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Abstract. Accurate predictions of inclusive scattering cross sections in the linear response regime require
efficient and controllable methods to calculate the spectral density in a strongly-correlated many-body
system. In this work we reformulate the recently proposed Gaussian Integral Transform technique in
terms of Fourier moments of the system Hamiltonian which can be computed efficiently on a quantum
computer. One of the main advantages of this framework is that it allows for an important reduction of the
computational cost by exploiting previous knowledge about the energy moments of the spectral density.
For a simple model of medium mass nucleus like 40Ca and target energy resolution of 1 MeV we find an
expected speed-up of ≈ 125 times for the calculation of the giant dipole response and of ≈ 50 times for the
simulation of quasi-elastic electron scattering at typical momentum transfers.

PACS. 02.30.Uu Integral transforms – 03.67.−a Quantum information – 11.55.Hx Sum rules – 24.10.Cn
Many-body theory

1 Introduction

Response functions describe the linear response of a many-
body system after an excitation and contain the same
information as an inclusive reaction cross section. They
can be expressed in terms of the spectral density operator
δ(Ĥ −ω) of the Hamiltonian Ĥ describing the many-body
system. First principle calculations of response function
is in general extremely challenging for strongly correlated
systems. A very powerful approach to study dynamical
properties of many-body systems is to employ integral
transform techniques which map the local spectral den-
sity into more manageable ground state expectation value
which can be used to infer properties of the response func-
tion. This is the approach used in the Lorentz Integral
Transform (LIT) method [1,2] and the more recent Gaus-
sian Integral Transform (GIT) method [3,4]. Thanks to
the ability to efficiently simulate the real time dynamics
of many-body systems, simulations employing quantum
computers offer the possibility to tackle the calculation of
scattering cross sections from first principles (see e.g. [5]
for a recent review). Interestingly, in order to describe in-
clusive scattering in the linear response regime using the
response function, integral transform techniques are also
useful in the design of efficient quantum algorithms [6,3].
It is therefore important and timely to extend the avail-
able techniques in order to reduce as much as possible the
computational resources required to calculate the nuclear
response function on a quantum device.

Given an Hamiltonian Ĥ, an initial state ∣Ψ0⟩ and a

Hermitian excitation operator Ô, our goal is to evaluate
the frequency dependent response function defined as

S(ω) = ⟨Ψ0∣Ô†δ (ω − Ĥ) Ô∣Ψ0⟩

=∑
m

∣⟨Ψ0∣Ô∣m⟩∣
2
δ (ω −En)

(1)

where in the last line we used the expansion on the eigen-
basis {∣m⟩} of Ĥ. In general, it is difficult to directly use
this definition as it requires a complete knowledge of the
full energy eigenspectrum. The main idea is, similarly to
the LIT and the GIT methods, to consider instead an in-
tegral transform with kernel K given by

Φ(ν) = ∫ dωK(ν,ω)S(ω)

= ⟨Ψ0∣Ô†K (ν, Ĥ) Ô∣Ψ0⟩

=∑
n

∣⟨Ψ0∣Ô∣n⟩∣
2
K (ν,En) .

(2)

Note that both the original transform and it’s integral
transform have units on inverse energy. Furthermore, in
this work we will focus on translationally invariant kernel
functions for which K(ν,ω) =K(ν −ω), but extensions to
the more general case are straightforward.

Once Φ(ν) has been obtained, one usually attempts
an inversion of the integral transform in order to obtain
S(ω) back, however this procedure can introduce uncon-
trollable errors whenever the kernel function has compact
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support [7,8]. A variety of approximate inversion tech-
niques that introduce, more or less explicitly, additional
smoothing to reduce these artifacts have been proposed
in the past [9,10,11,12,13]. However, if the kernel func-
tion is chosen appropriately this last step might not be
necessary [3,4]. In particular, it is convenient to consider
kernels such that

∫
∆

−∆
dνK(ν) ≥ 1 −Σ , (3)

A kernel satisfying Eq. (3) is called Σ-approximate with
resolution ∆ [3]. The reason for this definition is that, in
the commonly encountered situation where one is inter-
ested in observables of the form

Q(S, f) = ∫ dωS(ω)f(ω) , (4)

for some bounded function f , one can use directly the in-
tegral transform Φ to approximate Q(S, f) with Q(Φ, f)
with controllable error [3]. More intuitively, we can think
of Φ as a finite width approximation of the original re-
sponse function with an energy resolution given by ∆ and
additional tails controlled by the parameter Σ. The orig-
inal response is then recovered in the limit ∆,Σ → 0.

This approach was recently used in Ref. [4] to provide
a controllable approximation of the spectral density using
histograms derived from the integral response (see also [14]
for a recent application for computing spectral functions
in light nuclei using the Coupled Cluster method).

A direct procedure to construct integral kernels satis-
fying Eq. (3) is to use a polynomial expansion such as

K(ν − ω) =
∞
∑
n

cn(ν)φn(ω) , (5)

with {φn} an orthonormal basis of polynomials. This leads
directly to an alternative expression for the integral trans-
form in this basis

Φ(ν) =
∞
∑
n

cn(ν)⟨Ψ0∣Ô†φn (Ĥ) Ô∣Ψ0⟩ =
∞
∑
n

cn(ν)mn , (6)

where mn denotes the frequency moments s of the re-
sponse function over these polynomials

mn = ∫ dωφn(ω)S(ω) . (7)

If the series in Eq. (6) converges rapidly, one can then
estimate the integral transform Φ(ν) with a small error by
keeping only the first N terms in the expansion. Since the
response function, and thus its integral transform, have
units of inverse energy we will quantify the error in its
approximation as ε/Ω with ε > 0 and Ω a suitable energy
constant. As shown in [3], we can approximate a response
function with a Σ-accurate kernel with resolution ∆ using
a basis of Chebyshev polynomials and a number of terms
given by

N ≈ Õ
⎛
⎝
∥Ĥ∥
∆

√
log ( 1

Σ
) log ( Ω

∆ε
)
⎞
⎠
, (8)

with ∥Ĥ∥ as the spectral norm of the Hamiltonian. The
notation used here neglects subleading logarithmic factors,
in particular we define Õ(f(x)) = O(f(x) log(f(x))) in
line with previously reported estimates [3].

This results applies to any possible response function
and is helpful whenever the Chebyshev moments of the
Hamiltonian can be computed efficiently. This can be done
in practice with quantum computers by means of a suit-
able quantum walk [15,16,17,18,19] or in approximate
way with classical methods, such as the Coupled Cluster
approach [4,14]. In many applications the spectral func-
tion has a number of distinctive features like being domi-
nated by low energy contributions or displaying a distinct
peak structure like e.g. in the quasi-elastic regime. Many
of these features are captured by energy moments of the
form [20]

µn = ∫ dωωnS(ω) . (9)

For instance the qualitative shape of a quasi-elastic peak
can be characterized with a good accuracy from the first
few moments alone [21]. The advantage of using moments
µn to characterize the spectral density is that in many
situations they can be calculated explicitly using ground-
state many-body methods (e.g. with Monte Carlo [22,23,
24]).

In this work we employ a Fourier basis for the poly-
nomial expansion of the integral transform Eq. (6) in or-
der to incorporate this information into the calculation of
the full spectral density and reduce the overall computa-
tional cost of the simulation. Thanks to their ability to
efficiently simulate the real-time evolution of many-body
systems, quantum computers are expected to be able to
give us access to expectation values of the form

gψ(t) = ⟨ψ∣eitĤ ∣ψ⟩ , (10)

for states ψ which can be easily prepared. The function
gψ(t) contains important information about the many body
system, and several authors have proposed techniques to
use this to get access to a variety of observables like exci-
tation energies, the local spectral density and even ther-
modynamic expectation values [25,26,27,28,29].

Under general consideration we can expect two main
time scales to play a role: first, in order to obtain a fre-
quency resolution of order ∆, the maximum time required
will need to scale as T = O(1/∆); second, since the full en-
ergy spectrum is contained in a frequency interval of size
∥Ĥ∥, a time step δt = O(1/∥Ĥ∥) will guarantee a perfect
reconstruction without aliasing thanks to the Shannon-
Nyquist theorem. The combination of these two time scales
predicts a scaling of the number of time-steps required as
T /δt = O(∥Ĥ∥/∆). However, as shown recently in Ref. [27],
in situations where the spectral function has an energy
variance σ2 ≪ ∥Ĥ∥2, a good Fourier approximation can
be obtained with a scaling T /δt = O(σ/∆) instead. The
goal of this work is to formalize this intuition and provide
rigorous error bounds allowing use of prior information
about the energy moments of the spectral function in or-
der to reduce the number of expectation values required.
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In Section 2 we present the general framework employ-
ing Fourier moments to approximate the response function
and in specialize the treatment to the Gaussian Integral
Transform in Section 2.1. Section 3 details two example re-
sponse functions that are reconstructed with this method
and the improved efficiency afforded by employing energy
moments. In Section 4 we conclude by discussing appli-
cations of this method to typical scattering properties in
nuclear physics, and the estimated improvement in num-
ber of Fourier moments required.

2 Fourier based reconstruction

In order to use directly a discrete Fourier transform to
perform the expansion of the integral kernel in Eq. (5)
it’s convenient to define a periodic extension of the kernel
function as follows [26]

Kχ(ν,ω) =
∞
∑
n=−∞

K (ν,ω + nχ∥Ĥ∥) , (11)

where the period P = χ∥Ĥ∥ is expressed here as a function
of the spectral norm. This convention allows us to truncate
the sum at the first term if we take χ ≫ 1: since the
spectrum is bounded only the term with n = 0 has a finite
contribution. As χ is reduced more terms will start to
contribute to the sum and the extended integral kernel Kχ

will start to deviate from the original. The main advantage
of this construction is that we can express directly the
periodically-extended kernel as a Fourier series

Kχ(ν,ω) = 1

χ∥Ĥ∥

∞
∑
n=−∞

kχn (ν) exp(−i 2πn

χ∥Ĥ∥
ω) , (12)

where the Fourier transformed coefficients are given by

kχn (ν) = ∫
∞

−∞
dω exp(i 2πn

χ∥Ĥ∥
ω)K(ν,ω) . (13)

The main advantage of working with Kχ and this Fourier
series representation is that we can now express a gen-
eral integral transform of the response function as a linear
combination of expectation values of the time-evolution
operator. From the definition in Eq. (2) we can in fact
express the new integral transform as follows

Φχ(ν) = ⟨Ψ0∣Ô†Kχ(ν, Ĥ)Ô∣Ψ0⟩

= 1

χ∥Ĥ∥

∞
∑
n=−∞

kχn(ν)⟨Ψ0∣Ô†e−inδtĤÔ∣Ψ0⟩
(14)

with finite time-steps of size δt = 2π/(χ∥Ĥ∥). Provided we
choose a smooth integral kernel in the ω variable, the series
expansion converges quickly and we can therefore obtain
an accurate approximation of the integral transform by
taking a truncation to some finite order

ΦχN(ν) = 1

χ∥Ĥ∥

N

∑
n=−N

kχn(ν)⟨Ψ0∣Ô†e−inδtĤÔ∣Ψ0⟩ . (15)

For example, if we consider integral kernels in C∞, the
convergence will be in general super-polynomial in N and,
importantly, rigorous bounds on the truncation error can
be found with relatively straightforward calculations. It is
important to note at this point that the use of a smooth-
ing kernel with a finite energy resolution ∆ is critical to
ensure that the expansion is well-behaved: indeed a direct
approximation of the response function S(ω) using a fi-
nite Fourier sum would have encountered difficulties due
to the discreteness of the energy spectrum for a finite sys-
tem, which creates sharp peaks. The difference between
the present approach and related ones (from Refs. [3,4])
with more heuristic smoothing procedures like the Maxi-
mum Entropy Method [9,11] or alternative polynomial ex-
pansion methods like the Kernel Polynomial Method [30]
is that the energy window over which the smoothing is ap-
plied is fully under control and all errors can be accounted
for. The price to pay to be able to use higher energy reso-
lution is a corresponding increase in the number of terms
in the expansion Eq. (15) which corresponds to a compa-
rable increase in the maximum time T = Nδt over which
one needs to be able to simulate the many-body dynam-
ics. We will discuss this in more detail for a specific choice
of integral kernel in the next section.

2.1 Gaussian Integral Transform

As shown already in Ref. [3], the Gaussian Integral Trans-
form (GIT) is particularly useful for the purpose of ob-
taining a Σ-accurate integral transform with resolution ∆
with a fast converging polynomial expansion like Eq. (5).
This result is rather intuitive since a Gaussian envelope is
a perfect trade-off between good resolution in frequency
and small widths in the time domain. The original con-
struction from Ref. [3] used a Chebyshev expansion for the
polynomial basis, however in this work we instead explore
an expansion of the Gaussian kernel into Fourier modes.

The first step is to determine an appropriate value for
the width Λ of the Gaussian kernel in order to satisfy the
condition in Eq. (3). A direct calculation gives

1√
2πΛ

∫
∆

−∆
dν exp(− ν2

2Λ2
) = erf( ∆√

2Λ
) ≥ 1 −Σ . (16)

Using the upper-bound on the complementary error func-
tion erfc(x) = 1 − erf(x) by a Gaussian

erfc(x) ≤ exp(−x2) , (17)

we can find the following sufficient condition [3]

Σ ≥ exp(− ∆
2

2Λ2
) ⇒ Λ ≤ ∆√

2 log(1/Σ)
. (18)

Following the notation from Eq. (11) and Eq. (12),
we can then express the periodically extended Gaussian
kernel as

Gχ(ν,ω) = 1

χ∥Ĥ∥

∞
∑
n=−∞

gχn(ν) exp (−iδtnω) (19)
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with the corresponding Fourier coefficients

gχn(ν) = exp (−iδtnν) exp(−δt
2Λ2

2
n2) . (20)

In the expressions above we used the definition δt = 2π/(χ∥Ĥ∥)
for the time-step. We can now write the approximate in-
tegral transform obtained by truncating the series as

ΦχN(ν) = 1

χ∥Ĥ∥

N

∑
n=−N

gχn(ν)⟨Ψ0∣Ô†e−inδtĤÔ∣Ψ0⟩ . (21)

The ideal integral transform Φ(ν) would be obtained in
principle by choosing Λ in order to satisfy Eq. (18), taking
χ = 1 and letting N →∞. The error in the approximation
ΦχN is caused only by taking a finite number of terms N
and (possibly) reducing the value of χ which parametrizes
the frequency interval used in the periodic extension. For
a fixed value of the frequency ν we can then bound the
error with

∣ΦχN(ν) −Φ(ν)∣ ≤ ∣Φχ(ν) −Φ(ν)∣ + ∣ΦχN(ν) −Φχ(ν)∣ , (22)

where we simply used the triangle inequality. The advan-
tage is that the two error contributions on the right hand
side can be bounded individually in a simpler way. We will
denote the first error on the right hand side as εP and the
second as εN . In addition to these two sources of error,
we need also to account for the fact we will estimate the
Fourier moment

mχ
n = ⟨Ψ0∣Ô†e−inδtĤÔ∣Ψ0⟩ (23)

by computing the expectation value with a finite statisti-
cal sample leading to an additional error

εS = ∣ΦχN(ν) −ΦχN(ν)∣ , (24)

where we have denoted by Φ
χ

N(ν) the finite sample esti-
mate of ΦχN(ν). The total error will be given then by the
sum of all contributions ε = εP + εN + εS .

Before presenting our results for the complexity of es-
timating an accurate approximation of the integral trans-
form Φ(ν) it is convenient to specify several of the con-
ventions we use, note however that the results provided in
App. A are completely general and do not depend on these
conventions. First of all, since the response function (and
thus it’s integral transform) have dimensions of inverse
energy, we will consider a dimensionless error parameter
ε > 0 obtained using a suitable energy scale Ω. That is,
we want to find values χ and N for which

∣ΦχN(ν) −Φ(ν)∣ ≤ ε

Ω
. (25)

Second, we consider the situation where we are interested
in approximating the response function on a finite energy
window ω ∈ [ωmin, ωmax]. For many applications in nu-
clear physics is also customary to shift the Hamiltonian
by the ground state energy so that all frequencies become
positive. Since both of these considerations apply directly

to the integral transform, we will consider the situation
where Ĥ has been shifted so that the ground state is at
ωmin = −∥Ĥ∥ consider a range [−∥Ĥ∥,−∥Ĥ∥ + δν] for the
energies we want the value of Φ(ν). Finally, since we are
interested in computing the Fourier moments mχ

n on a
quantum computer, we will consider the situation where
the excitation operator has been appropriately rescaled so
that the state Ô∣Ψ0⟩ is normalized to one. This directly im-
plies that the zeroth moment µ0 will also be equal to one.
A rescaling of this form has been employed already in past
works on quantum algorithms for the response function [6,
3,31,4,32] and is natural when using efficient methods for
preparing the excited state (see [33]).

The only error term that depends directly on the en-
ergy variance σ2 = µ2 − µ2

1 is the first one while the other
one will only depend parametrically on the chosen period
P = χ∥Ĥ∥. We start with the truncation error which can
be bounded easily using standard techniques resulting in
the following requirement for the number of terms

N ≥ χ∥Ĥ∥√
2πΛ

√
log (0.4

Ω

εNΛ
) . (26)

A full derivation of this result can be found in App. A.3.
The dependence on the error is typical for Gaussian ker-
nels (c.f. [3,4]). The statistical contribution of the error
can be controlled, with confidence level 1− δ, by requiring
in the worst case a number of experiments given by

S = N Ω2

ε2SΛ
2

log (2

δ
)

= χ∥Ĥ∥Ω2

√
2πε2SΛ

3

√
log (0.4

Ω

εNΛ
) log (2

δ
) ,

(27)

where in the second line we used the estimate from Eq. (26).
We present a full derivation of this result in App. A.4. As
we can see, the sample complexity of the scheme is directly
proportional to the factor χ controlling the period.

The remaining error εP , controlled by the choice of χ,
can be found under to separate situations: the general case
where we do not use information from known energy mo-
ments µn and the typical case where we have information
at least on the energy variance. As mentioned in the text
following Eq. (11), in the first situation we want to take
χ ≫ 1 in order to minimize the error. In particular, as
shown explicitly in App. A.1, we find that for εP ≤ εP /Ω
the following choice would be sufficient

χ = 2 +
√

2Λ

∥Ĥ∥

√
log ( 2Ω

εPΛ
) . (28)

In the limit Λ → 0 we recover the Shannon-Nyquist theo-
rem which gives χ = 2 for a perfect reconstruction. At this
point we can look for the asymptotic scaling of both N
and S while guaranteeing a total error εP + εN + εS ≤ ε. If
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take εP = εN = εS = ε/3 we find immediately

N =Õ
⎛
⎝
∥Ĥ∥
∆

√
log ( 1

Σ
) log ( Ω

ε∆
)

+ log
⎛
⎝
Ω

ε∆

√
log ( 1

Σ
)
⎞
⎠
⎞
⎠
,

(29)

which, apart from a logarithmic correction, is the same re-
sult found for the Chebyshev version of the GIT protocol.
In turn we find that the required number of samples will
scale in general as

S = Õ (∥Ĥ∥Ω2

ε2∆3
log3/2 ( 1

Σ
) log (1

δ
)) (30)

again similar to the Chebyshev version (c.f. App. A.4 and
the orginal work Ref. [3]). The main difference is that
the Chebyshev implementation avoids the (necessary) ap-
proximation of the time-evolution operator. If simulations
schemes with optimal asymptotic scaling with the error
are used, like the one based on qubitization [16,17], the
Chebyshev GIT will have an advantage in terms of gate
counts over its Fourier version described here.

We now turn to the main result of this work where in-
stead we use information about first two energy moments
to design a scheme with better scaling. The main result
we use is the Chebyshev inequality which, in terms of re-
sponse functions, states that (assuming µ0 = 1)

1 − ∫
µ1+Γ

µ1−Γ
dωS(ω) = Prob [∣ω − µ1∣ ≥ Γ ] ≤ σ2

Γ 2
, (31)

for any positive constant energy Γ . The idea is to use
Eq. (31) to constrain the integrated strength of the spec-
trum away from the mean. The interested reader can find
the full derivation in App. A.2, the final result is

χ = 2.7

ε
1/3
P

Ω1/3σ2/3

∥Ĥ∥
+ δν

∥Ĥ∥
, (32)

which is valid for Λ ≤ 2σ (see App. A.2 for an estimate
valid also in a lower resolution regime). This immediately
gives an estimate for the required number of moments

N =O
⎛
⎝

1

∆
(Ω

1/3σ2/3

ε1/3
+ δν)

√
log ( 1

Σ
) log ( Ω

ε∆
)
⎞
⎠

(33)

Several comments are in order at this point. First of all,
the scaling of N with the target error ε is exponentially
worse than the original result Eq. (29) which didn’t use
energy moments. For situations that require very small
errors ε ≲ Ωσ2/∥Ĥ∥3 then the general scheme with χ from
Eq. (28) should be used instead. This drawback can be
mitigated if more information is available. For instance if
we know the value of the n central moment µ̃n then we
can bring the cost down to

N =O
⎛
⎝
Ω1/(n+1)µ̃n1/(n+1)

∆ε1/(n+1)

√
log ( 1

Σ
) log ( Ω

ε∆
)

+δν
∆

√
log ( 1

Σ
) log ( Ω

ε∆
)
⎞
⎠
.

(34)

See App. A.2 for additional details and a proof.
The second important comment we can make about

the result Eq. (33), which also applies to its generalization
Eq. (34), is that if we want to reconstruct the energy spec-

trum over a large frequency range scaling as O(∥Ĥ∥) then
the second contribution proportional to δν will dominate
and we recover again the general result obtained without
moments. This somewhat counter-intuitive behavior can
be understood by noticing that our error metric in Eq. (25)
measures the error in a pointwise fashion: a very narrow
but tall peak in the energy spectrum will contribute to
the error even if its spectral weight is small. For specific
applications, like the calculation of energy histograms pre-
sented in Ref. [4], better bounds could be obtained. We
leave this development for future work.

Finally we note that all the results presented in this
work depend on an arbitrary energy scaleΩ which controls
the energy dimension of the final error. An appropriate
choice for this parameter depends on the specific physical
application desired. For example, in applications where
one is interested in obtaining histograms of the spectrum
like in Ref. [4], the choice Ω =∆ seems appropriate.

3 Numerical examples

In this section we present some numerical experiments
that show in practice the savings afforded by the method
present here. In order to show the general trend, we will
employ two simple model response functions SA(ω) and
SB(ω). In both cases we produce a peak at low frequencies
according to a skewed Gaussian distribution

Speak(ω) =
1

β
√

2π
exp

−(ω − ξ)2

2β2
(1 + erf(α(ω − ξ)√

2β
)) ,

(35)
where ξ is the location of the peak, β is the scale of the
distribution and α the skewedness. In order to explore the
impact of a tail at high energies we also use

Stail(ω) = {
0 for ω < ωthr

λρ (∣ω − ωthr ∣γ + ρ)
−1

for ω ≥ ωthr
(36)

Here λ is an overall normalization, ρ sets the scale and γ
the exponent of a power-law decaying tail.

In the numerical tests shown here we took ∥Ĥ∥ = 1 and
512 eigenvalues {ωk} distributed over the whole spectrum.
The two model response functions we consider are

SA(ω) =∑
k

Speak(ωk)
∑k Speak(ωk)

δ(ω − ωk)

SB(ω) =∑
k

Speak(ωk) + Stail(ωk)
∑k (Speak(ωk) + Stail(ωk))

δ(ω − ωk)
(37)

where the normalization in the denominators is chosen in
order to guarantee that µ0 = 1 for both response functions.
The parameters for the response functions are

ξ = ωthr = −0.95 α = 5 β = 0.05 λ = 1 ρ = 0.002 . (38)
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Fig. 1. The two model response functions shown as a function
of frequency: black dots are for SA(ω) while red squares for
SB(ω). The inset shows the same responses but on a narrower
range and with linear scale. Also indicated are the mean µ and
the square root of the variance σ for both distributions.

We show the two model response function in Fig. 1. The
main panel shows the two models SA(ω) and SB(ω) over
the entire frequency range, the presence of the tail in
SB(ω) is easily seen. In the inset we show instead the
two response function in linear scale for the energy range
of interest [−1,−0.8], corresponding to the choice δν = 0.2.
In this range the two responses appear almost identical.
In the figure we also report the obtained values for the
mean µ ≡ µ1 and the square root of the variance σ for the
two models

µA = −0.911 σA = 0.031

µB = −0.907 σB = 0.067
(39)

The presence of the high-frequency tail does not modify
appreciably the mean value while the variance is increased
by more then a factor of two.

Due to the presence of delta function peaks, which are
generated by the discreteness of the spectrum of a finite
matrix, in general we cannot directly compare the integral
transform Φ with the originating response function S(ω)
since the normalization conventions are different. For the
discrete response function we have

∫
1

−1
dωS(ω) =∑

k

S(ωk) = 1 , (40)

while for the continuous integral transform instead

∫
1

−1
dωΦ(ω) = 1 . (41)

In order to directly compare the two, we approximate the
integral over frequencies with the finite difference

∫
1

−1
dωΦ(ω) ≈ δω

2/δω
∑
n=0

Φ (nδω − 1) , (42)
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Fig. 2. Comparison between the model response function
SA(ω) and SB(ω) (black dots and red squares respectively)
with their rescaled integral transforms δωΦA(ω) and δωΦB(ω)
(green solid line and turquoise dotted line respectively). The
inset shows the same curves but over the full energy range.

and choose δω = 2/512 in order to match the average spac-
ing between the eigenvalues. In the following we will then
consider the dimensionless quantity δωΦ which implies the
choice Ω = δω for the energy scale of the error. We further
choose the the parameters of the integral kernel as

∆ = 0.02 Σ = 0.01 . (43)

Fig. 2 shows a comparison between SA(ω) and SB(ω)
with their rescaled integral transforms δωΦA(ω) (shown
as a solid green curve) and δωΦB(ω) (shown as a dotted
turquoise curve). We can clearly see that the rescaling
described above allows us to compare them directly.

Since the truncation error εN and the sampling error
εS are more standard and the bounds described in this
work are not novel, we concentrate in the following in the
analysis of the systematic error εP coming from the need
to perform a periodic extension of the integral kernel.

We present in Fig. 3 a direct comparison between the
ideal (scaled) integral transform δωΦB(ω) for model B
(turquoise solid lines) with the approximations obtained
by applying a periodic extension to the integral kernel
with different choices of periods P (cf. Eq. (11) above).
In all cases we set εP = 0.01 for the target error. The ap-
proximation in the bottom panel, denoted δωΦB(ω) (blue
dotted line), is obtained using the conservative choice from
Eq. (28) which is valid in general. We see clearly that the
effect is to push the replicas outside the whole range of the
Hamiltonian, which in our case is [−1,1], and therefore no
appreciable change affects the transform in the required
energy range [νmin, νmax] = [−1,0.8]: the maximum ob-
served deviation is ≈ 10−8. To highlight the location of this
energy range, we have shaded in grey the region of energies
outside of it. Also, for ease of visualization, we have pre-
sented results in a larger range of energies in order to be
able to see where the replicas are located. The top panel
shows instead the periodic extensions obtained using the
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Fig. 3. Comparison between the ideal (scaled) integral trans-
forms δωΦB(ω) (turquoise solid lines) and different periodic ex-
tensions. The bottom panel shows the approximation obtained
using P for a generic response denoted as δωΦχB(ω) (blue dot-
ted line) while the top panel shows the approximation obtained
with a smaller P found using the known energy variance σ2 and
denoted as [σ] δωΦχB(ω) (brown solid line). The shaded grey
areas are energies outside the interval [νmin, νmax].

improved bound on P obtained in this work which uses di-
rectly prior information about the first and second energy
moment. It is apparent that now the integral transform
outside the energy window of interest is severely distorted
due to the presence of the periodic replicas. However, in-
side the required region, the maximum deviations are well
below the value εP = 0.01 chosen as target: we observe in
fact an error ≈ 10−4. Very similar results have been ob-
served for the approximations of the integral transform of
model A. Before analyzing the relationship between target
error and the empirically observed deviation, we want to
point out the the reduction in the value of the period are

PσA
P gen

≈ 0.111
PσB
P gen

≈ 0.14 , (44)

for the two model responses respectively. Here we denoted
by P gen the value obtained without information about the
energy moments and with Pσ the value obtained using the
knowledge of the energy variance. In terms of the required
number of moments to guarantee a total approximation
error less than εP + εN = 0.02 we find using Eq. (26)

Ngen = 218 Nσ
A = 25 Nσ

B = 31 . (45)

In order to better understand the above observation
that the measured error seems to be much smaller than
the target one, which employs a possibly not tight bound
on the possible error, we present in Fig. 4 an analysis
of the scaling of the empirical error with the one set as
target. The bottom panel shows how the approximation
error in the scaled integral transform changes as a func-
tion of the target error for the cases where we use the
improved estimate for the period Pσ which uses the en-
ergy variance. The solid black line shows the upper-bound
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Fig. 4. The top panel shows, as a function of the target error,
the fractional reduction in the period from the genera case
value P = P gen obtained using information about the energy
variance: the green line shows PσA/P for model A while the
turquoise is PσB/P for model B. The bottom panel shows the
observed approximation error for the two models as a function
of the target error: the green line for model A and the turquoise
line for model B. The solid black line represents the best error
bound we derived for this approximation (see App. A.2).

employed to control the error while the solid green line
and solid turquoise line show the observed maximum er-
rors for both models respectively. We can see that, as ex-
pected, the real error is always below the bound we use
but that the two models show a very different scaling for
small target errors: the integral transform of model A has
an error which decreases super-polynomially with target
error while for model B the bound is saturated for small
enough values of target error. We can understand this be-
havior in terms of the high-energy tail of the original re-
sponse functions: as can be seen from the inset of Fig. 2
the response function for model B is dominated by the
slowly decaying tail for energies outside the range of in-
terest [νmin, νmax] = [−1,−0.8] while the strength of model
A decays much faster. Once the target error becomes com-
parable to the strength in the tail of model B then one is
forced to consider Pσ = P gen as for a general response.
On the other hand, for model A as soon as the value
of Pσ exceeds the range of frequencies of interest than
the error decays quickly following the strength response.
These results show very clearly the important effect pro-
duced by slowly decaying tails in the response function
and how their presence is automatically captured by the
tail bounds employed in this work. The observation that
the error bound is essentially saturated for small errors
in model B suggests that it is unlikely to be possible to
considerably improve our estimate for the optimal period
Pσ in general. Finally, for not too small values of the tar-
get error ⪆ 10−3 our error bound overestimated the real
error by more than an order of magnitude. In this regime
it is possible that improved estimates using higher central
moments (c.f. Eq. (34) and Eq. (93)) would be able to
increase the savings in computational cost even further.
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4 Conclusions

In this work we have extended the Gaussian Integral Trans-
form method [3] by employing a Fourier basis for the poly-
nomial expansion of the integral trasnform of the spec-
trl density. This replaces the need to estimate Chebyshev
moments of the Hamiltonian with analogous Fourier mo-
ments that can be evaluated as expectation values of the
real-time evolution operator exp(−itĤ) (c.f. Eq. (15)).
Importantly, evaluation of both of these moments can
be achieved efficiently using existing quantum algorithms.
The main advantage of employing a Fourier basis is the
possibility of using prior information about the spectral
density, in the form of its first few energy moments, to
reduce the number of observable needed for an accurate
reconstruction of the spectrum. Most of our derivation
and numerical examples are focused on the reasonable as-
sumption that only the mean and variance of the energy
spectrum are available to the user but we also provide
improved bounds in case more moments are available.

The technique presented here can allow for orders of
magnitude speed-ups in the evaluation of the spectral den-
sity. In order to give some concrete examples in nuclear
physics, we take the Hamiltonian derived from Lattice
EFT and used in previous cost estimates for quantum
computations of the response function (see [31]) to model
a medium mass nucleus with A = 40. As a first example we
consider a calculation of the dipole response of 40Ca for
excitation energies up to 100 MeV, with resolution ∆ = 1
MeV, small tail contributions Σ = 0.01 and approximation
error ε = 0.01 (we take Ω = ∆ as scale). Using the exper-
imental values from Ref. [34] (see also [35]) we estimate
µGT1 ≈ 20 MeV and σGT ≈ 22 MeV. With these values we
find more than two orders of magnitude reduction in the
number of moments required

Ngen
GT = 42372 Nσ

GT = 339 . (46)

As a second example we consider instead the simulation
of longitudinal response in quasi-elastic electron-nucleus
scattering at momentum transfer q. Typical values of the

moments are µQE1 = q2/2M , with M the nucleon mass,
and σQE ≈ kF ≈ 250 MeV, with kF the Fermi momen-
tum [36,37]. For a momentum transfer q = 400 MeV and
a maximum excitation energy δν = 400 MeV we find

Ngen
QE = 42372 Nσ

QE = 838 . (47)

An expected saving by a factor ≈ 50.
It is likely that for calculations in this regime the sim-

ple low-energy model used in Ref. [31] might not be suit-
able. Due to the expected increase in the Hamiltonian
norm, we would expect a larger relative saving in number
of moments in cases where higher resolution Hamiltonians
with a larger momentum cut-off are employed.

Lastly we want to comment on the fact that the total
computational cost controlled by the maximum evolution
time T = Nδt still scales as O(1/∆) and we therefore have
no violation of the no-fast-forwarding theorem [38]. Inter-
estingly for Hamiltonians that can be fast-forwarded [38,

39] the computational cost is no longer bounded by T but
by N instead. For applications like the reconstruction of
the spectral function or the calculation of thermodynamic
observables like in Ref. [27] this will be completely given
by classical cost. One can also employ the construction
presented here to prepare states in a given energy window
by performing the summation in Eq. (12) (or more cor-
rectly it’s finite N approximation) coherently on a quan-
tum device using the Linear Combination of Unitaries
strategy [40]. This is similar to the energy filter proposed
in Ref. [41] or the original GIT [3] (if used coherently) and
the explicit appearance of the energy variance in our cost
estimates can prove useful in reducing the cost for some
situations. A similar procedure could be employed as a
subroutine to the Verified Phase Estimation [42] in order
to estimate general expectation values. We leave a more
thorough exploration of these possibilities to future work
on spectral filters.

We thank Joseph Carlson for discussions about nuclear re-
sponse functions. This work was supported in part by the
U.S. Department of Energy, Office of Science, Office of Nu-
clear Physics, Inqubator for Quantum Simulation (IQuS) un-
der Award Number DOE (NP) Award DE-SC0020970

A Derivation of Error Bounds

In this appendix we provide a full derivation of the error
bounds used in the main text. In order to simplify the
notation we will denote the Gaussian kernel as

Gν(ω) =
1√
2πΛ

exp(−(ν − ω)2

2Λ2
) , (48)

and it’s periodic extension with period P as

GPν (ω) =
∞
∑
k=−∞

Gν(ω + kP ) =
∞
∑
k=−∞

Gν+kP (ω) . (49)

We start with the error introduced by using the peri-
odic extension of the kernel

∣Φχ(ν) −Φ(ν)∣ = εP (ν) . (50)

A.1 Periodic extension in the general case

We can write this difference explicitly as

εP (ν) = ∣∫ dωGPν (ω)S(ω) − ∫ dωGν(ω)S(ω)∣

= ∣∫ dω (
∞
∑
k=−∞

Gν+kP (ω) −Gν(ω))S(ω)∣

= ∣∫ dω∑
k≠0

Gν+kP (ω)S(ω)∣

= ∫ dω∑
k≠0

Gν+kP (ω)S(ω)

(51)
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where in the last line we used the fact that both S(ω) and
the Gaussian kernel are positive definite. We can now use
the fact that S(ω) = 0 for frequencies outside the energy
spectrum so that

εP (ν) = ∫
∥Ĥ∥

−∥Ĥ∥
dω∑

k≠0
Gν+kP (ω)S(ω) . (52)

At this point we can use the fact that S(ω) is integrable,
and in particular we can write

∫
∥Ĥ∥

−∥Ĥ∥
dωS(ω) = ∫ dωS(ω) = µ0 , (53)

the zeroth-moment (cf. Eq. (9) in the main text). Using
this result one can then bound the error with

εP (ν) ≤ µ0 sup
ω∈[−∥Ĥ∥,∥Ĥ∥]

∑
k≠0

Gν+kP (ω) . (54)

It is convenient to rewrite the summation as follows

[Gν+P (ω) +Gν−P (ω)] +
∞
∑
k=2

[Gν+kP (ω) +Gν−kP (ω)] ,

since the second term can be bounded easily using

∞
∑
k=2

Gν+kP (ω) ≤ ∫
∞

1
dxGν+xP (ω) , (55)

∞
∑
k=2

Gν+kP (ω) ≤ ∫
∞

1
dxGν+xP (ω)

= 1√
2πΛ

∫
∞

1
dxe−

(ω−ν−xP )2

2Λ2

= 1

2P
erfc(P − ω + ν√

2Λ
)

(56)

so that, including the contribution with −k, we find

∞
∑
k=2

[Gν+kP (ω) +Gν−kP (ω)] ≤ 1

2P
erfc(P − ω + ν√

2Λ
)

+ 1

2P
erfc(P + ω − ν√

2Λ
)

(57)

We can now proceed to use the bound in Eq. (17) of
the main text to write

εP (ν) ≤ C sup
ω∈[−∥Ĥ∥,∥Ĥ∥]

(Gν+P (ω) +Gν−P (ω)) , (58)

where the constant factor C is given by

C = µ0 (1 +
√
π

2

Λ

P
) . (59)

In order to turn this into a useful bound, we will consider
the largest error that can occur for any

ν ∈ [νmin, νmax] ⊆ [−∥Ĥ∥, ∥Ĥ∥] , (60)

which directly implies that

ω − ν ∈ [−∥Ĥ∥ − νmax, ∥Ĥ∥ − νmin] ⊆ [−2∥Ĥ∥,2∥Ĥ∥] . (61)

First, notice that one of two Gaussians in Eq. (58) will al-
ways dominate over the other. To see this we will consider
two cases separately: first let’s take

ω − ν ∈ [−∥Ĥ∥ − νmax,0] . (62)

In this range of values we have

∣P − ω + ν∣ = P − ω + ν ≥ P > 0

∣P + ω − ν∣ = ∣P − ∣ω − ν∣∣ {> 0 for P > ∥Ĥ∥ + νmax

≥ 0 for P ≤ ∥Ĥ∥ + νmax

(63)

For this range, the second Gaussian centered in ν−P dom-
inates and we need to have P > ∥Ĥ∥ + νmax in order to
prevent the exponent to go to zero. Therefore

Gν+P (ω)+Gν−P (ω) ≤ 2Gν−P (ω)

≤ 2√
2πΛ

exp(−(P − ∥H∥ − νmax)2

2Λ2
) .

(64)

If we take the complementary range of values

ω − ν ∈ [0, ∥Ĥ∥ − νmin] , (65)

we find instead the the first Gaussian dominate and, for
P > ∥Ĥ∥ − νmin we find the useful bound

Gν+P (ω)+Gν−P (ω) ≤ 2Gν+P (ω)

≤ 2√
2πΛ

exp(−(P − ∥H∥ + νmin)2

2Λ2
) .

(66)

These results suggest that we should take

P = (1 + η)∥Ĥ∥ +max [∣νmin∣, νmax] , (67)

for some appropriate η > 0. For this choice we have in fact

εP (ν) ≤ 2µ0√
2πΛ

(1 +
√
π

2

Λ

P
) e−

η2∥Ĥ∥2

2Λ2 . (68)

In order to simplify the calculation of a good value for η
that would guarantee εP (ν)Ω < εP , for some (dimension-
less) target error tolerance εP > 0, we use the simple lower

bound P > ∥Ĥ∥ and find

η ≥
√

2Λ

∥Ĥ∥

¿
ÁÁÁÀlog

⎛
⎝

√
2

π

µ0

εP

Ω

Λ
(1 +

√
π

2

Λ

∥Ĥ∥
)
⎞
⎠
. (69)

Neglecting sub-leading logarithmic factors we find there-
fore the asymptotic scaling

χ = P

∥Ĥ∥
= Õ

⎛
⎝

1 + Λ

∥Ĥ∥

√
log (µ0Ω

εPΛ
)
⎞
⎠
. (70)

A more practical bound which uses the conventions of
the main text is the following one

χ = 2 +
√

2Λ

∥Ĥ∥

√
log ( 2Ω

εPΛ
) , (71)

which is the result quoted in the main text.
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A.2 Periodic extension with moment information

We now turn to show how to obtain an improved error
bound using information about the energy moments. As
before, and without loss of generality, we will consider
ν ∈ [νmin, νmax]. For the following manipulations, it will
be convenient to change variables and define

νmin = µ1 −Ωmin νmax = µ1 +Ωmax , (72)

with µ1 the first energy moment which gives us informa-
tion about the average energy in the spectral function and
Ωmin,Ωmax both positive. At this point we start from the
expression for the error εP (ν) obtained in Eq. (51) before
and rewrite it as follows

εP (ν) =∫ dω∑
k≠0

Gν+kP (ω)S(ω)

=∫
µ1−ασ

−∞
dω∑

k≠0
Gν+kP (ω)S(ω)

+ ∫
µ1+ασ

µ1−ασ
dω∑

k≠0
Gν+kP (ω)S(ω)

+ ∫
∞

µ1+ασ
dω∑

k≠0
Gν+kP (ω)S(ω)

=ε1(ν) + ε2(ν) + ε3(ν) ,

(73)

for some α > 0 and where we have denoted by σ the square
root of the variance

σ =
√
µ2 − µ2

1 . (74)

The central integral can be bounded in the same way we
obtained the result in the previous section, the main dif-
ference is that now we take the interval

ω − ν ∈ [−ασ −Ωmax, ασ +Ωmin] . (75)

In this range we can bound the central contribution with

ε2(ν) ≤
2µ0√
2πΛ

(1 +
√
π

2

Λ

P
) e−

η2α2σ2

2Λ2 , (76)

where now we took the period to be

P = (1 + η)ασ +max [Ωmin,Ωmax] , (77)

for some η > 0. Note that, in order for the exponential to
become small, we would need P > ηασ > Λ so that we can
use the simpler bound

ε2(ν) ≤
2µ0√
2πΛ

(1 +
√
π

2
) e−

η2α2σ2

2Λ2 , (78)

which will incur at most a logarithmic cost. In order to
guarantee this term to be smaller than εP /(2Ω), for di-
mensionless εP > 0, we can take (cf. Eq. (69))

η =
√

2Λ

ασ

¿
ÁÁÁÀlog

⎛
⎝

√
8

π

µ0

εP

Ω

Λ
(1 +

√
π

2
)
⎞
⎠
. (79)

In order to bound the other two terms, we first bound
the sum over k with an integral using

∞
∑
k=1

Gν+kP (ω) ≤ ∫
∞

0
dxGν+xP (ω) , (80)

together with a similar one for the negative terms

∞
∑
k=1

Gν−kP (ω) ≤ ∫
∞

0
dxGν−xP (ω)

= ∫
0

−∞
dxGν+xP (ω) ,

(81)

so that summing them together we find the bound

∞
∑
k≠0

Gν+kP (ω) ≤ ∫
∞

−∞
dxGν+xP (ω) = 1

P
. (82)

The sum of the two missing terms ε13(ν) = ε1(ν) + ε3(ν)
is thus bounded by the following

ε13(ν) ≤
1

P
(∫

µ−ασ

−∞
dωS(ω) + ∫

∞

µ+ασ
dωS(ω))

= 1

P
(1 − ∫

µ+ασ

µ−ασ
dωS(ω))

≤ σ2

Pα2σ2
= 1

Pα2

≤ 1

(1 + η)α3σ
.

(83)

Here we used the normalization of S(ω) to get to the
second line, the Chebyshev bound Eq. (31) in the main
text to get to the third and Eq. (77) for the last one.
At this point we can in principle use the expression for
η in Eq. (79) to find an appropriate value for α so that
ε13(ν) < εP /(2Ω). In order to better see the general trend,
we instead ensure that α satisfies

α ≥
√

2Λ

σ

√
log (3.6

µ0Ω

εPΛ
) , (84)

so that η < 1. We can then solve

1

(1 + η)α3σ
≤ 1

α3σ
≤ εP

2Ω
. (85)

This results in the following bound

α ≥
√

2Λ

σ
max

⎡⎢⎢⎢⎢⎣

√
log (3.6

µ0Ω

εPΛ
), σ

2/3Ω1/3

Λ

0.9

ε
1/3
P

⎤⎥⎥⎥⎥⎦
. (86)

This result can be inserted directly into Eq. (77) to obtain
the final estimate for the period P required.

We now use the conventions described in the main text
to obtain a more intuitive result and distinguish explicitly
two different regimes. For 2σ ≥ Λ the second term will
dominate for all εP ≲ 0.6 and for all values if we increase
the numerical factor to 1.9. In this case we can take

χ = 2.7

ε
1/3
P

Ω1/3σ2/3

∥Ĥ∥
+ δν

∥Ĥ∥
, (87)
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as quoted in the main text. Here we used the fact that

max [Ωmin,Ωmax] ≤ Ωmin+Ωmax = νmax−νmin = δν . (88)

For large values of Λ > 2σ we would need to use the full
expression in Eq. (86) above instead.

Finally, for cases where we know the value of central
moments

µ̃n = ∫ dω ∣ω − µ1∣n S(ω) , (89)

for n higher then 2 are known, then one can use a the
following generalization of the Chebyshev inequality

Prob [∣ω − µ1∣ ≥ Γ ] ≤ µ̃n
Γn

. (90)

Using this additional information we can take instead

P = (1 + η)αµ̃n1/n +max [Ωmin,Ωmax] , (91)

and can therefor choose α as follows

α ≥
√

2Λ

µ̃n
1
n

max

⎡⎢⎢⎢⎢⎣

√
log (4

µ0Ω

εPΛ
),( µ̃nΩ

εP
)

1
n+1 0.9

Λ

⎤⎥⎥⎥⎥⎦
. (92)

For µ̃
1/n
n ≥ Λ we have the following simpler result

χ = 2.7

ε
1/(n+1)
P

(Ωµ̃n)1/(n+1)

∥Ĥ∥
+ δν

∥Ĥ∥
, (93)

valid up to n = 15. This can be advantageous for small er-
rors provided the central moments do not grow too much.

A.3 Truncation error

Here we provide the details underlying the bound for the
truncation error

εN(ν) = ∣ΦχN(ν) −Φχ(ν)∣ , (94)

used in the main text. In order to simplify the notation
we will use mχ

n to denote the moments (see Eq. (7)). For
our Fourier polynomials these are

mχ
n = ∫ dωS(ω) exp(−i 2π

χ∥Ĥ∥
nω)

= ⟨Ψ0∣Ô† exp(−i 2π

χ∥Ĥ∥
nĤ) Ô∣Ψ0⟩ ,

(95)

In addition, note that ∣mχ
n∣ ≤ µ0 with µ0 the zeroth en-

ergy moment. This can be easily seen by normalizing the
state Ô∣Ψ0⟩ with

√
µ0 and using the fact that the evolu-

tion operator is unitary. We can now express explicitly the
truncation as follows

εN(ν) = 1

χ∥Ĥ∥
∣

∞
∑

n=N+1
(gχn(ν)mχ

n + g
χ
−n(ν)m

χ
−n)∣ , (96)

with gχn(ν) the Fourier coefficients from Eq. (20). Using
the bound on the moments mχ

n we then find immediately

εN(ν) ≤ µ0

χ∥Ĥ∥

∞
∑

n=N+1
(∣gχn(ν)∣ + ∣gχ−n(ν)∣)

= 2µ0

χ∥Ĥ∥

∞
∑

n=N+1
exp(− 2π2Λ2

χ2∥Ĥ∥2
n2)

≤ 2µ0

χ∥Ĥ∥ ∫
∞

N
dx exp(− 2π2Λ2

χ2∥Ĥ∥2
x2)

= µ0√
2πΛ

erfc(N
√

2πΛ

χ∥Ĥ∥
)

≤ µ0√
2πΛ

exp(−N2 2π2Λ2

χ2∥Ĥ∥2
)

(97)

where we used the triangle inequality on the first line, the
bound on a sum with an integral in the third and Eq. (17)
in the last. Note that the bound does not depend on the
frequency ν anymore. We can now find the value for N
that would guarantee εN(ν)Ω ≤ εN for some (dimension-
less) target error tolerance εN > 0. The result is

N ≥ χ∥Ĥ∥√
2πΛ

¿
ÁÁÀlog( µ0Ω√

2πΛεN
) . (98)

This is the result used in the main text.

A.4 Statistical error

We now turn to the discussion of the bound on the statis-
tical error in the evaluation of the Fourier moments mχ

n.
For the moment we will assume we have estimated each
moment with a fixed error εM which for simplicity we take
to be equal for all moments (thanks to the rapid decrease
in the coefficients an adaptive strategy be more advanta-
geous). We also neglect the error on the zeroth moment
mχ

0 since its value is known beforehand. Since errors on
different moments are independent, we add the error con-
tributions in quadrature to find

ε2S ≤
ε2Mµ

2
0

χ2∥Ĥ∥2
N

∑
n=1

(∣gχn(ν)∣
2 + ∣gχ−n(ν)∣

2)

= 2
ε2Mµ

2
0

χ2∥Ĥ∥2
N

∑
n=1

exp(− 4π2Λ2

χ2∥Ĥ∥2
n2)

≤ 2
ε2Mµ

2
0

χ2∥Ĥ∥2 ∫
N

0
dx exp(− 4π2Λ2

χ2∥Ĥ∥2
x2)

< 2
ε2Mµ

2
0

χ2∥Ĥ∥2 ∫
∞

0
dx exp(− 4π2Λ2

χ2∥Ĥ∥2
x2)

=
ε2Mµ

2
0

2πχ∥Ĥ∥Λ
,

(99)

where we used the fact that the variance of the moments is
less than µ2

0 and the same procedure employed in Eq. (97).
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In order to attain a total expected error εS ≤ εS/Ω we then
need to take

εM < εS
µ0

√
2πχ∥Ĥ∥Λ
Ω

(100)

resulting in an expected number of samples

S > 2N
Ω2µ2

0

2πχ∥Ĥ∥Λε2S
. (101)

The additional factor of 2 in the numerator comes from
the need to evauate separately the real and imaginary part
of each moment separately. If we want to ensure this is
sufficient with high probability we can use Markov’s to
ensure the probability that the error is below ε2S is larger
than 2/3 by increasing the target error εS by a factor of at

least
√

3 and then use the Chernoff bound and majority
voting to increase the probability to 1−δ with logarithmic
effort. For instance

S = N Ω2µ2
0

χ∥Ĥ∥Λε2S
log (2

δ
) , (102)

will be enough for a confidence level 1 − δ. Together with
the bound from Eq. (98) this shows that the number of
samples is independent from the number of terms N .

The treatment above assumes errors are completely
uncorrelated which might not necessarily be the case due
to the need of controlling systematic errors with e.g. er-
ror mitigation techniques. For a more conservative error
estimate we consider instead a bound to εS obtained by
summing the individual errors in absolute value. Following
the same procedure used above we find the final result

S = NΩ2µ2
0

Λ2ε2S
log (2

δ
) , (103)

quoted in the main text. We want to conclude this ap-
pendix with a similar result regarding the original Cheby-
shev based GIT from Ref. [3]. The estimate of the sam-
ple complexity reported there didn’t use the strategy em-
ployed here and as a result the original work gave an esti-
mate S = O(N3) which was somewhat pessimistic. Using
in fact the present strategy, together with the results in
App.D.3 of [3] and restoring the energy dimensions in or-
der to be compatible with our current conventions we can
show that a number of samples given by

SCheb = 2N
Ω2

Λ2ε2S
log (2

δ
) , (104)

are enough to control the statistical errors.
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