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Abstract
This paper presents a high-order discontinuous Galerkin (DG) finite-element method to 
solve the barotropic version of the conservative symmetric hyperbolic and thermodynami-
cally compatible (SHTC) model of compressible two-phase flow, introduced by Romenski 
et al. in [59, 62], in multiple space dimensions. In the absence of algebraic source terms, 
the model is endowed with a curl constraint on the relative velocity field. In this paper, the 
hyperbolicity of the system is studied for the first time in the multidimensional case, show-
ing that the original model is only weakly hyperbolic in multiple space dimensions. To 
restore the strong hyperbolicity, two different methodologies are used: (i) the explicit sym-
metrization of the system, which can be achieved by adding terms that contain linear com-
binations of the curl involution, similar to the Godunov-Powell terms in the MHD equa-
tions; (ii) the use of the hyperbolic generalized Lagrangian multiplier (GLM) curl-cleaning 
approach forwarded. The PDE system is solved using a high-order ADER-DG method with 
a posteriori subcell finite-volume limiter to deal with shock waves and the steep gradients 
in the volume fraction commonly appearing in the solutions of this type of model. To illus-
trate the performance of the method, several different test cases and benchmark problems 
have been run, showing the high order of the scheme and the good agreement when com-
pared to reference solutions computed with other well-known methods.
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1 Introduction

Multi-phase flows are ubiquitous in nature and engineering applications. The simplest flow 
of a liquid with free surface, such as a flowing river or a falling raindrop, already involves 
both the dynamics of the liquid phase and the surrounding air and can consequently be 
considered a two-phase flow. The application range is obviously much larger and includes, 
for example, and without pretending to be exhaustive, bubbly liquids and sprays, water flow 
with sediment transport, mist flows, two-phase flows with phase change as used in modern 
3D printers, compressible multi-phase flows in internal combustion engines, flows in the 
paper, steel and food industry, etc. Such applications have motivated extensive efforts to 
study and develop multi-phase flow models that describe such phenomena with respect to 
physical principles and thermodynamics.

One particular aspect of multi-phase flows is that they involve moving interfaces 
between different bulk phases. From a physics perspective, the nature of the interface, that 
is, whether it is sharp or diffuse, has been subject to debate since the times of Rayleigh and 
Laplace. While both approaches have their advantages, it is admitted that diffuse interface 
approaches, in general, offer more flexibility, especially in the presence of strong defor-
mations and topology changes in the interface geometry. In contrast, the sharp interface 
approach allows for a more rigorous treatment of the thermodynamics at the interface. In 
this paper, we are interested in diffuse interface approaches. Although a thorough review 
of diffuse interface approaches is beyond the scope of this work, the reader is, for example, 
referred to [1, 2, 7, 10, 18, 35, 36, 39, 46, 47, 50, 55, 65, 75] and references therein. For the 
incompressible case, see also [14, 37, 38] and related work.

Up to now, no universally accepted mathematical model exists for the whole range of 
different compressible multi-phase flows. Among the large number of different models that 
can be found in the literature, the one proposed by Baer and Nunziato [4] is one of the most 
widespread, see, for example, [3, 8, 41, 65], as well as the well-known Kapila model [46], 
which can be obtained from the Baer-Nunziato (BN) model in the stiff relaxation limit. 
The governing equations of the BN model form a hyperbolic system, because the associ-
ated eigenvalues are all real, and there exists a set of linearly independent eigenvectors. 
However, some of its equations cannot be written in the conservative form, which makes it 
difficult to deal with the appearance of discontinuities and the development of high-order 
numerical methods. Moreover, the BN model was modified by different authors in the lit-
erature, see, for example, Saurel and Abgrall  [65], whose modification describes multi-
phase mixtures and interface problems between pure compressible materials. An alterna-
tive two-phase flow model that is fully conservative is the one forwarded by Scannapieco 
and Cheng, see [66].

In addition to the previously mentioned models, there exists another class of models for 
compressible multi-phase flows that originates from the theory of Godunov and Romenski 
on symmetric hyperbolic and thermodynamically compatible (SHTC) systems [42, 44, 56, 
57] and which was first introduced in [58, 59, 62, 63]. In this paper, we are therefore inter-
ested in the discretization of the SHTC model of barotropic compressible two-phase flows 
of Romenski et  al. with different phase velocities and phase pressures in multiple space 
dimensions. The model consists of a first-order SHTC system of equations [58, 59, 62]. In 
the previous references, it was also shown that the SHTC equations, which are written in 
the conservative form, can be converted to the form of a BN-type model, where additional 
differential terms appear in the momentum equations, which were not included in the origi-
nal BN model and which describe the so-called lift forces. Recently, an exact solution for 
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the corresponding Riemann problem in the barotropic case was found in [69], and an all-
Mach number flow solver was developed in [48].

The model proposed by Romenski et al. is strongly hyperbolic in one space dimension, 
and its homogeneous part without algebraic source terms is endowed with a curl involution 
on the relative velocity field. However, as we will show in this paper, the original model 
is only weakly hyperbolic in multiple space dimensions. To restore strong hyperbolicity, 
two different strategies can be followed: the first one consists in using the hyperbolic gen-
eralized Lagrangian multiplier (GLM) curl-cleaning methodology introduced in  [11, 16, 
20, 29], which is a natural extension of the original ideas presented by Munz et al. in [19, 
49] on hyperbolic GLM divergence cleaning for the Maxwell and MHD equations, which 
contain the well-known divergence-free condition of the magnetic field. Curl constraints 
can also be found in many other first-order hyperbolic models, such as hyperbolic models 
for surface tension [15, 16, 67], first-order hyperbolic reformulations of the Navier-Stokes-
Korteweg equations based on an augmented Lagrangian approach [20, 21], or first-order 
reductions of the Einstein field equations of general relativity [29]. The second methodol-
ogy to recover the hyperbolicity involves the use of some extra terms in the momentum 
equation that symmetrize the system and is therefore directly based on the theory of SHTC 
systems following [43, 52–54]. In both cases, we will show that the system in the multidi-
mensional case becomes again strongly hyperbolic.

In the setting of this model, the solutions are often discontinuous in space, that is, solu-
tions to Riemann problems. Therefore, it is necessary to consider an approach that is robust 
and accurate even in the presence of shock waves or discontinuities. To address the sharp 
gradients of the numerical solutions, a high-order ADER discontinuous Galerkin (DG) 
finite-element framework with a posteriori subcell finite-volume limiter is considered, 
see [27, 34, 76] for further details. The proposed method is high order in space and time, 
thanks to the use of the ADER approach of Toro and Titarev  [70, 73, 74]. To deal with 
spurious oscillations that may appear in the presence of discontinuities or shock waves, it 
makes use of a posteriori subcell finite-volume limiter for high-order fully discrete one-
step ADER-DG schemes presented in [34, 76], which follows the multi-dimensional opti-
mal order detection (MOOD) approach of Clain and Loubère [17, 22, 23].

This paper is organized as follows. Section  2 recalls the set of governing partial dif-
ferential equations and shows the equation of state (EOS) that we will use in this work. In 
Sect. 2.2, the hyperbolicity of the system is studied in the multidimensional case, showing 
that the original model is only weakly hyperbolic, and two different strategies to recover 
strong hyperbolicity are presented. Section 3 introduces the high-order ADER-DG scheme 
used in this paper to solve the model numerically. Section 4 shows the results of several 
test cases and benchmark problems computed using the proposed method. Finally, Sect. 5 
concludes the paper and summarizes the contributions of this work as well as its possible 
future extensions.

2  Governing Equations

The governing equations of the barotropic compressible two-velocity, two-pressure 
two-fluid model of Romenski, written in terms of the specific total energy potential 
E = E(�1, c1, �,w

k) are given by
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where �1 and �2 are the volume fractions of the first and second phases, verifying the satu-
ration constraint �1 + �2 = 1 , �1 and �2 are the mass densities of the first and second phases, 
� = �1�1 + �2�2 is the mixture mass density, cj = �j�j∕� with j = 1, 2 are the mass frac-
tions of phase j which satisfy c1 + c2 = 1 , and g = (g1, g2, g3)T is the gravity acceleration. 
If u1 = (u1

1
, u2

1
, u3

1
)T and u2 = (u1

2
, u2

2
, u3

2
)T are the velocity vectors of each phase, then the 

mixture velocity u = (u1, u2, u3)T is computed as uk = c1u
k
1
+ c2u

k
2
 and the relative phase 

velocity, which is a primary evolution quantity in this model, is given by w = (w1,w2,w3)T 
as wk = uk

1
− uk

2
 . The source terms of Eqs. (1a) and (1e) are proportional to thermodynamic 

forces with � the rate of pressure relaxation and � the inter-phase friction coefficient. The 
PDE system  (1) is formed by two conservation laws for the volume and mass fractions, 
Eqs.  (1a) and (1b), respectively, the conservation of the total mass, Eq.  (1c), the conser-
vation of the mixture momentum, Eq.  (1d), and a balance law for the relative velocity, 
Eq. (1e). The algebraic source terms appearing in Eqs. (1a) and (1e) describe the interac-
tion between the phases and are pressure relaxation and interfacial friction. The mixture 
EOS is given by, see [69],

where the specific internal energy of the mixture reads as

where ej(�j) is the specific internal energy of the phase j. Since, in this work, an isentropic 
process is considered, the derivatives of e can be computed as

where hj(�j) = ej(�j) +
pj(�j)

�j
, j = 1, 2 is the specific enthalpy of the phase j. Then, the 

derivatives of the specific total energy E are given by

∂ρα1

∂t
+

∂ρα1u
k

∂xk
= −ρ

τ
Eα1 , (1a)

∂ρc1
∂t

+
∂(ρc1uk + ρEwk)

∂xk
= 0, (1b)

∂ρ

∂t
+

∂ρuk

∂xk
= 0, (1c)

∂ρui

∂t
+

∂(ρuiuk + pδik + ρwiEwk)
∂xk

= giρ, (1d)

∂wk

∂t
+

∂(wlul + Ec1)
∂xk

+ ul

(
∂wk

∂xl
− ∂wl

∂xk

)
= −ζEwk

, (1e)

E(�1, c1, �,w
1,w2,w3) = e(�1, c1, �) + c1c2

wiwi

2
,

e(�1, c1, �) = c1e1(�1) + c2e2(�2) = c1e1

(

c1�

�1

)

+ c2e2

(

c2�

�2

)

,

�e

��1
=

p2 − p1

�
,

�e

�c1
= h1(�1) − h2(�2),

�e

��
=

p

�2
,
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Considering the computations in [69], and taking into account (2) and (3), the following 
identities are obtained:

The PDE system (1) can now be rewritten in the following form, which is more convenient 
for numerical discretization: 

The derivation of the PDE system  (4) is based on the principles of thermodynamically 
compatible systems [44], and it consists of nine equations: the balance law for the volume 
fraction, the conservation laws of the two-phase masses, the conservation of the mixture 
momentum, and the balance law for the relative velocity field. Note that in the absence of 
source terms in (4e), i.e., for � = 0 , the relative velocity is curl-free in the sense

2.1  EOS

To close the two-phase model (4a)–(4e), it is necessary to define an EOS for each 
phase: throughout this paper, we will make use either of the ideal gas law or of the stiff-
ened gas EOS, which will be used to model a liquid phase. For ideal gases, the EOS is 
defined as

(2)
�E

��1
=

�e

��1
=

p2 − p1

�
,

�E

��
=

�e

��
=

p

�2
,

�E

�wi
= c1(1 − c1)w

i,

(3)
�E

�c1
=

�e

�c1
+ (1 − 2c1)

wiwi

2
= h1(�1) − h2(�2) + (1 − 2c1)

wiwi

2
.

�c1u
k + �Ewk = �c1u

k
1
, �c2u

k − �Ewk = �c2u
k
2
,

�uiuk + p�ik + �wiEwk = �1�1u
i
1
uk
1
+ �2�2u

i
2
uk
2
+ p�ik,

(ul
1
− ul

2
)ul + Ec1

=
1

2
(ul

1
)2 −

1

2
(ul

2
)2 + h1 − h2.

∂α1

∂t
+ uk ∂α1

∂xk
= −p2 − p1

τρ
, (4a)

∂α1ρ1
∂t

+
∂(α1ρ1u

k
1)

∂xk
= 0, (4b)

∂α2ρ2
∂t

+
∂(α2ρ2u

k
2)

∂xk
= 0, (4c)

∂ρui

∂t
+

∂(α1ρ1u
i
1u

k
1 + α2ρ2u

i
2u

k
2 + pδik)

∂xk
= giρ, (4d)

∂wk

∂t
+

∂

∂xk

(
1
2
(ul

1)
2 − 1

2
(ul

2)
2 + h1 − h2

)
+ ul

(
∂wk

∂xl
− ∂wl

∂xk

)
= −ζc1c2w

k. (4e)

�wk

�xl
−

�wl

�xk
= 0.
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where � is the adiabatic index or the ratio of specific heats, c0 is the adiabatic sound speed, 
s is the specific entropy (which in our case will be constant), cv is the specific heat capacity 
at constant volume, and the pressure is given by

For stiffened gases, the EOS reads as

where �0 and p0 are the reference density and pressure, respectively, and c0 is a constant 
reference sound speed. In this case, the pressure is computed as

2.2  Hyperbolicity Analysis

In this section, we will study the hyperbolicity of the model (4a)–(4e). The one-dimensional 
(1D) case was already addressed in [69], and here, we briefly recall some results for the 1D 
case before moving to the more general multidimensional case. In particular, we will prove 
that the original system (4a)–(4e) is only weakly hyperbolic in the multidimensional case 
and show how the strong hyperbolicity can be restored considering two different strategies: 
on the one hand, using an extension of the hyperbolic GLM curl-cleaning approach, and 
on the other hand, modifying the original system of governing equations by adding the 
symmetrizing terms that allow rewriting the model in symmetric hyperbolic form, which 
is natural within the framework of SHTC equations. Defining the vectors of conserved and 
primitive variables as Q = (�1, �1�1, �2�2, �u

T,wT)T and V = (�1, �1, �2, u
T

1
, uT

2
)T , respec-

tively, the PDE system (4) can be written as

where S(Q) contains the source terms, F(Q) is the nonlinear flux tensor, and B(Q) ⋅ ∇Q 
contains the non-conservative terms. Then, the quasi-linear form of the PDE in terms of 
the conserved variables Q is given by

where A(Q) =
�F

�Q
+ B . If the vector of primitive variables V is considered, the system can 

be written as

(5)E(�) =
c2
0

�(� − 1)
with c2

0
= ���−1es∕cv ,

(6)p(�) = �2E� = ��es∕cv = (� − 1)�E.

(7)E(�) =
c2
0

�(� − 1)

(

�

�0

)�−1

es∕cv +
�0c

2

0
− �p0

��
,

(8)p(�) = �2E� =
c2
0
�0

�

(

�

�0

)�

es∕cv −
c2
0
�0 − �p0

�
.

�tQ + ∇ ⋅ F(Q) + B(Q) ⋅ ∇Q = S(Q),

�tQ + A(Q) ⋅ ∇Q = S(Q),
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where C(V) = �V

�Q

�F

�V
+

�V

�Q
B
�Q

�V
 and S(V) = �V

�Q
S(Q) . Throughout this section, for the 

sake of the readability and since it does not contribute anything to the study of the hyper-
bolicity of the system, the source terms are set to 0.

2.2.1  1D Case

The hyperbolicity analysis of the system  (4) in one dimension has been done in detail 
in [69], so here, only a summary of the main points will be made that will be useful for a 
better understanding of the multidimensional case. If u = c1u1 + c2u2 is the mixture veloc-
ity with uj, j = 1, 2 the velocity of the phase j and w = u1 − u2 is the relative velocity, the 
1D system results in 

 Then, the matrix C in (9) is given by

with aj the sound speed of phase j, that is defined as a2
j
= �j

(

�hj

��j

)

, j = 1, 2 and 

� =
1

�

(

a2
1
�1

�1
−

a2
2
�2

�2

)

=
1

�

(

p1 − p2
)

 . It is easy to show that C(V) admits five eigenvalues, 
whose expressions are given hereafter

(9)�
t
V + C(V) ⋅ ∇V = S(V),

∂α1

∂t
+ u

∂α1

∂x
= 0, (10a)

∂α1ρ1
∂t

+
∂(α1ρ1u1)

∂x
= 0, (10b)

∂α2ρ2
∂t

+
∂(α2ρ2u2)

∂x
= 0, (10c)

∂ρu

∂t
+

∂(α1ρ1(u1)2 + α2ρ2(u2)2 + p)
∂x

= 0, (10d)

∂w

∂t
+

∂

∂x

(
1
2
(u1)2 −

1
2
(u2)2 + h1 − h2

)
= 0. (10e)

C(V) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u 0 0 0 0
�1
�1

�

u1 − u
�

u1 0 �1 0
�2
�2

�

u − u2
�

0 u2 0 �2

�
a2
1

�1
0 u1 0

� 0
a2
2

�2
0 u2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠



 Communications on Applied Mathematics and Computation

1 3

In this case, all five eigenvalues are real, and a complete set of five linearly independent 
eigenvectors exists, which means that the system in one space dimension is strongly hyper-
bolic, see [69] for further details about the eigenvalues and eigenvectors in the 1D case.

2.2.2  Multidimensional Case

Now, we are in the position to study the multidimensional case. In the following, we use the 
property of rotational invariance of Newtonian mechanics, and hence, it is enough to consider 
the matrix C(V) only in the x-direction and not all possible space directions. The system under 
consideration is (4) and, in this case, the matrix C(V) in the x-direction is given by

As in the previous section, we make use of the following auxiliary variables to ease the 
expressions in the matrix:

The matrix C admits 9 eigenvalues �1−9 that are given by

where the sound speed of each phase aj again is defined as a2
j
= �i

(

�hj

��j

)

, j = 1, 2 . The 
eigenvalues are all real. To prove whether the system is weakly or strongly hyperbolic, it is 
necessary to compute the associated eigenvectors. The right eigenvectors are the columns 
in the matrix below and are given in the same order as the eigenvalues

�1 = u1 + a1, �2 = u1 − a1, �3 = u, �4 = u2 + a2, �5 = u2 − a2.

C(V) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u1 0 0 0 0 0 0 0 0
�1
�1
�1
2
u1
1

0 �1 0 0 0 0 0
�2
�2
�1
1

0 u1
2

0 0 0 �2 0 0

�
a2
1

�1
0 u1

1
�2
22

�3
22

0 �2
12

�3
12

0 0 0 0 �2 0 0 − �1
12

0

0 0 0 0 0 �2 0 0 − �1
12

� 0
a2
2

�2
0 − �2

12
− �3

12
u1
2

− �2
11

− �3
11

0 0 0 0 �1
12

0 0 �1 0

0 0 0 0 0 �1
12

0 0 �1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(11)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

� =
1

�
(p1 − p2),

�i
j
= cjw

i, �i
jk
= cjckw

i, i = 1, 2, 3, j = 1, 2, k = 1, 2,

�1 = c1u
1 + c2u

1

2
= u1

2
+ c2

1
w1 = u1

2
+ c1�

1

1
,

�2 = c1u
1

1
+ c2u

1 = u1
1
− c2

2
w1 = u1

1
− c2�

1

2
.

�1 = u1
1
− a1, �2 = u1

1
+ a1, �3 = u1

2
− a2, �4 = u1

2
+ a2, �5−9 = u1,
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where the auxiliary variables that are used to ease the notation are defined as

All eigenvalues are real, but two eigenvectors are missing (in fact, if we are working in 
dimension d, there are d − 1 missing eigenvectors), so the system is only weakly hyper-
bolic. Hereafter, we will show two different methodologies that can be used to restore the 
strong hyperbolicity of the model.

2.2.2.1 GLM Curl‑Cleaning Approach To restore the strong hyperbolicity and following 
the same strategy that can be found in  [11, 16, 20, 29], we make use of the GLM curl-
cleaning technique, where an evolution equation for a curl-cleaning field �k is added to the 
system (4). Using the abbreviation �12 =

1

2
(ul

1
)2 −

1

2
(ul

2
)2 + h1 − h2 and denoting the curl-

cleaning speed by a
�

 , this equation is coupled with (4e) via a Maxwell-type sub-system as 
follows:

Hence, the augmented system with GLM curl-cleaning reads 

R
1−4

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0

−
�1
a1

�1
a1

0 0

0 0 −
�2
a2

�2
a2

1 1 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, R
5−7

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
�1 �2 Z2
�2 �

1

1

0 0

�1 �1 Z2
�2 �

1

1
Z1

−
�1 �

3

2

Z1
−

�1 �
2

2

Z1

�2 �2
�2 �

1

1

�2 �
3

1

Z2

�2 �
2

1

Z2

−
c2 �1 �

1

2

c1 �2 Z1

�1
2
�3
2

Z1

�1
2
�2
2

Z1

0 0 1

0 1 0

1
�1
1
�3
1

Z2

�1
1
�2
1

Z2

0 0 1

0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Z1 = a2
1
− (�1

2
)2, Z2 = a2

2
− (�1

1
)2, �1 = �2(a

2

1
− �1�),

�2 = �1(a
2

2
+ �2�), �1 = �2

(

�1� − (�1
2
)2
)

, �2 = �1
(

�2� + (�1
1
)2
)

.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�wk

�t
+

��12
�xk

+ ul
�

�wk

�xl
−

�wl

�xk

�

+a
�
�klm

��m

�xl
= 0,

��k

�t
+ uj

��k

�xj
− a

�
�klm

�wm

�xl
= 0.

(12a)
��1
�t

+ uk
��1
�xk

= 0,

(12b)
��1�1
�t

+
�(�1�1u

k
1
)

�xk
= 0,

(12c)
��2�2
�t

+
�(�2�2u

k
2
)

�xk
= 0,
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where � = (�1,�2,�3) is the cleaning field, � = �klm is the Levi-Civita tensor, and a
�

 is 
the curl-cleaning speed. Once the curl-cleaning field has been added, we can compute the 
eigenvalues and eigenvectors to check the hyperbolicity of the augmented GLM system. 
The matrix C in the x-direction can be written as

where, as in the previous case, we make use of the auxiliary variables (11) to ease the nota-
tion of the matrix. In this case, it is easy to compute the 12 eigenvalues of the matrix C that 
are given by

with aj the sound speed of phase j, that is defined as a2
j
= �j

(

�hj

��j

)

, j = 1, 2 . Since the eigen-
values are real, to check if the system is weakly or strongly hyperbolic, it is necessary to 
compute the associated eigenvectors. Below, we will write the matrix that contains the 
right eigenvectors in columns. They are listed in the same order as the eigenvalues

(12d)
��ui

�t
+

�(�1�1u
i
1
uk
1
+ �2�2u

i
2
uk
2
+ p�ik)

�xk
= 0,

(12e)
�wk

�t
+

��12
�xk

+ ul
(

�wk

�xl
−

�wl

�xk

)

+ a
�
�klm

��m

�xl
= 0,

(12f)
��k

�t
+ uj

��k

�xj
− a

�
�klm

�wm

�xl
= 0,

C(V) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u1 0 0 0 0 0 0 0 0 0 0 0
�1
�1
�1
2
u1
1

0 �1 0 0 0 0 0 0 0 0
�2
�2
�1
1

0 u1
2

0 0 0 �2 0 0 0 0 0

�
a2
1

�1
0 u1

1
�2
22

�3
22

0 �2
12

�3
12

0 0 0

0 0 0 0 �2 0 0 − �1
12

0 0 0 − c2a�
0 0 0 0 0 �2 0 0 − �1

12
0 c2a� 0

� 0
a2
2

�2
0 − �2

12
− �3

12
u1
2

− �2
11

− �3
11

0 0 0

0 0 0 0 �1
12

0 0 �1 0 0 0 c1a�
0 0 0 0 0 �1

12
0 0 �1 0 − c1a� 0

0 0 0 0 0 0 0 0 0 u1 0 0

0 0 0 0 0 a
�

0 0 − a
�

0 u1 0

0 0 0 0 − a
�

0 0 a
�

0 0 0 u1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

�1 = u1
1
− a1, �2 = u1

1
+ a1, �3 = u1

2
− a2, �4 = u1

2
+ a2,

�5−8 = u1, �9−10 = u1 − a
�
, �11−12 = u1 + a

�
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where the auxiliary variables that have been used to write the 12 right eigenvectors more 
compactly are defined as

Using the GLM curl-cleaning technique, we obtain 12 real eigenvalues and the correspond-
ing 12 linearly independent right eigenvectors, and hence, the augmented system with 
GLM curl-cleaning (12) is strongly hyperbolic.

R
1−8

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
�1 �2 �

3

1

�2

�1 �2 �
2

1

�2
−

�1 �2 Z2
�2 �

1

1

−
�1
a1

�1
a1

0 0 0 −
� �3

1

�2 Z1
−

� �2
1

�2 Z1

�1 �1 Z2
�2 �

1

1
Z1

0 0 −
�2
a2

�2
a2

0
�1 �2 �

3

1

�2

�1 �2 �
2

1

�2

�2 �2
�2 �

1

1

1 1 0 0 0 −
� �1

2
�3
1

�2 Z1
−

� �2
1
�1
2

�2 Z1
−

c2 �1Z2
c1 �2Z1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 1 1 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

R
9−12

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0

−
�1�

+
2
�2
2

a
�
�+
2

�1�
+
2
�3
2

a
�
�+
2

�1�
−
2
�2
2

a
�
�−
2

−
�1�

−
2
�3
2

a
�
�−
2

�2�
+
2
�2
1

a
�
�−
1

−
�2�

+
2
�3
1

a
�
�−
1

−
�2�

−
2
�2
1

a
�
�+
1

�2�
−
2
�3
1

a
�
�+
1

�+
2
�+
2
�2
2

a
�
�+
2

−
�+
2
�+
2
�3
2

a
�
�+
2

�−
2
�−
2
�2
2

a
�
�−
2

−
�−
2
�−
2
�3
2

a
�
�−
2

�−
1

a
�

0 −
�+
1

a
�

0

0 −
�−
1

a
�

0
�+
1

a
�

�−
1
�−
1
�2
1

a
�
�−
1

−
�−
1
�−
1
�3
1

a
�
�−
1

�+
1
�+
1
�2
1

a
�
�+
1

−
�+
1
�+
1
�3
1

a
�
�+
1

−
�+
2

a
�

0
�−
2

a
�

0

0
�+
2

a
�

0 −
�−
2

a
�

0 0 0 0

0 1 0 1

1 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Z1 = a2
1
− (�1

2
)2, Z2 = a2

2
− (�1

1
)2, �1 = �2(a

2

1
− �1�), �2 = �1(a

2

2
+ �2�),

� =
p1 − p2

�
, �i

j
= cjw

i, �i
jk
= cjckw

i, �1 = u1
2
+ c1�

1

1
, �2 = u1

1
− c2�

1

2
,

�±
j
= a

�
± �1

j
, �±

1
= (�±

1
)2 − a2

2
, �±

2
= (�±

2
)2 − a2

1
,

�±
1
= c2�

±
1
, �±

2
= c1�

±
2
, �±

1
= �±

1
− c1a� , �±

2
= �±

2
− c2a� ,

� = �2
�

p1 + p2(�2 − 1) − �1(�
1

2
)2
�

, � =
�2
�1

�

p1(�1 − 1) − p2(�2 − 1)
�

.
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2.2.2.2 Symmetrizing Godunov‑Powell Terms The second strategy used to recover the strong 
hyperbolicity of system (1) is based on the theory of SHTC systems and consists in adding 
terms that are proportional to the curl involution to the momentum equation (1d), so that the 
system has real eigenvalues and a complete set of linearly independent eigenvectors, see [16]. 
The modified system reads 

Using (2), system (13) results in 

As in the previous case, the eigenvalues and eigenvectors are computed to analyze the 
hyperbolicity of the system (14). The matrix C in the x-direction reads as

∂ρα1

∂t
+

∂ρα1u
k

∂xk
= 0, (13a)

∂ρc1
∂t

+
∂(ρc1uk + ρEwk)

∂xk
= 0, (13b)

∂ρ

∂t
+

∂ρuk

∂xk
= 0, (13c)

∂ρui

∂t
+

∂(ρuiuk + pδik + ρwiEwk)
∂xk

+ ρEwk

(
∂wk

∂xi
− ∂wi

∂xk

)
= 0, (13d)

∂wk

∂t
+

∂(wlul + Ec1)
∂xk

+ ul

(
∂wk

∂xl
− ∂wl

∂xk

)
= 0. (13e)

∂α1

∂t
+ uk ∂α1

∂xk
= 0, (14a)

∂α1ρ1
∂t

+
∂(α1ρ1u

k
1)

∂xk
= 0, (14b)

∂α2ρ2
∂t

+
∂(α2ρ2u

k
2)

∂xk
= 0, (14c)

∂ρui

∂t
+

∂(α1ρ1u
i
1u

k
1 + α2ρ2u

i
2u

k
2 + pδik)

∂xk
+ ρc1c2w

k

(
∂wk

∂xi
− ∂wi

∂xk

)
= 0,

(14d)

∂wk

∂t
+

∂

∂xk

(
1
2
(ul

1)
2 − 1

2
(ul

2)
2 + h1 − h2

)
+ ul

(
∂wk

∂xl
− ∂wl

∂xk

)
= 0. (14e)
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As previously, we have used the auxiliary variables (11) to lighten the matrix. In this case, 
the nine eigenvalues of the matrix C are given by

with aj the sound speed of phase j, which is defined as a2
j
= �j

(

�hj

��j

)

, j = 1, 2 . Since the 
eigenvalues are all real, to check if the system is weakly or strongly hyperbolic, it is neces-
sary to compute the associated eigenvectors. Below, we will write the matrix that contains 
the right eigenvectors in columns. They are listed in the same order as the eigenvalues

where the auxiliary variables used to write the nine right eigenvectors more compactly are 
defined as

Since we have obtained nine real eigenvalues with a full set of linearly independent 
eigenvectors, the system (14) with the additional symmetrizing Godunov-Powell terms is 
strongly hyperbolic.

C(V) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u1 0 0 0 0 0 0 0 0
�1
�1
�1
2
u1
1

0 �1 0 0 0 0 0
�2
�2
�1
1

0 u1
2

0 0 0 �2 0 0

�
a2
1

�1
0 u1

1
�2
2
�3
2

0 0 0

0 0 0 0 u1 0 0 0 0

0 0 0 0 0 u1 0 0 0

� 0
a2
2

�2
0 0 0 u1

2
− �2

1
− �3

1

0 0 0 0 0 0 0 u1 0

0 0 0 0 0 0 0 0 u1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

�1 = u1
1
− a1, �2 = u1

1
+ a1, �3 = u1

2
− a2, �4 = u1

2
+ a2, �5−9 = u1

R =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0
�1 �2 �

3

1

�2

�1 �2 �
2

1

�2
−

�1 �2 Z2
�2 �

1

1

0 0

−�1
a1

�1
a1

0 0 −
�1 �1 �

3

1

�2Z1
−

�1 �1 �
2

1

�2Z1

�1 �1 Z2
�2 �

1

1
Z1

−
�1 �

3

2

Z1
−

�1 �
2

2

Z1

0 0
−�2
a2

�2
a2

�1 �2 �
3

1

�2

�1 �2 �
2

1

�2

�2 �2
�2 �

1

1

0 0

1 1 0 0
�1 �

1

2
�3
1

�2 Z1

�1 �
1

2
�2
1

�2 Z1
−

c2 �1 Z2
c1 �2 Z1

�1
2
�3
2

Z1

�1
2
�2
2

Z1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 1 1 0 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Z1 = a2
1
− (�1

2
)2, Z2 = a2

2
− (�1

1
)2, �1 = �2(a

2

1
− �1�),

�2 = �1(a
2

2
+ �2�), �1 = �2

(

�1� − (�1
2
)2
)

, �2 = �1
(

�2� + (�1
1
)2
)

.
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3  High‑Order ADER‑DG Finite‑Element Scheme with a posteriori 
Subcell Finite‑Volume Limiter

As described in Sect. 2 and Refs. [59, 62, 69], the system (4) is a hyperbolic system that 
can be compactly written as

where Q is the vector of conserved variables, F = (f, g, h) is the flux tensor, B(Q) ⋅ ∇Q =

B1(Q)
�

�x
Q + B2(Q)

�

�y
Q + B3(Q)

�

�z
Q are the non-conservative terms, and S is the vector of 

algebraic source terms. To solve the system  (15), we will use high-order ADER-DG 
schemes with a posteriori subcell finite-volume limiter on uniform Cartesian meshes, 
see [24, 26, 27, 33, 34, 76] for further details. In this work, for the time-evolution, we pro-
pose to use a local space-time DG predictor, instead of using the Cauchy-Kovalevskaya 
procedure, following  [27, 28]. The main reasons for this choice are the following: com-
pared to the Cauchy-Kovalevskaya procedure, which is rather cumbersome, the local 
space-time DG predictor is much more general and simpler to implement for complex 
hyperbolic PDE systems as the ones studied in this paper. Furthermore, it allows also to 
deal with stiff source terms, like stiff velocity and pressure relaxation terms.

3.1  One‑Step ADER‑DG Schemes

In the following, a description of the method is given for the two-dimensional (2D) case 
( d = 2 ). The computational domain � = [−Lx∕2,Lx∕2] × [−Ly∕2,Ly∕2] is discretized with 
a Cartesian grid composed of Nx × Ny cells. These cells are given by 
�i = [xi −

Δx

2
, xi +

Δx

2
] × [yi −

Δx

2
, yi +

Δy

2
] with (xi, yi) the barycenter of the cell �i , and 

Δx =
Lx

Nx

 , Δy = Ly

Ny

 the mesh spacing in the x- and y-directions. Let uh(x, tn) be the discrete 
solution of  (15) in each spatial control volume �i at time tn , written in terms of tensor 
products of piecewise polynomials of degree N, and let Vh be the space of tensor products 
of piecewise polynomials of the degree up to N. Then, the discrete solution uh can be writ-
ten in terms of the basis functions, �l(x, y), l ∈ [1, (N + 1)d] , in every cell �i as

where �l = �l(x) are the basis functions associated with Vh . We take an orthogonal nodal 
basis {�l}l∈{0,⋯,(N+1)d} , generated by the tensor product {�

l1
�
l2
�
l3
}
l1,l2,l3∈{0,⋯,N}, where 

{�ll
}ll∈{0,⋯,N} are the Lagrange interpolation polynomials going through the N + 1 Gauss-

Legendre quadrature nodes. Multiplying (15) by a test function �l ∈ Vh , and integrating the 
equation over the space-time control volume �i × [tn, tn+1] , the weak formulation can be 
written as

To achieve high order in space and time, an ADER approach can be used. This methodol-
ogy was put forward by Toro et al. for the first time in [72] for linear problems on Cartesian 

(15)
�Q

�t
+ ∇ ⋅ F(Q) + B(Q) ⋅ ∇Q = S(Q),

(16)uh(x, t
n) = 𝜑l(x)û

n

l
, x ∈ 𝛺i,

(17)∫
t
n+1

t
n
∫�

i

(

�Q

�t
+ ∇ ⋅ F(Q) + B(Q) ⋅ ∇Q

)

�
l
dxdt = ∫

t
n+1

t
n
∫�

i

S(Q)�
l
dxdt.
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meshes, it can be implemented in both the finite volume and the DG finite-element frame-
work and is uniformly and arbitrarily high-order accurate in both space and time. In this 
work, an alternative version of the ADER approach is considered, avoiding the use of the 
Cauchy-Kovalevskaya procedure using a local space-time DG predictor, which is based on 
a weak space-time formulation of the governing PDE (17).

Using (16) and integrating the term with the time derivative by parts in time and the diver-
gence term by parts in space, then (17) results in

where n is the outward unit normal vector at the cell boundary ��i , qh is a local space-time 
predictor, which will be explained below, and q+

h
 and q−

h
 are the boundary-extrapolated val-

ues of the space-time predictor from within �i and its neighbor �j . Usually, qh presents 
jumps across the cell boundaries, which can be resolved by the solution of a generalized 
Riemann problem (see  [40, 71] for more details). In  (18), G denotes the Riemann solver 
(numerical flux function), which depends on the left state q−

h
 and the right state q+

h
 . In this 

case, this integral has been approximated using the Rusanov flux, see [64]

where smax = max

(

|

|

|

�k(q
+
h
)
|

|

|

,
|

|

|

�k(q
−
h
)
|

|

|

)

 is the maximum wave speed at the interface. To 
deal with the jump terms in the non-conservative product, a path-conservative method is 
employed, following [13, 51]. In this setting, a straight-line segment path is chosen

so that the non-conservative terms reduce to the following expression:

3.2  Local Space‑Time Predictor

In the following, we describe the local space-time predictor used to compute the coefficients 
û
n

l,i
 in Eq. (18). We consider space-time basis functions �l , that are obtained as the tensor prod-

uct �l(x, t) = �k0
(t)�k1

(x) , of the same previously introduced Lagrange interpolation polyno-
mials, just that now the basis functions also depend on time. The predictor qh is written in the 
form

as a weak solution to  (15). Then, using  (20) in  (15), multiplying by a space-time basis 
function �l and integrating over �i × [tn, tn+1] yields

(18)

(

∫𝛺i

𝜑k𝜑l dx

)

(

û
n+1
l,i

− û
n

l,i

)

+ ∫
tn+1

tn ∫𝜕𝛺i

𝜑k

(

G
(

q−
h
, q+

h

)

+D
(

q−
h
, q+

h

))

⋅ n dSdt

− ∫
tn+1

tn ∫𝛺i

∇𝜑k ⋅ F(qh) dxdt = ∫𝛺i

𝜑kS(qh) dxdt,

(19)G(q−
h
, q+

h
) ⋅ n =

1

2

(

F(q+
h
) + F(q−

h
)
)

⋅ n −
1

2
smax I

(

q+
h
− q−

h

)

,

Ψ(s,q+
h
, q−

h
) = q−

h
+ s(q+

h
− q+

h
), s ∈ [0, 1],

D(q−
h
, q+

h
) ⋅ n =

1

2
B̃ ⋅ (q+

h
− q−

h
) with B̃ = ∫

1

0

B(Ψ(s, q+
h
, q−

h
)) ⋅ n dS.

(20)qh(x, t) = 𝜃l(x, t)q̂l,i
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Integrating by parts only the first term on the left-hand side and taking into account that at 
time tn , we start from the known state un

h
 allows us to write

with �◦

i
=

�i

��i

 . Equation (21) is a system for the unknowns q̂ of the space-time predictor 
qh(x, t) and can be computed in terms of the spatial degrees of freedom ûn

l
 . It is solved by a 

fixed point iteration for which convergence was proven in  [10]. Once the predictor is 
known, Eq.  (18) allows to compute the polynomial coefficients ûn+1 in each cell using 
Gaussian quadrature for the remaining integrals.

3.3  A Posteriori Subcell Finite‑Volume Limiter

Although the numerical method presented in the previous section is a high-order method, it 
is linear in the sense of Godunov, which means that spurious oscillations will appear in the 
presence of discontinuities or shock waves. To overcome this problem, we use the a posteriori 
subcell limiter for high-order fully discrete one-step ADER-DG schemes presented in [34, 76]. 
This subcell finite-volume limiter is based on the MOOD paradigm introduced in [17, 22, 23] 
for finite-volume schemes.

The scheme described in the previous section is run over the entire domain at each time 
step, and a so-called candidate solution u∗

h
(x, tn+1) is obtained. Then, one checks whether the 

candidate solution verifies some numerical and physical detection criteria (positivity of the 
densities �1 and �2 , �1 with values between 0 and 1) and whether the discrete maximum prin-
ciple (DMP), [34], is verified. If a cell �i violates any of the above criteria, that cell is flagged 
as a troubled cell and for the application of the subcell finite-volume limiter. The limiter is 
denoted as a posteriori, because it is applied after the candidate solution has been computed.

The limiter is applied in the following way: all cells �i marked as troubled are subdivided 
into (2N + 1)d subcells, which are denoted by �i,j where �i =

⋃

j �i,j . The discrete solution 
at time tn is given by the piecewise constant cell averages, denoted by ūn

i,j
 . They are obtained 

from the high-order DG polynomials uh(x, tn) by averaging using the definition of the cell 
average

It is worth noting that subdividing a high-order DG element into 2N + 1 finite-volume sub-
cells per space dimension does not reduce the time step size of the overall scheme, since 
the CFL stability condition of explicit DG schemes scales with 1∕(2N + 1) in one dimen-
sion, while the maximum Courant number of finite-volume methods is unity in one space 
dimension.

∫
tn+1

tn ∫�i

�l
(

Ut + ∇ ⋅ F(U) + B(U) ⋅ ∇U
)

dxdt = ∫
tn+1

tn ∫�i

�l(S(U))dxdt.

(21)

∫�
i

�
l
(x, tn+1)q

h
(x, tn+1) dx − ∫�

i

�
l
(x, tn)u

h
(x, tn) dx − ∫

t
n+1

t
n

∫�
i

��
l

�t
q
h
dxdt

+ ∫
t
n+1

t
n

∫�
i

�
l
∇ ⋅ F(q

h
) dxdt + ∫

t
n+1

t
n

∫�◦

i

�
l
B(q

h
) ⋅ ∇q

h
dxdt = ∫

t
n+1

t
n

∫�
i

�
l
S(q

h
) dxdt

(22)ūn
i,j
=

1

|𝛺i,j|
∫𝛺i,j

uh(x, t
n) dx.
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The cell averages  (22) are evolved in time using either a second-order MUSCL-Han-
cock-type TVD finite-volume scheme with the minmod limiter, or by making use of a 
third-order ADER-WENO finite-volume scheme, see [34], which are also both predictor-
corrector methods, and thus look almost identical to the ADER-DG scheme, except for the 
necessary nonlinear reconstruction step. Moreover, in this case, the test function is unity, 
which implies that the volume integral over the flux term disappears and the volumes com-
puted over �i are replaced by the volumes over the subcells �i,j , and hence

The limited DG polynomial u′
h
 at time tn+1 is then obtained by performing a constrained 

least-squares reconstruction and using the averages of all the subcells of �i computed 
using (23). The reconstruction reads

with the linear constraint

The constraint (24) means conservation of the solution within the element �i . In addition 
to the expansion coefficients ûn+1

i,l
 of the limited DG polynomial, in all limited DG ele-

ments, we also keep in memory the averages of the finite-volume subcells ūn+1
i,j

 , as they 
serve as the initial condition for the finite-volume limiter of the subcell in case a cell is 
problematic also in the next time step, see [34]. More details about the a posteriori subcell 
finite-volume limiter can be found in [31, 34, 76].

4  Numerical Results

This section is devoted to showing some test cases to illustrate the high order of the accu-
racy of the proposed method, especially in the presence of steep gradients in the solution. 
First, some simulations are performed to show the experimental order of convergence 
(EOC) of the proposed ADER-DG method. Then, our scheme is used to solve some Rie-
mann problems in one and two dimensions. Finally, a dambreak problem is simulated, 
and the results are compared with those obtained with a reduced BN model. Although 
the original system is only weakly hyperbolic, no stability problems have been found in 
the numerical simulations, contrary to what was reported in [15, 16, 21] for other weakly 
hyperbolic systems with curl involutions. In this section, some test cases are performed 
considering the original system (4), and some others, such as the convergence analysis and 
the dambreak, are solved using not only the original system but also the new GLM curl-
cleaning technique and the symmetrizing Godunov-Powell terms to compare the solu-
tions. Moreover, in all tests, the algebraic relaxation source terms have been neglected, 

(23)

|

|

|

𝛺i,j
|

|

|

(

ūn+1
i,j

− ūn
i,j

)

+ ∫
tn+1

tn ∫𝜕𝛺i,j

(

G
(

q−
h
, q+

h

)

+D
(

q−
h
, q+

h

))

⋅ n dSdt

+ ∫
tn+1

tn ∫𝛺◦

i,j

(

B(qh) ⋅ ∇qh
)

dxdt = ∫
tn+1

tn ∫𝛺i,j

S(qh,∇qh)dxdt .

1

|𝛺i,j|
∫𝛺i,j

u�
h
(x, tn+1)dx = ūn+1

i,j
, ∀𝛺i,j ∈ 𝛺i

(24)∫𝛺i

u�
h
(x, tn+1)dx =

∑

𝛺i,j∈𝛺i

|𝛺i,j|ū
n+1
i,j

.
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and the gravity g is set to 0 , except in the dambreak test case, where it is necessary to 
consider the gravity.

4.1  Accuracy Analysis

This section performs a numerical convergence analysis to show the EOC of the proposed 
ADER-DG method. To construct an exact solution, following [5, 30], an analytical, station-
ary, and rotationally symmetric solution of the system (4) is computed considering cylin-
drical coordinates (r, �, and z) with (ur, u� , uz) the velocity vector and (wr,w� ,wz) the rela-
tive velocity vector. The analytical solution is assumed to approach a constant state as the 
radial coordinate r tends to infinity to be compatible with periodic boundary conditions.

To obtain a steady analytical solution, we first write an equivalent PDE system in the 
radial direction. For this purpose, the pressure and the velocity relaxation are neglected, the 
gravity is set to zero, and system (4) is rewritten in cylindrical coordinates and assuming 
no variations in the z-direction ( �

�z
= 0 ) and considering rotational symmetry ( �

��
= 0 ). The 

resulting system in radial direction reads 

where the constraint ∇ × w = 0 has been used in the last two equations. Since we 
are looking for a vortex-type solution, the radial velocities vanish, that is, we set 
ur = ur

1
= ur

2
= wr = 0 . Also, we are interested in a stationary solution, hence �t = 0 . With 

these assumptions, the system (25) reduces to 

(25a)
1
t
+ ur 1

r
= 0,

(25b)
1 1
t

+
1
r

(r 1 1ur1)
r

= 0,

(25c)
2 2
t

+
1
r

(r 2 2ur2)
r

= 0,

(25d)

ur

t
+

( 1 1(ur1)
2 + 2 2(ur2)

2 + p)
r

+ 1 1
(ur1)

2 − (u1)
2

r
+ 2 2

(ur2)
2 − (u2)

2

r
= 0,

(25e)
u
t

+
( 1 1ur1u1 + 2 2ur2u2)

r
+ 2 1 1ur1u1 + 2 2ur2u2

r
= 0,

(25f)
wr

t
+

r
1
2
(ul1)

2 −
1
2
(ul2)

2 + h1 − h2 = 0,

(25g)
w
t

= 0,
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 With some simple algebra in (26), we get 

 where k is a constant. Now, we prescribe radial profiles for �1 and pi as

and then, the densities �i and the velocities u�
i
 result as

With this, we have computed an exact stationary and rotationally symmetric solution of the 
PDE system (25) that approaches a constant state as r → ∞ to be compatible with periodic 
boundary conditions. Figure 1 shows the contours of the volume fraction function for our 
vortex-type solution together with the velocity but remains stationary due to its symmetry. 

(26a)�1�1
(u�

1
)2

r
+ �2�2

(u�
2
)2

r
−

�p

�r
= 0,

(26b)
�

�r

(

1

2
(u�)2 −

1

2
(u�)2 + h1 − h2

)

= 0.

(27a)(u1)
2 =

r p
r
+ 2 2 2

(k − h1 + h2),

(27b)(u2)
2 =

r p
r
− 2 1 1

(k − h1 + h2),

�1 =
1

3
+

e
−

r2

2

2
√

2π
, pi = 1 −

e1−r
2

4
,

�i =

(

1 −
e1−r

2

4

)5∕7

, u�
i
= 23∕14

√

e1−r
2
r2

(

4 − e1−r
2
)5∕7

.

Fig. 1  � field for the stationary vortex-type solution at times t = 0, 1 . The velocity streamlines are plotted to 
show that the solution is symmetric and is rotating over time
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Then, using the principle of the Galilean invariance, we can make the test unsteady if we 
add a uniform velocity field to this solution. After one advection period through a periodic 
computational domain, the exact solution will be given by the initial condition and we can 
perform the convergence test.

To analyze the convergence order, we compute the solution with the proposed method, 
using different orders for the DG scheme, and compare it with the exact solution derived 
above. The computational domain is � = [−10, 10]2 with the final simulation time t = 1 
and periodic boundary conditions everywhere. Different polynomial approximation 
degrees have been considered for the DG scheme. The L2 errors and the corresponding 
numerical convergence rates for N = 2, 3, 4, 5 are given in Table 1, showing the expected 
order of convergence.

For analyzing the convergence order using the unsteady solution, we make use of the 
principle of the Galilean invariance of Newtonian mechanics. We add a constant uniform 
velocity field ū1 = ū2 = 4 to both phases. The computational domain is the same as before 
� = [−10, 10] × [−10, 10] with the final simulation time t = 5 and periodic boundary con-
ditions everywhere. Figure 2 shows that this solution is symmetric and rotates over time, 
as the stationary one, but the vortex is transported with constant velocities ū1 = ū2 = 4 . 
At time t = 5 , after one advection period, the solution will be the initial one. The L2 errors 
and the corresponding convergence rates for the different degrees N = 2, 3, 4, 5 are given 
in Table  2, finding the expected convergence order N + 1 of our high-order ADER-DG 
schemes.

Finally, we will perform a convergence analysis with the same unsteady solution used 
in the previous case, where we can compare the convergence order for the original system, 
as well as for the systems augmented with the GLM approach with the curl-cleaning speed 
a
�
= 1 and with the Godunov-Powell terms. Table 3 shows the errors in the L2 norm and 

Fig. 2  Value of � for the unsteady vortex at times t = 0, 1, 2, 3, 4, 5
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the convergence orders for N = 3 . The difference among the errors for the three systems is 
almost negligible and the order of convergence is four, as expected.

For this test, we have also computed the L1 and L2 norms of the curl errors for different 
values of a

�
 , to illustrate the time-evolution of these errors as a function of a

�
 . As we can 

expected, the curl errors are decreasing when the GLM curl-cleaning speed a
�

 is increas-
ing, as one can see in Fig. 3.

4.2  The 1D Riemann Problem

This section is devoted to studying the behavior of the proposed methodology in the pres-
ence of shocks. First, we solve one of the 1D Riemann problems proposed in [69], where a 
shock in one phase appears inside a rarefaction of the other phase. This Riemann problem 
presents a discontinuity in x = 0 and has the left and right states shown in Table 4.

Since the problem that we want to reproduce is a 1D problem, u2 = u3 = 0 and 
w2 = w3 = 0 . The computational domain is � = [−1, 1] and has been discretized using a 
fourth-order ADER-DG scheme ( N = 3 ) with a posteriori subcell limiter on a mesh with 8 
192 cells. The simulation is performed up to t = 0.25 , and the CFL number is set to 0.25. Two 
ideal gases are considered for both phases with EOS (6), setting si = 0 , �1 = 1.4 , and �2 = 2 , 
respectively. In Fig. 4, the numerical results are shown together with the reference solution 
computed with a second-order MUSCL-Hancock scheme based on the Rusanov flux as 
approximate Riemann solver and using a mesh spacing of Δx = 2 × 10−6 (see [69] for further 
details). We observe an excellent agreement between our numerical solution and the reference 
solution. Looking at the density and velocity of each phase, we see that as long as shock waves 
are absent, the rarefaction only affects the related phase, but that the interaction of the two rar-
efactions is observed in the mixing quantities. In addition, in the density of the first phase, we 
can see that to the right of the contact, a rarefaction begins (which does not affect the second 
phase) until the shock occurs. Once the shock appears inside the right rarefaction, the density 
jumps according to the jump conditions. Then, on the right, a plateau of the right state of the 
shock is observed inside the rarefaction, and then, the rarefaction continues again, see [69] for 
a detailed discussion of this peculiar shock-in-rarefaction phenomenon, which is a particular 

Fig. 3  Time evolution of the L1 (left) and L2 (right) norms of the curl errors
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Table 1  Numerical convergence results for high-order DG schemes of polynomial approximation 
N = 2, 3, 4, 5 with a uniform Cartesian mesh of Nx × Ny elements. The L2 error norms and the correspond-
ing orders of the convergence of the variables �1 , �1 , �2 , u1 , and u2 are computed at time t = 1

N = 2

N
x
= N

y L
2

�

(

�1
)

L
2

�

(

�1
)

L
2

�

(

�2
)

L
2

�

(

u1

)

L
2

�

(

u2

)

16 4.273 7 × 10−3 2.590 7 × 10−2 2.611 7 × 10−2 6.770 6 × 10−2 6.405 8 × 10−2

32 1.077 6 × 10−3 4.731 5 × 10−3 4.474 6 × 10−3 1.014 6 × 10−2 9.225 7 × 10−3

64 2.138 0 × 10−4 6.721 2 × 10−4 6.240 5 × 10−4 1.647 9 × 10−3 1.525 0 × 10−3

128 3.352 2 × 10−5 9.523 7 × 10−5 8.719 3 × 10−5 2.770 9 × 10−4 2.611 6 × 10−4

256 4.785 4 × 10−6 1.298 7 × 10−5 1.164 5 × 10−5 4.383 6 × 10−5 4.195 5 × 10−5

O(�1) O(�1) O(�2) O(u1) O(u2)

1.99 2.45 2.55 2.74 2.80
2.33 2.82 2.84 2.62 2.60
2.67 2.82 2.84 2.57 2.55
2.81 2.87 2.90 2.66 2.64

N = 3

N
x
= N

y L
2

�

(

�1
)

L
2

�

(

�1
)

L
2

�

(

�2
)

L
2

�

(

u1

)

L
2

�

(

u2

)

16 8.284 2 × 10−4 6.252 3 × 10−3 4.210 0 × 10−3 1.350 7 × 10−2 1.153 5 × 10−2

32 3.424 1 × 10−5 2.584 1 × 10−4 2.652 4 × 10−4 1.476 9 × 10−3 1.400 8 × 10−3

64 1.447 0 × 10−6 1.302 7 × 10−5 1.008 2 × 10−5 6.961 3 × 10−5 5.541 6 × 10−5

96 2.221 4 × 10−7 2.349 8 × 10−6 1.616 3 × 10−6 1.127 9 × 10−5 8.241 7 × 10−6

128 5.948 9 × 10−8 7.618 9 × 10−7 5.479 0 × 10−7 3.259 9 × 10−6 2.298 6 × 10−6

O(�1) O(�1) O(�2) O(u1) O(u2)

4.60 4.60 3.99 3.19 3.04
4.56 4.31 4.72 4.41 4.66
4.62 4.22 4.51 4.49 4.70
4.58 3.92 3.76 4.31 4.44

N = 4

N
x
= N

y L
2

�

(

�1
)

L
2

�

(

�1
)

L
2

�

(

�2
)

L
2

�

(

u1

)

L
2

�

(

u2

)

16 1.098 4 × 10−4 7.639 7 × 10−4 8.761 6 × 10−4 4.603 7 × 10−3 4.312 4 × 10−3

24 1.744 0 × 10−5 1.423 1 × 10−4 1.148 9 × 10−4 7.279 2 × 10−4 5.810 6 × 10−4

32 5.176 8 × 10−6 3.907 9 × 10−5 2.823 9 × 10−5 1.885 0 × 10−4 1.389 5 × 10−4

48 8.975 4 × 10−7 5.826 6 × 10−6 4.205 9 × 10−6 2.445 4 × 10−5 1.881 0 × 10−5

64 2.431 7 × 10−7 1.468 2 × 10−6 1.072 0 × 10−6 5.768 7 × 10−6 4.731 6 × 10−6

O(�1) O(�1) O(�2) O(u1) O(u2)

4.54 4.14 5.01 4.55 4.94
4.22 4.49 4.88 4.70 4.97
4.32 4.69 4.70 5.04 4.93
4.54 4.79 4.75 5.02 4.80
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kind of nonlinear resonance, see [45]. The feature can best be appreciated inside the right rar-
efaction in the quantity w in the lower right panel of Fig. 4.

4.3  The 2D Explosion Problems

In this section, we solve the system for multi-phase flows in two dimension in a circular 
computational domain with radius R = 1 . The initial condition is given by

where QL and QR are described in Table 5.
As a reference solution, we will solve the following equivalent (non-conservative) PDE 

in radial direction with geometric reaction source terms: 

(28)Q(x, t) =

{

QL, if |x| < 0.5,

QR, otherwise,

(29a)
1
t
+ ur 1

r
= 0,

(29b)
1 1
t

+
( 1 1ur1)

r
= −

d
r
( 1 1ur1),

(29c)
2 2
t

+
( 2 2ur2)

r
= −

d
r
( 2 2ur2),

(29d)
ur

t
+

( 1 1(ur1)
2 + 2 2(ur2)

2 + p)
r

= −
1 1(ur1)

2

r
−

2 2(ur2)
2

r
,

(29e)
wr

t
+

r
1
2
(ur1)

2 −
1
2
(ur2)

2 + h1 − h2 = 0,

Table 1  (Continued)

N = 5

N
x
= N

y L
2

�

(

�1
)

L
2

�

(

�1
)

L
2

�

(

�2
)

L
2

�

(

u1

)

L
2

�

(

u2

)

10 3.104 4 × 10−4 1.818 4 × 10−3 2.253 4 × 10−3 1.073 1 × 10−2 9.972 6 × 10−3

20 9.486 8 × 10−6 6.988 5 × 10−5 3.462 0 × 10−5 2.627 0 × 10−4 1.876 6 × 10−4

30 1.306 7 × 10−6 7.625 6 × 10−6 6.993 9 × 10−6 5.217 8 × 10−5 5.066 6 × 10−5

40 2.636 2 × 10−7 1.473 6 × 10−6 1.556 3 × 10−6 1.193 2 × 10−5 1.177 6 × 10−5

50 5.659 6 × 10−8 3.657 2 × 10−7 3.890 2 × 10−7 3.078 6 × 10−6 3.006 7 × 10−6

O(�1) O(�1) O(�2) O(u1) O(u2)

5.03 4.70 6.02 5.35 5.73
4.89 5.46 3.94 3.99 3.23
5.56 5.71 5.22 5.13 5.07
6.89 6.25 6.21 6.07 6.12
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Table 2  Numerical convergence rates for DG schemes of polynomial approximation N = 2, 3, 4, 5 with a 
uniform Cartesian mesh of Nx × Ny elements in the unsteady case. The L2 error norms and the convergence 
orders of the variables �1 , �1 , �2 , u1 , and u2 , are computed at time t = 5 with ū1 = ū2 = 4

N = 2

N
x
= N

y L
2

�

(

�1
)

L
2

�

(

�1
)

L
2

�

(

�2
)

L
2

�

(

u1

)

L
2

�

(

u2

)

16 2.570 6 × 10−2 1.291 6 × 10−1 1.262 7 × 10−1 2.612 7 × 10−1 2.596 7 × 10−1

32 2.832 4 × 10−3 1.429 4 × 10−2 1.402 5 × 10−2 3.346 2 × 10−2 3.277 6 × 10−2

64 3.163 7 × 10−4 1.669 7 × 10−3 1.611 1 × 10−3 3.739 2 × 10−3 3.696 4 × 10−3

128 3.564 0 × 10−5 1.979 2 × 10−4 1.877 2 × 10−4 4.182 4 × 10−4 4.145 9 × 10−4

256 4.315 5 × 10−6 2.447 3 × 10−5 2.302 9 × 10−5 5.049 2 × 10−5 5.006 6 × 10−5

O(�1) O(�1) O(�2) O(u1) O(u2)

3.18 3.18 3.17 2.96 2.99
3.16 3.10 3.12 3.16 3.15
3.15 3.08 3.10 3.16 3.16
3.05 3.02 3.03 3.05 3.05

N = 3

N
x
= N

y L
2

�

(

�1
)

L
2

�

(

�1
)

L
2

�

(

�2
)

L
2

�

(

u1

)

L
2

�

(

u2

)

16 2.515 6 × 10−3 1.536 8 × 10−2 1.419 0 × 10−2 4.007 2 × 10−2 3.862 6 × 10−2

32 1.399 6 × 10−4 1.648 9 × 10−3 1.558 0 × 10−3 4.471 5 × 10−3 4.470 6 × 10−3

64 9.245 1 × 10−6 7.253 2 × 10−5 6.713 8 × 10−5 2.096 3 × 10−4 2.094 1 × 10−4

96 1.841 9 × 10−6 1.044 6 × 10−5 9.222 0 × 10−6 2.802 8 × 10−5 2.786 0 × 10−5

128 5.844 6 × 10−7 2.902 4 × 10−6 2.479 4 × 10−6 7.239 6 × 10−6 7.161 7 × 10−6

O(�1) O(�1) O(�2) O(u1) O(u2)

4.17 3.22 3.19 3.16 3.11
3.92 4.51 4.54 4.41 4.42
3.98 4.78 4.90 4.96 4.97
3.99 4.45 4.57 4.71 4.72

N = 4

N
x
= N

y L
2

�

(

�1
)

L
2

�

(

�1
)

L
2

�

(

�2
)

L
2

�

(

u1

)

L
2

�

(

u2

)

16 7.243 9 × 10−4 6.496 4 × 10−3 6.220 0 × 10−3 1.705 0 × 10−2 1.695 2 × 10−2

24 7.804 8 × 10−5 9.144 2 × 10−4 8.721 9 × 10−4 2.693 7 × 10−3 2.691 9 × 10−3

32 1.475 3 × 10−5 1.663 4 × 10−4 1.542 9 × 10−4 5.433 9 × 10−4 5.425 8 × 10−4

48 1.606 8 × 10−6 1.235 6 × 10−5 9.817 6 × 10−6 4.022 8 × 10−5 4.003 0 × 10−5

64 3.806 8 × 10−7 2.486 3 × 10−6 1.737 3 × 10−6 6.272 1 × 10−6 6.203 9 × 10−6

O(�1) O(�1) O(�2) O(u1) O(u2)

5.49 4.84 4.85 4.55 4.54
5.79 5.92 6.02 5.56 5.57
5.47 6.41 6.79 6.42 6.43
5.01 5.57 6.02 6.46 6.48
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Table 2  (Continued)

N = 5

N
x
= N

y L
2

�

(

�1
)

L
2

�

(

�1
)

L
2

�

(

�2
)

L
2

�

(

u1

)

L
2

�

(

u2

)

10 2.053 2 × 10−3 1.479 8 × 10−2 1.380 7 × 10−2 3.583 1 × 10−2 3.509 0 × 10−2

20 2.970 1 × 10−5 3.416 9 × 10−4 3.193 8 × 10−4 1.160 6 × 10−3 1.157 2 × 10−3

30 2.284 5 × 10−6 1.893 5 × 10−5 1.674 3 × 10−5 8.309 4 × 10−5 8.291 5 × 10−5

40 3.849 3 × 10−7 3.193 2 × 10−6 2.727 4 × 10−6 1.177 0 × 10−5 1.175 4 × 10−5

50 9.482 8 × 10−8 9.692 8 × 10−7 8.349 6 × 10−7 3.172 6 × 10−6 3.167 1 × 10−6

O(�1) O(�1) O(�2) O(u1) O(u2)

6.11 5.44 5.43 4.95 4.92
6.33 7.13 7.27 6.50 6.50
6.19 6.19 6.31 6.79 6.79
6.28 5.34 5.30 5.88 5.88

Table 3  Numerical convergence rates for DG schemes with N = 3 using a uniform Cartesian mesh of 
Nx × Ny elements in the unsteady case using the original system (4), the augmented system with the GLM 
approach  (12), and the system with the Godunov-Powell terms  (14). The L2 error norms and the conver-
gence orders of the variables �1 , �1 , �2 , u1 , and u2 , are computed at time t = 5 with ū1 = ū2 = 4

N = 3 , original system

N
x
= N

y L
2

�

(

�1
)

L
2

�

(

�1
)

L
2

�

(

�2
)

L
2

�

(

u1

)

L
2

�

(

u2

)

16 2.515 6 × 10−3 1.536 8 × 10−2 1.419 0 × 10−2 4.007 2 × 10−2 3.862 6 × 10−2

32 1.399 6 × 10−4 1.648 9 × 10−3 1.558 0 × 10−3 4.471 5 × 10−3 4.470 6 × 10−3

64 9.245 1 × 10−6 7.253 2 × 10−5 6.713 8 × 10−5 2.096 3 × 10−4 2.094 1 × 10−4

128 5.844 6 × 10−7 2.902 4 × 10−6 2.479 4 × 10−6 7.239 6 × 10−6 7.161 7 × 10−6

256 3.691 6 × 10−8 1.595 8 × 10−7 1.329 7 × 10−7 3.601 5 × 10−7 3.544 9 × 10−7

O(�1) O(�1) O(�2) O(u1) O(u2)

4.17 3.22 3.19 3.16 3.11
3.92 4.51 4.54 4.41 4.42
3.98 4.64 4.76 4.86 4.87
3.98 4.18 4.22 4.33 4.34

N = 3 , GLM approach

N
x
= N

y L
2

�

(

�1
)

L
2

�

(

�1
)

L
2

�

(

�2
)

L
2

�

(

u1

)

L
2

�

(

u2

)

16 2.515 5 × 10−3 1.532 9 × 10−2 1.422 5 × 10−2 3.983 5 × 10−2 3.883 8 × 10−2

32 1.399 6 × 10−4 1.649 0 × 10−3 1.557 9 × 10−3 4.473 0 × 10−3 4.469 0 × 10−3

64 9.237 5 × 10−6 7.250 7 × 10−5 6.713 0 × 10−5 2.095 6 × 10−4 2.094 0 × 10−4

128 5.858 5 × 10−7 2.884 5 × 10−6 2.476 2 × 10−6 7.126 0 × 10−6 7.067 7 × 10−6

256 3.691 6 × 10−8 1.594 2 × 10−7 1.331 0 × 10−7 3.599 8 × 10−7 3.546 1 × 10−7
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where the parameter d is the number of spatial dimensions minus one. The 2D computa-
tions have been performed using a fourth-order ( N = 3 ) ADER-DG scheme with a posteri-
ori subcell limiter. The computational domain is � = [−1, 1] × [−1, 1] and has been discre-
tized using a Cartesian mesh with 512 × 512 elements. Following (28), the left state of the 
Riemann problem has been taken as the inner state and the right state of the same Riemann 
problem as the outer state. The reference solution has been computed by solving (29) with 
128 000 cells using a second-order TVD finite-volume method with the Rusanov flux. The 
simulation is performed up to t = 0.1 with two ideal gases, so, for the two phases, the EOS 
is given by (6) with si = 0 , �1 = 1.4 , and �2 = 2 , respectively.

Figures 5 and 6 show the numerical results of two circular explosion problems with the 
initial conditions of Table 5 and a final time of t = 0.1 for the first one and t = 0.2 for the 
second one. The numerical solution obtained with the ADER-DG method is then compared 
with the radial reference solution, showing excellent agreement. Moreover, Fig. 7 shows 
the limiter map of the second explosion problem. The values highlighted in blue are those 
DG elements where the limiter is not activated, and the red ones are the troubled zones 
where the a posteriori subcell finite-volume limiter is activated.  

Table 4  Left and right states of 
the Riemann problem 1

� �1 �2 u1 u2

QL 0.7 1.244 9 1.296 9 −1.263 8 −0.389 47
QR 0.3 0.603 12 0.734 36 0.430 59 −0.405 07

O(�1) O(�1) O(�2) O(u1) O(u2)

4.17 3.22 3.19 3.15 3.12
3.92 4.51 4.54 4.42 4.42
3.98 4.65 4.76 4.88 4.89
3.99 4.18 4.22 4.31 4.32

N = 3 , Godunov-Powell terms

N
x
= N

y L
2

�

(

�1
)

L
2

�

(

�1
)

L
2

�

(

�2
)

L
2

�

(

u1

)

L
2

�

(

u2

)

16 2.515 6 × 10−3 1.536 8 × 10−2 1.419 0 × 10−2 4.007 2 × 10−2 3.862 5 × 10−2

32 1.399 6 × 10−4 1.648 9 × 10−3 1.558 0 × 10−3 4.471 5 × 10−3 4.470 6 × 10−3

64 9.237 5 × 10−6 7.251 5 × 10−5 6.712 1 × 10−5 2.095 9 × 10−4 2.093 7 × 10−4

128 5.858 5 × 10−7 2.886 5 × 10−6 2.474 7 × 10−6 7.133 0 × 10−6 7.060 8 × 10−6

256 3.691 6 × 10−8 1.595 8 × 10−7 1.329 7 × 10−7 3.601 5 × 10−7 3.544 9 × 10−7

O(�1) O(�1) O(�2) O(u1) O(u2)

4.17 3.22 3.19 3.16 3.11
3.92 4.51 4.54 4.42 4.42
3.98 4.65 4.76 4.88 4.89
3.99 4.18 4.22 4.31 4.32

Table 3  (Continued)
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Fig. 4  The 1D Riemann problem solved with a fourth-order ADER-DG scheme with the TVD subcell lim-
iter on a Cartesian mesh with 8 192 cells at time t = 0.25 . Top row: densities of each phase, �1 and �2 . Sec-
ond row: the mixture density � and � . Third row: the velocities u1 and u2 . Bottom row: the mixture velocity 
u (left) and relative velocity w = u1 − u2 (right)
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4.4  Dambreak Problem

Finally, a 2D dambreak problem is solved using the barotropic two-phase model studied in 
this paper. In this case, the source term included in the momentum Eq. (4d) is non-zero, as 
a non-zero gravity source is considered, and hence, g = (0,−g, 0) with g = 9.81 . The com-
putational domain is � = [0, 4] × [0, 2] , where the water domain is �2 = [0, 2] × [0, 1] and 
the air domain is given by �1 = ���2.

The domain � has been discretized with a uniform Cartesian mesh with 256 × 128 cells, 
using an ADER-DG scheme with N = 3 and a posteriori subcell finite-volume limiter. The 
simulation has been performed until a final time of t = 0.4 , and a slip wall boundary con-
dition is imposed on all boundaries. Following Sect. 2.1, an ideal gas is considered in �1 , 
i.e., the EOS is given by (5) with parameters c01 = 1 , �1 = 1.4 , �01 = 1 , � = � . The initial 
pressure profile is assumed hydrostatic, p = �01g(y − 2) . The EOS for the liquid is a stiff-
ened gas EOS given by  (7), where c02 = 20 , �2 = 2 , �02 = 1 000 , � = 1 − � , and again a 
hydrostatic pressure profile p = �02g(y − 1) is imposed initially. The simulation was per-
formed with � = 0 , i.e., initially, the phase volume fractions are really set to zero and unity, 
respectively. To obtain the value of the primitive variable �k , it is necessary to divide by �k , 
and in this simulation, there exist areas with �k = 0 , and it is necessary to apply a filter that 
avoids division by zero. In this paper, the density variables are filtered as follows:

see also [68], and the filter parameter is set � = 10−12 . The numerical results have been 
compared with the solution of the reduced barotropic BN model given in [25]. Figure 8 
shows the values obtained at time t = 0.4 calculated with the reduced BN model in the 
upper plot, the solution calculated with the method proposed in this paper in the center, 
and a direct comparison of both models with the solution for the augmented model with 
the GLM approach and for the system with the Godunov-Powell terms, in the bottom plot, 
showing an excellent agreement among all the models. Similar results have also been 
recently obtained with a novel Arbitrary-Lagrangian-Eulerian hybrid finite-volume/finite-
element method applied to the incompressible Navier-Stokes equations on moving unstruc-
tured meshes, see [12].

�k =
�k�k

2 + �0k�

�2

k
+ �

,

Table 5  Left and right states of 
the circular explosion problems

CE1

� �1 �2 u
1

1
u
2

1
u
3

1
u
1

2
u
2

2
u
2

2

QL 0.4 2 1.5 0 0 0 0 0 0
QR 0.8 1 0.5 0 0 0 0 0 0

CE2

� �1 �2 u
1

1
u
2

1
u
3

1
u
1

2
u
2

2
u
2

2

QL 0.7 1 2 0 0 0 0 0 0
QR 0.3 2 1 0 0 0 0 0 0
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Fig. 5  The 2D circular explosion problem for the initial condition CE1 in Table 5 solved on a Cartesian 
mesh at time t = 0.1 , in comparison with the radial reference solution. Top row: densities of each phase, �1 
and �2 . Second row: the mixture density � and � . Third row: the velocities u1 and u2 . Bottom row: the mix-
ture velocity u (left) and relative velocity w = u1 − u2 (right)
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Fig. 6  The 2D circular explosion problem for the initial condition CE2 in Table 5 solved on a Cartesian 
mesh at time t = 0.2 , compared with the radial reference solution. Top row: densities of each phase, �1 and 
�2 . Second row: the mixture density � and � . Third row: the velocities u1 and u2 . Bottom row: the mixture 
velocity u (left) and relative velocity w = u1 − u2 (right)
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5  Conclusion

In this paper, the barotropic version of the conservative SHTC model for compressible two-
fluid flows of Romenski et al. has been solved for the first time using high-order ADER-DG 
schemes in combination with a posteriori subcell finite-volume limiter. Since the model is 
only weakly hyperbolic in the general multidimensional case, two different methodologies 
have been presented to restore the strong hyperbolicity: (i) a GLM curl-cleaning approach; 
(ii) the addition of the Godunov-Powell terms to symmetrize the system. We obtain a full 
set of linearly independent eigenvectors with both methodologies, proving that strong 
hyperbolicity can indeed be restored.

A high-order ADER-DG finite-element scheme with a posteriori subcell finite-volume lim-
iter has been used to deal with discontinuities and steep gradients in the solutions. To vali-
date the model and the proposed method, a numerical convergence analysis has been carried 
out. For this purpose, we have constructed a new exact analytical and stationary equilibrium 
solution of the PDE system in cylindrical coordinates, and the high order of the method has 
been confirmed. A detailed comparison among the results obtained for the original system, 
for the augmented GLM curl-cleaning system, and for the Godunov-Powell-type system has 
been carried out, showing very similar results. Then, several Riemann problems in one and 
two dimensions have been simulated to show the behavior of the proposed methodology in the 
presence of shocks. First, a 1D Riemann problem where a shock in one phase appears inside 
the rarefaction of the other phase has been simulated. The results have been compared with 
those presented in [69], showing an excellent agreement. Then, two 2D explosion problems 
were solved. Thanks to the radial symmetry of the problem, the obtained results have been 
compared with an equivalent 1D reference solution, showing the accuracy of the proposed 
methodology even in the presence of sharp gradients in the solution. Finally, a dambreak test 
case has been considered, where the initial values of the volume fractions are set to �1 = 0 and 
�2 = 1 . The numerical results obtained with the original system, with the augmented GLM 
system, and with the Godunov-Powell-type system are compared with those obtained for a 
reduced barotropic BN-type model, showing an excellent agreement between all the models. 
We can conclude that the results obtained with the original system, as well as those obtained 
with the GLM curl-cleaning approach and with the symmetrization of the system by adding 

Fig. 7  Left: the limiter map of the explosion problem in two dimensions. The values in red mean that the 
limiter is activated. Right: the 3D plot with the variable �2 in the z-axis
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the Godunov-Powell terms, are very similar at least for all the proposed tests and do not pre-
sent evidence on which method is better for this type of model.

As future work, we plan to extend our methodology to compressible multi-phase flows with 
more than two phases and, in addition, to include also solids governed by the equations of non-
linear hyperelasticity, see, e.g., [32, 60, 61]. Furthermore, we will also apply exactly curl-free 
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Fig. 8  The dambreak problem at time t = 0.4 . Top: the reference solution, computed with a third-order 
ADER-WENO finite-volume scheme on a very fine uniform Cartesian grid, solving the inviscid and baro-
tropic reduced BN model presented in  [25]. Center: the numerical solution, computed using an ADER-
DG scheme with a posteriori subcell limiter, to solve the barotropic SHTC model proposed in this work. 
Bottom: the comparison of the free-surface profile obtained for the reduced BN model, the original model 
solved in this paper, the augmented model with the GLM approach, and the model including the Godunov-
Powell terms
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methods to the two-phase model discussed in this paper, such as the curl-free schemes recently 
forwarded in [6, 9, 15, 21].
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