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Abstract

The present work develops ANAKIN: an Artificial iNtelligence bAsed model for (radiation-induced) cell
KllliNg prediction. ANAKIN is trained and tested over 513 cell survival experiments with different
types of radiation contained in the publicly available PIDE database. We show how ANAKIN
accurately predicts several relevant biological endpoints over a wide broad range on ion beams and for
ahigh number of cell-lines. We compare the prediction of ANAKIN to the only two radiobiological
models for Relative Biological Effectiveness prediction used in clinics, that is the Microdosimetric Kinetic
Model and the Local Effect Model (LEM version 1), showing how ANAKIN has higher accuracy over
the all considered cell survival fractions. At last, via modern techniques of Explainable Artificial
Intelligence (XAI), we show how ANAKIN predictions can be understood and explained, highlighting
how ANAKIN is in fact able to reproduce relevant well-known biological patterns, such as the
overkilling effect.

1. Introduction

In the last decades, radiotherapy (RT) has increasingly proven to be an extremely effective cure against cancer.
Within RT, particle therapy (PT), has been emerging (Durante and Flanz 2019), and at the end 0f 2021, about
325.000 patients have been treated worldwide with PT, of which close to 280.000 with protons and about 42.000
with carbon ions (PTCOG 2022). Furthermore, other ions have been recently gaining attention (Rovituso 2017):
in 2021 the first patient was (re-)treated with helium (Mairani et al 2022) at the Heidelberg Ion Therapy Center
(HIT) in Germany, while perspective studies are looking into the possible using of oxygen (Kurz et al 2012, Sokol
etal2017).

The physical rationale of using hadrons in cancer treatment is their characteristic energy loss mechanisms,
which result in concrete biological advantages compared to photons, such as increased tumor control and a
greater sparing of normal tissues, with a consequently lower risk of toxicity.

Despite the theoretically superior physical properties of hadrons compared to photons, further research is
critical for increasing the PT application in the clinic. A correct and accurate estimation of radiation-induced
biological damage remains one of the major limitations to the full exploitation of this treatment modality. The
key quantity used to describe the radiation effectiveness in inducing specific damage is the Relative Biological
Effectiveness (RBE), which is defined as the ratio between the dose delivered by a given radiation and the dose
delivered by the reference radiation yielding the same biological effect:
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RBE = Dreference

radiation |ispeffect

RBE allows quantifying how much more lethal certain radiation is compared to the reference radiation,
usually x-rays, and is used in Treatment Planning Systems (TPS) to calculate the biological dose, namely the
physical dose multiplied by the RBE. For this reason, over the last decades a plethora of mathematical
mechanistic models, (Kellerer and Rossi 1974, 1978, Tobias 1980, 1985, Hawkins 1994, Kase et al 2006, Elsédsser
etal 2010, Vassiliev 2012, Friedrich efal 2013a, 2013b, Manganaro et al 2017, Vassiliev et al 2017, Inaniwa and
Kanematsu 2018, Bellinzona et al 2021, Cordoni et al 2021, McMahon and Prise 2021, Cordoni et al
2022a,2022b), as well as data-driven phenomenological models, (Wilkens and Oelfke 2004, Tilly et al 2005,
Carabe etal 2012, Chen and Ahmad 2012, McNamara et al 2015, Mairani et al 2017) have been developed to
estimate RBE based on biological as well as physical quantities. At the base of most models is the linear-quadratic
(LQ) behavior of the cell survival logarithm with respect to the imparted dose:

S(D) — e—aD—ﬂDz)

where v and (3 are some specific parameters that depend on both biological (e.g. tissue type) and physical (e.g
radiation quality) variables (McMahon 2018).

Currently, a constant RBE of 1.1 is conservatively used in proton therapy, although evidences show its
variability, especially in the distal region (Paganetti et al 2002, Paganetti 2014, 2018, Missiaggia et al 2020, 2022a).
For carbon and helium ions, the RBE variations across the irradiation field are significant enough that a constant
value cannot be used. Currently, two radiobiological models are currently used to predict RBE in clinical
practice: (i) the Microdosimetric Kinetic Model (MKM) (Inaniwa et al 2010, Inaniwa and Kanematsu 2018,
Bellinzona et al 2021), and (ii) the Local Effect Model (LEM) (Elsésser et al 2010, Friedrich et al 2013a, Pfuhl et al
2022). Both models have been vastly tested against in vitro and in vivo data (Inaniwa and Kanematsu 2018, Pfuhl
etal 2022), but the outcomes have not indicated a clear superiority of one model to the other. In addition,
significant differences in the prediction of RBE across models are evident so that, at present days, the use in
clinical practice of a variable RBE is highly subject to the model chosen, (Giovannini et al 2016, Missiaggia et al
2020, Bertolet eral 2021, Missiaggia et al 2022a).

The lack of a robust and generalized model for predicting RBE hinders the full exploitation of PT, including
the use of ions heavier than carbon, such as oxygen, to successfully treat radio-resistant tumors, (Boulefour et al
2021), or multi-ion therapy, which is nowadays accessible from the technical point of view (Ebner et al 2021).

Furthermore, although some RBE models have a general mathematical formulation, their implementation
in the TPS, especially for inverse planning, requires a heavy calculation effort. This issue is usually overcome
both by using look-up tables and by making specific assumptions (Inaniwa and Kanematsu 2018), such as
physical or biological approximations, which clearly limit the model generality and affect its RBE prediction
accuracy.

Aiming at deriving a general model able to accurately predict RBE across a wide range of physical and
biological variables, we developed ANAKIN (an Artificial iNtelligence bAsed model for (radiation-induced) cell
KllliNg prediction), a new general Al-driven model for predicting cell survival and RBE. Machine Learning (ML)
and Deep Learning (DL) algorithms have recently started to gain attention in the medical physics community
with applications on imaging (Sahiner et al 2019), fast dose estimation (Gotz et al 2020), Monte Carlo simulation
(Sarrut and Krah 2021), and particle tracking (Missiaggia et al 2022b) have been published. However, only
Papakonstantinou et al (2021) apply ML for predicting radiation-induced biological quantities, conducting a
study on the induction of DNA damage and its complexity, but no analysis on RBE is performed.

ANAKIN is composed by various ML and DL-based modules, each with a specific tool, and interconnected
to each other. The model considers both physical variables such as the kinetic energy of the incident beam or also
the Linear Energy Transfer (LET), that is the amount of energy that a particle transfers to the material traversed
per unit distance, (Durante and Paganetti 2016), and biological variables, such as the o and (5 values for the
reference radiation response. To make the model as general as possible, we trained it on cell survival data for 20
cell lines widely used in radiobiology and 11 different ion types all available on the Particle Irradiation Data
Ensemble (PIDE) (Friedrich et al 2013b, 2021). Together with particles of interest for clinical applications, we
also included in the training process heavier ions, including iron. This choice extends the application of
ANAKIN to other research fields, such as radiation protection in space. To verify ANAKIN predictions and
assess their accuracy, we randomly divided the data available in PIDE into two sets, one for training and one for
testing. Therefore all results reported in the present work refer to the test set, which consists entirely of
experiments that have not been included in the training set.

Artificial Intelligence (Al) has had a disruptive impact both in the research field and in real-life applications.
The potential of modern and advanced ML and DL algorithms have started to gain attention in the medical
physics community, where several research papers on the application of DL to imaging, (Sahiner et al 2019), fast
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dose estimation, (G6tz et al 2020), Monte Carlo simulation, (Sarrut and Krah 2021), and particle tracking,
(Missiaggia et al 2022b), have appeared. Quite surprisingly, to the best of our knowledge, the only results in the
literature that use ML to predict radiation-induced biological quantities is (Papakonstantinou et al 2021), where
the authors conduct a study on the induction of cellular damage, but no analysis on RBE is performed
(Davidovicetal 2021).

ML and DL have been shown to be extremely powerful, accurate, and flexible tools to extract information
and hidden relations as well as to predict the most likely outcome based on data of possibly different nature,
(Khalid et al 2007, Ongsulee et al 2018, Shwartz-Zivand Armon 2022). Moreover, an excellent, systematic and
comprehensive data collection of cell survival experiments exists and is publicly available, the PIDE, (Friedrich
etal2013b,2021).

ANAKIN is constituted by various ML and DL-based modules, each with a specific task, and interconnected
to each other. Two different tree-based models, namely the Random Forest (RF) (Ho 1995, 1998), and the
Extreme Gradient Boosting (XGBoost) (Chen and Guestrin 2016a, 2016b) algorithms are used to predict cell
survival for a wide variety of radiation and cell-lines. It is worth stressing that the final goal of ANAKIN is to
develop arobust and accurate model that is able to predict cell survival in the most general possible conditions.
ANAKIN is trained to predict cell survival for 20 widely used cell lines and for 11 different ions type. Concerning
this last point, despite the driving motivation being HT, many different ions, such as iron which is beyond the
possible application in the clinic, are included in the model. This makes ANAKIN extremely general so that
possible future application in space radioprotection is also envisaged.

ANAKIN is trained on the PIDE. It is worth stressing that, in order to be as realistic as possible, experiments
contained in the PIDE dataset are divided into a training set and a testing set. Therefore all results reported in the
present work refer to the test set, which consists entirely of experiments that have not been included in the
training set. This means that ANAKIN is asked to predict the cell survival for experiments that have never been
seen before. Besides the already mentioned variables, ANAKIN considers both physical variables such as the
kinetic energy of the incident beam or also the LET, that is the amount of energy that a particle transfers to the
material traversed per unit distance, (Durante and Paganetti 2016), and biological variables, such as the aand 3
values for the reference radiation response.

ANAKIN is tested over several endpoints and metrics to establish the actual accuracy ofits predictions.
Further, ANAKIN predictions are compared with the MKM and the LEM, which are the only two
radiobiological models currently used in the clinic. The two models are based on different funding assumptions,
such as target size definition, the concept of locality, and parameters included, and therefore have significant
differences in the predicted RBE. The analysis of the differences is beyond the scope of the present paper but has
been deeply studied in literature (Friedrich et al 2013a, Stewart et al 2018, Scholz et al 2020, Bellinzona et al
2021). Regarding the LEM results, an extremely well-done and extensive analysis of the LEM has become
available very recently (Pfuhl er al 2022). As a matter of a fact, much of the analysis conducted in the current
paper has been explicitly inspired by Pfuhl et al (2022). In this direction, it must be stressed that, in the current
paper, version LEM IIT is used since LEM IV is not currently implemented in the survival toolkit and thus, the
presented comparisons could not be translated to the state of the art version of the latter code It is clear that the
results reported in Pfuhl eral (2022) on the LEM IV are more accurate than the one reported in the current
research using the LEM 11, so this fact must be taken into account.

Finally, the current work further aims at demystifying the erroneous myth that ML and DL models are
obscure black-box models whose predictions cannot be interpreted. If this argument can in fact be partially
correct for extremely deep and sophisticated NN that has been built mostly in the field of the Reinforcement
Learning, the same cannot be said for the vast majority of ML and DL developed in the last years. In fact, on one
side, it must be said that some ML models, such as for instance tree-based models, are interpretable by nature
and, on the other side, recently huge attention has been posed to the development of mathematical techniques
aiming at explaining ML and DL models that are not of easy interpretation; such area of research is known as
Explainable AI(XAI) (Gunning et al 2019).

The main focuses of the present research are to:

(i) Develop for the first time a general Al-driven model to predict cell survival fraction over a wide range of
biological cell lines and physical irradiation conditions.
(if) Compare ANAKIN with the two radiobiological models used in the clinic (MKM and LEM).

(iii) Show that ML- and DL-based models are not only accurate but can also help in gaining new knowledge and
understanding in radiobiology and medical physics.
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2. Material and methods

2.1. The dataset
The development, training, and verification of ANAKIN are based on data from PIDE (Friedrich et al
2013b, 2021).

The MKM and LEM predictions are computed via the survival toolkit, (Attili and Manganaro 2018,
Manganaro et al 2018). This toolkit is an open-source implementation that has been checked to be coherent with
the published results of the models, but nonetheless, differences with the most advanced versions of the two
formalisms may arise. Unfortunately, to date, no extensive and qualitative estimation of the MKM predictions
over many cell lines exists so we could only rely on the survival toolkit. In particular, the MKM coupled with the
amorphous track model, (Kase et al 2007), and the LEM 11T have been considered.

The PIDE database contains a series of cell survival experiments, conducted over a multitude of different
irradiation conditions and cell lines. In addition to the original data, a set of LQ parameters are calculated for
each experiment and is also reported. Following Pfuhl et al (2022), ANAKIN is thus trained over the exponential
linear-quadratic fit on cell survival experiments. This is done as many experiments contained in the PIDE clearly
show anomalous variability in the reported survival fraction. Experiments reporting less than 3 measurement
points are removed from the dataset because at least 3 values are needed to fit an LQ curve. The dataset obtained
from PIDE is then divided into two subclasses, one for training ANAKIN and one for testing its predictions. The
selection is done so that each subset contains a sufficient amount of data for each cell line and ions to be
statistically significant.

Unlike Pfuhl et al (2022), ANAKIN is trained on both monoenergetic and Spread-out Bragg-peak (SOBP)
ion beams, and for this reason, a specific variable is added to the data to specify the irradiation condition.

After applying all the selection criteria described above, the resulting dataset contains 513 experiments,
including 20 cell lines and 11 ion types, of which 333 were randomly assigned for training and the remaining 180
for testing. Figure 1(a) gives an overall point of view on the number of considered experiments for each cell-lines
as well as ion type.

At the end of the cleaning of the data, we are left with 513 experiments, we randomly selected the 65% of the
experiments, which correspond to 333 experiments, for training whereas the remaining 180 are used to test. Itis
worth stressing that the division between train and test has been performed over the experiments, meaning that
ANAKIN is tested on experiments that have never been seen before by the model. All results that are shown in
the present paper refer to the test set so that ANAKIN test reflects a realistic situation in which ANAKIN should
predict the cell survival of an experiment or a real situation that has never been seen before.

ANAKIN takes as input 14 variables of both physical and biological parameters, either continuous, such as
LET or energy, or discrete, such as ion type or cell-lines. The full list is reported in table 1. Variables names as
reported in table 1 are taken from the PIDE and described in Friedrich et al (2013b, 2021). The only variable that
has been added to the dataset is the square of the dose, named Dose2. The choice of considering the square of the
dose is motivated by the well-known linear and quadratic form for the logarithm of survival. It is worth noticing
that also v, and 3, values are passed as input to ANAKIN.

2.2.Machine and DL models

ANAKIN is an ensemble Al model composed of ML and DL modules, each with a different task, that together
predicts the cell-survival probability. A schematic representation of ANAKIN is shown in figure 1(b). Four
different tree-based models are trained on the PIDE: two RF (Ho 1995, 1998), and two XGBoost (Chen and
Guestrin 2016a, 2016b). PIDE data are directly used as input for one RF and one XGBoost model, while for the
other two they are first processed with the Deep Embedding (Micci-Barreca 2001, Guo and Berkhahn 2016)
Neural Network (NN), where categorical variables with high cardinality (in this case Ion, Cells and CellCycle) are
pre-processed to learn a new meaningful data representation. Once the initial parameters are selected, (e.g. cell
line, ion type, and kinetic energy), the survival is calculated with each of the four models, and these values are
used as input to ANAKIN to predict the final cell survival.

Tree-based models have been chosen for the predictive modules rather than NN based algorithms because,
to date, despite the groundbreaking impact that NN had on image detection, NN had a significantly less impact
on tabular data; there are in fact several empirical pieces of evidence that standard ML approaches have
comparable or even better results than NN, (Grinsztajn et al 2022). On the contrary, DL algorithms are used
within ANAKIN in an innovative way to solve different tasks. As mentioned above, ANAKIN is trained to
predict cell survival over many cell lines as well as ions. Such variables can assume only discrete values, typically
referred to as categorical variables in the ML and DL community, and for this reason, they are not in principle
easily handled by an ML or DL model. Even more problematic there is the fact that such categorical variables
have a high number of possible values. This poses a serious issue in how these variables must be mapped to

4



10P Publishing

Phys. Med. Biol. 68 (2023) 085017 F G Cordoni et al
Xrs51 .
V791 @ ° ° ° o . °
U-871 e
TK14 °
T11 ° ® °
SQ20B71 - °
SCC257 - .
NB1RGB; ° ) Number of
M/107 e . Experiments
% HSG! . ° e 10
O HFIB30{ e 2
HFIB21 o ® 40
HFIB151 ® 50
HF191 ¢ *
H4601 e
CHO-K11 . .
CHO . .
C3H10T1/2{ e . . . .
AG015221 e + *
A-172; °
1H 2H 3He 4He 12C 14N 160 20Ne 28Si 40Ar56Fe
lon
(@)
INPUT DATASET / RANDOM EOREST MODELS
- PREDICTIONS
i .J
(" DeepEmbedding ) [~ RANDOMFOREST ) ANAKIN
1) : s o PREDICTION
pioe || # s ) ANAKIN:]—
4 Deep Embedding N\ XGBoost e .
\_ ) ® J . ) .)
( XGBoost N
\ ) .)

(b)

provide a final cell survival output.

Figure 1. ANAKIN input dataset and workflow. (a) Number of experiments for each ion type, reported in the horizontal axis, and cell-
line, reported in the vertical axis; the size refers to the number of experiments. (b) A schematic representation of ANAKIN. Data from
PIDE are input into two types of tree-based models (RF and XGBoost), either directly or after being processed with a Deep Embedding.
All four models predict cell survival, and the values are used as input for ANAKIN, which opportunely combines the predictions to

numeric values to be efficiently treated by an ML model. Several possible solutions to the above problem exist,
(Seger 2018), but recently, DL has gained huge attention not as solely a predictive tool but also as an extremely
powerful data pre-processing tool, used for instance as a model to extract new information from data. For
instance, DL has been recently proposed to specifically treat categorical variables with a high number of values.
Such technique is called Deep Embedding, (Micci-Barreca 2001, Guo and Berkhahn 2016, Shreyas 2022), and
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Table 1. List of all variables used as input to ANAKIN. The names are described according to PIDE documentation (Friedrich et al

2013b, 2021) with the exception of Dose2, which represents the square of the dose value and has been introduced in this work. Domain
column refers to the origin of the variable considered, such as physics (p) or biology (b). Type refers to the type of the variable, that can be
either continuous (c) or discrete (d). The other columns reports a description of the considered variable as well as a brief summary of statistics.

Variable Domain  Type  Description Statistics
Dose p c Dose in Gy Minvalue = 0 Gy
Max value = 14 Gy
Dose2 p c Square of the dose in Gy Minvalue = 0 Gy
Max value = 196 Gy
LET p c Linear Energy Transfer in keV ym ™ Min value = 0.9 keV ym™"
Max value = 2160keV pum !
Energy p c Specific energy of the ion in MeV u ™" Min value = 0.275 MeV u ™"
max value = 680 MeV u™'
Ion P d Ton species 11 classes

Most frequent: carbon ion
(186 exp.)

Least frequent: oxygen (4 exp.)
Charge p d Charge of the ion 9 classes

Most frequent: 6 (186 exp.)

Least frequent: 8 (4 exp.)
IrradiationConditions p d Irradiation modalities: monoenergetic (m) or 2 classes

SOBP (s)

Most frequent: m (433 exp.)

Least frequent: s (80 exp.)
Cells b d Cellline used 20 classes

Most frequent: V79 (182 exp.)

Least frequent: HGIB2 (4 exp.)
CellClass b d Tumor cells (t) or normal cells (n) 2 classes

Most frequent: n (383 exp.)

Least frequent: t (130 exp.)
CellOrigin b d Human cells (h) or rodent cells (r) 2 classes

Most frequent: h (274 exp.)

Least frequent: r (239 exp.)
CellCycle b d Cycle of cells 5 classes

Most frequent: a (491 exp.)

Least frequent: GO/G1 2 exp.
DNAContent b d Genomic length of diploid cells 2 classes

Most frequent: 6 (274 exp.)

Least frequent: 5.6 239 exp.

ax b c Alpha parameter of reference radiation Min value = 0.03 Gy !
Maxvalue = 0.82 '
bx b c Beta parameter of reference radiation Min value = 0 Gy 2

Max value = 0.11 Gy 2

consists in training a NN that learns the most efficient way of encoding a categorical variable, such as in the
present case the cell-line or also the ion type, into a low-dimensional numerical vector that can be efficiently
used by another model to understand the most accurate relation between these variables and the target variable
to predict. Therefore, ANAKIN has three specifically devoted modules to learn a new data representation for the
celllines, ion type, and also cell cycle. The DL-based Deep Encoding modules are connected to the previously
mentioned tree-based predictive modules to create ANAKIN, the final ensemble model that takes each single
module output and predicts the cell survival fraction.

Each input model has been validated using a 10-fold cross-validation, and their hyper-parameters have been
obtained using a Bayesian optimization technique, as described in Missiaggia et al (2022b).

Consider dataset D = { X}, y. ¥, composed by N samples, where

X = (x)y...x), n €N, i=1,.,N < oo,

are the n input features on which a model is trained to predict the target variable y. € R.Inthe current case, X;
are the variables reported in table 1, whereas y; is the cell survival.

Given a set of parameter W, that depends on the model, and a suitably chosen training set 7 := { Aj, y; M
N7 < N,theaim of the ML or DL models is to solve the following optimization problem
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N
min Z L, ¢(Xi W)),
[CA—

being & the output function for the model and £ theloss function. To improve the accuracy and reduce the
overfitting, a regularization is added to the loss function, as done in Bishop et al (1995), LeCun et al (2015).

The output function  is the learned function approximating the ideal function ¢, that describes the link
between the features X; and the target y;

2.2.1. Ensemble tree-based models: RF and XGBoost
Random Forest (RF) is an ensemble ML algorithm that combines weaker models, such as decision trees, to create
amore robust final model (Ho 1995, 1998). Being a bagging algorithm, the ensemble model is created in parallel,
and thus the output is the average of all thee outcomes. Compared to decision trees, the RF reduces the
overfitting on the train data, and thus it improves the prediction accuracy.

RF (Ho 1995, Friedman et al 2001) assumes that g?ﬁ is the average of weaker learners decision-trees v/, that is

A . 1 XK . )
¢(Xf,...,x,§) = EZ wk(xf,...,x,;),
k=1

where 1/ is the outcome of the kth decision tree.

Like RF, also XGBoost is an ensemble ML algorithm that combines weaker decision tree models to create a
more robust final model (Chen and Guestrin 2016a, 2016b). XGBoost is a boosting algorithm so that the
ensemble model is created in series, and thus the output of every single model is passed to another, with the aim
of reducing the error of the previous one. Also bagging is mostly used to reduce the overfitting of the train data
and to improve the accuracy of the predictions.

XGBoost starts with a potentially inaccurate model

N
Po(x; W) = arg mMi/n STLQY, 9(X5 W)), 1)

t=1

and then it thus expanded in a greedy fashion as

N
G W) = @,,_1(x; W) + arg min | 55 L B, W) + (X W) |. )

t=1

2.2.2. Deep embedding
Deep Embedding, (Micci-Barreca 2001, Guo and Berkhahn 2016, Shreyas 2022) is a NN- based technique for
mapping a categorical variable into a vector. Being a supervised algorithm, the NN is trained to predict the cell
survival fraction. Thus, the intermediate representation learned by the network is extracted and constitutes the
new values used for the categorical variable.

In the context of NN, the W parameters defined in equations (1)—(2) are usually referred to as weights. In this
work, we chose the multilayer perceptron (MLP) NN, which is the first and most classical type of network used.

A Multi-Layer Perceptron (MLP) is created by connecting several single-layer perceptrons, where several
nodes are placed in a unique layer. The inputs (x;,...,x,,) are fed to the network so that the final output zis
produced. Typically the output is a nonlinear function of a weighted average of the input, i.e.

y =06k = U(Z wix; + b),
i=1
where w; are the weights and b is the bias. Also, o is a suitable (possibly) nonlinear function, like a sigmoid

1
1—|—e*Z'

o(z) =

The connection between single-layer perceptrons is done in a preferred direction. This type of network is
called feedforward because the inputs are fed to the first layer, then the output goes to the second layer, and so on
until the data reaches the last output layer. By providing a series of correct results to the network, and thus
making the problem supervised, the NN can learn the best weights and bias to reproduce any desired output
(Bishop etal 1995, LeCun et al 2015).

2.3. Explainable AI

Several XAI techniques (Molnar 2020, Biecek and Burzykowski 2021) can be used to understand how an ML
model work. in the present work, we focus on three specific very well-known and powerful techniques, namely
(i) variable importance, (ii) Accumulated Local Effect (ALE) plot, and (iii) the Shapley value.

7
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2.3.1. Variable importance

Variable importance (Breiman 2001, Fisher et al 2019) measures the global importance of each feature to the
final output of the model. The main idea behind the calculation is that, if a variable is important for calculating
the final output of the model, then after a permutation of the variable values, the model performance
significantly decreases. Larger changes in the overall model performance are then associated with highly
important features.

2.3.2. ALE plot
Accumulated Local Effect (ALE) plot, (Apley and Zhu 2020, Gromping 2020), is one of the most advanced and
robust dependence plots for describing how variables influence on average predictions of an ML model. One of
the most advanced aspects of this model is that it accounts for the correlation between variables. ALE plot thus
calculates the average changes in the model prediction and sum (accumulate) them over the values assumed by a
specific variable.

Ale plot is defined as Apley and Zhu (2020)

N Xy aA s
Farg () = j; . f qs(az—;@p(xﬂzl)dxzdzl — constant. 3)

Instead of considering the effect of the prediction ¢, the ALE plot considers changes in the prediction

W, which represents the local effect of the variable. This is averaged over all possible values of the other

variable x,, weighted by the actual probability of registering the value x, given the considered value x;. Then, the
result is integrated, or accumulated, up to x;. This value is centered around the average prediction, represented
by the constant appearing in equation (3), so that the average effect over the data is 0. Therefore, ALE plots
calculate the average difference in the prediction to be imputed to alocal change in a variable.

2.3.3. The SHAP value

The Shapley Additive exPlanation (SHAP) value, (Lundbergand Lee 2017), is alocal XAl technique extremely
powerful that aims at explaining individual predictions and in particular what is the contribution of every single
variable to the overall prediction. The SHAP method computes Shapley values (Hart 1989) as an additive feature
attribution, alike a linear model, so that the prediction is decomposed as

P =y + > ¢
=1

where ; represents the contribution of the ith feature and ¢ is an intercept.

2.4. Error assessment

To provide a comprehensive and accurate assessment of ANAKIN performances, many metrics are used
throughout this paper. In order to compare cell survival fractions, for each experiment we computed the
logarithmic Root Mean Square Error logRMSE), defined as

logRMSE! := iz(log $'(D) — logSi(D))? ,
Np%

where D is the dose and N, is the number of doses measured in the ith experiment. §* and S are the cell survivals
predicted and measured, respectively. In the paper, the average and standard deviation of all the errors used are
calculated by averaging the results for experiments included in the test set.

The RBE at the survival level pis defined as

2
Jaoi — 48, logp — «
RBE, = ~— L

26,D

>

where D is the dose giving p survival fraction. Also, we denote

RBE, = o0 Rpg, .= |Jon
Qy B

where v, and 3, represent the avand 3 value for the reference radiation, respectively. We specifically consider
three survival levels at p = 0.5, 0.1, 0.01. In the paper, we focus on RBE, ; predictions, as this is the main value
used in radiobiology for particle therapy.

The comparison of RBE measured or calculated with ANAKIN is investigated using the Mean Absolute
Error (MAE) metric
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N
MAE := %Z|R_BE;, — RBE!|,
i=1

and the Mean Absolute Percentage Error (MAPE) metric

N |RBE! — RBE
MAPE := iz IRBE, — RBE,L
N RBE],

m’p and RBE;; represent ANAKIN values and measurements, respectively, for the endpoint p = 0.5, 0.1,
0.01 o, Gand the ith experiment. Since the range of RBE is extremely wide, the two metrics are often used
together to provide a better evaluation of the performances of ANAKIN.

We also calculated the MAE values of «and G as

1 . J AN .
MAEa = _Zlailon - aionl’ MAEﬁ = _Z|ﬂilon - ﬁgonl’
Ni:l Ni:l

where @} and Biim are the predicted a and Bvalues for the ith experiment, whereas ., and B}, are the
measured data. For those quantities, the MAPE values were not calculated, as the absolute value of both aand 3
were close to 0.

3. Results

Results of the current work include a quantitative and comprehensive analysis of the comparison between
ANAKIN cell survival predictions and experimental measurements available in PIDE. A wide range of possible
metrics, such as RBE at different cell survival probabilities, v and 3 predictions as well as the cell survival at
different doses are presented. A detailed description of the used metrics is reported in section 2.4.

Figure 2(a) shows (A) MAPE and (B) MAE values (section 2.4) for RBE, , RBEs, and RBE, , while the
numerical values, as well as the logRMSE, are reported in table 2. The results indicate that ANAKIN has similar
errors for different endpoints, with RBEs, exhibiting a slightly higher MAE and MAPE than RBE,, and RBE, .

Measured RBE, values and ANAKIN predictions are reported in figure 2(b) as a function of the LET and
B,/ . In addition, the MAE for RBE,, , RBEs, and RBE, are plotted against LET and 3,/ cv,. The results
indicate an excellent agreement between RBE;; ANAKIN and the experimental data over the entire range of
LET. The smoothing spline of the RBE;, predicted as a function of LET completely overlaps with the
experimental curve. despite this is not necessarily a proof of a perfect agreement, it is nonetheless clear that the
experimental trend is predicted by ANAKIN. A good agreement can be also seen by analyzing each experiment’s
results. This is also supported by the MAE for the other endpoints (figures 2(b) (C) and table 2), which remains
mostly constant around for LET >10 keV ym ™. Concerning errors as a function of a,/ (3, thereisahigher
variability than observed for LET. The discrepancy observed in the spline smoothing at high 3,/ ., seems an
artifact of the smoothing procedure, as it is not reflected in the MAE (panel (D)). On the contrary, atlow 3./, ,
i.e. for high v,/ 3, cell-lines, ANAKIN clearly underestimates the RBE , as it is also indicated by the high MAE
in thelow 3,/ a., region. Figure 3 shows the experimental RBE,, against ANAKIN prediction. The results are
sharply distributed around the bisector representing the ideal perfect prediction. The deviation between the
bisector and the model prediction increases as the RBE grows. Figure 4 reports ANAKIN RBE predictions
compared to the measurements, plotted against LET for 4 different ions (protons, helium, carbon and iron) ina
very broad LET range. Overall, ANAKIN seems to reproduce well the experimental data. For protons, ANAKIN
can reproduce the small RBE variability at low LET as well as the clear rise above 20 keV ym ™. ANAKIN is
accurate also for helium and carbon ions, and it is clearly able to reproduce the overkilling effect, which yields a
decrease in the RBE;, around 100 keV zzm~'. ANAKIN values appear to be very close to the measurements also
foriron.

Similar conclusions can be drawn from figure 5(a). Iron shows a strongly peaked distribution because of the
low number of available experiments; nonetheless, iron a low error in both metrics. Besides iron, the other ions
show comparable results, with helium having a broader distribution in both MAE and MAPE reflecting a lower
accuracy of ANAKIN. Protons exhibit an error distribution peaked around the average values, as well as some
outliers with high errors, as clearly indicated by the spikes in the high errors region. However, these peaks are for
MAPE, and we hypothesize that they might be mainly caused by low RBE values, which can result in high
percentage errors. Figure 5(b) shows MAE and MAE error distributions evaluated for RBE, , grouped by
monoenergetic beam and SOBP. The peak of the distributions is similar for both cases, but the error distribution
for the monoenergetic beams is clearly broader than for the SOBP. Figure 6 shows RBE,, and RBE3 plotted
against LET and 3,/ v, . RBE,, values are accurately predicted by ANAKIN independently of LET and 3,/ . A
higher inaccuracy is observed for RBE 3 in the low 3./, region. The absolute errors in the avand 3 predictions
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Figure 2. ANAKIN predictions and error assessment for different endpoints. (a)(A) MAPE and (B) MAE distributions for RBE,o
(yellow), RBEs; (blue)and RBE; (purple). The dotted vertical lines indicate the average values of each distribution. (b) RBE;o
predicted by ANAKIN (black) and extracted from PIDE (black) plotted against LET (A) and 3,/ (B). To guide the eye, the
continuous lines represent a spline smoothing. MAE for RBE;, (yellow), RBEs, (blue)and RBE; (purple) plotted against LET (C)

and 8,/ o, (D).

show a steady behavior over the LET range (panel (E)), while the errors on the « values clearly decrease as
B,/ o, increases, coherently with previous analysis performed above.

3.1. Comparison with MKM and LEM
To further assess the accuracy of ANAKIN in predicting cell survival and RBE, we compared it with the only two

RBE models that are currently used in clinical practice, namely the MKM (Hawkins 1994, Inaniwa et al 2010,
Inaniwa and Kanematsu 2018, Bellinzona et al 2021) and LEM (Krimer et al 2000, Elsdsser and Scholz 2007,
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Figure 3. RBE, extracted from PIDE plotted against the RBE;, predicted by ANAKIN. The color represents the density, while the
diagonal dotted red line indicates the perfect prediction.

Table 2. Average errors and standard deviations
of different error metrics and endpoints.

Endpoint Error Mean Sd
logRMSE 1.06 1.26
RBE; MAE 0.43 0.58
MAPE 0.26 0.80
RBE,; MAE 0.24 0.74
MAPE 0.25 0.31
RBEsq MAE 0.74 0.91
MAPE 0.42 0.81
« MAE 0.24 0.24
I¢] MAE 0.03 0.05
RBE, MAE 0.73 4
MAPE 0.4 1.37
RBEg MAE 0.43 0.65
MAPE 0.43 0.59

Elsdsser et al 2008, Pfuhl et al 2022). To calculate the biological outcomes from the MKM and LEM 111, we used
the survival toolkit (Manganaro et al 2018). We performed the comparison for the HSG and V79 cell lines
because they are among the most used in radiobiological experiments, and several datasets are available in the
literature. For the V79 cell lines, we used 41 different experiments with proton, helium, and carbon ions, while

for the HSG cell line, we included 15 experiments conducted with helium and carbon ions. To compare the

models, the same metrics introduced in section 2.4 are used.
Predictions with MKM and LEM have been performed with the survival toolkit (Manganaro et al 2018, Attili
and Manganaro 2018) including the implementation of a limited number of versions for the latter models. In
particular, a newer version of the LEM, namely the LEM IV (Elsisser et al 2010), has been recently developed but
ithas not been used in the current study since a freely usable version is not available. For the LEM, we used
version III, as the latest version (IV) is not available. However, an extensive quantitative study has been published
(Pfuhl et al 2022), so a further quantitative comparison between the LEM IV accuracy with ANAKIN can be

conducted.

The comparison between the models is shown in figures 7(a)—(b), while the numerical values are reported in
table 3. The results indicate that overall ANAKIN is more accurate than both the MKM and the LEM in
predicting all metrics and endpoints considered. For both cell lines, the LEM shows the largest deviations from
the measurements, closely followed by the MKM with ANAKIN reporting lower errors. In particular, for the

HSG cell-line, the LEM shows an MAE for the RBE,, of 1.55, whilst the MKM and ANAKIN have respectively a
MAE of 1.18 and 0.43. For the V79 cell line, the MKM and the LEM predict comparable results with an MAE for
RBE,, of 1.5and 1.2. ANAKIN shows an MAE for RBE,, of 0.43. Other endpoints and metrics have comparable

11
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Figure 4. RBE,, predicted by ANAKIN (black) and extracted from PIDE (yellow) plotted against LET for protons (top left), helium
(top right), carbon (bottom left) and iron(bottom right) ions. To guide the eye, the continuous lines represent spline smoothing.

results. Together with having lower average errors, ANAKIN exhibits narrower error distributions and does
never reach absolute errors as high as the MKM and LEM. Figures 8-9 illustrates the absolute difference of MAE
between ANAKIN and MKM or LEM, calculated for the RBE,, ofboth cell lines. All experimental datasets were
obtained from PIDE.

This analysis confirms the results shown in figures 7(a)—(b) and table 3. ANAKIN is more accurate in
predicting the selected biological outputs than both the MKM and LEM for the majority of experiments. The
maximum discrepancy between MAE is significantly higher when ANAKIN is closer to the experimental data
(yellow dots), reaching differences above 6 for V79 cell lines, but only 2 for the opposite case. This result indicates
that for the cases where ANAKIN is less accurate than the other models, its error is smaller than when the
predictions of the MKM and LEM IlI are off.

3.2. Explainable artificial intelligence
Figure 10(a) shows the global importance of all variables included in ANAKIN, calculated over the whole test
dataset. The plot suggests that the dose is by far the most relevant parameter, followed by 3., LET, and Dose2 (the
dose squared), which are all close together. This finding indicates that ANAKIN uses both physical and biological
variables to predict the biological outcome. The Ions Cells variables, on which a categorical embedding has been
performed, denote the ion type and cell line, respectively, and have both a high impact on ANAKIN.

To ahave a better understanding of ANAKIN global behavior, and in particular of the correlation between
LET and the predicted survival, we calculated the ALE plot as described in section 2.3 and reported in
figure 10(b) as a function of the LET. To obtain an unbiased effect, the ALE has been evaluated at the same dose
of 2 Gy for all the experiments. The typical trend of the overkilling effect is clearly visible: figure 10(b) implies
that small positive variations in the LET yields a clear negative variation in the cell survival, with a consequent
increase of the RBE, up to 100 keV pum ™", after which the cell survival starts increasing again as the LET
increases, with therefore a decrease in the RBE. Figure 11(a) reports the SHAP value for each experiment plotted
against LET, considering a fixed dose of 2 Gy. Unlike the ALE plot, the SHAP value is alocal technique, namely
the SHAP is evaluated for each individual input variable, and thus figure 11(a) shows the importance of LET in
the overall cell survival assessment, evaluating it for each experiment. As for the ALE plot, the typical behavior of
the overkilling effect emerges. Protons exhibit a high positive SHAP value, which remains almost constant up to
15keV pm ™. As the LET rises above 15keV pum ™', protons shows a steep increase in the RBE and the SHAP
value for LET drops. In this region, especially for low-energy protons, the kinetic energy becomes more
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Figure 5. ANAKIN MAPE and MAE distributions for different ions and irradiation conditions. (a) MAPE (A) and MAE (B)
distributions for ANAKIN RBE,, prediction for carbon ions (yellow), iron (blue), helium (purple) and protons (red). Dotted vertical
lines indicate the distributions average values. (b) MAPE (A) and MAE (B) distribution for ANAKIN RBE, , prediction for
monoenergetic beams (yellow) and SOBP (blue). The dotted vertical lines indicate the distributions average values.

important than the LET to predict cell survival (figure 12(b)). The SHAP value decreases steadily up to 100 keV
pm™ ', after which it starts increasing again, reproducing the typical shape due to the overkill effect. Figure 11(b)
shows the SHAP value for a., and 3, . The SHAP value for o, shows thatlow o, has a positive but almost equal
importance to the model, but as a., increases and o,/ 3, goes over 5 Gy the SHAP values linearly decrease to have
atlast negative high values.

For o, below a certain threshold, that coincides with cell lines with low o,/ 3, < 5, the SHAP is positive, and
then it starts decreasing linearly with v, , reaching high negative values for high o, and v,/ 3, . A similar trend is
shown by the 3, SHAP values. For low 3, and high o,/ 3, , the SHAP value is positive, and then it begins to
diminish. The data also indicate that the SHAP values for 3, show both higher variability and higher absolute
values than those for cv, .

Finally, we performed a comparison of experiments considering the SHAP values. Figure 12(a) shows the
SHAP values for ANAKIN input features for two experiments performed with protons of similar LET of 18 keV
pm™~ " and 19keV pm ™ for different cell lines. The corresponding RBE, values of the two experiments are

13



I0OP Publishing Phys. Med. Biol. 68 (2023) 085017 F G Cordoni et al

A 25 5 B 25 .
| = Anakin . |~ Anakin .
207~ Experiment fo . 207+ Experiment
iy 1% T
0 107
54 : g ] oot
T R
01, 1 :""".!t . P
0.03 0.10 0.30 1.00
LET [keV/um] By/o, [1/GY]
C ° D 0
= Anakin . = Anakin .
ol ™ Experiment S e Experiment :
iy
m
o
14 .
O
oyt L DAL S
1 0.10 0.30 1.00
LET [keV/um] By/oy [1/Gy]
—
0.3
0.2 — B
< —a o2
- =
=0.1- P
0.14
1 10 100 1000 : y : .
LET [keV/um] Byoy, [1/GY]
Figure 6. RBE,, predicted by ANAKIN (yellow) and extracted from PIDE (black) plotted against LET (A) and 3,/ v, (B). RBE3
predicted by ANAKIN (yellow) and extracted from PIDE (black) plotted against LET (C) and 3,/ (D). The continuous lines
represent spline smoothing. MAE of ANAKIN predictions and data from PIDE for «;,, (yellow) ;o (blue) values plotted against LET
(B)and 3,/ (F).

significantly different, being 1.2 and 2.7, respectively, as can be seen in figure 4 panel (A). ANAKIN outputs are
extremely accurate for both experiments, being 1.13 and 2.5, with an MAE 0f 0.07 and 0.1 and a MAPE 0£ 0.05
and 0.03, respectively. Figure 12(a) suggests that the only variables showing a significant difference between the
two experiments are the o, and 3, , as it should be since the two experiments have been performed over different
celllines. Figure 12(b) compares the SHAP values for 4 different experiments, performed with either protons of
helium of different LET (high or low). The rationale for the selection of the measurement is to test ANAKIN for
different ions and LET. Besides differences in the cell-lines-specific parameters, focusing only on ion-specific
variables, it can be seen how LET and energies are treated significantly differently. The SHAP value for LET is
high and positive for both protons datasets and for low-LET helium, while is negative for high-LET helium. The
SHAP related to the beam energy is positive and close to 0 for both particles when the LET is low, it is negative
and close to 0 for high-LET helium, and negative with a high absolute value for high-LET protons.

4. Discussion

The results reported in section 3 show that ANAKIN produces accurate results over a wide range of biological
endpoints, beams of different particle species and energies, with a consistent behavior for different error metrics.
Despite the fact that logRMSE is the most robust metric, being able to detect discrepancies between the predicted
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Figure 7. ANAKIN, MKM and LEM MAE and MAPE distribution for V79 and HSG cell-lines. (a) MAPE (A) and MAE (B)
distributions for RBE calculated with ANAKIN (yellow), LEM III (blue), and MKM (purple) for the V79 cell line. The dotted vertical
lines denoted the average values. (b) MAPE (A) and MAE (B) distributions for RBE, calculated with ANAKIN (yellow), LEM III
(blue), and MKM (purple) for the HGS cell line. The dotted vertical lines denoted the average values.

cell survival and the experiments at different doses, to be easily comparable to existing radiobiological model,
most of the analysis of ANAKIN results has been conducted for RBE. As often in predictive analysis, the choice of
the metric is of fundamental importance and strongly depends on the specific variable that the model is built to
predict. In this particular case, the cell survival curves considered in the study have an extremely wide range, with
corresponding RBE up to 6, and for this reason just a single metric cannot give a robust evaluation of the model
accuracy. Experiments conducted with high LET radiation, are characterized by high RBE values and might have
high absolute errors. However, the relative percentage error might be lower in such cases, being perhaps a more
appropriate metric for experiments with high RBE. On the contrary, for experiments where the RBE is close to 1,
such as those conducted with high-energy protons, the MAPE might be misleading, and the MAE mightbe a
better tool. Since the choice of the most relevant metric is not always trivial and depends on the chosen endpoint,
our analysis was usually performed by studying MAPE and MAE together. Nonetheless, for the sake of
readability and to avoid giving an excessive amount of information, when reasonable, only the MAE metric is
reported as it is considered to be, for the present case, more informative as compared to the MAPE.
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Table 3. Average errors and standard deviations of ANAKIN, MKM, and LEM III calculations
for V79 and HSG cell lines considering different endpoints.

V79
ANAKIN MKM LEMIIT

Endpoint Error Mean Sd Mean Sd Mean Sd

logRMSE 0.70 0.71 1.9 1.43 1.66 1.4
RBE; MAE 0.44 0.74 1.2 0.79 1.5 0.9

MAPE 0.23 0.16 0.61 0.2 0.73 0.16
RBE, MAE 0.57 0.85 1.4 1.62 1.71 1.7

MAPE 0.2 0.14 0.42 0.43 0.46 0.47
RBEs, MAE 0.48 0.39 1.27 1.68 1.71 2.37

MAPE 0.17 0.06 0.39 0.36 0.4 0.41

HSG
ANAKIN MKM LEMIII

Endpoint Error Mean Sd Mean Sd Mean Sd

logRMSE 0.72 0.42 1.06 0.47 1.36 0.93
RBE; MAE 0.43 0.3 1.28 0.38 1.55 0.26

MAPE 0.11 0.07 0.16 0.09 0.21 0.1
RBE, MAE 0.31 0.2 1.44 0.22 1.45 0.31

MAPE 0.14 0.06 0.21 0.07 0.21 0.14
RBEs, MAE 0.51 0.49 1.63 0.56 1.69 0.34

MAPE 0.15 0.1 0.19 0.11 0.28 0.08

MAPE and MAE distributions (figure 2(a) and table 2) show that the errors for RBE;o, RBE; and RBEs, are
all sharply peaked around the average values with low deviation, denoting an overall consistent cell-survival
prediction despite the extremely large range of LET and cell-lines considered in the study. Further, it can be seen
how ANAKIN is able to reproduce not only the average RBE, represented by the continuous splines but also the
high variability of the RBE across many LET and cell-lines. The validation of ANAKIK against RBE,,
measurements (figure 2(b)) shows the model’s accuracy. When the MAE is plotted against the LET, two key
aspects emerge: (i) in the low-LET region, the MAE for RBEs; is slightly lower compared to the high LET region;
(ii) the MAE for RBE, and RBE; remains almost constant in the whole LET range, with a slight drop at around
30keV um ™' Notable enough, in the range 80-120 keV zm ', the experiments exhibit a large variation in RBE,
nonetheless ANAKIN error does not seem to be affected by this huge variability with no evident increase in
ANAKIN inaccuracy. This could go in the same direction as noted above, meaning that ANAKIN is able to
predict RBE fluctuations at high LET. Further, a feature that supports the potential of Al in modeling cell
survival and RBE, is that ANAKIN predicts the overkill effect around 100 keV zm ™', without any specific
training.

ANAKIN RBE,, predictions show a slowly higher discrepancy from the experimental values in the low
B,/ o, region, again mostly for RBEs, , which corresponds to cell lines with high .,/ 3, (figure 2(b)) These cell
lines are extremely radiosensitive and therefore are characterized by a larger experimental variability that is
reflected in the low accuracy of ANAKIN prediction. Further, fewer experiments have been performed for cell-
line with high o,/ 3, , so a higher error might simply be a natural fluctuation due to lower statistics.

A specific analysis of single ions species prediction shows how ANAKIN accurately predicts cell survival over
awide range of ion species with very different LET, also guessing correctly the dependence of LET-RBE profiles
on the ion type. For protons, ANAKIN is capable of reproducing the almost constant RBE at low-LET with a
steep increase after 5keV pum ™, as well as the extremely high RBE at around 20 keV zzm ™. As shown, for
example in (Missiaggia et al 2022a), currently used RBE models a often unable to accurately reproduce the RBE
for very low energy protons. ANAKIN could then provide a robust and accurate tool to predict the RBE of
clinical protons, thus allowing to develop TPS with a variable RBE instead of the fixed value of 1.1 currently used.

The comparison with experimental data acquired with helium and carbon ions show that ANAKIN
prediction are accurate also for these species, even if exhibiting a larger variability on the errors. This is a direct
consequence of the higher variability of RBE characterization connected to these two ions. These findings
suggest that ANAKIN could provide an invaluable tool for predicting RBE for heavy ions, where it is commonly
accepted that a constant value cannot be used in their clinical applications.
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which the MKM or LEM exhibit lower MAE than ANAKIN, while the yellow dot are those for which ANAKIN MAE is lower. The red
vertical line indicates zero.

The error distribution for monoenergetic beams is lower than for SOBP, as indicated by the main peak of the
MAE distributions (figure 5(b)), but it is broader. We hypothesize that this behavior could be due to the fact that
for amonoenergetic beam, an inaccurate LET estimation can result in a significantly different RBE prediction.
Opverall, ANAKIN is able to accurately predict RBE value for both monoenergetic and SOBP, without the need of
adding ad hoc adaptations.

Also, RBE,, and RBE3 show a good accuracy between predicted and experimental values. Both cvand 3
errors seem to remain constants over the whole range of LET, whereas an analysis of the « variability as a
function of 3,/ ., shows that for high o,/ 3, cell lines the estimation of c is subject to higher uncertainty. There
isa clear underestimation of  for high o,/ 3, cell line, which directly translated into the high RBE error in these
celllines, as already discussed above. Similar conclusions can be drawn for 3 with a slightly higher error in the
high 3,/ ., region. These results point out that ANAKIN is able to reproduce not only o, but also 3, which is
typically subject to extremely high uncertainty, as shown for instance by low accuracy of many models in
reproducing [ variability, (Pfuhl er al 2022). In addition, Bis predicted to be dependent on the radiation quality,
as shown by the trend of the experimental data and in contrast to many other existing radiobiological models.
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4.1. Comparison with MKM and LEM

To further test ANAKIN capability and appreciate its accuracy, we compare its results with predictions from the
two radiobiological models currently used in the clinics (MKM and LEM). In general, in fact, it is difficult to
assess the accuracy of a model by simply considering its overall deviations from the experimental data. It is rather
more effective to compare its predictions with other models assumed as benchmarks.

The finding of this comparison indicates that ANAKIN has an overall higher accuracy than both the MKM
and the LEM in all the metrics, that is RMSE, MAPE and MAE. The MKM performs slightly better than the LEM,
but this result could be related to the fact that we had to use LEM 111, instead of the latest version LEM IV, which
was not available. This hypothesis is supported by the results reported in Pfuhl et al (2022), which shows that
LEMV has significantly better accuracy than LEM I1L

ANAKIN error distribution is significantly less broad than both the MKM and LEM distributions and its
maximum error is lower. ANAKIN has not been specifically trained to predict the two cell lines selected for the
comparison (i.e. V79 and HSG) but on a wide range of different cell lines available on PIDE.

The analysis performed on several experiments suggests that ANAKIN is more accurate than both the MKM
and LEM. Overall, ANAKIN shows a lower error than the MKM and LEM, and even when its prediction is less
accurate than the other two models, the maximum error is lower than those obtained with the other two.

4.2. Explainable AI

The global variable importance study presented in figure 10(a) shows how both biological and physical variables
are efficiently used by ANAKIN to predict cell survival. The dose is the most important variable, as expected. The
analysis also identifies the square of the dose as a relevant variable, which is also reasonable as the quadratic
relation between survival and the dose is widely used in many RBE models. Concerning the physical variables,
LET is considered to be more important than ion kinetic energy.

For the biological variables, c, and 3, are among the most relevant input parameters together with the cell
line. Our hypothesis is that ANAKIN uses these three variables to understand how a specific cell line responds to
ionizing radiation.

The variables over which a Deep Embedding was performed, namely Ion, Cells and CellCycle, are also
relevant to the model predictions, suggesting that such advanced DL based embedding has been able to uncover
important information.
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Figure 10. ANAKIN global interpretability. (a) Importance analysis for the variables used by ANAKIN. The variable names reflect
PIDE documentation (Friedrich et al 2013b, 2021). We also introduced the Dose2 as a new variable, representing the square of the
dose. (b) ALE plot of the effect of LET on the survival probability predicted by ANAKIN for an imparted dose of 2Gy.

The same effect emerges analyzing the dependence of the SHAP value from the LET. For protons, ANAKIN
gives approximately the same positive and high importance to LET up to 15keV zzm~". In this region, protons
show an almost constant RBE, and ANAKIN recognizes this behavior by giving the same importance to different
values of LET.

The association between high «, values and high negative importance in figure 11(b) reflects the fact that, for
highly radiosensitive cell-lines, the o, value, that describe the contribution of single track, should be more
important than in cell-lines with lower o,/ 3, .
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Figure 11. ANAKIN SHAP value for LET and ay and 3, parameters. (a) SHAP values for LET plotted against LET. All data are for a
2 Gy dose irradiation with different ions, ranging from protons to iron. (b) SHAP values calculated for o, plotted against v, (A) and (3,
plotted against 3, (B). The data are divided into two groups, for a.,/3, > 5 (yellow dots) and v,/ 8, < 5 (blue dots). The dataarefora
dose of 2 Gy.

The SHAP value could be also extremely important in understanding which variables lead to a certain RBE.
To support this hypothesis, we compared two experiments conducted with protons of comparable energies,
namely 18 keV zzm ™' and 19 keV pum . The results indicate that ANAKIN can correctly predict a significant
variability in the RBE, that in this case stemmed from the fact that different cell lines were considered, as pointed
out by the SHAP values for the o, and 3, parameters.

To investigate how different physical variables affect ANAKIN outcomes, we considered proton and helium
beams of different energies. We found that LET has always had a positive high impact only for high-LET helium,
as this beam was the only one with a LET in the overkill region. Therefore it might be concluded that the LET is
used by ANAKIN in a significantly different manner when an overkill effect is expected. The SHAP value for the
beam kinetic energy is positive for protons and helium at low LET, whereas it is negative for the high LET beams,
which have extremely low energies (below 1 MeV u™ '), corresponding to depth downstream of the Bragg peak.
The SHAP analysis indicates that the kinetic energy is much more important for protons than helium at low
values. This behavior can be due to the fact that low-energy helium ions have a LET above the overkill threshold,
and thus the main information to predict cell survival is carried by LET. Overall, it seems that ANAKIN is able to
use jointly LET and kinetic energy to accurately predicts the cell survival fraction.

Advanced XAl techniques have been applied to understand what variables are relevant to ANAKIN
predictions, as well as to show how specific biological features observed in experimental data, such as the
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Figure 12. ANAKIN SHAP values for different experiments. (a) SHAP values calculated for the most relevant ANAKIN variables for
protons of similar LETs ((A) 18 keV zzm " and (B) 19 keV zm ™). The dose has been set at 2 Gy. (b) SHAP values calculated for the
most relevant variables for the V79 cell line for protons at 4 keV ym ' (A) and 28.8 keV um ' and helium at (C) 28 keV zm ™" and (D)
190 keV zm . The dose has been set to 2 Gy.

overkilling effect at high LET and the variable (3 coefficients, are reproduced by ANAKIN. The implementation
of such behaviors is non-trivial in a purely mathematical model and it represents thus a strength of ANAKIN.
Furthermore, these XAI techniques can play a major role in clinical applications since they allow the
interpretation of ANAKIN prediction but also the understanding on how reliable the given prediction could be.
Itis worth stressing that, one of the major limitations in biophysical modeling of radiation effects, both for
curative and radioprotective purposes, is exactly on the uncertainties estimation. Although an Al-based
approach is not derived from mechanistic considerations, unlike existing radiobiological models, and thus
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cannot provide validation of these mechanisms, on the other hand, its power in processing and filtering the data
dependencies can help to reveal features hidden in the data, that on their turn can drive further comprehension
of the phenomenon.

5. Conclusions

The present paper presents the Al-based model ANAKIN, for predicting the survival fraction of various cell lines
exposed to different types of radiation. The findings contained in this paper prove that a single model is able to
predict the behavior of different ion species, without the need to specifically train the model on datarelativeto a
single ion. Although the main motivation for developing ANAKIN is to apply it in particle therapy, the model
accuracy in predicting the biological effect of extremely high LET events could extend its application in other
fields, such as space radioprotection.

The analysis described here indicates that ANAKIN is able to accurately predict cell survival and RBE over a
wide range of different cell lines and ions type. Higher uncertainties and errors emerge for cell-lines
characterized by low a,/3, and LET in the range from 20 to 150 keV m ™~ '. These uncertainties reflect the
uncertainties in the experimental data, on which ANAKIN has been trained on. In fact, cell lines with high
o,/ 3, as well as experiments with high LET beams show a higher variability of RBE.

When compared with two of the most used radiobiological models, namely the MKM and LEM I1I,
ANAKIN showed in average more accurate predictions. The gap between the models could be smaller if the
latest versions of the MKM and LEM become available in the literature.

Although purely data-driven models are often considered to be less powerful than mechanistic models, ML
and DL have the advantage of being extremely flexible. This is supported by the fact that ANAKIN predicts both
the overkill effect and the variable G into the MKM. On the contrary, in mechanistic model ad hoc correction
terms must typically be added to include the above effects.

The modular structure of ANAKIN makes it very easy to include advanced features. The most relevant example is
the implementation of a radiation quality description different from the classical LET, such as microdosimetric or
nanodosimetric quantities, as well as the coupling of ANAKIN with a mechanistic RBE model. In fact, while we notice
the remarkable accuracy of the model based purely on LET, we are aware that the latter parameter is a suboptimal
descriptor of a radiation field. Thus we plan to extend the model by including micro- or nanodosimetric information,
which with the present dataset is difficult to retrieve, without introducing further inaccuracy. Further, whilst at the
present stage, ANAKIN is trained and tested on in vitro data, in future extensions of ANAKIN, we plan to consider
in vivo data and clinical values for ovand 3 parameters in order to get a more significative clinical descriptor in terms
of TCP estimations. Also, when available sufficiently large datasets for other endpoints (mutation, transformation
and chromosome aberration) ANAKIN can be easily extended to such predictions.

In conclusion, we showed that ANAKIN is an intuitive and understandable model, that demonstrates high
accuracy in predicting cell survival and RBE. Any prediction given by ANAKIN can be analyzed in detail, so that
the contribution of each input variable can be precisely assessed. Several advanced techniques of XAl can be used
either to understand if a well-known biological or physical phenomena, such as the overkill effect or LET
dependent (3, has been included in ANAKIN, but also to gain further insight and unveil existing correlations
between different variables. While Al has been broadly employed in radiotherapy treatment planning, either for
physical dose optimization or image segmentation, ANAKIN is the first application on radiobiological
calculations, which may open the possibility to use for the first time an Al-based model to biological treatment
planning, i.e. the optimization of the dose delivery with explicit consideration of a voxel-dependent RBE. This
problem is typically extremely heavy computationally and strongly linked to uncertainties, two features where a
model like ANAKIN may be of the outermost advantage.
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