = 6.63

⌋
SNR=10 dB

, ςDSO−ESPRIT
RMSE = 6.59

⌋
SNR=10 dB

) and it also overomes theperformane of ROOT − MUSIC (ςROOT−MUSIC
RMSE = 3.59

⌋
SNR=10 dB

). Suh an event ismostly due to the fast �reation� of the M −DSO −EPSRIT to the senario variationsin orrespondene with the time-step transitions (i.e., ts = 10, 50). Finally [SNR = 20 dB- Fig. 12(d)℄, despite the lower noise level and although there is a slight improvement inthe estimation auray with the inreasing of SNR (ςM−DSO−ESPRIT
RMSE

⌋
SNR=10 dB

= 2.94vs. ςM−DSO−ESPRIT
RMSE

⌋
SNR=20 dB

= 2.82), the M − DSO − ESPRIT does not reahthe e�etiveness of the ROOT − MUSIC approah (ςROOT−MUSIC
RMSE

⌋
SNR=20 dB

= 1.96).On the other hand, it should be notied that, whatever the noise level, the memory-enhaned version of the DSO−ESPRIT always overomes the standard implementation( ςDSO−ESPRIT

RMSE

ςM−DSO−ESPRIT

RMSE

⌋

SNR=2 dB

∼= 2.74, ςDSO−ESPRIT

RMSE

ςM−DSO−ESPRIT

RMSE

⌋

SNR=10 dB

∼= 2.24, and ςDSO−ESPRIT

RMSE

ςM−DSO−ESPRIT

RMSE

⌋

SNR=20 dB

∼=

1.19).5 ConlusionsIn this paper, a DoA estimation method has been proposed in order to deal with omplexsenarios belonging to the so-alled threshold region, thus improving the e�etiveness ofdiretion �nding tehniques and extending their range of appliability. Starting froma simple and omputationally-e�ient data supported optimization for the solution ofthe maximum likelihood estimation problem, a memory mehanism has been introdued.The approah, alled M −DSO−ESPRIT , inreases the number of the data-supportedsamples, over whih the likelihood funtion is maximized, by extending the data set withthe maximum likelihood estimates of the previous time-steps.Conerning the main features of the M − DSO − ESPRIT , they an be summarized asfollows
• e�etive exploitation of the information aquired during the estimation proess;
• omputational simpliity in omparison with optimal approahes.12



As far as the numerial validation and the omparative study with other state-of-the-artmethods are onerned, the obtained results demonstrated the e�ieny of the proposedapproah in terms of both estimation auray and omputational burden, espeially inthose senarios where
• the environmental onditions heavily a�et the signal-to-noise ratio;
• the number of olletable snapshots is limited.On the other hand, it annot be negleted that the M − DSO − ESPRIT guaranteesaeptable performanes also in the presene of low levels of noise or when longer temporalwindows are onsidered, thus indiating the �exibility of the method.Future works will be devoted at experimentally validating the memory-based DSO −

ESPRIT tehnique as well as improving its e�etiveness in faing with fast time-varyingsenarios.AknowledgmentsThis work has been supported in Italy by the �Progettazione di un Livello Fisio 'Intel-ligente' per Reti Mobili ad Elevata Rion�gurabilità,� Progetto di Riera di InteresseNazionale - MIUR Projet COFIN 2005099984.
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Figure Captions
• Figure 1. Problem Geometry.
• Figure 2. Stationary Senario (SNR = 2 dB, N = L, △θl = 10o, θ1 = 10o) -

RMSE values versus number of soures L.
• Figure 3. Stationary Senario (SNR = 2 dB, N = L, △θl = 10o, θ1 = 10o) -Computational ost Ω versus number of soures L.
• Figure 4. Stationary Senario (SNR = 2 dB, L = 2, △θl = 10o, θ1 = 10o) -

RMSE values versus number of snapshots N .
• Figure 5. Stationary Senario (SNR = 2 dB, L = 2, △θl = 10o, θ1 = 10o) -Computational ost Ω versus number of snapshots N .
• Figure 6. Stationary Senario (SNR = 2 dB, L = 4, △θl = 10o, θ1 = 10o) -

RMSE values versus number of snapshots N .
• Figure 7. Stationary Senario (SNR = 2 dB, L = 4, △θl = 10o, θ1 = 10o) -Computational ost Ω versus number of snapshots N .
• Figure 8. Stationary Senario (SNR = 20 dB, N = L, △θl = 10o, θ1 = 10o) -

RMSE values versus number of soures L.
• Figure 9. Stationary Senario (SNR = 20 dB, L = 2, △θl = 10o, θ1 = 10o) -

RMSE values versus number of snapshots N .
• Figure 10. Stationary Senario (SNR = 2 dB, L = 2, N = L, θ1 = 10o) - RMSEvalues versus soure separation distane ∆θ.
• Figure 11. Stationary Senario (SNR = 2 dB, L = 2, △θl = 2o, θ1 = 10o) -

RMSE values versus number of snapshots N .
• Figure 12. Time-Varying Senario (L = 3, N = L, θl (ts) ∈ [−40o, 50o], S = 60).Referene on�guration (a). RMSE at eah ts, s = 1, ..., S when (b) SNR = 2 dB,() SNR = 10 dB, and (d) SNR = 20 dB.
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Table Captions
• Table I. Proedure for de�ning the matries W(k) ∈ CM×L, k = 1, ..., K.
• Table II. Stationary Senario - Summary of the M − DSO − ESPRIT perfor-manes.
• Table III. Time-Varying Senario (L = 3, N = L, θl (ts) ∈ [−40o, 50o], S = 60).Time-averaged values of the RMSE.
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k = 1

c
(k)
0 = 0for i = 1, ..., L

c
(k)
i = c

(k)
i−1 + 1end

go = TRUEfor k = 1, ..., Kfor l = 1, ..., L

w
(k)
l = s

c
(k)
lend

j = Lwhile ({go}AND {j > 0}) thenif c(k)
j < B − L + j then

c
(k+1)
j = c

(k)
j + 1if j < L thenfor i = j + 1, ..., L

c
(k+1)
i = c

(k+1)
i−1 + 1endend

go = FALSEend
j = j − 1endend
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L N ∆θ SNR RMSE Ω

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

1 0 0 0
1 0 0 1
1 0 1 0

1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0

1 1 1 1
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SNR [dB]

2 10 20

M − DSO − ESPRIT 4.45 2.94 2.82

DSO − ESPRIT 12.21 6.59 3.37

ESPRIT 12.29 6.63 3.31

ROOT − MUSIC 8.59 3.59 1.96

Tab. III - L. Lizzi et al., �The M-DSO-ESPRIT method for maximum likelihood ...�34


