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A B S T R A C T

The research work shows the potentiality of advanced linear and nonlinear learning algorithm techniques in the 
prediction of apples texture sensory attributes as “hardness”, “crunchiness”, “flouriness”, “fibrousness”, and 
“graininess”. Starting from the information contained in the entire mechanical and acoustic curves acquired 
during samples compression test, the prediction performances of five different statistical tools as Partial Least 
Squares regression (PLS), Multilayer Perceptron (MLP), Support Vector Regression (SVR) and Gaussian Process 
Regression (GPR) are shown and discussed.

All Predictive models validations evidence best accuracies for texture sensory attributes “hardness” and 
“crunchiness” and in general for GPR learning algorithm. By combining mechanical and acoustic profiles, 5-fold 
cross validations produce values of coefficient of determination R2 up to 0.885 (GPR) and 0.840 (GPR), 
respectively for “hardness” and “crunchiness”. These results, comparable to those obtained by considering a large 
number of mechanical and acoustic parameters extracted from acquired profiles as predictive factors, evidence a 
new and reliable way for the prediction of texture sensory attributes of apples. The proposed approach can 
overcome the necessity to define, in advance, number and type of features to be calculated from instrumental 
texture profiles and can be easily implemented in an automatic process.

1. Introduction

According to Szczesniak [1], texture can be defined as “sensory and 
functional manifestation of the structural, mechanical and surface 
properties of foods detected through the senses of vision, hearing, touch 
and kinesthetics”. In the fruit and vegetable sector, textural attributes 
can play a big role in consumer preferences as testified by literature [2,
3] and are strongly correlated with product freshness as defined by ISO 
7563:1998 in the list of general terms used in this context. Mechanical 
and textural properties are important parameters to determine quality 
and storability of apples. Such properties also influence consumers’ 
choice for this fruit, in fact firmness and sweetness resulted to be the 
primary attributes driving fresh apple preferences by European con
sumers [4,5].

It is recognized that the macroscopic texture perception is mainly 
related to plant cell micro and nanostructure and, particularly, to cell 

walls polysaccharides architecture and to cell turgor pressure [6,7]. 
Fruit and vegetables mechanical properties have been described by 
using a poroviscoelastic model focusing on the role of the pectins in the 
load bearing properties. In detail, the model involves the combination of 
the structural deformation of the polysaccharide networks of plant cell 
walls with the hydraulic properties of the continuous water phase, 
behavior that changes according to cultivars and to biochemical changes 
occurring during growth at stage of maturity at harvest, also influenced 
by orchard altitude, and during postharvest processes [8–10],. Con
cerning apples, this multi-parameter attribute is composed by mechan
ical components as firmness, hardness, stiffness, and elasticity, and by 
acoustic components as crispness and crunchiness [1].

Descriptive sensory analysis conducted by using panels of judges is a 
recognized and comprehensive approach for the quantification of the 
texture attribute and employs a language reflecting the consumer’s 
experience. These evaluations have been taken into consideration by 
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scientists for fruit and vegetable cultivar selection and for harvest and 
post-harvest best practices [11,12]. However, it is also known that this 
tool is limited to small samples assessments, is expensive and not suit
able for real time procedures and different sensory panels produce re
sults difficult to compare [13]. For these reasons, different instrumental 
techniques have been developed and sensory analysis is nowadays 
considered the main reference for instrumental methods setting up [14].

Among instrumental tools, in general, a strong correlation between 
sensory attributes and mechanical parameters obtained through fruit 
uniaxial compression test with a cylindrical probe have been docu
mented in literature [14–16]. The standardized mathematical process
ing leading to mechanical parameters extraction from the 
force-deformation curves is recommended by the Standards S368 from 
ASABE on the “Compression Test of Food Materials of Convex Shape” 
(ASAE, 2008). Concerning acoustic components, a great effort was 
dedicated to the setting up of instrumental tools able to assess them in a 
reliable way. Acoustic instrumental methods are mainly based on 
recording acoustic signals during uniaxial compression test by means of 
a microphone placed close to the tested sample [17] or through a contact 
acoustic detector characterized by a puncture probe equipped with 
accelerometer for vibrations assessment [18].

Research works evidenced that, for an exhaustive instrumental 
texture characterization of apples, it is recommended to consider both 
mechanical and acoustic components simultaneously [17,19]. Accord
ing to the state of the art, this characterization is mainly based on the 
analysis of a considerable amount of mechanical and acoustic parame
ters extracted from the force displacement and acoustic time response 
profiles during the compression phase. These parameters appeared 
necessary to describe complex apple textural properties and the vari
ability due to cultivars and postharvest handling and storage [20]. To 
give an example, apples have been clustered according to their crispness 
attributes using principal component analysis (PCA) by combining nine 
mechanical and acoustic parameters [21]. In another experiment, the 
sensory evaluation of apple firmness and crispness were predicted using 
partial least squares regression (PLS) by considering 16 instrumental 
parameters as independent variables with a root mean square error of 
cross validation (RMSECV) lower than 0.5 (on a 1–9 scale) [19]. To 
overcome the necessity of choosing the best number and combination of 
the extracted instrumental attributes, apple texture could be predicted 
starting from the entire information (all points) that characterizes the 
acquired mechanical and acoustic signals. This approach can be referred 
to as “texture fingerprinting”. The proposed solution could simplify and, 
at the same time, improve the accuracy of predictive models of apple 
sensory attributes. Multivariate prediction tools such as PLS or artificial 
neural network (ANN) regressions, able to relate a matrix of indepen
dent variables (X) to an array of dependent ones (Y), are now considered 
standard procedures in food quality assessment for extracting useful 
information starting from high dimension independent variables. These 
statistical approaches can also integrate non-linear machine learning 
tools for significant improvements in the prediction of physical, chem
ical, and sensory properties of complex agri-food matrices [22,23]. The 
potentiality of these tools has been explored with particular effort on 
bi-dimensional matrices coming from indirect measurements such as the 
frequency-domain and time-domain analyses. These datasets have been 
mainly obtained by using techniques characterized by the interaction 
between the electromagnetic waves and the product [24,25]. In the 
research work conducted by exploring the potentiality of the Time 
Domain Reflectometry (TDR) in the assessment of water content in EVO 
oils, limits of the classical approach based on the TDR electromagnetic 
theory based on the extrapolation of the reflection coefficient, have been 
successfully overcame by PLS analysis of the entire time domain electric 
signal [26]. In the research work conducted in the field of fruit texture, 
kiwifruit flesh firmness was predicted through multi-layer perceptron 
(MLP) models starting from each point of the force time history obtained 
by using a non-destructive impact device characterized by a conveyer 
belt that throws the fruit onto a flat horizontal plate connected to a load 

cell [27].
The present work aims at pioneeringly exploring the potentiality of 

using the entire information contained in the mechanical and acoustic 
curves acquired during a compression test for the prediction of different 
main sensory attributes of apple texture To this end, a set characterized 
by a huge number of commercial and not commercial apple cultivars 
harvested over nine years will be considered in addition to the predic
tion performances of different statistical tools such as PLS, Multilayer 
Perceptron (MLP), Support Vector Regression (SVR) and Gaussian Pro
cess Regression (GPR). As for MLP, SVR and GPR machine learning 
techniques are extensively explored and compared to the traditional PLS 
tool in the spectroscopic food assessments for their ability in handling 
complex regression problems [28,29].

The performances in the prediction accuracy of the proposed ap
proaches is compared to those of traditional procedures based on the 
extraction of mechanical and acoustic features from the curves, by 
avoiding problems related to the definition of the type and number of 
features able to characterize tested samples.

2. Materials and methods

2.1. Apple samples

The characterization based on sensory and instrumental analysis was 
conducted on a set of 323 apple batches coming from more than 80 
commercial and not commercial apple cultivars (Malus × domestica 
Borkh.) harvested over a period of nine years (2010, 2011, 2012, 2013, 
2014, 2015, 2016, 2017, 2018). The research study includes the most 
common commercial cultivars as “Cripps Pink”, “Gala”, “Golden Deli
cious”, “Granny Smith”, “Fuji”, “Red Delicious” and “Renetta”.

Fruit were harvested at the commercial maturity stage (from the 
middle of July to the end of October) defined by exploring standard 
descriptors involving apple skin colour, flesh penetrometric firmness 
and starch degradation index [30].

For each batch, a minimum of 20 apples of homogeneous size 
characterized by the absence of any visible external damage was 
selected. Fruits were stored for two months (normal atmosphere at 2 ◦C 
and 95 % of RH) and then kept at room temperature for 24 h prior to 
sensory and instrumental assessments and weighed.

2.2. Experimental plan

The experimental plan describing samples preparation, sensory 
analysis, mechanical and acoustic assessments, elaboration, and vali
dation of predictive models is shown in Fig. 1.

2.2.1. Sample preparation
Sensory and instrumental assessments were performed on flesh cyl

inders (diameter: 180 mm; height: 120 mm, ±2.5 g). For each apple 
cultivar under evaluation flesh cylinders were cut from 15 to 20 fruit, 
starting from three apple slices cut around the equatorial plane 
perpendicular to the core of the same fruit. The cylinders were treated 
with a solution of 0.2 % citric acid, 0.2 % ascorbic acid, and 0.5 % 
calcium chloride characterized by antioxidant properties as described in 
[31]. Sensory evaluations were performed within 1 h of sample prepa
ration and texture analyses within 3 h. The absence of possible effects of 
the antioxidant solution on the sensory profile was tested in a previous 
work by Refs. [13] based on a discriminant analysis conducted by a 
trained panel (standard triangle test procedure) and confirmed by 
chemical analysis of titratable acidity and soluble solid concentration.

2.2.2. Sensory analysis
Five textural attributes were taken into consideration: hardness 

(resistance of the sample at the first chew with molars), crunchiness 
(sound, pitch/intensity, produced by the sample during 5 M chews), 
flouriness (degree of flesh breaking in small and dry fragments/granules 
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during chewing), fibrousness (degree of flesh breaking during chewing 
in thick and fibrous fragments/granules), and graininess (numbers/size 
of fragments/granules produced during chewing). The intensity of each 
attribute was scored by the panel on a 100 mm linear scale, anchored at 
0 (absence), 100 (extremely intense), and with 50 as the middle point.

Sensory evaluations were performed by a trained panel characterized 
by a minimum of 12 to a maximum of 23 judges, in individual compu
terised booths equipped with FIZZ software (2.46A, Biosystemes, Cou
ternon, France).

In each session six apple samples (three batches replicated twice) 
were analysed: the samples were presented according to a balanced 
order over the panel in sealed containers (each container with eight 
cylinders put into a clear plastic cup encoded with a three-digit code 
randomly generated).

All details concerning the performed sensory profiling, the devel
oped lexicon, panel training, definition, evaluation procedure, and 
reference standards for each attribute were previously described in Refs. 
[13].

2.2.3. Textural and acoustic assessments
A TA-XTplus Texture Analyzer equipped with a 30 N loading cell and 

a 4 mm cylindrical flat head probe, and an Acoustic Envelop Detector 
(AED) device (Stable MicroSystem Ltd., Godalming, UK) was used to 
perform uniaxial compression test on the apple cylinders (samples) 
described in the previous section.

Force/displacement curves were acquired by considering a test speed 
of 300 mm/min and a maximum sample deformation of 90 % [19]. 
Twelve mechanical parameters and four acoustic parameters were 
extracted from the acquired profiles as listed and described in Table 1. 
More details about the parameter description and extraction procedure 
were given by Ref. [19].

2.2.4. Juice extraction, dry matter and chemical measurement
Extractable juice (%) and dry matter (%) were expressed as per

centages of fresh mass. The first parameter was obtained in duplicate, by 
weighing, for each cultivar, the liquid expressed from mechanical 
compression of eight flesh cylinders corresponding to eight different 
fruits. For the second parameter, a sample of eight flesh cylinders per 
cultivar was dried at 105 ◦C until they reached a stable weight.

The juice expressed from mechanical compression of 12 cylinders, 
corresponding to twelve different fruits, was used to measure, in 
duplicate, the concentration of soluble solids (% SSC) and titratable 
acidity (mEq. malic ac./100 g juice) by means of a DBR35 refractometer 
(XS Instruments, Poncarale, Brescia, Italy) and a Compact Titrator 
(Crison Instruments S.A., Alella, Barcelona, Spain), respectively (NaOH 
0.1 N was used to titrate 5 g of juice to pH 8.16).

2.2.5. Prediction models of the sensory attributes
Predictive models of the considered five sensory attributes were set 

up in Phyton programming language (Sckit-learn, 1.3.0). For both me
chanical and acoustic curves, each measurement can be characterised by 
a different number of acquisition points since the acquisition stop when 
a sample deformation of 90 % is reached. In order to have all instru
mental (mechanical and acoustic) curves characterized by the same 
number of predictors (independent input variables, X), useful for the 
prediction model setting up, the Cubic Spline Interpolation was taken 
into consideration for a resampling at 100 evenly spaced positions be
tween 0 % and 90 % of sample “strain”. In detail, the interpolation 
function is characterized by a set of piecewise cubic functions [32]: 

Si(x)= aix3 + bix2 + cix + di 

valid for xi ≤ x ≤ xi+1, i = 1, …, n-1.
At the end of the Cubic Spline Interpolation process, each instru

mental curve (mechanical and acoustic) was characterized by 200 in
dependent variables.

Sensory attributes as dependent variables (hardness, crunchiness, 
flouriness, fibrousness and graininess) were predicted by setting up 
models starting from three combinations of independent variables: from 
the entire mechanical profile, from the entire mechanical profile added 
to the entire acoustic profile, and from the mechanical and acoustic 
parameters extracted from the acquired curves. For models built starting 
from the entire mechanical profile, variables were arranged in a 323 

Fig. 1. The experimental plan.

Table 1 
Description of the mechanical and acoustic parameters extracted from the ac
quired profiles.

Parameter abbreviation Description

Mechanical

F yield (N) Force measured at the yield point
F max (N) Maximum force
F final (N) Force measured the end
F peaks Number of force peaks
W (N mm) Mechanical work estimated by the area under the curve
F ld Force linear distance
Y mod (N%) Young’s module
F mean (N) Mean force
Delta F (N) Difference between F yield and F final
F ratio Ratio between F yield and F final
Peaks dist Ratio between F peaks and distance
ld dist Ratio between F ld and distance

Acoustic

A Peaks Number of acoustic peaks
A P max (dB) Max acoustic preassure
A P mean (dB) Mean acoustic pressure
A ld Acoustic linear distance
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(apple samples) × 200 (X variables, mechanical profile) matrix while for 
those set up by considering the combination between the two profiles, 
an X matrix characterized by 323 (apple samples) × 400 (X variables, 
mechanical profile = variables from 1 to 200 + acoustic profile = var
iables form 201 to 400) was considered. Finally, extracted parameters 
were then arranged in a 323 (apple samples) × 16 (X variables, com
bination of mechanical and acoustic parameters) matrix. For all defined 
models, five 323 (apple samples) × 1 (Y variable) vector columns were 
created, for dependent variables hardness, crunchiness, flouriness, 
fibrousness and graininess (sensory attributes), respectively.

Four different statistical tools coming from multivariate data analysis 
and machine learning techniques were tested: Partial Least Squares 
regression (PLS), Multilayer Perceptron (MLP), Support Vector Regres
sion (SVR) and Gaussian Process Regression (GPR). Coefficient of 
determination (R2) and Root Mean Square Error (RMSE) values were 
obtained and discussed by using a k-fold cross validation procedure (k =
5) in addition to an external validation test conducted by randomly 
dividing the data set into calibration set (80 % of the samples and k-fold 
cross validation for parameters optimization, k = 5) and test set (20 % of 
the samples).

For PLS, a well explored bilinear approach for data compression 
where new variables are built from the original reflecting the underlying 
or latent structure, the optimal number of PLS latent variables (LVs) was 
selected by analysing the validation residual variance plot and calcu
lated where the prediction error is minimised [33].

The back-propagation neural modelling system was used to train 
multi-layer perceptron MLP models developed by means of the Mish 
activation function [34]: 

f(x)= x • tanh (softplus(x))

where softplus(x) = ln (1+ex) and x is the input variable.
The network design, the number of hidden layers (n = 2), and the 

number of processing elements in the hidden layers (16 and 4, respec
tively) were empirically obtained by monitoring and analysing the 
network error progress.

Concerning Support Vector Regression (SVR), aiming at finding a 
hyperplane in a high-dimensional space that maximizes the margin 
between the hyperplane and the training data, the grid search method 
was considered to optimize the estimation of epsilon (0, 0.01, 0.02, 0.03, 
…, 1) and C (range = 0.1, 0.5, 1, 5, 10, 100) hyperparameters. As 
defined, epsilon parameter is involved in the definition of the width of 
the margin while C in the control of the trade-off between maximizing 
the margin and minimizing the error [35].

Finally, Gaussian Process Regression is a Bayesan nonparametric 
method producing a posterior of the unknown regression function f, 
given the training data set, a prior distribution defined as a Gaussian 
process and a likelihood function characterized by a probabilistic model 
[36]. For the Gaussian process GP(m, k), the mean function m and the 
kernel k (RationalQuadratic + White Kernel) were considered.

3. Results and discussion

3.1. Samples characteristics and sensory attributes

Table 2 shows a descriptive summary of samples characteristics in 
terms of fruit mass (g), extractable juice (%), dry matter (%), concen
tration of soluble solids (% SSC) and titratable acidity (mEq. malic ac./ 
100 g juice), in addition to sensory attributes hardness, crunchiness, 
flouriness, fibrousness and graininess.

As can be observed, the research work was conducted by exploring 
samples characterized by a valuable range of variability in terms of mass 
and analysed parameters juice (%), SSC (%) and titratable acidity (mEq. 
malic ac./100 g juice). Concerning the five sensory attributes, the data 
set, based on a 100 mm linear scale, generally covers an important range 
of the scale characterised by minimum values from 1 (flouriness and 

fibrousness) to 6 (graininess) and by maximum values from 79 (graini
ness) to 89 (fibrousness). Confirming results reported by [13], hardness 
resulted positively correlated with crunchiness (r = 0.947) and 
fibrousness (r = 0.925) and negatively correlated with flouriness (r = - 
0.875) and graininess (r = - 0.871).

The main source of variability of compositional parameters and 
sensory attributes, in our samples, can be attributed to the cultivars since 
all the apples were harvested at commercial maturity stage selecting 20 
fruit homogeneous in size.

3.2. Extracted mechanical and acoustic parameters

Mean values and relative standard deviations of the main mechanical 
and acoustic attributes extracted from the acquired curves are summa
rized in Table 3.

As observed for apples compositional properties and sensory attri
butes, the samples were characterized by an important range of me
chanical and acoustic variabilities as testified by literature [20,37]. 
Examples of mechanical and acoustic curves obtained during compres
sion of two cylinders from “Golden delicious” and “Renetta Bianca” 
cultivar samples are evidenced in Figs. 2 and 3. As known, according to 
flesh micro and nanostructures, each cultivar shows distinct mechanical 
and acoustic profiles due to distinct dynamics following the structural 
polysaccharide remodelling process occurring from fruit development 
until postharvest storage. In addition, the Pearson correlation matrix for 
mechanical and acoustic parameters extracted from the acquired pro
files shown in Table 4, confirmed published results outlining the 
importance of a detailed dissection and comprehensive analysis of the 
two texture components [17].

Table 2 
Apple characteristics: compositional parameters and sensory attributes 
(descriptive statistics of 323 apple samples).

Mean SD Min Max

Parameter

Fruit mass (g) 219 39 97 321
Juice (%) 37.1 12.2 5.8 65.0
Dry matter (%) 9.5 3.6 3.2 19.4
SSC (%) 13.0 1.8 7.0 20.1
Titratable aciditya 6.8 3.1 0.2 16.9

Sensory attribute

Hardness 44.2 19.9 4.0 86.0
Crunchiness 45.3 19.4 4.0 79.0
Flouriness 24.4 21.2 1.0 88.0
Fibrousness 35.3 20.2 1.0 89.0
Graininess 30.8 17.2 6.0 78.9

a mEq. malic ac./100 g juice. SD = Standard deviation.

Table 3 
Means and standard deviations of the main mechanical and acoustic parameters 
extracted from the acquired profiles.

Parameter abbreviationa Mean SD Min Max

Mechanical

F max (N) 10.7 2.9 4.2 21.2
Y mod (N%) 2.1 0.6 0.9 3.9
W (N mm) 12.1 2.3 6.0 19.0

Acoustic

A P max (dB) 50.3 3.0 40.4 57.8
A P mean (dB) 46.8 2.8 38.0 54.0
A ld 266 39 204 389

a See Table 1. SD = Standard deviation.
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3.3. Predictive models

The main results of the models set up to predict the sensory attributes 
hardness, crunchiness, flouriness, fibrousness and graininess, are sum
marized in Table 5 according to the three combinations of independent 
variables: the entire mechanical profile, the entire mechanical profile 
added to the entire acoustic profile, and the mechanical and acoustic 
parameters extracted from the acquired curves. The PLS, MLP, SVR and 
GPR model accuracies were described in terms of R2 and RMSE obtained 
by 5-fold cross validation. Optimization parameters for PLS (number of 
latent variables, LVs), and SVR (epsilon and C) algorithms are also given 
in the table (see Table 6).

As can be observed, the best validation accuracies were obtained for 
sensory attributes hardness and crunchiness for all PLS, MLP, SVR and 
GPR models and X-variables combinations with R2 values up to 0.885 
(RMSE = 6.7) and 0.849 (RMSE = 7.4), respectively. These results 
appeared to confirm those obtained by Corollaro et al. [13] revealing 
higher predictive accuracies for hardness (R2 = 0.88) and crunchiness 
(R2 = 0.85) compared to flouriness (R2 = 0.79), fibrousness (R2 = 0.80) 
and graininess (R2 = 0.77) PLS models, based on a selection of extracted 
mechanical and acoustic parameters.

Fig. 2. Force (N) Strain (%) profiled during the compression of two different 
apple cylinders.

Fig. 3. Acoustic pressure (dB) deformation (%) profiled during the compression 
of two different apple cylinders.
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In general, the predictive models for all sensory attributes present 
improvements in the accuracy passing from the “mechanical profile” to 
the “mechanical + acoustic profiles” combination of independent vari
ables. The reported results are in line with literature showing the 
importance of both textural components in the definition of apple sen
sory attributes [21]. The addition of the acoustic profile to the me
chanical ones appeared to particularly affect the “crunchiness” attribute. 
This behavior is not surprising thinking to the role of the sound to the 
sensation of crispness and crunchiness [38,39]. In terms of R2 values, the 
highest improvement can be observed for PLS validated models showing 
values from 0.707 (RMSE = 10.3) (mechanical profile only) to 0.818 
(RMSE = 8.1) (mechanical + acoustic profiles).

Globally, the predictive performances observed for the algorithm 
techniques modelling the combination of mechanical and acoustic pro
files can be comparable to those obtained by using the selected set of 
mechanical and acoustic parameters extracted from the profiles. To give 
an example, R2 values for hardness GPR models were 0.885 (RMSE =
6.7) and, 0.874 (RMSE = 7.0) respectively for the two predictors com
binations. The reported results significantly evidence how the use of the 
entire information contained in the mechanical and acoustic curves can 
accurately and reliablly describe the considered apple sensory attri
butes, simplifying the consolidated and critical definition of the 
extracted features.

For the sensory attributes of hardness and crunchiness, GPR models 

exhibited the best performance across all combinations of predictors. 
Fig. 4 presents the predicted versus observed values of the sensory 
attribute hardness obtained from 5-fold cross validations of GPR models 
showcasing results for the entire mechanical profile (a), the entire me
chanical profile added to the entire acoustic profile (b) and for the 
mechanical and acoustic parameters extracted from the acquired curves 
(c). Similarly, for the sensory attribute crunchiness, Fig. 5 displays 
predicted versus observed values obtained from 5-fold cross validations 
of GPR models, illustrating outcomes for the entire mechanical profile 
(a), entire mechanical profile added to the entire acoustic profile (b) and 
for the mechanical and acoustic parameters extracted from the acquired 
curves (c).

The PLS, MLP, SVR and GPR model accuracies were also described in 
terms of R2 and RMSE obtained by external validation. Optimization 
parameters for PLS (number of latent variables, LVs), and SVR (epsilon 
and C) algorithms are also given in the table.

External validation confirm best validation accuracies for sensory 
attributes hardness and crunchiness for all PLS, MLP, SVR and GPR 
models and X-variables combinations in addition to improvements in the 
accuracy passing from the “mechanical profile” to the “mechanical +
acoustic profiles”. Similalrly to 5-fold cross validation, for the sensory 
attributes of hardness, GPR models exhibited the best performance 
across all combinations of predictors.

Overall, for the attributes of flouriness, fibrousness and graininess, 

Table 5 
R2 and RMSE values for the predictive models of sensory attributes.

X-variables Tool Hardness Chrunchiness Flouriness Fibrousness Graininess

Opt. R2 RMSE Opt. R2 RMSE Opt. R2 RMSE Opt. R2 RMSE Opt. R2 RMSE

Mechanical 
profile

PLS LVs5 0.833 8.1 LVs3 0.707 10.3 LVs6 0.707 11.3 LVs6 0.759 9.8 LVs4 0.679 9.6
MLP 0.826 7.5 0.723 9.1 0.764 9.5 0.735 9.5 0.695 8.5
SVR 0.5; 

0.05*
0.834 8.0 1; 0.1* 0.747 9.6 5; 

0.05*
0.800 11.3 0.5; 

0.01*
0.751 9.9 0.5; 

0.01*
0.734 8.7

GPR 0.853 7.5 0.789 8.8 0.768 11.3 0.763 9.7 0.761 8.3

Mechanical +
acoustic profiles

PLS LVs5 0.864 7.3 LVs4 0.818 8.1 LVs6 0.786 9.7 LVs3 0.789 9.2 LVs6 0.764 8.3
MLP 0.744 6.7 0.727 7.5 0.794 9.4 0.786 8.5 0.751 7.8
SVR 0.1; 

0.01*
0.873 7.0 1; 

0.05*
0.830 7.9 1; 

0.05*
0.820 8.9 0.5; 

0.1*
0.820 9.2 0.5; 

0.05*
0.799 7.6

GPR 0.885 6.7 0.840 7.6 0.824 8.8 0.719 8.5 0.806 7.5

Mechanical +
acoustic 
parameters

PLS LVs7 0.863 7.3 LVs7 0.834 7.8 LVs10 0.786 9.7 LVs2 0.755 9.9 LVs10 0.762 8.3
MLP 0.860 6.9 0.828 7.3 0.809 8.9 0.765 9.8 0.767 7.8
SVR 0.5; 

0.05*
0.839 7.9 0.5; 

0.05*
0.811 8.3 0.5; 

0.01*
0.800 9.4 0.1; 

0.01*
0.734 10.3 0.5; 

0.01*
0.789 7.9

GPR 0.874 7.0 0.849 7.4 0.828 8.7 0.761 9.8 0.797 7.7

LVs = number of latent variables; *values for C and epsilon hyperparameters, respectively.

Table 6 
R2 and RMSE values for the predictive models of sensory attributes (5-fold cross validation).

X-variables Tool Hardness Chrunchiness Flouriness Fibrousness Graininess

Opt. R2 RMSE Opt. R2 RMSE Opt. R2 RMSE Opt. R2 RMSE Opt. R2 RMSE

Mechanical 
profile

PLS LVs5 0.911 6.4 LVs5 0.722 11.3 LVs7 0.675 13.0 LVs6 0.788 9.7 LVs6 0.622 9.6
MLP 0.898 6.8 0.771 10.2 0.658 13.3 0.807 9.2 0.663 9.1
SVR 1; 

0.01*
0.911 6.4 1; 

0.01*
0.814 9.2 5; 

0.01*
0.775 10.8 1; 

0.05*
0.817 9.0 5; 

0.05*
0.772 7.5

GPR 0.921 6.0 0.803 9.5 0.795 10.3 0.824 8.8 0.760 7.7

Mechanical +
acoustic profiles

PLS LVs4 0.913 6.3 LVs4 0.852 8.2 LVs5 0.824 9.6 LVs4 0.845 8.3 LVs4 0.762 7.6
MLP 0.922 6.0 0.726 11.2 0.782 10.6 0.772 10.0 0.764 7.6
SVR 0.5; 

0.01*
0.900 6.8 0.5; 

0.05*
0.881 7.4 10; 

0.01*
0.831 9.4 1; 

0.05*
0.866 7.7 0.5; 

0.05*
0.795 7.1

GPR 0.924 5.9 0.806 9.4 0.817 9.7 0.828 8.7 0.776 7.4

Mechanical +
acoustic 
parameters

PLS LVs7 0.906 6.6 LVs6 0.870 7.7 LVs6 0.803 10.1 LVs7 0.783 9.8 LVs10 0.712 8.4
MLP 0.916 6.2 0.900 6.8 0.788 10.5 0.803 9.3 0.683 8.8
SVR 0.5; 

0.05*
0.890 7.1 0.5; 

0.01*
0.850 8.3 0.5; 

0.05*
0.809 10.0 0.1; 

0.01*
0.750 10.5 0.5; 

0.01*
0.734 8.1

GPR 0.916 6.2 0.844 8.4 0.670 13.1 0.753 10.4 0.642 9.4

LVs = number of latent variables; *values for C and epsilon hyperparameters, respectively.
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GPR techniques seemed to produce the highest R2 values.
In particular, The nonparametric probabilistic regression GPR, 

appeared to outperform other explored techniques in effectively 
modelling the huge variability present in the samples in terms of me
chanical and acoustic properties. As widely recognized, GPR is a ma
chine learning technique that can solve complex input and output 
relationships, by combining linear and non-linear terms in the covari
ance function, demonstrating proficiency in addressing high-dimension 
multivariate linear and nonlinear problems [40,41].

Currently, GPR models are considered a robust alternative to tradi
tional chemometric modelling tools, especially in the field of qualitative 
and quantitative spectroscopy assessments. Interesting examples refers 
to Near-Infrared spectroscopy [29,42,43], Infrared spectroscopy [44], 
Raman spectroscopy [45]and Terahertz time-domain spectroscopy [46] 
to name a few.

4. Conclusions

The information contained in the mechanical and acoustic profiles 
acquired during compression tests of high variables apple samples was 

Fig. 4. Predicted versus observed values of the sensory attribute hardness (5- 
fold cross validations, GPR) for the entire mechanical profile (a), entire me
chanical profile added to the entire acoustic profile (b) and for the mechanical 
and acoustic parameters extracted from the acquired curves (c).

Fig. 5. Predicted versus observed values of the sensory attribute crunchiness 
(5-fold cross validations, GPR) for the entire mechanical profile (a), entire 
mechanical profile added to the entire acoustic profile (b) and for the me
chanical and acoustic parameters extracted from the acquired curves (c).
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modelled to predict hardness, crunchiness, flouriness, fibrousness, and 
graininess sensory attributes.

By taken into consideration PLS, MLP, SVR and GPR statistical 
techniques and different combinations of predictors, main results 
confirmed the role of both mechanical and acoustic components in the 
definition of apples sensory perception. Respect to models built by using 
only mechanical curves, those characterised by the combination of 
mechanical and acoustic profiles showed the best accuracies in terms of 
R2 values.

The possibility to use the entire acquired profiles instead of a specific 
list of relative extracted features was also proven by the results of the 
present work, which focused on a huge number of commercial cultivars 
harvested over a period of nine years. As known from the literature, the 
definition of the type and number of features able to characterize the 
tested samples can be considered the main critical point. In addition, the 
results evidenced once again that the information contained in the 
mechanical and acoustic curves can replace, in a cheaper way (people 
are not always available and cannot evaluate more than 20–30 samples 
per day), the sensory panels assessments in the evaluation of the 
explored apple attributes, especially in real time procedures.

In terms of predicted sensory attributes, our investigation also 
confirmed higher accuracies for hardness and crunchiness respect to 
flouriness, fibrousness, and graininess.

Next steps could be dedicated to the improvements of the predictive 
power of the statistical tools by extending the techniques to other types 
of fruit.
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