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Deep Neural Networks (DNNs) have become an important tool for modeling brain and behavior. One
key area of interest has been to apply these networks to model human similarity judgements. Several
previous works have used the embeddings from the penultimate layer of vision DNNs and showed
that a reweighting of these features improves the fit between human similarity judgments and DNNs.
These studies underline the idea that these embeddings form a good basis set but lack the correct level
of salience. Here we re-examined the grounds for this idea and on the contrary, we hypothesized
that these embeddings, beyond forming a good basis set, also have the correct level of salience to
account for similarity judgments. It is just that the huge dimensional embedding needs to be pruned
to select those features relevant for the considered domain for which a similarity space is modeled. In
Study 1 we supervised DNN pruning based on a subset of human similarity judgments. We found that
pruning: i) improved out-of-sample prediction of human similarity judgments from DNN embeddings,
ii) produced better alignment with WordNet hierarchy, and iii) retained much higher classification
accuracy than reweighting. Study 2 showed that pruning by neurobiological data is highly effective
in improving out-of-sample prediction of brain-derived representational dissimilarity matrices from
DNN embeddings, at times fleshing out isomorphisms not otherwise observable. Using pruned DNNs,
image-level heatmaps can be produced to identify image sections whose features load on dimensions
coded by a brain area. Pruning supervised by human brain/behavior therefore effectively identifies
alignable dimensions of knowledge between DNNs and humans and constitutes an effective method
for understanding the organization of knowledge in neural networks.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Deep networks for vision as models of human similarity spaces

Deep Neural Networks for computer vision are now routinely
sed as predictive models of human brain and behavior (e.g., Ci-
hy & Kaiser, 2019). A key question is whether these networks de-
elop knowledge that is organized according to latent dimensions
imilar to those that structure human knowledge. For a given set
f images this issue can be addressed by (i) soliciting pairwise
imilarity judgments from humans; (ii) computing cosine similar-
ty for the same set from DNN embeddings, and (iii) evaluating
he correspondence between the two similarity matrices. The
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magnitude of this correspondence is reported as an R2 value
and frequently referred to as second-order-isomorphism (2OI,
Kriegeskorte et al., 2008). Practically, it reflects the network’s ca-
pacity to predict human similarity judgments. There is no need to
use explicit similarity judgements; these can be replaced by any
procedure that outputs a similarity space from human behavior
or neural activity.

There is substantial heterogeneity in 2OI R2 values reported
when relating DNN embeddings to human similarity judgments.
Peterson et al. (2018) analyzed embeddings from the penultimate
layer of VGG-19 (Simonyan & Zisserman, 2014) and reported
2OI for six image-sets, each set drawn from a different semantic
category such as animals or fruits (a various category combined
images across such categories). Reported values were in the range
of R2

= 0.2 − 0.6. King et al. (2019) reported similar values
for object and scene categories with a maximal Spearman’s Rho
value of 0.56 (R2 not reported). Groen et al. (2018), studying
more complex scenes, reported 2OI values of R2

= 0.07, (r =

0.26). A large-scale analysis based on estimating psychological
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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mbeddings from 50,000 stimuli (Roads & Love, 2021) reported
pearman Rho values between 0.02 and 0.36, across 12 DNN
rchitectures.
However, Peterson et al. were able to increase 2OI’s R2 by

eweighting the activation (output) of each node in a DNN’s
enultimate layer. This is not an architectural change per se,
s no network parameter is changed. Instead, this process can
e considered as modifying each feature’s salience. The authors
mplemented reweighting by maximizing the fit between the
uman and DNN’s similarity matrices through linear regression.
ractically, the fit between human similarity judgment (s) and
NN-pairwise-similarity for any two images k, j was defined as
kj =

∑4096
i=1 wifkifji. Here, fki and fji are the values of feature i

of n = 4096) for image k and image j. The estimated pair-wise
imilarity skj is just the sum of these products across all n = 4096
eatures. Regression therefore corresponds to learning a 4096-
eight-set w, that alters the importance of each feature so that
he sum of the products becomes a better estimator of human
imilarity judgments.
Several subsequent studies have extended this approach.

ther forms of linear-transforms of the embedding matrix from
mages have been studied (Attarian et al., 2020). In computa-
ional linguistics, reweighting of word-embedding vectors im-
roved prediction of human similarity judgments (Richie & Bha-
ia, 2020). Non-linear reweighting was also shown to be effective
n modeling similarity judgments for images (Sanders & Nosofsky,
020).
The concept of reweighting shares similarities with attention

odulation in DNNs. For instance, in Lindsay and Miller (2018),
nits’ activity in feature maps was adjusted using weights pro-
ortional to their preference for an object category, boosting
erformance in detecting that category in challenging scenarios.
imilarly, Luo et al. (2021) presented a learnable attention layer to
eweight incoming activations. They found that a strong attention
ed to heightened hit rates and false alarms, whereas moderate
ncreases yielded improved hit rates with only slight rises in false
larms.
The effectiveness of reweighting for prediction of human sim-

larity speaks to the strengths and limitations of vision-DNNs. It
uggests that a DNN’s penultimate layer already forms a useful
asis-set for predicting human similarity in that it captures visual
eatures that structure human knowledge and are used when
umans compare objects. Nonetheless, when modeling human
imilarity judgments, recalibration is required in order to assign
eatures their correct levels of salience (see Richie & Bhatia, 2020,
or similar argument in context of word embeddings).

.2. Framework and aims

The departure point of the current work is that the argument
or reweighting may reflect an under-appreciation of the capacity
f DNNs to predict human similarity judgments. Reweighting op-
rationalizes the assumption, summarized above, that DNNs learn
elevant features but assign them different levels of salience with
espect to humans. A different possibility, which we probe here, is
hat DNNs do in fact acquire the relevant features at appropriate
evels of salience. It is just that in any particular evaluation con-
ext where human similarity-space is predicted, the contribution
f relevant features is diluted by irrelevant ones. Specifically,
aking the entire penultimate layer of a DNN as the relevant basis
et effectively combines two representational sub-spaces: those
elevant for human similarity judgments and those less relevant.
hile re-weighting can be considered as a way to de-mix these

paces, it comes with two costs. First, reweighting is applied
ia linear or non-linear transforms of node activation values in
he DNN’s penultimate layer. This does not directly translate to
90
change in network architecture as no network weights are
hanged but instead a positive or negative multiplier is applied to
he dot product of a feature’s values for two images. Explainability
s further reduced by the fact that interpreting regression coef-
icients for reweighting is non-trivial even in the case of linear
egression, and to our knowledge has not been attempted. Sec-
nd, reweighting strongly reduces a network’s ability to classify,
hich significantly diminishes the ability to understand the rela-
ion between those features important for classification and those
mportant for predicting similarity. To confirm that reweighting
bolishes classification, we successfully reproduced the analyses
nd results of Peterson et al. (2018), and then evaluated VGG-19’s
ccuracy after the penultimate layer was reweighted. Top-1/top-5
ccuracy dropped from {72.7; 91.0} to {9.4; 23.92} respectively.
The alternative position that we propose and evaluate is that

hen modeling similarity spaces produced by human similar-
ty judgments (or brain activity) there exists a non-reweighted
ubset of features that is most informative. The idea then is
o produce a pruned DNN network that better models human
imilarity than the original non-pruned network. The intuition
ehind this idea borrows directly from neurobiology. Neurosci-
ntists often quantify the 2OI between multivariate brain-activity
nd human similarity judgments, and this has strongly advanced
nowledge of brain areas sensitive to particular categories. When
oing so, an initial step involves feature selection: selecting a
imited set of brain-features (e.g., fMRI voxels or EEG sensors) that
re expected, a-priori, to contain the relevant information. For
xample, similarity judgments for scenes, objects, or faces would
aturally be predicted using multivariate activation patterns sam-
led from different brain areas. That is, relatively limited brain
reas will be selected, depending on the semantic categories
tudied, their breadth and depth. In some cases when the en-
ire brain is of interest, an exhaustive ‘‘searchlight’’ search is
onducted successively within small volumetric parcels, to again
ocus sensitivity on relatively limited brain areas, rather than
he entire brain’s features. In any case, multivariate analyses of
rain activity do not consider all brain voxels/sensors jointly as
eatures, and for this reason a preliminary selection of brain re-
ions is mandatory for obtaining a neurobiologically-meaningful
stimation. We put that the same holds when studying DNNs: it
oes not necessarily make sense to use all features (embeddings)
or purposes of modeling a particular set of similarity judgments.
hese observations motivate the two aims of the current work.

im 1: Learn pruned DNN configurations that improve out-of-
ample prediction of human similarity judgments from a DNN’s
enultimate layer, without activation reweighting. Pruning is im-
lemented via feature selection that is supervised by human
imilarity structure. To the extent this aim was accomplished,
e planned three derivative aims: (1) contrast the performance
f pruning and reweighting-based approaches with respect to
imilarity prediction; (2) determine if pruned networks provide a
etter match to taxonomic structure (WordNet), (3) and evaluate
hether classification errors for pruned networks indicate biases
increased attention) towards the category for which similarity
udgments were obtained.

im 2: Use neurobiological data to supervise DNN-pruning so
that pruning improves out-of-sample prediction of representa-
tional spaces manifested in multivariate patterns of human brain
activity.

2. Study 1: Predicting human similarity judgments

2.1. Method: Data set

The image set and similarity ratings data we use were curated
by Peterson et al. (2018) and kindly provided to us by the authors.
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he image set consists of images from six datasets, each with
20 images. The dataset represented categories that varied in
erceptual and semantic heterogeneity. For consistency we refer
o them using the labels introduced by Peterson et al.

1. Animals: includes birds, reptiles and mammals of different
types.

2. Automobiles: includes various transportation devices in-
cluding sleds, horses, rafts, trucks, trains, wheel barrels,
planes, blimps, and roller-skates.

3. Fruits: fruits; mainly in the context of original vegetation.
4. Vegetables: vegetables; mainly in the context of original

vegetation.
5. Furniture: mainly household furniture captured in indoor

settings.
6. Various: a mix of images from the above categories but

also include faces of people and outdoor scenery.

As evident, the datasets varied in taxonomic breadth, with vari-
ous being the broadest. Within each dataset, the authors obtained
pairwise similarity ratings from humans for all combinations of
120 images; no similarity ratings were obtained for cross-dataset
pairs, though the various dataset can be treated as similarity
mapping across superordinate-level categories.

2.2. Method: Network pruning via supervised feature selection

We perform separate analyses for each of the 6 different cate-
gories. Each category contains 120 images. The human similarity-
space is the upper-triangle of the 120 × 120 Similarity-judgment
Matrix, from here on referred to as SMHM , and the DNN similarity
space is the upper triangle of 120 × 120 pairwise cosine distances
between images (SMDNN ). For the DNN analysis, activation values
were extracted from the penultimate layer of VGG-19, which con-
tains 4096 nodes. The 2OI between SMHM and SMDNN is quantified
as their coefficient of determination, R2(SMHM , SMDNN ).

2.2.1. Main pruning algorithm
To improve prediction of human similarity ratings from DNN

activity, we implement the structural pruning of entire nodes
(rather than single weights) using a variant of a sequential feature
selection (SFS) algorithm that is supervised by human similarity
judgments. The process, implemented separately for each dataset,
consisted of (i) determining feature contribution, (ii) selection-
to-criterion, and (iii) out of sample testing. The process was
repeated for 5 folds in a cross-validation framework. We present
the algorithm and provide details in the subsequent sections.

Determining feature contribution: In each cross-validation it-
eration, we designated 20% (n = 24) of the images as a test
set and 80% (n = 96) as the training set. Baseline R2 is defined
as the training-set’s R2 between the DNN similarity matrix and
the human similarity matrix for those 96 images.1 We quan-
tify each feature’s contribution to Baseline R2 by removing only
that feature and recomputing train-set-R2. The feature is then
einserted and the next removed until the process is completed
or all 4096 features. Consequently, ‘relevant’ features are those
hose removal produces an R2 value below Baseline R2 and ‘ir-
elevant’ features are those whose removal produces a 2OI value
bove Baseline R2. This produces a rank order of each feature’s

independent contribution to Baseline R2.

Selection-to-criterion: After ranking, we consecutively insert
features, according to their importance rank, into a candidate
feature set. Each time a feature is added to the set, we recompute

1 Whenever we refer to similarity matrices for the purpose of R2 computation,
we only consider their flattened upper triangle.
 b
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Algorithm 1 Pruning: Main algorithm

Inputs:
• SMHM : similarity Matrix of human similarity judgments
• SMDNN : similarity Matrix of similarity estimations derived

from the DNN by computing the Pearson’s correlation
between the embeddings of two images

1. Compute baseline R2(SMHM , SMDNN ), using the full set of
features.

2. Rank features

• For each feature:

– Remove the feature from original embeddings,
compute reduced similarity matrix SMDNNRED.

– Calculate difference D = R2(SMHM , SMDNN ) −

R2(SMHM , SMDNNRED).

• Rank features based on D, with higher values
indicating great importance.

3. Construct pruned embeddings

• Initialize an empty set of features.
• Iterate over ranked features in descending order of

importance according to D

– Reinsert one feature at a time.
– Calculate R2 after each feature reinsertion,

store values in array a.

• Determine the maximum value in array a.
• The index of the maximum value delimits the set of

features to be included in the pruned embeddings.

2OI against the train-set human similarity judgments. We add all
features exhaustively and then we identify the set of features as-
sociated with the maximal value reached. The set thus identified
constitutes the pruned network associated with a specific fold. All
the steps described so far are summarized in algorithm 1.

Out-of-sample generalization: Once a pruned node-set is deter-
mined, we apply it to the left-out test set. The test-set images are
passed through the DNN, and coded as activation values for the
retained nodes in the pruned layer. We then construct a pair-wise
similarity matrix as described above and report pruned-net-R2.

e evaluate this value in relation to the test-set’s Baseline R2

hich is the R2 produced when considering all 4096 nodes rather
han the retained subset. The overall out-of sample performance
or a given dataset is the mean R2 value across the five left-out
est-set folds.

.2.2. Alternative pruning algorithms
The sequential feature selection algorithm we use has the

dvantage of a rapid compute time when selecting from a large
umber of features, as the feature ranking stage scales linearly
ith the number of features. Other selection algorithms perform
n iteration over the entire remaining feature set after selection
f each feature, making them less practical. To evaluate if those
lgorithms produced better results we implemented the entire
runing pipeline using three other forward and backward se-
ection algorithms and compared their performance to the main
lgorithm. The descriptions of these alternative algorithms can be
ound in Appendix.

.3. Method: Regression-based reweighting

As an alternative to pruning we evaluated two regression-

ased approaches: one using ridge-regression, as introduced by
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eterson et al. (2018), and another using LASSO-based regular-
zation which we implemented here with an additional positivity
onstraint on the weights. The regression models were fit sep-
rately for each dataset, in the same way that pruning was
ptimized separately for each dataset.
Assuming Z is the total number of objects whose features are

described, we can write the regression as follows.
For each pair of objects i and j, where 1 ≤ i < j ≤ Z:

ij = w0 + w1(A1i · A1j) + w2(A2i · A2j) + · · · + wn(Ani · Anj) + εij
where: Sij represents the similarity value between Object

and Object j; w0, w1, w2, . . . , wn are the weights or regres-
ion coefficients to be estimated for each feature interaction;
1i, A2i, . . . , Ani represent the feature values of Object i;
1j, A2j, . . . , Anj represent the feature values of Object j.
When using Ridge Regression to regularize the solution, the

sual loss function is used:

SS + λ
(
β2
1 + β2

2 + · · · + β2
n

)
here RSS is the residual sum of squares, and λ is the regulariza-
ion parameter that controls the amount of shrinkage applied to
he regression coefficients and is non-negative.

When using LASSO for regularization, the following loss func-
ion is used:

SS + λ (|β1| + |β2| + · · · + |βm|)

here RSS is the residual sum of squares; λ is the regularization
arameter that controls the amount of shrinkage applied to the
egression coefficients and is non-negative; |β1|, |β2|, . . . , |βm|

epresent the absolute values of the regression coefficients. Fi-
ally, we introduced our own non-negativity constraint on LASSO
hat requires: β1 ≥ 0, β2 ≥ 0, . . . , βn ≥ 0

Following Peterson et al. (2018) the features were not (col-
mn) normalized prior to training the regression model. Instead,
e followed those authors in applying normalization of values
y object (i.e., by row). This operationalizes the assumption that,
hen comparing two objects, those object features that are more

mportant in the context of a given comparison are those that are
elatively more salient relative to each object’s other features. To
nvestigate whether this object-based normalization reduces sen-
itivity of the regression-based approach, we also implemented
he regression model after applying column-normalization via Z-
caling or via min–max (0−1) range normalization. We found that
oth these procedures produced poorer predictions than object-
ormalization for all datasets and so do not further discuss that
nalysis.

.4. Result: Pruning outperforms competitive methods in prediction
f human similarity

Pruning markedly improved the prediction of human similar-
ty judgments for out of sample image-sets as compared to the
on-pruned test-set Baseline. Results for each of the six datasets
re reported in Table 1. Out-of-sample prediction improved for
ll datasets including various. This first result is important in
howing that pruning supervised by human behavior is a viable
pproach for extracting relevant information from DNNs.
Pruning also outperformed other reweighting/alignment

ethods used to date. For reference, Table 1 also includes the
OI values produced by other alignment methods when tested
n the same cross-validation folds. It can be seen that pruning
utperformed the other three methods in 17 of the total 18
omparisons. The methods we compared are explained below:

1. Baseline refers to the match between the DNN and human
similarity space prior to any modification, averaged across

the five out-of-sample data for the test folds.

92
2. PAG18 refers to application of ridge regression as imple-
mented by Peterson et al. (2018), but applied to the five
out-of-sample folds used in our data.

3. Sim-DR is a reweighting approach developed by Jha et al.
(2020) which optimizes a projection of DNN embeddings to
a lower-dimensional space that matches human similarity
judgments (we include values reported by the authors
on the same dataset, as we have not implemented this
learning model).

4. LASSO is our own variation of the reweighting imple-
mented by PAG18 but which uses LASSO-regularized re-
gression (Tibshirani, 1996) that is further constrained to
only positive weights. As noted by others (Attarian et al.,
2020) PAG18’s use of ridge regression produced negative
weights which is difficult to reconcile with intuition about
psychological processes, as it means there are features for
which a larger product-term results in reduced similarity.

5. Pruned refers to the node-pruning method we introduce
here.

The number of nodes retained differed across datasets, and
there was no strong indication of a relationship between num-
ber of nodes maintained and the R2 achieved. For example, the
animals and various datasets were the ones with most nodes
aintained, but were associated with markedly different R2 val-
es.
As indicated inMethods, an advantage of the sequential feature

election (SFS) we used is that it scales linearly with n, the
number of features, whereas iterative forward- or backward-
selection algorithms scale approximately with n2/2. However, we
also evaluated three other SFS algorithms to guide pruning; one
forward-selection algorithm, and two backward-selection algo-
rithms (see Appendix). The main findings of this analysis were
as follows. All three under-performed compared to the main
selection algorithm we used when tested on out-of-sample pre-
diction of human similarity judgments. In addition, two of them,
Backward selection by maximum 2OI (BWD1) and Forward selec-
tion (FWD) outperformed feature-reweighting for all six datasets.
The most competitive of these three SFS algorithms was BWD1,
which produced R2 values that were only very slightly below our
reference algorithm. However, BWD1 appeared to prune more
effectively, producing smaller sets of features, e.g, achieving the
same prediction accuracy for animals with only 400 features
instead of the 800 features identified by our reference algo-
rithm. These findings suggest that it may be useful to evaluate
several different pruning algorithms for a given experiment, as
the distribution of information across features may make some
feature-selection algorithms more effective than others.

2.5. Result: Reweighting has no additive effect when applied to a
pruned network

Pruning and reweighting embody different perspectives on the
information contained in DNNs. That said, they may be concep-
tually and technically mutually compatible and synergistic. This
would be supported if it were shown that applying reweighting
to an optimally pruned network produces a further improvement
in predictive strength.

To determine whether reweighting offers an additional pre-
dictive benefit, we stacked a reweighting step on top of the
pruned network in a context of cross-validation. Specifically, the
cross-validation procedure consisted of two steps. The first iden-
tified the best-fitting pruned feature-set exactly as described in
Section 2.2.1. Then, in a second step, we applied a reweighting
procedure to those features selected within the fold, which con-

stituted an opportunity to learn a better fit. We then applied both
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Table 1
Pruning outperforms other methods in prediction of out-of-sample similarity judgments. R2 for out-of-sample
prediction of human similarity from pruned and original penultimate layer of VGG19 (baseline). For the pruned
layer we also report the average number of nodes selected (±SD across folds).

Animals Automobiles Fruits Furniture Various Vegetables

Baseline 0.61 (0.07) 0.51 (0.07) 0.33 (0.08) 0.29 (0.05) 0.43 (0.10) 0.32 (0.07)
PAG18 0.71 (0.09) 0.50 (0.05) 0.25 (0.15) 0.34 (0.08) 0.50 (0.13) 0.27 (0.07)
LASSO 0.64 (0.12) 0.51 (0.08) 0.38 (0.13) 0.37 (0.11) 0.47 (0.12) 0.31 (0.08)
Sim-DR 0.64 0.57 0.30 0.33 0.50 0.30
Pruned 0.75 (0.05) 0.55 (0.08) 0.39 (0.08) 0.38 (0.07) 0.56 (0.1) 0.41 (0.05)
# nodes 807 (63) 647 (45) 563 (76) 557 (101) 830 (44) 605 (190)
Table 2
Applying reweighting to pruned networks does not increase prediction accuracy. R2 for out-of-sample prediction
of human similarity from pruned networks (Pruned baseline) and from the same pruned networks subsequently
reweighted using regression.

Animals Automobiles Fruits Furniture Various Vegetables

Pruned baseline 0.75 (0.06) 0.55 (0.09) 0.39 (0.08) 0.38 (0.07) 0.56 (0.11) 0.41 (0.06)
Ridge 0.72 (0.09) 0.49 (0.07) 0.31 (0.13) 0.35 (0.08) 0.51 (0.12) 0.30 (0.05)
Lasso 0.68 (0.12) 0.45 (0.1) 0.37 (0.1) 0.33 (0.11) 0.40 (0.09) 0.28 (0.07)
Elasticnet 0.69 (0.1) 0.46 (0.1) 0.37 (0.1) 0.35 (0.1) 0.42 (0.09) 0.3 (0.06)
T
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solutions (from step 1 [pruning alone] and from step 2 [regression
after pruning]) to the validation set and stored the two R2 values
or comparison. For completeness, we implemented reweighting
ia three regression approaches: Ridge regression, LASSO, and
lasticnet.
We found that applying reweighting to a pre-pruned solution

id not improve predictive capacity, but instead consistently re-
uced it for all six datasets (see Table 2). This suggests that the
eature set identified by pruning already reflects relevant features
t adequately tuned levels of salience, and that further tuning is
ot beneficial.
As a control, we evaluated whether the failure of reweighting

o improve on performance of a pre-pruned network owes to low
ffectiveness of reweighting when applied to vectors with lower
imensionality (low node numbers) as opposed to the full 4096-
ode vector. We repeated this analysis, but selected a random set
f nodes per dataset with the number of nodes matching those
n Table 1, and applied reweighting to those nodes. In this case
e found that all regression methods improved out of sample
rediction for animals. In addition, for the other categories (apart
rom automobiles), at least one regression method produced a fit
bove test-baseline. This means that reweighting can improve the
it when applied to a randomly selected small subset of features,
ut failed to do so when this set was determined via supervised
runing.

.6. Results: pruning reorganizes semantic space and improves
lignment with WordNet’s hierarchical taxonomy

.6.1. Pruning produces tighter clustering in multidimensional space
To obtain a better insight into the similarity spaces, we pro-

uced Multidimensional Scaling (MDS) solutions for an indepen-
ent dataset consisting of the entire set of Animal categories in
magenet (Deng et al., 2012) (398 categories in all). The embed-
ings we used were extracted either from the original VGG-19
etwork, or from the VGG-19 network that was pruned using
nimal similarity judgments from the stimuli of Peterson et al.
2018). Note that these are two independent datasets.

For each of Imagenet’s 398 animal categories we used the best
xemplar image embeddings to construct the two dimensional
DS plot using sci-kit learn Python library with maximum itera-

ion limit of 10,000 and converge tolerance of 1e–100. We chose
he best fitting solution among four independent initializations.
he images in the MDS plot were subsequently color coded to
epresent the six broad groupings of Animals within the Word-
et (Fellbaum, 1998) taxonomy. Color-coding was performed
93
Table 3
Image-similarity to other images within and across the same superordinate
category. Computed separately from image embeddings in the full and pruned
VGG-19 network. Images were 398 images, independent of those used for
pruning.
Category Similarity Between Similarity Within

Full Pruned Full Pruned

Amphibians 0.02 −0.00 0.19 0.23
Birds 0.01 −0.01 0.13 0.18
Fishes 0.01 −0.01 0.17 0.19
Invertebrates 0.00 −0.01 0.10 0.11
Mammals 0.00 −0.02 0.04 0.06
Reptiles 0.01 −0.01 0.14 0.18

after the MDS routine, and the groupings did not constrain the
MDS solution in any way. The results, presented in Fig. 1, clearly
show that the pruned embeddings produce better-defined clus-
ters, clustering fish, reptiles, amphibians and invertebrates more
tightly.

To quantitatively determine this issue, for each image in
these six superordinate categories, we computed the similarity
to all images within the same superordinate category (Similarity
Within, SimW ), as well as its similarity to all images not shar-
ing the same superordinate category (Similarity Between, SimB).
hese two statistics were then averaged over all images within
ach of the six superordinate categories. The results are shown
n Table 3. We see that already in the baseline embeddings (Full
eature Set, column Full) there is a meaningful differentiation
etween SimW and SimB meaning that images are more similar to
ther images within their superordinate category than to images
n other superordinate categories. Importantly, pruning consis-
ently increased SimW and reduced SimB. That is, it created tighter
lustering within a category and stronger separation between
ategories. The low SimW value for mammals can be explained
y the fact that this category is the largest (N = 218 of 398) and
ost heterogeneous.

.6.2. Pruning produces a hierarchical structure that better approx-
mates WordNet

To evaluate whether pruning improves approximation of tax-
nomic structure, we analyze the same set of 398 animal images
aken from each of the animal species in ImageNet. The fact that
runing improves 2OI suggests that it maintains features that are
mportant for separation between animal categories, but because
OI reflects ranking of pair-wise similarities, it does not directly
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Fig. 1. Multidimensional scaling plots of the embeddings corresponding to the 398 animal classes of ImageNet with Original VGG-19 and the same network pruned
for Animals. Magenta-mammals, Yellow-invertebrates, Cyan-reptiles, Green-amphibian, Blue-bird, Red-fish.
Table 4
Jaccard-Index concordance between a category’s WordNet taxonomic neigh-
borhood and its neighbors in DNN clusters. Higher values indicate greater
agreement. Values shown for solutions across N = 6 : 12 DNN clusters.
ll comparisons statistically significant at p < .01 Bonferroni corrected for 7
omparisons.

N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

Orig. Vgg-19 0.20 0.20 0.20 0.18 0.18 0.22 0.22
Pruned Vgg-19 0.30 0.26 0.26 0.25 0.26 0.26 0.26

address hierarchical structure. The analysis was carried out in two
steps. We first produced a hierarchical taxonomic representation
from the similarity spaces we had used to construct the MDS
solutions (i.e., one solution for the original VGG-19, and one for
a pruned variant supervised by animals). These reflected the
hierarchical structure latent in the DNN similarity space of Ima-
geNet’s 398 animal species. We then compared those hierarchical
structures to that of WordNet (Fellbaum, 1998), which is a lexical
database that also includes IS-A relations between animal types.
In this context, WordNet is taken to be the reference. We capital-
ize on the fact that ImageNet’s labels are derived from WordNet.
The detailed methods (see Appendix) report how we produced
hierarchical structure from DNN embeddings using Hierarchical
Clustering Analysis (HCA) and how we operationalized hierarchi-
cal structure from Wordnet. Once the two hierarchical structures
were constructed we could compute the relative match between
them. We used the Jaccard Index to quantify to what extent
cluster-members in the DNN HCA were also nearby leaf nodes
in WordNet (see Appendix). We repeated the DNN HCA analysis
to produce solutions with N = 6..12 clusters and evaluated the
results for each of these solutions.

As evident in Table 4, in all cases the pruned network’s hier-
archical structure produced a better match to WordNet than the
original, non-pruned network. This was seen in that Jaccard Index
values were higher for the pruned network, and this held inde-
pendent of the number of clusters set as a parameter. To compute
statistical significance we conducted an item-level paired analysis
comparing the Jaccard Index value for each category for the
original and pruned cases. In all cases, these values were higher
for the pruned networks (Wilcoxon tests, Bonferroni corrected for
multiple comparisons).
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2.7. Pruning retains classification performance as well as strengthens
categorization

The fully connected layers of DNNs contain substantial re-
dundancy (e.g., Cheng et al., 2015), which suggests that pruned
networks could retain adequate classification performance. We
computed top1/top5 accuracy for the pruned networks that we
derived (with each optimized for each of the six datasets in
Table 1) and report the mean values across folds (Fig. 2). Accuracy
was computed for 50K independent images from ImageNet’s vali-
dation dataset. The activations passed from the penultimate layer
were modified in the following way. For pruning, only penulti-
mate layer activations corresponding to the nodes retained after
pruning were passed to the final layer of the network to classify.
For Ridge regression as presented in PAG18, the ridge weights,
optimized for each of the six datasets, were unconstrained and
hence took both positive and negative values. For this reason, we
chose to multiply the penultimate layer activations by the ridge
weights with no further transformations before passing them
to the final layer for classification. For Lasso regression, since
we constrained the weights to be positive, we multiplied the
penultimate activations by the square root of the Lasso weights.
For the regression models, this analysis determines if the features
that are picked out by regression as crucial for comparison are
also ones that are important for classification. For this reason we
did not evaluate further fine-tuning to regain classification after
applying these weights.

As can be seen in (Fig. 2), for pruning, top-5 accuracy never
dropped below 79% and top-1 accuracy was between 56% − 66%
(VGG-19’s top-1 is 74.5). Pruning provided much better classi-
fication performance than non-modified Ridge regression (Pe-
terson et al., 2018), where respective values never exceed top-
1, 9%; top-5, 24%. Finally, lasso-based regularization produced
categorization accuracy slightly lower than found for pruning.

As indicated by the small error bars in Fig. 2, categoriza-
tion performance across folds was quite similar independently
of the configuration of the training folds used for pruning. In
fact we found that supervised pruning, as implemented across
the different training folds (i.e, supervised via different similarity
judgments) produced very similar distributions of activity pat-
terns in the network’s ultimate layer (1000-node post-softmax),
when assessed for ImageNet’s validation set. We computed for

each image the correlation of its embeddings across folds. We
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Fig. 2. Classification performance for Imagenet’s validation set when passed through networks pruned or reweighted by human similarity judgments. Accuracy
computed across the five folds. (a) Top-1 performance (b) Top-5 performance.
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found that the average correlation of the post-softmax distribu-
tion computed per image across folds often exceeded r = 0.95
see Appendix). This suggests that different prunings, supervised
y different sets of similarity judgments within a dataset, contain
imilar categorization-related information.
In addition, we see that pruning reduced top-1 accuracy, at

inimum by around 5% as compared to VGG-19’s performance.
o understand if this was due to the fact that pruning em-
hasizes features that are relevant to the pruned category, we
nalyzed the error patterns exhibited by the original VGG-19 and
y VGG-19 pruned to approximate human similarity judgments
or the animal dataset. The images we passed through these
etworks were ImageNet’s 50K validation set. In this analysis,
e focused on ‘substantial errors’ made by these two networks,
efined as images where the true label was not among the top-
post-softmax activations for a given input image, for either

he original or pruned network. This was repeated for each of
he 5 folds/evaluations. When analyzing confusions within these
ubstantial errors, we found that pruned networks more fre-
uently classified images as animals. The magnitude of the bias,
elative to the original VGG-19, appeared independent of whether
he correct label belonged to the animal category or not. When
he correct label was a type of Animal, the non-pruned VGG-
9 labeled the image as (the wrong) animal 69% of the time
hereas the pruned-net did so 91% of the time. When the correct

abel was not a type of animal, the values were respectively 5%
nd 30%. The fact that the bias was independent of whether the
orrect label was an animal or not suggests the pruned network
id not develop enhanced (useful) sensitivity to animal features,
ut expressed a linear (constant) bias to classify any image as an
nimal. This supports the idea that pruning by animals maintains
eatures that account for variance within this category, and that
hese features contribute strongly (i.e., produce strong activation)
o animal categories in the output layer. The fact that pruning
roduced a higher rate of animal decisions, raising both hits and
alse alarms is a pattern very similar to that documented in Luo
t al. (2021). In their study, they learned an attention layer to
mprove categorization of target category. Thus, optimizing for a
ategory similarity judgments through pruning produces an effect
hat is similar to increasing weights via attention in that study.

.8. Discussion of Study 1

The results of Study 1 are straightforward. Performance-wise,
runing outperformed all other methods on the out-of-sample
rediction of human similarity judgments across five different
atasets, and was competitive with state of the art on the sixth.
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The strongest benefit was seen for vegetables, where pruning
achieved an R2 of 0.41 whereas no other method exceeded base-
line (R2

= 0.32). We also found that attempting to reweight an
already pruned network offers no additional benefits, indicating
that once an optimal feature set is identified, there is no further
gain in trying to improve the saliency of the identified features via
reweighting. This result held for three different regression meth-
ods (Table 2). As opposed to reweighting, pruning maintained
classification accuracy.

In relation to the organization of the network’s representa-
tional space, we find that pruning produces beneficial changes
to the latent knowledge dimensions in the DNN with respect
to the target set of similarity judgments. Specifically, pruning
that improved prediction of similarity judgments for Animals
also produced a better structured MDS solution of animal cate-
gories, stronger clustering of animals within their superordinate
categories (Table 3), and a better alignment with WordNet’s hi-
erarchical taxonomy (all found for an independent dataset of
animals). Consistent with the idea that pruning is effective in
identifying features that are important for the set of images
supervising the pruning, we found that pruning from animal
similarity judgments strongly increased the network’s tendency
to mis-classify novel images as animals.

3. Study 2: Predicting neural similarity spaces and probing
representations

Study 1 demonstrated the effectiveness of pruning as a Ma-
chine Learning tool for prediction of human similarity judgments.
However, pruning can be supervised by any N × N pair-wise
imilarity matrix, and in the context of neuroscience it offers a
ovel method to gain insights into the representational structure
mployed in different neural systems. In Study 2 we evaluated
f the supervised pruning of DNNs using neurobiological data
mproves the ability to predict out of sample brain responses. We
mplemented Sequential Feature Selection on DNN embeddings
s applied in Study 1. The main difference was that instead of
sing human similarity judgments we used pairwise similarity
alues derived from multivariate neurobiological data collected
sing fMRI.

.1. Methods

.1.1. Dataset and construction of representational dissimilarity ma-
rices

The fMRI data and the image-materials were obtained from
public dataset made available by King et al. (2019) who ex-
mined, in part, the second order isomorphism (2OI) between
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NN, human, and brain-derived similarity matrices. To maintain
onsistency with the neurobiology literature and the study by
ing et al. we use the term Representational Dissimilarity Matrix
RDM) to refer to a distance matrix computed by subtracting
pairwise similarity matrix from 1. The data set consisted of
uman, DNN and Brain RDMs computed for two independent
mage-sets. Each image-set consisted of 144 images: 3 images
rom each of 48 categories. Different participants made simi-
arity judgements for each set, making this dataset viable for
esting cross-participant generalization. That is, it was possible
o evaluate whether optimizing pruning for one set, based on
ata from one group of participants, improved the ability to
redict behavioral and neural responses for a separate group of
articipants.
Human RDMs were derived using an item-arrangement

ethod that produces pairwise distances between images. Brain-
erived RDMs were computed using typical multivariate analyses
or different regions of interest (ROIs) associated with object and
cene perception (see King et al. for details). This made it possible
o use each ROI as an independent supervisor for pruning.

For the DNN, the authors report RDMs constructed from em-
eddings extracted from the VGG-S architecture but we
e-implemented the analysis using the VGG-19 architecture. This
as to maintain consistency with our analyses in Experiment
, and because pretrained networks for VGG-19 are more easily
vailable than ones for VGG-S. We note that RDMs produced by
GG-19 (penultimate layer) and VGG-S (final layer used by King
t al.) were quite strongly correlated: for the two sets, values
ere 0.76, 0.78. Correlation between the DNN RDMs and the
ehavioral RDMs was almost identical for VGG-S and VGG-19 (in
oth cases, Pearson’s R ∼ 0.6).

.1.2. Tests of pruning
We evaluated eight brain areas for which data were provided:

entral temporal cortex (vTC), lateral occipitotemporal cortex
lOTC), fusiform face area (FFA), occipital face area (OFA), parahip-
ocampal place area (PPA), occipital place area (OPA), and ventral
nd dorsal early visual cortex (vEVC and dEVC).
We implemented four tests of pruning. In the first, the DNNs

ere pruned based on behavioral RDMs and we evaluated the
mpact on predicting brain RDMs. In contrast, analyses 2, 3 and
used the brain RDMs themselves to supervise pruning of the
NN. To maintain compatibility with prior literature (e.g, King
t al., 2019), in these latter analyses we considered both the
enultimate and final (n = 1000 nodes) layers of the network

(before softmax normalization).
In the first analysis, we pruned DNN nodes using the be-

havioral RDMs (one RDM per image set) and evaluated if this
improves the 2OI between the DNN and any of the brain RDMs. In
this case, for each image set a single pruned network configura-
tion was determined by the best fit between a pruned DNN RDM
and behavioral RDM. This pruned configuration was then used to
derive (pruned) DNN RDMs that were compared with the brain
regions’ neural RDMs.

In the second analysis, separately within each image set, we
pruned either VGG-19’s penultimate layer or VGG-19’s final layer
(pre-softmax) to determine if pruning improves prediction of
brain RDMs for out of sample images (within-set cross valida-
tion). For each brain ROI, we employed 5-fold cross-validation
where we supervised pruning based on the group-level neural
RDMs (average of all single-participant RDMs within each set sep-
arately). In each fold, 80% (n = 115) of the 144 images composed
the train set, and the remaining composed the validation set.
There was no overlap between the images used for training and
validation. To evaluate the impact of pruning, 2OI was computed
for the validation subset in each fold, both for the pruned and
non-pruned embeddings.
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In the third analysis, we used the two-fold approach that
we had applied for the behavioral data where we pruned DNNs
based on brain activations from one image set, and then evaluated
the performance of the pruned network on the other image set
(cross-set prediction).

In the fourth analysis, we implemented pruning outside a
cross-validation context, where the complete brain RDM (from
all 144 images) supervised pruning of a complete DNN RDM con-
structed from the same images. While this necessarily produces
over-fitting, it can also be seen as an upper-bound indicator of the
‘signal’ contained in a given DNN layer with respect to its ability
to predict a brain RDM, making it an important quantity.

In all these analyses we followed Experiment 1 in pruning
nodes in the penultimate layer of VGG-19, also extending the
analysis to the final layer as in King et al. However, the concept
of pruning is not limited to removal of single nodes and can be
effectively applied to earlier layers in a DNN. To demonstrate
the feasibility of pruning earlier convolutional layers, we adapted
the algorithm as follows: Instead of removing single-nodes, we
applied pruning to single feature maps so that entire feature
maps were removed one at a time to determine their relative
importance. These feature maps were then inserted sequentially
(most important first) to determine the set of feature maps that
offered the best prediction of a brain RDM. To demonstrate the
feasibility of this approach we applied it to each of four deepest
convolutional layers in VGG-19 for purpose of predicting activity
patterns for vTC. We also applied it to last convolutional layer
when predicting activity patterns for FFA; in this case, a sin-
gle layer was chosen for analysis as earlier layers very poorly
approximated FFA activity patterns.

3.2. Results

3.2.1. Replication of study 1: Pruning by human similarity judgments
improves prediction of out of sample human similarity judgments

Before conducting the main four analyses described above, we
evaluated whether we could replicate a key result in Study 1, in
showing that pruning supervised by human similarity judgments
improves a DNN’s ability to predict out-of-sample judgements.
For each set separately we used all pairwise similarity judgments
between the 144 images to prune the DNN’s penultimate layer
(n = 4096 nodes). Throughout our analysis, for each set, we used
the mean behavioral RDM across all subjects within the set to
supervise pruning. (We opted to prune using a mean behavioral
RDM reflecting all 144 images rather than a mean behavioral
RDM reflecting 48 categories in order to learn similarity relations
within category.) We first applied cross-validation to each set
separately, so that all data were sampled from the same partici-
pants. As in Study 1, we split the similarity judgments into train
and test sets. Pruning, implemented via 5-fold cross-validation
within each image set improved prediction of human RDMs for
both Set1 and Set 2 (means across validation folds: Set1: R2

=

0.28 → 0.36; Set2: R2
= 0.22 → 0.30. In addition, because

the two sets consisted of (different) images that belonged to the
same categories, we could determine whether pruning the DNN
based on the behavioral RDM of one image set improves 2OI
for the other image set (a simple two-fold cross-validation). For
both sets we found improved 2OI. Set1: R2

= 0.25 → 0.29;
Set2: R2

= 0.22 → 0.25. To conclude, pruning improved out of
sample prediction when applied to data collected within or across
participants.

3.2.2. Pruning from human similarity judgments improves prediction
of neural RDMs

We find that pruning a DNN based on a behavioral RDM
improved the isomorphism between the DNN RDM and RDMs
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Fig. 3. Learning pruning within each image set for separate cortical ROIs. Pruning was tested using 5-fold cross validation, separately for image set 1 and image set
2. (a) Prediction from embeddings from VGG-19 penultimate layer (b) Predictions from embeddings from VGG-19 final (1000-node) layer.
Table 5
Pruning supervised by human similarity-judgments improves 2OI R between
NN RDMs and Brain-region RDMs.

vTC lOTC FFA OFA PPA OPA vEVC dEVC

Set 1 0.130 0.099 −0.021 0.078 0.184 0.098 0.022 0.041
Set 1 pruned 0.152 0.097 −0.018 0.089 0.207 0.089 0.054 0.060
Set 2 0.150 0.073 0.009 0.066 0.187 0.139 0.023 0.017
Set 2 pruned 0.146 0.079 0.027 0.071 0.187 0.134 0.033 0.019

of the 8 regions of interest. Table 5 presents the 2OI R values
or the raw and pruned DNNs. A paired t-test applied to the
isher-Z transformed R values (considering the 16 comparisons;
regions per two sets) confirmed these impressions statistically,
(15) = 2.88, p = 0.005 (one tailed for pruned > raw directional
est). This shows that even a highly generic pruning based on
uman similarity judgements can improve 2OI with brain ROIs. As
ndicated above, the remaining analyses used each brain region’s
DM separately to supervise DNN pruning.

.2.3. Pruning from neural RDMs improves out of sample prediction
f neural RDMs
Fig. 3 shows results for within-set cross validation. We find

hat supervising DNN pruning from brain RDMs was highly ef-
ective in increasing the ability to predict brain RDMs for out of
ample images. In evaluating the brain ROIs we found improved
rediction for 31 of the 32 analyses (pruning evaluated for 8
egions, for two image sets, for two layers). To evaluate the
ata statistically, we analyzed results for each layer separately.
or the penultimate layer, we contrasted the 16 raw correlation
alues with the 16 values obtained from the pruned network
after Fisher-Z transform). The mean values differed markedly
Mpruned = 0.13 vs. Mraw = 0.08) and the difference was
tatistically robust, accompanied by a large effect size, t(15) =

.02, p < .001, d = 1.75. A similar result held for the final layer,
Mpruned = 0.16 vs. Mraw = 0.09), t(15) = 6.06, p < .001, d =

.51.
As in King et al. (2019), we found relatively weak results

or the FFA when using the full embeddings extracted from the
riginal DNN model (for both the penultimate and final layer).
owever, supervised pruning could still slightly improve the
rediction of this region’s RDM, particularly when applied to
GG-19’s final layer (see Fig. 3B). Qualitatively, for vTC pruning
f the penultimate layer was more effective than pruning the
inal layer, but for FFA, vEVC and dEVC a converse pattern held
uggesting these regions benefit from pruning information coded
t the category level of the final layer. As we discuss below, this
ould occur whenever a distribution of values in the final layer
onstitutes an effective lower-dimensional space.
Fig. 4 reports results of the cross-set RDM prediction. Here, a

NN pruned by an RDM produced from one image set was used
97
to predict brain activity recorded while participants observed
a different image-set. This analysis therefore generalizes over
both between-participant and between-image-set variance. Here
too pruning improved prediction of brain RDMs almost without
exception (30/32 of cases examined). And as in the within-set
analysis, pruning improved the ability to predict FFA RDMs, and
more strongly so when using the final layer. The mean values
differed for both the penultimate layer (Mpruned = 0.13 vs. Mraw =

0.08), t(15) = 9.37, p < .001, d = 2.34, and the final layer,
(Mpruned = 0.14 vs. Mraw = 0.09), t(15) = 4.30, p < .001, d =

1.07.
Extending this analysis, we also implemented the cross-set

RDM predictions by applying pruning to feature maps in the
convolutional layers themselves (see Methods). To demonstrate
feasibility we analyzed the vTC area against information stored
in convolutional layers 13 − 16 in VGG-19. A first observation is
that the convolutional layers presented higher baseline match to
the brain RDM. For the penultimate layer, Pearson’s R was below
0.15 at baseline (for both datasets), and improved to around 0.2
when pruned feature-sets were used. In contrast, baseline values
were higher in conv13, with values of R = 0.24/0.17 (for the
two datasets we studied), and importantly, improved to R =

0.34/0.24 when using pruned feature maps. A similar pattern
was found for conv14; R = 0.22/0.17 at baseline, improving to
R = 0.32/0.25. The same pattern, though with lower values and
more modest improvement held for conv15 and conv16 where
the results approximated those found for the penultimate layer.

We were also curious to know whether pruning a convolu-
tional layer would provide stronger improvement in prediction of
FFA activity, for which we could not surpass R = 0.05 when prun-
ing the penultimate layer. We selected conv16 for this analysis
because it offered the highest baseline second-order isomorphism
values for that region. However, for FFA did not find a strong
improvement, with pruning only modestly improving prediction
from R = 0.03/−0.03 to R = 0.08/0.04. These results show that
pruning is easily extended to entire feature maps, and in some
cases may reveal more sensitive results than when pruning the
penultimate layer. However, this is not necessarily the rule and
will vary by the target domain supervising the pruning.

Finally, we evaluated the impact of directly pruning DNN
embeddings based on brain RDMs outside a validation context
(Fig. 5). This shows to what extent pruning improves the match
between DNN and brain RDMs when applied to embeddings
produced from the same image set. As seen in the Figure, pruning
improved isomorphism between DNN and brain-region RDMs
across the board, often by substantial multipliers.

Importantly, this last analysis also allowed us to determine
how many features were retained when supervising the pruning
using each RDM. As shown in Table 6, when applied to the final

layer of VGG-19 (n = 1000 nodes), pruning generally produced
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Fig. 4. Learning pruning across image sets. Pruning was learned for DNN embeddings for one image set and applied to predict brain activity patterns associated
with a different image set. (a) Prediction from embeddings from VGG-19 penultimate layer (b) Predictions from embeddings from VGG-19 final (1000-node) layer.
Fig. 5. Direct pruning of DNN RDMs from brain-region RDMs without generalization. (a) Fitting VGG-19 penultimate layer (b) Fitting VGG-19 final (1000-node) layer.
a sparse configuration with a very low number of nodes. What
immediately stands out in the Table is that pruning DNN em-
beddings from FFA RDMs was optimized by selecting as few as
ten nodes, for both image sets (out of 1000 nodes in the layer).
In contrast, PPA required a substantially larger number of nodes
and was associated with the largest number of retained nodes for
both image sets. There was a moderate agreement between the
number of nodes retained across sets (n = 8 regions, Pearson’s

= 0.52) indicating that the number of nodes retained through
runing, per brain ROI, is systematically linked to the information
oded for in that brain area for different image sets and by
ifferent individuals.
It is important to keep in mind that pruning embeddings

rom the final layer does not mean that a given brain region is
ecessarily sensitive to defining features of the retained category
abels. It only means that the multivariate activity pattern in
hose nodes across images, as expressed in a DNN RDM, tracks
he brain-region’s RDM. This multivariate activity pattern would
eflect any meaningful covariance between the penultimate layer
nd final layer. For example, for Set 2, the brain RDM for FFA
as optimized by selecting only 7 of the 1000 nodes, and these 7
odes had the following labels: geyser, volcano, killer-whale, steel-
rch-bridge, steam-locomotive, electric-locomotive, strainer. This
ust means those 7 nodes constitute a useful lower-dimensional
pace for tracking regional-FFA response, and the reason for this
eeds to be explored using methods suitable for studying lower
imensional spaces in DNNs. The next section introduces such
method for studying which image sections are relevant to

he match between a brain ROI and the DNN whose pruning it
upervised.

.2.4. The impact of brain-supervised pruning on representational
pace

Because pruning fleshes out shared dimensions between a

rain ROI and a pruned DNN, it is possible to identify, for a given
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Table 6
Number of nodes retained from VGG-19 final layer for pruning based on different
ROIs.

vTC lOTC FFA OFA PPA OPA vEVC dEVC

Set 1 27 29 10 60 75 40 41 71
Set 2 40 79 7 128 138 84 12 18

image, the contribution of each image section to those shared
dimensions. The principle is based on evaluating the impact of
masking a part of a single image on the 2OI between the DNN
and Brain RDMs. In brief (see Appendix for methods details), we
consider as input a set of N images presented for viewing in an
fMRI scanner. One image is selected for analysis and for this target
image we compute an RDM capturing the correlation between
the target image and each other image. Correlations not involving
the target image are not considered. One RDM is computed from
Brain data and another from DNN embeddings. The second-order-
isomorphism value for these two RDMs is taken as baseline 2OI,
2OIbase. A portion of the target image is then masked, and the DNN
RDM is recomputed, whereas the brain RDM remains unaltered.
This produces a modified second-order isomorphism 2OImask.

If the masked area changes the DNN RDM in a way that
reduces its 2OI with the brain RDM, i.e., 2OImask < 2OIbase, this
means that the masked area contains information that loads on a
latent dimension that contributes to 2OI. In contrast, if masking
does not reduce 2OIbase, or even improves on it, the information
within it is less relevant to shared dimensions. The contribution
of an image patch is therefore simply Contrib = 2OIbase − 2OImask
with higher values indicating greater importance of the masked
area.

To make this concrete, consider a set of ten images where
images 1–5 include a face and images 6–10 do not. Assume that
a certain brain area only codes for the presence of a face. This

brain area’s RDM will separately cluster images 1–5 and images
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Fig. 6. Heatmap showing the contribution of each image section to second order isomorphism between a DNN RDM and a Brain RDM. ‘pruned’ and ‘unpruned’ refer
to whether or not the brain region supervised the pruning of the DNN. Green colors indicate image areas whose features contribute to shared DNN/Brain dimensions.
The area within the inner black square was captured by masks at all scale-sizes; areas outside the black square also included padded data.
6–10. Assume also that a DNN has been pruned by this brain
area, and therefore produces a similar RDM. The relation between
the two RDMs is quantified via 2OIbase. Image 1 is chosen as the
arget image, and the face depicted in that image is masked. The
NN RDM for correlations with Image 1 changes: now, images
2–5] are strongly clustered but image 1 clusters with images
6-10]. Because the brain RDM remains unaltered, the result is
reduction in 2OIbase because the masked region was related

o a dimension that organized both RDMs. Contrarily, if a non-
mportant part of Image 1 were masked, the DNN RDM would not
hange, and so 2OIbase would remain unaltered. Implementation
etails can be found in the Appendix.
To apply this method we used brain RDMs from vTC and PPA

nd the two DNNs pruned by these RDMs. For any given target
mage, the image was masked by sweeping a mask over the entire
mage, and assigning a Contribution score to a 4 × 4 pixel area
n the center of the mask. Following prior work (Palazzo et al.,
020) masks at different scales were applied, and we selected
he Contrib value that departed most strongly from zero as the
alue assigned to the center of the mask. As an internal control,
he analysis was also repeated by computing DNN RDMs from a
on-pruned version of VGG-19. This control identifies shared di-
ensions between the ‘vanilla’ non-pruned network and a given
rain RDM. The code for this can be found on Github.2
A sample result is shown in Fig. 6 (see Appendix for all results).

s shown, the method is highly useful for identifying types of
nformation that may be important for a given brain area. In the
utdoors image, for vTC, masking of sky-areas strongly perturbed
OIbase, but this was found for the pruned DNN only. For PPA,
n contrast, the unpruned DNN identified the face as important,
ut the pruned DNN notably excluded face information. We note
hat these effects were mediated by the global rather than local
tructure of the image: applying the method to target images
otated by 180-degrees (e.g., sky is below) produced substantially
ifferent heatmaps.

.3. Discussion of Study 2

Study 2 replicated and extended the finding of Study 1 in
howing that pruning supervised by human similarity judgments
mproves out of sample prediction of human similarity judg-
ents, here found to generalize across participants. DNN-pruning

2 https://github.com/tlmnhut/Visualize_PrunedDNN_by_HumanSim.
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supervised by human similarity judgments was sufficient to im-
prove prediction of neural RDMs.

Most importantly, we found that supervising the pruning of
DNNs directly from neural RDMs strongly improves the ability of
predicting out of sample neural RDMs. This shows that pruning
increases the sensitivity of these analyses, which are becoming an
increasingly common approach in Neuroscience. In this context,
we found that pruning supervised by neural RDMs produced for
image-set1 improved prediction of neural RDMs produced for
image-set2, obtained from a different group of participants.

Pruning improves understanding of brain function. Here we
found that pruning from neural RDMs associated with different
brain regions produces different levels of sparsity at the final
layer of VGG-19. Specifically, pruning by PPA RDMs was asso-
ciated with the least sparse configuration, for both image sets,
whereas pruning by FFA RDMs was associated with the most
sparse configuration. Finally, by using a brain RDM to supervise
pruning, it is possible to gain insights into the filters instantiated
in different brain areas by identifying the relative importance of
each image section to the shared dimensions between the pruned
DNNs and the brain area.

4. General discussion

4.1. Core technical results

The advantages of pruning as a supervised learning method
were detailed in Sections 2.8 and 3.3 and we only briefly summa-
rize them here. Pruning outperformed state-of-the-art regression-
based methods in predicting human similarity judgments, and
furthermore, stacking a regression-based model on top of the
pruning solution produced no additional predictive power. In a
study of animal images, passing an independent dataset through
a DNN pruned by a different animal dataset produced better clus-
tering of animal types into superordinate categories and a better
approximation of WordNet animal hierarchy. All this indicates
that performance-wise, pruning can be applied in the context of
human-oriented AI, with a potential contribution to applications
based on similarity (e.g. recommendation systems).

Pruning also generalizes well. Beyond prediction based on
train-test folds in which data were obtained from the same cohort
of participants, it also generalized across both image-sets and
participant-cohorts in behavioral and neuroimaging data (Study
2). This suggests that pruning identifies meaningful dimensions
that are shared between representational spaces.

https://github.com/tlmnhut/Visualize_PrunedDNN_by_HumanSim


P. Tarigopula, S.L. Fairhall, A. Bavaresco et al. Neural Networks 168 (2023) 89–104

4

v
c
e
r

.2. Why pruning works and directions for future

Our theoretical motivation for studying the potential of super-
ised pruning originated from the intuition that DNNs trained for
ategorization may contain a wealth of information that describes
ach image, only part of which is pertinent for modeling the rep-
esentational geometry of any specific domain. Pruning effectively
supervised the learning of neural and behavioral representational
spaces, but the reasons for its success in these two cases is likely
quite different.

For neural representational spaces, the effectiveness of prun-
ing probably owes to the fact that different brain areas code (or
filter) for different information, and this filter is approximated
by pruning. In future work, pruning may help clarify hierarchical
processing in the brain by identifying brain areas whose feature
space approximates a combination of feature-spaces identified for
lower-level regions.

For human judgments, the success of pruning is probably
related to the fact that for a given domain (e.g., fruits) the relative
distance between objects, as operationalized by human similarity
judgments, is mainly determined by features that differentiate
objects within the domain. In contrast, less-relevant features will
include those that categorically differentiate that domain from
others (on which all domain members may have similar values),
or features that are unique to the domain but less important
for the comparison judgment. Both sorts of features are good
candidates for pruning.

Given that behavior-supervised pruning has not been imple-
mented to date, the current effort has some limitations that point
to specific research directions in the future. From an implemen-
tation perspective, we implemented pruning as an additional
machine learning step rather than merging it into the DNN train-
ing itself. Future work could integrate supervised pruning with
the classification training as in Piggyback (Mallya et al., 2018). It
would also be important to evaluate the efficacy of pruning for
other DNN architectures.

Another potential improvement of the current method would
be performing feature-selection over DNN features prior to ap-
plication of supervised pruning. Several approaches are viable
here. For example, Wang et al. (2021) present a combined feature
selection and feature extraction approach where the original fea-
tures are projected into a projection matrix that approximates the
information in the original data, but considers only information
contained in a subset of the original features. This maintains fea-
tures that are more meaningful, while ablating noisy/meaningless
ones. Because it optimizes both dimensionality reduction (extrac-
tion) and feature-selection in a single step, it can provide a better
starting point for applying the supervised pruning we present in
the paper. A related approach involves supervising DNN prun-
ing, but using the similarity matrix produced when using the
DNN’s full feature set. This method aims to identify a smaller
subset of features that reproduces that similarity matrix. Using
this approach, we have observed that for the datasets used in
Experiment 1, less than 50% of the features are required (Truong
& Hasson, 2022). In summary, it is important to consider methods
that narrow the search space by eliminating irrelevant features,
which can be used as a starting point for pruning supervised by
human data.

The method we presented can be used in tandem with ar-
chitectures that combine inputs from a vision-oriented DNN and
inputs from a DNN processing human behavior to create a shared
latent code (e.g., Liu et al., 2023; Palazzo et al., 2020). Pruning
can complement such procedures to constrain the learned fea-
ture space (either pre-learned or during training) so that object-
distances satisfy a target similarity matrix. More generally, con-
straining feature spaces using human knowledge offers several
100
advantages. Given that DNNs achieve categorization by relying on
information distinct from that considered by humans, they man-
ifest low explainability and heightened vulnerability to specific
attacks which has prompted researchers to try and incorporate
ground-truth human knowledge into classifiers. For instance, in Li
et al. (2023), semantic knowledge pertaining to relationships
between animal body parts is explicitly encoded to influence
DNN-based decisions. While further work is needed, we posit
that supervised pruning, which selects for features important for
human object-comparison, inherently emphasizes shape-based
features and other features meaningful for humans.

4.3. Conclusions

These practical advantages and the future potential of super-
vised pruning are secondary to the theoretical implications of the
current study. Our findings indicate that DNNs already capture
features relevant to human similarity spaces (quantified behav-
iorally or via brain recordings) at an adequate level of salience. For
this reason, node activations do not need to be reweighted. One
just needs to filter out those features/nodes that are less relevant
to modeling the similarity space of the domain at hand. Super-
vised pruning therefore improves the sensitivity of quantifying
isomorphism between DNNs and humans, and opens the door
to new studies of semantic knowledge in artificial and biological
systems, with greater precision and potential for explainability.
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Appendix

A.1. Alternative feature selection algorithms

In addition to the Main Algorithm described in the text, we
evaluate three other sequential feature selection approaches. Be-
cause compute time for these scales exponentially with number
of features, the following steps were taken to reduce compute
time. We note these steps were only applied to the BWD1, BWD2,
and FWD algorithm in order to reduce compute time, and were
not applied to the Main algorithm used throughout the text.
First, we removed any feature that was uninformative because it
coded ‘0’ for all images in the dataset, or was highly correlated
with another feature at a level exceeding Pearson’s R ≥ 0.95.
In addition, for BWD1 and BWD2 we began the selection from
a reduced set of n = 1500 initial features, which we determined
using the feature-ranking step of the main algorithm. Moreover,
early stopping was implemented for BWD1, BWD2 and FWD, so
that feature ranking halted once 2OI achieved its maximum 2OI
on the training set.
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Table 7
Average out of sample prediction accuracy (R2; 2OI) obtained using different feature-selection approaches computed
on the test set, with the standard deviation in brackets. Main Algorithm refers to the feature selection algorithm
used throughout the study.

Animals Automobiles Fruits Furniture Various Vegetables

Baseline 0.60(0.03) 0.50(0.10) 0.27(0.05) 0.31(0.04) 0.45(0.07) 0.34(0.03)
Main Algorithm 0.75(0.06) 0.55(0.08) 0.39(0.09) 0.37(0.08) 0.56(0.11) 0.41(0.06)
BWD1 0.75(0.06) 0.53(0.05) 0.39(0.1) 0.38(0.11) 0.54(0.12) 0.38(0.08)
BWD2 0.62(0.12) 0.49(0.08) 0.34(0.06) 0.40(0.06) 0.19(0.08) 0.37(0.05)
FWD 0.73(0.06) 0.53(0.06) 0.36(0.11) 0.37(0.09) 0.51(0.12) 0.37(0.09)
Table 8
Average number of retained features obtained with the different feature-selection approaches, with the standard
deviation in brackets.

Animals Automobiles Fruits Furniture Various Vegetables

Main Algorithm 806(78) 654(60) 572(92) 582(108) 831(45) 559(212)
BWD1 408(26) 458(39) 518(58) 411(22) 489(41) 432(31)
BWD2 70(15) 574(233) 505(336) 304(106) 116(42) 667(178)
FWD 464(16) 615(65) 516(48) 478(44) 517(28) 590(27)
w
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Algorithm 2 Backward selection by maximum 2OI (BWD1)
Inputs:

• SMHM : similarity Matrix of human similarity judgments
• SMDNN : similarity Matrix of similarity estimations derived

from the DNN by computing the Pearson’s correlation
between the embeddings of two images

1. Temporarily remove one of the n features
2. Compute the reduced DNN similarity matrix SMDNNr from

the embeddings with n − 1 features
3. Compute R2(SMDNNr , SMHM )
4. Repeat the R2 computation for every subset of n−1 features
5. Permanently remove the feature leading to the highest R2

6. Repeat the whole process starting from n − 1 features
7. Rank the features based on the order of removal, with the

first removed feature being the least important

Average performance on prediction of human similarity judg-
ents for held out data are presented in Table 7. The number
f features maintained when using each algorithm is shown in
able 8.

Algorithm 3 Backward selection by minimum 2OI (BWD2)
Inputs:

• SMHM : similarity Matrix of human similarity judgments
• SMDNN : similarity Matrix of similarity estimations derived

from the DNN by computing the Pearson’s correlation
between the embeddings of two images

1. Temporarily remove one of the n features
2. Compute the reduced DNN similarity matrix SMDNNr from

the embeddings with n − 1 features
3. Compute R2(SMDNNr , SMHM )
4. Repeat the R2 computation for every subset of n−1 features
5. Permanently remove the feature leading to the lowest R2

6. Repeat the whole process starting from n − 1 features
7. Rank the features based on the order of removal, with the

first removed feature being the most important
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Algorithm 4 Forward selection (FWD)
Inputs:

• SMHM : similarity Matrix of human similarity judgments
• SMDNN : similarity Matrix of similarity estimations derived

from the DNN by computing the Pearson’s correlation
between the embeddings of two images

1. Select one starting feature as that whose removal causes
the greatest decrease in R2(SMHM , SMDNN )

2. Compute the partial DNN similarity matrix SMDNNp from
every pair of DNN features consisting of the initial one and
one of the remaining

3. Compute the R2 with human similarity judgements for all
the similarity matrices obtained from the previous step

4. Keep as second feature the one leading to the highest R2

value
5. Repeat the entire process starting from 2 features and

adding one more at each iteration
6. Rank the features based on the insertion order, with the

first inserted being the most important

A.2. Detailed methods: Hierarchical analysis of WordNet vs. Pruned
and non-pruned DNNs

To determine hierarchical information latent in the DNN sim-
ilarity spaces we evaluated the relative fit between WordNet’s
hierarchical structure and that of the pruned and non-pruned
similarity spaces. From the DNN’s similarity spaces we derived
hierarchical clustering analysis solutions based on a distance ma-
trix computed from pair-wise cosine distances. We used the scipy
Python library, dendrogram with complete linkage function and
the leaves within each cluster of the dendrogram were distance
sorted in ascending order. To form the desired number of clusters
from the dendrograms, we used fcluster from Scipy Python library
ith our criterion specified as maxclust.
For the DNNs we computed HCA solutions from the embed-

ings in the penultimate layer associated with the best exemplar
f each category. The exemplar was the image that produced the
orrect decision with highest confidence of all category mem-
ers. From these embeddings we computed similarity matri-
es and HCA solutions with N = 6..12 clusters. To define the
neighborhood-set of each category in the DNN’s HCA result, we
extracted for each category member the set of all categories in

the same HCA cluster.
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Fig. 7. Main steps in producing 2OI-perturbation heatmap. 1. A section of the target image is masked. 2. The masked image is passed through the DNN and the
image embeddings are extracted. 3. A Similarity Matrix is constructed to reflect the distance between the masked image and all other images (SMDNN_masked); only
correlations involving the target image are considered from this point on. 4. A 2OI value is computed by relating this set of correlation values to the set computed
from brain data (SMBrain). Those correlations involving the target image (here, e.g., Image 1) are delineated in the Figure by a dashed blue square. The two sets of
correlation values are related via R2 coefficient of determination. 5. The difference between 2OImask and 2OIbase is stored as the impact of the mask. 6. The magnitude
of the difference is mapped onto a color scale.
To define the neighborhood-set of each category in WordNet
we looked up the category in the WordNet graph, and extracted
all leaf nodes subsumed by the category’s grandparent (two links
above). This increased the granularity of WordNet as in many
cases a category node had no siblings or very few ones, which
made it non-feasible to use direct siblings as a neighborhood.
This effective smoothing also usefully countered some ontological
sub-divisions in WordNet that are not likely to have a counter-
part in human similarity space. Specifically, WordNet contains
multiple graph sections that increase in depth of IS-A links but
without splitting (i.e, chains of parents that have only a sin-
gle child; e.g., scorpaneoid → scorpaenid → lionfish). This is
a knowledge-structure that would not appear to have a direct
psychological analogue and can reduce the psychological validity
of directly using Wordnet distances as a proxy for conceptual
distances (e.g., Huang et al., 2021). For the 398 categories we
used, 100 were ones for which the target-node’s grandparent only
subsumed a single leaf node (i.e., the target). For this reason we
excluded these 100 categories from the analysis (as they did not
even have ‘‘cousins’’). We further only analyzed categories with
neighborhood-set sizes between 10 and 160, which resulted in
using 245 categories of the total 398.

As a final step, we computed the set-match for each of these
245 categories by determining the Jaccard Index between the cat-
egory’s DNN neighborhood-set and WordNet set (intersection of
sets divided by union of sets). A grand mean was then computed
over all categories.

A.3. Different instantiations of pruning produce similar post-softmax
activation values

We examined if two pruned networks, both pruned to op-
timize prediction of human similarity judgments of the same
semantic category, develop similar representations. Because we
established performance of pruned networks across test-folds
(5 folds per category) we could determine to what extent dif-
ferent instantiations of the pruned layer (one per fold), for a
given category, produced similar activation patterns at the final
102
(categorization) layer. Finding similar activations would suggest
that different prunings, supervised by different sets of similar-
ity judgments, reflect similar categorization-related information.
For each category separately, we examined post-softmax final-
layer patterns for pruned configurations produced in the 5 folds.
Specifically, we used ImageNet’s 50K validation set. Per fold, we
saved the 1000-valued vector of softmax outputs per image. Then,
for each pair of two folds among the possible combinations of
(5 choose 2), we computed the correlation between the soft-
max values for the same image across the two folds. We finally
took the mean of those cross-fold correlations as a measure of
correspondence at the final layer.

We found substantial consistency in post-softmax activation
vectors. For Animals, Min/Max values for cross-fold correspon-
dence were R = 0.92 − 0.96. For the other categories these
values were, Vehicles: 0.90−0.95, Fruits: 0.85−0.94, Furniture:
0.86 − 0.96, Various: 0.94 − 0.96, Vegetables: 0.68 − 0.93.

A.4. Production of second-order-isomorphism image-specific heat-
maps

An image was masked using a sliding mask to evaluate how
the masking of each image section impacted the 2OI between the
DNN RDM and Brain RDM.

Fig. 7 describes the main steps in the analysis. All 144 images
in Set2 of King et al. (2019) were passed through a pruned DNN to
extract embeddings. From these we constructed a baseline Simi-
larity Matrix, (SMDNN_base). The correlation between SMDNN_base and
SMBrain constituted (2OIbase). The masking procedure was applied
to a target image and applied as follows. Masks were square 0-
filters, and their sizes were set the range 24–56 pixels in intervals
of 4 pixels (9 mask sizes in all). We used variable sizes to be
sensitive to features of different granularity. The stride step size
was set to 4 pixels for all filter sizes. We added zero padding to
the edges of images as required depending on the size of each
masking filter. As described in the main text, the perturbation to
2OIbase induced by each mask (computed as 2OImask) was assigned
to a 4 × 4 area at the center of the mask. This produced 8
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Fig. 8. Additional sample heatmaps showing the contribution of each image section to second order isomorphism between a DNN RDM and a Brain RDM. More
esults can be downloaded from Github: https://github.com/tlmnhut/Visualize_PrunedDNN_by_HumanSim/tree/main/results/grid.
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erturbation values for the center of each set of 8 masks, of which
e selected the value associated with the maximum absolute
alue (i.e., the negative or positive value that departed maximally
rom zero).

This entire procedure was applied to DNN embeddings ex-
racted from VGG-19 DNNs whose embeddings were pruned as
upervised by brain RDMs, or to embeddings derived from a non-
runed version of VGG-19 (internal control). In all cases we used
VGG-19 pretrained model as provided in Pytorch.
To visualize the perturbation scores we colored the 4 × 4 area

n the center of each mask to avoid overlapping colors. Green
olors denote a positive score, meaning the masking the given
rea produced a drop in 2OI, whereas red denotes the converse.
ig. 8 presents more sample results.
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