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A B S T R A C T   

The rapid expansion of CubeSat constellations could revolutionize the way inland and nearshore coastal waters 
are monitored from space. This potential stems from the ability of CubeSats to provide daily imagery with global 
coverage at meter-scale spatial resolution. In this study, we explore the unique opportunity to improve the 
retrieval of bathymetry offered by CubeSats, specifically those of the PlanetScope constellation. The orbital 
design of the PlanetScope constellation enables the acquisition of image sequences with short time lags (from 
seconds to hours). This characteristic allows multiple images to be captured during a short period of steady 
bathymetric conditions, especially in dynamic environments like rivers. We hypothesize that taking the ensemble 
mean of a CubeSat image sequence can enhance bathymetry retrieval compared to standard single-image 
analysis. Along with the existing optimal band ratio analysis (OBRA) algorithm, we also use a new neural 
network-based depth retrieval (NNDR) technique to infer bathymetry from both individual and time-averaged 
images. The two methodologies are evaluated using field data from five different river reaches with depths up 
to 15 m and both top-of-atmosphere (TOA) radiance and bottom-of-atmosphere (BOA) surface reflectance 
PlanetScope data products. Despite low spectral resolution and concerns about the radiometric quality of 
CubeSat imagery, accuracy assessment based on in-situ comparisons indicates the potential (0.52 < R2 < 0.7 for 
the NNDR method) of PlanetScope imagery to retrieve depths up to ~ 10 m in clear water conditions. The 
proposed image averaging consistently improves bathymetry retrieval over single image analysis. The NNDR 
technique was found to outperform OBRA, illustrating the importance of leveraging all spectral bands through 
machine learning approaches. TOA data provided more robust bathymetry results than BOA data for the OBRA 
technique, but the NNDR technique was minimally impacted by the type of data product.   

1. Introduction 

With recent advances in the development of CubeSat constellations, 
remote sensing of inland and nearshore coastal waters has entered a 
revolutionary era (Cooley et al., 2017; Niroumand-Jadidi et al., 2020b; 
Niroumand-Jadidi and Bovolo, 2021). This progress has been enabled by 
the capability of CubeSat constellations to capture imagery with un
precedented daily coverage and meter-scale resolutions. This unique 
characteristic is made possible by fleets consisting of a large number of 
small satellites. CubeSats thus fill the persistent gap between spaceborne 
imagers that acquire data with high temporal resolution but very coarse 
pixels e.g., Moderate Resolution Imaging Spectroradiometer (MODIS) 
(Salomonson et al., 2006) and those with much better spatial resolution 
but far less frequent coverage like WorldView (Wilson et al., 2022). The 
meter-scale spatial resolution of CubeSats creates the possibility of 
monitoring even small inland water bodies like river channels, for which 

the spatial resolution of common satellites (e.g., Landsat-8 and Sentinel- 
2) is too coarse (Mansaray et al., 2021). In addition, the daily revisit 
frequency improves the likelihood of acquiring cloud-free images and 
allows the temporal dynamics of biophysical attributes like water 
quality and bathymetry (depth of water measured from the water sur
face down to the streambed) to be captured (Vanhellemont, 2019). The 
combination of high spatial and temporal resolution and the potential 
for near-real-time remote sensing could greatly facilitate advances in 
aquatic science and management. 

PlanetScope is the most prominent CubeSat constellation, with>180 
CubeSats, known as Doves, currently in orbit (Planet Team, 2021). This 
constellation provides daily imagery of the entire landmass of Earth 
with ~ 3 m spatial resolution. Moreover, PlanetScope data are available 
at no cost for research purposes. The application of PlanetScope imagery 
to aquatic systems has recently received increasing research attention. 
For instance, the bathymetry of coastal areas has been retrieved based 
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on empirical and semi-empirical models using PlanetScope imagery 
(Gabr et al., 2020; Li et al., 2019; Poursanidis et al., 2019). The Plan
etScope data provided promising bathymetry and total suspended 
matter (TSM) retrievals in the Venice lagoon using a physics-based 
approach Niroumand-Jadidi et al., 2020b. Some studies also demon
strated the potential of PlanetScope imagery in retrieving water quality 
indicators (e.g., chlorophyll-a and turbidity), as well as detection of algal 
blooms (Mansaray et al., 2021; Niroumand-Jadidi and Bovolo, 2021; 
Vanhellemont, 2019). 

Despite the unparalleled advantages of Planet Doves in terms of 
spatial and temporal resolution, low spectral resolution (four bands) and 
concerns about the radiometric quality and consistency among multiple 
platforms can limit aquatic applications (Cooley et al., 2017; Nir
oumand-Jadidi et al., 2020b). The issue of low spectral resolution is 
more pronounced in optically complex waters, where narrower spectral 
bands might be required to resolve diagnostic absorption features 
(Giardino et al., 2019). The radiometric quality of optical imagery also 
plays a key role in deriving biophysical parameters in aquatic systems 
(Niroumand-Jadidi et al., 2021). This is because a relatively small 
fraction of the downwelling solar irradiance is reflected from within the 
water body or from the bottom due to the strong attenuation of light by 
pure water (Giardino et al., 2019; Toming et al., 2016). As a result, the 
radiometric sensitivity of satellite sensors tends to be insufficient to 
detect subtle variations in water-leaving radiance, as the signal-to-noise 
ratio (SNR) is reduced by artifacts associated with the atmosphere and 
sun glint (Moses et al., 2017). Planet Doves capture images with a 12-bit 
dynamic range that is similar to that of standard sensors onboard 
Sentinel-2 and Landsat-8 (Mandanici and Bitelli, 2016). The concern 
regarding the possibly lower radiometric quality stems from the fact that 
CubeSats, by definition, carry small and inexpensive sensors that might 
not achieve the same quality (i.e., SNR) and consistency as more typical, 
much larger satellite sensors (Cooley et al., 2017; Houborg and McCabe, 
2016). 

In this study, we focus on bathymetry retrieval and exploit a unique 
characteristic of the PlanetScope constellation that remains largely un
explored. Although many studies highlight the daily acquisitions pro
vided by Plant Doves, the revisit frequencies are actually even better: 
sub-daily. The constellation design of PlanetScope allows imaging the 
Earth’s surface with short time lags, ranging from seconds to a few hours 
between images. The Planet Doves are deployed in two near-polar orbits 
with opposite inclinations at an altitude of ~ 475 km, allowing image 
acquisitions from both ascending and descending orbits. The swaths of 
subsequent CubeSats in each orbit overlap in the across-track direction 
by a few kilometers. These swath overlaps allow for the acquisition of 
pairs of images with a time lag of about 90 s. Acquisitions from both 
ascending and descending orbits of the PlanetScope constellation yield 
other time lags in the range of a few minutes to a few hours (Kääb et al., 
2019; Roy et al., 2021). To date, little attention has been paid to this 
particular attribute of the PlanetScope constellation in aquatic appli
cations. To our knowledge, the only study to capitalize upon this 
capability focused on estimating water surface velocities by tracking 
river ice floes over the short (90 s) time lag between images captured by 
subsequent Planet Doves (Kääb et al., 2019). Thus, a need clearly exists 
to further examine and unlock the potential of short time lag CubeSat 
image sequences in general and specifically in the context of aquatic 
applications. 

In this study, we examine ensemble-averaging of Dove acquisitions 
with short time lags as a means of improving bathymetry retrieval. The 
idea is built upon the recent work of Legleiter and Kinzel (2021a) on 
inferring bathymetry from averaged river images (IBARI). IBARI pro
vided improved depth retrieval in a clear-flowing river by using time- 
averaged images derived from videos rather than single image frames. 
This method mitigated the noise present in single images due to 
reflectance from an irregular water surface (i.e., sun glint). Although 
IBARI originally was developed for analyzing helicopter-based videos, 
we hypothesize that this framework could be extended to depth retrieval 

from space by exploiting short time lag images from the PlantScope 
constellation. Preserving short time lags among images is important in 
mapping bathymetry to ensure that water depth remains steady over the 
acquisition period. This is of particular importance in fluvial systems 
where the streamflow and associated water level can vary significantly 
over time. Similarly, in coastal waters, the depth can be influenced by 
tidal effects and inland inflows. Moreover, short time lags among ac
quisitions maximize the homogeneity of images in terms of atmospheric 
and illumination conditions, which is important for creating an inter
nally consistent ensemble. 

Various spectrally-based methods for inferring bathymetry from 
optical imagery can be categorized into two main groups: empirical 
(regression-based) and physics-based approaches (Dekker et al., 2011; 
Hodúl et al., 2018; Niroumand-Jadidi et al., 2020a, 2018). The empirical 
bathymetry retrieval is based on training a regression model using in- 
situ depth samples (Legleiter et al., 2009; Lyzenga, 1978; Niroumand- 
Jadidi and Vitti, 2016; Shintani and Fonstad, 2017). Physics-based 
models rely on comparing the observed (image) spectra with radiative 
transfer simulations that model the interaction of light with the water 
surface, water column, and substrate (Gege, 2014; Mobley, 1994; Nir
oumand-Jadidi et al., 2020b). The original IBARI is based on an 
empirical bathymetry method called optimal band ratio analysis (OBRA) 
developed by Legleiter et al. (2009). OBRA is based on the widely used 
band ratio model (Stumpf et al., 2003) and examines all possible band 
combinations to identify the optimal pair of bands (Legleiter et al., 
2009). In this study, in addition to standard OBRA, we propose an 
empirical machine learning-based method called neural network depth 
retrieval (NNDR) to examine the effectiveness of averaging Planet Dove 
image sequences with short time lags. 

Machine learning approaches like support vector machines and 
random forests have provided promising results when used to retrieve 
coastal bathymetry (Tonion et al., 2020). An NN-based empirical model 
was also tested for bathymetry retrieval in a harbor environment using 
Landsat-8 imagery (Makboul et al., 2017). More recently, a convolu
tional NN (CNN) model was used to estimate water depths from aerial 
imagery (Mandlburger et al., 2021). A comprehensive review of 
empirical approaches for depth retrieval, including machine learning 
techniques, is presented by Mandlburger et al. (2021). However, ma
chine learning-based models remain understudied in bathymetry 
retrieval, particularly in fluvial systems (Legleiter and Harrison, 2019a). 
Although the main objective of this study is not to develop a new ba
thymetry retrieval method, we use NNDR to examine the impact of using 
a machine learning approach rather than OBRA for depth retrieval from 
time-averaged imagery. We explore the utility of NNs for inferring ba
thymetry as they can learn complex and non-linear relations between 
predictors (spectral bands) and the response parameter (water depth) 
(Murtagh, 1991). Furthermore, NNs can identify and exploit the most 
informative features from all of the original spectral bands, with no need 
for extraction of features in advance (Murtagh, 1991; Shaheen et al., 
2016). 

We pursue the following objectives: (i) introduce a framework for 
analyzing ensembles of PlanetScope images acquired with short time 
lags, (ii) examine the effectiveness of ensemble averaging in improving 
bathymetry retrieval compared to the typical single-frame analysis, (iii) 
develop a machine learning-based bathymetry method (i.e., NNDR) and 
examine its effectiveness compared to standard OBRA when applied to 
single-frame and time-averaged images, and (iv) evaluate the depth 
retrieval accuracies derived from both top-of-atmosphere (TOA) radi
ance and bottom-of-atmosphere (BOA) surface reflectance data products 
from the PlanetScope constellation. The manuscript is structured as 
follows. The methodology of the study is presented in Section 2. Section 
3 introduces our case studies and associated imagery and in-situ data. 
Experimental results and discussion are provided in Sections 4 and 5, 
respectively. Finally, concluding remarks and an outlook for future work 
are presented in Section 6. 
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2. Methods 

Most studies involving CubeSat data analysis emphasize the advan
tages of daily acquisitions that are more likely to yield cloud-free images 
of a given location. However, less attention has been paid to sub-daily 
imagery that could provide new opportunities, particularly in aquatic 
applications. In this study, we assume that images with short time lags 
can offer multiple observations of bathymetric conditions that remain 
steady over the duration of the image sequence. Thus, we hypothesize 
that ensembling the short time lag images can mitigate image noise and 
thus improve bathymetry retrieval. This approach is built upon the 
IBARI framework (Legleiter and Kinzel, 2021a), in which the ensemble 
consisted of video frames acquired from a helicopter platform. However, 
we note several key distinctions in applying an IBARI-like method to 
spaceborne CubeSat imagery rather than airborne videos. The spatial 
resolution of CubeSat data is significantly (~20 times) lower than the 
helicopter images from Legleiter and Kinzel (2021a). The number of 
images in a CubeSat sequence is limited to only a few (most often two) 
frames, whereas a video provides tens or hundreds of frames over a few 
seconds. In this study, we explore the ensembling of CubeSat image 
sequences as a means of improving bathymetry retrieval. 

We employ both TOA radiance and BOA surface reflectance data 
products from Planet Doves. The first step for ensembling the CubeSat 
images is TOA radiance to TOA reflectance conversion. This step is 
required only for the TOA radiance products to account for changes in 
illumination and sensor viewing angles. Note that the view angle of 
PlanetScope data currently varies only within a few degrees from nadir 
(Ghuffar, 2018). All of the data used in this study were near nadir (<5◦) 
with only slight variations in view angle between sub-daily acquisitions. 
Another important step is the radiometric harmonization of images ac
quired by different generations of PlanetScope sensors. The harmoni
zation transforms values from the latest PlanetScope sensors (namely 

PS2.SD and PSB.SD) to match those of the early PlanetScope satellites 
(PS2). The harmonization transform parameters are provided in the 
metadata accompanying the imagery and consist of multiplicative co
efficients for each band. This transform mitigates radiometric in
consistencies among image sequences captured by different sensors. We 
then perform image-averaging on the harmonized reflectance data, 
either TOA or BOA. The averaging is performed over time on a per-pixel 
basis. Note that because the Dove data are orthorectified, pixels corre
spond to one another spatially throughout an image time series (Planet 
Team, 2021). Denoting the feature vector of reflectances at different 
wavelengths λ of an image pixel acquired at time t as Rt(λ), the time- 
averaged image value R(λ) can be derived for a sequence consisting of 
T images as follows: 

R(λ) =
∑T

t=1Rt(λ)
T

(1) 

A minimum of two images is required to perform the time averaging. 
The number of images T can be increased depending on the availability 
of short time lag images. Moreover, if the bathymetry remains steady 
over a longer period of time, additional Dove images from days prior to 
and following the image acquisition also can be incorporated into the 
ensemble. 

To examine the effectiveness of ensemble-averaging Dove acquisi
tions for inferring bathymetry, we also propose a neural network-based 
depth retrieval (NNDR) technique, which we implemented using the 
Deep Learning Toolbox of the MATLAB software package (MATLAB, 
2022). NNDR is a multilayer perceptron (Murtagh, 1991) with two 
hidden layers that takes the original bands of the PlanetScope data (i.e., 
four spectral features) as input and provides the water depth as output. 
In our analyses, each hidden layer consists of 20 neurons. The numbers 
of hidden layers and neurons are defined through a tuning step by 
varying these parameters. The same architecture provided stable results 
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Fig. 1. Workflow of the proposed approach for bathymetry retrieval based on averaging image sequences acquired by CubeSats. The labels w and b refer to weights 
and biases, respectively. 
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for the different case studies presented herein. We divided the in-situ 
data into training, test, and validation subsets based on a common 
random selection approach (Legleiter et al., 2014; Pontoglio et al., 
2020). The training subset (35 % of samples) is used for computing the 
gradient and updating the network weights and biases (Fig. 1). The 
network uses the test subset (15 % of samples) to monitor the error 
during the training process. A reduction in the test error normally occurs 
during the initial phase of training. However, when the network begins 
to overfit, the error on the validation set increases. The network 

parameters (weights and biases) are saved at the minimum of the test set 
error so as to mitigate the overfitting problem and achieve a more 
generic model. The training is stopped when the test error increases for a 
specified number of iterations (here set to 6). The training is repeated 
ten times (with random sample selection from 50 % holdout for training 
and test), and the average depth estimate for these ten replicates is 
considered the final retrieval. The validity of the model is then assessed 
based on the validation set (50 % of samples) that is not used during the 
training phase. 

Fig. 2. The location of the case study river reaches on the U.S. map and associated true color composites of PlanetScope imagery. The in-situ bathymetry samples are 
superimposed with colors showing the water depth. Imagery © 2022 Planet Labs Inc. 
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Table 1 
Characteristics of studied rivers and selected PlanetScope image sequences along with the statistics of available in-situ depth samples.  

River and USGS site 
number 

Characteristics PlanetScope imagery Gage water 
level * [m] 

In-situ depths [m] 
distribution 

In-situ samples 
statistics 

ID Date and time 

Sacramento 
11,377,100 

Moderately clear, ~110 m wide; single meander 
bend 

Img1 20170913_181326  1.16 N = 1581 
Mean = 1.74 m 
Std = 0.64 m 

Img2 20170913_181552  1.16 

Salcha 
15,484,000 

Very clear water, ~50 m wide; longer reach with 
multiple bends 

Img1 20190722_210207  2.07 N = 319 
Mean = 1.18 m 
Std = 0.54 m 

Img2 20190723_204419  2.06 

American 
11,446,500 

Clear water below dam, ~80 m wide; short study 
reach at a river restoration site 

Img1 20201019_180351  2.20 N = 990 
Mean = 1.21 m 
Std = 0.84 m 

Img2 20201019_183224  2.22 
Img3 20201021_180626  2.21 

Kootenai 
12,310,100 

Very clear water, ~125 m wide; meandering 
channel with data from several bends 

Img1 20170923_180021  13.93 N = 3805 
Mean = 8.77 m 
Std = 2.62 m 

Img2 20170923_180211  13.93 

Colorado 
09,380,000 

Clear water below dam, ~100 m wide; short, 
straight reach 

Img1 20210317_172334  2.04 N = 1332 
Mean = 4.85 m 
Std = 1.89 m 

Img2 20210318_173212  2.03 
Img3 20210319_175930  2.03 

* The gage water level is the height above an arbitrary datum specific to each gage. For this study, only the difference in water level between image acquisitions is of 
interest as a means of ensuring that bathymetric conditions were steady. 

Fig. 3. (a) OBRA of time-averaged image for the Sacramento River and (b) associated regression model.  

Fig. 4. (a) Training and (b) test comparison along with (c) performance of the proposed NNDR at different epochs for bathymetry retrieval from the time-averaged 
image of Sacramento River. 
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In addition to the proposed NNDR, we also employ OBRA (Legleiter 
et al., 2009) as an alternative bathymetric mapping method to investi
gate the effect of averaging image sequences. OBRA examines all 
possible log-transformed band ratios of spectral data in training a depth 
retrieval model. Through regressing depths versus band ratios, the pair 
of bands that provides the highest coefficient of determination (R2) is 
identified and selected as the optimal band ratio (Legleiter et al., 2009). 
The log-transformed band ratio at a given time t and for the time- 
averaged image are denoted by Xt and X in Equations (2) and (3), 
respectively: 

Xt = ln
[

Rt(λ1)

Rt(λ2)

]

, dt = atebtXt (2)  

X = ln
[

R(λ1)

R(λ2)

]

, d = aebX (3) 

Note that λ1 and λ2 are the numerator and denominator wavelengths, 
respectively. In this study, an exponential model is used to estimate 
depth from either a single image at time t (dt) or the time-averaged 
image (d); at and bt and a and b represent the coefficients of the expo
nential relations for the single and time-averaged cases, respectively. 
The exponential model performed better than the linear or quadratic 
forms of OBRA used in some previous studies. The exponential formu
lation has the important advantage of avoiding negative depth estimates 
in shallow waters, as often occurs when using a linear model (Legleiter, 
2021a). To ensure that the analyses are consistent, the validation of 
OBRA is performed using the same subset of the data as for the valida
tion of NNDR. 

We assessed the accuracy of bathymetry retrievals relative to the in- 

Fig. 5. Validation of depth retrieval from single (Img1 and Img2) and time-averaged (AvgImg) images based on OBRA and NNDR for the Sacramento River.  

Table 2 
Accuracy statistics of bathymetry retrieval based on OBRA and NNDR consid
ering TOA and BOA single (Img1 and Img2) and time-averaged (AvgImg) images 
for the Sacramento River. The best performances are indicated by bold font.   

Img1 Img2 AvgImg 

OBRA NNDR OBRA NNDR OBRA NNDR 

R2 TOA 0.46 0.62 0.37 0.57 0.51 0.70 
BOA 0.53 0.63 0.46 0.55 0.61 0.68 

RMSE [m] TOA 0.47 0.39 0.51 0.41 0.44 0.34 
BOA 0.44 0.39 0.48 0.42 0.40 0.35 

NRMSE [%] TOA 13 10 14 11 12 9 
BOA 12 10 13 11 11 9 

MAE TOA 1.26 1.21 1.28 1.22 1.25 1.19 
BOA 1.24 1.21 1.26 1.22 1.23 1.19 

Bias TOA 0.99 1.01 0.98 1.02 0.99 1.02 
BOA 0.98 1.02 0.97 1.02 0.98 1.02  

Fig. 6. Errors of bathymetry retrieval from single (Img1 and Img2) and time- 
averaged (AvgImg) images based on OBRA and NNDR for the Sacra
mento River. 
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situ data using metrics that quantify the in-situ vs image-derived depth 
comparisons: coefficient of determination (R2), root mean square error 
(RMSE), normalized RMSE (NRMSE), bias, and mean absolute error 
(MAE). R2 and RMSE are common least-squares metrics used in 
regression analyses. NRMSE represents the percentage of RMSE relative 
to the maximum depth. For bias and MAE, we used the recent definition 
of these metrics in ocean color applications which involves calculating 

their values in a log-transformed space to account for the proportionality 
of the errors with depth (Seegers et al., 2018). The closer the bias to one, 
the less the estimated depths are biased. Bias > 1 indicates an over
estimation of the retrieved values on average, whereas bias < 1 is an 
indication of underestimation. For instance, a bias of 1.2 indicates that 
depth retrievals are on average 1.2 times (20 %) greater than the values 
measured in the field. MAE always exceeds one and indicates the relative 

Fig. 7. Bathymetry maps derived from single (Img1 and Img2) and time-averaged (AvgImg) images based on OBRA and NNDR for the Sacramento River.  

Fig. 8. Validation of depth retrieval from single (Img1 and Img2) and time-averaged (AvgImg) images based on OBRA and NNDR for the Salcha River.  
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error of depth retrieval. Both bias and MAE are unitless. For a total 
number of n estimated values Ei with associated field measured values 
Oi, the accuracy metrics can be calculated according to Equations (4) −

8. 

R2 =

∑n
i=1(Ei − O)

2

∑n
i=1(Oi − O)

2,O =
1
n
∑n

i=1
Oi (4)  

RMSE =

(∑n
i=1(Ei − Oi)

2

n

)1/2

(5)  

NRMSE =
RMSE

max(O)
× 100 (6)  

bias = 10
∑n

i=1
log10 (Ei/Oi )

n (7)  

MAE = 10
∑n

i=1
|log10 (Ei/Oi )|

n (8)  

3. Case studies and datasets 

Five river reaches with relatively clear waters in the US were used as 
case studies and covered a wide range of water depths. The selected 
reaches are located on the Sacramento, Salcha, American, Kootenai, and 
Colorado Rivers. Fig. 2 shows the selected reaches with the associated 
in-situ depth samples. The Sacramento (Legleiter and Harrison, 2019b), 
Salcha (Legleiter and Kinzel, 2021b), and American (Legleiter and 
Harrison, 2022) are shallow reaches (<3.5 m), whereas the Kootenai 
(Legleiter and Fosness, 2019a) and Colorado (Legleiter et al., 2021) sites 
include waters up to 15 m deep. Measured turbidities were 3.3 NTU on 
the Sacramento, 1.09 NTU on the Kootenai, and 0.413 NTU on the 
Colorado (Legleiter and Harrison, 2019b). Although turbidity data were 
not collected on the Salcha or American Rivers, the water at these sites 
was also very clear and presumably had low turbidities similar to those 
recorded at the other sites. This diverse dataset allowed us not only to 
test the ensemble-averaging approach to depth retrieval but also broadly 
evaluate the utility of CubeSat imagery for bathymetric mapping. A brief 
description of the selected river reaches is provided in Table 1, along 
with some statistics on the number and distribution of in-situ depth 
samples. The in-situ data used in this study are available from Legleiter 
et al. (2021), Legleiter and Harrison (2019a), Legleiter and Harrison, 

Table 3 
Accuracy statistics of bathymetry retrieval based on OBRA and NNDR consid
ering TOA and BOA single (Img1 and Img2) and time-averaged (AvgImg) images 
for the Salcha River. The best performances are indicated by bold font.   

Img1 Img2 AvgImg 

OBRA NNDR OBRA NNDR OBRA NNDR 

R2 TOA 0.37 0.43 0.31 0.35 0.29 0.52 
BOA 0.45 0.45 0.30 0.30 0.43 0.50 

RMSE [m] TOA 0.37 0.35 0.36 0.37 0.43 0.30 
BOA 0.38 0.39 0.44 0.44 0.40 0.35 

NRMSE [%] TOA 12 12 12 12 14 10 
BOA 13 13 15 15 13 12 

MAE TOA 1.28 1.26 1.27 1.28 1.30 1.23 
BOA 1.26 1.26 1.31 1.31 1.29 1.27 

Bias TOA 1.01 1.05 1.07 1.09 1.06 1.07 
BOA 1.04 1.07 1.02 1.06 1.05 1.09  

Fig. 9. Errors of bathymetry retrieval from single (Img1 and Img2) and time- 
averaged (AvgImg) images based on OBRA and NNDR for the Salcha River. 

Fig. 10. Bathymetry maps derived from single (Img1 and Img2) and time-averaged (AvgImg) images based on OBRA and NNDR for the Salcha River.  
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2022, andLegleiter and Kinzel, 2021b. Detailed information about the 
field measurements and characteristics of the river reaches can be found 
in previous studies conducted on the Sacramento (Legleiter and Harri
son, 2019b), Salcha (Legleiter and Kinzel, 2021a), Kootenai (Legleiter 

and Fosness, 2019b), Colorado (Legleiter et al., 2021), and American 
Legleiter and Harrison, 2022 rivers. 

We use both TOA radiance and BOA surface reflectance products 
from Planet Doves. The atmospheric correction of the BOA product is 

Fig. 11. Validation plots comparing depth retrieval from single (Img1, Img2, and Img3) and time-averaged (AvgImg) images based on OBRA and NNDR for the 
American River. 
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performed by the data provider based on the 6S radiative transfer model 
considering ancillary data derived from MODIS products (e.g., water 
vapor, ozone, and aerosol data) (Planet Team, 2021). The spectral res
olution of PlanetScope imagery is limited to four bands (455–515 nm, 
500–590 nm, 590–670 nm, and 780–860 nm). The acquisition date and 
time (UTC) of the imagery are listed in Table 1. In some cases, images 
from adjacent days were also considered if the water level remained 
steady according to data from a U.S. Geological Survey (USGS) gaging 
station at the site (U.S. Geological Survey, 2022; Table 1). 

4. Experimental results 

This section presents results summarizing the bathymetry via the 
NNDR and OBRA methods when applied to both single and time- 
averaged images. For brevity, all of the figures are based on TOA data. 
However, the accuracy statistics reported in the tables are based on both 
TOA and BOA data, which allows us to assess the impact of using the 
atmospherically corrected product. Note that the results are described in 
greater detail for the first reach (Sacramento River) by providing graphs 
associated with the training phase of the depth retrieval process. The 
validation analyses based on in-situ comparisons are presented in detail 
for all reaches. 

4.1. Sacramento River 

The OBRA of the time-averaged image for the Sacramento River is 
shown in Fig. 3a, where the green (545 nm) to red (630 nm) ratio pro
vides the highest R2 (0.55) among all possible band ratios. The fitted 
exponential model associated with the optimal band ratio is shown in 
Fig. 3b. 

The training phase of the proposed NNDR for the time-averaged 
image is summarized in Fig. 4. The comparison analyses for the 
training and test samples indicate a relatively strong relationship be
tween the image-derived and in-situ depths (R2 > 0.7). Fig. 4c illustrates 
the performance of NNDR at different training epochs in terms of the 
mean squared error; the stop criterion is met at epoch 32. 

The accuracy of depth retrieval from either single or time-averaged 
images was assessed based on validation samples that were not used 
during the training phase. Fig. 5 shows the matchup validations of OBRA 
and NNDR applied to single and time-averaged images. The bathymetry 

Table 4 
Accuracy statistics of bathymetry retrieval based on OBRA and NNDR considering TOA and BOA single (Img1, Img2, and Img3) and time-averaged (AvgImg) images for 
the American River. The best performances are indicated by bold font.   

Img1 Img2 Img3 AvgImg 

OBRA NNDR OBRA NNDR OBRA NNDR OBRA NNDR 

R2 TOA 0.28 0.52 0.08 0.25 0.28 0.49 0.33 0.65 
BOA 0.35 0.54 0.10 0.25 0.34 0.52 0.39 0.64 

RMSE [m] TOA 0.76 0.60 0.84 0.75 0.76 0.62 0.74 0.51 
BOA 0.70 0.55 0.81 0.71 0.70 0.57 0.69 0.49 

NRMSE [%] TOA 21 17 23 21 21 17 21 14 
BOA 19 15 22 20 19 16 19 14 

MAE TOA 1.56 1.49 1.70 1.62 1.60 1.51 1.54 1.43 
BOA 1.51 1.45 1.67 1.60 1.57 1.46 1.51 1.42 

Bias TOA 1.07 1.21 1.07 1.21 1.07 1.20 1.08 1.14 
BOA 1.01 1.14 0.99 1.18 0.98 1.10 0.99 1.14  

Fig. 12. Errors of bathymetry retrieval from single (Img1, Img2, and Img3) and 
time-averaged (AvgImg) images based on OBRA and NNDR for the Amer
ican River. 

Fig. 13. Bathymetry maps derived from single (Img1, Img2, and Img3) and time-averaged (AvgImg) images based on OBRA and NNDR for the American River.  
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retrieval for both OBRA and NNDR improved when using the time- 
averaged image instead of the single images. For example, NNDR- 
based R2 improved by 0.08 and 0.13 when using the time-averaged 
image compared to single images 1 and 2, respectively. The analyses 
also reveal that NNDR-based retrievals of bathymetry are more accurate 
than those of OBRA. For example, NNDR yielded an improvement of 
0.19 in R2 and 0.10 m in RMSE relative to OBRA when using the time- 
averaged image. 

More extensive accuracy statistics are provided in Table 2 for both 
TOA and BOA data. The time-averaged image consistently enhanced 
bathymetry estimation compared to the single image retrievals, as 
indicated by the improved R2 and RMSE for both TOA and BOA data. 
MAE also slightly improved for the time-averaged image for depth 
retrieval based on either OBRA or NNDR. None of the cases resulted in a 

significant bias, as the bias values were very close to one. Employing 
BOA data rather than TOA data slightly improved the retrievals based on 
OBRA. For the time-averaged image, R2 and RMSE of OBRA improved on 
the order of 0.1 and 0.04 m, respectively, when using BOA data instead 
of TOA. However, NNDR-based retrievals were unaffected by changing 
the image data type from TOA to BOA. This result suggests that NNDR is 
robust to atmospheric effects, which is consistent with other studies 
based on machine learning (Duan et al., 2022; Sagawa et al., 2019). The 
NNDR-based retrieval based on the time-averaged image provides the 
best NRMSE (9 %). 

Distributions of the errors (image-derived values − in-situ values) in 
bathymetry retrievals are illustrated by boxplots (Fig. 6). The bottom 

Fig. 14. Validation comparisons of depth retrieval from single (Img1 and Img2) and time-averaged (AvgImg) images based on OBRA and NNDR for the Koote
nai River. 

Table 5 
Accuracy statistics of bathymetry retrieval based on OBRA and NNDR consid
ering TOA and BOA single (Img1 and Img2) and time-averaged (AvgImg) images 
for the Kootenai River. The best performances are indicated by bold font.   

Img1 Img2 AvgImg 

OBRA NNDR OBRA NNDR OBRA NNDR 

R2 TOA 0.17 0.38 0.11 0.54 0.21 0.60 
BOA 0.16 0.29 0.14 0.51 0.23 0.57 

RMSE [m] TOA 2.43 2.07 2.55 1.79 2.38 1.68 
BOA 2.45 2.22 2.51 1.84 2.35 1.74 

NRMSE [%] TOA 16 14 17 12 16 11 
BOA 16 15 17 12 16 12 

MAE TOA 1.28 1.22 1.30 1.17 1.27 1.16 
BOA 1.28 1.24 1.29 1.18 1.26 1.17 

Bias TOA 1.01 1.04 0.99 1.02 1.00 1.01 
BOA 1.02 1.05 1.02 1.03 1.01 1.02  

Fig. 15. Errors of bathymetry retrieval from single (Img1 and Img2) and time- 
averaged (AvgImg) images based on OBRA and NNDR for the Kootenai River. 
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and top edges of the boxes show the 25th and 75th percentiles, the 
central marks indicate the median values, and the whiskers show the 
most extreme errors. The boxes associated with the OBRA-based re
trievals are longer and have wider whiskers that indicate larger errors 
than those from NNDR. The errors associated with the time-averaged 
image result in smaller boxes with narrower whiskers that indicate the 
effectiveness of the time-averaging ensemble of short time lag imagery 
for depth retrieval. 

The bathymetry maps derived from single and time-averaged images 
are shown in Fig. 7. NNDR-based retrievals from the time-averaged 
image captured deeper waters (>2.5 m), which improved the agree
ment with in situ observations as indicated in the comparison plots 
(Fig. 5). 

4.2. Salcha River 

The comparison plots shown in Fig. 8 indicate an improved NNDR- 
based bathymetry retrieval when using the time-averaged image 
instead of single images. The R2 improvements were 0.09 and 0.17 
compared to Img1 and Img2, respectively. The performance of OBRA- 
based bathymetry retrieval deteriorated slightly when using the time- 
averaged image. The retrievals of NNDR were more accurate than 
those of OBRA in all cases. The highest accuracy was achieved by NNDR 
from the time-averaged image, with an R2 0.15 higher than the best 
result achieved from OBRA. 

The detailed accuracy statistics for bathymetry retrieval from both 
TOA and BOA data are given in Table 3. BOA data led to some 
improvement in the OBRA results, particularly for the time-averaged 
image, for which the R2 increased from 0.29 to 0.43. The results of 
NNDR were less affected by the type of image product (e.g., R2 of 0.52 vs 
0.50 for TOA and BOA data, respectively). The time-averaged image 

enhanced bathymetry retrieval based on NNDR using either BOA or TOA 
data. OBRA-based bathymetry retrieval from the time-averaged image 
of the BOA data provided more accurate results than Img2, whereas it 
was comparable to the results from Img1. 

The error boxplots also indicate the effectiveness of image-averaging 
for depth retrieval and confirm the superior performance of NNDR 
compared to OBRA (Fig. 9). 

The bathymetry maps derived from single and time-averaged images 
are shown in Fig. 10. In addition to the quantitative assessments pro
vided above, visual inspection of bathymetry maps revealed that the 
map derived from the time-averaged image was smoother, with a 
noticeable reduction in pixelated noise. 

4.3. American River 

Validation comparisons are provided in Fig. 11 for the American 
River study reach. The image averaging approach again improved depth 
retrieval compared to single image analyses. The improvements are 
substantial (e.g., NNDR-based improvement of R2 and RMSE on the 
order of 0.4 and 0.24 m compared to Img2). NNDR once again out
performed OBRA with, for instance, R2 of 0.65 vs 0.33 and RMSE of 0.51 
m vs 0.74 m for the time-averaged image. All OBRA-based depth re
trievals suffered from underestimation for depths > 1.5 m. NNDR-based 
bathymetry estimates from the time-averaged image provided the 
strongest agreement with field observations across the entire range of 
depths. 

The detailed comparison statistics are provided in Table 4. The ac
curacy metrics were better for the time-averaged image for both OBRA 
and NNDR. BOA data yielded some improvements in the OBRA-based 
depth retrievals, whereas the differences between TOA and BOA re
sults were slight for NNDR. 

Fig. 16. Bathymetry maps derived from single (Img1 and Img2) and time-averaged (AvgImg) images based on OBRA and NNDR for the Kootenai River.  

M. Niroumand-Jadidi et al.                                                                                                                                                                                                                   



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102958

13

Fig. 17. Matchup validation of depth retrieval from single (Img1, Img2, and Img3) and time-averaged (AvgImg) images based on OBRA and NNDR for the Colo
rado River. 
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Fig. 12 illustrates the distribution of the depth retrieval errors in the 
American River. The averaged image resulted in smaller errors than the 
single images. This case study also confirmed that NNDR-based depth 
retrieval led to smaller errors than OBRA. 

The bathymetric maps also imply that NNDR better resolved the 
deeper part of the channel, particularly based on the time-averaged 
image (Fig. 13), which also was evident in the comparison plots 
(Fig. 11). 

4.4. Kootenai River 

This case study includes water depths up to 15 m, based on the field 
measurements, and thus allowed us to assess the potential of Planet
Scope imagery and the NNDR technique for mapping bathymetry in not 
only clear shallow channels but also deeper waters. The validation 
comparisons imply that time-averaging the image sequences improved 
depth retrieval (Fig. 14). The R2 values associated with NNDR estimates 
are improved by 0.22 and 0.06 compared to the results derived from 
Img1 and Img2. The associated RMSE improvements were 0.39 m and 
0.11 m. OBRA-based retrievals also benefitted from image averaging, 
but the accuracies remained low (R2 = 0.21 and RMSE = 2.38 m for the 
time-averaged image). Although NNDR-based bathymetry retrieval is 
promising, depths > 10 m were still underestimated. This result was 
expected because any attempt to map bathymetry from passive optical 
image data is subject to a maximum detectable depth, which is a func
tion of the optical properties of the water column and the sensor’s 
radiometric characteristics. In essence, light is attenuated exponentially 
as water depth increases, limiting optically-based depth retrieval even in 
clear inland water bodies (Legleiter and Fosness, 2019b). 

The detailed accuracy statistics derived from in-situ vs image- 
derived depth comparisons are provided in Table 5. The effect of Plan
etScope product level (TOA, BOA) was minimal for bathymetry results 
derived from either OBRA or NNDR. As in the other case studies, NNDR 
results were superior compared to OBRA. Note that even though the bias 
was ideal (equal to 1) for OBRA, this metric only indicates the average 
bias and in this case, overestimations for shallower waters and under
estimation for deeper waters canceled one another. Considering a 
number of different metrics is important when interpreting the results of 
any bathymetric mapping exercise. 

The distributions of errors also confirm the effectiveness of the 
proposed image averaging approach for depth retrieval (Fig. 15). The 
enhanced performance of NNDR compared to the standard OBRA is also 
evident. 

The bathymetry maps derived from single and time-averaged images 
are shown in Fig. 16. OBRA failed to retrieve the shallower water depths 
in the southern part of the study area. 

4.5. Colorado River 

The selected reach of the Colorado River also represented a wide 
range of bathymetry, with depths up to ~ 10 m. Image averaging 
appeared beneficial for improving depth retrieval (Fig. 17). The NNDR- 
based improvements in R2 were 0.1 and 0.06 with respect to the worst 
(Img1) and best (Img3) single image results, with associated RMSE 
improvements of 0.12 m and 0.08 m. NNDR again outperformed OBRA 
(e.g., R2 of 0.57 vs 0.31 for the time-averaged image). Depth retrieval in 
deep waters appeared challenging, particularly for OBRA. NNDR-based 
retrievals suffer from underestimation for depth > 8 m. 

The accuracy statistics are summarized in Table 6. The time- 
averaged image again showed strong potential for improving bathym
etry estimates. Another key point is that the OBRA-based results based 
on BOA data were weak (R2 < 0.1 for two single images), whereas NNDR 
was minimally affected by the PlanetScope data product type. 

The boxplots for NNDR-based retrievals are more compressed than 
OBRA, indicating smaller estimation errors (Fig. 18). Image averaging 
also reduced the depth retrieval errors compared to the single images. 

Bathymetric maps derived from time-averaged and single images are 
presented in Fig. 19. OBRA-based depths were underestimated to a 
greater degree than for NNDR, particularly in the deeper parts of the 
channel. The pronounced underestimation problem of OBRA was also 
evident in the validation comparisons (Fig. 17). 

5. Discussion 

The proposed approach built upon averaging image sequences ac
quired by CubeSats improved bathymetry retrieval using both OBRA 
and NNDR. Fig. 20 summarizes the improvement percentages (mini
mum, maximum, and average) in terms of R2 and RMSE when 
employing the time-averaged image instead of single images. In only one 

Table 6 
Accuracy statistics of bathymetry retrieval based on OBRA and NNDR considering TOA and BOA single (Img1, Img2, and Img3) and time-averaged (AvgImg) images for 
the Colorado River. The best performances are indicated by bold font.   

Img1 Img2 Img3 AvgImg 

OBRA NNDR OBRA NNDR OBRA NNDR OBRA NNDR 

R2 TOA 0.26 0.47 0.38 0.49 0.16 0.51 0.31 0.57 
BOA 0.01 0.48 0.06 0.50 0.19 0.53 0.04 0.54 

RMSE [m] TOA 1.67 1.38 1.52 1.35 1.80 1.34 1.64 1.26 
BOA 2.02 1.38 2.01 1.37 1.80 1.31 1.98 1.31 

NRMSE [%] TOA 16 13 14 13 17 13 16 12 
BOA 19 13 19 13 17 12 19 12 

MAE TOA 1.32 1.27 1.29 1.25 1.34 1.26 1.32 1.24 
BOA 1.44 1.28 1.43 1.26 1.39 1.26 1.42 1.25 

Bias TOA 0.98 1.04 0.97 1.02 0.96 1.04 0.97 1.03 
BOA 0.95 1.04 0.93 1.02 0.97 1.04 0.95 1.03  

Fig. 18. Errors of bathymetry retrieval from single (Img1, Img2, and Img3) and 
time-averaged (AvgImg) images based on OBRA and NNDR for the Colo
rado River. 
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case, OBRA of the Salcha River, the accuracy decreased when using the 
time-averaged image. In all other cases, time-averaging led to more 
reliable depth estimates. The improvements are calculated for each 
study area and also averaged over the five sites. Depth retrieval from 
time-averaged images led to 43 % and 35 % improvements of R2 on 
average for the five reaches based on OBRA and NNDR, respectively. The 
RMSE improvements are more pronounced for NNDR-based retrievals 
than for OBRA (15 % vs 3 % on average). The analyses show that the 

highest improvements provided by the image averaging approach were 
for the American River, based on either OBRA (average R2 improvement 
of 117 % and 8 % for RMSE) or NNDR (average R2 improvement of 73 % 
and 22 % for RMSE). These results demonstrate the effectiveness of the 
proposed ensembling approach in improving bathymetry retrieval from 
CubeSat imagery. NRMSE improved similarly to RMSE when using time- 
averaged images rather than single frames. However, the key point is 
that NRMSE remains consistent across all of our case studies (9 % <

Fig. 19. Bathymetry maps derived from single (Img1, Img2, and Img3) and time-averaged (AvgImg) images based on OBRA and NNDR for the Colorado River.  
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NRMSE < 14 %), indicating that the NNDR results in depth retrieval 
errors that are proportional to the water depth range. 

The impact of employing BOA data instead of TOA data is illustrated 
in Fig. 21 in terms of the R2 and RMSE improvement percentages. NNDR 
was less impacted by the image product type. Although BOA data led to 
some improvements in the OBRA retrievals, the accuracies decreased 
significantly in some cases (e.g., Colorado River). These results imply 

that the PlanetScope BOA product might include sizeable artifacts over 
water areas that could affect aquatic applications. This finding is 
consistent with the results of our previous studies (Niroumand-Jadidi 
et al., 2020b; Niroumand-Jadidi and Bovolo, 2021). Atmospheric 
correction can mainly be neglected in empirical (regression-based) ba
thymetry retrieval because actual reflectance values are not as impor
tant as they are for physics-based methods (Niroumand-Jadidi et al., 

Fig. 20. Improvement percentages of R2 and RMSE resulting from employing time-averaged images instead of single images for bathymetry retrieval in different 
river reaches. 

Fig. 21. Improvement percentages of R2 and RMSE resulting from employing TOA images instead of BOA images for bathymetry retrieval in different river reaches.  
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2020b). However, if the atmospheric correction is not accurate over 
aquatic targets, unrealistic alterations of the spectra can lead to un
certainties in depth retrieval, even for empirical methods. Thus, TOA 
data were preferred over BOA data when applying regression models for 
bathymetry estimation in our analyses. 

Another key finding of our study was the superior performance of 
NNDR compared to OBRA. Although OBRA identifies the pair of bands 
providing the strongest correlation with bathymetry through a ratio 
model, the model itself relies on only a single feature (i.e., band ratio). 
Under this framework, other spectral bands and features available in the 
image data are not taken into account. Conversely, NNDR exploits all 
spectral bands and feature extraction and weighting are handled auto
matically within the neural network (Murtagh, 1991; Shaheen et al., 
2016). 

The performance of depth retrieval in shallow rivers indicate slight 
differences. We suspect that the biases reported for the Salcha River are 
greater than those for the Sacramento because the Salcha is a smaller 
river with a greater proportion of mixed pixels that span a range of 
depths and/or encompass the channel banks. As for the greater 
improvement associated with time-averaging for the American River, 
we attribute this result to the fact that three images were available for 
this site, whereas three of the four other sites had only two images. In 
addition, the first two images from the American were acquired within 
half an hour of one another and thus captured conditions that were 
presumably nearly identical. 

Performing OBRA in different reaches indicates that the optimal pair 
of bands for depth retrieval can vary from river to river and also among 
the images of a given reach (Fig. 22). For instance, two different pairs of 
bands including (545 nm, 630 nm) and (630 nm, 820 nm) were iden
tified by OBRA – the first pair for the single images and the latter pair for 
the time-averaged image. The OBRA of deep reaches (Kootenai and 
Colorado) using TOA data always involves the blue band as the 
numerator because shorter wavelengths in the blue provide the highest 
penetration in water. Analyzing the BOA data, the green band also 
shows potential as the numerator in the Colorado River. Although the 
band pairs were identical for TOA and BOA data in the Sacramento and 
Salcha rivers, there were differences in other reaches. These observa
tions highlight the importance of performing OBRA on an image-by- 
image basis because the optimal pair of bands can vary depending on 
the optical properties of the water body, image acquisition character
istics, and image product type. 

6. Conclusions and future work 

In this study, a unique characteristic of the PlanetScope constellation 
– the ability to acquire imagery with short time lags – is exploited in the 
context of bathymetry retrieval. We proposed considering an ensemble 
mean of CubeSat image sequences rather than a single image analysis for 
mapping bathymetry (i.e. water depth). The bathymetry retrievals in 
five different case studies with depths up to 15 m indicate the effec
tiveness of this approach. We also developed a machine learning-based 
bathymetry model: neural network-based depth retrieval (NNDR). 
NNDR outperformed widely used OBRA in mapping bathymetry from 
either single or time-averaged images. NNDR employs all available 
spectral bands, whereas OBRA relies on a single band ratio. Further
more, neural networks are capable of learning informative and robust 
features from the original data without prior extraction of the features. 
These characteristics of the NNDR enabled substantial improvements in 
depth retrieval. 

The best bathymetry results were achieved when applying NNDR to 
the time-averaged images. The number of images incorporated into the 
ensemble averaging was limited to two or three images in our study. An 
analysis within the original IBARI study indicated that increasing the 
number of images can further improve bathymetry retrieval (Legleiter 
and Kinzel, 2021a). With the growing number of CubeSats, the number 
of sub-daily revisits that result in images with short time lags is expected 
to increase, further enhancing the performance of the proposed 
approach. Moreover, additional Dove images from the days close to 
image acquisition can be incorporated into the ensemble averaging if the 
bathymetric conditions remain steady over a longer period. On the other 
hand, with the next generation of CubeSat constellations like the plan
ned Pelican constellation by Planet Labs (Planet, 2022), the number of 
sub-daily images will increase substantially (from 12 to 30 daily cap
tures with the Pelican constellation). The proposed approach can benefit 
from the very dense time-series imagery to be provided by the upcoming 
constellations. 

Our study also serves as a broad assessment of the utility of Planet
Scope TOA and BOA data products in bathymetric applications. This 
study demonstrates the potential of Dove imagery for retrieving water 
depths up to 10 m in the fluvial settings we analyzed. This range of water 
depth encompasses many inland and even coastal water bodies. The 
range of detectable depths could even increase in coastal waters with 
less optical complexity than inland waters. However, further in
vestigations are required to assess the feasibility of depth retrieval from 
Dove data across a broader range of bio-optical conditions. Although we 
tested the proposed method in riverine environments, the technique is 

Fig. 22. The optimal pair of bands (λ1, λ2) identified by OBRA for different river reaches. The gray-colored cells show the pair of bands for single images, and the blue 
triangles indicate the ratios for time-averaged images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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generic and can be applied for bathymetry retrieval in any optically- 
shallow inland or coastal water body. In addition, a new generation of 
Planet Doves (called SuperDoves) was recently deployed into orbit, 
providing enhanced spectral resolution (8 bands) with a similar spatial 
resolution as the current 4-band Doves. Thus, additional opportunities 
are expected to open up for studying inland and coastal waters by means 
of CubeSats. A comprehensive multi-sensor study could yield greater 
insight regarding the utility of CubeSat imagery in bathymetric mapping 
compared to aerial and satellite imagery with varying spatial, spectral, 
and radiometric characteristics. In this study, the NNDR model is trained 
individually for each river. However, the method has the potential to be 
trained on a much larger, aggregated data set spanning a broad range of 
bio-optical conditions, which might lead to a generic model transferable 
in space and time. Thus, further studies could be devoted to training 
deep networks employing a large number of samples and thus enhancing 
the generality of the model. 
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