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TransSounder: A Hybrid TransUNet-TransFuse
Architectural Framework for Semantic Segmentation

of Radar Sounder Data
Raktim Ghosh, Student Member, IEEE, Francesca Bovolo, Member, IEEE,

Abstract—Radar Sounders (RSs) are nadir-looking sensors
operating in high frequency (HF) or very high frequency (VHF)
bands that profile subsurface targets to retrieve miscellaneous
scientific information. Due to complex electromagnetic interaction
between back-scattered returns, the interpretation of RS data is
challenging. The investigations of ice-sheet subsurface structures
require automatic techniques to account for both the sequential
spatial distribution of subsurface targets and relevant statistical
properties embedded in RS signals. Automatic techniques exists
for characterizing these targets either related to probabilistic
inference model or convolutional neural network (CNN) deep
learning methods. Unfortunately, CNN-based methods capture
local spatial context and merely model the long-range sequential
context. In contrast to CNN, the Transformer-based models
are reliable architectures for capturing long-range sequence-
to-sequence global spatial contextual prior. Motivated by the
aforementioned fact, we propose a novel Transformer-based
semantic segmentation architecture named TransSounder to
effectively encode the sequential structures of the RS signals. The
TransSounder was constructed on a hybrid TransUNet-TransFuse
architectural framework to systematically augment the modules
from TransUNet and TransFuse architectures. Experimental re-
sults obtained on Multi-channel Coherent Radar Depth Sounder
(MCoRDS) dataset confirm the robustness and capability of
Transformers to accurately characterize the different subsurface
targets.

Index Terms—Semantic Segmentation, Transformers, Tran-
sUNet, TransFuse, MCoRDS, Radar Sounder, Sequence-To-
Sequence Model

I. Introduction

EARTH climate change is one of the most pivotal research
topics in the domain of environmental monitoring [1].

An accelerated loss of the polar ice has been observed in
recent decades [2]. The temperature rise significantly affects
the dynamics of temporal changes within the deep ice layers.
Therefore, an investigation of the ice-sheets subsurface struc-
tures is of high necessity. However, due to the inaccessibility
of the sub-glacial environment, retrieving and characterizing
environmental parameters of ice sheet subsurface structures
and other targets becomes challenging [1]. In this context,
nadir-looking airborne RS sensors and ground-based radar
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depth sounder (RDS) are non-intrusive instruments capable of
providing important scientific information about the ice sheets.

RSs are active sensors designed to transmit linearly modu-
lated electromagnetic (EM) pulse echoes and receive reflected
echoes from the subsurface interfaces [3]. Generally, these
interfaces are formed due to dielectric discontinuities between
distinct targets with varying EM properties. The central fre-
quency of these sensors ranges from high frequency (HF) to
very high frequency (VHF) of the EM spectrum [1]. RS instru-
ments are designed to retrieve amplitude and depth information
of the subsurface ice sheets up to several kilometers beneath
the surface. The transmitted EM signals encounter varying
geometric and dielectric properties of subsurface targets and
suffer from attenuation loss [4]. The amplitude returns are
used to generate radargrams after noise reduction and platform
instabilities correction [5].

Over the past two decades, the investigation of subsurface
structures of ice sheets was carried out by visual interpreta-
tion of the radargrams generated by miscellaneous airborne
and ground-based radar sounder (RS) instruments. However,
manual investigations are time-consuming and not efficient
for large-scale modelling. To address these limitations, au-
tomatic techniques are proposed. They are either associated
with the probabilistic inference model or recently adopted
deep learning-based segmentation framework. [6] constructed
a statistical signal processing approach to automatically char-
acterize radargrams with distinct targets and [7] demonstrated
the capability of Support Vector Machine (SVM) to classify
subsurface targets in the radargrams. [8], [9] utilized the
probabilistic inference models for detecting and estimating the
ice layers from radar sounder data. Although these methods
are lightweight and computationally efficient, the requirement
of prior probabilistic feature extraction becomes inefficient for
large-scale modelling. Recently, the CNN-based approaches
are incorporated to segment the radargrams for estimating
the thickness of ice layers [10], [11], [12]. Although CNN-
based approaches exhibit classic localized spatial representa-
tional power, they cannot coherently resolute the long-range
sequential dependency for capturing the global spatial context.
In contrast to local contexts, computing the response at a
position in a sequence by considering all the other positional
elements over the entire sequence with the weighted average is
a contextualization of global features with sequential structures
in the embedding space [13]. The sequential structures in
RS signals coupled with more than one target (ice, bedrock,
noise, etc.) are often too complex to model as extracting
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the global contextual feature from the signals is difficult. In
order to resolve the issues of modelling global spatial contexts
in radargrams, it is necessary to incorporate tools that can
intrinsically capture the long-range spatial sequential context
in RS signals.

In contrast to CNN-based methods, Transformers have
transpired as alternative architectures solely relying on self-
attention mechanism for modelling global long-range sequen-
tial context, thus dispensing entirely the convolution operation
[14]. [15] theoretically established the universal approximation
property of Transformers on sequence-to-sequence functions.
The success of Transformers have been witnessed in the
domain of Natural Language Processing (NLP) [14], [16] and
demonstrated in the domain of image recognition [17], [18].
Very recently, [19], [20] developed TransUNet and TransFuse
model respectively in the domain of medical image segmen-
tation. The TransUNet architecture incorporates a joint CNN-
Transformer module as an encoder network and merits the
UNet like upsampling framework in the decoder part [19].
On the other hand, TransFuse utilizes solely a Transformer-
based module as an encoder and uses a BiFusion module in
the decoder part [20]. A brief description of the architecture
is given in Section II.

In the case of radar sounder signals, the backscattering
response from different subsurface targets in the radargram
signals does not explicitly exhibit concrete distinguishable
linear homogeneous features through the whole sequence in
radargrams. However, RS signals embed a systematic se-
quential context with inherent properties such as exponen-
tial decay of signals from top to bottom and mixed back-
scattering responses from the targets with varying dielectric
properties. Therefore, to discriminate and capture the long-
range dependency of these back-scattering responses from
distinct targets, the utilization of Transformers as an encoder
in the segmentation model could be a crucial step forward.
In the field of semantic segmentation of radargrams, the
Transformer-based architectures have not been explored so far.
This is for the first time we address the problem of pixel-wise
segmentation of radargrams by incorporating the Transformers
as an encoder in deep learning architecture.

In this paper, we design a novel approach for Transformers-
based semantic segmentation of radar sounder signals. Our
contribution is as follows:-

1) We propose a hybrid TransUNet-TransFuse architectural
framework named TransSounder to jointly augment their
modules.

2) We incorporate a systematic augmentation of modules
with attention mechanisms in both encoder and decoder
architecture to accurately capture the global and lo-
cal context in the down-sampling and also in the up-
sampling operation.

3) We compare the TransSounder architecture with the
state-of-the-art TransUNet [19] and TransFuse [20] ar-
chitecture for pixel-wise segmentation of radargrams.

To briefly highlight the proposed TransSounder architectural
framework, the successive convolution operations extract the
high dimensional feature spaces from the radargram training
samples majorly embedded with the local spatial context.

These high dimensional feature spaces are fed into the Trans-
formers to establish a global spatial contextual relationships
between the previously extracted local spatial context. After
these downstream tasks in the encoder architecture, the local
and global contextual features are combined in the decoder
architecture to recover the final low dimensional feature maps
with the respective number of classes. The results indicate
that the TranSounder is a robust architectural framework in
the context of segmenting the radar sounder signals.

In terms of modelling the sequential structures in the RS
signals, we first observed that it is reliable to tokenize the high
dimensional feature spaces extracted after successive convolu-
tion operations as the Transformers explicitly model the global
spatial context. The convolution operations preserve the local
spatial contextual details in the RS signals at the initial stage.
However, in terms of multi-hop dependency modelling, such
as when the messages have to be passed through back-and-
forth between distant positions, the convolution operations lack
the exchanging of long-range information processing [13]. To
model long-range sequential relations between the high dimen-
sional local spatial contexts embedded at different positions in
RS signals, the utilization of joint CNN-Transformer encoder
is important. Here, Transformers intrinsically embed the long-
range spatial contextual modelling between local spatial con-
texts extracted by CNN and preserve the hierarchical details
at different depth of the network. Hence, the TransSounder
architecture incorporates a joint CNN-Transformer encoder
with a similar experimental setup that is in parallel with the
encoder part of the TransUNet architecture [19]. The output
from the Transformers branch is upsampled successively with
the Transpose Convolution operations to match the dimensions
with the corresponding CNN branches at different depths. We
utilize the BiFusion module [20] in the decoder architecture
to perform the feature-level fusion between the high dimen-
sional downsampled features from the CNN branches and the
upsampled features from the Transformers block. A complete
mathematical treatment of TransSounder architecture has been
depicted in Section III.

The rest of the paper is organized as follows. We elucidate
the related works in Section II. A detailed methodological
framework is depicted in Section III. The experimental results
are reported in Section IV. In this section, we highlight the
description of the dataset, construct the experimental setup and
discuss the segmentation results. Finally, we draw conclusions
from our research work.

II. Related works

In this section, we highlight the hierarchical development
of the automatic methods of classification and segmentation
of RS data. We first depict the probabilistic methods for
characterizing the radagrams in terms of targets and addition-
ally we highlight a few pieces of literature on detecting and
estimating the ice layers. After that, we elucidate the CNN-
based approaches to segment the radargrams, and we briefly
highlight the methods in which the ice layers are detected using
CNN-based semantic segmentation. Next, we elaborate on the
concepts of TransUNet and TransFuse architectures.
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A. Probabilistic Method
The studies such as [6], [7] presented automatic tech-

niques for characterizing subsurface targets in radargrams.
[6] demonstrated the capability of statistical signal processing
approaches to automatically characterize and generate feature
maps from radargrams. Based on the amplitude fluctuations of
received signals, miscellaneous probability density functions
(pdfs) were empirically fitted with the histograms to model
radargrams. The experimental results demonstrated that K-
distribution and Rayleigh distribution successfully character-
ize the subsurface targets and noise respectively. However,
the study was limited to extracting homogeneous and linear
features from radargrams whereas the subsurface features in
a radargram can be highly heterogeneous. [7] demonstrated
the significance of machine learning-based approaches in ad-
dressing the spatial heterogeneity of the subsurface targets by
processing the probabilistic features with the Support Vector
Machine (SVM) algorithm. Although the SVM is compu-
tationally efficient, a number of prior probabilistic feature
extractions for distinct classes have to be considered which
may be prone to errors in terms of generalization capabilities.

In terms of detecting and estimating the thickness of ice
layers, significant research activities related to automatic tech-
niques have been carried out. [21] proposed an active contour-
based and edge-based (edge detection and thresholding) solu-
tion for locating ice sheets, and the interface between ice layers
and bedrock. [22] developed a level-set method to detect ice
layers. [8] proposed a probabilistic inference task to estimate
bedrock and surface layer boundaries. This was done by
utilizing the Markov-Chain Monte Carlo simulation method to
sample from the joint distribution over all possible layers. [9]
suggested a probabilistic graphical model based on inference
task for 3D ice layer extractions within the framework of
computer vision. They incorporated the concept of generating
seed surfaces, and thereby constraint-based refining of those
generated surfaces via discrete energy minimization technique.
Although the probabilistic models are computationally light-
weight, the prior handcrafted feature extraction or pdfs con-
sideration for distinct target classes are often difficult in terms
of large-scale modelling or generalization capabilities.

B. CNN-based Approaches
A few research work focused on developing methods for

estimating the thickness of the ice sheets by deep learning-
based segmentation with CNN-based approach. Very recently,
[10] developed a joint Triple task CNN architecture, and
multi GAP Recurrent Neural Network (RNN) architecture to
address the problem of deep tiered segmentation of internal
ice layers. By incorporating the 2D-CNN task, they addressed
three problems simultaneously: i) detecting the location of
top layers, ii) roughly approximating the thickness of ice
layers, iii) quantifying the number of visible layers in the
echogram. Later, they incorporated the RNN operation for
pixel-level refinement of boundary positions to account for
the differences across the layers. Also, [11] incorporated a
CNN-based Capsule Network by utilizing the SegCaps net-
work architecture [23], to segment radargrams in terms of

layers, bedrock, noise, and free space. In contrast to CNN
architecture, the capsule network stores the information about
spatial orientation at the neuron level which is useful for the
segmentation of radargrams. [12] carried out a comparative
analysis between different FCN-based architecture for tracking
deep ice layers and subsequently estimating the thickness.
Although CNN-based approaches accurately capture the local
spatial context, they lack modelling the long-range sequence-
to-sequence spatial contextual features. The RS signals in-
trinsically depict the sequential structures of backscattered
responses in the radargrams. Therefore, it is of paramount
importance to incorporate tools that can resolute the long-
range sequential context.

C. Transformer-based Segmentation Method
In contrast to CNN-based architectures, the Transformers are

reliable architectures for modelling long-range global contex-
tual features by incorporating the Multi-head Self Attention
mechanism (MSA) coupled with Multi-layered Perceptron
blocks (MLP) [14]. Recently, TransUNet and TransFuse ar-
chitectures have been proposed by incorporating Transformers
as an encoder for medical image segmentation [19], [20].

1) TransUNet: Although Transformers are reliable models
for capturing long-range dependencies in the sequence-to-
sequence prediction paradigm, they lack the ability to extract
the local features whereas convolution operations reliably do.
Therefore, to effectively utilize the combined capability of
Transformers and convolutions, [19] developed a TransUNet
architecture by incorporating the Transformers in the Encoder
side. The TransUNet model is an encoder-decoder architecture
based on the framework of UNet [24]. In the encoder part of
TransUNet, the convolution operations extract the deep fea-
tures. They are then tokenized by linear embedding operations
coupled with positional encoding tensors. These tokens are fed
into the number of sequential Transformer blocks. Therefore,
the encoder architecture captures the local spatial details
during convolutions, and then the global context is captured
by Transformers. After capturing the global context from the
tokens, the resulting Tensors are reshaped to match the size of
tensors from the CNN block. In the decoder architecture, the
reshaped output from Transformers is concatenated with the
CNN modules at distinct spatial dimensions to augment the
local as well as global spatial contexts. To match the spatial
dimensions of the input tensors, the Cascaded Upsampling
operations (CUP) are carried out until the final dimensions are
retrieved. A detailed architectural description can be found in
[19].

2) TransFuse: [20] developed a TransFuse architecture by
utilizing shallow Convolutional Neural Network (CNN) and
Transformers based encoder in parallel. The CNN branch
encodes the local spatial details by successively increasing the
receptive field, and gradually capture the global context. On
the other hand, the Transformer branch captures the global
context by incorporating the global self-attention mechanism.
Later, the BiFusion module fuses the features extracted from
CNN and Transformer branches concurrently with a distinct
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depth of tensors. The intuition behind coupling them is that the
CNN captures the local spatial details, and Transformer models
the long-range global semantic content from the input. There-
fore, the BiFusion module plays a pivotal role in capturing the
global and local contextual information from the input data.
The parallel structure is computationally efficient in model
sizes and inference speed. In the decoder part, the progressive
upsampling (PUP) method is adopted from the SETR method
[25], to recover the spatial dimension concurrently. For further
details about the methodology and corresponding architecture
of TransFuse method, please refer to [20].

Transformers capture the global spatial contextual features,
however, it often lacks the ability to model the local spatial
contextual details. Therefore a joint CNN-Transformer encoder
is a reliable solution. Although, TransUNet architecture incor-
porates a CNN-Transformer encoder [19], the simple concate-
nation operation of high level and low level features in the
decoder network may not preserve the hierarchical structure of
the RS signals. In terms of RS signals, it can be important to
incorporate attention mechanisms in the decoder architecture
to retain the precise spatial information by preserving the
sequential structures throughout the range (spatial attention)
and exclude the redundant channels in the high-dimensional
feature space (channel attention). On the other hand, TransFuse
incorporates a channel and spatial attention based BiFusion
module which is reliable to preserve local and global spatial
information effectively [20]. However, TransFuse do not in-
corporate a CNN-Transformer encoder thus dispensing to con-
textualize the local spatial details hierarchically at the initial
stage of the encoder network. To combine the encoder block
of TransUNet architecture and the decoder block of TransFuse
architecture effectively, the aforementioned limitations can be
resolved in terms of segmenting the radargrams with higher
accuracy.

III. proposed trans-sounder network
A. Problem Formulation

Let us denote a radargram as a 2-D matrix with traces in the
along track or azimuth direction denoted as [1, ..., =) ], and the
samples in the depth or range direction denoted as [1, ..., =(].
The backscattered information contained in a radargram R is:

' = {'(8, 9) |8 ∈ - = [1, ..., =) ], 9 ∈ . = [1, ..., =(]} (1)

The primary goal of this research work is to classify
each '(8, 9) pixel in the radargram into a distinct class by
incorporating a supervised semantic segmentation architecture.
We broadly categorize the target structures of radargrams into
3 classes: layers, bedrock, and noise. We propose a hybrid
architectural framework named TransSounder for pixel-wise
segmentation of radargrams by incorporating Transformer-
based segmentation models. Here, we jointly augment the
modules from TransUNet and TransFuse architecture to ac-
complish the aforementioned objective.

Let # be the number of training samples build of pairs
of radargram patches and the corresponding labels. Thus the
training set is denoted as {(-1, !1), (-2, !2), ..., (-# , !# )}

where - = {-1, -2, ....-# } are the radargram patches and
! = {!1, !2, ..., !# } the corresponding labels. Let a training
patch have a dimension -8 ∈IR�×, where the spatial structure
is of � ×, . Therefore the spatial dimension of a label !8 is
� × , . A detailed mathematical treatment of TransSounder
architecture is elucidated below.

B. TransSounder

As shown in Figure 1, the TransSounder architecture con-
sists of a hybrid CNN-Transformer block as an encoder. The
CNN branches capture the local spatial details successively
from the training samples with the spatial dimensions of the
tensors convolved from [�,,] to [ �2_ ,

,
2_ ]. _ depends on �

and , ( please refer Section IV-B for discussion on how
to choose it). The high dimensional tensors at the depth of
[ �2_ ,

,
2_ ] embed the local spatial contextual features at the

last layer of CNN blocks. The tensor at the last layer is split
into 1 × 1 tensors sequentially. These sequential tensors are
tokenized to model global contextual relationships between
them later in the Transformers branch. The tokenization tech-
nique encodes each subset of 1 × 1 tensors with the patch
embedding as well as positional encoding operations. The
embedded tokens are fed into the Transformers block with
the depth of 8 as depicted in Figure 1. After extracting
tensors associated with the global contextual features from
the Transformers block, the reshaping is done to match the
spatial dimensions with the tensors at the last layer of CNN
blocks (spatial dimension of [ �2_ ,

,
2_ ]). Successive Transpose

Convolution operations are performed over these reshaped
tensors to match the spatial dimension with the tensors at
different depths of CNN blocks. Reshaped tensors from the
Transformers and the tensors from CNN blocks are jointly
fed as an input to the BiFusion modules {��1, ��2, ..., ��_}.
The output from ��1 (spatial dimension of [ �2_ ,

,
2_ ]) is then

upsampled to match the spatial dimension with the output
from ��2, and subsequently, the concatenation operation is
performed between these two outputs. Here, we utilize Bilinear
Upsampling operation [26], however, other operations such as
bicubic [27], trilinear upsampling [28] can be used without
loss of generality. Later, a convolution operation is carried
out on the concatenated tensor and the subsequent process is
repeated until the final dimension of the output tensor [�,,]
is recovered at the decoder architecture. Detailed step-by-step
mathematical descriptions are depicted below.

1) Hybrid CNN-Transformer Block as an Encoder:
The concept has been adopted from [19]. We perform the
successive Double-Convolution operation (convolving twice
with window size of F ×F) on {-1, -2, ..., -# } to reduce the
dimension of tensors upto [ �2_ ×

,
2_ ] by following the sequence

as [ �2 9 ×
,
2 9 ] where 9 ∈ {0, 1, 2, ..., _}. The CNN operation

captures successively the local spatial contexts with the high
the dimensional feature spaces.

Let us denote the set of tensors with high-dimensional
convolved feature spaces extracted from # radargram train-
ing samples after each Double-Convolution operation as
{. 91 , .

9

2 , ..., .
9

#
} with the dimension of [ �2 9 ×

,
2 9 ] where 9 ∈
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Figure 1: Schematic Layout of TransSounder Architecture

{0, 1, 2, ..., _}. In the sequentialization operation, these high-
dimensional deep features at 9 = _ are tokenized to feed into
the Transformers. The detailed dimensionality of this operation
is depicted below.

2) Sequentialization of Convolved Patches: The tokeniza-
tion operation is performed by selecting each individual ._

8

from the set of deep features after the last Double-Convolution
operation at 9 = _ as {._1 , .

_
2 , ..., .

_
#
}. Let us denote this

sequence {._1 , .
_
2 , ..., .

_
#
} as {�=1, �=2, ..., �=# } for consis-

tency in notations at later stage. Each �=8 is divided into
the sequence of flattened 2D patches where {�= 9

8
∈ IR%2×2

where 9 ∈ {1, 2, ..., m}}. Each patch is of size % × % and
< =

�/2_×, /2_
%2

. This tokenization operation is performed
to feed into the Transformers for establishing the global
contextual relationships between the high-dimensional subset
of the tensors extracted from �=8 .

3) Patch Embedding and Positional Encoding Operation:
After the sequentialization of each �=8 , the tensorized versions
of these patches are projected onto a 3-dimensional embedding
space with trainable parameters. This operation is performed
to reduce the dimensionality of the tensors. Also, the positional
encoding has been added with the patch embedding operator
to retain the precise localization information at different depth
of the network. The equation can be depicted as follows:

I0 = [�=18 .� ;�=28 .� ; ...;�=<8 .�] + �?>B (2)

where � ∈ IR%2.2×3 is the projection onto the patch embed-
ding, and �?>B ∈ IR<×3 denotes the positional encoding.

4) Transformer Block: After carrying out the patch em-
bedding and positional encoding operations over the tokenized

patches denoted as �=8 , these embedded tokens are fed into
the Transformers. An operational sequences of Transformers
have been depicted in Eq. (3a-3c).

The Transformer encoders consist of L-layers of subsequent
Multihead Self-Attention (MSA) and Multi-Layer Perceptron
(MLP) blocks [14]. Inside MLP blocks, the Gaussian Error
Linear Unit (GELU) non-linearity is utilized [29]. The equa-
tions in 3 depict the successive operational sequence in the
Transformer block.

I
′

; = 5 (6(I;−1)) + I;−1 (3a)

I; = A (6(I
′

;)) + I
′

; (3b)

(�(I8) = B> 5 C<0G(
@8:

)

√
3ℎ
)E (3c)

where 5 denotes the MSA operator, 6 indicates the layer
normalization (LN) operator, A indicates the MLP operator,
I; indicates the ;Cℎ layer. Eq. (3c) depicts the self attention
mechanism with the concept of queries (@), keys (:) and values
(E). The [q,k,v] = I × ,@:E , where ,@:E ∈ IR3×33ℎ is the
projection matrix and I8 , @8 are the 8Cℎ row of I and @. For
more details about Transformers, please refer to [14].

5) Transpose Convolution on the Output from Trans-
former: After feeding the tokenized patches into the Trans-
formers block with successive MSA and MLP operations (see
Eq. (3a-3c), the output tensors from these Transformers are
reshaped to match the similar spatial dimension at the last
layer of the CNN branch. Let us define the sequence of output
tensors from the last Transformers branch as {)1, )2, ..., )# }.
The spatial dimension of these tensors at the last layer of
Transformer branch are [ �2_ ×

,
2_ ].
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Here, )8 (8 ∈ 1, 2, ..., #) embeds the long-range sequential
contexts between the tokens representing the high dimensional
local spatial contexts extracted from the CNN layers. Let us
also define the Transpose Convolution operations over the
output from the Transformer branch as {) 91 , )

9

2 , ..., )
9

#
} where

9 ∈ {0, 1, 2, ..., _}. The sequential increment of spatial di-
mensions for successive Transpose Convolution operations are
[ �2_− 9 ×

,
2_− 9 ] and also from the CNN block, the corresponding

hidden features were previously denoted as {. 91 , .
9

2 , ..., .
9

#
}

with the dimension of [ �2 9 ×
,
2 9 ] where 9 ∈ {0, 1, 2, ..., _}.

These concurrent hidden sequences of tensors from the
CNN branches ({. 91 , .

9

2 , ..., .
9

#
}) and also the upsampled ten-

sors from the Transformers branches {) 91 , )
9

2 , ..., )
9

#
} with the

similar spatial dimensions at different stages are jointly fed into
the BiFusion module for fused feature representations with the
global and local spatial contexts in the RS signals. Here, the
tensors from 9 Cℎ CNN branch is spatially similar with the
(_ − 9)Cℎ upsampled tensors from the transformers branch. A
detailed mathematical treatment inside the BiFusion module
has been elucidated below.

6) BiFusion Module: The BiFusion module fuses the
encoded deep local spatial contextual features from the CNNs
with the modelled global spatial contextual features from
the Transformers blocks. The module consists of 3 building
blocks: a Spatial Attention (SA) operation, a Channel Attention
(CA) operation, and a multi-modal fusion operation. The fused
feature representations are depicted below in Eq. (4a-4d).

)
′
D = �ℎ0==4;�CC=() 91 , )

9

2 , ..., )
9

#
) (4a)

�
′
D = (?0C80;�CC=(._− 91 , .

_− 9
2 , ..., .

_− 9
#
) (4b)

�
′
D = �>=E() ′D,1D � �

′
D,

2
D) (4c)

�
′
D = '4B83D0; [) ′D , �

′
D , �

′
D] (4d)

where {) 91 , )
9

2 , ..., )
9

#
} denotes the reshaped global con-

textual features from Transformer block at the 9 Cℎ branch,
{. 91 , .

9

2 , ..., .
9

#
} indicates the high dimensional tensors from

9 Cℎ CNN block, | � | represents the element-wise dot product,
Conv denotes the 3 × 3 convolution layer.

The CA module is incorporated as Squeeze-and-Excitation
(SE) block primarily proposed in [30]. The SE block captures
the global information from the Transformer block. On the
other hand, the SA module is borrowed from Convolutional
Block Attention Module (CBAM) architecture [31]. The goal
of the CBAM block is to capture intrinsically significant local
spatial context from CNN blocks and ignore other regions.
The cross-relationships between these blocks are established
by performing the element-wise dot product operation between
)
′
D and �′D tensors. After these aforementioned operations, the
)
′
D , �

′
D , �

′
D are passed through the residual blocks. Finally, the

fused features �′D jointly capture global and local features. For
further details about BiFusion module, please refer to [20].

7) Concatenation Operation on the Output from BiFusion
Module: After extracting the outputs from the BiFusion
module by utilzing Eq.(3a-3c), the Bilinear Upsampling (BUP)
operation is then incorporated on �D tensor to match the
similar dimension of �D+1 tensor. Let us denote this operation
as �*%(�D). This �*%(�D) tensor is then concatenated with
�D+1 tensor. Here, this concatenation operation accumulates
the fused global and local spatial contextual representations
at different scales. Hereafter, a convolution operation is per-
formed on this concatenated tensor. This process is repeated
until the final dimension [�,,] is recovered. The mathemat-
ical formulation can be done as follows:

�
′

D+1 = �>=E(�>=20C (�*%(�D), �D+1)) (5)

The methodological framework, and corresponding opera-
tion in the decoder architecture is in parallel with the [20].

8) Loss Function: We use the binary cross-entropy (BCE)
loss function to train the model. The cross entropy is a measure
of the statistical distance between two probability distribution
functions for a set of events or a distinct random variable
[32]. The BCE loss is widely used for classification as well
as pixel-wise segmentation task. Without loss of generality,
different types of loss function other than BCE can be utilized
for similar experimental setup.

We incorporate a triple headed BCE loss function as similar
to [20]. The first head is derived from the BiFusion block 1
(��1), where the tensor at the depth [�/24,,/24] (_ = 4)
is upsampled to [�,,] using bi-linear interpolation method
(denoted as L��1 in Eq. 7). On the other hand, the hidden
features from the Transformers block is upsampled with the
similar size of different depth of CNN layers. Here, from the
Transpose Convolution operation at the size of [�/2,,/2],
is upsampled to the size [�,,] using bi-linear interpolation
(denoted L) in Eq. 7). The last head is coming from the
successive operations of BiFusion modules at ��4 (loss is
denoted as L��4 in Eq. 7). The loss is then estimated with
respect to the corresponding labels (! = {!1, !2, ..., !# }) of
the individual radargram training samples. BCE loss with a
single head (��1) can be depicted as:

L��1 = L(!, ℎ403 (��1)) =
�×,∑
8=1

�∑
2=1
−G82 log ?82 (6)

where ! is the set of labels of individual radargrams with
size � × , , � is the number of classes (� = 3 in our
cases), ?82 indicates the predicted probability of 8Cℎ pixel on
radargrams on class 2 of ℎ403 (��1), G82 denotes the ground
truth probability on 8Cℎ pixel of !.
In our TransSounder architecture, a linear combination of

the triple-headed BCE loss is incorporated by utilizing all the
aforementioned 3 heads:

LC>C0; = UL��4 + VL��1 + WL) (7)

where U, V, and W in Equation 7, are the Hyperparameters
to be tuned according to the gradient flow of the networks.
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IV. experimental results
In this section, we report the results by applying Tran-

sUNet, TransFuse, UNet, and TransSounder architectures for
segmenting the radargrams. In the succeeding subsections,
we first present a description of the dataset used for training
and testing. Next, we highlight the experimental setup and
associated resources. At last, we elucidate the segmentation
results and we also depict the qualitative and quantitative
interpretations of these results.

A. Description of Data Sets
We test our deep learning architectures on Multi-Channel

Coherent Radar Depth Sounder (MCoRDS) which is owned
by Centre of Remote Sensing of Ice Sheets (CReSIS) unit.
The dataset was acquired by different sensors operated with
different bandwidths, i.e., 9.5 MHz and 30 MHz. The central
frequency of the instrument is 193.5 MHz. The instrument
on-boarded on DC-8 jet aircraft, was flown with an altitude of
about 7000 m. The acquisition took place over several regions
of Antarctica. The first dataset campaign using MCoRDS,
was conducted on November 2010 over the central Antarctica.
8 radargrams acquired on November 2010 were generated
sequentially from the acquisitions on bandwidth 9.5 MHz.
The latitude of these acquisitions varies from (−86◦00′N to
−15◦67′E) to (−86◦02′N to 29◦45′E) over a distance of about
400 Km (total 27350 traces). The range resolution in ice
and along track resolution corresponds to 13.6 m and 25 m
respectively.

B. Experimental Setup
For the radargrams, a set of labelled patches is available.

# = 1600 samples were used for training and 267 samples
were used for testing. During training, two specific data
augmentation techniques were used: i) grid distortion and ii)
elastic deformation so that the sequential structures of the
signals are invariant. The spatial dimension of each radargram
training sample is � × , = 400 × 400. For the double
convolution operation on CNN branches, the window size is
kept as F × F = 3 × 3. In general, the window size can be
experimented with different spatial structures. We set _ = 4
to donwsample the tensors from 400 × 400 to 25 × 25 over
the successive CNN branches on the encoder network. The _
can vary from 1 to 7 in our case. If we choose a very small _
value, we may not be able to extract the deep high dimensional
feature spaces, and on the other hand if we set it very high, the
computational cost and the number of hyperparameters will in-
crease. Therefore, a value of _ = 4 represt an trade-off between
the extremes. All the networks are implemented in PyTorch,
and experiments are conducted on two NVIDIA RTX 2080Ti
GPUs. We performed parallel computing to effectively deploy
the underlying networks with batch sizes of 16. We increased
the training iterations from 30 to 100 for every architectures.
The total number of training iterations for Transformer-based
architectures (TransSounder, TransUNet, TransFuse) was kept
as 50 due to the early convergence rate. While carrying out
the experiments with 50 iterations for UNet architecture, we

Table I: Acurracy Assesment

Algorithms Precision Recall F1-Score Kappa OA

TransFuse 0.9902 0.9862 0.9882 0.9907 0.9943
TransUNet 0.9839 0.9801 0.9819 0.9891 0.9934
UNET 0.8391 0.8271 0.8324 0.9004 0.9393

TransSounder 0.9913 0.9862 0.9887 0.9910 0.9945

Table II: Confusion Matrix: TransFuse Method

Unlabel Layers Bedrock Noise P-Acc

Unlabel 1.000 0.0 0.0 0.0 1.000
Layers 0.0 0.9957 0.0001 0.0041 0.9957
Bedrock 0.0008 0.0 0.9560 0.0430 0.9560
Noise 0.0001 0.0041 0.0022 0.9934 0.9934
U-Acc 0.9991 0.9976 0.9760 0.9883 0.9943

observed that networks didn’t converge to a local minima.
Therefore, we fixed the number of iterations for the UNet
architecture as 100. ADAMW optimizer with learning rate 1e-
5 are chosen. For the TransSounder architecture, the hyperpa-
rameters on the loss function in Eq. (7) is chosen as: U = 0.5,
V = 0.3, and W = 0.2. Further, we utilize LeakyReLU activation
function. Several evaluation metrics are used to evaluate the
performance of the different methods such as Overall Accuracy
(OA), F1 Score, Precision, Recall, and Kappa Score. OA is
measured by dividing the total number of correctly classified
pixels by the total number of pixels in the whole radargram.

C. Segmentation Results
We tabulate these accuracy assessments for all the four

experiments in Table I. In this table, the highest accuracy

Table III: Confusion Matrix: TransUNet Method

Unlabel Layers Bedrock Noise P-Acc

Unlabel 1.000 0.0 0.0 0.0 1.000
Layers 0.0 0.9960 0.000 0.0038 0.9960
Bedrock 0.0029 0.0 0.9325 0.0644 0.9325
Noise 0.0004 0.0026 0.0048 0.9919 0.9916
U-Acc 0.9981 0.9984 0.9522 0.9864 0.9934

Table IV: Confusion Matrix: UNet Method

Unlabel Layers Bedrock Noise P-Acc

Unlabel 1.000 0.0 0.0 0.0 1.000
Layers 0.0002 0.9689 0.0001 0.0303 0.9689
Bedrock 0.0067 0.0035 0.4269 0.5627 0.4269
Noise 0.0016 0.0041 0.0044 0.9125 0.9125
U-Acc 0.9940 0.9762 0.4958 0.8903 0.9393
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(a) Radargram (b) Ground Truth (c) TransFuse (d) TransUNet (e) UNet (g) TransSounder
Figure 2: The Original Radargram (a), Ground Truth (b), and associated prediction maps are highlighted in this figure (from

left to right)
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(a) Radargram (b) Ground Truth (c) TransFuse (d) TransUNet (e) UNet (g) TransSounder
Figure 3: The Original Radargram (a), Ground Truth (b), and associated prediction maps are highlighted in this figure (from

left to right)
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Table V: Confusion Matrix: TransSounder

Unlabel Layers Bedrock Noise P-Acc

Unlabel 1.000 0.0 0.0 0.0 1.000
Layers 0.0001 0.9956 0.0001 0.0041 0.9956
Bedrock 0.0019 0.0000 0.9554 0.0425 0.9554
Noise 0.0004 0.0037 0.0017 0.9940 0.9940
U-Acc 0.9980 0.9978 0.9811 0.9884 0.9945

values achieved by different architectures appear in bold.
TransSounder achieved the highest OA value with 0.9945.
Here, the attention mechanism in the joint CNN-Transformer
encoder along with the attention mechanisms in BiFusion
module helped TransSounder architecture to model the global
and local spatial contexts more precisely. Although Trans-
Fuse incorporates attention mechanisms in both encoder and
decoder architecture, it doesn’t extract the high dimensional
feature space at the initial stage, thus modelling a precise
global context by utilizing the high dimensional local con-
texts becomes difficult throughout the downstream tasks in
the encoder network. The performance of TransFuse and
TransSounder architecture are closer in terms of assessment
metrics (see Table I). Overall, the quantitative performance
of TransSounder is better than other architectures. In terms of
qualitative (Figures 2, and 3), and quantitative (Table I) assess-
ment, the performance of the UNet was worst in comparison
to other Transformer-based architectures. On several test sets,
UNet was unable to predict the bedrock classes across the
width of radargrams, thereby created fragmented patches in
the final segmentation maps. Also, the pixels belonging to the
bedrock class were misclassified as noise in UNet architecture.

In addition, we also tabulate the normalized confusion
matrices for different architectures in Table II-V. The User’s
Accuracy and Producer’s Accuracy are defined as U-Acc
and P-Acc respectively. Several groups of observations can
be made from these confusion matrices. The Transformer-
based architectures (TransUNet, TransFuse, and TransSounder)
achieved the highest rate of classification accuracy on the
layers, bedrock, and noise class in comparison to the UNet
model. Further, TransUNet had the highest classification ac-
curacy for layers class with a rate of 0.9960 from Table III. For
the noise class, TransSounder architecture outperformed other
architectures. On the other hand, among the Transformer-based
architectures, TransUNet received the highest error rate on the
bedrock class with 0.0644 as highlighted in Table III. Here,
the TransUNet architecture might be suffering from modeling
and precise localization of the bedrock classes due to a lack of
attention mechanism in the decoder network. The rate of this
misclassification error on the bedrock was significantly higher
for the UNet architecture (0.5627 from Table IV.

The poor performance of the UNet occurred due to its
architectural constraints. The intrinsic locality of convolution
operations does not explicitly model the global sequential
dependencies of the localized feature spaces. Further, in
the encoder part of UNet architecture, the concurrent CNN

layers intrinsically capture the local spatial contextual prior,
thereby missing the global spatial contexts. On the other
hand, Transformer-based architectures model the sequence-to-
sequence global spatial contexts. Additionally, Transformers
retain the precise localization information while performing
the downstream tasks in the encoder networks due to its
positional encoding operators. Visual interpretations revealed
from Figure 2 and 3 that sequential misalignment occurred
as UNet doesn’t have an explicit positional encoding operator
as opposed to the Transformer-based architectures. Therefore,
according to our observations, UNet architecture is susceptible
to errors while capturing the long-range sequential contexts in
an experimental framework.

In contrast to UNet, Transformer-based architectures were
successfully able to preserve the sequentiality of the RS signals
by capturing the global contexts with the positional encoding
operators as depicted in Figures 2 and 3). The combination
of MSA and MLP block in Transformers played a crucial
role to model a long-range sequential information processing
between the extracted tensors from the innermost CNN branch
that embedded the high dimensional local spatial contexts. In
other words, a global contextual relationship is established
by Transformers between the tensors embedded local contexts
over the spatial domain of RS signals. This paradigm is similar
to the multi-hop representation in which the back-and-forth
rapid information processing over the long range is a crucial
operation. Consequently, the predicted outputs from these
architectures were not affected by the misalignment problems
between distinct classes. The back-scattering response between
the free space and layers depicts a textural similarity in RS
signals. We ignored inputting the ambiguous pixels into the
encoder network. These ambiguous pixels from the free space
of the radargrams were classified as layers by utilizing Tran-
sUNet, TransFuse, TransSounder, and UNet. Deciphering the
correct mathematical descriptions behind these experimental
results is beyond the scope of this paper.

V. Conclusion

In this paper, we construct a novel Transformer-based archi-
tectural framework named TransSounder by utilizing the dis-
tinct modules from recently developed TransUNet and Trans-
Fuse architecture. For the first time, we explore the potential
of Transformer-based semantic segmentation architectures in
the pixel-wise classification of radargrams. The Transformers
model the long-range sequence-to-sequence global contextual
prior that is important for radargrams as RS signals inherently
depict sequential structures in the signal. However, Transform-
ers lack the ability to model the local spatial contexts, whereas
CNN can model the high-dimensional local spatial context
more accurately. Thus, the TransSounder architecture employs
a joint CNN-Transformer module as an encoder and utilizes
the BiFusion module in the decoder architecture. Further,
we perform a comparative analysis of the performance of
TransSounder, TransUNet, TransFuse, and UNet.

Experimental results on the MCoRDS dataset confirm that
Transformers have the potential to capture the long-range
sequence-to-sequence global contexts more effectively than
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CNN-based segmentation networks. Also, the TransSounder
achieved the highest overall accuracy of 0.9945. Visual inter-
pretation revealed that the TransSounder inherently preserves
the spatial details more accurately due to the joint CNN-
Transformer encoder network and the BiFusion modules in-
corporated in the decoder network. However, in this research
work, the task is customized for a fixed sequence in which the
target structure depicts a similar spatial pattern throughout the
range of the RS signals. A future direction of this research
work could be related to the transferability of the models
to completely different sequential target structures associated
with different bandwidths. In addition, we will explore the
applicability of Transformer-based unsupervised segmentation
methods for better generalizability.
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