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Fig. 11. TFE values predicted by the RSM model for a mask with a
meltblown layer in the filter, but no nosepiece. Results are shown at three
different flow rates (30, 90, and 160 L/min). Experimental datapoints are
represented with red dots.

Fig. 12. TFE values predicted by the RSM model for a mask with a
meltblown layer in the filter and a nosepiece in place. Results are shown
at three different flow rates (30, 90, and 160 L/min). Experimental datapoints
are represented with red dots.

factors for the correlation. These observations are compatible
with our results regarding the trend and the spread of TFE
data with respect to material breathability and BFE although
a straight comparison between collection efficiency and TFE
is improper. Since the former is a direct measure of aerosol
filtration, the latter is an estimate from mask leakage and BFE,
where the effects of inertial impaction and different aerosol
size are not considered.

Computational fluid dynamics (CFD) simulations [38], [61]
have been conducted to study the airflow pattern around a
worn mask during breathing and coughing, evidencing how
misfitting a mask create leakage through gaps compromising
its efficacy [61], and that leakage correlates with lower filter
porosity because of the increased DP of the filtering materials
[38]. All these results corroborate the recommendation for a
tight fitting and a breathable material, and the necessity of
identifying comprehensive performance metrics which include
the effect of leakage, such as the TFE defined in this study.

To further investigate the role of the seal, we tested the
subgroup of 26 masks marketed with a nosepiece also after
removing the nosepiece. We found that the presence of the

nosepiece positively correlated with TFE at all three flow rates.
The type of the nosepiece also affected the results, with an
MW strip associated with a much better efficiency at reducing
the leakage than a PO. This finding may be ascribed to the
better pliability of metal when adapting the nosepiece to the
user’s nose ridge and its capability to maintain the shape.
The surface response model confirmed the importance of
the nosepiece in improving TFE performance, differentiating
according to the presence of a meltblown layer, where the
effect was more pronounced. These results underline the
importance of the nosepiece in mask design, especially with
filtering materials which offer a lower breathability, and are
consistent with studies performed on human subjects [20] and
with computational simulations [38], showing that air escaping
from the gaps around the nose is more critical than lateral
leakage.

The role of other parameters involved in mask design (mask
area, the number of layers, and the presence of the meltblown)
on the TFE was also investigated. While the analysis of the
single factors did not detect any significant correlation with
TFE apart from DP, the surface response model evidenced
an influence of several factors on TFE. There was a minor
negative quadratic variation of TFE with the mask area, with
a maximum in the middle range. This trend could be ascribed
to the fact that only the mask surface region around the mouth
was involved in air filtering, while exceeding tissue wrapped
toward the ears and under the chin offered a poor contribution.
Concerning the design of tissue material, i.e., the number of
layers and meltblown, while they improve material FE, they
also worsen filter breathability, canceling out any benefit for
masks with a poor seal. However, the surface response model
showed that increasing the number of layers (up to 3) can
enhance performance when a nosepiece is present, i.e., when
the seal of the mask is good enough to contain the leakage
due to an increase in DP.

The uncertainty associated with experimental TFE measure-
ments might suggest a more extensive use of CFD simulations.
Despite the interesting possibility to visualize the behavior
of flow and particles through mask and face-seal leaks, its
exploitation has been hindered by several factors. The typical
approach is based on fixed geometries of the masks, thus
neglecting the fluid-structure interaction between flow and
mask (which is instead inherently reproduced in the laboratory
test). It is well-known that inward and outward flows have very
different effects on the protection offered by the mask [24].
On the one hand, inhalation generates a low pressure on
the inner side of the mask, thus sealing or at least reducing
perimeter leaks. On the other hand, exhalation increases the
internal pressure, inflating the mask and increasing the perime-
ter leakages. This phenomenon is further amplified in the case
of coughing and sneezing.

Another aspect worth to be mentioned is the impact of leak
area on the amount of leaked flow and ultimately on the FE.
CFD studies showed that gap heights greater than 0.2 mm can
generate a total inward leakage larger than 2%, thus making
ineffective even an filtering face piece 3 (FFP3) mask, while,
for a 1 mm height, more than 70% of flow can be leaked
unfiltered [58]. Xi et al. [61] performed CFD simulations
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with an SM geometry reconstructed by images of an SM and
studied the impact of variable face-seal gaps on the amount
of leaked flow. Interestingly, they observed that even a small
gap of 0.5 cm2 leads to a 9% leakage. Considering that 3-D
optical scanners have hardly a resolution <0.1 mm (unless
choosing very expensive products and small measurement
volume), this makes the comparison between numerical studies
and experimental tests very challenging. In fact, even a small
error on the 3-D reconstruction of the face-mask assembly
can return a significant misprediction of the leaked flow. This
is also confirmed by the very limited validations of the CFD
results, considering, at best, a benchmark in terms of velocity
at a point and associated with large error bars [61].

Despite these limitations, numerical investigations by
Solano et al. [38], Solano and Shoele [62], and Xi et al. [61]
confirmed that a high-porosity mask (i.e., with higher breatha-
bility) reduces the edge leakages, especially in the presence
of small gaps. These findings not only confirm the validity of
the conclusions highlighted in this work, but suggest that an
optimum tradeoff can be identified in terms of porosity and
safety.

Overall, these considerations make more convenient and
reliable to perform this kind of investigations with the two-
phase method developed in [23] and applied in this work.

A. Study Limitations

The experimental method to determine TFE of face masks
was based on the measurement of the fraction of exhaled air
leaking at the face seal and the fraction of exhaled air passing
through the mask filter. Two assumptions were made. First,
the volume of air passing through the filtering material of a
mask is subjected to FE equal to the BFE measured according
to the EN 14683:2019 standard. Second, the fraction of air
leaking at the face seal moves from the mouth to the external
environment without undergoing any change in the amount
and size distribution of the aerosol generated by the mask
wearer. Under these circumstances, the measured TFE does not
consider impaction filtration mechanisms that could be active
in reducing droplet amount both for the fraction of air passing
through the mask filter and that passing at the face seal.
Therefore, TFE values determined according to the presented
method represent a worst-case scenario; defining the lower
value of filtration performance, a mask can show when only
fine aerosol (<5 µm) is exhaled by the wearer. The existence
of different processes for blocking particles than through-mask
filtration has been observed by Lindsley et al. [35], ensuing
from a collection efficiency in the same cases larger than
the material FE. Cappa et al. [20] conducted an in-depth
analysis of aerosol concentration in mask leakage exhaled
during talking and coughing in human subjects. While air
leakage reduced mask performance (from >90% to 70%
for talking), particle concentration in leaked air was lower
than in the original source, implying the effect of an impact
mechanism on the inner surface of the mask, especially for
larger particles [20]. This observation suggests that SMs can
significantly reduce emission of large particles even in the
presence of unfiltered leaked air. Even though the TFE may

not represent an absolute measurement of mask performance
in relation to COVID-19 transmission because of this bias,
it is still informative to assess the relative performance among
different masks and to detect correlations with constructive
and fitting parameters that may guide mask design to improve
its efficacy.

A second limitation of the proposed measuring methods
is related to the nonnegligible uncertainty associated with
the TFE measurement. Although the repeated experiments
resulted in a good measurement repeatability in most of the
cases, uB(TFE) was markedly higher than uA(TFE), due to the
propagated uncertainty generated by the accuracy of the FM
and the manometer we used. Type B uncertainty may include
residual systematic biases which are not corrected by the man-
ufacturer calibration and not accounted in Type A uncertainty,
which was obtained by repeated observations performed with
the same instrument. This aspect can be improved by using
instrumentation with higher accuracy across the whole range
of interest of DP and volumetric airflow.

Other than this, variability among masks from the same
production batch was previously evidenced in [42] and [63],
possibly impacting on 1P measurement repeatability more
than other sources of uncertainty.

Other limitations of the setup were previously identified [27]
and were mainly related to the smooth and rigid surface of the
head form, different from the skin. Elasticity and compliance
of human skin can result in a better face fit and face seal [64].
In this case, our experimental conditions may cause the TFE
to be underestimated. Nevertheless, the proposed methodology
remains safely applicable for comparative TFE measurements
between different masks.

V. CONCLUSION

The performance of SM and CM in terms of TFE is strongly
affected by the mask filter breathability, recommending the
selection of highly breathable materials in mask design to
decrease air leaking, besides maximizing user comfort and
compliance in wearing the face mask. When multiple filter
layers are required and a lower breathability is obtained, TFE
should be improved by focusing on mask fit and applying a
metallic nosepiece. The same recommendation applies when
a meltblown layer is present, given the nonnegligible impact
of this layer on the filter breathability. On the other hand,
providing that only layers with high breathability are used,
CMs may offer an acceptable efficacy, in the context of their
intended use, without requiring the inclusion of a nosepiece
in their design.
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