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A B S T R A C T

The nonlinear mechanics of a flexible elastic rod constrained at its edges by a pair of sliding sleeves is analyzed.
The planar equilibrium configurations of this variable-length elastica are found to have shape defined only by
the inclination of the two constraints, while their distance is responsible only for scaling the size. By extending
the theoretical stability criterion available for systems under isoperimetric constraints to the case of variable
domains, the existence of no more than one stable equilibrium solution is revealed. The set of sliding sleeves’
inclination pairs for which the stability is lost are identified. Such critical conditions allow the indefinite
ejection of the flexible rod from the sliding sleeves, thus realizing an elastica sling. Finally, the theoretical
findings are validated by experiments on a physical prototype. The present results lead to a novel actuation
principle that may find application as a mechanism in energy harvesting, wave mitigation devices, and soft
robotic locomotion.
1. Introduction

Examples of highly efficient flexible devices can be found through-
out history: the ancient war engines made of wood and ropes for
throwing stones and arrows (namely, the catapult and the ballista). The
performance of the Greek catapult was largely lost a few centuries after
the Romans copied the weapon (Payne-Gallway, 1907). Furthermore,
the design of a revised version of the catapult, in which the throwing
arm is subject to large rotations, is the so-called ‘da Vinci catapult’
(drawn in ‘‘Il Codice Atlantico’’). Other examples of fascinating effi-
cient compliant mechanisms can be found in nature. Many animals
(e.g. snakes and fishes) continuously and deeply change their shape to
provide locomotive forces on solid surfaces and in fluids.

The field of structural mechanics is experiencing a second lease on
life in the last decade, as the use of extremely deformable structures has
become the new paradigm in the design of reconfigurable, wave mit-
igation, energy harvesting, and actuation mechanisms. Indeed, while
in the past the nonlinear regime of structures was avoided as a safety
measure in the classical mechanical design, today it drives the main
strategy for realizing devices with novel and unexpected mechanical
responses (Kochmann and Bertoldi, 2017; Reis, 2015).

Soft robotics is a relatively young field that has emerged with the
aim of overcoming the inherent limitations of traditional robots by
replacing stiff components with highly compliant ones. In addition to
dramatically reducing safety issues in the interaction with humans and
objects, compliance is also exploited to provide different locomotion
modalities (Calisti et al., 2017). Recently, actuation through an impul-
sive motion generated by snapping instabilities has been considered for
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realizing wearable devices for human joint impedance estimation (Yagi
et al., 2018), tasks of inflation/deflation routine of a fluid-filled cav-
ity (Arakawa et al., 2021), and high performance jumping (Misu et al.,
2018; Misu and Mochiyama, 2021) and swimming (Yamada et al.,
2012) robots.

More in general, the design of mechanical metamaterials, materials
displaying features not achievable from the classical ones, has been
recently enhanced by considering the influence of structural flexibil-
ity (Bertoldi et al., 2017) towards multistability (Abbasi et al., 2023;
Amor et al., 2023; Maurini et al., 2007; Sano and Wada, 2019), re-
configurable structures (Filipov et al., 2015; Liu et al., 2022), wave
guiding (Bordiga et al., 2019; Carta et al., 2023; Garau et al., 2018) and
unidirectional wave propagation (Nadkarni et al., 2016; Raney et al.,
2016).

Within this renewed interest in nonlinear structural mechanics, the
attention of scientists and researchers has also been drawn by structures
with variable domain. The most famous example is the concentric tube
robot, commonly used for minimally invasive surgeries (Alfalahi et al.,
2020; Mahoney et al., 2018; Renda et al., 2021). More specifically, a
variable domain structure is realized whenever one element can slide
along another providing a variation in its overall ‘exterior’ length or
surface area.

The framework of configurational mechanics, introduced by Es-
helby Eshelby (1999) to model defect motion within solids, has recently
been extended to structures subject to sliding sleeve constraints (Bigoni
et al., 2015). The existence of an outward reaction acting along the
vailable online 22 February 2024
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Fig. 1. Sketch of the ‘elastica sling ’ realized through the rotation of two sliding sleeves constraining a flexible elements. The system in its undeformed configuration (above) and
uring two different rotations paths (bottom). More specifically, a symmetric and an antisymmetric evolution is reported on the bottom left and on the bottom right, respectively.
ith reference to the nomenclature provided in the following, the symmetric evolution is referred to 𝜃1 = −𝜃2 = 𝜃 (namely, 𝜃𝐴 = 0), while the antisymmetric one to 𝜃1 = 𝜃2 = 𝜃

namely, 𝜃𝑆 = 0). Two deformed configurations are reported, associated with 𝜃 = 𝜋∕4 and with 𝜃 = 𝜃𝑐𝑟, the critical value providing the indefinite ejection of the flexible element
rom the sliding sleeve constraints, which is 𝜃𝑐𝑟 = 𝜋∕2 (left) and 𝜃𝑐𝑟 ≈ 1.106𝜋∕2 (right).
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sliding direction was demonstrated and shown to be quadratic in the
curvature value of the flexible element at the exit of the sleeve. Since
then, this concept has been exploited in bifurcation problems (Bigoni
et al., 2014a; Bosi et al., 2015, 2016; Liakou and Detournay, 2018),
nonlinear dynamics (Armanini et al., 2019; Koutsogiannakis et al.,
2023), wave propagation (Dal Corso et al., 2019), and to design novel
actuation mechanisms, such as the torsional (Bigoni et al., 2014b) and
the frictionless curved channel (Dal Corso et al., 2017) locomotions.
The introduced theoretical framework led to a new interpretation
of dislocation motion (Ballarini and Royer-Carfagni, 2016), blister-
ing (Goldberg and O’Reilly, 2022; Wang and Detournay, 2022), delam-
ination (Venkatadri et al., 2023), and penetration (Wen et al., 2023)
processes. In addition, the first numerical models for the treatment of
variable domain structures have recently appeared (Han, 2022; Han
and S, 2023; Han and Bauchau, 2023).

The nonlinear mechanics of a flexible elastic rod constrained at its
edges by a pair of sliding sleeves is analyzed in this article (Fig. 1,
above). In Section 2, the mechanical model is formulated and the
equilibrium together with the second and third variations are derived
through a variational approach. The planar equilibrium configurations
of this variable-length elastica are obtained in Section 3 and found
to have shape defined only by the inclination of the two constraints,
while their distance is responsible only for scaling of size. A theoretical
stability criterion is established in Section 4 by extending to the case of
variable domains a previous method available for fixed-length systems
under isoperimetric constraints. The developed theoretical framework
is exploited in Section 5 to show that there is no more than one stable
equilibrium solution for each pair of inclinations and to define the
corresponding values at which stability is lost. The indefinite ejection
of the flexible rod from the sliding sleeves occurs at these critical
conditions, thus realizing an ‘elastica sling ’ (Fig. 1, bottom). These
theoretical findings are finally validated (at the Instabilities Lab of the
University of Trento) through experiments on a physical prototype.

The present analysis provides a nonlinear mechanism that can be
used as a building block in the design of novel strategies for energy
harvesting, wave mitigation devices, and soft robotic locomotion.

2. Formulation

2.1. Geometry and kinematics

The planar mechanical behavior is investigated for a flexible, un-
shearable, and inextensible rod constrained at its two terminal parts
by two different sliding sleeves, Fig. 2. The position and inclination of
2

u

each sliding sleeve is controlled. The curvilinear coordinate 𝑠, corre-
sponding to the arc length because of the inextensibility assumption,
is introduced to describe the cross section position along the rod of
length 𝐿, 𝑠 ∈ [0, 𝐿]. The relative position of the two sliding sleeves’
exits along the rod is defined by the two coordinates 𝑠1 and 𝑠2 (0 ≤
𝑠1 < 𝑠2 ≤ 𝐿) representing the two configurational parameters of the
ystem. It follows that the part of rod outside of the sliding sleeve has
ength 𝓁 given by

= 𝑠2 − 𝑠1. (1)

Neglecting rigid-body motion and excluding out-of-plane deforma-
tions, the system response is planar and can be modeled within a
Cartesian reference system 𝑥 − 𝑦, centered at the exit of the sliding
sleeve at 𝑠1 and with 𝑥-axis joining the two sliding sleeves’ exit points,
ar from each other by the distance 𝑑, so that

𝑥(𝑠1) = 𝑦(𝑠1) = 𝑦(𝑠2) = 0, 𝑥(𝑠2) = 𝑑. (2)

he length 𝓁 of the rod between the two constraints is bounded from
bove by the rod’s length 𝐿 and, due to inextensibility, from below by
he distance 𝑑 between the two sliding sleeve exits

≤ 𝓁 ≤ 𝐿. (3)

Measuring through the rotation field 𝜃(𝑠) the anti-clockwise angle of
the rod’s axis with respect to the 𝑥-axis, the inclinations 𝜃1 and 𝜃2 of
he two sliding sleeves introduce the following constraints on 𝜃(𝑠)

𝜃(𝑠) =
{

𝜃1, 𝑠 ∈ [0, 𝑠1],
𝜃2, 𝑠 ∈ [𝑠2, 𝐿].

(4)

he constraints (4) introduce the possibility that the rotation field 𝜃(𝑠)
is not continuously differentiable at 𝑠1 and 𝑠2. Moreover, by considering
inextensibility of the rod, the 𝑥(𝑠) − 𝑦(𝑠) position fields are constrained
o the rotation field 𝜃(𝑠) through the following differential equations (a
rime stands for derivative with respect to 𝑠)
′(𝑠) = cos 𝜃(𝑠), 𝑦′(𝑠) = sin 𝜃(𝑠), (5)

nd therefore the two following isoperimetric constraints can be de-
ived from the coordinates of the two sliding sleeves exits (2)

∫

𝑠2

𝑠1
cos 𝜃(𝑠)d𝑠 = 𝑑, ∫

𝑠2

𝑠1
sin 𝜃(𝑠)d𝑠 = 0. (6)

.2. Total potential energy and perturbed configuration

An inextensible and unshearable rod is assumed to deform only
ithin the 𝑥1–𝑥2 plane and to be straight in its undeformed config-
ration. It is further assumed that the rod is linear elastic, therefore
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Fig. 2. The ‘elastica sling ’ realized through a flexible rod of uniform bending stiffness 𝐵 and length 𝐿, constrained at each edge by a different sliding sleeve. (Left) The configuration
of the system is described by the rotation angle 𝜃(𝑠), function of the curvilinear coordinate 𝑠 ∈ [0, 𝐿] and the value of the two configurational parameters 𝑠1 and 𝑠2, associated with
the position of the sliding sleeve exits. The rod configuration varies with the change of the sliding sleeves inclinations 𝜃1 and 𝜃2 and distance 𝑑. Resultant force 𝑅 (inclined at an
angle 𝛽) and moments 𝑀1 and 𝑀2 at the two sliding sleeve exits are also reported. (Right) Curvilinear coordinate 𝑠 and position of the sliding sleeves’ exit at 𝑠1 and 𝑠2 = 𝑠1 + 𝓁,
being 𝓁 the rod’s length between the two constraints.
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the bending moment 𝑀 at the curvilinear coordinate 𝑠 is given by
𝑀(𝑠) = 𝐵𝜃′(𝑠), where 𝜃′(𝑠) is the rod’s curvature and 𝐵 is the bending
stiffness, considered uniform.

The total potential energy  of the planar elastic system is defined
by the following functional of the rotation field 𝜃(𝑠) and of the two
configurational parameters 𝑠1 and 𝑠2


(

𝜃(𝑠), 𝑠1, 𝑠2
)

=𝐵
2 ∫

𝑠2

𝑠1
𝜃′(𝑠)2 d𝑠 − 𝑅𝑥

(

𝑑 − ∫

𝑠2

𝑠1
cos 𝜃(𝑠)d𝑠

)

+ 𝑅𝑦 ∫

𝑠2

𝑠1
sin 𝜃(𝑠)d𝑠

+ 𝑀1
[

𝜃(𝑠1) − 𝜃1
]

+𝑀2
[

𝜃(𝑠2) − 𝜃2
]

,

(7)

where 𝑅𝑥, 𝑅𝑦, 𝑀1, and 𝑀2 are the Lagrangian multipliers. 𝑀1 and
𝑀2 are the moment reactions at the two sliding sleeve exits, enforcing
there the controlled sliding sleeves rotations (4), while 𝑅𝑥 and 𝑅𝑦
represent the projections along the 𝑥 and 𝑦 axes of the reaction force
𝑅 at both ends and inclined at the angle 𝛽 ∈ [−𝜋, 𝜋] (positive when
anti-clockwise),

𝑅𝑥 = 𝑅 cos 𝛽, 𝑅𝑦 = 𝑅 sin 𝛽, (8)

and enforcing the distance between the sliding sleeves through the
isoperimetric constraints (6). It is highlighted that the expression (7)
adopted for the definition of the total potential energy  is an extended
version of the functional usually considered (given for the system
under consideration by the elastic bending energy only). Indeed, the
expression (7) includes the presence of the null work performed by
the Lagrangian multipliers, which does not affect the total potential
energy value but is essential to derive the proper equilibrium equations
of systems subject to isoperimetric constraints.

In order to achieve the equilibrium configuration defined by 𝑠1,𝑒𝑞 ,
𝑠2,𝑒𝑞 , and 𝜃𝑒𝑞(𝑠) and to assess its stability character, a perturbation
approach for moving boundaries is now developed. The configura-
tional parameters 𝑠1 and 𝑠2 of the sliding sleeve exits are considered
through the perturbations 𝛥𝑠1 and 𝛥𝑠2 superimposed to the respective
coordinate at equilibrium

𝑠1 = 𝑠1,𝑒𝑞 + 𝛥𝑠1, 𝑠2 = 𝑠2,𝑒𝑞 + 𝛥𝑠2. (9)

Considering that 𝓁𝑒𝑞 = 𝑠2,𝑒𝑞 − 𝑠1,𝑒𝑞 and 𝛥𝓁 = 𝛥𝑠2 − 𝛥𝑠1, the perturbed
external rod’s length 𝓁 follows from Eq. (1) as

𝓁 = 𝓁 + 𝛥𝓁. (10)
3

𝑒𝑞 d
As far as regards the rotation field 𝜃(𝑠), the following perturbed field
is considered

𝜃(𝑠 + 𝛥𝑠1) = 𝜃𝑒𝑞(𝑠) + 𝛥𝜃(𝑠). (11)

t this point, it is worth to underline that, beside the choice (11),
ther definitions for the perturbation in the rotation field can be
ntroduced to analyze the present variational problem with two moving
oundaries. For instance, another option could be the one reported by
lsgolts (Elsgolts, 1977)

(𝑠) = 𝜃𝑒𝑞(𝑠) + 𝛥𝜃(𝑠), (12)

thus introducing a perturbation of the equilibrium rotation 𝜃𝑒𝑞(𝑠) at
each coordinate 𝑠, while that given by Eq. (11) is defined at the
perturbed coordinate 𝑠 + 𝛥𝑠1. Due to its cumbersomeness, a further
variational approach based on the most general perturbation in the
curvilinear coordinate 𝑠 (proposed by Gelfand and Fomin (1963)) is
eferred to Appendix A. It is shown that this approach leads to the same
onclusions obtained by considering the perturbation measure 𝛥𝜃(𝑠),

Eq. (11).
By comparing Eq. (11) with Eq. (12), the relation between the two

measures of the perturbation in the rotation is

𝛥𝜃(𝑠) = 𝜃𝑒𝑞(𝑠 − 𝛥𝑠1) − 𝜃𝑒𝑞(𝑠) + 𝛥𝜃(𝑠 − 𝛥𝑠1). (13)

lthough the two measures 𝛥𝜃(𝑠) and 𝛥𝜃(𝑠) of the rotation perturbation
ppear equivalent, it is shown in the next Subsection that only 𝛥𝜃(𝑠)

would allow for describing a ‘pure-sliding’ of the system configuration
in a first order analysis.

2.3. ‘Pure-sliding’ and the proper measure of rotation perturbation

A ‘pure-sliding’ perturbation is considered, defined as the change in
the configuration such that the rod slides in one direction by keeping its
portion unconstrained by the sliding sleeves, 𝑠 ∈ [𝑠1, 𝑠2], appearing with
the same deformed configuration along a constant length 𝓁, Fig. 3. With
reference to the introduced perturbation quantities, a ‘pure-sliding’
perturbation is realized when
{

𝛥𝑠1 = 𝛥𝑠2 ≠ 0,

𝛥𝜃(𝑠) = 0,
⟺

{

𝛥𝓁 = 0,

𝜃(𝑠) = 𝜃𝑒𝑞(𝑠 − 𝛥𝑠1),
(14)

nd, because assumed not explicitly dependent on the curvilinear coor-
inate 𝑠 (for instance through a non-constant bending stiffness 𝐵(𝑠) ≠
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Fig. 3. Neutrality of equilibrium realized through a ‘pure-sliding’ of the elastic rod, made possible by the presence of two sliding sleeves. (Left) Deformed equilibrium configuration
(𝑏)
𝑒𝑞 (𝑠) (blue) obtained through a ‘pure-sliding’ perturbation for a distance 𝛥𝑠1 (while 𝛥𝜃(𝑠) = 0) of another equilibrium configuration 𝜃(𝑎)𝑒𝑞 (𝑠) (red). (Right) Equilibrium rotation fields
(𝑎)
𝑒𝑞 (𝑠) and 𝜃(𝑏)𝑒𝑞 (𝑠) as functions of the curvilinear coordinate 𝑠 ∈ [0, 𝐿]. The non-null variation measure 𝛥𝜃(𝑠) for a ‘pure-sliding’ is highlighted. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
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onst or through the presence of an external load applied at a fixed
oordinate 𝑠), the total potential energy  is preserved,
(

𝜃(𝑠), 𝑠1, 𝑠2
)

= 
(

𝜃𝑒𝑞(𝑠), 𝑠1,𝑒𝑞 , 𝑠2,𝑒𝑞
)

. (15)

The ‘pure-sliding’ perturbations is the key for understanding why
he measure 𝛥𝜃(𝑠) is privileged with respect to the measure 𝛥𝜃(𝑠).

Indeed, while the former is null, the latter is non-null and given by

𝛥𝜃(𝑠) = 𝜃𝑒𝑞(𝑠 − 𝛥𝑠1) − 𝜃𝑒𝑞(𝑠) ≠ 0. (16)

Moreover, a small generic perturbation around the equilibrium config-
uration can be considered through a small positive parameter 𝜖 ruling
the modulus of the perturbations 𝛥𝜃(𝑠), 𝛥𝑠1, and 𝛥𝑠2, as

𝑠1 = 𝑠1,𝑒𝑞 + 𝜖𝛿𝑠1, 𝑠2 = 𝑠2,𝑒𝑞 + 𝜖𝛿𝑠2, 𝜃(𝑠 + 𝜖𝛿𝑠1) = 𝜃𝑒𝑞(𝑠) + 𝜖𝛿𝜃(𝑠), (17)

rom which it follows

= 𝓁𝑒𝑞 + 𝜖𝛿𝓁, where 𝛿𝓁 = 𝛿𝑠2 − 𝛿𝑠1. (18)

y assuming the first-order perturbations 𝛿𝜃(𝑠) and 𝛿𝑠1, the expansion
f Eq. (13) for small 𝜖 provides the perturbation 𝛥𝜃(𝑠) as the following

power series in 𝜖

𝛥𝜃(𝑠) = −
∞
∑

𝑘=1

(−1)𝑘
[

𝑘𝛿𝜃[𝑘−1](𝑠) − 𝛿𝑠1 𝜃
[𝑘]
𝑒𝑞 (𝑠)

]

𝑘!
𝛿𝑠𝑘−11 𝜖𝑘, (19)

where the superscript [𝑘] defines the 𝑘th derivative (and therefore the
superscript [0] stands for no derivative). Eq. (19) further shows that,
when a first-order perturbation in 𝛥𝑠1 and 𝛥𝜃(𝑠) is assumed, the ‘pure-
sliding’ perturbation (simply defined by 𝛿𝜃(𝑠) = 0 and 𝛿𝓁 = 0) requires
the following infinite-order expansion for 𝛥𝜃(𝑠)

𝛥𝜃(𝑠) =
∞
∑

𝑘=1

(−1)𝑘 𝜃[𝑘]𝑒𝑞 (𝑠)
𝑘!

𝛿𝑠𝑘1 𝜖
𝑘, (20)

which discloses that the perturbation 𝛥𝜃(𝑠) could not be considered as a
primary perturbation field to investigate the present mechanical system
because not including the ‘pure-sliding’ perturbation at its first-order
expansion. Nevertheless, the measure 𝛥𝜃(𝑠) for the rotation variation is
commonly adopted through a small variation 𝛿𝜃(𝑠) and leads to poten-
tial energy variations at different orders coincident with those obtained
by considering the small variation 𝛿𝜃(𝑠), as shown in Appendix A.

2.4. Variational approach

The planar elastic system with two variable ends is analyzed through
a variational approach by considering the perturbed quantities ex-
pressed as in Eq. (17) with reference to the first-order perturbations
4

𝛿𝜃(𝑠), 𝛿𝑠1, and 𝛿𝑠2 = 𝛿𝑠1+𝛿𝓁. By considering the perturbed coordinates
1 and 𝑠2 and rotation field 𝜃(𝑠) as given by Eq. (13), the total potential
nergy  becomes

=𝐵
2 ∫

𝑠2,𝑒𝑞+𝜖𝛿𝑠2

𝑠1,𝑒𝑞+𝜖𝛿𝑠1

[

𝜃′𝑒𝑞(𝑠 − 𝜖𝛿𝑠1) + 𝜖𝛿𝜃
′(𝑠 − 𝜖𝛿𝑠1)

]2
d𝑠

− 𝑅𝑥

(

𝑑 − ∫

𝑠2,𝑒𝑞+𝜖𝛿𝑠2

𝑠1,𝑒𝑞+𝜖𝛿𝑠1
cos

[

𝜃𝑒𝑞(𝑠 − 𝜖𝛿𝑠1) + 𝜖𝛿𝜃(𝑠 − 𝜖𝛿𝑠1)
]

d𝑠
)

+ 𝑅𝑦 ∫

𝑠2,𝑒𝑞+𝜖𝛿𝑠2

𝑠1,𝑒𝑞+𝜖𝛿𝑠1
sin

[

𝜃𝑒𝑞(𝑠 − 𝜖𝛿𝑠1) + 𝜖𝛿𝜃(𝑠 − 𝜖𝛿𝑠1)
]

d𝑠

+𝑀1𝜖𝛿𝜃(𝑠1,𝑒𝑞) +𝑀2
[

𝜃𝑒𝑞(𝑠2,𝑒𝑞 + 𝜖𝛿𝓁) + 𝜖𝛿𝜃(𝑠2,𝑒𝑞 + 𝜖𝛿𝓁) − 𝜃2
]

,

(21)

hich, through a change in the integration variable, can be rewritten
s

=𝐵
2 ∫

𝑠2,𝑒𝑞+𝜖𝛿𝓁

𝑠1,𝑒𝑞

[

𝜃′𝑒𝑞(𝑠) + 𝜖𝛿𝜃
′(𝑠)

]2
d𝑠

− 𝑅𝑥

(

𝑑 − ∫

𝑠2,𝑒𝑞+𝜖𝛿𝓁

𝑠1,𝑒𝑞
cos

[

𝜃𝑒𝑞(𝑠) + 𝜖𝛿𝜃(𝑠)
]

d𝑠
)

+ 𝑅𝑦 ∫

𝑠2,𝑒𝑞+𝜖𝛿𝑠2

𝑠1,𝑒𝑞+𝜖𝛿𝑠1
sin

[

𝜃𝑒𝑞(𝑠) + 𝜖𝛿𝜃(𝑠)
]

d𝑠 +𝑀1𝜖𝛿𝜃(𝑠1,𝑒𝑞)

+ 𝑀2
[

𝜃𝑒𝑞(𝑠2,𝑒𝑞 + 𝜖𝛿𝓁) + 𝜖𝛿𝜃(𝑠2,𝑒𝑞 + 𝜖𝛿𝓁) − 𝜃2
]

.

(22)

he last expression, derived under the assumption of uniform bending
tiffness 𝐵(𝑠) = 𝐵, shows that

= 
(

𝜃𝑒𝑞(𝑠), 𝑠1,𝑒𝑞 , 𝑠2,𝑒𝑞 , 𝛿𝜃(𝑠), 𝛿𝓁
)

(23)

nd therefore that a change in the total potential energy  is only pro-
ided by the perturbation in the rotation field 𝛿𝜃(𝑠) and in the external
od’s length 𝛿𝓁. Therefore, a ‘pure-sliding’ perturbation described by
𝑠1 = 𝛿𝑠2 ≠ 0 and 𝛿𝜃(𝑠) = 0 does not vary the total potential energy  ,
o it can be concluded that

(i.) the coordinate 𝑠1,𝑒𝑞 plays just the role of a dummy variable
and therefore, under the assumption that 𝑠1,𝑒𝑞 > 0 and 𝓁𝑒𝑞 ∈
(𝑑, 𝐿 − 𝑠1,𝑒𝑞), the system can be investigated with reference to
the rotation field 𝜃𝑒𝑞(𝑠) and only one configurational parameter
𝓁𝑒𝑞 (instead of two, 𝑠1,𝑒𝑞 and 𝑠2,𝑒𝑞 = 𝑠1,𝑒𝑞 + 𝓁𝑒𝑞);

(ii.) the planar equilibrium configurations of a uniform rod con-
strained by two sliding sleeves at its ends are coincident with
those corresponding to the case when one of the two sliding
sleeves is replaced by a clamp.

In order to obtain the governing equations for the present system
nd to assess the stability of the equilibrium configurations, the total
otential energy  is expanded as the following power series in the
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𝛿

𝛿

w

𝛿

𝜃

3

a
t
i
s
t
f

small positive parameter 𝜖


(

𝜃(𝑠), 𝑠1, 𝑠2
)

= 
(

𝜃𝑒𝑞(𝑠),𝓁𝑒𝑞
)

+
∞
∑

𝑘=1

𝜖𝑘

𝑘!
𝛿𝑘

(

𝜃𝑒𝑞(𝑠),𝓁𝑒𝑞 , 𝛿𝜃(𝑠), 𝛿𝓁
)

, (24)

where 𝛿𝑘 represents the 𝑘th variation of  , null in the case of a
‘pure-sliding’ (𝛿𝑠1 = 𝛿𝑠2 ≠ 0, 𝛿𝓁 = 0),

𝛿𝑘
(

𝜃𝑒𝑞(𝑠),𝓁𝑒𝑞 , 𝛿𝜃(𝑠) = 0, 𝛿𝓁 = 0
)

= 0, ∀ 𝑘 ∈ N. (25)

Interestingly, the boundary conditions (4) evaluated at 𝑠1 and at 𝑠2 and
expanded for small 𝜖 imply the following compatibility conditions for
the perturbation 𝛿𝜃(𝑠)

𝛿𝜃(𝑠1,𝑒𝑞) = 0,

𝛿𝜃[𝑘](𝑠2,𝑒𝑞) = −
𝜃[𝑘+1]𝑒𝑞 (𝑠2,𝑒𝑞) 𝛿𝓁

𝑘 + 1
, 𝑘 ∈ N1,

(26)

while the first-order expansion of the isoperimetric constraints (6)
imply

cos 𝜃𝑒𝑞(𝑠2,𝑒𝑞)𝛿𝓁 − ∫

𝑠2,𝑒𝑞

𝑠1,𝑒𝑞
sin 𝜃𝑒𝑞(𝑠)𝛿𝜃(𝑠)d𝑠 = 0,

sin 𝜃𝑒𝑞(𝑠2,𝑒𝑞)𝛿𝓁 + ∫

𝑠2,𝑒𝑞

𝑠1,𝑒𝑞
cos 𝜃𝑒𝑞(𝑠)𝛿𝜃(𝑠)d𝑠 = 0.

(27)

It is noted that the perturbations evaluated at 𝑠1,𝑒𝑞 and 𝑠2,𝑒𝑞 values are
intended as the value of the perturbation by approaching the ends from
outside the constrained region, namely, 𝑠1,𝑒𝑞 → 𝑠+1,𝑒𝑞 and 𝑠2,𝑒𝑞 → 𝑠−2,𝑒𝑞 ,
because the rotation field 𝜃(𝑠) is not continuously differentiable at these
two points from the constraints (4).

After integration by parts, exploiting the boundary conditions (4)
and the compatibility constraints (26) on the perturbations 𝛿𝜃(𝑠) and
𝓁, the first variation 𝛿 is given by

 = −∫

𝑠2,𝑒𝑞

𝑠1,𝑒𝑞

[

𝐵𝜃′′𝑒𝑞(𝑠) + 𝑅𝑥 sin 𝜃𝑒𝑞(𝑠) − 𝑅𝑦 cos 𝜃𝑒𝑞(𝑠)
]

𝛿𝜃(𝑠)d𝑠

−

⎧

⎪

⎨

⎪

⎩

𝐵
[

𝜃′𝑒𝑞(𝑠2,𝑒𝑞)
]2

2
− 𝑅𝑥 cos 𝜃𝑒𝑞(𝑠2,𝑒𝑞) − 𝑅𝑦 sin 𝜃𝑒𝑞(𝑠2,𝑒𝑞)

⎫

⎪

⎬

⎪

⎭

𝛿𝓁.

(28)

The annihilation of the first variation 𝛿 for every perturbations
𝛿𝜃(𝑠) and 𝛿𝓁 leads to the elastica equation

𝐵𝜃′′𝑒𝑞(𝑠) + 𝑅𝑥 sin 𝜃𝑒𝑞(𝑠) − 𝑅𝑦 cos 𝜃𝑒𝑞(𝑠) = 0, 𝑠 ∈ (𝑠1,𝑒𝑞 , 𝑠2,𝑒𝑞), (29)

and to the interface condition at the sliding sleeve at 𝑠 = 𝑠2,𝑒𝑞

𝐵
[

𝜃′𝑒𝑞(𝑠2,𝑒𝑞)
]2

2
− 𝑅𝑥 cos 𝜃𝑒𝑞(𝑠2,𝑒𝑞) − 𝑅𝑦 sin 𝜃𝑒𝑞(𝑠2,𝑒𝑞) = 0. (30)

Manipulation of the elastica Eq. (29) and the interface condition (30)
provides

𝐵
[

𝜃′𝑒𝑞(𝑠)
]2

2
− 𝑅𝑥 cos 𝜃𝑒𝑞(𝑠) − 𝑅𝑦 sin 𝜃𝑒𝑞(𝑠) = 0, 𝑠 ∈

(

𝑠1,𝑒𝑞 , 𝑠2,𝑒𝑞
)

. (31)

Recalling the definition (8) for the reaction components 𝑅𝑥 and 𝑅𝑦,
the last equation yields

𝑅 cos[𝜃𝑒𝑞(𝑠) − 𝛽] =
𝐵
[

𝜃′𝑒𝑞(𝑠)
]2

2
≥ 0, 𝑠 ∈

(

𝑠1,𝑒𝑞 , 𝑠2,𝑒𝑞
)

, (32)

which in turn implies

− 𝜋
2
≤ 𝜃𝑒𝑞(𝑠) − 𝛽 ≤ 𝜋

2
, 𝑠 ∈

(

𝑠1,𝑒𝑞 , 𝑠2,𝑒𝑞
)

. (33)

Inequality (33) provides the following necessary condition for the
existence of the equilibrium configuration
|

|

|

|

max
( )

{𝜃(𝑠)} − min
( )

{𝜃(𝑠)}
|

|

|

|

≤ 𝜋. (34)
5

|

𝑠∈ 𝑠1,𝑒𝑞 ,𝑠2,𝑒𝑞 𝑠∈ 𝑠1,𝑒𝑞 ,𝑠2,𝑒𝑞
|

l

In the next Sect. it is shown that the equilibrium field 𝜃(𝑠) may display
a number 𝑚 ≥ 0 of inflection points at the curvilinear coordinate 𝑠̂𝑗
(𝑗 = 1,… , 𝑚), therefore defined by a null derivative of the rotation at
these points, 𝜃′(𝑠̂𝑗 ) = 0. In the case of elasticae with no inflection points
(𝑚 = 0), the necessary condition (34) is equivalent to

|

|

𝜃1 − 𝜃2|| ≤ 𝜋. (35)

In the case of elasticae with inflection points (𝑚 ≥ 1), Eq. (35) still
represents a necessary condition, although less restrictive than Eq. (34).
Moreover, in the case of elasticae with inflection points (𝑚 ≥ 1),
Eq. (32) shows that at equilibrium the reaction force 𝑅 is orthogonal
to the rod’s tangent at each inflection point,
|

|

|

𝜃(𝑠̂𝑗 ) − 𝛽
|

|

|

= 𝜋
2
, 𝑗 = 1,… , 𝑚. (36)

Considering Eq. (31) and the compatibility conditions (26), the
second variation 𝛿2 can be expressed by

𝛿2 = 𝐵 ∫

𝑠2,𝑒𝑞

𝑠1,𝑒𝑞

⎧

⎪

⎨

⎪

⎩

[

𝛿𝜃′(𝑠)
]2 −

[

𝜃′𝑒𝑞(𝑠)
]2

2
[𝛿𝜃(𝑠)]2

⎫

⎪

⎬

⎪

⎭

d𝑠 − 𝐵𝜃′𝑒𝑞(𝑠2,𝑒𝑞)𝜃
′′
𝑒𝑞(𝑠2,𝑒𝑞)𝛿𝓁

2,

(37)

hile the third variation 𝛿3 by

3 = −𝐵 ∫

𝑠2,𝑒𝑞

𝑠1,𝑒𝑞
𝜃′′𝑒𝑞(𝑠) [𝛿𝜃(𝑠)]

3 d𝑠 − 𝐵
2

⎧

⎪

⎨

⎪

⎩

[

𝜃′′𝑒𝑞(𝑠2,𝑒𝑞)
]2

2
+
[

𝜃′𝑒𝑞(𝑠2,𝑒𝑞)
]4
⎫

⎪

⎬

⎪

⎭

𝛿𝓁3.

(38)

From the stability point of view under conservative conditions,
due to the presence of possible ‘pure-sliding’ perturbations, the planar
equilibrium configurations of the rod when constrained by two sliding
sleeves can be neutral or unstable, respectively corresponding to stable
and unstable for the same system where a sliding sleeve is replaced
by a clamp. However, the inherent neutrality of the equilibrium of the
system with two sliding sleeves can be never observed in practical re-
alizations because of unavoidable presence of (air drag and/or friction)
dissipation mechanisms. Therefore,

from the practical point of view, the planar mechanics of a uniform
elastic rod constrained by two sliding sleeves is equivalent to that of

the same system with one of the two sliding sleeves replaced by a clamp.

It is worth to highlight that the latter statement holds only for systems
characterized by a total potential energy  not explicitly dependent
on the curvilinear coordinate 𝑠 (therefore, for instance, the application
of forces at fixed coordinate 𝑠 and a non-constant bending stiffness
𝐵(𝑠) ≠ const are excluded).

The equilibrium configurations and the stability criterion for the
present planar system are addressed in the next two Sections. Since
only the configurations at equilibrium are considered henceforth, the
subscript (⋅)𝑒𝑞 is removed to simplify the notation, namely

𝑒𝑞(𝑠) → 𝜃(𝑠), 𝑠1,𝑒𝑞 → 𝑠1, 𝑠2,𝑒𝑞 → 𝑠2, 𝓁𝑒𝑞 → 𝓁. (39)

. Equilibrium configurations

The closed-form solution for the elastica subject to Dirichlet bound-
ry conditions and isoperimetric constraints can be obtained by dis-
inguishing the two fundamental cases of absence and presence of
nflection points, whose number is denoted by 𝑚, and therefore corre-
ponding to a non-inflectional and an inflectional configuration, respec-
ively. While the curvature maintains the same sign for 𝑠 ∈ [𝑠1, 𝑠2] in the
ormer case, a sign change occurs at 𝑚 points within the same set in the
atter case and, as a result, the corresponding solution is more involved.
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Fig. 4. (Above) Among the infinite planar equilibrium configurations for 𝜃1 = −𝜃2 = 𝜋∕8, the non-inflectional (blue) and two inflectional elasticae with 𝑚 = 2 (green and orange) are
highlighted along the ‘inflectional mother curve’ (gray curve). The ‘inflectional mother curve’ is associated to equilibrium configurations with 𝜂 = 1∕

√

2, for which the reaction force
is orthogonal to the elastica at each inflection point (circles). (Bottom) The three equilibrium configurations highlighted along the ‘inflectional mother curve’ for 𝜃1 = −𝜃2 = 𝜋∕8

eported for the same sliding sleeves’ distance 𝑑, showing different values of the corresponding external lengths 𝓁. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
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𝐸

he solution of the equilibrium Eq. (29) has been presented in Cazzolli
nd Dal Corso (2018), showing that the sliding sleeve reaction force 𝑅
s given by

𝑅𝓁2

𝐵
=

{

𝜉2
[

 (𝜒2, 𝜉) −  (𝜒1, 𝜉)
]2 , 𝑚 = 0,

[

 (𝜔2, 𝜂) −  (𝜔1, 𝜂)
]2 , 𝑚 ≠ 0,

(40)

while the rotation field 𝜃(𝑠) for the part of rod outside of the sliding
sleeves, 𝑠 ∈ [𝑠1, 𝑠2], by

𝜃(𝑠) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛽 + 2 am
( 𝑠 − 𝑠1

𝓁

(

 (𝜒2, 𝜉) −  (𝜒1, 𝜉)
)

+ (𝜒1, 𝜉), 𝜉
)

, 𝑚 = 0,

𝛽 + 2 arcsin
[

𝜂 sn
( 𝑠 − 𝑠1

𝓁

(

 (𝜔2, 𝜂)

− (𝜔1, 𝜂)
)

+  (𝜔1, 𝜂), 𝜂
)]

, 𝑚 ≠ 0.

(41)

In Eqs. (40) and (41),  is the Jacobi’s incomplete elliptic integral of the
first kind, am is the Jacobi’s amplitude function and sn is the Jacobi’s sine
amplitude function,

 (𝜎, 𝜑) = ∫

𝜎

0

d𝜙
√

1 − 𝜑2 sin2 𝜙
, 𝜎 = am

(

 (𝜎, 𝜑) , 𝜑
)

,

sn(𝑢, 𝜑) = sin (am(𝑢, 𝜑)),

(42)

nd

𝜒1 =
𝜃1 − 𝛽

2
, 𝜒2 =

𝜃2 − 𝛽
2

, 𝜔1 = arcsin
(

1
𝜂
sin

𝜃1 − 𝛽
2

)

,

𝜔2 = (−1)𝑚 arcsin
(

1
𝜂
sin

𝜃2 − 𝛽
2

)

+ (−1)𝑝 𝑚𝜋,

(43)

here the Boolean parameter 𝑝 is introduced to define the solution with
ositive (if 𝑝 = 0) or negative (if 𝑝 = 1) sign of the curvature at the
nitial end 𝑠 = 𝑠1. Moreover, defining 𝜃 = 𝜃(𝑠̂) as the rotation value at
he inflection point with smallest coordinate value 𝑠̂ = 𝑠̂1, 𝜃′(𝑠̂) = 0, the
arameter 𝜂 is given by

= sin
𝜃 − 𝛽
2

. (44)

Imposing condition (31) on the generic solution (41) in the absence of
inflection points (𝑚 = 0) reveals the value of the parameter 𝜉
𝐵 [

 (𝜒 , 𝜉) −  (𝜒 , 𝜉)
]2 (2 − 𝜉2) = 0 ⇒ 𝜉 =

√

2, (45)
6

𝓁2 2 1
and in the presence of inflection points (𝑚 ≠ 0) that of 𝜂

𝐵
𝓁2

[

 (𝜔2, 𝜂) −  (𝜔1, 𝜂)
]2 (2𝜂2 − 1) = 0 ⇒ 𝜂 = 1

√

2
, (46)

the latter further confirming the orthogonality between the direction
of the resultant 𝑅 and the rod’s tangent at the inflection coordinate
𝑠, Eq. (36). It also follows that all the equilibrium configurations
with inflection points are different portions of the same ‘inflectional
mother curve’ (Born, 1906; Cazzolli and Dal Corso, 2018; Frisch-Fay,
1962; Love, 1927) characterized by property (36), Fig. 4. According to
previous investigation (Cazzolli and Dal Corso, 2018), the equilibrium
configuration with no inflection point 𝑚 = 0, therefore related to
the parameter 𝜉 =

√

2, represent portions being ‘extracted’ from the
nflectional mother curve, related to the parameter 𝜂 = 1∕

√

2.
Considering the rotation field 𝜃(𝑠), Eq. (41), in the integration of the

ifferential relations (5), the closed-form expressions for the position
ield 𝑥(𝑠) and 𝑦(𝑠) can be obtained as
[

𝑥(𝑠)

𝑦(𝑠)

]

= 𝓁

[

cos 𝛽 − sin 𝛽

sin 𝛽 cos 𝛽

]

⋅

[

A (𝑠)

B(𝑠)

]

𝑠 ∈ [𝑠1, 𝑠2], (47)

here, in the absence of inflection points (𝑚 = 0), the expressions for
(𝑠) and B(𝑠) are given in Box I, while in the presence of inflection
oints (𝑚 ≠ 0) in Box II. In these expressions the function cn is the
acobi’s cosine amplitude function, ℰ is the Jacobi’s epsilon function, and
n is the Jacobi’s elliptic function

cn(𝑢, 𝜑) = cos (am(𝑢, 𝜑)), ℰ (𝜎, 𝜑) = 𝐸(am(𝜎, 𝜑), 𝜑),

dn(𝑢, 𝜑) =
√

1 − 𝜑2 sn2(𝑢, 𝜑),
(48)

hile 𝐸 is the Jacobi’s incomplete elliptic integral of the second kind

(𝜎, 𝜑) = ∫

𝜎

0

√

1 − 𝜑2 sin2 𝜙d𝜙. (49)

Finally, the isoperimetric constraints (6) provide the following
weakly-coupled nonlinear algebraic system in the unknown reaction
inclination 𝛽 and rod’s length 𝓁 for given sliding sleeves’ rotations 𝜃1
and 𝜃2, and distance 𝑑

𝓁
[

cos 𝛽 − sin 𝛽
]

⋅
[

𝖠(𝛽)
]

=
[

𝑑
]

, (52)

sin 𝛽 cos 𝛽 𝖡(𝛽) 0
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A(𝑠) =
ℰ
[ 𝑠 − 𝑠1

𝓁

(


(

𝜒2,
√

2
)

− 
(

𝜒1,
√

2
))

+ 
(

𝜒1,
√

2
)

,
√

2
]

− ℰ
[


(

𝜒1,
√

2
)

,
√

2
]


(

𝜒2,
√

2
)

− 
(

𝜒1,
√

2
) ,

B(𝑠) =
dn

[


(

𝜒1,
√

2
)

,
√

2
]

− dn
[ 𝑠 − 𝑠1

𝓁

(


(

𝜒2,
√

2
)

− 
(

𝜒1,
√

2
))

+ 
(

𝜒1,
√

2
)

,
√

2
]


(

𝜒2,
√

2
)

− 
(

𝜒1,
√

2
) ,

(𝑚 = 0) (50)

Box I.
A(𝑠) = 2

ℰ

[

𝑠 − 𝑠1
𝓁

(



(

𝜔2,
1
√

2

)

− 

(

𝜔1,
1
√

2

))

+ 

(

𝜔1,
1
√

2

)

, 1
√

2

]

− ℰ

[



(

𝜔1,
1
√

2

)

, 1
√

2

]



(

𝜔2,
1
√

2

)

− 

(

𝜔1,
1
√

2

) −
𝑠 − 𝑠1
𝓁

,

B(𝑠) =
√

2

cn
[



(

𝜔1,
1
√

2

)

, 1
√

2

]

− cn
[

𝑠 − 𝑠1
𝓁

(



(

𝜔2,
1
√

2

)

− 

(

𝜔1,
1
√

2

))

+ 

(

𝜔1,
1
√

2

)

, 1
√

2

]



(

𝜔2,
1
√

2

)

− 

(

𝜔1,
1
√

2

) .

(𝑚 ≠ 0) (51)

Box II.
where 𝖠(𝛽) = A(𝑠1 + 𝓁) and 𝖡(𝛽) = B(𝑠1 + 𝓁), namely

𝖠(𝛽) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐸
(

𝜒2,
√

2
)

− 𝐸
(

𝜒1,
√

2
)


(

𝜒2,
√

2
)

− 
(

𝜒1,
√

2
) , 𝑚 = 0,

2

𝐸

(

𝜔2,
1
√

2

)

− 𝐸

(

𝜔1,
1
√

2

)



(

𝜔2,
1
√

2

)

− 

(

𝜔1,
1
√

2

) , 𝑚 ≠ 0,

𝖡(𝛽) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

√

cos 2𝜒1 −
√

cos 2𝜒2


(

𝜒2,
√

2
)

− 
(

𝜒1,
√

2
) , 𝑚 = 0,

√

2
(

cos𝜔1 − cos𝜔2
)



(

𝜔2,
1
√

2

)

− 

(

𝜔1,
1
√

2

) , 𝑚 ≠ 0.

(53)

Solving the nonlinear system (52) provides one or more pairs of the
unknown parameters 𝛽 and 𝓁 corresponding to planar equilibrium con-
figurations with 𝑚 inflection points. The weak-coupling in the nonlinear
system (52) allows for computing the value of 𝛽 from

𝖠(𝛽) sin 𝛽 + 𝖡(𝛽) cos 𝛽 = 0, (54)

which defines a set of infinite homothetic equilibrium configurations
characterized by the following constant ratio for 𝓁∕𝑑,

𝓁
𝑑

=
cos 𝛽
𝖠(𝛽)

≥ 1. (55)

This implies that the planar equilibrium configurations have shape
governed only by the parameter 𝛽 (which in turn depends on the
sliding sleeves’ inclination, 𝜃1 and 𝜃2) and is unaffected by the distance
parameter 𝑑, which has the only effect to scale the size of the deformed
configuration (as long as 𝓁 < 𝐿).

The conditions to assess the stability of the non-unique equilibrium
configurations are derived in the following Section. It is anticipated
that no more than one stable configuration exists for each pair of
7

inclinations 𝜃1 and 𝜃2, and that the stable configuration is characterized
by none (𝑚 = 0) or one inflection (𝑚 = 1) point only.

4. Stability criterion for systems subject to isoperimetric con-
straints and with variable-length (𝜹𝓵 ≠ 𝟎)

An equilibrium configuration is stable whenever the corresponding
second variation 𝛿2 in the total potential energy is positive for every
perturbations 𝛿𝜃(𝑠) and 𝛿𝓁 that are compatible, namely, consistent
with the whole set of imposed constraints. The equilibrium stability
for systems with variable-domain has so far only been assessed in
the absence of isoperimetric constraints (Majidi et al., 2012). On the
other hand, Bolza in 1902 (Bolza, 1902) established the stability crite-
rion for systems with non-variable one-dimensional domains subject to
isoperimetric constraints.

A criterion for assessing the stability of variable-domain systems
under isoperimetric constraints is introduced for the first time, by
extending the formulation by Bolza (1902) to variable domains. By
excluding ‘pure-sliding’ perturbations (Section 2.2), the stability of the
planar system with two sliding sleeves is equivalent to that with one
of the two constraints replaced by a clamp. This simplified system is
here addressed by considering fixed 𝑠1 and varying only 𝑠2, namely
𝛿𝑠1 = 0 and 𝛿𝑠2 = 𝛿𝓁. The following generic expression for the
second variation 𝛿2 , to be later reduced to that relevant to the present
problem, Eq. (37), is considered

𝛿2 = ∫

𝑠2

𝑠1

(

𝐻1 𝛿𝜃
′2 +𝐻2 𝛿𝜃

2)d𝑠 +ℱ (𝑠2)𝛿𝓁2, (56)

where 𝐻1(𝑠) > 0 (denoting the so-called ‘Legendre’s condition’, nec-
essary for the stability of the system) and 𝐻2(𝑠) are given functions
of the spatial variable 𝑠 ranging within the fixed set [𝑠1, 𝑠2], while
ℱ (𝑠2) is a given function of 𝑠2. The system is considered to be subject
to a boundary condition at the fixed end 𝑠1 and to a compatibility
condition at the moving end 𝑠2, providing the following constraints for
the perturbation field 𝛿𝜃(𝑠) and the length perturbation 𝛿𝓁 ≠ 0 at these
two coordinates

𝛿𝜃(𝑠 ) = 0, 𝛿𝜃(𝑠 ) = 𝑊 (𝑠 )𝛿𝓁, (57)
1 2 2
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.

where 𝑊 (𝑠2) is a given function of 𝑠2, and also subject to 𝑁 isoperimet-
ric constraints on the perturbations, expressed through given functions
𝑇𝑖(𝑠) and scalars 𝑓𝑖(𝑠2) (𝑖 = 1,… , 𝑁) by

∫

𝑠2

𝑠1
𝑇𝑖𝛿𝜃d𝜎 = 𝑓𝑖(𝑠2)𝛿𝓁, 𝑖 = 1,… , 𝑁. (58)

Introducing the differential operator 𝛹 as

𝛹 (𝛿𝜃) = −
(

𝐻1 𝛿𝜃
′)′ +𝐻2 𝛿𝜃, (59)

and the vector of independent functions 𝐮(𝑠) = {𝑢(𝑠), 𝑣1(𝑠),… , 𝑣𝑁 (𝑠)} as
the solution of the following differential system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛹 (𝑢(𝑠)) = 0, 𝑢(𝑠1) = 0, 𝑢′(𝑠1) = 1,

𝛹 (𝑣1(𝑠)) = 𝑇1(𝑠), 𝑣1(𝑠1) = 0, 𝑣′1(𝑠1) = 0,

⋮ ⋮ ⋮

𝛹 (𝑣𝑁 (𝑠)) = 𝑇𝑁 (𝑠), 𝑣𝑁 (𝑠1) = 0, 𝑣′𝑁 (𝑠1) = 0,

(60)

the generic compatible perturbation 𝛿𝜃(𝑠) can be expressed as the
following combination of continuous functions

𝛿𝜃 = 𝐩 ⋅ 𝐮 = 𝑝(𝑠)𝑢(𝑠) + 𝑞1(𝑠)𝑣1(𝑠) +⋯ + 𝑞𝑁 (𝑠)𝑣𝑁 (𝑠), (61)

where 𝐩 = {𝑝(𝑠), 𝑞1(𝑠),… , 𝑞𝑁 (𝑠)} is a vector of arbitrary functions
admitting first and second derivatives, while the symbol ⋅ represents
the scalar product.

From Eq. (59) the following relation can be obtained

𝛿𝜃 𝛹 (𝛿𝜃) = 𝛿𝜃
[

𝐻2 𝐩 ⋅ 𝐮 −
(

𝐻1(𝐩 ⋅ 𝐮)′
)′
]

, (62)

which, after several passages, can be rewritten as

𝛿𝜃 𝛹 (𝛿𝜃) = 𝛿𝜃 𝐩 ⋅ 𝛹 (𝐮) −
[

𝛿𝜃 𝐻1𝐩′ ⋅ 𝐮
]′ +𝐻1

(

𝐩′ ⋅ 𝐮
)2

+ 𝐻1
[(

𝐩′ ⋅ 𝐮
) (

𝐩 ⋅ 𝐮′
)

−
(

𝐩′ ⋅ 𝐮′
)

(𝐩 ⋅ 𝐮)
]

. (63)

Considering that 𝐮(𝑠1) = 𝟎, by definition of the system (60), and that
the following properties hold

𝐚⊗ 𝐛 ∶ 𝐜⊗ 𝐝 = (𝐚 ⋅ 𝐜)(𝐛 ⋅ 𝐝), 𝐀 ∶ 𝐁 = tr
[

𝐀 ⋅ 𝐁⊺], 𝐚⊗ 𝐛 = (𝐛⊗ 𝐚)⊺ ,

(64)

where the symbols ‘⊗’, ‘∶’, ‘tr’ and ‘⊺’ respectively denote the outer
product, the double scalar product, the trace operator and the trans-
pose operator, Eq. (63) can be rewritten as (details are reported in
Appendix B)

𝛿𝜃 𝛹 (𝛿𝜃) = 𝐻1
(

𝐩′ ⋅ 𝐮
)2 +

[

𝐩⊗ 𝐩 ∶ ∫

𝑠

𝑠1
𝛹 (𝐮)⊗ 𝐮d𝜎 − 𝛿𝜃 𝐻1

(

𝐩′ ⋅ 𝐮
)

]′

− 2𝐩⊗ 𝐩′ ∶ ∫

𝑠

𝑠1
𝛹 (𝐮)⊗ 𝐮d𝜎.

(65)

Exploiting the identity derived from Eq. (62) and by integration by
parts

𝐻1 𝛿𝜃
′2 +𝐻2 𝛿𝜃

2 = 𝛿𝜃 𝛹 (𝛿𝜃) +
(

𝐻1 𝛿𝜃 𝛿𝜃
′)′ , (66)

the following relation finally holds for an arbitrary number 𝑁 of
isoperimetric constraints

𝐻1 𝛿𝜃
′2 +𝐻2 𝛿𝜃

2 = 𝐻1
(

𝐩′ ⋅ 𝐮
)2 +

[

𝐩⊗ 𝐩 ∶ ∫

𝑠

𝑠1
𝛹 (𝐮)⊗ 𝐮d𝜎 + 𝛿𝜃 𝐻1

(

𝐩 ⋅ 𝐮′
)

]′

− 2 𝐩⊗ 𝐩′ ∶ ∫

𝑠

𝑠1
𝛹 (𝐮)⊗ 𝐮d𝜎.

(67)

By restricting attention to the case of two isoperimetric constraints
𝑁 = 2, the vectors 𝐩(𝑠) and 𝐮(𝑠) reduce to

𝐩(𝑠) =
⎡

⎢

⎢

𝑝(𝑠)
𝑞1(𝑠)

⎤

⎥

⎥

, 𝐮(𝑠) =
⎡

⎢

⎢

𝑢(𝑠)
𝑣1(𝑠)

⎤

⎥

⎥

, (68)
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⎣ 𝑞2(𝑠) ⎦ ⎣ 𝑣2(𝑠) ⎦
and the following identity holds

∫

𝑠

𝑠1
𝛹 (𝐮(𝜎))⊗ 𝐮(𝜎)d𝜎 =

⎡

⎢

⎢

⎣

0 0 0
𝑚1(𝑠) 𝑛1(𝑠) 𝑜1(𝑠)
𝑚2(𝑠) 𝑛2(𝑠) 𝑜2(𝑠)

⎤

⎥

⎥

⎦

, (69)

where

𝑚𝑖(𝑠) = ∫

𝑠

𝑠1
𝑢(𝜎) 𝑇𝑖(𝜎)d𝜎, 𝑛𝑖(𝑠) = ∫

𝑠

𝑠1
𝑣1(𝜎) 𝑇𝑖(𝜎)d𝜎,

𝑜𝑖(𝑠) = ∫

𝑠

𝑠1
𝑣2(𝜎) 𝑇𝑖(𝜎)d𝜎,

(70)

and therefore the last term on the right hand side of Eq. (67) simplifies
as

−2𝐩⊗𝐩′ ∶ ∫

𝑠

𝑠1
𝛹 (𝐮)⊗𝐮d𝜎 = −2𝑞1

(

𝑝′𝑚1 + 𝑞′1𝑛1 + 𝑞
′
2𝑜1

)

−2𝑞2
(

𝑝′𝑚2 + 𝑞′1𝑛2 + 𝑞
′
2𝑜2

)

(71)

Following Bolza (1902), the following two constraints for the first
derivative of 𝑝(𝑠), 𝑞1(𝑠), and 𝑞2(𝑠) are considered without loss of gen-
erality

𝑝′𝑚𝑖 + 𝑞′1𝑛𝑖 + 𝑞
′
2𝑜𝑖 = 0, 𝑖 = 1, 2. (72)

The latter constraints lead to the following identities

(𝑝𝑚𝑖 + 𝑞1𝑛𝑖 + 𝑞2𝑜𝑖)′ = 𝑇𝑖(𝑝𝑢 + 𝑞1𝑣1 + 𝑞2𝑣2) = 𝑇𝑖𝛿𝜃, 𝑖 = 1, 2, (73)

which can be integrated to provide

𝑝(𝑠)𝑚𝑖(𝑠) + 𝑞1(𝑠)𝑛𝑖(𝑠) + 𝑞2(𝑠)𝑜𝑖(𝑠) = ∫

𝑠

𝑠1
𝑇𝑖𝛿𝜃 d𝜎, 𝑖 = 1, 2, (74)

by recalling that 𝑚𝑖(𝑠1) = 𝑛𝑖(𝑠1) = 𝑜𝑖(𝑠1) = 0. It follows that Eq. (61)
together with the two constraints (74) provide a linear system in 𝐩
expressed by

ℳ(𝑠)𝐩(𝑠) = 𝐳(𝑠), (75)

where the square matrix ℳ(𝑠) and the vector 𝐳(𝑠) are given by

ℳ(𝑠) =

⎡

⎢

⎢

⎢

⎣

𝑚1(𝑠) 𝑛1(𝑠) 𝑜1(𝑠)

𝑚2(𝑠) 𝑛2(𝑠) 𝑜2(𝑠)

𝑢(𝑠) 𝑣1(𝑠) 𝑣2(𝑠)

⎤

⎥

⎥

⎥

⎦

, 𝐳(𝑠) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∫

𝑠

𝑠1
𝑇1(𝜎)𝛿𝜃(𝜎)d𝜎

∫

𝑠

𝑠1
𝑇2(𝜎)𝛿𝜃(𝜎)d𝜎

𝛿𝜃(𝑠)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(76)

The matrix ℳ(𝑠) is non-singular, and therefore invertible, whenever

det [ℳ(𝑠)] ≠ 0, ∀ 𝑠 ∈ (𝑠1, 𝑠2], (77)

a condition expressing the absence of conjugate points within the in-
tegration interval. The latter condition, together with the ‘Legendre’s
condition’ (𝐻1(𝑠) > 0 ∀ 𝑠), provides the necessary and sufficient con-
dition for the stability of fixed length systems (Bolza, 1902), namely,
when both the rod’s ends are constrained by clamps (𝛿𝓁 = 0). How-
ever, condition (77) only represents a necessary condition for variable-
length systems (𝛿𝓁 ≠ 0), since perturbations in the length have to be
considered.

By considering the isoperimetric constraints (58), the relations (67)
and (71), and the constraint (72), the second variation (56) reduces to

𝛿2 = ∫

𝑠2

𝑠1
𝐻1

(

𝐩′ ⋅ 𝐮
)2 d𝜎 +

[

𝐩⊗ 𝐩 ∶ ∫

𝑠

𝑠1
𝛹 (𝐮)⊗ 𝐮d𝜎 + 𝛿𝜃 𝐻1

(

𝐩 ⋅ 𝐮′
)

]

|

|

|

|

|

𝑠2

𝑠1
2
+ ℱ (𝑠2)𝛿𝓁 , (78)
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where the second term on the right hand side further simplifies to

[

𝐩⊗ 𝐩 ∶ ∫

𝑠

𝑠1
𝛹 (𝐮)⊗ 𝐮d𝜎 + 𝛿𝜃 𝐻1

(

𝐩 ⋅ 𝐮′
)

]

|

|

|

|

|

𝑠2

𝑠1

=𝑞1(𝑠2)∫

𝑠2

𝑠1
𝑇1𝛿𝜃d𝜎

+ 𝑞2(𝑠2)∫

𝑠2

𝑠1
𝑇2𝛿𝜃d𝜎

+ 𝛿𝜃(𝑠2)𝐻1(𝑠2)𝐩(𝑠2) ⋅ 𝐮′(𝑠2),

(79)

where 𝐮′(𝑠2) is known from solving (60), while 𝐩(𝑠2) can be obtained
by particularizing the linear system (75) at the coordinate 𝑠2,

ℳ(𝑠2)𝐩(𝑠2) = 𝐳(𝑠2). (80)

Noting that, by applying the compatibility condition (57)2 and the two
isoperimetric constraints (58), 𝐳(𝑠2) is given by

𝐳(𝑠2) = 𝐳̃(𝑠2)𝛿𝓁, where 𝐳̃(𝑠2) =
⎡

⎢

⎢

⎢

⎣

𝑓1(𝑠2)

𝑓2(𝑠2)

𝑊 (𝑠2)

⎤

⎥

⎥

⎥

⎦

, (81)

and, defining the unknown vector 𝐩(𝑠2) as

𝐩(𝑠2) = 𝐩̃(𝑠2)𝛿𝓁, (82)

the linear system (80) can be rewritten as

ℳ(𝑠2)𝐩̃(𝑠2) = 𝐳̃(𝑠2), (83)

so that the second variation 𝛿2 simplifies as the following quadratic
form,

𝛿2 = ∫

𝑠2

𝑠1
𝐻1

(

𝐩′ ⋅ 𝐮
)2 d𝜎 − 𝛯 𝛿𝓁2, (84)

where

𝛯 = −
{

ℱ (𝑠2)+𝐩̃(𝑠2)⋅
[

0, 𝑓1(𝑠2), 𝑓2(𝑠2)
]⊺+𝑊 (𝑠2)𝐻1(𝑠2) 𝐩̃(𝑠2)⋅𝐮′(𝑠2)

}

. (85)

The positive definiteness of the second variation 𝛿2 , Eq. (84), for
every compatible perturbations 𝛿𝜃(𝑠) and 𝛿𝓁 provides the necessary and
sufficient conditions for the stability of an equilibrium configuration
for a system with one variable endpoint subject to two isoperimetric
constraints. When the Legendre’s condition (𝐻1(𝑠) > 0) holds, the
stability criterion for variable-length systems is represented by

𝛯 < 0, and det [ℳ(𝑠)] ≠ 0, ∀ 𝑠 ∈ (𝑠1, 𝑠2]. (86)

4.1. Stability criterion for the ‘elastica sling’

With reference to the ‘elastica sling ’ system under consideration, its
second variation (37), the compatibility condition (26)2 (with 𝑘 = 1),
and the first order expansion of the isoperimetric constraints (27) can
be obtained from the generic expressions (56), (57)2, and (58) through
the following relations

𝐻1(𝑠) = 𝐵 > 0, 𝑇1(𝑠) = − sin 𝜃(𝑠),

𝑓1(𝑠2) = − cos 𝜃2, 𝑊 (𝑠2) = −𝜃′(𝑠2),
𝐻2(𝑠) = −𝑅𝑥 cos 𝜃(𝑠) − 𝑅𝑦 sin 𝜃(𝑠), 𝑇2(𝑠) = cos 𝜃(𝑠),

𝑓2(𝑠2) = − sin 𝜃2, ℱ (𝑠2) = −𝐵𝜃′(𝑠2)𝜃′′(𝑠2),

(87)

which imply

𝐳̃(𝑠2) = −

⎡

⎢

⎢

⎢

cos 𝜃2
sin 𝜃2
′

⎤

⎥

⎥

⎥

. (88)
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⎣
𝜃 (𝑠2) ⎦

e

The stability for the ‘elastica sling ’ can be assessed through the stability
condition (86) by considering the corresponding square matrix ℳ(𝑠)

ℳ(𝑠) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−∫

𝑠

𝑠1
𝑢(𝜎) sin 𝜃(𝜎)d𝜎 −∫

𝑠

𝑠1
𝑣1(𝜎) sin 𝜃(𝜎)d𝜎 −∫

𝑠

𝑠1
𝑣2(𝜎) sin 𝜃(𝜎)d𝜎

∫

𝑠

𝑠1
𝑢(𝜎) cos 𝜃(𝜎)d𝜎 ∫

𝑠

𝑠1
𝑣1(𝜎) cos 𝜃(𝜎)d𝜎 ∫

𝑠

𝑠1
𝑣2(𝜎) cos 𝜃(𝜎)d𝜎

𝑢(𝑠) 𝑣1(𝑠) 𝑣2(𝑠)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(89)

and parameter 𝛯

𝛯 = 𝐵𝜃′(𝑠2)𝜃′′(𝑠2) + 𝐩̃(𝑠2) ⋅
[

0, cos 𝜃2, sin 𝜃2
]⊺ + 𝐵𝜃′(𝑠2) 𝐩̃(𝑠2) ⋅ 𝐮′(𝑠2). (90)

Critical case 𝛯 = 0. It is finally observed that 𝛯 = 0 represents a critical
condition because the stability criterion (86) is no longer met. Although
a rigorous analytical assessment of the stability is not addressed here
for the critical equilibrium configurations, through consideration of
an auxiliary clamped–clamped system, all the several performed semi-
analytical analyses detected an unstable character. More specifically, as
shown in the next Section, it is found that whenever 𝛯 = 0 then

𝛿2||
|𝛿𝜃=𝛿𝜃

= 0 and 𝛿3||
|𝛿𝜃=𝛿𝜃

≠ 0 for 𝛿𝜃(𝑠) =
𝜕𝜃𝑐𝑐𝑒𝑞 (𝑠,𝓁)

𝜕𝓁

|

|

|

|

|𝓁=𝓁𝑒𝑞

𝛿𝓁,

(91)

here 𝜃𝑐𝑐𝑒𝑞 (𝑠,𝓁) is the equilibrium rotation field for the clamped–clamped
ystem with rod’s length 𝓁 subject to the same boundary conditions (4)
nd (6) of the variable-length system. Therefore, based on this obser-
ation,

the non-trivial equilibrium configurations for the variable-length system
providing the critical condition 𝛯 = 0 are found unstable.

. Results

.1. Theoretical predictions

Once the planar equilibrium configurations are obtained, their sta-
ility can be assessed through the criterion provided by Eq. (86). A
ain result of the present procedure is that no more than one stable

quilibrium configuration exists for the variable-length system. More-
ver, all the equilibrium configurations with more than one inflection
oint (𝑚 > 1) are found unstable in the presence of a sliding sleeve, dif-
erently from the double-clamped system where all the configurations
ith more than two inflection points (𝑚 > 2) are unstable (Love, 1927).

The theoretical surface collecting the normalized distance 𝑑∕𝓁 of
he unique stable equilibrium configuration is reported in Fig. 5 (left)
n terms of 𝜃𝐴 and 𝜃𝑆 , respectively defined as antisymmetric and
ymmetric parts of the inclinations 𝜃1 and 𝜃2 imposed at the two sliding
leeves,

𝐴 =
𝜃1 + 𝜃2

2
, 𝜃𝑆 =

𝜃2 − 𝜃1
2

, (92)

where, considering the necessary condition (35), the modulus of the
symmetric angle 𝜃𝑆 for the existence of an equilibrium configuration is
limited by

|

|

𝜃𝑆 || ≤
𝜋
2
. (93)

The equilibrium surface of Fig. 5 (left) is obtained through a dataset
of 66,400 triads {𝑑∕𝓁, 𝜃𝐴, 𝜃𝑆} (available as Supplementary material)
valuated through a semi-analytical procedure based on the numerical
olution 𝑑∕𝓁 of the nonlinear system of Eqs. (52) by varying 𝜃𝐴 and 𝜃𝑆 ,
or which the stability criteria (86) holds.

The stable equilibrium surface is bounded by a closed (red) curve
efining the critical triads {𝑑∕𝓁, 𝜃𝐴, 𝜃𝑆} for which the rod is indefinitely
jected because the modulus of the gradient of 𝑑∕𝓁 approaches an
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Fig. 5. (Left) Surface representing the dimensionless value 𝑑∕𝓁 of the stable equilibrium configuration with varying the end rotations 𝜃𝐴 and 𝜃𝑆 (dataset available as Supplementary
material). The red boundary represents the critical states leading to indefinite ejection of the elastic rod and which are characterized by a vertical tangent of the equilibrium
surface. (Right) Due to symmetry properties, a quarter of the proposed critical curve is represented (red) together with some deformed shapes at equilibrium. Attaining the border
leads to the indefinite ejection of the elastic rod from the constraints. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
infinite value and an unbounded growth of the rod’s length 𝓁, there-
fore realizing an ‘elastica sling ’. With reference to the mathematical
conditions of stability, the ‘elastica sling ’ critical curve is associated
with solutions for which the inequality condition (86)1 is no longer
met because 𝛯 = 0, while the determinant condition (86)2 still holds.
No equilibrium configuration is found for rotation pairs outside of
the critical curve, being such rotations incompatible with the ‘mother
curve’ for the ‘elastica sling ’ (Section 3, Fig. 4). In practice, the critical
curve has been defined through a bisection algorithm by considering
intervals with bounds provided by one pair of 𝜃𝐴 and 𝜃𝑆 for which the
stable solution exists and by another pair for which no solution exists.
Convergence to the critical condition is considered to be reached when
the difference in both angles combination is smaller than 10−6.

The projection of the ‘elastica sling ’ critical curve in the 𝜃𝐴–𝜃𝑆
rotation plane is reported in Fig. 5 (right). Due to its symmetry,
the projection of the critical curve is reported only for one quarter,
representative of the absolute values |𝜃𝐴|–|𝜃𝑆 | of the critical pairs.
Three specific rotation paths (at constant ratio 𝜃𝑆∕𝜃𝐴) are highlighted
and complemented by the equilibrium configuration at some specific
rotation pairs. More specifically, the highlighted paths are for 𝜃𝐴 = 0
(yellow), for 𝜃𝑆 = 0 (orange), and for 𝜃𝐴 = 𝜃𝑆 (green), showing that
only the first path involves deformed configurations with no inflection
points (𝑚 = 0), while one inflection point (𝑚 = 1) is present in the other
two paths.

The total potential energy  for five different straight paths in the
𝜃𝐴–𝜃𝑆 plane is reported in Fig. 6 (left) for decreasing value of the
ratio 𝑑∕𝓁. Stable (unstable) configurations are reported as continuous
(dashed) lines. All of these five paths initiate at null rotations and with a
straight configuration (𝑑∕𝓁 = 1) and lose stability at the corresponding
critical value 𝑑∕𝓁 of ejection, where the total potential energy  attains
a local maximum. It is also observed that, among the different paths,
the highest (lowest) total potential energy  at the critical value of 𝑑∕𝓁
is stored in the system evolving with a pure antisymmetric (symmetric)
rotation path, 𝜃𝑆 = 0 (𝜃𝐴 = 0), therefore corresponding to the most
(less) propulsive case of indefinite ejection. The ‘elastica sling ’ critical
10
states (red continuous line, projection of the ‘elastica sling ’ critical
curve reported in Fig. 5, left) collects the indefinite ejection conditions
corresponding to all the possible continuous evolution in the rotations
of the two sliding sleeves starting from the straight undeformed con-
figuration of the rod. It is further noted that all the different unstable
equilibrium paths (dashed lines) have a common state (gray point),
corresponding to the symmetric configuration for 𝜃𝐴 = 𝜃𝑆 = 0 with
two inflection points (𝑚 = 2). These unstable paths can be attained by
further decreasing the rotations’ amplitude after reaching the critical
configuration and moving along a different equilibrium path.

The bending moment at the second sliding sleeve, 𝑀2 = 𝐵𝜃′(𝑠2),
versus the imposed symmetric rotation 𝜃𝑆 is reported in Fig. 6 (right)
for null antisymmetric rotation (𝜃𝑆 = 𝜃2 = −𝜃1, 𝜃𝐴 = 0). The response
is reported for the unique stable path configuration as continuous line
and for two unstable paths as dashed lines. The three equilibrium
paths join together at the point 𝜃𝑆 = 𝜋∕2, where a vertical tangent is
displayed for each one of these and indefinite ejection takes place. No
(stable or unstable) equilibrium configuration exists for 𝜃𝑆 > 𝜋∕2 (gray
region) since condition (93) is no longer met. Deformed configurations
at specific values of the angle 𝜃𝑆 are included along the moment–
rotation evolution, showing that the stable configurations have no
inflection points (𝑚 = 0) while all the unstable ones have two inflection
points (𝑚 = 2). Interestingly, the stable path associated with the non-
inflectional elastica loses the stability at 𝜃𝑆 = 𝜋∕2 as two inflection
points simultaneously arise at the two edge coordinates, 𝑠1 and 𝑠2.

To further understand the present results and in particular how an
equilibrium configuration is generated, when this is stable or unstable,
and when this represents a critical condition of ejection, an analogous
system with imposed rotations 𝜃𝐴 and 𝜃𝑆 but with clamps at both
ends is considered. The total potential energy 𝑐𝑐 of the clamped–
clamped system at equilibrium with a rod’s length 𝓁 is reported in
Fig. 7 (left) with varying the ratio 𝑑∕𝓁 for 𝜃𝐴 = 0 and 𝜃𝑆 = 10𝜋∕63
(above left) and 𝜃𝑆 = 𝜋∕2 (bottom left). It is interesting to note that
equilibrium configurations for the system with a sliding sleeve corre-

spond to those ratios 𝑑∕𝓁 providing the stationary condition of 𝑐𝑐 for



European Journal of Mechanics / A Solids 105 (2024) 105273A. Cazzolli and F. Dal Corso
Fig. 6. (Left) Total potential energy  for an elastica constrained through a clamp and a sliding sleeve as function of 𝑑∕𝓁. Stable (continuous lines) and unstable (dashed lines)
paths are reported for different ends’ rotation path, in particular the cases 𝜃𝐴 = 0, 𝜃𝐴 = 𝜃𝑆 and 𝜃𝑆 = 0 are reported in yellow, green and orange, respectively, and represent the
three equilibrium paths reported in Fig. 5. Indefinite ejection occurs when the system attains a local maximum in the total potential energy  . (Right) Stable (continuous line) and
unstable (dashed line) evolutions of the bending moment 𝑀2 = 𝐵𝜃′(𝑠2) (made dimensionless through division by 𝐵∕𝑑) with increasing symmetric rotation 𝜃𝑆 at null antisymmetric
angle 𝜃𝐴 = 0. Related equilibrium configurations are highlighted. In the particular case 𝜃𝑆 ≃ 10𝜋∕63, the related deformed shapes are those represented in Fig. 7 (right, above
part). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the clamped–clamped system, 𝜕𝑐𝑐∕𝜕(𝑑∕𝓁) = 0. More specifically, the
stable (unstable) configuration of the sliding sleeve system corresponds
to the local minimum (maximum) of the total potential energy 𝑐𝑐 of
the clamped–clamped system (Fig. 7, above left). Moreover, the critical
condition of indefinite ejection for the system with a sliding sleeve
corresponds to a saddle point of 𝑐𝑐 (Fig. 7, bottom left). Similarly
to all the equilibrium configurations belonging to the ‘elastica sling ’
critical curve, the considered critical configuration is found to provide
𝛯 = 0 and assessed as unstable because, while the second derivative
is null (𝜕2𝑐𝑐∕𝜕(𝑑∕𝓁)2 = 0), the third derivative does not vanish
(𝜕3𝑐𝑐∕𝜕(𝑑∕𝓁)3 ≠ 0), providing the respective variations 𝛿2 = 0 and
𝛿3 ≠ 0 under the specific rotation perturbation 𝛿𝜃(𝑠) as described by
Eq. (91).

5.2. Experimental validation

The obtained theoretical predictions are finally validated through
experiments on polycarbonate rods (Young’s Modulus E = 2350 MPa
and volumetric mass density 𝜌 = 1180 kg/m3) constrained by a rotating
clamp at 𝑠1 and a sliding sleeve at 𝑠2, Fig. 8 (left). The sliding sleeve
exploited here is the same adopted in Bosi et al. (2014) for realizing
the elastica arm scale. The tests are conducted with fixed values of
𝜃2 and increasing values of 𝜃1, controlled through a slow rotation by
hand of the clamp. When the rod is observed to have an uncontrolled
ejection, the rotation 𝜃1 is stopped and the measured value is recorded
as 𝜃𝑒𝑥𝑝1,𝑐𝑟(𝜃2). The comparison between the experimental measure of the
critical angle 𝜃𝑒𝑥𝑝1,𝑐𝑟 versus its theoretical prediction 𝜃𝑡ℎ1,𝑐𝑟 is reported as
a function of the angle 𝜃2 in Fig. 8 (right, above). The corresponding
error 𝑒mean =

(

𝜃𝑒𝑥𝑝1,𝑐𝑟 − 𝜃
𝑡ℎ
1,𝑐𝑟

)

∕𝜃𝑡ℎ1,𝑐𝑟 is also shown in Fig. 8 (right, bottom).
Two different thicknesses for the polycarbonate rod of width 20 mm
are considered, 𝑡 = 2 mm and 𝑡 = 3 mm. The distance between the two
constraints is fixed to 𝑑 =500 mm. It is observed that the error is greater
for 𝜃2 > 0 than that for 𝜃2 < 0 because corresponding to deformed
shapes with larger rotations. When 𝜃2 > 0 the maximum error 𝑒mean ≈
9% is achieved for 𝜃2 ∈ [5∕6, 1]𝜋∕2, while when 𝜃2 < 0 the maximum
error 𝑒mean ≈ 4% is achieved for 𝜃2 ≈ 0. Therefore, it follows that the
error 𝑒mean increases as the ratio 𝜃𝐴∕𝜃𝑆 increases, to which corresponds
11

an increase of the total potential energy  at the critical conditions (cfr.
Fig. 6). This observation is in agreement with a previous experimental
experience in a different setting (Cazzolli et al., 2018) where polikristal
rods, displaying similar properties of the polycarbonate ones, were
tested. Nevertheless, apart from such discrepancies which could be
reduced by adopting a rod’s material characterized by smaller intrinsic
viscosity and weight-stiffness ratio, the theoretical curve is very well
capturing the trend of the experimental measures.

Furthermore, the evolution of the system with 𝜃2 = −𝜋∕2 is reported
in Fig. 9 through three snapshots taken at increasing 𝜃1. According to
the theoretical predictions, a fast motion can be appreciated through
the indefinite rod’s ejection when 𝜃1 approaches the critical value,
𝜃1,𝑐𝑟(𝜃2 = −𝜋∕2) = 𝜋∕2.

6. Conclusions

The equilibrium and the stability have been addressed for a planar
mechanical system, based on a elastic rod constrained at its two edges
by a pair of sliding sleeves with controlled position and inclination.
The presence of the sliding sleeve constraints defines a variable-length
system subject to configurational forces at its edges. The nonlinear
equations governing the equilibrium are derived through a variational
approach and solved in terms of elliptic integrals.

For the first time, a theoretical stability criterion has been de-
fined for variable domain systems, by extending a previous frame-
work restricted to fixed domains. The stability analysis shows that no
more than one stable equilibrium configuration exists for every sliding
sleeves’ inclination pairs, that is characterized by none or one inflection
point. The set of critical conditions giving rise to the loss of stability
is revealed, for which the elastic element is indefinitely ejected from
the constraints, thus realizing an ‘elastica sling ’. Finally, the theoretical
results are validated by comparison with experimental tests carried out
on a physical prototype.

As the elastic energy stored in the variable-length element is re-
leased and converted into kinetic energy when the mechanical insta-
bility occurs, the present system can be exploited as a novel actu-
ation mechanism in several technological fields. Examples of appli-
cation include soft robotic locomotion, wave mitigation and energy

harvesting.
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Fig. 7. (Left) Total potential energy 𝑐𝑐 of the double-clamped system of fixed rod’s length 𝓁 at equilibrium with varying the ratio 𝑑∕𝓁. The two clamp rotations are considered
such that 𝜃𝐴 = 0 and 𝜃𝑆 = 10𝜋∕63 (above) or 𝜃𝑆 = 𝜋∕2 (bottom). Stationary points of 𝑐𝑐 define the equilibrium solution for the system where at least one of the two clamps is
replaced by a sliding sleeve. (Right) Corresponding deformed shapes at (stable, unstable, and critical) equilibrium for the variable-length system, corresponding to the stationary
points on the 𝑐𝑐 curve (highlighted through a circle with the same color of the deformed shape).
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Fig. 8. (Left) Experimental setup realized through a polycarbonate rod (white) clamped at one end and constrained at the other with a sliding sleeve. (Right, above) Experimental
measures of the critical angle 𝜃𝑒𝑥𝑝1,𝑐𝑟, obtained by testing two polycarbonate rods with different thickness 𝑡, compared with the theoretical prediction 𝜃𝑡ℎ1,𝑐𝑟 from the ‘elastica sling ’
critical curve (red curve, projection in the 𝜃1 − 𝜃2 plane of the critical curve in Fig. 5). (Right, bottom) Corresponding percentage error 𝑒mean between the experimental measures
of the critical angle 𝜃𝑒𝑥𝑝1,𝑐𝑟 and the corresponding theoretical value 𝜃𝑡ℎ1,𝑐𝑟. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 9. Snapshots taken during the experiment under 𝜃2 = −𝜋∕2 at increasing 𝜃1 (from left to right). The indefinite ejection of the rod from the sliding sleeve is displayed for
𝜃1 ≈ 𝜃1,𝑐𝑟 = 𝜋∕2, according to the theoretical predictions.
Appendix A. General variational approach for variable domains

A.1. Preliminaries

The generic smooth variation 𝑠∗ for the curvilinear coordinate 𝑠 and
𝜃∗ for the rotation field 𝜃 are introduced for describing the perturbed
solution of the rod outside the sliding sleeves

𝑠∗ = (𝑠, 𝜃, 𝜃′; 𝜖), 𝜃∗ =  (𝑠, 𝜃, 𝜃′; 𝜖), (A.1)

with (𝑠, 𝜃, 𝜃′; 0) = 𝑠 and  (𝑠, 𝜃, 𝜃′; 0) = 𝜃 for 𝜖 = 0. A first-order
expansion of the previous equations for small values of 𝜖 provides

𝑠∗ = 𝑠 + 𝜖𝜙(𝑠, 𝜃, 𝜃′) + 𝑜(𝜖), 𝜃∗ = 𝜃(𝑠) + 𝜖𝜓(𝑠, 𝜃, 𝜃′) + 𝑜(𝜖), (A.2)
13
where 𝜙 and 𝜓 are the first derivatives of the functions  and  with
respect to 𝜖 and evaluated at 𝜖 = 0. The perturbations follow as

𝛥𝑠 = 𝑠∗ − 𝑠 = 𝜖𝜙(𝑠) + 𝑜(𝜖), 𝛥𝜃 = 𝜃∗(𝑠∗) − 𝜃(𝑠) = 𝜖𝜓(𝑠) + 𝑜(𝜖), (A.3)

from which, following Gelfand and Fomin (1963), the first-order vari-
ations 𝛿𝜃 and 𝛿𝑠 are given

𝛿𝑠 = 𝜖𝜙, 𝛿𝜃 = 𝜖𝜓. (A.4)

The notation ‘ ⋅̃ ’ is introduced to distinguish the ‘general’ variations pro-
posed by Gelfand and Fomin (1963) from those proposed in Eqs. (9)–
(13). It is also worth to underline that, in the case of Dirichlet boundary
conditions given in terms of the field 𝜃(𝑠) at both ends, the fixed ends’
rotations must be fulfilled for both the perturbed and unperturbed
configurations, so that the condition 𝜃∗(𝑠∗) = 𝜃(𝑠 ) holds at each
𝑖 𝑖
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endpoint 𝑠𝑖 (𝑖 = 1, 2) and therefore

𝜃̃(𝑠𝑖) = 0 𝑖 = 1, 2, (A.5)

while the perturbation 𝛿𝑠 is in general different from zero.
A further rotation difference 𝛥𝜃 introduced by Elsgolts (1977) and

reported in Eq. (12) can be rewritten as:

𝛥𝜃 = 𝜃∗(𝑠) − 𝜃(𝑠) = 𝜖𝜓(𝑠) + 𝑜(𝜖), (A.6)

which represents the gap between the rotation of the perturbed solution
and of the equilibrium evaluated at a fixed coordinate 𝑠, so that its
related variation is

𝛿𝜃 = 𝜖𝜓. (A.7)

The ‘general’ difference introduced in Eq. (A.3)2 can be therefore
rewritten as

𝛥𝜃 = 𝜃∗(𝑠∗) − 𝜃∗(𝑠) + 𝛥𝜃, (A.8)

and expanded in Taylor series for a small difference 𝛥𝑠 as

𝜖𝜓 + 𝑜(𝜖) ≃
∞
∑

𝑖=1

[

𝜕𝑖𝜃∗(𝑠)
𝜕𝑠𝑖

(𝑠∗ − 𝑠)𝑖

𝑖!

]

+ 𝜖𝜓 + 𝑜(𝜖). (A.9)

By truncating the expansions in the expressions of 𝛥𝜃, 𝛥𝜃 and 𝛥𝑠 to
he first order (so that 𝜃∗(𝑠) = 𝜃(𝑠) + 𝜖𝜓) the following expressions are

obtained for increasing orders

𝛿𝜃 = 𝜃′𝛿𝑠+ 𝛿𝜃, 0 = 𝜃′′

2
𝛿𝑠

2
+ 𝛿𝜃

′
𝛿𝑠, 0 = 𝜃′′′

6
𝛿𝑠

3
+ 𝛿𝜃

′′

2
𝛿𝑠

2
, … (A.10)

By means of Eqs. (A.5) enforcing Dirichlet boundary conditions at both
ends and Eq. (A.10)1, one can express the values assumed by 𝛿𝜃 at both
ends in the following form

𝛿𝜃(𝑠𝑖) = −𝜃′(𝑠𝑖)𝛿𝑠𝑖, ∀ 𝑠𝑖. (A.11)

Moreover, considering the following difference of derivatives

𝛥𝜃𝑠 =
𝜕𝜃∗(𝑠∗)
𝜕𝑠∗

−
𝜕𝜃(𝑠)
𝜕𝑠

, (A.12)

the following linear equation is obtained from its first order expan-
sion (Gelfand and Fomin, 1963)

𝛿𝜃𝑠 = 𝜃′′𝛿𝑠 + 𝛿𝜃
′
, (A.13)

which is therefore different from 𝛿𝜃
′
, the simple derivative of the

perturbation 𝛿𝜃,

𝛿𝜃𝑠 ≠ 𝛿𝜃
′
= 𝜃′′𝛿𝑠 + 𝜃′𝛿𝑠

′
+ 𝛿𝜃

′
. (A.14)

A.2. General variations of a functional

For a functional  given as the integral of a functional 𝐹 dependent
on the fields 𝜃 and 𝜃′ and subject to Dirichlet boundary conditions at
both ends, 𝜃(𝑠1) = 𝜃1 and 𝜃(𝑠2) = 𝜃2, explicitly dependent1 on the
curvilinear coordinate 𝑠 and subject to isoperimetric constraints, whose
Lagrange multipliers are collected in the vector 𝝌 ,

 = ∫

𝑠2

𝑠1
𝐹
[

𝑠, 𝜃(𝑠), 𝜃′(𝑠),𝝌
]

d𝑠, (A.15)

the first variation 𝛿 is

𝛿 =∫

𝑠2

𝑠1

[

𝛿𝜃
(

𝐹𝜃 −
𝜕
𝜕𝑠

(

𝐹𝜃′
)

)

+ ∇𝝌𝐹 ⋅ 𝛿𝝌
]

d𝑠 +
[

𝐹𝛿𝑠 + 𝐹𝜃′𝛿𝜃
]

|

|

|

|

𝑠2

𝑠1
.

(A.16)

1 For instance, in the case of an Euler’s elastica through an explicitly defined
xpression of the bending stiffness 𝐵(𝑠).
14
By assuming that the functional 𝐹 is not explicitly dependent on 𝑠, the
second 𝛿2 and third 𝛿3 variations are

𝛿2 =∫

𝑠2

𝑠1

[

𝛿𝜃
′2
𝐹𝜃′𝜃′ + 𝛿𝜃

2
𝐹𝜃𝜃 + 2 𝛿𝜃 𝛿𝜃

′
𝐹𝜃𝜃′

]

d𝑠 +
[

𝐹𝑠 − 𝜃′ 𝐹𝜃
]

𝛿𝑠
2|
|

|

|

𝑠2

𝑠1

+ 2
[

∫

𝑠2

𝑠1

[

∇𝝌𝐹𝜃 𝛿𝜃 + ∇𝝌𝐹𝜃′ 𝛿𝜃
′]

d𝑠 +
[

𝛿𝑠∇𝝌𝐹
]

|

|

|

|

𝑠2

𝑠1

]

⋅ 𝛿𝝌 ,

3 =∫

𝑠2

𝑠1
𝛿𝑠

′ [
−3 𝛿𝜃𝑠

2
𝐹𝜃′𝜃′ − 6 𝛿𝜃𝑠 𝛿𝑠

′
𝐹𝜃′ + 3 𝛿𝜃

2
𝐹𝜃𝜃 + 6 𝛿𝜃∇𝝌𝐹𝜃 ⋅ 𝛿𝝌

]

d𝑠

+ ∫

𝑠2

𝑠1

[

3 𝛿𝜃
2
∇𝝌𝐹𝜃𝜃 ⋅ 𝛿𝝌 + 𝛿𝜃

3
𝐹𝜃𝜃𝜃

]

d𝑠.

(A.17)

roof. The general increment 𝛥 for the functional  (A.15),

 = ∫

𝑠∗2

𝑠1∗
𝐹
[

𝑠∗, 𝜃∗(𝑠∗),
𝜕𝜃∗(𝑠∗)
𝜕𝑠∗

,𝝌∗
]

d𝑠∗ − ∫

𝑠2

𝑠1
𝐹
[

𝑠, 𝜃(𝑠), 𝜃′(𝑠),𝝌
]

d𝑠

(A.18)

an be firstly transformed by evaluating the differential for the coordi-
ate 𝑠∗ from Eq. (A.2)1, namely

𝑠∗ = (1 + 𝜖𝜙′)d𝑠. (A.19)

he following linear transformation of the Lagrange multipliers is
ntroduced

∗ = 𝝌 + 𝜖𝐱, (A.20)

here 𝐱 is independent of 𝑠, so that 𝛿𝝌 = 𝜖𝐱 denotes the vector of
erturbations in the Lagrange multipliers.

The general variation 𝛥 (A.18) can be rewritten as

 = ∫

𝑠2

𝑠1

{

𝐹
[

𝑠∗, 𝜃∗(𝑠∗),
𝜕𝜃∗(𝑠∗)
𝜕𝑠

∗
,𝝌∗

]

(1 + 𝜖𝜙′) − 𝐹
[

𝑠, 𝜃(𝑠), 𝜃′(𝑠),𝝌
]

}

d𝑠,

(A.21)

o that its expansion in the ‘small’ parameter 𝜖 provides

 ≃ 𝜖 1 +
𝜖2

2
2 +

𝜖3

6
3 + 𝑜

(

𝜖3
)

(A.22)

here variations of the total potential energy are denoted by 𝛿𝑖 = 𝜖𝑖𝑖.
Since the vector 𝝌 is assumed to be independent of 𝑠, the following

elation holds
d𝐹 [𝑠, 𝜃(𝑠), 𝜃′(𝑠),𝝌]

d𝑠 = 𝐹𝑠 + 𝐹𝜃𝜃′ + 𝐹𝜃′𝜃′′, (A.23)

here the terms 𝐹𝜉 denote differentiations of the functional 𝐹 with
espect to the generic scalar field 𝜉, and the following expression for
he first variation 𝛿 is obtained

 = ∫

𝑠2

𝑠1

[

∇𝝌𝐹 ⋅ 𝛿𝝌 + 𝐹𝜃𝛿𝜃 + 𝐹𝜃′𝛿𝜃𝑠 + 𝐹𝛿𝑠
′
+ 𝐹𝑠𝛿𝑠

]

d𝑠, (A.24)

o that integration by parts leads to

 = ∫

𝑠2

𝑠1

[

∇𝝌𝐹 ⋅ 𝛿𝝌 + 𝐹𝜃 𝛿𝜃 + 𝐹𝜃′ 𝛿𝜃𝑠 + 𝐹𝑠𝛿𝑠
]

d𝑠 + 𝐹𝛿𝑠||
|

𝑠2

𝑠1

− ∫

𝑠2

𝑠1
𝛿𝑠

[

𝐹𝑠 + 𝐹𝜃𝜃′ + 𝐹𝜃′𝜃′′
]

d𝑠, (A.25)

here ∇𝝌𝐹 is the first gradient of 𝐹 taken with respect to the Lagrange
ultipliers and where the terms 𝐹𝑠𝛿𝑠 within the integrals simplify.
y substituting Eqs. (A.10)1 and (A.14)1, many terms simplify and
elation (A.16) is obtained (see also a similar proof by Gelfand and
omin (1963)), which is the same expression that would be obtained
y performing variations with respect to the perturbation 𝛿𝜃 introduced

by Elsgolts (1977), see Eq. (12).
The expression for the general second variation 𝛿2 is obtained by

assuming 𝝌 independent of 𝑠 and the functional 𝐹 linearly-dependent
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on 𝝌 as

2 =∫

𝑠2

𝑠1

[

𝛿𝜃𝑠
2
𝐹𝜃′𝜃′ + 𝛿𝜃

2
𝐹𝜃𝜃 + 𝛿𝑠

2
𝐹𝑠𝑠 + 2 𝛿𝜃 𝛿𝜃𝑠𝐹𝜃𝜃′

+ 2 𝛿𝑠 𝛿𝜃𝑠𝐹𝑠𝜃′ + 2 𝛿𝑠 𝛿𝜃𝐹𝑠𝜃
]

d𝑠

+ 2∫

𝑠2

𝑠1
𝛿𝑠

′ (
𝛿𝑠𝐹𝑠 + 𝛿𝜃𝐹𝜃

)

d𝑠 + 2
[

∫

𝑠2

𝑠1

[

𝛿𝑠∇𝝌𝐹𝑠 + 𝛿𝜃∇𝝌𝐹𝜃

+ 𝛿𝜃𝑠∇𝝌𝐹𝜃′ + 𝛿𝑠
′
∇𝝌𝐹

]

d𝑠
]

⋅ 𝛿𝝌 .

(A.26)

where due to the linearity of 𝐹 with respect to the vector 𝝌 , the
condition ∇𝝌𝝌𝐹 = 𝟎 holds true, being ∇𝝌𝝌𝐹 the second gradient of
𝐹 taken with respect to the Lagrange multipliers.

Recalling Eq. (A.5) and the isoperimetric constraints, and perform-
ing integration by parts, after several passages the second variation 𝛿2
can be expressed in terms of the variation 𝛿𝜃 as expression (A.17)1,
which is the same expression that would have been obtained by per-
forming variations with respect to the perturbation 𝛿𝜃 from the begin-
ing.

Finally, by considering the functional 𝐹 independent of 𝑠, the third
ariation 𝛿3 follows as Eq. (A.17)2.

eneral variational problem for the ‘elastica sling ’. With reference to the
elastica sling ’, the functional  is given by the total potential energy
xpressed by Eq. (7) and the isoperimetric constraints (6) imply that
he perturbation in the rotation field 𝛿𝜃 satisfies Eqs. (A.5), namely
𝜃̃(𝑠1) = 0, 𝛿𝜃(𝑠2) = 0.

Since a uniform bending stiffness 𝐵 is assumed, the functional 𝐹 in
q. (A.15) is not explicitly dependent on the curvilinear coordinate 𝑠,
herefore 𝐹𝑠 = 0. The expression for first variation of the total potential
nergy can be easily recovered from Eq. (A.16) as

 = −∫

𝑠2

𝑠1

[

𝐵𝜃′′(𝑠) + 𝑅𝑥 sin 𝜃(𝑠) − 𝑅𝑦 cos 𝜃(𝑠)
]

𝛿𝜃(𝑠)d𝑠

−

{

𝐵
[

𝜃′(𝑠2)
]2

2
− 𝑅𝑥 cos 𝜃(𝑠2) − 𝑅𝑦 sin 𝜃(𝑠2)

}

(

𝛿𝑠2 − 𝛿𝑠1
)

−𝛿𝑅𝑥

(

𝑑 − ∫

𝑠2

𝑠1
cos 𝜃(𝑠)d𝑠

)

+ 𝛿𝑅𝑦 ∫

𝑠2

𝑠1
sin 𝜃(𝑠)d𝑠,

(A.27)

where for the sake of brevity, the vanishing terms involving the multi-
pliers 𝑀1 and 𝑀2 and related variations are not reported. By replacing
the perturbation 𝛿𝜃 (for which the variational formulation is not af-
fected by ‘pure-sliding’ motions) with 𝛿𝜃, expression (A.27) provides
Eq. (28).

Considering that the properties 𝐹𝜃𝜃′ = 𝐹𝑠 = ∇𝝌𝐹𝜃′ = 𝟎 hold true
for the ‘elastica sling ’, the second variation can be obtained from the
generic expression (A.17)1 as

𝛿2 =∫

𝑠2

𝑠1

[

𝐵 𝛿𝜃
′2
− 𝛿𝜃

2 (
𝑅𝑥 cos 𝜃 + 𝑅𝑦 sin 𝜃

)

]

d𝑠 −
[

𝐵𝜃′𝜃′′
]

𝛿𝑠
2|
|

|

|

𝑠2

𝑠1

+ 2 𝛿𝑅𝑥

(

∫

𝑠2

𝑠1
− sin 𝜃 𝛿𝜃 d𝑠 + cos 𝜃𝛿𝑠||

|

𝑠2

𝑠1

)

+ 2 𝛿𝑅𝑦

(

∫

𝑠2

𝑠1
cos 𝜃 𝛿𝜃 d𝑠 + sin 𝜃𝛿𝑠||

|

𝑠2

𝑠1

)

,

(A.28)
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and the third variation from Eq. (A.17)2 as

𝛿3 = − ∫

𝑠2

𝑠1
𝐵 𝜃′′ 𝛿𝜃

3
d𝑠 − 𝐵

2
𝛿𝑠

3
[

𝜃′′2

2
+ 𝜃′4

]

|

|

|

|

|

𝑠2

𝑠1

+ 3 𝛿𝑅𝑥

(

∫

𝑠2

𝑠1
−cos 𝜃 𝛿𝜃

2
d𝑠 − sin 𝜃 𝛿𝜃 𝛿𝑠||

|

𝑠2

𝑠1

)

+ 3 𝛿𝑅𝑦

(

∫

𝑠2

𝑠1
− sin 𝜃 𝛿𝜃

2
d𝑠 + cos 𝜃 𝛿𝜃 𝛿𝑠||

|

𝑠2

𝑠1

)

.

(A.29)

A.3. Equivalence of equilibrium and stability for rods constrained by one or
two sliding sleeves

In this section, the equivalence between the equilibrium and the sta-
bility of an Euler’s elastica constrained by one and two sliding sleeves
is discussed. In particular, the proof of equivalence is achieved by
firstly considering the effect of the so called ‘pure-sliding’ as previously
reported in Section 2.3. This particular combination of perturbations is
related to a neutral equilibrium (namely all superior variations are null)
as the new ‘perturbed’ configuration outside the constraints remains
equal to the initial one. For this reason, some changes in the coordinates
are introduced in order to transform the current problem into a new
‘virtual system’ having a single variable endpoint only. By changing
the governing equations through the aforementioned transformations,
the first and second variations write as

𝛿 = − ∫



0

(

𝐵𝛩′′ + 𝑅𝑥 sin𝛩 − 𝑅𝑦 cos𝛩
)

𝛿𝛩 d𝑆

−
(𝐵
2
𝛩′()2 − 𝑅𝑥 cos𝛩() − 𝑅𝑦 sin𝛩()

)

𝛿,

𝛿2 =∫



0

[

𝐵 𝛿𝛩
′2
− 𝛿𝛩

2 (
𝑅𝑥 cos𝛩 + 𝑅𝑦 sin𝛩

)

]

d𝑆 − 𝐵𝛩′()𝛩′′()𝛿
2

+ 2 𝛿𝑅𝑥

(

∫



0
− sin𝛩 𝛿𝛩 d𝑆 + cos𝛩()𝛿

)

+ 2 𝛿𝑅𝑦

(

∫



0
cos𝛩 𝛿𝛩 d𝑆 + sin𝛩()̃

)

,

(A.30)

where 𝛿 = 𝛿𝑠2−𝛿𝑠1. The expressions for the first and second variations
(A.30) respectively show that the equilibrium and stability for the
system with two sliding sleeves is coincident with those of the same
system with one sliding sleeve replaced by a clamp, except for a neutral
perturbation provided by a ‘pure-sliding’.

‘Pure-sliding’. A neutral equilibrium can be attained for the system
with two sliding sleeves by introducing a constant perturbation in the
curvilinear coordinate 𝛿𝑠 = 𝛿𝑠1, such that the deformed configuration of
the rod outside the constraints remains the same, namely 𝜃∗(𝑠∗) = 𝜃(𝑠),
and therefore because of Eq. (A.3) the perturbation 𝛿𝜃 is null for any
coordinate 𝑠

𝛿𝜃(𝑠) = 0 ⇒ 𝛿𝜃(𝑠) = −𝜃′(𝑠)𝛿𝑠1, (A.31)

ut for non-null variations 𝛿𝜃 and 𝛿𝑠1.
Moreover, due to the fact that both the equilibrium and perturbed

solutions outside the constraints are the same, no difference can be
obtained in terms of derivatives, namely
𝜕𝜃∗(𝑠∗)
𝜕𝑠∗

=
𝜕𝜃(𝑠)
𝜕𝑠

, (A.32)

so that because of Eqs. (A.12) and (A.14) the perturbation 𝛿𝜃𝑠 must
vanish. Being the perturbation 𝛿𝑠 constant for any 𝑠, its derivative must
obviously vanish (𝛿𝑠′ = 0). Finally, no difference can be attained in
terms of the reaction forces at both ends, so that 𝛿𝝌 = 𝟎. Looking
at Eqs. (A.17)1 and (A.17)2 for the specific case of 𝐹𝑠 = 0, higher
ariations (at any order) are represented by complete forms (of the
ame order 𝑖 of the variation 𝛿𝑖) of the aforementioned variations 𝛿𝜃,
𝜃̃ , 𝛿𝑠′ and 𝛿𝝌 , so that higher variations are all null (𝛿𝑛 = 0, ∀ 𝑛 ∈ N)
𝑠
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in the case of ‘pure-sliding’ and the equilibrium can be judged neutral
along this specific direction in the perturbations’ space.

For these reasons, it is instrumental to exclude this ‘trivial’ pertur-
bation from the study of stability, thus focusing on the perturbations
that cause a non null transformation of the equilibrium solutions. By
means of an accurate mathematical proof, one can demonstrate that
the stability of the considered elastica constrained by sliding sleeves at
both ends can be studied with an equivalent elastica constrained with
a single sliding sleeve, for instance located at the final end, while the
other end is clamped.2

Finally, it is worth to underline the fact that if the integrand of
the functional (A.15) would be explicitly dependent on 𝑠 (for instance,
when the bending stiffness 𝐵 is a given function of 𝑠 or some loads are
applied to specific coordinates 𝑠 along the span of the rod), then all the
variations of the total potential energy depend on the quantity 𝛿𝑠 (and
ot only on 𝛿𝑠

′), therefore no invariance of the configuration and no
anishing of higher variations would be obtained under a ‘pure-sliding’.

roof of equivalence. The proof of the aforementioned equivalence in
erms of stability can be achieved by performing the following change
f coordinates

− 𝑠1 = 𝑆, (A.33)

where 𝑆 ∈ [0,] is the new curvilinear coordinate of a ‘virtual’ elastica
having the initial end always coincident with the position of the first-
sliding sleeve, so that it can be thought to represent a shorter rod with a
clamped initial end and with a total ‘free’ length  = 𝑠2−𝑠1 outside the
wo constraints. The rotation field of this new elastica with one variable
ndpoint only is denoted by 𝛩(𝑆), so that the following relation holds

𝜃(𝑠) = 𝛩(𝑆). (A.34)

Moreover, the generic transformed solution 𝜃∗(𝑠∗) is constrained to
be the same holding for the clamped elastica, so that

𝜃∗(𝑠∗) = 𝛩∗(𝑆∗), (A.35)

where the following simple change of coordinates is introduced be-
tween the perturbed domains of the configurations outside the con-
straints

𝑆∗(𝑠∗) = 𝑠∗ − 𝑠∗1 , (A.36)

so that 𝑆∗(𝑠1 ∗) = 0. These simple transformation rules allow for rep-
resenting the perturbed solution of the rod constrained by two sliding
sleeves in a new reference system for which the first end is fixed, but
without changing the global deformed shape of both the equilibrium
and perturbed configurations. Similarly to Eqs. (A.2), (A.3) and (A.6),
the following smooth transformations between the equilibrium and
perturbed solutions of the virtually-clamped system are introduced

𝑆∗ = 𝑆 + 𝜖𝛷(𝑆) + 𝑜(𝜖), 𝛩∗(𝑆∗) = 𝛩(𝑆) + 𝜖𝛹 (𝑆) + 𝑜(𝜖), (A.37)

together with the following transformation holding at a fixed coordi-
nate 𝑆

𝛩∗(𝑆) = 𝛩(𝑆) + 𝜖𝛹 (𝑆) + 𝑜(𝜖). (A.38)

The Eqs. (A.33) and (A.36) can be therefore substituted in the
ifference 𝛥𝑠, see Eq. (A.3)1, so that through Eq. (A.37)1 one obtains

𝑠̃ = 𝑆∗ + 𝑠∗1 −𝑆 − 𝑠1 = 𝜖𝛷(𝑆)+ 𝜖𝜙(𝑠1)+ 𝑜(𝜖), where 𝛥𝑠 = 𝜖𝜙(𝑠)+ 𝑜(𝜖).

(A.39)

2 A similar proof can be also performed by considering reverted constraints,
o that one can conclude that the problem of a rod subject to sliding sleeves at
oth ends is equivalent (in terms of equilibrium configurations and stability)
o a problem for which one of two ends is clamped.
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Due to Eq. (A.4)1, one obtains the following linear parts of the incre-
ments above

𝛿𝑠 = 𝛿𝑆 + 𝛿𝑠1, (A.40)

where the new variation 𝛿𝑆 = 𝜖𝛷 is introduced and for which the
following properties hold

𝛿𝑆(𝑠1) = 0, 𝛿𝑆
′
= 𝛿𝑠

′
, 𝛿𝑠2 − 𝛿𝑠1 = 𝛿. (A.41)

It is worth to underline that a ‘pure-sliding’ of the rod like the one
represented in Fig. 3 (for which under 𝛿𝑠 = const = 𝛥𝑠1) would cause
the perturbation 𝛿𝑆 of the ‘virtually-clamped ’ rod to be null, so that
this new system is capable of catching the perturbations related to a
change in the deformed configuration, but refined from those related
to ‘pure-sliding’.

An analogous calculation can be performed by substituting Eqs. (A.34
and (A.35) in the difference 𝛥𝜃, see Eq. (A.3)2, thus obtaining

𝛥𝜃(𝑠) = 𝛩∗(𝑆∗) − 𝛩(𝑆). (A.42)

By considering Eq. (A.37)2, the equation above can be therefore ex-
panded for a ‘small’ 𝜖, so that one obtains an analogous relation holding
for the (virtually) clamped rod

𝛿𝛩 = 𝛩′(𝑆)𝛿𝑆 + 𝛿𝛩, (A.43)

here due to the identity between the differentials 𝑑𝑆 = 𝑑𝑠, ‘ ′ ’ denotes
ifferentiation with respect to both coordinates 𝑆 or 𝑠. Moreover the
ollowing definitions have been introduced

𝛩̃ = 𝜖𝛹, 𝛿𝛩 = 𝜖𝛹, (A.44)

but due to identity between Eq. (A.3)2 and (A.42), the following
conditions hold true

𝛿𝜃(𝑠) = 𝛿𝛩(𝑆), 𝛿𝜃 ≠ 𝛿𝛩, (A.45)

namely the ‘general’ variations of the deformed configurations are
identical for both systems, while the variations at fixed coordinates are
connected by the following fundamental rule

𝛿𝛩 = 𝛿𝜃 + 𝜃′𝛿𝑠1. (A.46)

amely the variation at fixed coordinate 𝑆 of the new system is ob-
tained by shifting the original one of a factor 𝜃′𝛿𝑠1, which is in turn
of the same form of the one holding in the case of ‘pure-sliding’ (see
Eq. (A.31)2). The two considered systems are highlighted in Fig. A.1
(left), together with (right) the rotation field 𝜃(𝑠) = 𝛩(𝑆) at equilibrium
(highlighted in light blue) and the perturbed solution holding for the
system with two sliding sleeves (𝜃∗(𝑠), red) and one sliding sleeve
𝛩∗(𝑆), dark blue), where the latter is shifted horizontally from the
ight to the left of a factor 𝛿𝑠1 with respect to the former.3

In particular, due to vanishing of the perturbations at both ends4

𝜃̃(𝑠1) = 𝛿𝛩(0) = 0, 𝛿𝜃(𝑠2) = 𝛿𝛩(𝐿) = 0, (A.47)

qs. (A.43) and (A.46) lead to the following relations for the field 𝛿𝛩

𝛿𝛩(0) = 𝛿𝜃(𝑠1) + 𝜃′(𝑠1)𝛿𝑠1, 𝛿𝛩(𝐿) = 𝛿𝜃(𝑠2) + 𝜃′(𝑠2)𝛿𝑠1, (A.48)

ut due to Eqs. (A.10), one finally obtains

𝛿𝛩(0) = 0, 𝛿𝛩(𝐿) = −𝜃′(𝑠2)𝛿𝑠2 + 𝜃′(𝑠2)𝛿𝑠1 = −𝛩′(𝐿)𝛿, (A.49)

nd therefore

𝛿𝛩(0) = 𝛿𝛩(0) = 0, 𝛿𝛩() ≠ 𝛿𝛩(), (A.50)

3 The case of a clamped final end can be studied by shifting 𝛩∗(𝑆) of a
actor 𝛿𝑠2 in the opposite direction.

4 Due to the fact that 𝛿𝑆(𝑠1) = 0, the variation at the initial end corresponds
to the one holding for fixed coordinates, namely 𝛿𝛩(0) = 𝛿𝛩(0).
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Fig. A.1. (Left) The two equivalent systems of an elastica constrained with two (above) and one sliding sleeve (bottom). (Right, above) Equilibrium (blue) and perturbed (red)
solutions for the rotation field 𝜃(𝑠) of the elastica constrained with two sliding sleeves and related perturbations 𝛿𝑠1 and 𝛿𝑠2 at the variable ends. (Right, bottom) Equilibrium
(blue) and perturbed (dark blue) solutions for the rotation field 𝛩(𝑆) of the clamped elastica constrained with one sliding sleeve at the final end; a unique perturbation 𝛿 is
considered at the final endpoint. Note the shifting of the perturbed field 𝛿𝜃 of a factor 𝛿𝑠1. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
where the obtained conditions are consistent with the assumption of a
clamped end at coordinate 𝑆 = 0 and a sliding sleeve at 𝑆 = .

Finally, the difference in the derivatives highlighted in Eq. (A.12)
can be rewritten in terms of the new perturbed solution, so that due
to Eqs. (A.34) and (A.35) and due to the identity 𝑑𝑆 = 𝑑𝑠 between
differentials of the two curvilinear coordinates one can write

𝛥𝜃𝑠 =
𝜕𝛩∗(𝑆∗)
𝜕𝑠∗

−
𝜕𝜃(𝑠)
𝜕𝑠

=
𝜕𝛩∗(𝑆∗)
𝜕𝑆∗

𝜕𝑆∗

𝜕𝑠∗
−
𝜕𝛩(𝑆)
𝜕𝑆

, (A.51)

where 𝜕𝑆∗∕𝜕𝑠∗ = 1. Following Gelfand and Fomin (1963) (paragraph
37.3), one can write

𝛥𝜃𝑠 =
𝜕 [𝛩∗(𝑆∗) − 𝛩(𝑆∗)]

𝜕𝑆∗ +
𝜕 [𝛩(𝑆∗) − 𝛩(𝑆)]

𝜕𝑆
+
( 𝜕
𝜕𝑆∗ − 𝜕

𝜕𝑆

)

𝛩(𝑆∗),

(A.52)

so that, after long iterations, one obtains the following formulation for
the last term in the latter equation, namely
( 𝜕
𝜕𝑆∗ − 𝜕

𝜕𝑆

)

𝛩(𝑆∗) = −𝜖𝛷′𝛩′. (A.53)

The first term in Eq. (A.52) can be rewritten through Eq. (A.38) as

𝜕 [𝛩∗(𝑆∗) − 𝛩(𝑆∗)]
𝜕𝑆∗ =

𝜕𝜖𝛹 (𝑆∗)
𝜕𝑆∗ ≃ 𝜖

𝜕
[

𝛹 (𝑆) + 𝜖𝛷𝛹
′
(𝑆)

]

𝜕𝑆
1

1 + 𝜖𝛷′ , (A.54)

while the second term in Eq. (A.52) can be expanded in Taylor series

𝜕 [𝛩(𝑆∗) − 𝛩(𝑆)]
𝜕𝑆

≃
𝜕
[

𝛩′(𝑆)(𝑆∗ − 𝑆) + 𝑜(𝑆∗ − 𝑆)
]

𝜕𝑆
, (A.55)

so that merging the terms (A.53), (A.54) and (A.55), after long itera-
tions one obtains

𝛥𝜃𝑠 = 𝜖𝛹
′
+ 𝜖𝛩′′𝛷 + 𝑜(𝜖). (A.56)

By denoting with 𝛿𝛩𝑆 the linear part of the previous difference, one
obtains

𝛿𝛩𝑆 = 𝛿𝛩
′
+ 𝛩′′𝛿𝑆, (A.57)

which is necessarily equal to 𝛿𝜃𝑠 due to identity between Eqs. (A.14)
and (A.51) and where due to Eq. (A.46) the following property holds

𝛿𝛩
′
= 𝛿𝜃

′
+ 𝛩′′𝛿𝑠1. (A.58)

The aforementioned formulations therefore provide the proof of
the identity between ‘general’ perturbations holding for the system
17
constrained by two sliding sleeves, namely 𝛿𝜃, 𝛿𝜃𝑠 and the derivative
𝛿𝑠

′, with those holding for a virtual system that has a single variable
endpoint only, here denoted by 𝛿𝛩, 𝛿𝛩𝑆 and 𝛿𝑆

′
, respectively, which

is in turn realized by a simple transformation of the reference system.5
By substituting the aforementioned perturbations within the functionals
introduced in Appendices A.2, one can express the stability of the
system constrained by two sliding sleeves with an equivalent one
written in terms of a set of perturbations that do not take into account
variations at one of the two ends. Moreover, these perturbations are
equivalent to those that one would obtain by considering, since the
beginning, a system constrained with a single sliding sleeve while the
second end is clamped. As previously reported, this condition holds true
under the hypothesis of 𝐹 independent on 𝑠, otherwise no match can
be in general obtained between the two systems.

The formulation of the first and second variations for the virtually-
clamped system can also be obtained by performing the substitution
(A.46) within the formulations holding for the rod with two sliding
sleeves and expressed in terms of the variation 𝛿𝜃, Eqs. (A.27) and
(A.28). The first variation becomes

𝛿 = − ∫



0

(

𝐵𝛩′′ + 𝑅𝑥 sin𝛩 − 𝑅𝑦 cos𝛩
)

𝛿𝛩 d𝑆

+ 𝛿𝑠1 ∫



0

(

𝐵𝛩′′ + 𝑅𝑥 sin𝛩 − 𝑅𝑦 cos𝛩
)

𝛩′ d𝑆

−
(𝐵
2
𝛩′2 − 𝑅𝑥 cos𝛩 − 𝑅𝑦 sin𝛩

)

|

|

|

|
𝛿𝑠2

+
(𝐵
2
𝛩′2 − 𝑅𝑥 cos𝛩 − 𝑅𝑦 sin𝛩

)

|

|

|

|0
𝛿𝑠1,

(A.59)

and, due to the property 𝛩′′𝛩′ = (𝛩′2∕2)′ and the integration by
parts of the second integral, the expression (A.30)1 of the transformed
first variation is obtained. The present formulation is therefore totally
equivalent to the one holding in the case of one clamped end and per-
formed through perturbations in the form (12) and (A.6) as proposed
by Elsgolts (1977).

5 Note that the value assumed by vector 𝛿𝝌 = 𝜖𝐱 is independent on 𝑠, so
that it cannot be changed by transformations of the curvilinear coordinate.
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Concerning the second variation, Eqs. (A.33), (A.34), (A.41) and
(A.46) can be substituted in Eq. (A.28), thus obtaining

𝛿2 =∫



0

[

𝐵
(

𝛿𝛩
′
− 𝛩′′𝛿𝑠1

)2
−
(

𝛿𝛩 − 𝛩′𝛿𝑠1
)2

(

𝑅𝑥 cos𝛩 + 𝑅𝑦 sin𝛩
)

]

d𝑆

+ 2 𝛿𝑅𝑥

(

∫



0

[

− sin𝛩
(

𝛿𝛩 − 𝛩′𝛿𝑠1
)]

d𝑆 + cos𝛩()𝛿𝑠2 − cos𝛩(0)𝛿𝑠1

)

+ 2 𝛿𝑅𝑦

(

∫



0

[

cos𝛩
(

𝛿𝛩 − 𝛩′𝛿𝑠1
)]

d𝑆 + sin𝛩()𝛿𝑠2 − sin𝛩(0)𝛿𝑠1

)

−
[

𝐵𝛩′()𝛩′′()
]

𝛿𝑠
2
2 +

[

𝐵𝛩′(0)𝛩′′(0)
]

𝛿𝑠
2
1.

(A.60)

After several passages, the expression (A.30)2 for the second vari-
ation is obtained, which is coincident with the second variation that
would be obtained by considering a system with just one variable
endpoint since the beginning. This result provides a further proof of
the equivalence between the stability property of elasticae constrained
by one or two sliding sleeves.

Appendix B. Mathematical details for the derivation of Eq. (65)

Considering the properties (64), the last term on the right-hand side
term of Eq. (63) can be simplified as

𝐻1
[

(𝐩′ ⋅ 𝐮)(𝐩 ⋅ 𝐮′) − (𝐩′ ⋅ 𝐮′)(𝐩 ⋅ 𝐮)
]

= 𝐻1 𝐩′⊗𝐩 ∶
(

𝐮⊗ 𝐮′ − 𝐮′ ⊗ 𝐮
)

, (B.1)

where the term
(

𝐮⊗ 𝐮′ − 𝐮′ ⊗ 𝐮
)

on the right hand side is a skew-
symmetric tensor. Due to the property (64)2, Eq. (B.1) can be written
by considering only the skew part of tensor 𝐩′ ⊗ 𝐩, thus

𝐻1
[

(𝐩′ ⋅ 𝐮)(𝐩 ⋅ 𝐮′) − (𝐩′ ⋅ 𝐮′)(𝐩 ⋅ 𝐮)
]

= 𝐻1
𝐩′ ⊗ 𝐩 −

(

𝐩′ ⊗ 𝐩
)⊺

2
∶
(

𝐮⊗ 𝐮′ − 𝐮′ ⊗ 𝐮
)

.
(B.2)

oreover, because 𝐮(𝑠1) = 𝟎, the following relation holds

1
(

𝐮⊗ 𝐮′ − 𝐮′ ⊗ 𝐮
)

= ∫

𝑠

𝑠1

[

𝐻1
(

𝐮⊗ 𝐮′ − 𝐮′ ⊗ 𝐮
)]′ d𝜎, (B.3)

so that, by considering Eq. (59) and the associativity property of the
outer product

(𝐚 + 𝐛)⊗ 𝐜 = 𝐚⊗ 𝐜 + 𝐛⊗ 𝐜, 𝐚⊗ (𝐛 + 𝐜) = 𝐚⊗ 𝐛 + 𝐚⊗ 𝐜, (B.4)

summing and subtracting the term 𝐻2𝐮⊗𝐮 inside the integral operator
of Eq. (B.3) finally provides

𝐻1
(

𝐮⊗ 𝐮′ − 𝐮′ ⊗ 𝐮
)

= ∫

𝑠

𝑠1
[𝛹 (𝐮)⊗ 𝐮 − 𝐮⊗𝛹 (𝐮)]d𝜎. (B.5)

Still considering 𝐮(𝑠1) = 𝟎, the first term on the right-hand side of
Eq. (63) can be rewritten as

𝛿𝜃 𝐩 ⋅ 𝛹 (𝐮) =
[

𝐩⊗ 𝐩 ∶ ∫

𝑠

𝑠1
𝛹 (𝐮)⊗ 𝐮d𝜎

]′
− (𝐩⊗ 𝐩)′ ∶ ∫

𝑠

𝑠1
𝛹 (𝐮)⊗ 𝐮d𝜎,

(B.6)

so that, due to the property

𝐚⊗ 𝐛 = (𝐛⊗ 𝐚)⊺ , (B.7)

Eq. (63) can be rewritten as

𝛿 𝜃𝛹 (𝛿𝜃) =𝐻1(𝐩′ ⋅ 𝐮)2 +
[

𝐩⊗ 𝐩 ∶ ∫

𝑠

𝑠1
𝛹 (𝐮)⊗ 𝐮d𝜎 − 𝜔𝐻1(𝐩′ ⋅ 𝐮)

]′

+
𝐩′ ⊗ 𝐩 −

(

𝐩′ ⊗ 𝐩
)⊺

2
∶
[

∫

𝑠

𝑠1

[

𝛹 (𝐮)⊗ 𝐮 − (𝛹 (𝐮)⊗ 𝐮)⊺
]

d𝜎
]

− 2
𝐩′ ⊗ 𝐩 +

(

𝐩′ ⊗ 𝐩
)⊺

2
∶ ∫

𝑠

𝑠1
𝛹 (𝐮)⊗ 𝐮d𝜎.

(B.8)
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Finally, due to the property (64)2, the last term of the previous equation
can be rewritten by considering only the symmetric part of the tensor
inside the integral, thus

2
𝐩′ ⊗ 𝐩 +

(

𝐩′ ⊗ 𝐩
)

2
∶ ∫

𝑠

𝑠1
𝛹 (𝐮)⊗ 𝐮d𝜎 =

𝐩′ ⊗ 𝐩 +
(

𝐩′ ⊗ 𝐩
)

2
∶

∫

𝑠

𝑠1

[

𝛹 (𝐮)⊗ 𝐮 + (𝛹 (𝐮)⊗ 𝐮)⊺
]

d𝜎,
(B.9)

hich, exploited in Eq. (B.8), allows to achieve Eq. (65).

ppendix C. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.euromechsol.2024.105273.
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