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Hyperscanning, a neuroimaging approach introduced in 2002 for simultaneously recording the brain activity of
multiple participants, has significantly contributed to our understanding of social interactions. Nevertheless,
the existing literature requires systematic organization to advance our knowledge. This study, after two dec-
ades of hyperscanning research, aims to identify the primary thematic domains and the most influential doc-
uments in the field. We conducted a scientometric analysis to examine co‐citation patterns quantitatively, using
a sample of 548 documents retrieved from Scopus and their 32,022 cited references. Our analysis revealed ten
major thematic domains in hyperscanning research, with the most impactful document authored by
Czeszumski and colleagues in 2020. Notably, while hyperscanning was initially developed for functional mag-
netic resonance imaging (fMRI), our findings indicate a substantial influence of research conducted using elec-
troencephalography (EEG) and functional near‐infrared spectroscopy (fNIRS). The introduction of fNIRS and
advancements in EEG methods have enabled the implementation of more ecologically valid experiments for
investigating social interactions. The study also highlights the need for more research that combines multi‐
brain neural stimulation with neuroimaging techniques to understand the causal role played by interpersonal
neural synchrony in social interactions.
Introduction

The term “hyperscanning” refers to a neuroimaging approach in
which the brain activity of two or more participants is recorded simul-
taneously. The idea of hyperscanning was first introduced in 2002 by
Montague et al. (2002) to investigate the neural dynamics that support
people while they actively engage in social exchanges. As argued by
Hasson et al. (2012), the introduction of hyperscanning and the
second‐person neuroscience approach represented a “Copernican revo-
lution” in cognitive neuroscience. In fact, while traditional neuroimag-
ing studies captured the complexity of the “social brain”, their insights
were in most cases obtained by measuring the brain activity of only
one participant at a time. Thus, while traditional neuroimaging studies
enriched the knowledge on the perception of social stimuli/situations,
they did not explore the dyadic or group component of real‐life social
interactions and its effect on human development (Czeszumski et al.,
2020). Conversely, hyperscanning proved useful in investigating the
dyadic or group phenomena that emerge from social interactions.
Notably, hyperscanning studies revealed that social exchanges are
characterized by instances of synchronization in social partners’ brain
activity (e.g., Dumas et al., 2010). The emergence of interpersonal
synchrony at the neural level represents the natural extension of the
bio‐behavioral synchrony framework (Feldman, 2012), which posits
that the behavioral, physiological, and hormonal activities from inter-
acting partners tend to synchronize during social interactions (Carollo
et al., 2021).

Methodological and technical advances have and still represent a
major boost in hyperscanning research. Notably, hyperscanning was
initially introduced for functional magnetic resonance imaging (fMRI).
In their seminal article, Montague et al. (2002) presented a feasibility
study for conducting a simultaneous fMRI acquisition while nine dyads
took part in a game of deception. Yet, subsequent studies have
extended the hyperscanning approach to magnetoencephalography
(MEG) (Baess et al., 2012), electroencephalography (EEG) (Babiloni
et al., 2007b), and, more recently, functional near‐infrared spec-
troscopy (fNIRS) (Funane et al., 2011; Cui et al., 2012). Traditional
and novel neuroimaging techniques provide a series of unique
strengths and pitfalls when designing a hyperscanning experiment
(Carollo et al., 2022; Martin and Huettel, 2022). For instance, fMRI
has a higher spatial resolution as compared to fNIRS and EEG, but it
requires participants to lie supine in a scanner. This limits the type
of social interactions that can be performed in a fMRI scanner.
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Fig. 2. An example of multi-brain stimulation through rhythmic sensory
stimulation.
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Conversely, EEG provides a higher temporal resolution as compared to
fMRI and fNIRS, but participants’ movements often impair the signal
quality. fNIRS seems to represent a good compromise between the
strengths and pitfalls of fMRI and EEG. In fact, fNIRS has a good spatial
resolution for measuring the activity in the most external cortical lay-
ers of the human brain and it is less sensitive to participants’ move-
ments. Moreover, fNIRS is highly portable and less costly as
compared to fMRI (Carollo et al., 2022). On the downside, fNIRS is
much more recent as compared to fMRI and EEG. For this reason,
the methodological approaches to treat fNIRS data still require to be
standardized and validated to ensure cross‐study replicability and
comparability (e.g., Bizzego et al., 2022). Thanks to its characteristics,
fNIRS allows the implementation of experimental tasks that mirror
daily life activities. For instance, Fig. 1 shows an fNIRS hyperscanning
setup to measure the brain activity in mother and child during free
play (Bizzego et al., 2022b).

In recent times, hyperscanning has evolved beyond brain imaging
techniques, with pioneering research employing brain stimulation
methods (e.g., transcranical, sensory, optogenetics) to shift from
correlation‐based to causation‐focused approaches (Novembre and
Iannetti, 2021). Traditional hyperscanning studies typically measure
interpersonal neural synchrony as a dependent variable resulting from
social interactions between partners. While this approach yields inter-
esting and valuable results, it alone cannot determine whether inter-
personal neural synchrony is merely an epiphenomenon of the fact
that participants are being exposed to the same environment and the
same stimuli or if it plays a causal role in facilitating social exchanges.
A causation approach based on brain stimulation takes the opposite
approach by manipulating neural activity and studying its effects on
social interaction (for a recent multi‐brain stimulation study, see Lu
et al. (2023)). Fig. 2 displays an example of how sensory stimulation
can be used to entrain participants’ brain activity during social
interactions.

With their strengths and pitfalls, all the aforementioned techniques
were used in the past twenty years for conducting hyperscanning stud-
ies. However, experimental tasks have been heterogeneous across
studies and a shared theoretical framework to interpret hyperscanning
results across research domains is still needed (Hamilton, 2021). In
light of this, the current paper aims to identify the main domains of
research as well as the most impactful documents in the hyperscanning
literature. To do so, we will adopt a scientometric approach to reviews,
as done in our previous publications (e.g., Carollo et al., 2021). A
scientometric approach was chosen because it merges bibliometric
analysis (i.e., application of quantitative techniques to bibliometric
data) and scientific mapping (i.e., visualization of the temporal evolu-
tion of a research domain) (Carollo et al., 2021). Therefore, the scien-
tometric approach allows the use of a data‐driven quantitative method
Fig. 1. Representation of a functional near-infrared spectroscopy (fNIRS) hypersc
session. Image from Bizzego et al. (2022b).
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to uncover the main research domains and impactful documents in
large samples of data.
Experimental procedures

Data collection from scopus

For the current work, all data were collected from Scopus. Scopus
was chosen because it has a higher coverage of indexed journals as
compared to other platforms (Cataldo et al., 2022). Data were col-
lected on 04 September 2023 with the searching string “TITLE‐ABS‐
KEY(hyperscan*)”. A sample of 548 documents published between
1998 and 2023 was retrieved. We qualitatively inspected the docu-
ments’ abstracts and titles to ensure that the included documents were
relevant to the field of hyperscanning. Through this procedure, we
excluded an amount of 48 non‐relevant documents. Thus, the final
sample consisted of 500 documents published between 2002 and
2023.

The dataset consisted of 374 articles, 14 book chapters, 59 confer-
ence papers, 1 conference review, 1 data paper, 3 editorials, 6 erratum,
1 letter, 2 notes, 37 reviews, and 2 short surveys.
anning setup to monitor the brain activity of mother and child during a play
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The current scientometric analysis goes beyond the scope of the ini-
tial 500 documents obtained from Scopus. These documents serve as
the primary layer of data collection, from which additional documents
(i.e., all their references) will be gathered and utilized for the compre-
hensive analysis. This approach is crucial for two key reasons. Firstly,
it ensures a substantial sample size, higher than previous reviews on
the topic, for a robust analysis. Secondly, it facilitates the collection
of literature not necessarily indexed in Scopus but still pertinent to
the hyperscanning field. This is because, in principle, cited documents
are selected by field experts based on their scientific relevance.

To characterize the structure of knowledge in the hyperscanning
literature, we first analyzed the collected data using the bibliometrix
package for R (Aria and Cuccurullo, 2017). We used bibliometrix to
detect the most involved countries, scientific journals, authors, docu-
ments, and keywords in the hyperscanning literature.

Data import on CiteSpace

To conduct the scientometric analysis, all data were imported into
CiteSpace (version 6.1.R6 64‐bit Advanced) (Chen, 2006). A total of
32,022 cited references were identified, of which 31,802 (99.31%)
were in the valid format to be included in the analysis. The data loss
at this stage (n= 220 references; 0.69% of the total references) is con-
sidered acceptable and it is in line with previous scientometric works
(e.g., Carollo et al., 2021).

Document co-citation analysis (DCA)

To identify the main research trends and impactful documents, we
conducted a document co‐citation analysis (DCA). DCA assesses the
frequency with which two or more publications are cited together
(i.e., co‐cited) by other documents (Trujillo and Long, 2018). The
assumption is that two or more documents are frequently co‐cited
because they belong to the same thematic domain of research. For this
reason, co‐citation patterns can provide information on the relation-
ships between key concepts, methods, or experiments in the literature
(Small, 1973; Small, 1980). In the DCA, single documents are included
as the network’s nodes, co‐citations are included as links, and co‐
citation frequencies as link weights.

The number of documents that are included in the final graph
depends on the node selection criterion and its scaling factor. As done
in our previous scientometric analyses (e.g., Carollo et al., 2021), we
optimized the parameters to obtain a well‐balanced DCA network.
Specifically, we compared the networks generated when using g‐
index, TOP N, or TOP N% as node selection criteria. The g‐index is
the largest number where the total number of citations received by
the top g articles equals at least g2 (Egghe, 2006). The TOP N and
TOP% criteria include in the final network the N or the N% most cited
references for each time slice (i.e., one year in this work). While the
node selection criteria specify the rule determining the inclusion of
nodes in the final network, their scaling factors set the threshold
(Cataldo et al., 2022). For the analysis, we compared the networks
generated using g‐index with k set at 10, 15, 25, 50; N set at 50; and
N% set at 10. The metrics for all generated networks were compared
and the optimal DCA was obtained with g‐index with k set at 25.

The literature search and the generation of the DCA network are
summarized in Fig. 3.

DCA network evaluation metrics

Structural and temporal metrics were used to evaluate the results of
the scientometric analysis as in previous works (e.g., Carollo et al.,
2021). Among structural metrics, we used modularity, silhouette,
and betweenness centrality. Modularity is an index of the degree to
which the network can be divided into individual clusters (Chen
et al., 2010). Modularity values range from 0 to 1. Silhouette is an
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index of a cluster’s inner homogeneity and separation from other clus-
ters (Rousseeuw, 1987). Silhouette values range from −1 to 1.
Betweenness centrality provides information regarding the extent to
which a single document connects two other random documents in
the network (Freeman, 1977; Leydesdorff, 2007; Newman, 2005).
Among temporal metrics, we used citation burstness and sigma. Cita-
tion burstness is computed using Kleinberg’s algorithm and detects
an abrupt increase in the number of citations received by a document.
Documents with high citation burstness values have received signifi-
cant attention and general recognition in their field (Kleinberg,
2002). Sigma provides information regarding a document’s impact
on the whole network and its significance in the field. Sigma is com-

puted using the equation ðcentrality þ 1Þburstness (Chen et al., 2009).
Results

Bibliometric analysis on the citing documents

The bibliometric analysis suggests that the hyperscanning literature
grew from 2002 to 2023 with a growing rate of 27.6% documents a
year. Documents received an average of 25.85 citations, with Dumas
et al. (2010) (total citations on Scopus = 532; total citations by
year = 38), Montague et al. (2002) (total citations on Scopus = 469;
total citations by year = 21.3), Cui et al. (2012) (total citations on Sco-
pus = 440; total citations by year = 36.7) being the most highly cited
ones.

In the hyperscanning literature, a total of 1353 single authors were
identified. The most productive were Balconi M (n = 41 documents),
Hu X (n = 25 documents), and Li X (n = 25 documents).

From the analysis of the corresponding authors’ affiliations, most of
the publications in the hyperscanning literature were produced in
China (n = 112 documents; Single Country Publications (SCP) =
84; Multiple Country Publications (MCP) = 28), Italy (n = 78 docu-
ments; SCP = 50; MCP = 28), and the United States of America (n
= 55 documents; SCP = 32; MCP = 23).

Documents regarding hyperscanning were mostly published in
NeuroImage (n = 44 documents), Frontiers in Human Neuroscience
(n = 39 documents), and Social Cognitive and Affective Neuroscience
(n = 34 documents).

In the sample of downloaded documents, a total of 1066 keywords
were identified. The ten most frequent keywords were hyperscanning
(N = 281 documents), fNIRS (N = 74 documents), EEG (N = 71 doc-
uments), social interaction (N = 52 documents), cooperation (N = 44
documents), functional near‐infrared spectroscopy (N = 41 documents),
social neuroscience (N = 31 documents), EEG hyperscanning (N = 24
documents), interpersonal brain synchronization (N = 20 documents),
and fNIRS hyperscanning (N = 19 documents). The main co‐
occurrence patterns among the keywords are displayed in Fig. 4.

Document co-citation analysis

The optimal DCA network, depicted in Fig. 5, was made of 648
nodes (i.e., documents) and 3065 links (i.e., co‐citations). Thus, on
average, each document was connected with another 4.73 documents.
The network was moderately divisible into separate and highly homo-
geneous clusters (modularity = 0.6495; average silhouette
score = 0.8334).

In the network, ten major thematic clusters of research were iden-
tified. The clusters that included the highest number of documents
were cluster #0 (size = 88; silhouette = 0.729; mean publication
year = 2010), cluster #1 (size = 85; silhouette = 0.820, mean pub-
lication year = 2014), and cluster #2 (size = 83, silhouette = 0.781,
mean publication year = 2017). Based on their silhouette score, the
most homogeneous thematic clusters of research were cluster #9
(size = 30; silhouette = 1.000; mean publication year = 2004),



Fig. 3. Preferred reporting items for systematic reviews (PRISMA) flowchart for literature search and references eligibility.
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cluster #12 (size = 13; silhouette = 0.991; mean publication
year = 2007), and cluster #5 (size = 37, silhouette = 0.961, mean
publication year = 2008). After inspecting the documents included
in the clusters, we manually labeled the clusters to reflect their the-
matic content as in Carollo et al. (2021). The metrics of all the major
thematic clusters of research are presented in Table 1.
Impactful documents

In the network, a total of 46 documents had a sudden burst in their
citation history. However, out of the 46 references, 8 were repeated
entries that were not recognized as duplicates by CiteSpace. Based
on the strength of their citation burstness, the most impactful docu-
ments in the network were authored by Czeszumski et al. (2020) (cita-
tion burstness = 13.93; duration = 2 years), Lindenberger et al.
(2009) (citation burstness = 13.71; duration = 6 years), and Hari
and Kujala (2009) (citation burstness = 12.11; duration = 5 years).
In particular, Czeszumski et al. (2020) provided a comprehensive
review of the state‐of‐the‐art in the hyperscanning literature, focusing
the discussion on the main neuroimaging techniques, types of analysis,
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and research outcomes. A summary of the metrics of the top ten doc-
uments with a citation burst is provided in Table 2.
Discussion

After two decades of hyperscanning research, the aim of the current
work was to identify the main thematic domains of research and the
most impactful publications in the literature. To do so, we used a scien-
tometric approach and we conducted a DCA on a sample of 548 refer-
ences. In the literature, we identified ten major thematic clusters of
research and the review by Czeszumski et al. (2020) as the most
impactful documents in the field. In the following section, we will
review the content of the major thematic clusters of research in a qual-
itative approach. The major thematic clusters will be discussed in
chronological order, from the cluster with the oldest mean year of pub-
lication to the cluster with the most recent one. When discussing the
clusters, we will provide the coverage (i.e., the number of documents
in the cluster that were cited by the paper) and the global citation
score (GCS; i.e., the total number of citations received by the publica-
tion in Scopus).



Fig. 4. Co-occurrence analysis on the keywords in the hyperscanning literature. In the network, keywords are represented as individual nodes, with their size
proportional to their degree. Co-occurrences of keywords are indicated by solid links (for co-occurrences within the same cluster) and dashed links (for co-
occurrences across clusters). The width of these links is proportional to the frequency of co-occurrence. Based on the co-occurrence patterns, two clusters of
keywords were automatically identified using the bibliometrix package for R (Aria and Cuccurullo, 2017) and are depicted in the figure using red and blue colors.

Fig. 5. Document co-citation analysis network of the literature on hyperscanning. In the network, documents are represented as single nodes, and co-citations are
represented as links. Ten major thematic domains of research were identified. The image was generated with CiteSpace software (Chen, 2006).
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Cluster #9: Hypermethods for EEG Hyperscanning

The earliest thematic cluster of research in hyperscanning revolved
around the main citing documents by Babiloni et al. (2006) (cover-
age = 15; GCS = 99), Astolfi et al. (2010) (coverage = 12;
GCS = 132), and Babiloni et al. (2007a) (coverage = 7; GCS = 3).
This cluster showed the highest silhouette score in the network, indi-
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cating high thematic cohesiveness of the included documents and
strong thematic separation from other clusters. In fact, this group of
works encompassed the early studies showing the feasibility and the
value of using high‐resolution EEG hyperscanning to characterize the
neural dynamics in teams during a cooperative task (e.g., a card
game). While doing so, Astolfi et al. (2010) and Babiloni et al.
(2006), Babiloni et al. (2007a) presented a series of “hypermethods”,



Table 1
Metrics for the ten thematic clusters of research identified in the network.

ID Size Silhouette Mean Year LLR Label Suggested Label

0 88 0.729 2010 eeg hyperscanning studies affect and music
1 85 0.820 2014 fnirs-based hyperscanning study educational settings
2 83 0.781 2017 group creation verbal communication
3 54 0.841 2015 interpersonal neural synchronization virtual environments
4 44 0.806 2012 functional connectivity brain correlates of interpersonal interactions
5 37 0.961 2008 synchronous activity fNIRS hyperscanning
6 37 0.829 2018 technologically-assisted communication parent–child
7 37 0.938 2017 social framing matter interoception
9 30 1.000 2004 neuroelectrical hyperscanning measure hypermethods for EEG hyperscanning
12 13 0.991 2007 origin imitation and sense of agency

Table 2
Summary metrics of the ten with the strongest citation burstness. Citation burstness is defined as an abrupt increase in the number of citations received by a document.
In the case of a repeated entry, only the reference with the highest value of citation burstness is presented in the table.

Reference Citation Burstness Publication Year Burst Begin Burst End Duration (years) Centrality Sigma

Czeszumski et al. (2020) 13.93 2020 2021 2023 2 0.00 1.07
Lindenberger et al. (2009) 13.71 2009 2011 2017 6 0.20 11.57
Hari and Kujala (2009) 12.11 2009 2012 2017 5 0.02 1.22
Cui et al. (2012) 10.94 2012 2012 2020 8 0.06 1.97
Dumas et al. (2010) 9.81 2010 2012 2018 6 0.07 1.87
Konvalinka and Roepstorff (2012) 7.72 2012 2013 2017 4 0.01 1.12
Jiang et al. (2012) 7.12 2012 2014 2020 6 0.04 1.36
Astolfi et al. (2010) 7.11 2010 2011 2018 7 0.04 1.29
Nguyen et al. (2020) 6.77 2020 2021 2023 2 0.00 1.01
Holper et al. (2012) 6.71 2012 2016 2018 2 0.03 1.22

A. Carollo, G. Esposito Neuroscience 551 (2024) 345–354
a group of analytical techniques for characterizing the functional con-
nectivity between brains in terms of synchronization and causality
relation. In most cases, “hypermethods” were derived from single‐
participant neuroimaging studies (e.g., Astolfi et al., 2005; Babiloni
et al., 2005) and were applied to hyperscanning studies.
Cluster #12: imitation and sense of agency

In research cluster #12, the main citing document was authored by
Dumas et al. (2012) (coverage = 8; GCS = 50). Building on the grow-
ing literature and methodological advances in EEG hyperscanning
Astolfi et al. (2010),Tognoli et al. (2007), and Dumas et al. (2012)
explored the brain correlates of the sense of agency in a two‐body con-
text. In other words, the authors investigated the brain’s ability to
locate the origin of an action in the self. To do so, participants engaged
in the roles of model and imitator. In some cases, these roles were
directly elicited by the experiment, while in others, they emerged
spontaneously during a live social interaction. The authors observed
different patterns of brain oscillation across the two roles in the
induced imitation condition. However, no dissociation of roles
emerged in the neural activity during the spontaneous imitation
condition.

Considering the focus on the neural correlates of imitation and the
sense of agency, it is not surprising that some of the cluster’s cited doc-
uments regarded the mirror‐neuron system (Rizzolatti and Craighero,
2004) and mimicry (Ashton‐James et al., 2007). In this sense, the ini-
tial hyperscanning studies extended the perspective of the mirror‐
neuron system and mimicry to real interpersonal interactions.
Cluster #5: fNIRS Hyperscanning

The main citing documents in cluster #5 were authored by Funane
et al. (2011) (coverage = 12; GCS= 145), Babiloni and Astolfi (2014)
(coverage= 11; GCS= 313), and Astolfi et al. (2011b) (coverage= 8;
GCS = 78). In the early 2010s, EEG hyperscanning was being consol-
idated to investigate cooperative and competitive social interactions
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(e.g., Astolfi et al., 2011a; De Vico Fallani et al., 2010; Dumas et al.,
2010). However, researchers aimed to (i) use neuroimaging tech-
niques with higher spatial resolution in hyperscanning and (ii) use
hyperscanning in more ecological experimental paradigms (Astolfi
et al., 2011b; Dumas et al., 2011; Funane et al., 2011). While fMRI rep-
resented a solution to the first goal, allowing the investigation of the
neural substrates of social interactions (e.g., Abe et al., 2019), it still
did not allow the design of naturalistic experimental paradigms. The
introduction of fNIRS represented the solution for both research goals
in hyperscanning. For this reason, in the 2010s, in parallel to its
pioneering use in single‐participant neuroimaging studies (e.g., Aslin
and Mehler, 2005; Atsumori et al., 2007; Atsumori et al., 2009;
Atsumori et al., 2010), fNIRS started being employed in an hyperscan-
ning approach. Notably, Funane et al. (2011) conducted the first fNIRS
hyperscanning study in 2011. The authors observed that higher spa-
tiotemporal covariance in the brain’s prefrontal activity of each partic-
ipant was associated with higher behavioral coordination when trying
to press a button in synchrony. As highlighted by Babiloni and Astolfi
(2014),Funane et al. (2011) addressed the issue of synchronizing dif-
ferent devices with similar solutions to the ones that had been adopted
in the EEG hyperscanning literature. However, the pioneering study by
Cui et al. (2012) showed an alternative solution for fNIRS hyperscan-
ning studies. Unconventionally, Cui et al. (2012) split the same NIRS
device in two, using half of the available channels for measuring the
brain activity of each participant.

The increased adoption of neuroimaging techniques with higher
spatial resolution in hyperscanning stemmed from and aimed to enrich
years of neuroscientific research on the neural correlates of social
behaviors (e.g., Adolphs, 2003; Carter and Huettel, 2013; Hari and
Kujala, 2009).
Cluster #0: affect and music

Cluster #0 was the largest cluster in the network. The major citing
documents were authored by Acquadro et al. (2016) (coverage = 20;
GCS= 38), Burgess (2013) (coverage = 19; GCS = 127), and Cornejo
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et al. (2017) (coverage = 17; GCS = 43). After the pioneering studies
by Funane et al. (2011) and Cui et al. (2012), fNIRS gained momentum
as the elective technique for conducting ecological hyperscanning
studies (Scholkmann et al., 2013). However, some solutions to
enhance the ecological validity of EEG hyperscanning were proposed
too (e.g., Astolfi et al., 2012; Toppi et al., 2016).

The interest in ecologically valid experiments directed the research
focus to a core and largely neglected side of daily life social interac-
tions: the affective component (Balconi and Vanutelli, 2017; Cornejo
et al., 2017). Affect and emotions influence people’s daily lives in mul-
tiple ways. For instance, they are crucial in creating social cohesion as
well as determining the willingness to undertake joint actions or
prosocial behaviors (Czeszumski et al., 2020; Konvalinka et al.,
2011; Lopes et al., 2005; Twenge et al., 2007). Despite the importance
of emotions in daily life, they had been scarcely investigated in hyper-
scanning studies due to the complexity of the setups (Czeszumski et al.,
2020). Acquadro et al. (2016) proposed that using hyperscanning in
musical settings represents one possible solution to investigate the
affective component of social interactions. For the authors, the use
of musical settings guarantees high ecological validity, the emotional
component (which is a catalyst for social interactions), and an enactive
view of human social interactions. Moreover, musical performances
combine both intrapersonal action coordination and interpersonal
action synchronization (Czeszumski et al., 2020). For these reasons,
several citing and cited documents in the clusters used musical settings
to show that interpersonal brain synchrony supports interpersonal
behavioral coordination (e.g., Babiloni et al., 2011; Babiloni et al.,
2012; Sänger et al., 2012; Sänger et al., 2013). Notably,
Lindenberger et al. (2009), in one of the documents with the highest
citation burst, used EEG hyperscanning to investigate brain synchrony
in eight pairs of guitarists playing a melody together. In this pioneer-
ing work, the authors showed that interbrain synchrony regularly
anticipates interpersonally coordinated actions.

Cluster #4: brain correlates of interpersonal interactions

In cluster #4, the major citing documents were authored by Koike
et al. (2015) (coverage = 13; GCS = 90), Balconi et al. (2018a) (cov-
erage = 11; GCS = 9), Balconi et al. (2018c) (coverage = 9;
GCS = 12), and Balconi et al. (2018b) (coverage = 9; GCS = 7). In
this cluster of research, initial studies helped identifying some regions
of interest from which patterns of interpersonal neural synchrony fre-
quently emerge (e.g., Astolfi et al., 2015; Balconi et al., 2018c). For
instance, Nozawa et al. (2016) showed enhanced interpersonal neural
synchrony in frontopolar brain regions during natural verbal
exchanges between people. Interestingly, the same brain regions are
typically involved in social communication. Similarly, Hirsch et al.
(2017) found an increased interpersonal neural synchrony in the left
superior temporal gyrus, middle temporal gyrus, supramarginal gyrus,
pre‐motor cortex, and supplementary motor cortex during mutual
gaze. In light of the increased interest in the neural basis of real‐life
social interactions, Koike et al. (2015) suggested employing EEG‐
fMRI hyperscanning to combine the high temporal resolution of EEG
with the high spatial resolution of fMRI. As argued by the authors,
such an approach would allow the use of inter‐brain dynamics as a
neuro‐marker of real‐life social interactions.

Cluster #1: educational settings

The major citing documents in cluster #1 were authored by Nam
et al. (2020) (coverage = 41; GCS = 21), Czeszumski et al. (2020)
(coverage= 40; GCS= 153), and Balters et al. (2020) (coverage= 31;
GCS = 9). Particularly, both Nam et al. (2020) and Czeszumski et al.
(2020) systematically reviewed the hyperscanning literature. Accord-
ing to Nam et al. (2020), most hyperscanning studies are conducted
using MEG/EEG and the most covered fields are cognition and educa-
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tional applications. The field of hyperscanning in education seems to
be well‐reflected in the cluster (e.g., Lu et al., 2019; Pan et al.,
2021). For instance, Nozawa et al. (2019) observed that the behavioral
synchrony between teacher and learner enhanced both the perceived
quality of the interaction and the interpersonal brain synchrony in
the lateral prefrontal cortex. Considering the association between
interactional quality, behavioral, and neural synchrony, Balters et al.
(2020) suggested that a hyperscanning approach would be ideal to
assess the differences between in‐person and virtual social interac-
tions, which were largely used in educational settings during the
COVID‐19 pandemic.

Cluster #3: virtual environments

In cluster #3, the major citing documents were authored by Nam
et al. (2020) (coverage = 27; GCS = 21), Czeszumski et al. (2020)
(coverage = 23; GCS = 153), and Schwartz et al. (2022) (cover-
age = 19; GCS = 5). In line with Balters et al. (2020), the focus of
cluster #3 appears to be the investigation of interpersonal neural syn-
chrony in virtual environments (e.g., Barde et al. (2020)). With the
increase in the use of virtual environments for collaboration and social
interactions (Barde et al., 2020), several documents in the cluster
examined whether in‐person and virtual social interactions share the
same neural underpinnings. The preliminary studies by Gumilar
et al. (2021) and by Wikström et al. (2022) showed that interpersonal
brain synchrony in virtual interactions mimics the one observed in in‐
person interactions. However, contrasting results were reported by
Schwartz et al. (2022), who observed lower interpersonal neural syn-
chrony in technologically‐assisted interactions as compared to in‐
person interactions between mother and child.

Cluster #2: verbal communication

The major citing documents in cluster #2 were authored by Nam
et al. (2020) (coverage = 35; GCS= 21) and Kelsen et al. (2022) (cov-
erage = 22; GCS = 26). The common thematic interest of research in
this cluster regards the use of hyperscanning to investigate the neural
mechanisms of verbal communication (e.g., Jiang et al., 2021; Wang
et al., 2022). Particularly, Kelsen et al. (2022) observed that patterns
of interpersonal brain synchrony among communicators predomi-
nantly emerge from frontal and temporo‐parietal brain regions. As
for the authors, synchronization in these regions might reflect the
activity of the mirror and mentalizing system.

Cluster #7: interoception

In cluster #7, the major citing documents were written by Balconi
and Angioletti (2023c) (coverage = 20; GCS = 3), Balconi and
Angioletti (2023b) (coverage = 16; GCS = 0), and Balconi and
Angioletti (2023a) (coverage = 15; GCS = 2). This cluster of research
includes scientific works in which hyperscanning was used to investi-
gate how interoceptive attentiveness modulates interpersonal brain
synchrony. Interoception is the mechanism through which the brain
perceives and integrates information derived from the body (Balconi
and Angioletti, 2023a; Khalsa et al., 2018). Single‐participant studies
have suggested that interoception plays a role in social processes
(e.g., self‐other distinction, social cognition, social isolation, and con-
nectedness Balconi and Angioletti (2023a). Moving from this scientific
literature, several works in cluster #7 assessed the effect of interocep-
tive attentiveness on the physiological and neural mechanisms in dya-
dic settings. Results from Balconi and Angioletti (2023a), Balconi and
Angioletti (2023b), Balconi and Angioletti (2023c) and Balconi et al.
(2023) seem to corroborate the hypothesis for which interoceptive
attentiveness modulates social connectedness by acting on both the
physiological and neural levels.
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Cluster #6: parent–child

The major citing documents in cluster #6 were authored by
Schwartz et al. (2022) (coverage = 13; GCS = 5), Holroyd (2022)
(coverage= 12; GCS= 12), and Nguyen et al. (2021) (coverage= 12;
GCS = 16). The focus of the cluster was twofold. On the one side, sev-
eral documents explored the methodological approaches and chal-
lenges in hyperscanning studies (e.g., Bizzego et al., 2021; Bizzego
et al., 2022a; Holroyd, 2022). From this effort, several methodological
guidelines for conducting fNIRS and EEG hyperscanning studies were
derived and made available for the scientific community (e.g., Kayhan
et al., 2022; Nguyen et al., 2021; Turk et al., 2022). On the other side,
many works in the cluster used hyperscanning to investigate the neural
mechanisms underlying mother–child interactions (e.g., Azhari et al.,
2022; Nguyen et al., 2020). Particularly, Endevelt‐Shapira and
Feldman (2023) showed that profiles of interpersonal neural syn-
chrony differentiate between caregiving behaviors in terms of intru-
siveness and sensitivity. Similar works on mother–child also suggest
adopting a multimodal approach to investigate instances of synchrony
in behavior, physiology, and neural data during real‐life social interac-
tions (e.g., Horowitz‐Kraus and Gashri, 2023). The integration of
behavioral, physiological, and neural data unifies the literature on
bio‐behavioral synchrony to obtain a holistic perspective of real‐life
social interactions (Carollo et al., 2021; Feldman, 2012; Hamilton,
2021).
Overall temporal evolution of the clusters

The network of documents developed starting from 2002 with
Montague et al. (2002)’s seminal paper on hyperscanning. After the
introduction of this new paradigm in neuroscience, initial works
focused on the feasibility of using EEG to conduct experiments with
two participants. These works also developed a set of methods to char-
acterize synchrony between brains. The initial experiments in hyper-
scanning were designed using controlled tasks, such as cooperative
games, and mainly focused on the domains of cooperation and imita-
tion, taking inspiration from the findings and the tasks related to the
mirror‐neuron system theory.

Subsequently, around 2008, some scholars sought to gain more
insight into the brain regions supporting individuals involved in natu-
ralistic interactions. fNIRS emerged as the elective tool to do so, as it
has higher spatial resolution and is less sensitive to movements than
EEG (Carollo et al., 2022). The interest in ecologically valid experi-
ments led to considering more complex and previously neglected com-
ponents of social interactions, such as affect and communication
patterns.

More recently, hyperscanning research has shown translational
potential in educational settings and in investigating the underlying
mechanisms supporting interactions in virtual environments. The most
recent cluster focuses on the use of hyperscanning to investigate par-
ent–child interactions using real‐life tasks, often employing a multi-
modal approach and integrating behavioral, physiological, and
neural data.
Limitations of the study

Although the scientometric approach offers valuable insights into
the main thematic domains of research in the scientific literature, it
has several limitations to consider. Among all, the scientometric
approach strongly relies on quantitative bibliometric information
among documents, which does not necessarily convey any information
regarding the quality of the science or the nature of citations. For
instance, certain studies might receive less attention from the aca-
demic community despite having high scientific standards and quality
in their designs (Callaham et al., 2002). This is particularly true for
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documents published by less prestigious institutions or by disadvan-
taged groups (e.g., researchers who cannot afford to publish their doc-
uments in high‐impact journals). The current manuscript does not aim
to perpetuate a system where quantitative measures are prioritized
over qualitative ones. Therefore, in the Discussion section, we
included a qualitative review of the clusters (Hicks et al., 2015). Addi-
tionally, when discussing the clusters, we not only reviewed the con-
tent of the cited documents but also focused more on the citing
documents. This approach helps mitigate biases resulting from the
quantitative properties of documents since citing documents are
included in the thematic clusters based on the citations they make,
rather than the citations they receive.

The literature on hyperscanning has been strongly influenced by
ten key research trends. Over time, the field has evolved from discus-
sions about methods for EEG hyperscanning studies to the exploration
of more ecologically valid paradigms that simulate everyday life. The
introduction of fNIRS has enabled the implementation of hyperscan-
ning designs in more naturalistic settings (e.g., musical settings, educa-
tional settings, parent–child interactions) while providing spatial
information about the brain activity under investigation. According
to scientometric analysis, the use of neuroimaging techniques in
hyperscanning is well‐established, while the use of brain stimulation
has not yet emerged, likely due to its recent introduction as an
approach. This finding suggests the need for further studies that com-
bine multi‐brain stimulation with neuroimaging techniques to begin
interpreting interbrain neural synchrony in a causal manner.
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