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I would like start this work by quoting Dante’s Divina Commedia. You may wonder
why I cite these excerpts, among the others I want to contrast the interpretation

process with an exact science such as engineering. You will not find any reference
to the Paradiso because satisfaction is a complex and floating achievement.

"Di fuor dorate son, sì ch’elli abbaglia;
ma dentro tutte piombo, e gravi tanto,

che Federigo le mettea di paglia."
(Inferno, XXIII, 63-66)

"E tutti li altri che tu vedi qui,
seminator di scandalo e di scisma
fuor vivi, e però son fessi così."

(Inferno, XXVIII, 31-36)

"e disse: «Il temporal foco e l’etterno
veduto hai, figlio; e se’ venuto in parte
dov’io per me più oltre non discerno.»"

(Purgatorio, XXVII, 127-129)
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Abstract

The manufacturing domain has been experiencing several revolutions over the years
that have been shaping not only the design and management of processes but also
their core drivers and value propositions. Industry 4.0 unleashes many enabling
technologies such as the Internet of Things sensors and machine learning algorithms
to boost industries’ productivity through data-driven process monitoring, rather
than relying on operation manager experience. However, this fourth revolution
does not set as strategic goals sustainability drivers (e.g., social and environmental)
triggered by external forces that undermine modern societies. European policymak-
ers address this structural limitation by defining the Industry 5.0 paradigm focused
on human-centric and sustainable value creations.
In this fast-paced landscape, this doctoral thesis targets the limitations of Indus-
try 4.0 related contributions and defines three research questions to demonstrate
the competitive advantages in designing cyber-physical systems to monitor the
efficiency and sustainability of human-centric manufacturing environments. The
human-centricity is an important feature of this work because, despite the rise of
automation, workers represent a strategic and fragile resource in industrial plants.
Therefore, Internet of Things technologies are leveraged to achieve a digital repre-
sentation of workers. The acquired measurements are fed into computational al-
gorithms to appreciate data-driven managerial insights based on the returned Key
Performance and Risk indicators. The contributions of this thesis can be conceptu-
ally divided into two separate streams.
The first demonstrates the relevance of enhancing the operational visibility of in-
plant operations by exploiting Real Time Locating Systems acquisition layers. Al-
though this technology indoor locates whichever (manufacturing) entity and asset
in a defined coverage area, the returned workers’ positions fail to evaluate sys-
tems’ performances and sustainability. For this purpose, density-based machine
learning algorithms and neural networks are introduced and validated to embed
operational metrics into Decision Support Systems. Multidimensional managerial
insights prove the consistency of this methodology in three different manufactur-
ing environments. Considering production settings, managers appreciate the upti-
mes of workers and resource utilizations while evaluating the layout configurations
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and the related efficiency in manual material handling activities. This twofold level
of analysis enables to eventually increase in-plant productivity while optimizing
workers’ efforts in replenishment routes. The logistic investigation offers similar
takes by monitoring the Overall Equipment Effectivness of manual forklifts and the
distribution of picking/depositing activities in storage areas. Potential inefficien-
cies provide valid input to optimize the performances while reducing the energy
consumption of logistics vehicles.
The second stream focuses on workers’ physical resilience during task executions.
To achieve this purpose, ergonomic indices are largely adopted to mitigate work-
related musculoskeletal disorders in the workforce. The European Assembly Work-
sheet screening tool is the most complete one focusing on several parameters rang-
ing from working postures to exterted forces. The developed cyber-physical system
mirrors in digital spaces workers’ operations through a multi-device acquisition
layer. While a four-channel surface ElectroMyoGraphy and a network of mark-
erless cameras acquire muscular contractions in upper limbs and body joints, a
radio-frequency-based smart glove detects process interactions such as tool usages
and component pickings and thus segments production activities. These digital
measurements are fed into computational algorithms to automate the mentioned
ergonomic assessment. The experimental campaign validates the proposed cyber-
physical systems and draws several managerial insights. For instance, strong bend-
ing postures may highlight a poor workplace design suggesting the need of self-
adjustable workstations to accommodate a diverse workforce. At the same time,
worrisome exerted forces could require line rebalancing to fairly redistribute mus-
cular activity rates among operators.
In summary, this thesis represents a significant advancement in digital manufactur-
ing, offering ready-to-deploy systems while outlining future research opportunities
and applications.
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a-th sub-area
θw,a

i, f ′ ,k,z:represents the angle assumed by the same worker and the centroid of the k-
th industrial entity
Θa

g−g′ ,k
: Angle between the muscular body joint groups g and g’ during the q-th

Kinect frame for the r-th assembly activity
η: Gaussian distributed acceleration noise
δt: sampling time of RFID and RTLS technologies
ϕ: greatest distance between the first and last point of process interactions
ADAFSr : Activity-driven Action Force Score for the r-th assembly activity
ADBPSr

m: Activity-driven Basic Posture Score for the m-th muscle during the r-th
assembly activity
ADBPSr : Activity-driven Basic Posture Score during the r-th assembly activity
AMMCm,s: Absolute magnitude of muscular contractions for the m-th channel dur-
ing the s-th sliding window
ADMMHSr : Activity-driven Manual Material Handling Score during the r-th as-
sembly activity
AS f : Activity-related passive RFID string scanned during the f -th frame
ATf : Timestamp related to AS f

aw,a
z,i : : mean acceleration of the z-th process interaction occurred in the i-th sub-

trajectory for the w-th worker in the a-th sub-area
Bk : geometric centroid of the k-th industrial entity
Cw,a

z,i : z-th process interaction occurred in the i-th sub-trajectory of the w-th operator
in the a-th sub-areas
Cl,a

z,i,b: z-th process interaction occurred in the i-th sub-trajectory of the l-th forklift
with b-th tag type in the a-th sub-areas
CLc

j,q: Confidence level related to Posc
j,q

d∗: greatest radius to create ϵ temporal sequences
Dr

p: Duration of holding the p-th EAWS posture during the r-th assembly activity
Dr

p,o : Duration of holding the p-th EAWS posture for the o-th occurrence during the
r-th assembly activity
Dn

m: Duration to achieve the MVC for the m-th channel and n-th acquisition
Dm: Duration to achieve the MVC for the m-th channel
DMMCm,s: Duration related to the absolute magnitude of muscular contractions
for the m-th channel during the s-th sliding window
Dr

v: Duration of the v-th manual material handling event during the r-th assembly
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activity
DFScorer

m,s: EAWS Duration Force Score for the m-th channel during the s-th sliding
window and r-th assembly activity
Distw,a

z,k : Euclidean distance from the z-th process interaction to the k-th industrial
entity for the w-th worker in the a-th sub-area
durw,a

z,i : duration of the z-th process interaction occurred during the i-th sub-trajectory
for the w-th worker in the a-th sub-area
FOw,a

z,i : objective function to assign the z-th process interaction occurred in the i-th
sub-trajectory for the w-th worker in the a-th sub-area to the k-th industrial entity
FScorer

m,s: EAWS Action Force Score for the m-th channel during the s-th sliding
window and r-th assembly activity
Fv: Repetition rate of the v-th material handling event over the entire working cycle
GAFS: Global Action Force Score
GBPS: Global Basic Posture Score
GMMHS: Global Manual Material Handling Score
Lw,a

f ′ ,k : orientation during the f-th time frame to the k-th industrial entity for the w-th
operator in the a-th sub-area
Lw,a

z,k : final orientation during the z-th process interaction to the k-th industrial entity
for the w-th operator in the a-th sub-area
MAm,s: Muscular activation for the m-th channel during the s-th sliding window
MAr

m,s: Muscular activation for the m-th channel during the s-th sliding window
and r-th assembly activity
MVCn

m: Maximal voluntary contraction for the m-th channel and n-th acquisition
MVCm: Maximal voluntary contraction for the m-th channel
MMHPSr

h,v: EAWS Score related to the h-th posture during the v-th manual mate-
rial handling event and r-th assembly activity
MMHPSr

v: EAWS Posture Score during the v-th manual material handling event
and r-th assembly activity
MMHFSv: EAWS Score related to Fv

mD : distance weight of the objective function
mθ : orientation weight of the objective function
MADw: median absolute deviation of velocities of the w-th worker
NPts: required number of points to create a process interaction
noisen

m: sEMG acquisition noise in resting scenarios for the m-th channel and n-th
acquisition
noisem: sEMG acquisition noise in resting scenarios for the m-th channel
overm: Duration of overlap of the sliding windows for the m-th channel
Ow,a

z,i = {Oxw,a
z,i , Oyw,a

z,i }: 2D center of the z-th process interaction occured in the i-th
sub-trajectory for the w-th worker in the a-th sub-area
Ol,a

z,i,b = {Oxl,a
z,i,b, Oyl,a

z,i,b}: 2D center of the z-th process interaction occured in the i-th
sub-trajectory for the l-th forklift with b-th tag type in the a-th sub-area



xvii

pw,a
i, f = {pxw,a

i, f , pyw,a
i, f , tsw,a

i, f }: f-th time frame of a spatio-temporal point belonging to
the i-th sub-trajectory of the w-th worker in the a-th area
pw,a

i, f ,b = {pxl,a
i, f ,b, pyl,a

i, f ,b, tsi, f , bl,a}: f-th time frame of a spatio-temporal point belong-
ing to the i-th sub-trajectory of the l-th forklift with b-th tag type in the a-th area
pw,a

i, f ,q:f-th time frame of a spatio-temporal point belonging to the i-th sub-trajectory
and q-th ϵ temporal sequence of the w-th worker in the a-th area
pw,a

i, f ,z:f-th time frame of a spatio-temporal point belonging to the i-th sub-trajectory
and z-th process interaction of the w-th worker in the a-th area
Posj,q: Reconstructed 3D position for the j-th body joint during the q-th Kinect frame
Posc

j,q: 3D body position of the j-th body joint during the q-th Kinect frame for the
c-th camera
Sr : Passive assembly tag of the r-th assembly activity
St: Passive tool tag of the t-th tool usage
Scanr : Scanning list of ATf belonging to the same r-th assembly activity
Scant: Scanning list of TTf ′ belonging to the same t-th tool usage
Sw,a

i,q : q-th ϵ temporal sequence occurred in the i-th sub-trajectory for the w-th worker
in the a-th sub-area
T: set of trajectories recorded
Tw: set of trajectories recorded for the w-th worker
tsw,a

i, f : timestamp of the i-th trajectory during the f-th time frame for the w-th worker
in the a-th sub-area
tw,a
i : i-th sub-trajectory of the w-th worker in the a-th sub-area

tl,a
i,b : i-th sub-trajectory of the l-th forklift and b-th tag type in the a-th sub-area

Tr : Starting timestamp of the r-th assembly activity
TS f ′ : Tool-related passive RFID string scanned during the f’-th frame
Tstartr

p: Starting timestamp of Dr
p

Tendr
p: Ending timestamp of Dr

p
TTf ′ : Timestamp related to TS f ′

TTstartt: Starting timestamp related to the t-th tool usage
TTendt: Ending timestamp related to the t-th tool usage
Tstartr

v: Starting timestamp related to the v-th manual material handling event
Tendr

v: Ending timestamp related to the v-th manual material handling event
thrm: Threshold value for the m-th channel
vmax : greatest expected velocity of human walking
vmax

f : velocity of the w-th worker during the f-th time frame
Vr

g,q: Vectorial structure of the g-th body joint group during the q-th Kinect frame
for the r-th assembly activity
vw,a

z,i : mean velocity of the z-th process interaction occurred in the i-th sub-trajectory
for the w-th worker in the a-th sub-area
Wdurm: Duration of the overlapping sliding windows for the m-th channel
WSr : EAWS Weight Score related to the r-th assembly activity



xi,m: sEMG during the i-th acquisition frame for the m-th channel
xr : Binary variable associated with MMH events
xw

f | f−1: state of the model during the f-th time frame given the f-1 for the w-th
worker
% VCm: Percentage of voluntary contraction for the m-th channel
%VCm,s: Percentage of voluntary contraction for the m-th channel during the s-th
sliding window
%VCr

m,s: Percentage of voluntary contraction for the m-th channel during the s-th
sliding window and r-th assembly activity
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Preface

"Listen to me now
I need to let you know

You don’t have to go it alone
And it’s you when I look in the mirror

And it’s you when I don’t pick up the phone
Sometimes you can’t make it on your own"

– U2, Sometimes you can’t make it on your own, 2004

This thesis aims to sum up an effort-intense doctoral journey that lasted three years.
Coming from a management engineering background, I realized that deploying
data-driven solutions requires multi-disciplinary skills (not only) in the digital man-
ufacturing domain. The University of Trento ecosystem turned out an excellent
playground to learn new competencies ranging from the deployment of Internet of
Things systems to the application of state-of-the-art machine learning algorithms as
well as conceptualize and address innovative research questions.
Based on this limited academic background, this work discusses and aims to demon-
strate the strategic role of cyber-physical systems in monitoring the operational ef-
ficiency and the sustainability of human-centric manufacturing systems. Cyber-
physical systems mirror processes functioning in digital environments through a
set of enabling technologies and then process data streams with computational al-
gorithms to derive managerial metrics. This information has a pivotal role in even-
tually optimizing in-plant productivity and increasing the sustainability of human-
centric manufacturing systems. The trend of mirroring process executions in digital
environments starts with the conceptualization of Industry 4.0 in Germany at Han-
nover Messe in 2011.Different enabling technologies ranging from computing and
automation to the Internet of Things sensors are presented as a necessary condition
to boost in-plant performances and thus compete in dynamic and volatile markets.
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However, the value-creation of this industrial revolution is believed inadequate af-
ter almost 15 years of its conceptualization. Indeed, the recent societal and envi-
ronmental threats have triggered the definition of the Industry 5.0 paradigm. This
revolution exploits the already-established digital technologies to promote resilient
and sustainable value creations. Within this ever-evolving societal and manufactur-
ing landscape, the human factor still plays a strategic role despite the progressive
adoption of automation in industries. Workers represent the most flexible resource
that performs a wide range of value-added activities by interacting with different
assets. Therefore, achieving digital representation of the human factor during task
executions is a necessary condition for modern manufacturing systems. Accord-
ing to the latest two industrial revolutions, the target of these investigations must
ensure desired productivity rates while safeguarding the workforce’s physical re-
silience in a massively aging European population.
This thesis presents four different cyber-physical systems to meet both value-creation
of Industry 4.0 and 5.0 while addressing three research questions to advance the
knowledge in cyber-physical systems applications. The main thread of these method-
ologies is to leverage a Pareto approach and thus equip the operator with as few
sensors as possible and infer as many metrics as possible to manage these human-
centric environments. Among the adopted Internet of Things sensors, Real Time
Locating Systems are the most exploited wearable due to the intrinsic value of in-
dustrial entities’ (e.g., workers and forklifts)indoor locations during process execu-
tions. The process of indoor locating industrial entities requires the deployment of
a reference anchors’ infrastructure that estimates tag-equipped entities. This Inter-
net of Things acquisition layer is validated together with machine learning-based
algorithms. These layers leverage both supervised and unsupervised approaches.
On one hand, a Long Short Term Memory neural network leverages positioning
data due to its superior capabilities in learning time-driven patterns. On the other
hand, the Industrial DB scan improves the standard formulation of this density-
based algorithm to detect process interactions from workers’ positions. In the man-
ufacturing domain, a process interaction occurs whenever workers perform man-
ual activities in industrial entities (e.g., machines and workbenches). Regardless of
the computational algorithm, classified outputs are post-processed in Decision Sup-
port Systems or dashboards to offer plant multi-criteria decision-making variables.
Moreover, these cyber-physical systems are tested and validated in different indus-
trial environments where managerial insights are extensively discussed. Besides
the adoption of Real Time Locating Systems, the same methodological approach is
adopted to digitize the European Assembly Worksheet. This ergonomic tool eval-
uates workers’ physical resilience by considering different physical features (e.g.,
posture assumed, carried loads, and exerted forces) throughout its four sections.
In particular, this ergonomic tool associates load points with unfavorable physical
workload conditions and uses a traffic light scheme to classify risk levels. Based
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on this, a digital system exploits three Internet of Things sensors to automate the
European Assembly Worksheet assessment instead of relying on time-consuming
and commitment-oriented conventional managerial approaches. First, a network of
markerless cameras captures the 3D positions of body joints during assembly tasks.
Second, four channels of sEMG sensors acquire muscular activations in workers’
upper limbs. Third, a wearable Radio Frequency IDentification-based smart glove
enables the automatic recognition of components pickings and depositings, and tool
usages. The detected process interactions are pivotal information to segment as-
sembly tasks. These data streams are processed by computational algorithms that
digitize the first three ergonomic tool sections (i.e., Basic Postures, Action Forces,
and Manual Material Handling). Benefitting from the obtained Key Risk Indicators,
operation managers analyze the process weaknesses of the considered assembly
process in an ergonomic Decision Support System.
To conclude, the final ambitions of this work are multiple. First, it demonstrates
that low-cost and human-centric operation monitoring are feasible and the resis-
tance to change should be replaced by the added values of embracing digital trans-
formations. Data-driven decision-making processes are also beneficial to ensure
long-term market competitiveness. Indeed, high production flexibilities imposed
by modern mass-customized markets further threaten in-plant efficiency and the
representativeness of conventional managerial tools. Second, these investigations
in addition to validating the methodological approach offer several further research
opportunities. I hope these open points are fertile ground to improve the applica-
tion of human-centric cyber-physical systems in academic and industrial environ-
ments. Third and last, I am leaving behind and throughout this work the under-
lying message that if you do not fit in a social scenario and/or your post-master
background does not match your interest there is always room to change.
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Chapter 1

Introduction

"Imagine no possession
I wonder if you can

No need for greed or hunger
A brotherhood of man"

– John Lennon, Imagine, 1971

This first Chapter defines the main thread of this thesis and positions its scien-
tific contributions in the current manufacturing landscape. Starting with industrial
paradigms, this work points out the core features and drivers of the fourth indus-
trial revolution. This disruptive paradigm defines several enabling technologies
to trigger digital data acquisitions and achieve superior decision-making processes
with computational algorithms and/or simulation models [1]. However, the Indus-
try’s 4.0 value creation focuses on process efficiencies neglecting the systemic threats
that challenge manufacturing environments and on a larger scale modern societies.
For this purpose, European policymakers conceptualize the Industry 5.0 paradigm
providing a vision for industries to go beyond efficiency and productivity and re-
inforce the role and contributions of industry to society [2]. This latest industrial
revolution complements the previous one by promoting environmentally sustain-
able, human-centric, and resilient value-creations in manufacturing operations [3].
Subsequently, the investigation is narrowed down to analyze the Real Time Locat-
ing Systems (RTLS) as enabling Internet of Things (IoT) technology to monitor the
operations of manufacturing assets (e.g., workers and forklifts) based on their time-
dependent indoor locations [4]. The discussion highlights the benefits of indoor
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localizing industrial entities to enhance process visibility and eventually redesign
in-plant operations, besides discussing the most performing communication pro-
tocol and available positioning algorithms. The third research area discusses the
importance of safeguarding workers’ physical resilience based on standardized er-
gonomic indices. These screening tools evaluate risk degrees to which operators are
exposed during production cycles by monitoring a wide spectrum of features rang-
ing from motion profiles to muscular activations [5]. However, their formulations
are static, and thus conventional managerial approaches are utterly inadequate for
two main points. First, the assessment is strongly affected by evaluators’ commit-
ment and experience leading to time-consuming investigations. Second, time as-
pects are further exacerbated in diversified workforces (e.g., height, gender, etc.)
and in mass-customized markets that push companies to offer a wide product port-
folio with reduced batch sizes [6]. Therefore, cyber-physical systems (CPS) to au-
tomate the development of ergonomic indices are discussed, extensively. Finally,
section 1.4 pinpoints multiple research questions that this thesis answers with the
ambition to advance CPS applications in manufacturing as well as the outline of
this work.

1.1 Towards a transformative vision for manufacturing en-
vironments

FIGURE 1.1: Industry 4.0 enabling technologies

From the late 18 century to recent days, industrial revolutions have marked sig-
nificant shifts in manufacturing paradigms, each characterized by groundbreaking
innovations [7]. Contrarly to the previous systemic transformations, Industry 4.0
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FIGURE 1.2: Structure and data flow of cyber-physical systems

encapsulates several digital technologies to achieve more intelligent and intercon-
nected manufacturing processes [8]. This technology-empowered revolution pro-
vides valuable tools to embrace data-driven processes’ monitoring and optimiza-
tions rather than relying on stakeholders’ and shareholders’ experience [9]. Fig. 1.1
depicts the enabling technologies of this fourth industrial adapted from [1]. These
digital solutions are integrated in order to achieve CPS. The term CPS describes a
digital solution that mirrors process executions into virtual environments [10]. A
widely adopted schematic representation of CPS is graphically presented in Fig.1.2
[11, 12, 13]. These digital systems are usually broken down into four interconnected
layers. First, the industrial environment represents the process under consideration
and digitized through the second system’s entity (e.g., the acquisition layer). Al-
though a wide range of measurands can acquire manufacturing datastreams, the
contributions of this work target human-centric data acquisitions via IoT sensors.
Gathered data usually undergoes data processing techniques such as feature ex-
tractions and de-noising filters before being fed into cyber layers. This third sys-
tem entity mines value in raw data by (potentially) leveraging a wide range of al-
gorithms and models. The following Chapters present CPS powered by machine
learning (ML) algorithms, therefore similarly to the acquisition layer the following
paragraph does not point out the relevant role of the remaining computational al-
gorithms in the digital manufacturing domain. Finally, Decision Support Systems
(DSS) or dashboards post-process this information to compute relevant Key Per-
forming Indicators (KPIs) and Key Risk Indicators (KRIs) to eventually reconfigure
and optimize process configurations and functioning [14].
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IoT devices represent a robust solution to gather distributed data streams from
items in the physical world [15]. These measurands can use various types of con-
nections such as Wi-Fi and Bluetooth to share information with desired resolutions
with other nodes (e.g., gateways and servers) connected in the same network [16].
Although IoT solutions are deployed in different industrial scenarios to monitor dif-
ferent manufacturing entities, this work targets human-centric data acquisitions. In
this regard, the importance of monitoring and assisting the human factor is stressed
by Operator 4.0 vision that promotes a human-technology symbiosis [17]. The target
is to improve industrial operations performances by empowering workers with IoT
technologies and achieving a smarter and more skilled workforce [18]. While [19]
draws an Operator 4.0 typology to support the human factor in several use cases, [4]
translates these requirements by leveraging RTLS to indoor position workers. Bene-
fitting from these spatio-temporal data, several managerial KPIs on resource utiliza-
tion and logistic activities can be automated to improve the operational efficiency
of human-centric environments [20]. However, the Operator 4.0 represents a high-
level framework and thus fall short in discussing the computational algorithms to
mine value in acquired data [18, 19]. Computational algorithms are required to
handle datasets’ high dimensionality and to unlock the potential for processes mon-
itoring and management [16, 21]. One of the most disruptive developments is the
deployment of freely available ML algorithms, usually coded in Pytorch1 and Ten-
sorFlow2 [22]. ML methods have revolutionized the world of data analysis, both
by modifying the extraction methods, as well as information processing and inter-
pretation by supporting or even replacing traditional models to perform statistical
techniques with automatic sets of general approaches [23, 24]. In short, these intel-
ligent algorithms perform a regression or a classification on output variables given
the input features of datasets [22]. While regression determines continuous output
values, classification assigns an integer class to input data. Besides this, ML models
are distinguished by three different types of learning processes, namely supervised,
unsupervised and reinforced. In the first case, labeled data are supplied as input
to the system and the output is a mapping of them [25]. However, collecting large
amounts of ground truth data may be impractical in industries mainly due to time
and privacy constraints [26]. Therefore, unsupervised approaches present several
applications in industries due to their ability to handle not labeled data [27]. Among
them, density-based clustering methods are increasingly adopted from anomaly de-
tection to operations monitoring [26, 27, 28]. Finally, reinforcement learning deals
with dynamic systems where agents learn to make decisions by performing certain
actions and receiving rewards or penalties in return. Regardless of the learning pro-
cess, ML algorithms play a pivotal role in monitoring industrial operations [22, 24].
For instance, [29] demonstrates the potential of Long Short Term Memory (LSTM)

1https://pytorch.org/
2https://www.tensorflow.org/
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based neural networks in preventing machines and components downtimes. Simi-
larly, support vector machines, tree structures, and deep convolutional neural net-
works are robust methodologies to support workers’ quality inspections and reduce
in-plant inefficiencies by promptly notifying process deviations [23, 30, 31].
Although the digitalization of industrial operations ensures stable in-plant efficiency,
Industry 4.0 as purely purely technology-driven paradigm fails to address the mod-
ern societal challenges. Indeed, it presents several limitations from human-centric
and environmentally sustainable perspectives. First, maintaining effective and safe
collaboration between humans and robots becomes crucial as levels of automation
increase. Enabling technologies are required to empower and complement the skills
of an aging workforce, with a particular focus on safeguarding operators’ well-
being during task executions. Second, the vast adoption of IoT technologies is set
to increase energy consumption, posing environmental and electronic waste chal-
lenges. Besides this, industries and on a larger scale societies are required to reduce
their carbon footprint over the years leading to net zero emissions. It is worth not-
ing that environmental sustainability drivers are not key elements of this thesis.
Interested readers may appreciate some data-driven investigations in [32, 33]. Ad-
dressing these limitations requires a comprehensive approach that considers ethical
implications, invests in workforce training, embraces sustainable practices, and for-
tifies manufacturing systems against potential disruptions achieving resilient envi-
ronments. In this context, Industry 5.0 leverages the enabling technologies of Indus-
try 4.0 by promoting a human-centric and sustainable value-creation [3, 34]. This
industrial revolution prioritizes the resilience of both the workforce and manufac-
turing systems and defines sustainable practices, focusing on resource efficiency
and reduced environmental impact [35]. In particular, Operator 5.0 emerges as the
natural evolution of previous technology-driven vision and promotes IoT-based in-
vestigations to assist and augment workers’ capabilities and skills while safeguard-
ing their self-resilience during value-added activities [3]. Among the different di-
mensions of self-resilience, physical and occupational health represent pivotal areas
of application. Physical resilience is defined as workers’ ability to maintain stamina
and strength over production cycles [36].
Based on the described drivers that are shaping manufacturing environments, the
following two Sections narrow down the discussion to analyze different digital ap-
proaches to achieve efficient and socially inclusive manufacturing systems. section
1.2 focuses on the adoption of RTLS to enhance process visibility and traceability. In-
deed, this IoT technology indoor locates whichever manufacturing entity enabling
to monitor the efficiency and the interdependencies of industrial systems. These
KPIs represent pivotal information to achieve sustainable workplaces besides en-
suring the desired rate of in-plant performances. Section 1.3 offers an overview of
ergonomic indices as well as data-driven investigations to safeguard the well-being
of workers during task executions. These risk metrics highlight process weaknesses
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TABLE 1.1: RTLS technologies and features

Protocol Cost Coverage Interference Accuracy [m]
Wi-Fi Medium/High High High Low/Medium [3-4]
Bluetooth Medium Low/Medium Medium/High Medium [0.5]
Infrared Medium Low Low/Medium Low/Medium
UWB Medium/High Medium/High Low Very High [0.15-0.5]
GPS High Outdoor Not suited for indoors Low [10-15 ]

and offer operations supervisors valuable data to eventually redesign industrial
workplaces.

1.2 Real Time Locating Systems

RTLS represents an active research field with applications in multiple sectors from
healthcare to retail [37, 38]. In the digital manufacturing domain, RTLS gained a
lot of traction due to their capabilities of indoor localizing different entities (e.g.,
forklifts and workers) offering valuable inputs to address process complexities and
variabilities. Indoor localization is the process of obtaining a device or user loca-
tion in closed environments and compared to outdoor environments is much more
challenging due to noise sources [39, 40]. In short, RTLS networks determine the
time-dependent positions of any moving industrial entity equipped with a tag. Tags
emit localization signals with a given blink rate to the anchors (ANs) displaced in
known positions of the monitored industrial layout. Received signals are trans-
mitted by gateways via LAN or Wi-Fi to a central server that runs positioning al-
gorithms. Tab. 1.1 presents a list of different RTLS technologies along with their
technical features [41]. Based on this, the Ultrawide band (UWB) emerges as the
best candidate to indoor localize manufacturing entities due to its superior accuracy
in industrial environments. Besides a robust operative functioning in non-line-of-
sight communications, the UWB-based communication protocol is distinguished by
effective multipath resolutions that protect signals from jamming and fading [42].
Interested readers might appreciate a more detailed benchmarking analysis in [43].
As a result, the following chapters leverage UWB-based RTLS acquisition layers
to enable CPS to monitor the operational efficiency and sustainability of human-
centric manufacturing systems (see Chapters 2, 3, and 4).
The remaining part of this section investigates the RTLS-based positioning algo-
rithms as well as the adoption of locating infrastructure to digitize industrial and
human-centric operations (see subsections 1.2.1 and 1.2.2).

1.2.1 Positioning algorithms

To implement a UWB-based precise RTLS, different methods are employed to de-
termine the features required by the position estimation algorithm, as depicted in
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Fig. 1.3 [43]. Location fingerprinting matches the fingerprint of some location-
dependent signal’s features. The main challenge of this approach in indoor environ-
ments is the signal strength degradation due to reflection, diffraction, and scattering
which leads to a laborious and time-consuming calibration process [44]. On the con-
trary, geometric methods estimate the location of a target based on features like re-
ceived signal strength index (RSSI), Time of Arrival (ToA), Angle of Arrival (AoA),
and Time Difference of Arrival (TDoA) of the signal traveling between the reference
ANs and the tag to be localized. ToA and TDoA are the most used ranging tech-
niques. In ToA, two different communication schemes can be exploited: 1) Single-
side and 2) double-side two-way ranging (TWR) [45]. With TWR, a synchronization
mechanism between nodes is not required. In fact, accurate calibration of the crys-
tal oscillators is sufficient to achieve good accuracy. Similarly, TDoA presents two
transmission schemes, namely a centralized and a decentralized TDoA. In the first
approach, a tag emits a UWB signal, and the difference in the reception times at
the reference ANs side is used to calculate the position of the tag with respect to
a reference point [46]. The second transmission scheme mimics a common Global
Positioning System (GPS). The ANs continuously broadcast timestamped messages
that can be received by listening tags [47]. For the TDoA crystal oscillator trimming
is not enough to achieve the desired accuracy. A tighter synchronization between
the reference nodes is required.

FIGURE 1.3: Summary and comparison of UWB positioning algo-
rithms

1.2.2 Industrial use cases

Manufacturing companies are required to constantly monitor their in-plant opera-
tional efficiency in order to ensure long-term stability in modern volatile markets.
A key challenge is to digitally interconnect automated processes and also involve
human operators[41]. The development of RTLS-enabled CPS provides decision-
makers with several KPIs to enhance the visibility of human-centric manufacturing



Chapter 1. Introduction 8

systems [48]. Based on this, several scientific contributions validate data-driven ap-
proaches both in production and logistics environments.
Starting to review production settings, [49] automates the Value Stream Map de-
velopment by tagging workers during task executions. In addition to reducing
data collection times, a cyber layer automatically identifies the dynamic human
process interactions (HPI) of the monitored system. Upon these outputs, process
weaknesses can easily identified and thus addressed to ensure desired performance
rates. Another valuable approach is to segment worker activities during working
shifts. These insights are strategic to develop KPIs such as average production cycle
and traveling times [4]. The monitoring of manual material handling events offers
a unique opportunity to analyze the interdependencies of the monitored produc-
tion environments. This level of detail may eventually trigger re-layout processes
to lower traveled distances by operators during the shifts, achieving socially inclu-
sive workplaces based on Industry 5.0 principles [50]. Given RTLS’s high degree of
flexibility, the scientific research validates this technology by monitoring other in-
dustrial assets. For example, [51] demonstrates that tagging products represents a
privileged opportunity to reveal weak spots in production lines. This methodology
triggers comparisons between the expected throughput times with the actual ones
and eventually suggests system modifications such as line rebalancing to increase
the performance of assembly operations. A similar approach to maximize in-plant
productivity is to indoor position shared manufacturing tools [52, 53]. These CPS of-
fer operations managers two competitive benefits. While workers’ searching times
can be consistently slashed down, tools’ utilization ratio represents a valuable fi-
nancial metric to adequately design production environment assets capacities.
Despite UWB-based RTLS acquisition layers showing fewer applications in logistic
systems, some contributions highlight their potential to improve the operational ef-
ficiency of tracked assets [48, 54]. In particular, the vast majority of contributions
focus on forklift operations due to their pivotal role during inbound and outbound
logistics activities. For instance, [55] automates the spaghetti chart development to
monitor forklift operations. Based on this, process bottlenecks are highlighted by
monitoring idle and waiting times. Similarly, logistic vehicles are indoor positioned
to optimize the routing and the scheduling of picking activities during the order
management [56, 57]. The positioning information of industrial entities achieves
safer human-centric positioning systems as well. CPS are tested and validated in
industrial environments where DSS point out unsafe braking patterns of drivers
and calculate optimal routes to avoid congestions and potential collisions [58]. Dy-
namic speed limits are tested as well [59]. Regardless of the RTLS application area in
manufacturing systems, the reviewed CPS are distinguished two structural weak-
nesses. First, computational units performances in detecting HPIs and the related
KPIs are not investigated. Second, the vast majority of algorithms leverage geofenc-
ing approaches leading to high exposures in data outliers and reduced capabilities
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in detecting recurrent data patterns.
Based on these limitations, this thesis presents three CPSs that couple RTLS-based
IoT acquisition layers with ML-driven cyber layers. These investigations leverage
both supervised and unsupervised algorithms in different manufacturing environ-
ments (e.g., production and logistics). While Chapter 2 and 3 focus on a human-
centric job shop and Reconfigurable Manufacturing Systems (RMS), Chapter 4 tar-
gets internal logistic systems operations. The common ambition of these contribu-
tions is to demonstrate the superior capabilities of these CPS in monitoring manu-
facturing operations, regardless of the positioned entities (e.g., workers and fork-
lifts) and area of application. Therefore, DSS and industrial dashboards offer multi-
criteria decision variables to monitor the efficiency and sustainability of these com-
plex systems

1.3 Ergonomic indices

Despite the multitude of industrial revolutions, work-related musculoskeletal dis-
orders (WMSD) still represent a major threat to workers’ well-being during task exe-
cutions [60]. The most frequent disorder targets low back pain whilst more common
ones include muscles, tendon sheaths, peripheral nerves, joints, bones, ligaments,
etc [5]. As a primary challenge, operations managers are required to design socially
inclusive workplaces that safeguard the physical resilience of workers. Ergonomic
indices have been massively adopted to highlight process-related weaknesses and
lower WMSD, long before the conceptualization of Industry 5.0 [6]. These screening
tools evaluate risks involved in work activities, postural loading, effect of vibration,
use of tools, coupling, awkward postures, frequency of movements and their dura-
tion, work envelopes, and design of ergonomic workstation (WS) [61]. Tab. 1.2 lists
the most exploited ergonomic indices in human-centric industrial environments [5,
6, 61].
Although these indices support decision-makers in analyzing process weaknesses,
they focus on a limited set of features leading to incomplete ergonomic evalua-
tions. The European Assessment Worksheet (EAWS) fills these limitations by eval-
uating the physical workload as a function of different manual tasks and hyper-
parameters. The EAWS is divided into multiple sections, each focusing on different
aspects of physical workload [62]:

• Section 0 - General: Provides a comprehensive overview of the identified
WS, including overall evaluation, rating of additional physical workload,
space for comments and improvements, and consideration of time aspects
for repetitive loads of the upper limbs.
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• Section 1 - Basic Postures: Evaluates static postures and repetitive move-
ments with low physical effort. This section considers symmetrical and asym-
metrical postures, and the time spent in these movements is counted to as-
sign a score.

• Section 2 - Action Forces: Assesses whole-body forces and hand-finger ex-
ertions that exceed the threshold of 30− 40 N. Scores are calculated based on
the intensity and duration of the force.

• Section 3 - Manual Materials Handling: Covers tasks involving loads heav-
ier than 3 − 4 kg. It evaluates the weight, posture, working conditions, and
frequency of handling activities.

• Section 4 - Upper Limb Load in Repetitive Tasks: Focuses on the frequency
and duration of repetitive upper limb movements, including forces, gripping
modes, and postures. This section is aligned with methodologies from other
standards like OCRA.

The EAWS assigns load points for unfavorable physical workload conditions and
uses a traffic light scheme (e.g., green, yellow, red) to classify the risk levels. This
structure helps identify comprehensive ergonomic issues and suggests design im-
provements. However, besides the limitations of considered physical features, er-
gonomic analysis implementation and accuracy often rely on conventional manage-
rial approaches, which involve manual data collection and subjective analysis [63].
This can introduce limitations such as human error and time-consuming investiga-
tions. To address these limitations, subsection 1.3.1 reviews digital methodologies,
where sets of enabling IoT technologies combined with computational algorithms
automate ergonomic assessments. This investigation is aligned with Industry 5.0
principles that require socially sustainable value creations in modern manufactur-
ing systems.

1.3.1 Digital ergonomic assessments

The digitization of ergonomic indices represents a mature research area and thus
indices presented in Tab.1.2 are automated by fusing IoT measurements with com-
putational algorithms. Usually, the index selection is a function of requirements
and process weaknesses of final use cases [64, 65]. For instance, [61] leverages a
full body motion capture (MOCAP) to compute the Ovako Working posture As-
sessment (OWAS), Rapid Entire Body Assessment (REBA), and National Institute
for Occupational Safety and Health (NIOSH) indices. These KRIs represent pivotal
information to eventually redesign the assembly of a water pump and thus safe-
guard the well-being of workers. Despite several research contributions exploiting
IoT-enabled CPS to trigger ergonomic analysis into a diversified workforce, no in-
vestigation digitizes multiple EAWS sections [34, 63, 65, 66]. This limitation strongly
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affects the validity of ergonomic analysis because the other indices focus on a lim-
ited set of parameters (see Tab.1.2). Based on this, it is worth discussing in detail the
benefits that decision-makers may appreciate in digitizing all EAWS sections.
The Basic Posture is the most investigated EAWS due to its similar formulation
with other tools such as Rapid Upper Limb Assessment (RULA) and REBA [34,
61]. In this regard, MOCAP technologies are extensively adopted to digitize opera-
tors’ movements during task executions [67]. While IMU-based embedded suits are
intrusive and require time-consuming calibration processes, marker-less MOCAP
cameras represent a low-invasive and easy-to-deploy solution that suffers from po-
tential body occlusions [34, 68]. Regardless of the hardware selection, algorithms
process the acquired 3D body joints and compute the EAWS posture scores to offer
valuable insights into potential musculoskeletal disorders of workers, suggesting
reconfiguration strategies. [69] demonstrates that these approaches enhance social
inclusion and reduce employee turnover.
However, MOCAP data streams fail to evaluate action or exerted forces (e.g., sec-
ond EAWS section) during manual task executions, leading to limited investigation
of workers’ physical resilience. While no human-centric CPS have been proposed
to digitize this second EAWS section, the relevance of investigating action forces in
manual assembly is demonstrated by multiple conventional managerial approaches
(e.g., workers’ reports or ergonomist evaluations) [70, 71, 72]. For instance, [71]
benchmarks Strain Index (SI) and Occupational Repetitive Actions (OCRA) Check-
list in 10 manual tasks. At the same time, contributions in other research domains
leverage surface ElectroMyoGraphy (sEMG) wearables to monitor muscular strength
and activity [73]. The sEMG-based muscular contractions are fed into computa-
tional algorithms to detect strain and fatigue [34, 74]. Although these parameters
provide valuable insights in designing socially inclusive workspaces, they require
extensive datasets and cannot be expressed in EAWS-based force scores. A sec-
ond approach assesses levels of muscular contractions as a function of the Maximal
Voluntary Contraction (MVC), where onsets are detected by evaluating the signal’s
energy using the Teager–Kaiser Energy Operator (TKEO) [34, 75]. Various protocols
have been proposed to isolate muscular groups in isometric contractions [76, 77].
IoT-based CPS to evaluate the third EAWS section (e.g., Manual Material Handling)
remains largely unexplored. Similar to the previous EAWS section, the reviewed lit-
erature presents Manual Material Handling (MMH) analysis based on conventional
approaches and different ergonomic indices (e.g., NIOSH and EAWS) [78, 79]. [79]
redesigns three WS based on EAWS scores to lower MMH risks for employees. A
successful implementation of this EAWS section strongly relies on an appropriate
design of IoT acquisition layers. Indeed, MOCAP cameras and sEMG measure-
ments can be fused to assess postures and exerted forces in carrying loads.
On the contrary, the last EAWS section (e.g., Upper Limb Load in Repetitive Tasks)
offers a different picture. Among the others, it ensures a strong focus on hand
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movements, exerted forces, and grips during production cycles. Hands’ activity
recognition is usually assessed using ML-based CPS, where IoT layers leverage dif-
ferent kinds of MOCAP sensors based on the specification of final use cases [80].
However, the identification of motion patterns is not enough to compute the EAWS
scores of this section. Additional sensors such as dynamometers and strain gauges
are required to complete the analysis and compute EAWS scores [81]. The amount
of required measuring nodes also distinguished by poor wearabilities such as dy-
namometers strongly impacts the validation of this last EAWS section in industrial
environments [82].
The limitations of the reviewed contributions offer the unique opportunity to pro-
pose an original CPS that by exploiting a Pareto approach digitizes as much as pos-
sible the EAWS index by limiting the number of human-centric IoT technologies.
For this purpose, the CPS discussed in Chapter 5 leverages a multi-dimensional IoT
acquisition layer where MOCAP, RFID and sEMG-based measurements are fed into
computational algorithms to derive activity-driven EAWS-based KRIS.

TABLE 1.2: Features and evaluation of ergonomic indeces

Index Features Evaluation
NIOSH [83] Load weight limit on gender and spine exerted forces Lifting & carrying assessments
Snook & Ciriello (SC) [84] Time, distance and objected-driven exerted forces Pushing & pulling assessment
REBA [85] Categorization of body postures and force, with action levels for assessment Entire body assessment for dynamic tasks
RULA [86] Categorization of body postures and force, with action levels for assessment Upper body and limb assessment
OCRA [87] Measures for body posture and force for repetitive tasks Integrated assessment scores for various types of jobs
SI [88] Combined index of six exposure factors for work tasks Assessment of risk for distal upper extremity disorder
OWAS [89] Time sampling for body postures and exerted force Whole body posture recording and analysis

1.4 Research questions & outline

Starting from an overview into current manufacturing trends, this Chapter pointed
out some limitations concerning CPS applications to monitor the efficiency and
sustainability of human-centric manufacturing systems. Therefore, three research
questions (e.g., RQ in the bullet point) are formulated to advance the scientific
knowledge as well as (hopefully) scale the adoption rate of CPS for industrial oper-
ations monitoring.

• RQ1 – How can cyber-physical systems powered by Real Time Locating Systems
and machine learning algorithms digitize human-centric processes executions?

• RQ2 – How can digital ergonomic assessment safeguard workers’ physical resilience?

• RQ3 – How can key performance and risk indicators be exploited to monitor the
operations of industrial environments?

To adequately address the formulated research questions, the following chapters
presents and validate four CPS to monitor the efficiency and well-being of human-
centric manufacturing systems.
Chapter 2 present a CPS that feed the positioning information of workers into the
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Industrial Density Based (DB) scan, a novel ML-based clustering algorithm that de-
tects HPI with manufacturing entities over production cycles. A quantitative dis-
cussion of this method is outlined in subsection 2.1.2. The obtained output are post-
processed in an industrial dashboard that offers operations managers three levels
of detail to evaluate the efficiency and the social sustainability of human-centric job
shops. This digital systems is validated in an Italian operating industrial environ-
ment from two different viewpoint. While section 2.2 investigates the cyber layer
performances in detecting process interactions, section 2.3 demonstrates the com-
petitive advantages of monitoring the human-centric job shop through the multidi-
mensional set KPIs.
Chapter 3 has the ambition to challenge and thus scale the previously validated dig-
ital architecture in RMS. Based on the Professor Koren definition in 1999, RMS are
"designed at the outset for rapid change in structure, as well as in hardware and software
components to quickly adjust production capacity and functionality within a part family in
response to sudden changes in market or in regulatory requirements" [90]. Targeting the
RMS modularity and scalability, a layout and operation-insensitive CPS represent
an innovative methodology to segment workers’ tasks over working shifts (see sec-
tion 3.1). Subsection 3.1.1 present the IoT acquisition layer that gather positioning
datastreams of WS and operators leveraging an UWB-based RTLS. These spatio-
temporal data streams are processed in two steps by a ML-based cyber layer. First,
a trained ML-based classifier assigns workers’ operations to industrial resources
(e.g., WS and storage locations) and detects logistic activities. The Industrial DB
scan performances are benchmarked with two supervised algorithms, including a
LSTM-based neural network (see subsubsection 3.1.2). Second, resource-specific
classifiers are benchmarked to further detail the workers’ operations into value-
added and non-value-added (see subsubsection 3.1.2). These operator-driven out-
puts are stored in DSS, where customized callback functions are triggered to de-
velop KPIs to monitor RMS from different viewpoints (see subsection 3.1.3). While
performance-oriented metrics evaluate the efficiency of manufacturing systems, an-
other set of metrics evaluates process’s interdependencies and social sustainability
of production set-ups. The ML-based cyber layer performances are investigated in
Section 3.2 with respect to a ground truth labeled dataset involving 40 workers and
7 production set-ups. Finally, Section 3.3 pinpoints the managerial implications of
monitoring modular and scalable RMS with the developed CPS.
Chapter 4 proposes an Industrial DB scan powered CPS to monitor logistic opera-
tions during the order management. This third validation of the innovative cluster-
ing methods proves its flexibility and elevates it to a pivotal data analysis algorithm
for industrial environments. The RTLS-based IoT acquisition layer is designed to ac-
quire the motion patters of forklifts with a cabin and fork tag (see subsection 4.1.1).
Subsection 4.1.2 modifies the Industrial DB scan formulation discussed in Chapter 2
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to detect value-added forklift operations (e.g., picking and depositing) in warehous-
ing systems. Based on these outputs, a user-friendly Tracking Management System
interface develops logistic KPIs to evaluate the efficiency of the vehicles during the
order management. Exploiting the advantages of clustering-based methods, the
performances of this logistic CPS are validated in a real and operating warehous-
ing system without requiring labeled dataset (see section 4.2). Finally, section 4.3
highlights the benefit for operations supervisor in unleashing digital approaches to
monitor interal logistics process executions.
Chapter 5 fills the limitation of the reviewed ergonomic-centred contributions and
proposes a CPS to automate the EAWS assessment. Based on the required operator-
centric measurements, subsection 5.1.1 defines a multi-device IoT acquisition layer.
While a network of MOCAP cameras and a sEMG-based wearable captures hu-
man body joints and muscular contractions of workers during task execution, a
Radio Frequency IDentification (RFID) based smart smart glove detects the opera-
tors process interactions with strategic manufacturing assets (e.g., storage locations
and tools). These data streams are fed into computational algorithms to develop
EAWS-informed KRIs, stored in an Ergonomic DSS (see subsections 5.1.2 and 5.1.3).
Finally, Section 5.3 discusses the managerial implication in monitoring the physical
resilience of workers in assembly processes through the proposed set of KRIs.
Two chapters ends this doctoral thesis. While Chapter 6 streamlines scientific out-
put and activities conducted during this doctoral journey, Chapter 7 motivates how
this work addresses the formulated research questions and delineates further re-
search opportunities in this digital manufacturing domain.
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Chapter 2

Digital monitoring of human-centric

manufacturing job-shops

"I’m not saying it’s your fault
Although you could have done more

Oh you are so naive yet so"

– The Kooks, Naive, 2006

Over recent years, manufacturing companies have been facing several disruptions
to their in-plant functioning and thus performances. Among the others, mass cus-
tomization of goods is pushing industrial environments to achieve a wider prod-
uct portfolio [91]. Consequently, production batch sizes are reduced to meet final
customers’ requests [92]. This notable market-driven trend requires production en-
vironments to constantly monitor in-plant operations to reinforce performances at
desired levels.
Based on this, this Chapter proposes a CPS powered by RTLS datastreams and a
novel ML-based clustering algorithm. While the locating technology acquires work-
ers’ spatio-temporal positions, the density-based method detects HPIs with indus-
trial entities over production cycles. From a manufacturing point of view, an HPI oc-
curs whenever workers perform manual activities in machines or workbenches and
pick or deposit materials in stock-keeping units (SKUs) of storage areas. Density-
based approaches are widely used in manufacturing due to their ability to process
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unlabeled data that shorten CPS deployments [93, 94]. In addition, their quick re-
configurability enables highly customized approaches based on use cases require-
ments [95]. A stark example is the definition of relevant points of interest (e.g.,
logistic areas, corridors, SKUs, etc.) to facilitate the detection of specific events or
activities [96, 97]. In this domain, several contributions perform activity recognition
using DB scan algorithms [98, 99]. However, these formulations may return skewed
HPIs detection during production cycles due to two main weaknesses. First, they
lack time sensitivity. It is worth noting that workers may visit multiple times the
same production and/or storage area in separate temporal instances. A trajectory
identification combined with time-driven constraints are required to avoid misclas-
sification of industrial operations. Second, additional merging criteria and related
hyper-parameters must mitigate the RTLS measuring error [100, 99]. Therefore, the
Industrial DB scan is introduced to address these limitations and thus powers the
data mining process of the developed CPS.

2.1 Cyber-physical system for human-centric manufactur-
ing job shops

This section represents the original proposal of this Chapter presenting a CPS to
monitor the efficiency and social sustainability of manufacturing job shops. The
digital system constitute of four layers besides the human-centric environment un-
der analysis (see Fig. 2.1). First, the General Data Privacy Regulation (GDPR)-
compliant IoT acquisition layer tags industrial workers through an UWB-based
RTLS to anonymously acquire workers’ trajectories during the working shift. Sec-
ond, a ML-based cyber layer leverages spatio-temporal and manufacturing systems
data to detect HPIs with strategic industrial entities in manual and low-standardized
productive processes. The adopted algorithms adopts both supervised and unsu-
pervised learning processes to achieve a performing data analytics. Third, an in-
dustrial dashboard is developed to analyze through strategic KPIs the efficiency
and social sustainability of human-centric manufacturing systems on three differ-
ent levels of detail, namely job-shop, operators and resources. Finally, the List of
Symbols section sums up the indices and parameters to ease the reading process of
this quantitative section.

2.1.1 IoT acquisition layer

The developed IoT layer is an UWB-based RTLS that acquires the dynamic in-
door spatio-temporal positions of tagged entities with a given average sampling
frequency. The IoT system is based on Decawave commercial modules and is com-
posed of two main systems [101, 102]. First, a set of ANs define the reference region
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FIGURE 2.1: Developed cyber-physical system to monitor human-
centric manufacturing job shops operations

in which are monitored the dynamic positions assumed by wearable and anony-
mous tags over working shifts. In detail, the UWB-based network of ANs estimates
the dynamic positions assumed by tagged human operators over the shift through
the TDoA ranging technique. This geometric method calculates the indoor spatio-
temporal position of tags by the intersection of two hyperbolas from at least three
active ANs [103]. Any AN is based on Raspberry PI 3 connected to a DWM1001
UWB-based radio module. These reference points have to be displaced on the ceil-
ing of the manufacturing environment to be monitored with a distance between
each other at greatest equal to 20 meters (Fig. 2.2). This network is connected and
hence synchronized through a common Wi-Fi access point. The compact wearable
tags are based on Decawave DWM1001 System on Module (SoM) which is con-
figured to use UWB Channel 5 with bandwidth and frequency of 499.2 MHz and
6489.6 MHz, respectively. In addition, the DWM1001 SoM integrates, among the
others, a low-power Nordic Semiconductors nRF52 microcontroller. Data sharing
and acquisition are achieved by exploiting the Message Queuing Telemetry Trans-
port (MQTT) protocol to enable data transfer to the remote server.
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(A) Anchor mounted
on the ceiling of an in-

dustrial building

(B) Board of the tag worn by workers

FIGURE 2.2: Adopted UWB-based RTLS

2.1.2 Machine learning-based cyber layer

Based on the features of the adopted UWB-based RTLS network, this section exten-
sively describes the steps to leverage the acquired spatio-temporal positioning data
in manual and low-standardized manufacturing systems distinguished by value-
added areas in which workers perform manual operations and SKUs storage areas
(Fig. 2.3). The goal of such analysis is to detect through the original Industrial DB
scan manufacturing HPIs with industrial entities such as machines and SKUs to
gain unprecedented visibility of manufacturing job shops. For instance, evaluating
the utilization ratio of industrial entities and the distances traveled by workers dur-
ing material replenishment. To ease the reading process, five subsubsection outlines
the key steps to be performed in order to meet such ambitious aims.

Four step positioning estimation

Before starting the detection of HPIs, a pre-processing step has to be implemented
to mitigate the intrinsic interference of manufacturing settings in the anonymous
positioning data (Fig. 2.3). First, acquired data are processed by the Savitzky-Golay
filter. This data smoothing method fits a discrete set of points into a polynomial
curve of a chosen degree using an odd time window [104]. Second, the Cheng Filter
[105] detects and thus eliminates outliers whether the following condition is met
(Eq. (2.1)).

|vw
f − MADw| ≥ vmax (2.1)

Where vw
f represents the velocity of the w-th worker over the f -th timeframe and

MADw is the median absolute deviation with respect to velocities of the w-th worker.



Chapter 2. Digital monitoring of human-centric manufacturing job-shops 19

FIGURE 2.3: Heuristic flow diagram of the developed ML-based
cyber-layer

Of course, vmax is a constant and has to be set appropriately based on the motion
patterns of the monitored case study. This data removal is particularly relevant
since the following unicycle Extended Kalman Filter is insensitive to outliers in hu-
man trajectories [106]. In particular, the forward prediction of the state during the
f -th timeframe given the previous one is computed as it follows (Eq. (2.2)).

xw
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(2.2)

Where θw
f−1 and vw

f−1 represent the worker’s trajectory angle and velocity during
the time frame f − 1. In addition, η represents the Gaussian distributed noise and
δt describes the delta time between consecutive indoor positions. The last method
of the pre-processing step is to perform a backward estimation of the state at the f -1
given the f -th time frame through the Rauch-Tung-Striebel smoother [107].
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Trajectory detection for each sub-area

After having performed the noise mitigation, the proposed cyber layer performs
a trajectory detection for each operator and sub-area as depicted in Fig. 2.3. Over
a defined monitoring period, the set T = {Tw, Tw+1, ..., TW} groups sets of tra-
jectories made by the W active workers. Considering whichever industrial job
shop, its monitored area can be conceptually divided into A sub-areas based on
their functional role in the manufacturing cycle. Where A represents the possible
number of sub-areas that should be decided in agreement with industrial plant su-
pervisors. Therefore, Tw = {tw,a

i , tw,a′
i+1 , ..., tw,a

I }, where tw,a
i represents the i-th sub-

trajectory of the w-th worker occurred in the a-th area of the job shop. Based on
this, tw,a

1 and tw,a′
2 are two consecutive sub-trajectories occurred in different sub-

areas (e.g. a ̸= a′). In addition, any tw,a
i = {pw,a

i, f ′ , pw,a
i, f ′+1, ..., pw,a

i, f ∗} is a structure

where pw,a
i, f = (pxw,a

i, f , pyw,a
i, f , tsw,a

i, f ) is a spatio-temporal point. In detail, any f -th point
belonging to a given tw,a

i must meet the following condition(Eq. (2.3)).

∀ 0 ≤ f < f ′ ≤ F ⇒ tsw,a
i, f ′ > tsw,a

i, f (2.3)

Based on the computed tw,a
i , the algorithm checks whether sub-trajectories belong to

any storage area of the considered manual job shop. As outlined in Fig. 2.3, when-
ever this check is false, the cyber layer automatically recognizes that the considered
trajectory occurs in value-added areas and triggers two data mining steps, Indus-
trial DB scan based, to detect HPIs with strategic industrial entities such as machin-
ery and workbench (subsubsection 2.1.2). Contrarily, supposing the sub-trajectory
check is met, specific data mining steps are performed to detect HPIs in storage
areas, namely picking/deposit (P/D) activities in SKUs (subsubsection 2.1.2).

Value-added areas’ data mining

Whenever human workers interact with the surrounding manufacturing resources,
they perform strategic activities in front of it. Therefore, any HPI has the following
characteristics: (1) its consecutive points have a high-spatial density and (2) the re-
lated duration is strictly greater than zero seconds. Based on these considerations,
the following paragraph quantitatively describes the original Industrial DB scan
formulation.
Let consider an arbitrary tw,a

i composed by a variable number of pw,a
i, f . The ϵ tempo-

ral sequence of a given pw,a
i, f is the maximum number of points in tw,a

i that meet the
following condition (Eq. (2.4)).

pw,a
i, f ∈ ϵ(pw,a

i, f , d∗) ⇔ EuclideanDistance(pw,a
i, f , pw,a

i, f ′ ) ≤ d∗, ∀pw,a
i, f ∈ tw,a

i (2.4)
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where d∗ describes the maximum radius to be considered. Supposing that in the i-th
sub-trajectory the former condition is verified for a variable number of points, let
define the q-th ϵ temporal sequence as Sw,a

i,q = {pw,a
i, f ′,q , pw,a′

i, f ′+1,q, ..., pw,a
i, f ∗ ,q}. However,

the ϵ temporal sequence has to be consistent with the temporal dimension. The
following Eq. (2.5) avoids considering two separate HPIs that occurred in the same
region as one.

pw,a
i, f ′,q − pw,a

i, f ′+1,q = δt, ∀ pw,a
i, f ′,q , pw,a

i, f ′+1,q ∈ Sw,a
i,q (2.5)

where δt represents the sampling time of the adopted IoT acquisition layer. Finally,
Sw,a

i,q is a relevant HPI whether groups at least a total number of points equal to
or greater than NPts, a threshold of positioning points. This latter parameter is
set based on human motion and may vary from sub-area to sub-area to increase
the performance of the developed algorithm. However, the processed pw,a

i,j,q may be
affected by the intrinsic uncertainty of human motion and other types of noise not
properly mitigated during the pre-processing stage. Based on this, let consider two
consecutive HPIs Cw,a

z,i and Cw,a
z+1,i for the first operator in the a-th sub-area during

the i-th sub-trajectory. In detail, any Cw,a
z,i = {pw,a

i, f ′,z , pw,a
i, f ′+1,z, ..., pw,a

i, f ∗ ,z}. In addition,

HPIs are also distinguished by a geometric center Ow,a
z,i = {Oxw,a

z,i , Oyw,a
z,i } that can be

calculated as the weighted average between the current acquired position (pxw,a
i, f ′ ,z)

and the delta time between consecutive timestamps (tsw,a
i, f ′+1,z and tsw,a

i, f ′ ,z) (Eq. (2.6)).

Oxw,a
z,i =

∑
f ∗−1
f= f ′ pxw,a

i, f ′ ,z

(
tsw,a

i, f ′+1,z − tsw,a
i, f ′ ,z

)
∑

f ∗−1
f= f ′

(
tsw,a

i, f ′+1,z − tsw,a
i, f ′ ,z

) (2.6)

The same approach is adopted to calculate the y dimension of the center. In addi-
tion, from a temporal viewpoint Cw,a

z,i and Cw,a
z+1,i are spaced by a fixed duration in

the preferred time unit. Therefore, two consecutive HPIs can be merged into a sin-
gle one whether the Eq. (2.7) is met and at least one between Eq. (2.8) and (2.9) is
true [96].

tsw,a
i, f ∗ ,z − tsw,a

i, f ′ ,z+1 ≤ α (2.7)

EuclideanDistance(pw,a
i, f ∗ ,z, Ow,a

z+1,i) ≤ β (2.8)

EuclideanDistance(pw,a
i, f ∗ ,z, pw,a

i, f ′ ,z+1) ≤ ϕ (2.9)
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where α depends on the average time spent to travel from a process interaction to
the following one and β and ϕ on the expected distance from consecutive process
interactions. However, the detected HPIs provide no information on the manufac-
turing system because they are not related to any industrial entity and thus fail to
develop industrial KPIs. In manufacturing environments, human operators per-
form certain activities of productive processes in known regions of job shops. These
areas may be within the boundaries of machines, workbenches, etc. To this extent,
let index as k these relevant industrial entities. Indeed, as depicted in Fig. 2.3, any
detected Cw,a

z,i can be assigned to one of them. To do so, a geometric entity repre-
senting any k-th industrial resource and an objective function to be minimized have
to be properly defined. Starting with the first, given the specific geometrical shape
of the k-th industrial entity, Bk represents its centroid. Then, the formulation of the
objective function to assign any Cw,a

z,i to a unique k follows. This assignment is based
on distances and orientations. On one hand, the distance of the z-th HPI from an
arbitrary k-th industrial resource is outlined in the Eq. (2.10).

Distw,a
z,k =

∑
j∗−1
j=j′′ dist(pw,a

i, f ′ ,z, Bk)
(

tsw,a
i, f ′+1,z − tsw,a

i, f ′ ,z

)
∑

j∗−1
j=j′

(
tsw,a

i, f ′+1,z − tsw,a
i, f ′ ,z

) (2.10)

where dist(pw,a
i,j′′ ,z, Bk) represents the Euclidean distance between the spatio-temporal

point f ′ of the i-th sub-trajectory of the z-th HPI for the w-th operator in the a-th sub-
area, and the centroid of the k-th industrial resource. On the other hand, the orienta-
tion of each process interaction with respect to the k-th industrial resource requires
more computational steps. First, it is calculated θw,a

i, f ′ , f ′+1,z the angle assumed by the

w-th worker from the spatio-temporal point f ′ and f ′ + 1. Second, θw,a
i, f ′ ,k,z represents

the angle assumed by the same worker and the centroid of the k-th industrial entity.
Therefore, Eq. (2.11) calculates the resulting orientation from the spatio-temporal
point f ′ to the k-th industrial entity.

Lw,a
f ′ ,k = |θw,a

i, f ′ ,k,z − θw,a
i, f ′ , f ′+1,z| (2.11)

Finally, since HPIs group a variable number of spatio-temporal points, Eq. (2.12)
evaluates the orientation of process interactions with respect to the k-th industrial
entity.

Lw,a
z,k =

∑
j∗−1
j= f ′ Lw,a

i, f ′

(
tsw,a

i, f ′+1,z − tsw,a
i, f ′ ,z

)
∑

j∗−1
j= f ′

(
tsw,a

i, f ′+1,z − tsw,a
i, f ′ ,z

) (2.12)
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After having presented all the relevant parameters to perform the assignment of
HPIs, the objective function to be minimized is outlined below (Eq.(2.13)).

FOw,a
z = min

∀k=1,...,K

(
mD Distw,a

z,k + mθ Lw,a
z,k

)
(2.13)

where mD and mθ represent the weights connected to the distances and the orienta-
tions, respectively. Consequently, the remaining spatio-temporal points of a given
sub-trajectory in value-added areas represent a walking activity for the considered
human worker.

Storage areas’ data mining

Whether the detected sub-trajectory (see subsubsection 2.1.2) occurs in storage ar-
eas, the original ML-based cyber layer aims at detecting P/D activities with SKUs
(Fig. 2.3). Therefore, industrial plant supervisors can analyze in which SKUs anony-
mously tagged workers perform P/D activities and thus evaluate the material al-
location efficiency. To achieve this purpose, the first step to be performed is the
Industrial DB scan. Despite the algorithm operatively works as outlined before, the
hyper-parameters (e.g., ϵ NPts, α,β and ϕ) due to potentially different motion pat-
terns may be indexed to a. Contrary to value-added areas, storage areas are gener-
ally wider in terms of square meters. Indeed, some HPIs detected by the developed
Industrial DB scan may be FP due to, among the others, the intrinsic uncertainty
of human motion and noise of the signal acquired by the locating technology. For
instance, the Industrial DB scan may label as process interactions trajectories in-
stances in which the speed of worker motion decreased to overcome unexpected
obstacles or aisles congestion. Based on this, a further processing step, supervised
learning-based, is leveraged to avoid overestimations of HPIs leading to unrepre-
sentative KPIs (Fig. 2.3). In detail, any Cw,a

z,i is also distinguished by a mean ve-
locity, acceleration, and duration (e.g., vw,a

z,i , aw,a
z,i and durw,a

z,i ). In addition, HPIs are
manually assigned to class 1 whether, according to the collected ground truth, they
cluster P/D activities, 0 otherwise. Considering real manufacturing environments,
collecting large video-based ground truth datasets may raise privacy and industrial
secrets concerns of operators and companies, respectively. Another potential limita-
tion is represented by the installation of cameras that may obstacle manual produc-
tion routines. Therefore, a potential issue is represented by the limited dimension
of ground truth datasets upon which training supervised ML models. In such a
scenario, to maximize KPIs accuracies while limiting the intrusiveness of ground
truth’s video acquisitions, supervised-based ML algorithms can be easily trained
with limited datasets compared to artificial neural networks [108]. Based on this,
as depicted in Fig. 2.3, a Gaussian and Sigmoid Kernel, and a Random Forest are
adequately trained using a shared approach. The 80% of the dataset represents the
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TABLE 2.1: Example of time-dependent working operation of a
UWB tagged worker

Start End Duration [sec] Operation SKU Distance [m]
10:06:26.47 10:06:46.09 19.62 Workbench 1 0 0
10:06:46.76 10:06:51.36 4.60 Walking 0 3.4
10:06:51.59 10:06:53.83 2.15 Picking/Deposit 2 0
... ... ... ... .. ...
11:31:03.58 11:31:11.41 47.83 Machine 1 0 0

training set. In this heterogeneous set, a K-fold cross-validation and a grid-search
approach are implemented. As a result, the proposed models are less biased and
the hyperparameters optimized. While for the two kernels the hyperparameters to
be optimized are γ and C, the Random Forest classifier has to optimize the num-
ber of estimators, the minimum sample splits and the number of features allowed.
Then, the accuracies of the hyperparameters optimized classifiers are validated in
the test set. After having learned the features connected to classes, the prediction
stage can be triggered for whichever HPI returned by the Industrial DB scan in sub-
trajectories of storage areas over working shifts. In detail, a Sigmoid function com-
putes the posterior class probability for each classifier [109]. Subsequently, these
predictions are ensembled through a weighted average using classifiers accuracies
as weights. Finally, the returned HPI is assigned to the class that has the highest
probability. Whether the class is equal to 1, this picking or deposit activity has to
be assigned to one of the SKUs belonging to the involved storage areas. According
to Fig. 2.3, the assignment function follows the same approach outlined in Eq. 2.13.
Otherwise, the HPI is considered a walking activity as the other instances of the
sub-trajectories not previously labeled as HPIs by the Industrial DB scan.

2.1.3 Industrial dashboard

Benefitting from the presented cyber layer computations to mine value within UWB-
based spatio-temporal trajectories, Table 2.1 summarizes how the time-dependent
operations of monitored workers are classified during a standard working time win-
dow. In detail, the SKU column has values greater than zero only if the related oper-
ation is a P/D activity. Similarly, solely walking activities have distances travelled
greater than zero meters. It is worth noting that this IoT-based data may enrich the
visibility of any manual and low-standardized job shop. Indeed, it is extremely use-
ful to develop industrial KPIs upon with monitor the interdependencies, efficiency,
and social sustainability of manufacturing job shops. The following bullet point
lists the strategic industrial metrics on three different levels of detail:

• Job shop: Operator activities timeline and segmentation; duration and num-
ber of P/D activities in storage areas
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• Operators: Distances travelled in P/D activities; number of interaction with
SKUs; from-to charts of travelling activities

• Resources: utilization ratio; usages overlapping

Based on the definition of these KPIs and levels of analysis, Fig. 2.4 outlines the de-
veloped industrial dashboard to achieve a user-friendly decision-making process.
Plant supervisors have a unique opportunity to analyze processes’ underperfor-
mance under different levels of detail. For instance, the job shop level of analysis
may suggest that P/D activities are not optimized due to poor material allocation.
Despite this information being strategic to trigger a re-layout process, it fails to an-
alyze an important negative externality. In this regard, the operators’ level of de-
tail evaluates the distances travelled by workers during P/D activities to provide
mainly two insights. First, a set of workers may be socially disadvantaged due to
longer distances covered within the same shift. Second, these inconsistencies may
be detected also comparing historical data of several different shifts. To conclude
this high-detailed and quantitative section, the following lines combined with the
List of Symbols highlight the key steps of the ML-based cyber layer (subsection
2.1.2). After the data acquisition of RTLS-based historical data for a given working
shift, the consistency of positioning data is improved with a four-step positioning
estimation approach (sub subsection 2.1.2). In this regard, the Savitzky-Golay and
Cheng filters (Eq.(2.1)) perform data smoothing and outliers removal in operators’
trajectories respectively. Then, the unicycle Extended Kalman filter (Eq.(2.2)) and
Rauch-Tung-Striebel smoother further improve the acquired motion patterns. The
resulting operators’ trajectories are time-dependently indexed to a, the respective
sub-areas of occurrence (sub subsection 2.1.2 ). Based on a, each trajectory follows
specific data mining steps as depicted in Fig.2.3. On the one hand, whether the
check on storage areas is not verified, two data mining steps are triggered to auto-
matically detect HPIs with industrial resources (sub subsection 2.1.2):

• Industrial DB scan: based on the detailed formulation from Eq. 2.4 to Eq.
2.9, it triggers the detection of HPIs. However, such clustered positions pro-
vide little information on the system functioning since are not related to any
industrial entity.

• Assignment to industrial entities: it defines an objective function to be min-
imized in order to assign HPIs to industrial entities based on distances and
angles. From a geometric viewpoint, industrial entities are represented by a
centroid.(e.g., from Eq. (2.10) to Eq. (2.13))

On the other hand, three data mining steps detect HPIs with storage areas’ SKUs
(sub subsection 2.1.2):
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FIGURE 2.4: Industrial dashboard

• Industrial DB scan: this step follows the same mathematical formulation,
exploiting identical input data. However, hyperparameters (e.g., ϵ NPts,
α,β and ϕ) may be different due to potentially different operators’ motion
patterns in storage areas.

• Binary Cluster posterior prediction: benefitting from 3 trained ML-based
classifiers (e.g., random forest, gaussian and sigmoid kernel), the detected
HPIs are distinguished into walking or P/D activities. To do so, the classi-
fiers perform the posterior binary prediction through Sigmoid functions and
ensembled using the weighted average (e.g., weights are the training accu-
racies). Finally, the HPIs are assigned to the activity that has the highest
probability.

• Picking/Deposit assignment to a stock keeping unit: during this last step
the P/D operations are assigned to SKUs following the same reasoning of
before with industrial entities.

2.2 Cyber-physical system validation

The previously described digital system is tested and validated in a south-European
manufacturing company that performs precision machining operations of compo-
nents for the automotive industry. Fig. 2.5 depicts the layout of the monitored job
shop in which two workers perform the manufacturing process. In such an envi-
ronment, an agreement with industrial supervisors, the dedicated workforce, and
the labor union is reached to develop in Operator 5.0 inspired solution [3]. Indeed,
workers wear on the preferred upper arm an anonymous UWB-based tag. Leverag-
ing the developed CPS, plant supervisors require to evaluate the material allocation
in storage areas at the detail level of each SKU and monitor the utilization ratio of
industrial entities (e.g., workbenches and machines). This double level of analysis
focuses on plant efficiencies and social sustainability of the workforce.
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FIGURE 2.5: Reference manual job shop of the manufacturing case
study

2.2.1 Case Study

Before starting the experimental campaign, an extensive demonstratory period is
focused on establishing trust among all shareholders. Based on this, laboratory
tests are shown to workers to quantitatively back up the clear purpose of the anal-
ysis. Moreover, workers are fully compliant to sign the GDPR. In this non-binding
agreement, they can revoke their consensus. Particular attention is focused on data
storing and adequately blurring video-based ground truth. Finally, during the latest
meetings, it is decided to leave six anonymous tags in the company’s locker room
to be autonomously equipped on the operators’ preferred upper arm. Benefitting
from this transparent process, all workers are fully compliant to be involved in the
analysis. In addition, Fig. 2.5 shows the 2D geometrical positions of six ANs of the
developed IoT acquisition layer having z-axis equal to 7.00 m. However, indoor po-
sitioning raw data with an average sampling rate equal to 20 Hz are highly affected
by noise. In detail, the mean speed profile of workers is equal to 9.6 m/s. To increase
the consistency of human motion patterns, the previously described four step po-
sitioning estimation methods (subsubsection 2.1.2) are adopted resulting in a sam-
pling rate and mean speed profile equal to 6.6 Hz and 1.3 m/s. Subsequently, based
on the algorithm requirements, industrial supervisors decide to divide the moni-
tored job shop into five sub-areas depending on their functional role in the manu-
facturing process (e.g., A=5). The value-added area, namely the sub-area 1, hosts
four different industrial entities and represents the most visited one by workers. In
detail, workers load and unload into dedicated stand-alone machines (e.g., M1 and
M2) different batches of materials and then perform manual manufacturing oper-
ations in the deburring and rectification workbenches (Fig. 2.6 (b)). As depicted
by Fig. 2.6 (b), it is worth noting that the distances between the industrial entities
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combined with the high degree of freedom of human movements may considerably
challenge the accuracy and reliability of the Industrial DB scan and the assignment
of HPIs. In this area, industrial plant supervisors require to calculate the utiliza-
tion ratio per worker of such entities and detect potential simultaneous usages of
workbenches. Apart from the sub-area 5 which hosts two automatic lathes and the
SKU ID 20 for scraps, the other three sub-areas stock different batches of materials.
In particular, the fourth one groups SKUs of finished materials to be moved into
other in-plant job shops by manual forklifts. The sub-area 2, partially depicted in
Fig. 2.6 (a) from a static viewpoint, stocks both finished and raw materials while the
third one raw materials. Centroids of the SKUs are depicted through green dots in
Fig. 2.5. Based on the production schedule at the beginning of each working shift,
workers are required to move as close as possible to sub-area 2 all SKUs containing
the batch to be manufactured and empty SKUs in which store processed materials.
Therefore, based on the outlined cyber layer capabilities, plant supervisors can dig-
itally analyze the efficiency of such material allocation by monitoring P/D activities
in SKUs along with distances traveled in such routes. However, before starting to
discuss the industrial KPIs in section 2.3, two intermediate considerations are ad-
dressed. First, for the sake of clarity, subsection 2.2.2 describes the ML-based cyber
layer computations on sub-trajectories. Second, subsection 2.2.3 validates the per-
formances of the ML-based algorithms based on the collected ground truth. This
investigation plays a pivotal role in order to avoid unrepresentative and misleading
industrial KPIs.

(A) Layout of the monitored manufac-
turing job-shop from a static point of

view

(B) Geometry of the sub-area 1

FIGURE 2.6: Human-centric industrial job shop

2.2.2 Evaluation on sub-trajectories of ML-based cyber layer

Benefitting from the algorithm functioning, Fig.2.5 represents an example of HPIs
detection in the manual and low-standardized job shop. The considered human
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movement occurred from 11:45:47 to 11:47:00 on the 15th of February 2021. Ac-
cording to the collected video-based ground truth, the operator 1 works in M2 for
38.71 seconds and then transiting through the sub-area 2 picks two raw materials
from the SKU ID 15 and then goes back to M2 to load them in 15.74 seconds. As
depicted in Fig.2.5, the developed CPS detects three different process interactions.
In the proposed example of five trajectories, the TP and TN are equal to 3 and 4,
respectively. These instances represent a match between the actual scenario and
the one determined by the developed algorithm. In this case of perfect detection,
bot FP and FN are equal to zero. For the sake of completeness, a FP takes place
whenever the Industrial DB scan clusters noise points into a not expected HPI. The
FN represent the opposite condition. For simplicity, it is assumed that the three re-
turned HPIs are the first three detected in the monitoring period. Indeed, C1,1

1,1 and

C1,1
3,5 last 36.95 and 14.59 seconds, respectively. Therefore, the relative deviations of

process interactions’ duration are below 10%. In sub-area 3, a process interaction is
detected, namely C1,3

2,3 . In particular, its input features (e.g., v1,3
2,3 and a1,3

2,3 and dur1,3
2,3 )

are fed into the ensembled supervised learning classifiers to compute the posterior
class probability. Since the resulting probability of class 1 is equal to the 80%, C1,3

2,3
is classified as a P/D activity. Despite no basis to better identify these two activities
due to the intrinsic RTLS characteristics, the proposed digital system is much more
practical and way less costly than tagging, using the RFID technology, products or
industrial entities in modern manufacturing job shops. Finally, this process-driven
activity is correctly assigned to the SKU ID 15. Despite the promising accuracies ob-
tained by the ML-based methods in this set of spatio-temporal trajectories, the fol-
lowing subsection validates its performances with larger and representative ground
truth datasets.

2.2.3 Performances of the machine learning based cyber layer

To adequately validate the performances of the ML-based algoritms, video-based
ground truth is collected in 4 working shifts involving different workers. Consid-
ering the value-added area (e.g.,sub-area 1), 68 relevant process interactions occur
with an aggregate length equal to 48.11 minutes. In addition, the data set is fairly
balanced. While the percentages of HPIs that occurred in M1, M2, and deburring
range from 25% to 30%, the rectification workbench hosts 20% of them. Based on
the left part of Fig. 2.3, after the detection of Tw and the related sub-trajectories in
sub-areas, the developed Industrial DB scan is adopted to detect relevant HPIs us-
ing NPts and ϵ equal to 15 and 0.17 meters, respectively. In addition, α is equal
to 1 second and β and ϕ to 0.5 meters. These latter parameters are responsible for
merging consecutive process interactions. The Industrial DB scan accuracies are
evaluated through two metrics. First, a confusion matrix is developed to evaluate
detection performances. The resulting accuracy over the 68 HPIs is equal to 82%.
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Second, the comparison between expected and returned process interactions’ dura-
tion is evaluated. Fig. 2.7 depicts this temporal analysis through the absolute and
relative deviation of process interactions’ duration. The data set considers solely
the TP that are equal to 51 relevant process interactions. In detail, the mean ab-
solute and relative deviations are equal to 2.69 seconds and 14.14 %, respectively.
After having assessed the promising accuracies of the proposed Industrial DB scan

FIGURE 2.7: Temporal performances of HPIs’ detection of the de-
veloped cyber-physical system

in such a small area, HPIs have to be assigned to one of the four industrial entities
shown in Figure 2.6. Weights of the objective function in Eq. (2.13) are arrays of
11 rows with element values that range from 0 to 100. Of course, the element-wise
summation has to be equal to 100. Fig. 2.8 shows the accuracies of the 11 objective
functions to assign HPIs to industrial entities. In detail, the first and last objective
functions give no relevance to the angle and distance, respectively. The highest ac-
curacy equal to 88.1% is achieved by the second one with mD and mθ equal to 90
and 10, respectively. The same approach is adopted for the four storage areas to test
and validated the right part of the cyber layer in Fig. 2.3 aimed at detecting P/D. In
contrast to sub-area 1, it is reasonable to expect much shorter HPIs in stocking areas.
Indeed, the Industrial DB scan is adopted using the same hyper-parameters apart
from NPts which is equal to 5. Based on the collected video-based ground truth in
the same 4 working shifts as before, 44 different trajectories of P/D activities for a
total duration of 8.35 minutes are analyzed to validate the algorithm under differ-
ent human motion patterns. The proposed Industrial DB scan returned 100 different
HPIs in which all the expected relevant activities were detected. However, a prob-
lem of over-estimation occurs. In detail, 35% of returned interactions are not related
to the monitored manufacturing cycle. Among them, there are unexpected process
interactions of human operators driven by different causes (e.g., unexpected obsta-
cles). For this purpose, supervised-learning techniques are leveraged to learn the
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movement patterns of this scenario using as input features vw,a
z,i and aw,a

z,i and durw,a
z,i .

During the training stage, the most performing hyper-parameters combinations are
evaluated for all classifiers. In detail, the two kernels share the same optimal γ

value equal to 0.01 but they have different C values. The Gaussian and Sigmoid
values of C are equal to 10 and 1, respectively. On the other hand, the Random For-
est is optimized under other sets of hyperparameters. The best configuration has
50 estimators, a minimum sample split of 0.6 and the features allowed are equal to
the square root of the total number of features in the training data set. Then, the
performances of the hyperparameters optimized classifiers are validated in the test
set. While the Random forest has an accuracy of 71.4%, the accuracies of the Gaus-
sian and Sigmoid Kernel are equal to 61.9% and 42.9%, respectively. The resulting
accuracy of the weighted and Sigmoid-based ensembled classifier is equal to 76.4%.
Finally, the objective function to be minimized performs the assignment of the de-
tected HPIs to to one of the SKU plotted in Fig. 2.6. Based on the available ground
truth, this assignment solely depends on the distances with an accuracy of 100%.
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FIGURE 2.8: Objective functions accuracies in HPIs’ assignment

2.3 Results & managerial insights

Based on the successful validation of the digital CPS (subsection 2.2.3) in the men-
tioned manual and labor-intensive manufacturing job shop, this section presents
the industrial KPIs to monitor the efficiency and the social sustainability according
to the Industry 5.0 principles. The remaining discussion is divided into three levels
of detail, following the industrial dashboard structure in Fig. 2.4.

2.3.1 Job shop level

The job shop dimension monitors from an aggregate viewpoint the functioning of
the manual and UWB-referenced job shop. In particular, Fig. 2.9 (a), depicts the
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(A) Monitored time window of anony-
mous operators

(B) Time-dependent activities

FIGURE 2.9: Temporal analysis of anonymous workers on the 3rd

March 2022

monitored time window in which two anonymous operators equipped with their
respective TagID are working within the coverage area defined by the displacement
of ANs (Fig. 2.5), during the 3rd of March 2022. In addition, Fig. 2.9 (b) shows the
time-dependent activities performed by workers from 11:03:00 to 11:09:00 on the
monitored shift. While operator 2 mostly performs value-added operations in the
deburring workbench, the other colleague performs several process-driven tasks.
In particular, one P/D activity and eight HPIs are automatically detected, where
the vast majority of them occurs in M1. However, these first two KPIs fail to pro-
vide privileged insights for industrial supervisors’ needs. Indeed, no evaluations
regarding material allocations and resource utilization can be established. Start-
ing with the first aim, Fig. 2.10 shows through a dedicated color bar from white
to red the aggregated P/D interactions over the monitored time window in SKUs.
Benefitting from this, industrial plant supervisors can analyze the efficiency of the
manufacturing systems during P/D traveling activities. Fig. 2.10 suggests that the
monitored manufacturing system is not optimized. Based on this, it is useful to con-
sider the SKUs in the sub-area 2. The nearest SKUs to sub-area 1 host the highest
P/D activities. In detail, SKUs ID 1 and 3 have 56 and 15 visits over the monitored
period, respectively. However, the farthest SKUs ID namely 5, 6, 7, 11, 12, and 18
register combined together 24 P/D activities. This accounts for 18.6% of the total
P/D activities over the considered time period. Adopting the same approach with
SKUs of other sub-areas, this metric increases to 26%. Therefore, almost a third of
P/D activities are inefficient.

In addition to this, Fig. 2.11 completes the analysis depicting the duration of HPIs
activities in storage areas for both workers. During the monitored time period, the
two anonymous workers spend roughly 25 minutes performing P/D activities in
storage areas. Based on the proposed heatmaps (Fig. 2.10 and 2.11), there is a
clear direct correlation between the number of interactions with SKUs and the time
spent performing P/D activities. Indeed, as expected, SKU ID 1 shows the highest
duration, accounting for 633.69 seconds. However, the underperforming material
allocation in storage areas’ SKUs can be analyzed on the temporal dimension as
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FIGURE 2.10: Number of HPIs in storage areas during the moni-
tored time window of anonymous workers on the 3rd March 2022

well. Considering the most inefficient SKUs of sub-area 2 (e.g, ID from 4 to 7, 11,
12 and 18), the total duration to perform/picking and deposit activities is equal to
250 seconds which accounts for the 16% of the total time to perform such process-
driven activities. This statistic increases to the 30% by taking into account all SKUs
belonging to other sub-areas. Also, such underperforming material allocation in
storage areas triggers a consistent negative externality on meters travelled by work-
ers. Therefore, the following subsection narrows the analysis to the Operators’ level
of detail to properly assess the impact of logistic activities on their manufacturing
routines.

2.3.2 Operators level

The P/D activities of workers in defined SKUs show fairly similar percentages.
While worker 1 visits 84 times the SKUs accounting for the 11% of his working
routine, operator 2 performs 66 P/D activities during the 7% of the monitored pe-
riod. For both workers, several P/D activities start and return in sub-area 1. Based
on this, Fig. 2.12 outlines the meters traveled by workers to perform different activ-
ities in the manufacturing system (the acronyms A1 refer to the sub-area 1). While
the total distances traveled over the monitored period by the two workers differ
from 150 meters, the comparison of travelings involving P/D activities needs to be
properly analyzed. Considering the traveling activities from sub-area 1 to a P/D
activity, operator 1, and operator 2 walk 207.47 and 193.28 meters, respectively. De-
spite these metrics having similar values, the two workers perform highly different
in-plant flows. Worker 1 and worker 2 travel from sub-area 1 to a given SKU 60 and
25 times, respectively. Indeed, worker 2 travels 2.24 times the meters of the other
colleague, considering mean values.
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FIGURE 2.11: Duration of HPIs in storage areas during the moni-
tored time window of anonymous workers on the 3rd March 2022

Despite most of the time the two workers start the considered traveling route either
from the rectification workbench or the deburring one, they show markedly differ-
ent P/D activities within the defined SKUs. To properly analyze and discuss this
scenario, the 24 SKUs are divided into five classes. The "prime" class includes the
SKUs 1,2,8. While the SKUs ID 3,4,9,10, and 19 belong to the "sub-optimal" class,
the remaining SKUs of the sub-area 2 are grouped into the "underperforming" one.
Finally, all the other SKUs, apart from the 20 that belongs to the "scrap" class due to
the intrinsic nature of material stored in it, are grouped in the class named "long".
On one hand, worker 1 performs 43 P/D activities in the "prime" class accounting
for 72% of HPI in storage areas. In addition, 18% of flows happen in the "sub-
optimal" SKUs. Among the other flows from the sub-area 1, solely 6 P/D visits are
towards the "long" class, accounting for 8% of the total activities in storage areas.
The longest distance traveled is equal to 11.54 meters and involves a flow from the
rectification workbench to the SKU ID 20, most likely to deposit a manufacturing
scrap. No flows from the sub-area 1 go to the "long" class. On the other hand, the
P/D activities of operator 2 from the sub-area 1 are completely different. Based on
this, only 8% of flows are towards to SKU ID 1. In addition, while 14 flows go to the
"sub-optimal" SKUs, 24% of total flows involve the "underperforming" class. The
"long" class hosts 3 flows in the sub-area 5 to interact with the SKUs ID 22 and 23.
According to these KPIs, worker 2 due to poor materials and thus SKUs allocation
is socially disadvantaged. This scenario is completely similar when analyzing the
number of flows with the distances traveled from P/D activities to sub-area 1 and
among consecutive P/D activities. Regarding these latter flows, the evaluated KPIs
suggest that operator 2 is also responsible for moving SKUs around the manufactur-
ing job shop. While worker 1 performs the 80% of consecutive P/D activities either
in the "prime" class or with the "sub-optimal" one (e.g, from SKU ID1 to SKU ID 8,
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FIGURE 2.12: Distances traveled by operators during the monitored
period

from SKU ID 1 to SKU ID 2, from SKU ID 3 to SKU ID 8, etc.), operator 2 travels
between SKUs belonging to different sub-areas. Stark examples are represented by
flows from SKU ID 7 to SKU ID 17 and to SKU ID 23. By comparing these sets of
flows with the ones within the sub-area 1, it is clear how manual manufacturing
systems rely on human commitment. Compared to SKUs that are dynamic entities,
the four industrial entities have fixed locations defined by the aforementioned cen-
troids ( Fig. 2.6). Indeed, at mean values, worker 1 and worker 2 travel within the
sub-area 1 1.57 and 1.64 meters, respectively.
The acknowledgment of these inconsistencies in the monitored human-centric man-
ufacturing system provides strategic insights to enhance the decision-making pro-
cess. In particular, plant supervisors can re-balance the distances travelled by work-
ers during P/D activities. To achieve this aim, internal meetings may be organized
to raise awareness among the workforce of efficient material allocation in storage
areas. Focusing on the positive externality in reducing distances traveled, indus-
trial plant supervisors may define specific guidelines to properly move as nearest as
possible to the sub-area 2 the material batches to be manufactured during the shifts.
According to the Operator 5.0 concept, a further incentive to meet this target is to
design gamification approaches [110]. For instance, workers that travel the short-
est distances during P/D activities may be awarded on a monthly basis. Therefore,
the social sustainability of the considered low-standardized job shop is constantly
reinforced at desired values while spreading the best practices among operators.
Finally, based on supervisors’ requests, the following subsection analyzes the re-
sources’ level of detail to point out their utilization ratio during the monitored time
window.
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2.3.3 Resources level

To properly assess the utilization ratio of resources, the focus is ensured on the
workers’ activities segmentation (Fig.2.14). As depicted by the pie charts, operators
1 and 2 perform value-added activities for 56% and 62% of the entire time window
interacting with the four industrial entities (e.g., M1, M2, rectification, and debur-
ring workbenches) in the sub-area 1, respectively. However, these two workers have
different patterns of interaction with the entities. While the working percentages of
worker 1 are fairly balanced among the four resources, the working times of op-
erator 2 are distinguished by a markedly different pattern. Indeed, operator 2 for
74.8 minutes, that account for 44% of the entire working routine, performs materials
deburring. These four resources are distinguished by a low utilization ratio.

The deburring workbench registers the highest ratio equal to 55.9%. In addition,
the monitored operators correctly parallelize their working routine by avoiding to
occupy simultaneously the same resource. In this regard, a more performing ma-
terial allocation may bring a further positive externality, namely a likely increase
in the share of these value-added operations in the considered manufacturing pro-
cess. Simultaneously, plant supervisors can combine the utilization ratio of indus-
trial entities with manufactured goods to evaluate and compare the working effi-
ciency of multiple working shifts. For instance, a decrease in finished products can
be analyzed through the different patterns of interactions with industrial entities.
In such a scenario, it is reasonable to expect low utilization ratios of M1 and M2. At
the same time, the deburring and the rectification workbenches may register high
shares. Therefore, a likely root cause may be driven by poor automatic lathes’ work-
ing quality potentially due to a worn tool.
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over the monitored time window

To conclude, the proposed digital system can effectively support human-centric and
low-standardized job shops by creating value for its operational business. In par-
ticular, the adopted IoT acquisition layer combined with the ML-based cyber layer
enables a performing data analytics to enhance the visibility of the process function-
ing by minimizing installation costs compared to the RFID technology. Therefore,
benefitting from the discussed multidimensional KPIs, industrial plant supervisors
constantly analyze the in-plant operation and trigger target-oriented evaluations on
processes’ inefficiencies.
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Chapter 3

Digital monitoring of

Reconfigurable Manufacturing

Systems

"Just wrap your legs ’round these velvet rims
And strap your hands cross my engines

Togheter we could break this trap"

– Bruce Springsteen, Born to Run, 1975

The previously tested and validated CPS highlights several benefits of monitor-
ing the efficiency and social fairness of production environments. However, its
definition, implementation, and deployment are strongly limited to human-centric
job shops. Besides embracing the discussed digital transformation, manufacturing
companies are experiencing and introducing novel production paradigms with dif-
ferent designs [111]. Among the others, short product life cycles and flexible batches
are a key elements that powers this transition [112]. Traditional paradigms such as
flexible manufacturing systems (FMS) and dedicated manufacturing systems (DMS)
are distinguished by restricted capacity in reconfiguring themselves to meet a vari-
able production with short life cycles [113]. These limitations are mainly driven by
two drivers. First, fixed systems structures require prolonged reconfiguration times
or even prevent these modifications.
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TABLE 3.1: Feature benchmarking of manufacturing systems, taken
from [113]

DMS FMS CMS RMS
Cost per part Low Reasonable Medium Medium
Demand Stable Variable Stable Variable
Flexibility No General General Customised
Machine structure Fixed Fixed Fixed Changeable
Product family formation No No Yes Yes
Productivity High Low High High
System structure Fixed Changeable Fixed Changeable
Variety No Wide Wide High

A stark example is provided by DMS that are designed to satisfy high demands
for a given product [114]. Second, systems’ structures need to achieve competing
unitary costs and throughput times for a large variety of final goods [115]. Cellu-
lar manufacturing systems (CMS) address some weaknesses by leveraging product
families dependent on working cell configurations. However, this process design
ensures competing unitary costs with long lifecycles and stable market demands.
RMS overcome these limitations by dynamically adjusting its output capacities and
system structure with respect to unforeseen market changes while ensuring com-
petitive market costs [113, 114, 115, 116]. Tab. 3.1 benchmarks these production
paradigms highlighting RMS as the best candidate to compete in modern markets.
RMS versatile structure is granted by six core features, where modularity and scala-
bility are the most investigated ones [113, 116]. The former targets the compartmen-
talization of production units that can be combined together in production schemes
while the latter underlines the ability to modify productive capacities.
In this scenario, data-driven approaches to monitor and optimize RMS are mostly
limited to heuristic and clustering-based optimization problems [117]. These ap-
proaches define objective functions to be either minimized or maximized given a set
of constraints [118]. Although the tangible operational benefits for RMS, these solu-
tions are often based on static parameters leading to potentially time-consuming al-
gorithms rearrangements. Another major limitation is not to model the human fac-
tor stochastic behavior in processes’ executions. This Chapter fills these limitations
by presenting and validating a CPS that embraces the challenge of having a versa-
tile structure to reduce deployment time in different RMS configurations. Based on
this, RTLS measurements are processed by an operation and layout-insensitive ML-
based cyber layer. A further improvement compared to the contribution presented
in Chapter 2 is the ambition to differentiate between workers’ value-added and non-
value-added manual operations. Value-added operations occur whenever workers
perform process driven operations such as screwing work-in-progess products.
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FIGURE 3.1: Cyber-physical system to monitor and manage
human-centric reconfigurable manufacturing systems

3.1 Cyber-physical system for reconfigurable manufactur-
ing systems

This section presents the innovative proposal of this Chapter. This digital solu-
tion is developed to support decision-makers in managing and designing dynamic
human-centric RMS. In particular, a specific set of enabling technologies is exploited
to enhance these production environments with two different planning horizons.
While the short-term one focuses on in-plant performances and interdependencies
of production setups, the long mid-term planning horizon leverages simulation en-
vironments to iteratively assess the best layout configuration.
To meet these complementary goals, this CPS consists of four conceptual entities
(Fig. 3.1). The first one targets whichever labor-intensive RMS that may adjust
its functioning and layout configuration based on market demands and product
batches. Instead of managing these complex environments based on plant man-
agers’ experience, an IoT acquisition layer is introduced to digitize processes’ ex-
ecutions. While an RF-based RTLS acquires motion patterns and spatio-temporal
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information of workers and industrial resources (e.g., WS), machine interfaces mir-
ror ongoing automation-based production processes. These data streams after spe-
cific pre-processing computations are fed into the third system’s entity, the cyber-
physical layer. Based on the desired planning horizon, two consecutive compu-
tations occur. On one hand, ML-based algorithms leverage positioning measure-
ments to detect HPIs and thus segment operators’ activities. Following a post-
processing step, these outputs automatically generate KPIs upon which plant super-
visors can monitor processes’ functioning on the short-term horizon. On the other
hand, discrete-based simulation models define iteratively sub-optimal production-
specific layout configurations. Interest readers may appreaciate the validated method-
ology in [50]. The main strength of both computational methods is their layout and
task insensitivity. Indeed, these models quickly and seamlessly reconfigure based
on WS positioning information. The obtained outputs are post-processed to gen-
erate KPIs in a decision support system (see Fig.3.1). Both approaches provide
detailed insights into processes’ weaknesses suggesting to plant supervisors how
to improve the efficiency and interdependencies of human-centric RMS while pre-
serving social fairness according to Industry 5.0 value creation. This work focuses
on short-term planning and thus the remaining parts of this Chapter target the yel-
low boxes in Fig. 3.1.

3.1.1 IoT acquisition layer

The IoT acquisition layer leverages a UWB-based RTLS to acquire the motion pat-
terns of workers’ and WS’ positions in various production set-ups. This spatio-
temporal information is strategic to automatically classify workers’ operations in
human-centric RMS. In particular, the classification is distinguished by two objec-
tives. First, layout-insensitive algorithms assign operators’ activities to industrial
resources and detect logistic activities (see subsubsection 3.1.2). Second, returned
operators’ activities are further divided into value-added and non value-added op-
erations (see subsubsection 3.1.2).
To achieve this challenging goal, workers wear anonymous tags on the wrist of their
dominant hand to acquire the geometrical location as well as 3D acceleration pro-
file. The positions and orientations of WS are acquired by placing two devices in
known locations. In addition to the application, these moving entities differ in time
resolutions. The datastreams of workers and WS are sampled at a frequency equal
to 10 Hz and 1 Hz, respectively. At the same time, they share the same hardware
design. These different time resolutions are chosen because workers’ positions are
way more dynamic than WS within production set-ups. Indeed, a single position
for each WS is used in the data engineering step to pre-process the UWB-based
dataset. The main advantages of these sensing units are compact size and a battery
lifetime up to one year. In addition, additional sensors such as accelerometers are
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FIGURE 3.2: Conceptual data flow of the IoT acquisition layer

mounted on board. The 3D acceleration profiles may represent valuable parame-
ters to learn and identify workers’ activity during process executions (subsection
3.1.2). Wearable tags are based on Decawave UWB radio modules and use Channel
5 with a bandwidth of 6500 MHz to exchange JSON messages with anchors using
the mentioned refresh rates. In particular, the JSON bodies contain several measure-
ments, namely 3D indoor positions, acceleration profiles, environmental parameters
(e.g., temperature and pressure), and a tag ID. The displacement of anchors defines
the IoT network reference system and the spatial manufacturing environment to be
monitored. Six reference points are installed on the ceiling of an industrial-related
pilot environment covering an area approximately equal to 70m2. anchors are based
on Decavawe modules and an IEEE-compliant UWB transceiver. Connectivity and
power supply are granted by a Power over Ethernet (PoE) switch resulting in a star
network configuration. Finally, JSON messages are uploaded to an RTLS server (see
Fig. 3.2) that determines the unknown position of moving tags through the TDoA
geometrical method [103, 119].
Although this network configuration provides a stable data gathering of tagged
entities, the RTLS server is a closed web-based application and thus prevents the
development of customized algorithms. To overcome this hard limitation, Fig. 3.2
depicts the data flow of positioning information to an external physical server. In
detail, the RTLS server is Wi-Fi connected to the Internet using a static IP address.
By doing this, whichever client is connected to the Internet can retrieve real-time
JSON data through WebSockets API. The client opens as many connections as the
number of active tags using threads and locks to avoid unnecessary redundancies.
Each connection and thus WebSocket communication is opened and managed by
targeting the unique tag ID. Instead of storing data locally, the client node leverages
MQTT protocol and publishes positioning datasets in a TLS-encrypted Mosquitto
Broker to ensure final users’ privacy and avoid data leaks. Therefore, subscribers
can authenticate the broker to retrieve JSON data, even in real-time or close to. Since
the developed ML-based cyber layer operates with shift-based datasets, these mes-
sages are stored in a physical server connected to the Internet. Besides storing mea-
surements in a time-series database (e.g., InfluxDB), a running node-red applica-
tion parses the JSON messages. It is worth saying that the physical server can be
remotely accessed by computational nodes through Secure Shell (SSH) connections.
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3.1.2 ML-based cyber layer

This section details the ML-based computational steps to perform an activity seg-
mentation of workers’ tasks in human-centric RMS. In addition to detecting the per-
formed activities, the cyber layer distinguishes value-added and non-value-added
operations. A value-added activity occurs whenever workers perform process-
driven activities in industrial resources (e.g., fastening screws). Otherwise, the
worker status is idle which is a non-value-added operation. To achieve this chal-
lenging task, Fig. 3.3 depicts the closed-loop structure of acquired positioning data
in the cyber layer, where the processing steps are associated with the corresponding
outputs (e.g., see green-colored boxes). A preliminary overview of these computa-
tional steps is listed below:

• Data Engineering & labeling: this step increases the dataset dimension by
engineering additional features from the acquired motion patterns of work-
ers. In particular, the dataset is distinguished by a relative coordinate system
between workers’ and industrial resources positions. This feature grants a
high degree of adaptability to the computational layer in monitoring any
system configuration.

• Reconfiguration oriented computations: this ML-based algorithm performs
a layout and operator-insensitive classification of logistic activities and as-
signment to industrial resources (see subsubsection 3.1.2).

• Operation oriented computations: this last ML-based step consists of a re-
source specific approach to classify value-added and non-value-added oper-
ations (see subsubsection 3.1.2)

These ML-based outputs are stored in a DSS where callback functions develop KPIs
to monitor the performances and the interdependencies of human-centered RMS
(see subsection 3.1.3). Based on this overview, the following subsubsections discuss
the ML-based approach designed to mitigate limited and sparse datasets. Indeed,
collecting a considerable amount of video-based ground truth in industrial environ-
ments may raise stakeholders’ privacy concerns, from operators to labor unions.

Data engineering & labelling

This introductory step downloads the UWB-based datastreams of WS and workers
in separate files from InfluxDB (see Fig. 3.2). Before designing the dataset features,
an introductory step assesses the positions and orientations of WS for each produc-
tion setup. The WS 2D positions are determined by averaging the acquired spatio-
temporal data. This enables to mitigate the measurement noise of the adopted phys-
ical layer. The orientation on the z-axis of these entities is computed through the
Arccos of motion vectors using as input both tags’ positioning information. While
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FIGURE 3.3: Conceptual data mining closed-loop of IoT data
streams

the initial vector is constructed upon the initial positions of the WS, the final vector
underlines the setup location.
At this point, the acquired workers’ motion pattern undergoes data engineering and
labeling processes. The data engineering step designs the dataset features to facili-
tate the learning capabilities of ML-based models. Besides raw absolute 2D indoor
positions and 3D acceleration profiles parsed from the acquired JSON data streams,
a dedicated script computes the relative distances with WS for each positioning
frame and worker. This relative coordinate system provides ML-based classifier in-
sensitiveness to production setups (e.g., see subsubsection 3.1.2). Operators’ num-
bers and time-driven information (e.g., absolute clock for each production setup)
complete the input features by establishing data relationships among parallel man-
ual operations.
Following this data engineering step, ground truth data (e.g., video recordings) are
analyzed to label workers’ motion patterns, according to the operation performed.
This multi-class classification involves as many labels as the number of WS in the
manufacturing system. Traveling and idle states represent two further events to be
classified. Based on this, the goal of the following ML-based computations is to
perform an activity segmentation of manual task executions in human-centric man-
ufacturing systems and thus offer multidimensional KPIs in a DSS to evaluate the
efficiency and interdependencies among industrial resources. Therefore, the first set
of ML-based architectures leverages the described dataset features to automatically
assign workers to a production resource and detect traveling states (subsubsection
3.1.2). Having as input these classifications, the second step designs WS-dependent
algorithms to further detail the proximity of operators to resources into value-added
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and non-value-added operations (see subsubsection 3.1.2).

Reconfiguration oriented computations

To automatically classify workers’ proximities to industrial resources and traveling
events regardless of production setup layouts, three ML-based algorithms are in-
troduced and benchmarked with each other (e.g., LSTM, Industrial DB scan, and
Random Forest). It is worth noting that classifiers’ insensitiveness to setups is
granted by the data engineering process (see subsubsection 3.1.2), where a relative
coordinate system between workers and WS positions is introduced. The follow-
ing algorithms differ under different perspectives such as the hyper-parameters,
and the learning type (e.g., supervised and unsupervised). While the LSTM-based
neural network extracts valuable information in the time-series datasets, the Indus-
trial DB scan detects high-density regions of spatio-temporal positioning points and
the Random Forest classifies input data using decision trees. These algorithms are
discussed in the following paragraphs and Appendix A lists the classifier-specific
hyper-parameters to be optimized (see Tab. A1, A2 and A3).

LSTM-based architecture: This supervised-based neural architecture follows the
definition proposed in [20]. LSTM architectures improve the standard formulation
of recurrent neural for the vanishing gradient problem and better capture long-term
patterns in time-series analysis [120]. Tab.A1 lists the set of hyper-parameters to be
optimized. The core LSTM cell is distinguished by the input, forget, and output
gates (see Fig. 3.4). The first updates the cell state by passing in a sigmoid function
the input data at timestamp t and the previous hidden state. The closer the output is
to 1 the higher informative value occurs in input data. The forget gate is responsible
for selecting meaningful information in the cell state at timestamp t. The output of
the sigmoid between the previous hidden state and the current input data is multi-
plied via the Hadamard product with the cell state. While outputs close to 0 suggest
that the information can be discarded, values close to 1 indicate meaningful infor-
mation. Therefore the cell state at timestamp t+1 is given by the sum of potentially
discarded information in the forget gate and the output of the input gate. Finally,
the output gate is responsible for updating the hidden state to carry forward.

Before feeding data streams into an LSTM-based network, engineered input data are
processed by a sliding window algorithm. The dataset is divided into overlapping
sliding windows of different sizes (see Tab. A1) and assigns the ground truth-based
label to the last input data of the window. Sliding windows are shifted by one sam-
ple. In addition, three-dimensional tensors are generated having dimensions equal
to the window size, the dataset features, and the batch size. This last parameter
enables the computation of the mini-batch gradient and it is adopted to mitigate the
vanishing problem during the network training (see Tab.A1). Fig. 3.5 depicts the
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FIGURE 3.4: LSTM cell

LSTM-based architecture that forward propagates input data (e.g., X1 to Xt) to be
classified. Each layer of the LSTM-based neural network has as many LSTM cells as
the window size. The number of layers is an additional hyper-parameter to increase
the model’s depth and ability to eventually learn complex patterns in input data.
Considering an architecture with 2 layers as in Fig. 3.5 , it is possible to approxi-
mate the network as a matrix where the number of rows is equal to 2 and columns
equal to the window size. Where each matrix entry contains the LSTM cell in Fig.
3.4. For models with more than one layer, the dropout is often adopted to randomly
offset some network neurons. This parameter offers a learning regularization and
prevents the model’s overfitting (see Tab. A1). Another relevant hyper-parameter
in designing a robust LSTM-based architecture is the hidden state size (e.g., h11, h12,
etc.). Contrary to the cell state (e.g., c11, c12, etc.) that stores long-term information,
the hidden state carries forward short-term information and overwrites at every
timestep. The output of the LSTM cells of the last layer is fed into a fully connected
neural network with an output size equal to the number of activities or events to
be classified. Finally, a normalized softmax activation function maps the multidi-
mensional vector into the most significant class. After this forward propagation, the
deep learning network computes the batch-based gradient using the cross-entropy
function and updates the network weights and the learning rate based on the Adam
optimization. Tab. A1 lists the initial learning rates.

Industrial DB Scan: this unsupervised-based algorithm fills the limitations of its
standard formulations as discussed in Chapter 2 [26]. In short, this clustering method
detects HPIs as high concentrations of spatio-temporal points in a defined layout
region and assigns them to manufacturing systems’ industrial resources (e.g., WS).
This algorithm does not need to be trained but requires the definition and a static
assignment of five spatio-temporal hyper-parameters. Tab. A2 lists them with the
related values intervals. First, d∗ and NPts provide an initial clustering of human
activities during production cycles. While ϵ defines the distance between geomet-
rical points, NPts define the minimum number of points for each HPI. This last pa-
rameter can be seen as a temporal constraint as well. In addition, spatio-temporal
points grouped by ϵ and NPts must be temporally consecutive and thus spaced by
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FIGURE 3.5: LSTM-based architecture

δt. Trivially, δt is equal to the sampling frequency of the adopted acquisition layer.
However, these constraints do not adequately model the measurement noise and
motion uncertainties of the IoT acquisition layer and workers, respectively. Indeed,
it may be necessary to merge process interactions with each other to avoid skewed
KPIs. For instance, let’s define two consecutive HPIs (e.g., Cw,a

z,i and Cw,a
z+1,i). Each

interaction is defined by a finite set of positioning points (e.g., pw,a
i, f ′ ,z), a time win-

dow (e.g., tsw,a
i, f ′ ,z and tsw,a

i, f ∗ ,z), and a geometric center (e.g., Ow,a
z,i = {Oxw,a

z,i , Oyw,a
z,i }).

Therefore, Cw,a
z,i and Cw,a

z+1,i are merged togheter whether the Eq. (3.1) is true and at
least one between Eq. (3.2) and (3.3) is met.

tsw,a
i, f ′ ,z − tsw,a

i, f ∗ ,z ≤ α (3.1)

EuclideanDistance(pw,a
i, f ∗ ,z, Ow,a

z+1,i) ≤ β (3.2)

EuclideanDistance(pw,a
i, f ∗ ,z, pw,a

i, f ′ ,z+1) ≤ ϕ (3.3)

Tab. A2 shows the hyper-parameters considered in the previous equations, namely
α, β and ϕ. While α depends on the average time spent to travel from Cw,a

z,i and Cw,a
z+1,i ,

β and ϕ are functions of the expected distance from consecutive process interactions.
Once again, interested readers can find the extended formulation in Chapter 2. List
of Symbols sums up this algorithm’s the indeces and parameters.

Random Forest: this supervised-based algorithm has a structure based on decision
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trees [121]. The number of tree to be ensembled together is given by the hyper-
parameter estimator number (see Tab. A3). Each tree computes the output class
for any measurement in the training set. Several parameters influence the size and
depth of these estimators. Among them, the minimum sample split defines whether
a tree node is further split. The node is split if the number of samples in the node
is less than the minimum (see Tab. A3). Otherwise, that node represents a leaf.
The output of all decision trees is considered to determine the final output class.
This process is known as aggregation and is based on majority voting. Trees models
are diversified based on two different methods. First, bagging or bootstrap avoids
model overfitting by reducing the sensitivity of training data. Therefore, each deci-
sion tree is provided with a sample of data with random replacements in between.
Second, feature randomness differentiates the branches of trees’ nodes enabling a
better classification of datasets. Each decision tree chooses randomly a maximum
amount of features based on sqrt or log2 (see Tab. A3). Finally, the loss function to
be minimized during the training process is given by the entry criterion in Tab. A3.

Operation oriented computations

This computation leverages the output of the previous classifiers bundled with the
same feature space to train industrial resource-specific classifiers. In detail, assign-
ments to industrial resources are further distinguished into value-added and non-
value-added activities. Value-added operations groups events in which workers
are performing manual tasks assigned in industrial resources. This computational
step targets a binary classification and reduces algorithm complexity during the
learning stage. In addition, it is particularly effective and practical in industrial en-
vironments where companies require ready-to-deploy solutions and privacy con-
cerns combined with potential interference with processes’ executions may limit
extensive ground truth data gathering. Indeed, achieving representative datasets
for human motions is a challenging task, especially in diversified workforces and
heterogeneous manual operations. To achieve this ambitious aim, three different
ML-based classifiers are benchmarked with each other, namely Random Forest,
Gradient Boosting, and Support Vector Machine. The Random Forest algorithm
discussion is not repeated since it follows the same formulation given in subsubsec-
tion 3.1.2. In addition, Appendix A lists the classifier-specific hyper-parameters to
be optimized (see Tab.A3, A5 and A4).
Gradient Boosting: similarly to the Random Forest, this supervised-based algo-
rithm exploits ensemble learning method, where decision trees or estimators are
trained as base learners and then leveraged to achieve input classifications (see
Tab.A5). In addition, this classifier adopts the boosting techniques by learning in
a sequential manner decision trees. Therefore, the initial and highly biased model
is further complicated by adding more trees to minimize the residual error between
actual and predicted values. The error is computed through the derivative of the
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squared logarithmic loss function with respect to the predicted value. In addition,
the learning rate controls the importance of new trees added to the model during
the classification process. Tab. A5 defines the set of hyper-parameters to be op-
timized, where the maximum features and the minimum sample splits follow the
same definitions of the Random Forest classifier.
Support Vector Machine: this supervised-based algorithm is widely used for classi-
fication problems even though the training time exponentially increases with large
datasets. The objective of this ML-based classifier is to define the optimal hyper-
plane that best differentiates input data streams’ features. Data closest to the hy-
perplane are support vector points and their distances are the margins. The hy-
perplanes are computed based on similarity scores between pairs of training data.
These scores are computed by choosing the preferred Kernel, where the Gaussian is
one of the most popular [122]. During the training process, two hyper-parameters
need to be optimized (A4). First, C can be seen as a model’s regularization parame-
ter by controlling the cost of misclassifications. Indeed, it trades off between correct
classifications and the margin dimension. While to large value of C is associated
with a small margin, the opposite scenario occurs with low C values. In this latter
case, the probability of misclassifying data increases. Second, γ defines the influ-
ence level of a single training example with all the others. High values suggest a
close influence between data points.

3.1.3 Decision Support System

Based on the closed-loop computations of the cyber layer (see Fig. 3.3), Tab. 3.2
lists how the segmented workers’ activities are stored before computing the multi-
dimensional KPIs to monitor and manage human-centric manufacturing systems.
In particular, the data engineering & labeling step acquires the JSON data of the
UWB-based RLTS and then extracts the dataset features to be fed in the following
two ML-based computations. While the reconfiguration oriented classifies logis-
tic activities and assigns workers to industrial resources regardless the production
setup, the operation oriented computation differentiates between value-added and
non-value-added manual operations for each WS.

TABLE 3.2: Example of time-dependent working operation of
workers within a production setup

Start End Duration [sec] Operation Resource Distance [m]
10:06:26.47 10:06:46.09 19.62 Value-added WS2 0
10:06:46.76 10:06:51.36 4.60 Non-value added WS2
10:06:51.59 10:06:53.83 2.15 Traveling - 4.7
... ... ... ... .. ...
11:31:03.58 11:31:11.41 47.83 Value-added WS4 0
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FIGURE 3.6: Multidimensional KPIs embedded in the Decision
Support System

The first three columns of Tab.3.2 outline the time-driven features of detected man-
ual operations by storing the time window timestamps and the related duration.
Working activities are classified by the operation and resource entries. While the
first distinguishes between operation type (e.g., value-added and non-value-added),
and traveling activities, the resource column specifies the industrial resource. The
last column specifies the meters traveled between two temporally consecutive pro-
cess interactions. Although this RTLS-based activity segmentation of workers’ op-
erations enriches the visibility of in-plant operations, it is impractical to effectively
monitor the performances of human-centric RMS. To fill this gap, customized call-
back functions enable user-friendly decision-making facilitating innovative insights
into the interaction of workers and WSs in flexible manufacturing systems. This is
related to time and spatial aspects as well as the combination of both. Fig. 3.6
provides an overview of considered KPIs and analysis items towards advanced de-
cision support use cases for monitoring, planning, and improving manufacturing
systems. For instance, industrial plant supervisors visualize the most utilized re-
sources while understanding the allocation of operators to industrial resources. In
general, these indicators extensively evaluate value-added activities to detect ineffi-
ciencies or bottlenecks in reconfigurable environments. Based on this level of detail,
decision-makers have pivotal insights to reconfigure the process to achieve sched-
uled efficiencies. At the same time, the multi-dimensional from-to charts highlight
the resources’ interdependencies and the most exploited workers in material han-
dling activities during production processes. This level of analysis is extremely ben-
eficial for managers. First, they may aim to achieve fair RMS by equally involving
workers in handling activities. Second, data-driven layout redesigns may increase
the operational efficiency of human-centric RMS. Therefore, as clear advancements
towards the state of the art, the suggested approach is flexibly adapting to chang-
ing manufacturing layouts and situations and enables an innovative breakdown of
manufacturing activities (e.g. into value and non-value-adding time shares).
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FIGURE 3.7: Static viewpoint of the industrial related reconfig-
urable pilot environment

3.2 Cyber-physical system validation

This section validates the digital system to monitor human-centric RMS based on
ML-based models. In particular, subsection 3.2.1 describes the industrial-related
pilot environment where the workers’ motion patterns and WS positioning infor-
mation are acquired by a UWB-based RTLS. The obtained dataset consists of 8 man-
ufacturing configurations, where a spinal prosthetic model is the final product to be
assembled by exploiting various industrial WSs, operators, and task assignments
(subsection 3.2.2). Finally, the remaining subsections 3.2.3 and 3.2.4 present the ML-
based performances of the reconfiguration and operation oriented computations.
These intelligent classifiers are trained and tested in a remote Jupiter server running
in a Dell PowerEdge R740 with an Intel Xeon Platinum 8468H and RAM 256Gb.

3.2.1 Reconfigurable case study

The industrial-related pilot environment assembles a medical spinal prosthetic sam-
ple in different industrial resources, where one of them hosts a collaborative robot
(see Fig. 3.7). WS are equipped with industrial screwdrivers and a fixed stor-
age location that stocks components and fasteners. The manufacturing process re-
quires fully assembling 3 final products by performing a wide range of tasks. Based
on operators’ experience, the entire production takes between 15 and 20 minutes.
First, 8 blocks are glued together in pairs and thus drilled. Each block is distin-
guished by 4 holes. Subsequently, these blocks are fit into the prosthetic frames
and screwed by industrial drivers. The third step screws together the prosthetic
halves to achieve the final product. The production cycle ends with screwing qual-
ity tests. Based on this assembly process, 8 different production setups have been
performed varying the number of WS, the task to WS assignment, and the workers
involved. Although this human-centric RMS may accommodate high product vari-
ances at affordable costs, a process monitoring based on supervisors’ experience
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FIGURE 3.8: Seventh production set-up

and human commitment results in unrepresentative analysis and thus underper-
forming decision-making. To avoid these managerial weaknesses, the overall goal
is to design a CPS that performs an activity segmentation of workers’ tasks by dis-
tinguishing them into value-added and non-value-added, regardless of the different
industrial setups during a pilot production of the medical prosthetic. In particular,
the computational layer needs to be layout and operation-intensive to ensure easy-
to-deploy in-plant monitoring. Based on this, a UWB-based RTLS acquires work-
ers’ motion patterns and industrial WS locations in the production environment.
As depicted in Fig. 3.8, six anchors are deployed in the ceiling of the monitored
industrial-related pilot environment at known positions. These reference points are
connected to a PoE switch that provides a stable power supply and a local network.
Based on the description of the industrial use case, the following subsection de-
scribes the feature-engineered dataset of workers’ motion patterns during the spinal
prosthetic assembly in 8 production setups. Each manufacturing configuration is
implemented twice on different working days.

3.2.2 Feature-engineered workers’ motion patterns

This subsection describes the operator-specific datastreams that are fed into the ML-
based cyber layer. The global dimension of the dataset is equal to 814065 samples.
These time-driven motion patterns are acquired in 8 production setups involving
a total of 41 different workers. In this regard, Tab. A6 in Appendix A specifies the
setup-dependent WS’ absolute 2D positions and the number of operators. Since less
than 25% and 40% of production setups involve 5 and 6 workers, the vast majority
of input data is held by the first four operators. Tab. A7 lists the gathered input data
for each operator number. The collected video-based ground truth enables frame-
oriented data labeling and thus 9 different classes are adopted to distinguish work-
ers’ operations during production processes. This supervised and time-consuming
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process deeply affects the deployment time of ML-based models. A possible and vi-
able solution to slash down data labeling times is to run a time-dependent script that
assigns real-time labels to workers’ operations based on keyboard entries of num-
bers. However, this approach requires the supervision of each worker-dedicated
running script and thus it is not implemented due to the shortage of researchers.
The classes from WS1 to WS5 underline process-specific working activities in these
WS. Similarly, Robot and Storage suggest human-automation interactions and the
picking of raw materials and components (e.g., fasteners). The Idle class is intro-
duced to group all non-value-added operations regardless of the spatio-temporal
positions within 8 production setups. Fig. 3.9 outlines using boxplots the distribu-
tions of the discussed industrial classes among production setups. The Idle state
represents the majority of events in this highly unbalanced dataset with a median
value equal to 27.27%. The maximum and minimum values account for 51.48% and
15.87%, respectively.

FIGURE 3.9: Dataset classes distributions in percentage

While the maximum is connected to the second production setup during the first
recording day, the lower bound is registered in the fourth production setup and
second recording day. The higher bound is markedly affected by the Operator 6 op-
erations that are non-value-added for the 88.89% of his/her production time. The
other most populous classes are WS1, WS2 and WS3 peaking at 28.3%, 23.42% and
22.23%, respectively (see Fig. 3.9).
Considering the challenging target of designing a configuration and operation in-
sensitive architecture, an additional data investigation targets the distribution of
acceleration profiles. Therefore, Working and Idle represent the newly formed oper-
ators’ states under analysis. In particular, the Working state groups workers’ value-
added datastream in whichever WS and production set-up. Fig. 3.10 shows the 3D
distributions of acceleration profiles in the mentioned operator states. It is worth
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noting that these distributions have overlapping patterns and the underlying one
and multi-way ANOVA tests are distinguished by really weak p-values. This sce-
nario confirms the null hypothesis and may be driven by two main factors. First,
the dataset dimension fails to generalize both workers’ motion patterns and the
performed manual operations. However, it may be difficult to extensively acquire
ground truth information in industrial use cases due to privacy concerns [26]. Sec-
ond, the IoT acquisition layer is required to increase the sampling frequency to ob-
tain higher resolutions in acceleration motion patterns [123]. To mitigate the dataset
sparsity and the low resolution of acquired accelerations, the proposed ML-based
cyber layer mines value inside data using a two-step approach. First, state-of-the-
art algorithms assign workers to industrial resources (e.g., WS and storage location)
and detect logistic activities (see subsubsection 3.1.2). However, this computational
step approximates any WS proximity to value-added operations. Therefore, the sec-
ond computational step fills this gap by performing a binary classification between
Working and Idle states (see subsubsection 3.1.2). Six different ML-based classifiers
are trained to learn meaningful motion patterns from WS1 to the robotic WS. The
performances of these two computational steps are described in the following sub-
sections 3.2.3 and 3.2.3.
Regardless of the different targets of these computational algorithms, the dataset
is split into three sets, where the validation has a share equal to the 70% of the
dataset and the remaining two (e.g., validation and test) accounts for 15%. Produc-
tion set-ups in recording days are assigned entirely to one of these sets and are not
duplicated. In particular, the test set contains datastreams of the 7-th production
setups during the second recording day. Fig. 3.8 shows the layout configuration
of this setup as well as the number of workers. In addition, the bold entry in Tab.
A6 of Appendix A outlines the absolute WS positions and number of workers for
this production setup. In particular, the WS1 dedicated workers glue and drill the
blocks to be inserted in prosthetic frame halves. Then, the righter worker of WS1
is in charge of moving finished products in WS2, WS3, and WS4 where prosthetic
halves are fully assembled. The production process ends using the robotic arm to
screw together the prosthetic halves to achieve the final product. This process is
remotely controlled from WS5 where an automated final inspection of products is
performed.

3.2.3 Performances of reconfiguration oriented computations

This subsection validates the first step of the ML-based computations (see subsub-
section 3.1.2), where the hyper-parameters optimized classifiers are benchmarked
with each other. Before going through the performance metrics (Fig.3.11 in Ap-
pendix A and Tab. 3.3), it is worth describing the adopted data splitting approach.
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(A) X-axis acceleration dis-
tribution

(B) Y-axis acceleration distri-
bution

(C) Z-axis acceleration dis-
tribution

FIGURE 3.10: Distributions of 3D acceleration profiles of UWB-
based tags on operators’ hand

On the one hand, the supervised learning approaches (e.g., LSTM-based architec-
ture and Random Forest) are trained on 70% of the entire dataset. The remain-
ing input data are equally split into the validation and the test sets. In particular,
production setups are randomly assigned to the mentioned dataset splits, preserv-
ing their temporal dependence. The seventh production setup during the second
recording day and the second setup on the first recording day belong to the test set.
On the other hand, the Industrial DB scan does not require training and thus the
following performances are evaluated both on the 7th production set-up and on the
entire dataset. Tab. 3.3 depicts these performances, where values between brackets
relate to the entire dataset. Regardless of the classifier, three different metrics (see
Eq. from (3.4) to (3.6)) benchmark the classification performances of the presented
ML-based algorithms.

Precision =
TP

(TP + FP)
(3.4)

Recall =
TP

(TP + FN)
(3.5)

Micro F1 − score =
TTP

TTP + 1
2 ∗ (TFP + TFN)

(3.6)

The first two class-dependent metrics are functions of TP, FP, and FN. While Preci-
sion measures results’ relevancy, the Recall indicates how many truly relevant re-
sults are returned. The Micro F1 score is chosen as a global metric due to its ability
to better reflect imbalanced data distributions (see Fig. 3.9). Where TTP, TFP, and
TFN are derived by summing up the related class-dependent metrics (e.g., TP, FP,
and FN).
Regardless of the intrinsic differences of ML algorithms, Fig.3.11 (a) shows promis-
ing Micro F1 scores for all classifiers. In particular, the Random Forest and Indus-
trial DB scan represent the worst and best-performing approaches accounting for



Chapter 3. Digital monitoring of Reconfigurable Manufacturing Systems 56

0.82 and 0.87, respectively. However, this global metric fails to highlight the class-
specific strengths and weaknesses of these models. To fill this gap, the performance
evaluation of this computational stage starts with the Pytorch-coded LSTM-based
neural network. Based on the hyper-parameters in Tab. A1, the optimal network
configuration is iteratively assessed. Batch, window, and hidden sizes are equal to
64, 128, and 256. The model is distinguished by solely one LSTM layer and thus the
dropout is not introduced. Finally, the learning rate is equal to 1e−4. Fig. 3.11 (b)
shows the Cross-Entropy-based loss for both the training and validation set over
300 epochs. While the training loss starts at 1.21 its profile over epochs decreases to
meet convergence at 0.01, the validation Cross-Entropy opens at 2.62, and the loss
is distinguished by fluctuations over training epochs. In addition, after reaching
the local minima equal to 0.34 at epoch 49, the validation curve increases to 0.72.
Since this scenario may indicate model overfitting, Fig. 3.11 (c) depicts the Micro
F1 scores within data splits over model epochs. Although the training F1 score is
approximately equal to 1 from epoch 94 on-wards, the validation and test set have
similar profiles and do not shrink. The 111-th model epoch with related learned
weights maximizes the test F1 score accounting for 0.86 (see Fig. 3.11 (a)). Fig.
3.11 (d) shows the confusion matrix related to this model epoch, where the main
diagonal contains the correct classified datastreams. Before analyzing the confusion
matrix, it is worth stating that this computationally expensive architecture is distin-
guished by an inference time equal to 90 seconds for each training epoch and a test
time approximately of 38 seconds.
The confusion matrix suggests that the vast majority of dataset classes present low
misclassification dispersion (e.g., FP and FN). Indeed, WS apart from WS4 and the
Storage present Micro F1 scores ranging from 0.82 to 0.98 (see Tab. 3.3). However,
WS4 and Travel classes are distinguished by underperforming F1 scores accounting
for 0.63 and 0.48, respectively (see Tab. 3.3). On the one hand, the Precision and
Recall of the fourth WS are equal to 0.84 and 0.51 leading to class underestimation
due to a high amount of FN. This scenario is driven by a limited representation of
this class in the dataset. Indeed, the class shares range from 1.31% to 15.72% within
production setups (see Fig. 3.9). In addition, half of production environments do
not exploit WS4 during the prosthetic assembly. On the other hand, the Travel class
shows low values for Recall and Precision. This scenario is driven by narrowed
production setups where the UWB-based RTLS is stressed with short distances be-
tween manufacturing WS (see Tab. A6).
The second classifier is the Industrial DB scan. The model’s hyper-parameters are
shared and have the same values as the first algorithm definition and validation
proposed in [26]. In particular, ϵ, NPts and δt are equal to 0.17 meters, 15 posi-
tioning points and 10 Hz. The measurement noise and motion uncertainty-driven
hyper-parameters, namely α, β, and ϕ account for 1 second and 0.5 meters. Based
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on this hyper-parameters selection (see Tab. A2), the Micro F1 score of the 7th pro-
duction set-up is equal to 0.87. Fig. 3.11 (e) shows the related confusion matrix for
this targeted multiclass problem. This clustering method presents a computational
time equal to 72 seconds for each operator in the considered production setup. Sim-
ilarly to the LSTM-based network, the F1-score of industrial resources from WS1
to WS5 ranges from 0.80 to 0.95. It is worth noting that the WS4 F1-score accounts
for 0.94, markedly higher than the one obtained with the LSTM-based architecture
(see Tab. 3.3). A different scenario emerges for the Storage class where the neural
network architecture outweighs this density-based method. Indeed, an underper-
forming Recall value provides an F1 score equal to 0.54. This low statistic is driven
by a relevant limitation of the Industrial DB scan. The definition of static hyper-
parameters may not reflect different positioning accuracies of the UWB-based IoT
acquisition layer in manufacturing systems’ local regions. In the targeted industrial-
related pilot environment, such a scenario emerges for x and y values ranging from
0 to 3 and from 3.75 to 6 meters, respectively (see Fig. 3.8). Both classifiers are
distinguished by weak capabilities in detecting logistic activities in the mentioned
industrial-related pilot environment due to narrowed distances between WSs (see
Tab. 3.3 and Tab.A6).
The last classifier to detect reconfiguration-oriented operations is the Scikit-learn-
coded Random Forest. The optimal hyperparameters configuration is found us-
ing the grid-search algorithm. This sub-optimal configuration is distinguished by a
number of estimators and minimum sample splits equal to 70 and 3, respectively.
In addition, the optimal criterion and maximum features are given by entropy and
the sqrt. Fig. 3.11 (f) depicts the related confusion matrix that provides a Micro
F1 Score equal to 0.82. The described training and test times are equal to 140 and
15 seconds, respectively. Although this classifier is the worst performing in detect-
ing manufacturing operations, WS1 and WS5 F1 scores outweigh the previous two
computational methods. Overall, this statistic for the other classes is satisfactory
apart from WS4 and Travel. While the first confirms the limitations already ana-
lyzed with the LSTM-based model, the logistic activities are a shared weakness of
all benchmarked intelligent algorithms (see Tab. 3.3).

TABLE 3.3: Performances of optimized classifiers for reconfiguration oriented computations

Class LSTM architecture Industrial DB scan Random Forest

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

WS1 0.96 0.89 0.92 0.95 (0.93) 0.96 (0.92) 0.95 (0.92) 0.98 0.97 0.97
WS2 0.96 0.97 0.96 0.96 (0.97) 0.94 (0.90) 0.95 (0.93) 0.97 0.79 0.87
WS3 0.92 0.95 0.94 0.93 (0.90) 0.86 (0.88) 0.89 (0.85) 0.96 0.88 0.92
WS4 0.84 0.51 0.63 0.96 (0.90) 0.94 (0.95) 0.95 (0.92) 0.97 0.56 0.71
WS5 0.85 0.81 0.83 0.76 (0.70) 0.85 (0.90) 0.80 (0.79) 0.91 0.97 0.93
Robot 0.74 0.91 0.82 0.88 (0.81) 0.81 (0.88) 0.85 (0.84) 0.94 0.69 0.80
Travel 0.44 0.53 0.48 0.45 (0.5) 0.62 (0.70) 0.52 (0.58) 0.19 0.63 0.29
Storage 0.94 0.89 0.92 0.98 (0.90) 0.47 (0.45) 0.64 (0.60) 0.96 0.83 0.89

After this quantitative discussion on class-specific performances, the LSTM-based
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(A) Micro F1-scores of the re-
configuration oriented clas-

sifiers

(B) Cross Entropy losses op-
timized LSTM-based archi-

tecture

(C) Micro F1-Scores opti-
mized LSTM-based architec-

ture

(D) Confusion matrix opti-
mized LSTM-based architec-

ture

(E) Confusion matrix opti-
mized Industrial DB scan

(F) Confusion matrix opti-
mized Random Forest

FIGURE 3.11: Performances of ML-based classifiers of
reconfiguration-oriented computations

neural network is chosen over the Industrial DB scan for a main reason. It is prefer-
able to achieve a better Micro F1-score for the Storage class rather than in WS4
which is hardly used in the considered manufacturing process (see Fig. 3.3). De-
spite the adopted model selection to maximize classification performances, the fol-
lowing Tab. 3.4 provides an additional and useful distinction of the benchmarked
ML-based classifiers. The listed features may guide practitioners in implementing
the most adequate model based on their needs and requirements. For instance, the
Industrial DB scan represents the most effective solution with a limited dataset and
related ground truth baseline information. In addition, this density-based computa-
tional method does not require training and thus the deployment time solely relies
on the identification of a sub-optimal hyper-parameters values set.

TABLE 3.4: Qualitative benchmark of reconfiguration oriented ML-
based methods

Classifier Training Deployment Time Number of hyper-parameters Dataset size

LSTM-based architecture Yes High High Large
Industrial DB scan No Low Low Small
Random Forest Yes Low Medium Medium



Chapter 3. Digital monitoring of Reconfigurable Manufacturing Systems 59

FIGURE 3.12: Micro F1-scores of the operation oriented classifiers

3.2.4 Performances of operation oriented computations

This subsection discusses the performances in classifying working and idle activ-
ities, given the industrial resource (see subsubsection 3.1.2). To do so, three grid
search optimized (see bullet point in Appendix A) ML algorithms are trained using
a resource-specific dataset with test sets’ dimensions varying from 7.3% to 17.5%
(e.g., WS5 and WS2 represent the lower and upper bound). This computational step
considers solely data streams acquired during the second recording day due to re-
duced exposure to motion uncertainty in workers’ assembly activities. Considering
computational times, the Support Vector has markedly higher statistics compared
to the other two models. Indeed, the Gradient Boosting and the Random Forest are
distinguished by mean and standard deviation training times equal to 35 and 5 sec-
onds, respectively. The same statistics for the Support Vector account for 11.5 and
2.2 minutes. The related mean and standard deviation for the inference shrinks to
2.5 minutes and 70 seconds.
Fig.3.12 shows the industrial resources-centered (e.g., from WS1 to Robot) Micro F1-
scores in identifying value-added and non-value-added activities. The acronyms
SVM, RF, and GB refer to Support Vector Machine, Random Forest, and Gradient
Boosting methods to limit space. Overall, the first three WS are distinguished by
markedly higher Micro F1-scores compared to the remaining others. This scenario
is driven by the nature of tasks allocated to WS. Indeed, the most manual-intensive
activities such as drilling blocks and screwing them into the model’s frame are usu-
ally assigned to WS1, WS2, and WS3. Based on this, two algorithms are selected to
differentiate workers’ status (e.g., Working and Idle) in industrial resources. While
the Random Forest is the most appropriate method for the first three WSs, Gradient
Boosting shows better capabilities in the remaining WSs where operators’ motion
patterns are limited.

Starting the discussion with the most manual-intensive industrial resources, the
Random Forest Micro F1-score values of WS1, WS2, and WS3 are equal to 0.92,
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0.81, and 0.76, respectively (see Fig. 3.12). These promising statistics are also re-
flected by analyzing the resources and operator state-driven Precision, Recall, and
F1-score metrics (see Tab. 3.5). In particular, the Random Forest algorithm outper-
forms the other methods showing deltas up to 0.49. A stark example is provided by
the Recall values of non-value-added activities in WS1 (see Tab. 3.5).
A different scenario emerges for the remaining industrial resources from the fourth
WS to the robotic one. Indeed, the Support Vector Machine and the Random For-
est show superior Micro F1-scores compared to the Gradient Boosting algorithm
(see Fig. 3.12). For instance, considering WS4, the Support Vector accounts for 0.52
compared to 0.28 of the Gradient Boosting. However, Tab. 3.5 suggests that both
Random Forest and Support Vector Machine classifiers overfit the data set. In de-
tail, the value-added class for WS4 and WS5 is never recognized. Based on this,
the Gradient Boosting is leveraged as the most adequate classifier to evaluate the
operator state in these WS. Despite this selection, the detection capabilities are not
satisfactory for two main aspects. First, 3D acceleration profiles present overlap-
ping distributions among Working and Idle classes, as already pointed out during
the dataset description (see subsection 3.2.2). Second, these industrial resources are
distinguished by pretty static workers’ motion patterns. For example, operators’
activities are limited to interaction with the machine interface and highly assisted
quality checks in the robotic and fifth WS. To conclude this classifier and resource-
oriented discussion, Fig.A1 in Appendix A shows the confusion matrices for each
resource and chosen ML-based algorithm.
Benefitting from these sequential ML-based computational steps, a time and label-
oriented algorithm segments workers’ activities as shown in Tab.3.2. Sequentially,
callback functions leverage these outputs to achieve KPIs to monitor the efficiencies
and interdependencies of production set-ups.
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3.3 Results & managerial insights

After the performance validation of the designed ML-based cyber layer, this section
discusses the managerial insights and implications of monitoring with IoT tech-
nologies task executions in human-centric RMS. The following KPIs embedded in
the DSS discusses the performances and interdependencies of the 7th production
set-up during the second recording day lasting 16 minutes approximately.
This production setup employs 5 workers to fully assemble 3 spinal prosthetic mod-
els resulting in 5.45 minutes/product. Fig. 3.13 shows the utilization ratio of indus-
trial resources as a function of workers’ value-added operations over the monitored
shift (e.g., ST stands for Storage and ANs for anchors).

FIGURE 3.13: Utilization of Industrial resources over the monitored
shift

The most saturated resources of this production set-up are the first three WS. While
WS1 peaks at 77.82%, WS2 and WS3 are distinguished by utilizations equal to 72.31%
and 70.22%, respectively. This scenario is driven by the task allocation to WS. In-
deed, WS1 hosts manual gluing and drilling of blocks. Subsequently, blocks are
moved into three parallel WS (e.g., WS2, WS3, and WS4) that fit two wooden blocks
each into the prosthetic model halves. The analyzed KPI demonstrates that WS2
and WS3 are preferred over WS4. This last resource is used as a jolly WS showing a
utilization ratio lower than 30%. Based on this first insight, plant supervisors should
identify the over-allocation of resources that negatively impact both economic indi-
cators and potential distances traveled by workers to perform production cycles.
In this regard, it would be recommended to reduce the number of WSs and even-
tually assign an additional jolly operator either to WS2 or WS3 to lower potential
bottlenecks and operators’ efforts to meet required takt times. The remaining in-
dustrial resources are distinguished by low utilization lower than 10%. The quality
control in WS5 and the human-robot interactions represent quick and less labor-
intensive tasks. Although this KPI highlights potential redundant WS in produc-
tion set-up, it falls short in segmenting workers’ operations over the shift. Fig. 3.14
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(A) Distribution of operator-centric
operations

(B) Distribution of value-added oper-
ations among operators and resources

(C) Operator specific percentage of
value-added operations over the shift

FIGURE 3.14: Activity segmentation of workers operations

(a), (b) and (c) fill this gap by highlighting the distribution of value-added and non-
value-added operations as well as the operators’ assignments to WS. First, Fig. 3.14
(a) outlines the operator-centric distributions of value-added and non-value-added
operations as a function of the shift duration. This KPI is extremely effective in
pointing out the most under-saturated workers in performing process-related ac-
tivities. While Op1, Op2, and Op5 register shares of value-added operations greater
than 72%, Op3 and Op4 are distinguished by values equal to 37.42% and 42.57%,
respectively. Although this first overview may suggest an over-allocation of work-
ers to the production setup, further metrics are required to carefully analyze this
working shift. Second, Fig. 3.14 (b) depicts the value-added activities performed
by operators among the seven industrial resources of this production set-up. This
metric enables to differentiate operators’ tasks. While Op1 and Op2 value-added
operations never below 72% are limited to WS1 and WS3, the remaining operators
are way more dynamic showing interactions with multiple resources. Op3 and Op4
represent striking examples and provide additional details into the process’s func-
tioning. On the one hand, the distribution of Op3 value-added activities suggests
that low productivities of WS4 are integrated with quality checks and robot inter-
actions. On the other hand, Op4 interacts with almost all industrial resources of
the manufacturing system, where an 8.77% of time is reserved by picking activi-
ties from the storage location. This insight may suggest that this worker is also in
charge of manual material handling operations among industrial resources. Third,
Fig. 3.14 (c) further details workers’ value-added operations by evaluating their
share in production routines using a time resolution of 30 seconds. This KPI noti-
fies plant supervisors of potential workers’ over-allocations to production set-ups.
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Although three operators (e.g., Op1, Op2, and Op5) are distinguished by shares
of value-added operations greater than the 80% for the majority of the production
shift, Op3 and Op4 hardly exceed the 70%. In particular, Op3 is the least involved
in value-added activities. Benefitting from these KPIs, decision-makers may reduce
the workforce size and re-distribute Op3 tasks to the remaining others, most likely
to Op2 and Op5 that share similar operations.In general, workers’ over-allocations
are detrimental to in-plant performances. First, stagnant outputs per unit of time
and operators may penalize workers’ commitments and awards during gamifica-
tion approaches. Second, incorrect systems design in manufacturing systems with
interconnected job shops may drastically affect companies’ market competitiveness.
Besides process-oriented manual operations, it is pivotal to focus on traveling events
to discuss the interdependencies among industrial resources. A top-down approach
is established to achieve this purpose. Fig. 3.15 shows the distances traveled by
monitored workers over the working shift. Op4 travels 3 up to 20 times the dis-
tances of his/her colleagues, overcoming 200 meters during the shift. This statistic
is consistent with the distribution of value-added activities among operators and
resources (see Fig. 3.14 (b)). Indeed, Op4 interacts with almost all industrial re-
sources and spends approximately 10% of his/her working time in the storage lo-
cation. This distance-dependent statistic negatively affects the social inclusiveness
and sustainability of the considered human-centric RMS. This scenario is driven by
two main factors. First, an over-allocation of resources with non-optimal positions
may lead to longer logistic activities. This can be mitigated by the long-mid term
planning horizon of the architecture as discussed in [50]. Second, plant supervisors
should be encouraged to redistribute logistic activities among the workforce. This
point assumes further relevance when manually handled products present consid-
erable weight and risk scores of ergonomic indices (e.g., NIOSH and EAWS) repre-
sent valuable weights to be fed into objective functions [124].

FIGURE 3.15: Distances traveled by operators over the shift

However, not accessing the operator-centric travel activities fails to highlight the
most involved resources of production set-ups. Fig. 3.16 fills this gap by depict-
ing the multidimensional from to charts of Op4 in the frequency, time, and spatial
domains. It is worth noting that a valid traveling activity between two industrial
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resources must contain at least 20 indoor positions. This choice is made to limit the
cyber layer’s limitations in detecting this event combined with an in-depth process
analysis. Starting to analyze the frequency domain, Fig. 3.16 outlines the amount of
traveling events or flows among industrial resources.

(A) Flow-oriented from to chart (B) Time-oriented from to chart

(C) Distance-oriented from to chart

FIGURE 3.16: Multidimensional from to charts of Operator 4

It is interesting to note that the 3 out of 5 flows from the storage location are di-
rected to WS3. The same amount of flows from WS3 are then directed to WS2.
Analyzing the global picture, WS2 and WS3 are distinguished by a higher amount
of incoming and outgoing flows compared to WS4. This flow distribution confirms
the utilization ratio of WS4 in this production set-up. Fig. 3.16 (a) confirms that Op4
handles the replenishment of WS2, WS3, and WS4 while feeding to them the blocks
to be screwed in the prosthetics halves. Scaling the same approach to the entire
workforce, other material handling activities may be detected and thus analyzed.
For instance, Op1 presents solely one travel activity from the storage to WS1. This
value points out accurate management of wooden blocks because it suggests that
the required wooden blocks to produce 3 final products are moved at once. The lo-
gistic activities toward the final stages of the production cycles (e.g. robotic WS and
quality check in WS5) are managed by Op3 and thus are not discussed further. To
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better analyze process functioning and potential inefficiencies, Fig. 3.16 (b) and (c)
link the discussed flows with the aggregated distances traveled and the time spent.
For example, 12.7 seconds and 18.3 meters that are registered during the 3 flows
between the storage location and WS3 may be reduced by changing the replenish-
ment logic. The advantage of knowing a priori the desired output rate should en-
courage decision-makers to design an adequate buffer size for each WS. This would
enhance the material handling times and distances by avoiding multiple and un-
necessary interactions with the storage. Considering the parallel operations of the
three industrial resources (e.g., WS2, WS3, and WS4), a shared buffer location may
be designed as well to limit obstruction among operators during task executions.
Another valuable layout modification is to bring closer WS2 and WS3. By doing
this, Op4 would slash down the 14.1 seconds and the 23.5 meters during three trav-
eling events. The same approach can be used with WS1 in bringing it closer to WS2
and WS3.
To conclude, the designed CPS can effectively enhance the visibility of human-
centric RMS through different multi-criteria variables. On the one hand, perfor-
mance driven metrics suggest sub-optimal allocation of WS and workers to pro-
duction setups. This contributes to improving manufacturing systems’ economic
metrics while minimizing operators’ efforts during manual task executions. In ad-
dition, these metrics may be complemented by additional data such as market de-
mands and production batches to create families of production setup designs. On
the other hand, investigation of logistic activities suggests potential disadvantaged
workers and valuable inputs to heuristic optimization to re-balance traveled dis-
tances during production cycles. In addition, operator-centric from to charts pin-
point the interdependencies of industrial resources constituting valuable inputs to
re-layout production environments. This twofold level of investigation is crucial to
meet human-centric and socially sustainable value creations following tue Industry
5.0 vision.
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Chapter 4

Digital monitoring of internal

logistic operations

"There’s gonna be opposition
Ain’t no way around it

Well, if you are looking for strong and steady
Well, baby, you found it

We’ll weather the coldest nights
Baby, we’re a dying breed"

– The Killers, Dying Breed, 2020

Internal logistics systems operations face huge complexity as the variance in mar-
keted products continues to increase [125, 126]. This scenario is strongly affected
by customer orders and shorter product lifecycles. Mass-customized markets chal-
lenge warehousing systems to handle and deliver small-batch size of shipments
with high varieties [127]. Among the inbound and outbound activities, the order
management represents one of the most stressed warehousing operations [128].
Therefore, logistic supervisors are required to manage and optimize these low-
standardized environments in order to reinforce in-plant performances at sched-
uled levels. However, traditional managerial tools such as lean management are
utterly inadequate to achieve this challenging goal [48].
Several investigations demonstrate that one of the best approaches is to develop
CPS and feed IoT-based data streams in computational algorithms [129]. Among
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proposed data-driven solutions, tracking technologies gain traction in low stan-
dardized warehousing systems due to their ability to increase the visibility of in-
plant operations as discussed and quantitatively demonstrated in the previous Chap-
ters. [130]. The RFID technology represents a pivotal enabling sensor with multiple
applications in inbound and outbound logistic operations [131]. For instance, [132]
automates the development of the warehousing management system by placing
passive RFID-based tags in parts and components. A similar approach is to lever-
age RFID architectures to optimize the storage assignment into storage locations
[133]. Although these tangible operational benefits, RFID-based data gathering is
highly affected by human commitment and attention, potentially leading to the loss
of relevant logistics operations. [132, 134]. In addition, these approaches fail to
identify the system behaviour between two consecutive activities (e.g., traveling ac-
tivities between picking activities).
Based on these limitations, Chapter 1 already pointed out RTLS as the most ade-
quate candidate to indoor locate forklifts and enhance the visibility of in-plant op-
erations along with their performances [48, 54, 55, 56, 57]. Therefore, the challenge
of this Chapter is validate the Industrial DB scan capabilities in detecting forklifts
operations during the order management. The IoT acquisition layer is designed to
monitor logistic activities by leveraging two tags per manual vehicle. This specific
sensors’ deployment requires a redesign of the unsupervised-based method firstly
presented in Chapter 2 and additional tests to validate the CPS in a different ind-
strial environment. On the one hand, a quantitative benchmark with traditional
clustering methods is performed. The proposed algorithm results in the most ef-
fective approach to detect uptime forklift operations. On the other hand, a ware-
housing system proves the operational functioning of the algorithm by returning in
a Tracking Management System several KPIs to monitor the efficiency of the order
management.

4.1 Cyber-physical system for internal logistic systems

This section presents the original contribution of this Chapter. Fig. 4.1 depicts the
digital CPS to monitor the efficiency of manual forklifts operations during order
management. To achieve this purpose, an IoT acquisition layer acquires strategic in-
formation from whichever internal logistic system. While forklifts’ indoor positions
are acquired from a UWB-based RTLS, process data (e.g., the logistic role of ware-
house regions) are retrieved from informative systems. Following a preprocessing
step that identifies logistic vehicles trajectories, the Industrial DB scan automati-
cally classifies the in-plant operations of forklifts. These outputs update a Tracking
Management System where customized callback functions develop internal logis-
tics KPIs. Benefitting from this activity-driven information, managers monitor the



Chapter 4. Digital monitoring of internal logistic operations 69

FIGURE 4.1: Qualitative overview of the CPS to monitor the opera-
tional efficiency of internal logistic systems

efficiency of internal logistic processes. For instance, the heat maps of uptime oper-
ations provide privileged insights into forklift activities over the shift. In addition,
the OEE-availability outlines the workload over the shift and as a financial metric
may suggest to increase the number of vehicles.

4.1.1 IoT acquisition layer

Before going through the steps to mine value within data, it is necessary to describe
the required input data by this digital system. As depicted in Fig. 4.1, the proposed
digital system is distinguished by two different data streams.
On the one hand, internal logistic system data describe the in-plant functioning of
the process under analysis. Meetings with logistics supervisors, process analysis as
well as data gathering from informative systems are required to obtain an accurate
overview of warehouse operations. For example, the logistics role of warehouse
regions is a pivotal insight in investigating manual forklifts’ trajectories during or-
ders’ fulfillment.
On the other hand, a UWB-based RTLS represents the IoT acquisition layer to gather
positioning information of tagged logistic vehicles (Fig. 4.2). The adopted UWB
positioning technology is distinguished by a cascade structure, where several sub-
systems are connected to a single communication line. In particular, subsystems are
composed of eight ANs that triangulate the unknown position of moving tags. Sim-
ilarly to the previous CPS, the proposed system leverages the TDoA method to esti-
mate the 3D time-dependent position of the forklifts [103, 119]. Received messages
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FIGURE 4.2: Conceptual representation of the adopted UWB-based
RTLS

are sent to a remote server. As depicted in Fig. 4.2, manual vehicles are equipped
with two tags. While the first monitors the cabin movements, the second one ac-
quires the motion patterns of the forks. Regardless of their application, tags are dis-
tinguished by variable blink rates ranging from 1Hz to 100Hz to minimize energy
consumption. This dynamic frequency range is driven by onboard accelerometer
measurements. During the active mode, these IoT nodes send positioning informa-
tion to ANs at 10Hz. However, whether the accelerometer does not register any
movement for 5 minutes, the sleep mode is triggered and the refresh rate is de-
creased to 1Hz. Therefore, the resulting battery life can last more than one year.
It is worth noting that no information is gathered on direct human working activ-
ity (e.g., packing a shipping order) and thus fewer privacy concerns may be raised
from labor unions in operating warehousing systems [135]. The remote server is the
last component of this IoT acquisition layer (see Fig. 4.2). In addition to collecting
positioning signals and triangulating the time-dependent positions of forklifts, it
preliminary performs a trajectory detection step for any active vehicle and logistic
area. Then, the Industrial DB scan is triggered to detect meaningful logistic events
during order management (e.g., picking activities). Based on these outputs, a set of
KPIs is developed to monitor the efficiency of forklifts in low-standardized internal
logistic systems under multiple perspectives.

4.1.2 Forklift-centric Industrial DB scan algorithm

Based on the detailed description of positioning data acquired by a UWB-based
RTLS, this section quantitatively presents the Industrial DB scan algorithm. This
novel density-based ML algorithm classifies manual forklift operations (e.g., pick-
ing/depositing activities in storage areas) in internal logistic systems. The proposed
algorithm improves the original DB scan formulations under two viewpoints as al-
ready discussed in Chapter 2 [26]. To briefly recall to readers’ the main novelties,
the Industrial DB scan defines additional hyper-parameters and merging criteria to
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FIGURE 4.3: Qualitative heuristic flow diagram of the proposed In-
dustrial DB scan algorithm for internal logistics processes

model time sensitivity and increase the consistency of process interactions [98, 96].
This features makes the algorithm more robust to positioning outliers driven by
ppor line of sight communications between ANs and tags [47, 136]. The Industrial
DB scan superior performances in extracting meaningful information from forklift
positioning points are quantitatively and discussed in subsection without requiring
ground truth labeled data 4.2.2. Contrarly to the previous Chapter, the forklift-
centric algorithm formulation is pointed out more in detail due to the peculiar con-
figuration of the IoT acquisition layer and category of manufacturing environment.
List of Symbols eases the reading process by listing the indices and parameters of
this quantitative discussion.
Starting to analyze the operative functioning of the proposed approach, Fig. 4.3
qualitatively presents the computational steps to mine value within the time de-
pendent positioning information of forklifts. The first algorithm’s task targets the
trajectory detection for each l-th active forklift and a-th logistic areas. While logistic
areas are defined with managers or downloaded from informative systems, vehi-
cle trajectories are defined as a set of finite and temporally consecutive positioning
points within the same a-th logistic region. These data streams are processed in the
next algorithm steps using nested for loops to ensure that the Industrial DB scan is
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triggered in each forklift trajectory. An additional distinction is performed on the
b-th tag under analysis. Indeed, as depicted in Fig. 4.3 two parallel flow paths are
defined to gain insights into the motion patterns of the forklift cabins and forks.
It is worth saying that b equal to 1 refers to the tagID placed on the forklift cabin.
Although the core functioning and key computations of these two paths are fairly
similar, the discussion starts with the left side of the diagram (Fig. 4.3). At this
stage, the Industrial DB scan is triggered to classify logistic events based on the mo-
tion patterns of forklift cabins (see Algorithm 1).
Each i-th cabin trajectory tl,a

i,b (e.g., b = 1) groups a variable number of frame-

dependent and temporally consecutives positioning points pl,a
i, f ,b (where f = f ′, ..., f ∗).

In detail any pl,a
i, f ,b = (pxl,a

i, f ,b, pyl,a
i, f ,b, tsl,a

i, f ,b), where the last parameter represent the

corresponding timestamp of the f -th frame. For each tl,a
i,1, the algorithm defines as

ϵ sequences as the number of positioning points in the trajectory. To do so, the
pairwise Euclidean Distance is performed between all positioning points. These
geometric points are added to lists whether they are spaced at the greatest of d∗ be-
tween each other (see lines from 6 to 8 in Algorithm 1 ). This first hyper-parameter
represents a threshold value in meters to be set concerning the final application and
the measured noise of the adopted RTLS. Based on this, a preliminary clustering
of tl,a

i,b positioning points is achieved. However, potentially grouped data streams
in neighbor lists are not subjected to time-driven constraints. This point is ad-
dressed by Algorithm 1 in the lines ranging from 10 to 15, where two additional
hyperparameters are presented, namely δt and NPts. While δt checks whether
points grouped in the neighbor lists are temporally consecutive, the second hyper-
parameter defines the lowest duration of the list. In detail, δt represents the average
sampling rate of the IoT acquisition layer (see subsection 4.1.1), and NPts needs to
be set in agreement with plant supervisors based on the expected minimum dura-
tion of forklift operations. Based on δt and NPts, ϵ sequences may be classified as
forklift operations (e.g., Cl,a

z,i,b, where b = 1 since the focus here is ensured on the
tag placed on the cabin). Trivially, the index z orders the classified forklift process
interactions or operation from 1 to Z.
Although the automatically detected Cl,a

z,i,b are temporally consistent, these forklift
operations may be affected by the uncertainty of manual vehicle trajectories and the
acquisition noise of the adopted UWB-based RTLS [135, 47]. To increase the relia-
bility of these logistic events, the if statement in line 19 of the Algorithm 1 defines
merging criteria for temporally consecutive operations (e.g., Cl,a

z,i,b and Cl,a
z+1,i,b). The

first criterion analyzes the delta time between Cl,a
z,i,b and Cl,a

z+1,i,b. In particular, tsl,a
i, f ′ ,b,z

and tsl,a
i, f ∗ ,b,z define the starting and ending timestamps of forklift operations based

on the clustered positioning points. The temporal difference between tsl,a
i, f ∗ ,b,z and

tsl,a
i, f ′ ,b,z+1 has to be at longest equal to α. This hyper-parameter should be set with

logistic supervisors based on the expected average time between two conceptually



Chapter 4. Digital monitoring of internal logistic operations 73

different forklift events. The second criterion checks the Euclidean Distance be-
tween the geometric centers of consecutive logistic operations (e.g. Ol,a

i,b,z and Ol,a
i,b,z

). In particular, Ol,a
i,b,z = {Oxl,a

i,b,z, Oyl,a
i,b,z} is computed through the weighted aver-

age between positioning points grouped in Cl,a
z,i,b (e.g., pxl,a

i, f ′ ,b) and their respective

timestamps (e.g., tsl,a
i, f ′ ,b)) (Eq. 4.1).

Oxl,a
z,i,b =

∑
f ∗−1
f= f ′ pxl,a

i, f ′ ,z

(
tsl,a

i, f ′+1,z − tsl,a
i, f ′ ,z

)
∑

f ∗−1
f= f ′

(
tsl,a

i, f ′+1,z − tsl,a
i, f ′ ,z

) (4.1)

The same approach is adopted to calculate the y dimension of the geometrical cen-
ter. Therefore, the Industrial DB scan verifies if the Euclidean distance between
Ol,a

z,i,b and Ol,a
z+1,i,b (e.g., dist(Ol,a

z,i,b, Ol,a
z+1,i,b) in line 19 of Algorithm 1) is lower than γ

as threshold in meters. This hyperparameter is strictly related to the design of the
monitored logistic environment since it represents the expected average distance
between consecutive warehouse operations.
Based on the characteristics of the logistic process under analysis, the Cl,a

z,i,b can be
related to process-driven activities such as P/D and packaging. In addition, the
defined hyper-parameter namely NPts, ϵ, α and γ may be indexed to a. Although
the detected forklift operations provide valuable insights into internal logistic sys-
tems functioning, the motion patterns of forks are completely neglected. For this
purpose, the heuristic flow diagram in Fig. 4.3 depicts the parallel computation of
data coming from the second tagID placed on the forks (e.g., b = 2). The operative
functioning of the Industrial DB scan is equal to the one described in the last para-
graph and by the Algorithm 1. Contrarly to before, the outputs of these streams
of computations return the mean 3D positions of the forks. Such a level of detail
is particularly useful in storage areas where manual vehicles perform P/D opera-
tions. It is worth noting that the hyper-parameters (e.g., NPts, d∗, α and γ) may be
additionally indexed to the tagID.
Finally, the detected forklift operations combined with the respective mean 3D po-
sitions of the forks are stored in a Tracking Management System where specific call-
back functions define strategic internal logistic KPIs to monitor the efficiency of
forklifts in low standardized logistic systems.
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Algorithm 1 Industrial DB scan

Require: Forklift trajectory in a logistic region tl,a
i,b , radius d∗, minimum

points per forklift operation NPts
Ensure: Current forklift operation result Cl,a

z,i,b

1: Initialize Cl,a
z,i,b as an empty list

2: z = 1
3: for each positioning point p in tl,a

i,b do
4: for each positioning point p′ in T f ,r do
5: Compute the Euclidean distance dist(p, p′)
6: if dist(p, p′) ≤ ϵ then
7: Add p′ to the ϵ sequence of p
8: end if
9: end for

10: if the size of the ϵ sequence of p > NPts and positioning points are
spaced by δt then

11: Add p and its temporal consecutive neighbors to Cl,a
z,i,b

12: z = z + 1
13: else
14: Define p as noise
15: end if
16: end for
17: z = 1
18: while z ≤ Z do
19: if tsl,a

i, f ∗ ,b,z − tsl,a
i, f ′ ,b,z+1 ≤ α and dist(Ol,a

z,i,b, Ol,a
z+1,i,b) < γ then

20: Merge Cl,a
z,i,b and Cl,a

z+1,i,b

21: Update Cl,a
z,i,b

22: end if
23: z = z + 1
24: end while
25: return Cl,a

z,i,b, ∀z = 1, ..., Z

4.1.3 Tracking Management System

The classified forklift activities flow in the Tracking Management System. This in-
formation provides quantitative insights for plant supervisors to evaluate the func-
tioning and efficiency of whichever RTLS-based logistic system. Tab. 4.1 shows the
data structure of detected and thus stored forklift operations.
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TABLE 4.1: Example of the tracking management system on an ac-
tive manual forklift

Start End Duration [sec] Operation Distance [m] X-axis [m] Y-axis [m] Z-axis [m]
12:09:08.71 12:09:17.44 8.73 P/D - Storage A 0.00 31.14 4.96 9.66
12:09:17.45 12:09:30.58 13.13 Travel 16.80 − − −
10:06:26.47 10:06:46.09 10.00 Packaging 0.00 20.50 7.89 2.23
... ... ... ... ... ... ... ...
15:04:55.64 15:09:08.71 253.06 Parking 0.00 40.89 34.60 0.31

In particular, the informative content of the first five columns is derived by lever-
aging the Industrial DB scan on the trajectories assumed by the tagID placed on the
forklift’s cabin (see the left path in Fig. 4.3). Trivially, the distance column is distin-
guished by values greater than zero whenever the density-based algorithm detects
a traveling activity. The last three columns in Tab. 4.1 provide strategic insights
about the motion patterns of the second tagID placed on the forks. For instance,
let’s consider the picking/depositing (P/D in Tab. 4.1 to limit space) operation that
occurred in the storage area A of an analyzed internal logistic system (e.g., first row
in Tab. 4.1). This information provides the mean forks 3D positions clustered by the
Industrial DB scan during the P/D activity. Such valuable insight is obtained by the
right path of the algorithm in Fig.4.3.
Starting from these classified operations, customized callback functions develop in-
ternal logistic KPIs to monitor the performances of manual forklift activities. The
following bullet point lists the automatically updated efficiency metrics taken into
account:

• Timeline of forklifts

• Heat map of forklifts uptime operations in logistic areas

• Picking/deposit operations in storage areas

• OEE-availability of forklifts

These statistics are hardly achievable without RTLS-based data streams and con-
tribute to improving the visibility and traceability of low-standardized logistic sys-
tems. While the timeline of forklifts points out the time horizon where forklifts
are in motion, the heat map highlights the distribution of uptime activities during
working shifts. Benefitting from this second insight, logistic managers may easily
identify the most utilized vehicles to perform order management operations. Sup-
posing higher shipping times compared to historical data, supervisors can discuss
with employees to achieve a better understanding of potential bottlenecks. The in-
vestigation of in-plant performances is narrowed to P/D operations. In addition to
detecting their forklift-based amount over the shift, traveling times among consec-
utive operations are pointed out. This valuable insight highlights both the learning
curve of employees in locating goods and the efficiency of product displacement by
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FIGURE 4.4: Tracking management system interface

the management. To ease the identification process of uptime events, logistic su-
pervisors can plot spaghetti charts and even the single activity of forklifts. Finally,
these insights on uptime activities are leveraged to assess the OEE-availability of
manual vehicles. This KPI can support the economic initiative of expanding the
fleet as well.
To achieve a user-friendly performance monitoring of forklift operations, Fig. 4.4
depicts the Tracking Management System interface that mirrors the proposed and
discussed KPIs in a digital environment.

4.2 Cyber-physical system validation

Based on the conceptualized ML and IoT-based CPS, this section validates its appli-
cability in a European warehouse under distinctive perspectives. First, subsection
4.2.1 describes the functioning of the monitored low-standardized logistic system.
Second, the Industrial DB scan classification performances are benchmarked with
other density-based formulations (see subsection 4.2.2). Third, subsection 4.3 dis-
cusses the managerial implication of monitoring a logistic working shift using the
proposed KPIs.

4.2.1 Case study

The developed RTLS-based acquisition layer (section 4.1) is successfully tested and
validated in a European warehouse that inbounds and outbounds automotive parts
and components using manual forklifts. Fig. 4.5 depicts the 8000 m2 plan area of the
warehousing systems divided into 9 specific sub-areas based on their logistic role
during order management.
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FIGURE 4.5: Referenced warehouse system layout by the UWB-
based RTLS

These areas are grouped into two different categories. On the one hand, the process-
driven ones that host uptime operations are grey-colored. While the Mixed and
Heavy product zones represent storage areas, the other two complete the order
management involving orders’ packaging and shipping out activities. In detail,
both storage areas are rack-based with a maximum height equal to 9.05m and a dis-
tance between levels ranging from 0.58m to 1.28m. Also, the shipping-out area is
rack-based to optimize space during high-demand periods. On the other hand, the
remaining pink zones, namely the office, training area, repacking, and bin, are not
relevant to the process and thus are not considered further in the analysis. The re-
maining white spaces represent the corridors.
To better address the seasonality effect, logistic supervisors recognize that process
experience and conventional approaches such as lean management were not suffi-
cient to monitor the dynamic performances of forklifts. Therefore, the company re-
quired to enhance the visibility of forklifts by automatically detecting their uptime
activities using the digital system presented in section 4.1. A UWB-based RTLS is
installed in the warehouse implementing a network of 63 ANs. These receivers are
placed at a height between 6.43m and 10.30m. Manual forklifts are equipped with
two tags to dynamically acquire the positioning information of the cabin and the
forks (subsection 4.1.1). It is worth saying that tags are distinguished by unique
IDs. For example, the FL01 forklift is equipped with tagIDs 4968 and 5294 on the
cabin and the fork, respectively. The resulting accuracy of the presented IoT system
is equal on average to 0.5m. Time-dependent positioning data are stored on an en-
crypted company server, accessible via WebSockets.
Exploiting the description of the presented warehousing logistic system, the follow-
ing two subsections validate the digital system from different points of view. While
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subsection 4.2.2 justifies the definition of a novel density-based clustering algorithm
based on several metrics, the second one presents developed KPIs along with the
managerial implications.

4.2.2 Comparison of density-based clustering algorithms

(A) FL01 trajectory

(B) Uptime activities returned by the DB
scan

(C) Uptime activities returned by the In-
dustrial DB scan

FIGURE 4.6: Comparison of the analyzed density-based algorithms

This subsection validates the Industrial DB scan by proving its superior detection
performance compared to other density-based formulations. In particular, a pre-
liminary investigation analyzes both graphically and quantitatively the weaknesses
of the original DB scan formulation, then three clustering metrics validate the pro-
posed clustering approach using as input data a working shift lasting 8 hours.
Starting the discussion, Fig.4.6 (a) shows time-dependent trajectories of the FL01
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forklift, which occurred from 07:52:51 to 08:03:00 on 19th of December 2022. Af-
ter the high-spatial density of blue points, the manual vehicle starts a travel activity
toward the upper part of the Mixed Products area. However, due to the intrinsic un-
certainty of human behavior, FL01 returns around the same sets of indoor locations
(see the light red cloud of points in Fig.4.6 (a)). In particular, a similar set of indoor
positions is assumed with a time difference approximately equal to 41 seconds. For
such scenarios, the application of the DB scan leads to an unrepresentative identifi-
cation of forklift operations. Fig. 4.6 (b) accurately depicts the time insensitivity of
this density-based clustering algorithm. It is worth noting that the uptime activity
#2 groups indoor positions belonging to different time windows. On the contrary,
the Industrial DB scan correctly addresses such strong limitation by leveraging the
time-driven constraints (see subsection 4.1.2). Therefore, an additional uptime op-
eration is detected as shown in Fig. 4.6 (c). While uptime activity #2 clusters indoor
positions from 07:58:20 to 08:00:07, the third occurs from 08:01:22 to 08:02:55.
Although these trajectories provide a representative example of the major weak-
nesses of the traditional DB scan formulation, a more extensive comparison of these
density-based methods is required. Hence, two DB scan algorithms are bench-
marked to the proposed ML-based clustering method. While the first is the original
DB scan formulation, the second one addresses the well-known time weaknesses.
In the following this mathematical method is renamed DB scan time-sensitive. It is
worth noting that this benchmarking process is performed using the same values
of hyper-parameters. d∗ is equal to 0.5 meters and the minimum duration of a lo-
gistic operation (e.g., NPts) and δt are equal to 15 seconds and 10 Hz, respectively.
In addition, the motion uncertainty and RTLS acquisition noise hyper-parameters
(e.g.,α and γ) account for 20 seconds and 0.7 meters. The resulting comparison
is performed using the number of detected uptime operations and three widely
adopted performance metrics for unsupervised problems with unlabeled data [137,
138]. First, the Silhouette Coefficient (SIC) indicates how well logistics operations
are clearly distinguished. The value ranges from −1 to 1 by taking into account both
the average distances between each positioning point within uptime operations and
among all operations [139]. Second, the variance of detected activities is measured
through the Calinski-Harabasz Index (CHI). This metric measures the ratio of dis-
persion between uptime operations with the dispersion inter-operations. the dis-
persion is computed as the sum of squared distances among forklift positioning
data [140]. Third, the Davies-Bouldin Index (DBI) evaluates the ratio of the average
dissimilarity within a logistic event to the maximum average dissimilarity between
events. The returned value represents the worst-case scenario among all logistic op-
erations [138]. Based on this, Tab. 4.2 summarizes the scores of these metrics having
as input the indoor positions of five active forklifts during the morning shift on 19th

of December 2022, lasting 8 hours. The first two formulations of the DB scan have
the lowest and highest number of detected uptime operations, respectively. These
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values are driven by the time weakness of the original DB scan formulation and
the absence of RTLS-based merging criteria for the time-sensitive formulation. Ad-
dressing these limitations, the Industrial DB scan returns 1012 uptime operations.
However, the detected forklift activities are not sufficient to adequately benchmark
the analyzed density-based algorithms. Thus, the last three columns in Tab. 4.2
complete the analysis proving the superior performances of the Industrial DB scan.
In particular, the SIC equal to 0.38 indicates better separation and cohesion in clus-
tering forklift operations. The same is valid for the CHI, where the Industrial DB
scan is distinguished by a value equal to 99534.53.

TABLE 4.2: Comparison of density-based clustering algorithms

Algorithm Uptime operations SIC CHI DBI
DB scan 885 0.31 92943.22 1.70
DB scan time-sensitive 2826 0.35 55231.17 3.84
Industrial DB scan 1012 0.38 99534.53 5.32

This index proves better dispersions between and within uptime operations. The
benchmarking ends with the DBI. Although lower values underline better perfor-
mances, the area of application of these density-based methods requires a different
evaluation perspective. Indeed, the increasing DBI values highlight the capabilities
of separating operations occurred in the same area but in different time windows.

4.3 Results & managerial insights

Following the investigation into clustering performances, this subsection further
validates the proposed CPS. The discussion is focused on the morning shift on the
19th of December 2022. In particular, the monitored shift starts at 5:50 am lasting
8 hours. The automatically detected forklift operations are stored in a Tracking
Management System where callback functions develop strategic KPIs to monitor
the efficiency of this internal logistic process. Based on this, the next paragraph
discusses the managerial implications carried by this UWB-based layer.
The logistic process monitoring starts with the timeline of active forklifts during the
working shift (Fig. 4.7). While pink bars depict the active time of forklifts, white
regions suggest the appearance of downtime activities driven by the sleep feature
of tags (see subsection 4.1.1). The vast majority of forklifts (e.g., from FL01 to FL04)
are distinguished by active times roughly equal to 7 hours. On the contrary, FL05
is used for no more than 2 hours during the working shift (Fig. 4.7). However,
these time windows are not necessarily related to the system’s under-performances
because forklift drivers perform several off-board activities (e.g., manual material
handling) during the order management process. In particular, the under-utilized
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vehicle (e.g., FL05) is used by a qualified jolly operator shared with the production
department during high-demand periods.

FIGURE 4.7: Timeline of monitored forklifts during the monitored
morning shift

Although this level of detail indicates the most used vehicles over the shifts, it fails
to automatically detect the duration of uptime operations and their region of oc-
currence. This two-fold analysis is enabled by the second interactive button in the
Tracking Management System interface (Fig. 4.4). First, Fig. 4.8 introduces the heat
map of valued added operations in the time domain, where each cell stores the ag-
gregated duration of forklift-driven activities in logistic areas. This KPI enhances
the visibility into forklift operations over working shifts. On the one hand, the pro-
posed heat map underlines the most contributing forklift in performing logistic op-
erations. For instance, FL01 is solely involved in picking/depositing operations,
spending 119.6 minutes and 23.18 minutes in the Mixed and Heavy Products areas,
respectively. In addition, 3 over 5 forklifts (e.g., FL01, FL02, and FL04) spend around
2 hours performing picking/depositing activities in the Mixed Products zone. The
third vehicle registers a considerable time duration in performing packaging op-
erations (e.g., almost half an hour). At the same time, no shipping out activities
are detected during this morning shift. Therefore, forklifts are exploited to store
and when necessary package manufactured components and parts from the pro-
duction department. On the other hand, shift-driven information can be compared
to historical data to detect unexpected deviations from average duration values. In
this regard, meetings with the related forklift drivers may be encouraged to dis-
cuss potential process weaknesses. This analysis is complemented by highlighting
the spatial dimension of forklift activities. Therefore, Fig. 4.9 depicts the detected
operations within the logistic system regions. To not burden the presented figure,
the colored forklift operations returned by the Industrial DB scan are displayed as
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FIGURE 4.8: Aggregated uptime operations in logistic areas

points in the Euclidean space. This second level of analysis provides straightfor-
ward insights into the most visited regions of the warehousing system. For instance,
the bottom part of the Mixed Products areas is hardly visited compared to the up-
per one confirming one of the best practices of the analyzed case study. Indeed,
logistic supervisors recommend forklift drivers to achieve high occupation levels in
the upper area of Mixed Products. This decision is driven by the reduced distances
between the production department and the packaging area. It is worth noting that
based on supervisor experience more than the 95% of manufactured components
and final orders are packaged before being stored and shipped, respectively. Con-
sidering the relevance of P/D activities both in the time and frequency domain (see
Fig. 4.8 and 4.9), it is extremely relevant to compare the time spent in storage areas
with the duration of the mentioned logistic event, where the first includes travel ac-
tivities as well. In particular, times spent in storage areas are always greater than the
related uptime activities than a multiplication factor ranging from 25.3% to 46.7%.
The worst-case scenario emerges with the first forklift (e.g., FL01) that visited stor-
age areas for more than 200 minutes over the shift. This insight further enhances
the visibility of logistic operations while offering a unique opportunity to logistic
supervisors to improve in-plant operations. For instance, the scheduling optimiza-
tion of P/D activities and optimal material allocation may be investigated using
heuristic-based approaches.

At the same time, better training of forklift drivers could reduce unnecessary travel-
ing routes during order management. Regardless of the means, the overall objective
needs to narrow down the previously discussed multiplication factors between time
spent in storage areas and the related uptime activities. In addition to improving
forklift performances, a consistent benefit is to reduce the charging hours of vehicles
leading to energy cost savings but most importantly to a reduced carbon footprint.
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FIGURE 4.9: Detected forklift uptime operations by the Industrial
DB scan

This insight proves the CPS capabilities in contributing to design environmentally
sustainable warehousing systems.
An additional perspective on P/D operations is given by their forklift-centric fre-
quency over the shift. As depicted by Fig. 4.10, FL01, FL02, and FL04 register the
highest statistics accounting for 247, 245, and 268, respectively. In addition, as ex-
pected by analyzing the duration of uptime operations (Fig. 4.8), more than 90%
of P/D occur in the Mixed Products warehouse region. Similarly to before, more
insightful managerial implications are derived by combining this KPI with the du-
ration of uptime activities in storage areas (see Fig.4.8). In particular, FLO1 and
FL05 account for the highest and lowest statistic equal to 34.64 and 19.43 seconds
per operation, respectively. Taking into account all forklifts, this metric registers
27.76 seconds per operation. This comparison of mean values can be performed
among the two storage areas as well. While the averages for FL03, FL04, and FL05
differ solely of 7 seconds at greatest, FL01 offers a striking comparison. The av-
erage times account for 32.47 and 53.49 seconds in the Mixed and Heavy Prod-
uct regions, respectively. These statistics may be related to the intrinsic nature of
the products stored requiring slower material handling processes. Overall, aver-
age P/D values are valuable information for two different aspects. First, gamifica-
tion approaches may be implemented to award the best-performing employee on a
weekly or monthly basis. To avoid privacy-related concerns, target average picking
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FIGURE 4.10: Amount of P/D operations in different storage areas

values might be set for the entire fleet of vehicles. Second, comparison with histor-
ical values effectively detect shift and process-related weaknesses while promoting
discussion with employees.

The last KPI integrates the previous information to evaluate the duration of uptime
operations and OEE-availability. Fig. 4.11 depicts these two forklift-specific metrics
that underline pretty low statistics. While uptime operations never exceed 3 hours,
FL01 registers the highest availability equal to 29.76 %. This value is given by di-
viding the duration of uptime operations to the length of the shift (e.g., 8 hours).
These pretty low statistics do not imply system underperformance because human
drivers perform several process-driven operations off-board from manual vehicles.
Overall, the OEE-availability enhances the monitoring of low standardized logistic
environments from two different viewpoints. First, it underlines the saturation of
vehicles. In particular, logistic supervisors may combine historical data by taking
into account orders’ number with OEE-availability to decide the optimal number of
forklifts to allocate in each shift.
To conclude, the developed digital immune system demonstrates that RTLS com-
bined with ML-based algorithms can effectively support the monitoring of low-
standardized logistics systems. This finding is consistent with the predictions out-
lined in the Gartner Top Strategic Technology Trends report for 2023 ([141]). Indeed,
the Industrial DB scan enhances the visibility of in-plant functioning of logistic en-
vironments by extracting uptime activities from forklift trajectories. Based on the
analyzed working shift, the detected uptime forklift operations highlight notable
time spent in storage areas to perform picking/depositing operations. Three over
five vehicles carry out more than 240 picking/depositing operations for more than
2 hours each. However, the OEE-availability never exceeds 30%. The analysis of the
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multidimensional KPIs, hardly achievable without this IoT-based digital system,
may consolidate the process performances of logistic companies.

FIGURE 4.11: OEE-availability of the monitored forklifts
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Chapter 5

Digital European Assembly

Worksheet assessment

"Don’t you know
They are talking about a revolution?

It sounds like a whisper"

– Tracy Chapman, Talkin’ Bout a Revolution, 1988

The European manufacturing industries are one of the most labor-intensive sectors,
employing over 32.1 million workers in 2022 [142]. However, these human-centrinc
working environments have faced various disruptions in recent years, ranging from
social to market threats [2]. On the one hand, European population pyramids offer
a grim scenario highlighting a notable aging process. Eurostat projections forecast
that individuals aged 55 years or older will peak at 40.6% of the European popula-
tion by 2050, up from 33.6% in 2019 [143]. This phenomenon combined with greater
life expectancies is driving European economies to increase the retirement age. Si-
multaneously, high turnover rates in jobs contribute to increased manufacturing
costs related to operator training and replacement [144]; this rate for trade workers
reached 7.8% in 2021 [145]. Occupational injuries point out a compelling scenario
as well. [145] estimates that more than 10% of the European workforce is affected
by work-related health problems where a compelling physical risk targets material
handling of loads and repetitive arm movements. Also, the manufacturing sector is
the greatest contributor to accident fillings. On the other hand, as already discussed
in the previous Chapters, customer preferences are steering smart factories toward
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offering high production flexibility with shorter product life cycles [26, 27, 146].
This grim scenario is partially addressed by digital and data-driven approaches to
mitigate the share of WMSD. However, as already discussed in Chapter 1, digital
ergonomic investigations fall short in digitizing the EAWS. Therefore, the ambitious
goal of this Chapter is to design an EAWS-informed CPS to comprehensively safe-
guard the physical resilience of workers during task executions. For this purpose,
a human-centric IoT acquisition layer feeds HPIs, body joint positions and exerted
forces into computational algorithms to analyze process safety weaknesses from
multiple perspectives. The EAWS based KRIs are embedded in an Ergonomic DSS
to enable data-oriented decision-making processes.

5.1 EAWS-informed cyber-physical system

This section details the developed digital architecture designed to enhance the phys-
ical resilience of Operators 5.0 in human-centric manufacturing systems (refer to
Figure 5.1).

FIGURE 5.1: Overview of the CPS for evaluating the EAWS.

The IoT acquisition layer integrates three enabling technologies to automatically
evaluate the Basic Postures, Action Forces, and Manual Material Handling sections
of the EAWS screening tool. The RFID technology detects HPIs, while MOCAP
cameras and sEMG wearables capture time-driven body joint positions and mus-
cular contractions, respectively. Computational algorithms process these diverse
data streams to perform task-driven assessments of the aforementioned EAWS sec-
tions. Consequently, an ergonomic DSS presents multidimensional KRIs to identify
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operator and process-specific safety weaknesses. For instance, the Musculoskele-
tal Risk metric, in addition to assigning a global risk score for any manufacturing
task, displays the time-dependent body angles for each human posture. This gran-
ular level of detail proves invaluable for industrial plant supervisors in initiating
process modifications, such as assembly line re-balancing.

5.1.1 IoT acquisition layer

Three enabling IoT technologies collect process, physiological, and motion mea-
surements: (i) the RFID smart glove, (ii) the sEMG data acquisition system, and (iii)
the MOCAP camera network.
The RFID-based glove identifies HPIs by reading passive tags attached to tools
and fasteners. The Radio Frequency reader uses the battery-powered PyScan de-
vice [147], which integrates the NXP MFRC63002 RFID transceiver and connects
wirelessly to a server via Wi-Fi. The device sends the ID of each scanned RFID tag
to the server using the MQTT protocol. On the server, the timestamp associated
with the detection moment for each tag is recorded along with its ID and stored in
an InfluxDB database.
The sEMG data acquisition system uses the BITalino evaluation kit [148], which in-
corporates the Atmega 328P microcontroller, the HC-6 Bluetooth transceiver, and
the AD8232 instrumentation amplifier. For each sEMG channel, the AD8232 ampli-
fies the provided signal; the signal is acquired by the 10-bit Successive Approxima-
tion Register Analog-to-Digital Converter (ADC) embedded in the microcontroller.
The data acquisition board exhibits a Signal-to-Noise Ratio (SNR) of 55.72 dB, de-
livers an Effective Number Of Bits of 8.73 bits, and operates at a sampling rate of
1 kHz [148]. Acquired samples are streamed in real-time via Bluetooth to a gate-
way and transmitted to the server via Wi-Fi. On the server, each sEMG sample
is stored with its acquisition timestamp. The monitored muscles include both the
left and right biceps and forearms [149]. The MOCAP system consists of two Mi-
crosoft Azure Kinect devices [150] to mitigate acquisition errors in occlusion sce-
narios [34]. These devices are synchronized with each other using an audio cable.
Each device embeds a 1-MP (MegaPixel) depth sensor with a variable field-of-view
and a 12-MP RGB (Red, Green, Blue) video camera, operating at a frame rate of
15 fps. The MOCAP network is positioned in the manufacturing layout, synchro-
nized through an absolute clock, and calibrated via a checkerboard pattern. Cam-
eras are placed to maximize the coverage area and minimize potential sources of
obstructions. Recordings from each device are processed frame by frame in a loop
for identified bodies, to which specific IDs are assigned. Calculations for determin-
ing body joint positions start at the pelvis and extend to the ears, ensuring interre-
lationships using a global approach. The resulting 3D coordinates of body joints,
along with associated confidence levels, are saved in separate output files, while
timestamps are stored for each data stream.
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TABLE 5.1: Role of enabling IoT technologies in digitizing the
EAWS index.

EAWS Section RFID MOCAP sEMG
Basic Postures ✔ ✔ ✘

Action Forces ✔ ✘ ✔

MMH ✔ ✔ ✔

The following computational algorithms detail how to fuse the video-based dis-
tributed measurements to obtain a reference worker representation (see section 5.1.2).
The recorded parameters, such as sEMG signals and body joint coordinates, un-
dergo synchronization during the post-processing stage within the computational
steps of HPIs (refer to section 5.1.2). Following this synchronization, the EAWS in-
dex is digitally reconstructed by integrating physiological and process-related mea-
surements (see Table 5.1).

5.1.2 Computational algorithms

Based on the discussed IoT technologies, this section outlines the computational
algorithms for extracting value from the acquired data streams and digitizing the
EAWS-driven sections. Despite the synchronous acquisition of physiological and
process data, an initial computation utilizes RFID-based measurements to segment
workers’ activities and recognize tool usage (refer to Subection 5.1.2). For each as-
sembly task, a parallel set of computations is initiated to evaluate three sections of
the EAWS: Basic Postures (section 5.1.2), Action Forces (section 5.1.2), and MMH
(section 5.1.2). While the first two assessments consider the MOCAP and sEMG
data streams independently, the third section integrates the three IoT technologies
to compute the KRIs for this ergonomic dimension (refer to Table 5.1). Finally, two
Appendices ease the reading process of this methodology. While the List of Sym-
bols summarizes the indices and parameters, Appendix B lists the body joints used
to evaluate EAWS postures.

Process interactions

This pre-processing step utilizes RFID-based data streams to identify HPIs and
synchronize measurements from the other IoT technologies. Specifically, data are
downloaded from a server through a SSH connection and divided into task- and
tool-driven measurements.
Although the computational steps for mining value from data streams are fairly
similar, the discussion starts with task recognition (see Algorithm 2). For assembly
activities, time windows are reconstructed based on successive pickings of compo-
nents, fasteners, or Work-In-Progress (WIP) products. This process depends highly
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on the manufacturing workflow and requires consideration of metadata. Therefore,
it is crucial to deploy passive tags in strategic locations within the manufacturing
system (e.g., supermarket trays). The RFID-based glove continuously reads passive
tags’ unique strings and associates the corresponding timestamps. AS f and ATf

represent these parameters during the f -th recording frame. ATf and ATf+1 are
temporally spaced by δt, the sampling rate of the RFID-based glove. It is reasonable
to gather the same AS multiple times for consecutive frames whenever workers
pick components from the activity-related bin. Based on these raw data, Algorithm
2 exploits two while loops to create a scan list for each r-th activity of the assembly
sequence (e.g., Scanr).

Algorithm 2 Time-series algorithm to detect activity-oriented HPIs

Require: ATf and AS f ∀ f = 1, ..., F
1: Initialize Tr and Sr as empty parameters
2: f = 1
3: r = 0
4: while f ≤ F do
5: r = r + 1
6: while (ATf+1 − ATf ≤ δ) and (AS f+1 = AS f ) do
7: Add ATf+1 to the list Scanr

8: f = f + 1
9: end while

10: Tr = min(Scanr)

11: Sr = AS f

12: end while
13: return Tr and Sr, ∀r = 1, ..., R

In particular, ATf+1 values are continuously added to Scanr if their temporal differ-
ence with the current timeframe is at most equal to δt. To avoid mixing assembly
activities, an additional check ensures that AS f+1 and AS f agree (see while state-
ment in line 6). Once the algorithm exits the inner while loop, it computes the
starting time of the r-th activity and associates the respective tag string (see lines 10
and 11). It is worth noting that Tr+1 represents both the starting and ending time
for the (r + 1)-th and r-th assembly activities, respectively. Therefore, the duration
of the a-th assembly activity is given by the difference between Tr+1 and Tr .
The automatic detection of tool usage follows similar computational steps to those
discussed in Algorithm 2. Assuming each tool is embedded with a passive tag, TS f ′
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and TTf ′ represent the unique tool strings and the associated timestamps, respec-
tively. These time-driven parameters are processed by the same two while loops.
However, these HPIs derive different parameters from Scant when the algorithm
breaks the inner loop. Each t-th tool usage is distinguished by a starting time (i.e.,
TTstartt), end time (i.e., TTendt), and tool string (i.e., St). While TTstartt and TTendt

are equal to the earliest and latest TTf ′ values belonging to Scant, St corresponds to
the tag string currently processed by the inner loop (i.e., TS f ′ ). To increase the con-
sistency of the detected tool-driven HPIs, two additional hyperparameters can be
introduced to mitigate the intrinsic uncertainty of human factors. First, tool usages
with durations shorter than λ can be discarded. Second, consecutive tool-driven
HPIs are merged if the following condition is met.

TTstartt+1 − TTendt ≤ τ; where St = St+1 (5.1)

Benefiting from the evaluated activity- and tool-oriented HPIs, a parallel stream of
computations is triggered to calculate the EAWS-based index. The algorithm selects
the time-specific measurements from the MOCAP cameras and the sEMG wearable
for each r-th activity of the assembly sequence. The following sections quantita-
tively describe the computational steps to digitize the Basic Postures (section 5.1.2),
Action Forces (section 5.1.2), and MMH (section 5.1.2) EAWS Sections.

Section 1: Basic Postures

This first algorithm branch automatically identifies time-dependent body angles
and the related human postures to calculate the Basic Postures-informed KRIs, based
on the computational steps described in Figure 5.2 (a).

Following the initialization of the MOCAP camera network according to Subec-
tion 5.1.1, the first computational step performs human skeleton fusion using the
3D coordinates of body joints (i.e., Posc

j,q) and the related measurement confidence
levels (i.e., CLc

j,q). These parameters are indexed by j, q, and c, representing the
body joint, the recording frame, and the Kinect camera, respectively. The algorithm
selects body joint coordinates with the highest confidence level as follows.

Posj,q = arg max
j,c

{CLc
j,q}; ∀ j = 1, ..., J and q = 1, ..., Q and c = 1, 2 (5.2)

Subsequently, the returned body joint positions are indexed to the detected assem-
bly activities (i.e., r = 1, ..., R) based on the computed HPIs (see section 5.1.2). To
facilitate the assessment of relevant body angles, the human skeleton is recreated us-
ing the hierarchical structure depicted in Figure 5.2 (b), where the pelvis (i.e., Joint
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(A) Flow diagram for
musculoskeletal risk as-

sessment

(B) Human body joints captured by
the Microsoft Azure Kinect cameras

FIGURE 5.2: Musculoskeletal evaluation

1) represents the root node. The EAWS screening tool defines several human move-
ments from lumbar extension to arm positions; therefore, Appendix B lists the body
joint groups considered to identify each posture. Based on this, the algorithm tra-
verses the body tree with a depth-first order iterator to calculate two vectors. First,
a 3D vector is computed between each joint and its parent (e.g., Joint 1 is the parent
of Joint 2). Second, the program creates G vectorial structures of body joint groups
(i.e., Vr

g,q). In particular, Vr
1,q represents the back vector between joints ranging from

1 to 4. The vector of the right leg, Vr
2,q, is formed by considering the body joints 1,

23, 24, and 25. Therefore, the angle between the worker’s back and the right leg is
given as follows, where g and g

′
are equal to 1 and 2, respectively:

Θr
g−g′ ,k

= arccos

 Vr
g,q · Vr

g′ ,q

∥Vr
g,q∥∥Vr

g′ ,q
∥

 ; ∀q = 1, ..., Q and g, g
′ ∈ G (5.3)

It is worth noting that this angle is computed for all postures and body joint groups
in Table B1 of Appendix B, in addition to each k-th recording frame of the MOCAP-
based network. However, Θr

1−2,q is not sufficient to adequately classify back inclina-
tions. Θr

1−3,q is computed following the same procedure, where g equal to 3 indexes
the left leg. Based on Table B1, the involved joint numbers are 1, 19, 20, and 21.

Using Θr
1−2,q and Θr

1−3,q, the algorithm scans all timeframes and performs activity-
driven posture (i.e., p = 1, ..., P) recognition through the following if statements:

• If Θr
1−2,q and Θr

1−3,q < 20◦ ⇒ Standing (i.e., p = 2)
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• If 20◦ ≤ (Θr
1−2,q and Θr

1−3,q) ≤ 60◦ ⇒ Low Bending (i.e., p = 3)

• If Θr
1−2,q or Θr

1−3,q > 60◦ ⇒ High Bending (i.e., p = 4)

Based on these statements, a duration is automatically assessed for each p-th EAWS
posture and r-th assembly activity (i.e., Dr

p). Tstarta
p and Tenda

p represent the starting
and ending timestamps, respectively. Subsequently, Dr

p is mapped into risk scores
(i.e., PScorer

p) following the EAWS guidelines. For instance, a low bending duration
of 16 seconds (i.e., Dr

3) corresponds to a PScorer
p equal to 12. It should be noted

that some movements are mutually exclusive (e.g., standing, bending, and strong
bending), while other postures can be assumed simultaneously (e.g., standing and
trunk rotation). Additionally, posture-related parameters are indexed to o to indi-
cate the temporal occurrence of the p-th posture in r (i.e., Dr

p,o and PScorer
p,o). The

last processing step in activity-driven posture identification mitigates the acquisi-
tion noise of the MOCAP-based network and the intrinsic motion uncertainty of
human workers. For example, consider three consecutive postures with known du-
rations Dr

p,o−1, Dr
p′ ,o , and Dr

p,o+1. The algorithm considers the two p-th postures as
a single event if the following condition is verified.

Dr
p+1,o ≤ π (5.4)

where π represents the minimum duration to hold an EAWS-driven posture. Triv-
ially, merging postures requires updating all related parameters.

The resulting Activity-Driven and Global Action Forces Scores are computed using
Eq. 5.5 and Eq. 5.6, respectively.

ADBPSr =
R

∑
o=1

P

∑
p=1

PScorer
p,o ; ∀p, a ∈ r (5.5)

GBPS =
∑R

r=1 ADBPSr

R
(5.6)

Section 2 - Action Forces

This algorithmic branch computes the second section of the EAWS index, focusing
on the exerted forces of upper limbs (i.e., biceps and radial flexors) during task ex-
ecutions. Traditionally, muscular strength is defined as a subject’s capability to ap-
ply a force over a given time window. The applied force is a complex phenomenon
involving interactions with muscle fibers and the central nervous system [151]. De-
spite this data usually being acquired by dynamometers, [152] demonstrates, based
on limits of agreements, that sEMG data streams are a reliable measure to detect



Chapter 5. Digital European Assembly Worksheet assessment 94

changes in muscle strength and muscle activity. Therefore, this algorithm leverages
sEMG-based signals to assess Voluntary Contractions (%VC) as a function of MVC
in workers’ upper limbs and then associates these to action force scores defined by
the EAWS screening tool [62]. This approach facilitates the development of this sec-
tion by neglecting assumed postures.
Before evaluating muscular-driven VC and the related KRIs, the algorithm needs to
be initialized for each worker according to the right path of Figure 5.3. This initial-
ization involves N sEMG acquisitions, capturing muscular datasets during resting
and maximal isometric contraction scenarios. While the initial data streams help de-
termine acquisition noise for each channel (i.e., noisem), the muscle-driven MVCm

(i.e., where m = 1, ..., 4) is computed based on the second set of recordings. The
evaluated VCm is normalized using the corresponding MVCm, and thus this pa-
rameter is represented as % VCm. Muscular measurements undergo denoising and
conditioning through a three-step approach:

1. Wavelet Package Decomposition (WPD): It splits signals into high and low-
frequency coefficients (i.e., detail and approximation, respectively). The Dau-
bechies 45 orthogonal mother wavelet is employed, known for its efficacy in
handling sEMG data [153]. After decomposition, the sEMG information is
recomposed by summing the approximation coefficient of the last order with
the detailed ones.

2. TKEO: It enhances SNR and onset muscle activation detection [149].

3. 4th-order low-pass Butterworth filter: It obtains the envelope, removing
frequency components at twice the signal bandwidth.

This three-step approach is applied to incoming sEMG data streams and is not re-
peated when analyzing the left part of the flow diagram in Figure 5.3. The algorithm
computes acquisition noisem and MVCm. The acquisition noise is approximated to
three times the standard deviation of the signal in resting scenarios for any m-th
active channel or muscle. Multiple acquisitions (i.e., noisen

m, where n = 1, .., N) are
recommended to enhance the metrological reliability of this parameter. The result-
ing noisem is equal to the mean of all acquisitions. MVCn

m is obtained by perform-
ing for a variable duration (i.e., Dn

m) isometric contractions of the biceps brachii and
radial flexors. Similarly, MVCm and Dm are obtained by averaging the maximal
voluntary contraction and duration of each n-th recording and m-th sEMG channel,
respectively. It’s crucial to note that these parameters highly depend on operators’
physical features, varying within the workforce and even between subjects’ sides.
Following this worker and muscle-specific initialization procedure, the algorithm is
ready to analyze sEMG measurements acquired during industrial working cycles as
depicted by the left flow part in Figure 5.3. In the following, sEMG data streams are
denoted as xu,m, where u represents the acquisition frame of the BITalino board. The
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FIGURE 5.3: Flow diagram for evaluating muscular risk.

algorithm performs a signal windowing step to evaluate the % VCm. In particular,
it defines muscle-specific overlapping sliding windows with duration (i.e., Wdurm)
and overlap (i.e., overm) equal to Dm and Dm/2, respectively. Within each s-th slid-
ing window, the absolute magnitude of muscular contractions (i.e., AMMCm,s) and
related duration (i.e., DMMCm,s) are computed by thresholding the signal energy
as follows.

AMMCm,s =
U

∑
u=1

f (xu,m); ∀ xu ≥ thrm and m = 1, . . . , 4 (5.7)

DMMCm,s =
U

∑
u=u′

(xu+1,m − xu,m); ∀ xu′ ,m = thrm and m = 1, . . . , 4 (5.8)

where thrm is equal to noisem. As a result, the muscular activation and the %VC for
each muscle and window are computed using the following equations.

MAm,s =
AMMSm,s

DMMCm,s
; ∀ s = 1, . . . , S and m = 1, . . . , 4 (5.9)
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%VCm,s =
MAm,s

MVCm
; ∀ s = 1, . . . , S and m = 1, . . . , 4 (5.10)

It is worth noting that muscular activations might be dynamic and their distribu-
tion may be sparse among muscular groups and assembly tasks. Scaling this com-
putational approach for each r-th activity in the assembly sequence, the previously
mentioned parameters can be indexed also to r. For instance, MAr

m,s represents the
muscular activation of the m-th recording channel during the s-th window of the
r-th assembly task. Trivially, multiple s windows can belong to the same r-th assem-
bly activity. Before computing the KRIs for the Action Forces section, DMMCr

m,s
and %VCr

m,s are mapped into EAWS scores based on the ergonomic tool’s tabular
values [62]. For instance, %VCr

m,s equal to 17% provides an intensity score (i.e.,
FScorer

m,s) equal to 6 points. Similarly, a duration score (i.e., DFScorer
m,s) equal to 1.5

points is associated with a DMMCr
m,s of 10 seconds. The resulting Activity-Driven

score is computed using the following equation.

ADAFSr
m =

∑S
s=1 FScorer

m,s × DFScorer
m,s

S
; ∀s ∈ r (5.11)

The score for the r-th activity (e.g., ADAFSr) is equal to the greatest value of ADAFSr
m.

Based on ADAFSr , the Global Action Forces score is given as follows.

GAFS =
∑R

r=1 ADAFSr

R
(5.12)

The next section integrates posture-dependent information and muscular activities
to evaluate the ergonomic risk in handling heavy loads.

Section 3 - Manual Material Handling

This third algorithm branch detects MMH events and evaluates the physical re-
silience of workers through Handling KRIs. To achieve this purpose, the enabling
IoT technologies measurements and process metadata are leveraged as conceptu-
ally depicted in Figure 5.4. Firstly, the operator-centric manufacturing sequence is
divided into R assembly activities through the RFID-based automatic recognition of
HPIs (refer to Algorithm 2 in section 5.1.2). In particular, this activity segmentation
is performed with Tr of detected tasks. The algorithm then iterates over assembly
tasks based on xr . This binary variable is equal to 1 if the associated task processes
a WIP weighing 3 kg or more; otherwise, it is equal to 0 [62]. The weight is pro-
cess metadata retrieved from the use case’s information systems. Within activities
having xr equal to 1, an additional windowing step is executed (see Figure 5.4).
The target is to exclude tool usage time windows using TTstartt and TTendt. The
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FIGURE 5.4: Time-driven approach to detect potentially relevant
MMH events.

complementary time intervals (i.e., the blue-colored ones) represent potentially rel-
evant MMH events. For each event, overlapping sliding windows segment the
sEMG-based data streams to compute %VCm,s. Significant MMH windows are dis-
tinguished by %VCm,s greater than a threshold (i.e., ω) for at least one muscular
group. Therefore, Tstartr

v and Tendr
v represent the starting and ending timestamps

of the v-th relevant MMH event during the a-th assembly activity. Four different
postures need to be detected within these windows. These include trunk upright,
little trunk bending, deep trunk bending, and asymmetric movements or kneeling.
In particular, a score risk (i.e., MMHPSr

h,v) is associated with these MMH postures
(i.e., h = 1, ...4). For instance, while carrying a load in the trunk upright position
(h = 1) scores 1 posture point, in the deep trunk bending position (h = 3), it scores
4 posture points. It is worth noting that multiple postures may occur in the same
v-th relevant MMH event. The resulting posture score of that MMH event (i.e.,
MMHPSr

v) is equal to the greatest value of all postures. The second risk metric
targets the duration of the entire MMH event (i.e., Dr

v ), derived from Tstartr
v and

Tendr
v. Dr

v is multiplied by the total duration of the work shift, typically set at 480
minutes, and then divided by the duration of the specific manufacturing task un-
der consideration, which is assumed to repeat cyclically. The resulting frequency
Fv is mapped into MMHFSv following the EAWS tabular values. For instance, Fr

v
equal to 5 provides an MMHFSv of 1 point. Finally, WSr represents the risk score
associated with the handled weight during the r-th assembly activity with xr equal
to 1. The EAWS lists different risk scores for carried loads based on the worker’s
gender. This metadata is not considered to ensure the privacy of final users and
facilitate the architecture adoption in unionized industries. Therefore, carried load
risk scores always refer to the female gender, which is distinguished by higher val-
ues. For instance, lifting a 5 kg weight corresponds to 1.5 load points (i.e., WSr).
Finally, the Activity-driven and Global MMH scores are computed using:

ADMMHSa =
∑V

v′=1(MMHPSr
v + WSr)× MMHFSv

V
; ∀v′ ∈ r (5.13)
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GMMHS =
∑R

r=1 ADMMHSr

R
(5.14)

FIGURE 5.5: Data model of the proposed digital architecture.

To conclude this high-detailed and quantitative section, Figure 5.5, combined with
List of Symbols and Appendix B, highlights the key steps to calculate three EAWS
sections. After the data acquisition of HPIs, workers’ body joints, and upper limbs’
muscular contractions, the computational algorithms are triggered to extract EAWS-
informed KRIs. The first processing step targets the segmentation of assembly tasks
and tool usage in human-centric manufacturing systems (see Algorithm 2). The
activity recognition is a strategic output of the algorithm since it enables the de-
velopment of task-specific risk metrics. Subsequently, three parallel computational
streams are triggered to digitize the following EAWS sections:

• Section 1 - Basic Postures: After reconstructing the worker’s skeleton using
MOCAP cameras’ confidence levels (see Eq.5.2), this algorithm branch iter-
ates over the body joints to create muscular group vectors and then evaluate
angles among them (see Eq. 5.3). Appendix B lists the body joint groups to
successfully identify relevant body angles. These parameters are exploited
to detect EAWS-driven postures. For example, section 5.1.2 presents three If-
statements to identify standing, bent forward, and strongly bent forward based
on angles formed between the back and the legs. Finally, Eq. 5.5 and 5.6
formalize the Activity-driven and Global Basic Posture KRIs.

• Section 2 - Action Forces: This algorithm branch leverages sEMG-based up-
per limbs’ contractions to evaluate exerted forces during task executions.
Following a pre-processing step that acquires worker-specific hyperparame-
ters such as noisem and MVCm, sEMG-based data streams are leveraged by
overlapping windows. For each muscle-driven w-th window, the program
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extracts %VCm,w in four different steps (see from Eq. 5.7 to Eq. 5.10). Fi-
nally, EAWS scores of relative voluntary contractions and related durations
are leveraged to compute the Activity-driven and Global Action Forces KRIs
(i.e., Eq. 5.11 and 5.12).

• Section 3 - Manual Material Handling: This third computational stream
evaluates workers’ risk during handling operations. First, the algorithm it-
erates over assembly activities with products weighing more than 3 kg and
identifies potentially relevant MMH events by removing tool usage time
windows (see Figure 5.4). The mentioned events are labeled as relevant if
at least one muscular %VCm,w is greater than a threshold. It is worth not-
ing that the calculation of relative voluntary contractions follows the same
procedure described to digitize the previous EAWS section. Within relevant
MMH events, the algorithm assigns EAWS scores to the assumed posture
(i.e., MMHPSa

v), the frequency of the v-th event (i.e., MMHFSa
v), and the

load weight (i.e., WSa). Based on these parameters, the Activity-Driven and
Global Manual Material Handling KRIs (i.e., Eq. 5.13 and 5.14) are computed.

5.1.3 Ergonomic Decision Support System

Benefiting from the discussed computational steps to digitize the EAWS ergonomic
tool, Table 5.2 summarizes how time-dependent assembly activities can be struc-
tured for a given working time window. The first five columns are generated by

TABLE 5.2: Example of time-dependent assembly activities for a
monitored worker.

Task ID Start End Tool Tool usage [sec] Basic Posture Action Forces MMH Whole Body
Task 1 14:31:23 14:37:00 Screwdriver 215.4 37 22.9 0 37
Task 2 14:42:28 14:43:59 Manual 91.0 35 127.5 0 127.5
Task 3 14:57:40 14:58:18 Manual 38.3 29 51 2.2 51
... ... ... ... ... ... ... ...
Task N 15:12:35 15:13:56 Hammer 21.1 22 0 0 22

automatically identifying HPIs. Task segmentation is facilitated by RFID passive
tags placed on components and WIP products, while continuous readings of tool
tags provide information on their activity-based usage. A task is trivially labeled as
Manual when no tools are detected during its duration. The columns for Basic Pos-
ture, Action Forces, and MMH are developed based on the algorithms described
from section 5.1.2 to section 5.1.2. Finally, the last field (i.e., Whole Body) inte-
grates the EAWS scores from the previous three categories to yield an aggregate
risk metric. EAWS rules dictate that each manufacturing activity should be associ-
ated with just one score: a task can be identified as risky either due to the postures,
the forces exerted, or the load lifted by the operator [62]. Therefore, the Whole Body
Activity-Driven Score is determined from the highest score among the three. The
Global Whole Body Score, on the other hand, is the average of the Whole Body
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Activity-Driven Scores. This EAWS-based scoring system is crucial for identify-
ing operator-driven safety weaknesses in manufacturing systems. However, it falls
short of revealing the root causes of potentially hazardous events affecting workers’
physical resilience. For instance, a high Basic Posture score may be driven either by
bending postures or by the arms’ positions above shoulder level; depending on the
case, there are different considerations to make regarding the musculoskeletal risk
to which the operator is subjected. Time-driven insights are also overlooked, and
underestimating the effect of posture duration can lead to sub-optimal workplace
redesign approaches and strategies. These limitations also apply to Action Forces
and MMH scores. For example, the latter fails to highlight the most exposed mus-
cles and their % VC during task executions. To address this gap, callback functions
are developed to complement the discussed scores with additional KRIs. These
KRIs are grouped into three different levels of detail, as follows:

• Musculoskeletal: Global Basic Posture Score; Activity-Driven Basic Posture
Score; Fine-Grained Posture Score; Body Angle Evolution.

• Muscular: Global Action Forces Score; Activity-Driven Action Forces Score;
Muscle-Specific and Time-Oriented % VC; Muscle-Specific Action Forces Score.

• Handling: Global MMH Score; Activity-Driven MMH Score; Activity-Driven
Load Data; Muscle-Specific and Time-Oriented % VC; Postures Time in MMH
Windows.

The effectiveness of this digital architecture in automating the EAWS assessment is
substantiated in the industrial-like pilot environment described in section 5.2. Sub-
sequently, section 5.3 delves into the managerial implications of monitoring work-
ers’ physical resilience through the proposed multi-dimensional KRIs.

5.2 Case Study

An extensive experimental campaign was conducted in the industrial-related pi-
lot environment depicted in Figure 5.6 to validate the IoT-based digital architec-
ture. The objective is to automatically evaluate the operator-centric EAWS index
and the related KRIs during the assembly of a drawer at an industrial-like WS. The
selected piece of home furniture has the following dimensions: 67 cm × 69 cm ×
39 cm (i.e., H × L × W). The assembly sequence involves 22 distinct tasks; for a
detailed explanation of the process, interested readers are invited to refer to Ap-
pendix B. Operators perform the sequence using four manual tools: a hammer, a
Phillips screwdriver, a slotted screwdriver, and a hexagonal Allen key. The human
factor is digitized through the set of IoT technologies discussed in section 5.1.1. The
monitored operator wears an RFID smart glove to automatically detect HPIs (see
Figure 5.7). Assembly tasks and tool usage are automatically recognized based on
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FIGURE 5.6: Industrial-like pilot environment.

components (e.g., fasteners) and tools retrieved from the supermarket and the WS,
thanks to RFID tagging in the pilot environment. Passive tags are placed in these
storage locations, enabling the recognition of fine components picking and facili-
tating the activity segmentation process in the assembly sequence. Tools are also
passively tagged to track their usage. For instance, the assembly process begins
with the operator interacting with screw tags, which initiates the first activity. Fol-
lowing the predefined sequence, the worker uses a Phillips screwdriver to attach
plastic plates onto drawer boards. Throughout this task, the RFID antenna inside
the smart glove continuously scans the tool’s code as long as it remains in the op-
erator’s hand. The activity concludes as the operator picks the next components
required in the assembly sequence.
The RFID datasets stored in InfluxDB are imported into MATLAB and temporally
synchronized with the other measurements. The MOCAP videos are converted to
3D human body joints using a C# script, while the 4-channel sEMG data streams
are acquired using a Python script and imported into MATLAB in CSV format. To
limit potential body joint occlusion that may affect EAWS scores [34], the MOCAP
network consists of two cameras placed to the sides of the recording area (see Fig-
ure 5.6). Concerning sEMG data, Ag–AgCl disc-type disposable electrodes are used
to record muscular contractions. Each BITalino channel is connected to a cable that
splits into three ends for electrode attachments. The electrodes are carefully posi-
tioned on relevant muscle groups on the operator’s upper limbs. As illustrated in
Figure 5.7, they are divided equally on the biceps and radial flexors of each body
side.
Based on the extensive discussion of the algorithms reported in section 5.1.2, the fol-
lowing part validates this digital architecture, demonstrating that the KRIs for Basic
Postures, Action Forces, and MMH offer valuable insights for assessing the well-
being of operators in human-centric manufacturing systems, according to Industry
5.0 pillars.
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FIGURE 5.7: The subject is wearing the RFID smart glove on the left
hand (with a detailed view of the Pyscan board in the inset) and the

BITalino electrodes positioned on the upper limb muscles.

5.3 Results & managerial insights

The digital architecture proposed for assessing the physical resilience of manufac-
turing operators undergoes validation during the assembly of the home furniture
drawer described in section 5.2. The example sequence presented in this part, which
lasts 51.7 minutes, is decomposed into 22 assembly tasks by the automatic detection
of RFID-driven HPIs. In Figure 5.8, which shows this time-dependent subdivision,
also including tool usage, some of the activities are repeated more than once. A
detailed description of the task sequence can be found in Appendix B. This process-

FIGURE 5.8: The segmented manufacturing sequence, denoted as
HPIs, along with tool usage: some of the 22 blue tasks are repeated
over time, and each of the 4 violet tools is utilized multiple times.
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(A) Global Whole Body
Score.

(B) Global Section-Driven Scores.

FIGURE 5.9: Preliminary insights into operator-centric physical re-
silience.

oriented insight provides two significant managerial implications. On the one hand,
the architecture identifies the maximum, minimum, and average duration of assem-
bly tasks. For instance, while one of the Fixing Drawers activities presents the longest
execution time of 615.0 seconds, which involves the use of a slotted screwdriver for
61.3 seconds, the fastest assembly activity is one of the Mounting White Caps, which
lasts 38.3 seconds. This information is relevant for identifying manufacturing weak-
nesses since task duration can be compared with historical data. In this regard, dis-
cussions with employees may reveal hazardous ergonomic scenarios. On the other
hand, the architecture provides valuable information on tool usage. For example, in
this assembly sequence, more than a third of the tasks are executed without tools.
While the hexagonal Allen key is the least utilized tool, accounting for 9 % of the to-
tal time of the process, the Phillips screwdriver is the most employed tool, reaching
23 %. These insights are important in monitoring multiple WSs for a given manu-
facturing sequence. Indeed, utilization ratios can justify the economic initiative of
purchasing additional tools to avoid potential bottlenecks.
Concerning the operator’s ergonomic aspects, the digital architecture firstly returns
the overall EAWS score. Figure 5.9 (a) highlights the Global Whole Body Score of
51.03 points, indicating a high-risk level. However, this initial ergonomic insight
fails to pinpoint the most hazardous EAWS scores for the health of the monitored
worker. Figure 5.9 (b) fills this gap by outlining the Global Section-Driven Scores,
which include the Global Basic Posture score, the Global Action Forces Score, and
the Global MMH Score, comparing them with the maximum section points totaled
by the different assembly tasks. This insight, which is strategic to prioritize areas of
improvement in the manufacturing system design, does not detail the riskiest tasks
in the assembly sequence nor their worrisome parameters. Without this informa-
tion, production supervisors have no valid basis to reconfigure the WS design or
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the assembly process. To avoid such a notable limitation, the following sections dis-
cuss the effectiveness of monitoring assembly sequences through the proposed KRIs
and demonstrate the benefits of digitizing the EAWS index to increase the visibility
of ergonomic weaknesses and safeguard the physical resilience of manufacturing
operators.

5.3.1 Muscoloskeletal Risk

Four postures significantly contribute to the Global Basic Posture Score, totaling
32.8 out of 69.3 EAWS points (refer to Figure 5.9 (b)). Specifically, these postures in-
volve two levels of lumbar extension and asymmetric movements. While standing
and bending scenarios account for 21.4% and 64.3% of the total score, the remain-
ing 14% is linked to trunk rotation and far-reach movements, with 3 and 1 points
assigned to them, respectively. Although this score suggests a moderate risk ac-
cording to the EAWS index [62], it fails to highlight the most critical tasks in the
musculoskeletal dimension. Leveraging RFID-enabled HPIs, Figure 5.10 displays
the Activity-Driven Posture Score in the time domain. It is evident that most of the

FIGURE 5.10: Activity-Driven Basic Posture Score: the sequence of
tasks and the associated EAWS risk levels are reported.

assembly task scores fall within the medium-risk category (i.e., the range between
25 and 50 EAWS points), while 2 tasks stand out with scores exceeding 50 points,
indicating high ergonomic risk. In effectively redesigning the manufacturing pro-
cess, plant supervisors should prioritize the analysis of the most concerning tasks
from a musculoskeletal perspective. For instance, the last assembly activity (i.e.,
Mounting White Caps) records the highest score, contributing 69.3 EAWS points over
171.7 seconds. In addition to enhancing visibility into operator and activity-driven
musculoskeletal risk, pinpointing the most impactful postures on each task score
is strategic. Therefore, Figure 5.11 depicts the Fine-Grained Posture Score for ev-
ery movement performed by the operator during the last assembly activity: light
and dark blue bars represent actual (i.e., measured) and maximum EAWS scores,
respectively. This task involves three main steps: a) Retrieve the two previously
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FIGURE 5.11: Fine-Grained Posture Score: the actual (i.e., mea-
sured) and maximum achievable scores according to the EAWS

database are reported for the pertinent postures of task #22.

assembled drawers from the adjacent worktable and place them inside the dresser,
b) Secure all the drawers using a slotted screwdriver, and c) Insert the last drawer
into the dresser. For further details, refer to Appendix B. This scenario may have
critical implications for the physical resilience of workers since it might trigger po-
tentially relevant bending postures (see Figure 5.11) or burden the muscular acti-
vation of the upper limbs; the second implication will be better highlighted later.
The fine-grained KRI outlines that the bending and trunk rotation postures are the
most critical movements, accounting together for 47 EAWS points. However, this
risk metric falls short of suggesting the most appropriate operator-centric process
reconfiguration approaches. Hazardous musculoskeletal scenarios may be driven
by extremely worrisome body angles for a limited duration or safer body angles for
longer time windows, requiring different managerial approaches. While the former
can be addressed with visual management instructions, the latter suggests the need
to redesign the entire WS or even the workplace. To enable an informed decision-
making process, Figure 5.12 depicts the evolution of the operator’s back angle dur-
ing the last assembly task. According to EAWS ranges, this angle influences the
detection and score of three basic movements: the standing posture falls between
0 ◦ and 20 ◦, the bending posture ranges from 20 ◦ to 60 ◦, and the strong bending
posture is beyond 60 ◦. As depicted in Figure 5.12, the majority of time-driven back
angles fall within the bending range. Specifically, the standing posture lasts 39.6
seconds (i.e., 23.1% of the assembly activity time), and the two bending scenarios
account for 120.8 and 11.1 seconds, respectively. These musculoskeletal-driven val-
ues indicate significant stress on the worker’s physical resilience during the final
assembly task, with the last part being the most critical for the operator’s back.
The graph in Figure 5.12 demonstrates frequent bending by the worker to insert
the last drawer, suggesting that placing the furniture on the floor is not ergonom-
ically optimal. To mitigate this, plant supervisors should consider introducing a
height-adjustable support for the drawer unit, aiming to maintain the operator’s
back angle below 20 ◦ whenever possible. Conversely, the trunk rotation posture is
distinguished by an average lumbar angle of 25.5 ◦. The high EAWS score is due
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FIGURE 5.12: Body Angle Evolution: the lumbar extension angle
for task #22 is monitored. Postures are identified based on the an-
gle’s value over time: standing if the angle is less than 20 ◦, bending
if the angle is between 20 ◦ and 60 ◦, and strong bending if the angle
exceeds 60 ◦. To ensure posture recognition accuracy, the algorithm
corrects fluctuations by requiring the angle to remain within the

same range for a certain number of consecutive frames.

to critical angle values lasting for a prolonged period of 125.5 out of 171.7 seconds,
accounting for 73.1% of the activity duration. These metrics suggest different man-
agerial implications compared to the bending postures. Potential trunk rotation
disorders can be prevented by ensuring that frequently accessed tools and compo-
nents are within easy reach. This first ergonomic dimension is complemented in the
following two sections by monitoring the Muscular and Handling Risks.

5.3.2 Muscular Risk

This second set of EAWS-oriented KRIs delves deeper into the ergonomic analy-
sis by examining potentially hazardous muscular efforts during the assembly tasks.
While the Global Action Forces Score of 31.1 EAWS points suggests a medium over-
all risk, it is crucial to adopt a top-down approach to identify specific activities that
may impact operators’ muscular risk. The analysis begins with the RFID-enabled
Activity-Driven Action Forces Score. As illustrated in Figure 5.13, approximately
68.1% of the monitored activities fall within the low-risk band. The highest score
among these tasks is observed in the first activity (i.e., Mounting Plastic Plates),
which totals 22.9 EAWS points. This task involves inserting and screwing plas-
tic plates onto the lateral axes of the drawer (see Appendix B) and does not entail
significant arm exertion. However, its extended duration of 336.8 seconds induces
some muscular stress during the final screwing phase. Further prolonging this ac-
tivity would escalate the muscular risk level. Conversely, the lowest EAWS values
group the manual tasks ranging from 8 to 11, where the monitored worker assem-
bles drawers on the WS without significant muscular activation (% VC) in the upper
limbs. However, three assembly activities account for more than 100 EAWS points,
requiring in-depth evaluations. In particular, the third task (i.e., Inserting Wooden
Dowels) has the highest score, equal to 238 EAWS points. This activity involves the
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FIGURE 5.13: Activity-Driven Action Forces Score: the sequence of
tasks and their associated EAWS risk ranges are presented.

manual insertion of fixing dowels into the narrow axes of the drawers. Despite
its brief duration of 95.3 seconds, it requires considerable muscular effort from the
monitored operator. The intrinsic limitation of this first KRI is its inability to high-
light the most physically stressed muscular groups. To address this, the amplitude
in mV of the sEMG-based muscular contraction is shown in Figure 5.14 for the right
(R) and left (L) upper limbs, where the colors of the denoised signals correspond to
the channel-associated EAWS risk level [62]. It can be seen that both radial flexors
experience significant stress over the activity time. However, focusing solely on the
acquired sEMG signal fails to highlight the muscle-specific % VC. These outputs are
obtained by leveraging the second algorithm branch discussed in section 5.1.2: the
computations define sliding windows and assign each of them a % VC, as reported
in Figure 5.15. These non-overlapping windows facilitate a detailed assessment of
muscle activation during specific intervals in the assembly tasks. The comparison
between the KRIs reported in Figures 5.14 and 5.15 reveals two distinct scenarios.
First, the amplitude of the R radial flexor sEMG signal is high during the initial
time window, corresponding to a 66.7% VC. Second, the sEMG signal is visually
intense in the last two Channel-4 windows, which, however, correspond to 5.5%
and 1.5% VC. Here it is important to underline that since % VC is a function of the
maximum muscle effort, large signal amplitudes do not necessarily correlate with
high muscle activation. Furthermore, the third KRI (see Figure 5.15) points out valu-
able insights on the time domain. While the muscular activation of the R forearm
(i.e., 66.7% VC) is registered for 57.3 seconds, the L forearm accounts for 40.5% VC
over the entire task. These prolonged muscular stresses are mirrored in the Muscle-
Specific Action Forces Score reported in Figure 5.16. While the R and L forearms
accumulate 238 and 127.5 EAWS points, respectively, both biceps are green-colored
since their greatest score is 17 points. It can be concluded that the risk level for
the operator’s forearm muscles is highly critical in this activity. The EAWS score
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FIGURE 5.14: EMG Raw Signal: The normalized signals recorded
by the four surface electrodes positioned on the operator’s upper
limbs are depicted for task #3. The signals are color-coded ac-
cording to the EAWS risk level associated with the channel-specific

score.

of the right arm, likely the dominant one in this case, becomes the definitive risk
measure of the task. A potential solution to lowering the analyzed score is to adopt
tools that can facilitate the manual insertion of wooden dowels. The musculoskele-
tal and muscular dimensions of physical resilience are finally complemented by the
handling risk that quantifies the safety of workers in process-related load-lifting
operations.

5.3.3 Handling Risk

The assessment of the operator’s physical resilience concludes with a discussion on
Handling KRIs. Although the Global MMH Score, equal to 1.3 EAWS points, sug-
gests a low-risk level (see Figure 5.9 (b)), it is essential to note that the Handling Risk
is solely computed when the operator’s activities involve moving, lifting, holding,
pushing, or pulling loads exceeding 3 kg (refer to section 5.1.2).

In the considered assembly sequence, 4 out of 22 tasks fall into this category (i.e.,
tasks 7, 12, 17, and 22). Therefore, the average of the scores is not informative.
Following the same top-down approach discussed in the previous risk metrics, the
analysis is refined by the Activity-Driven MMH Score. Inspecting Figure 5.17, it is
evident that the assembly sequence considered does not report major critical MMH
issues for the monitored operator, as the four relevant activities have an EAWS score
lower than 25. However, proceeding with the analysis is necessary to illustrate the
validity of the approach.
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FIGURE 5.15: Muscle-Specific and Time-Oriented % VC: The % VC
computed for the four surface electrodes placed on the operator’s
upper limbs is depicted for task #3. The values are color-coded
based on the EAWS risk level associated with the channel-specific

score.

Figure 5.17 highlights that the last task (i.e., Mounting White Caps) registers the
highest MMH score, corresponding to 18.4 EAWS points. This task, as previously
outlined in section 5.3.1, entails placing two drawers inside the dresser, securing
all drawers using a slotted screwdriver, and inserting the final drawer into the
dresser (refer to Appendix B). As the task has been already identified as critical from
the musculoskeletal perspective, it is pivotal to further investigate other potential
assembly-related weaknesses. For instance, Figure 5.18 correlates the handled loads
with the associated load points. It is worth noting that the seventh task registers the
highest lifted load, which corresponds to the furniture without drawers, weighing
7.18 kg. The remaining activities (i.e., tasks 12, 17, and 22) handle the drawers and
thus manage lower weights (i.e., 3 kg). Therefore, to understand why the most criti-
cal activity is the last one, it is necessary to identify the MMH time windows within
this task. The analysis narrows down to identify the muscle-dependent activation
to assess the postures assumed by the operator during the MMH events. Figure 5.19
presents the Muscle-Specific and Time-Oriented % VC, highlighting potentially haz-
ardous activation in two different time windows, from 15:20:15 to 15:20:49 and from
15:22:50 to 15:23:06. In both these time intervals, the R forearm activation exceeds
the MMH threshold of 16.7 %, ranging from 20.7% to 17% VC. The threshold of
16.7% VC was selected as it is the minimum value necessary to attribute an inten-
sity score to the applied forces [62]. Specifically, the analyzed KRI demonstrates
two aspects. Firstly, it confirms that the radial flexor muscular group is the most
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FIGURE 5.16: Muscle-Specific Action Forces Score: The four an-
alyzed muscle groups (i.e., radial flexors and biceps brachii) are
depicted for task #3. Each group is associated with a color corre-

sponding to the intensity of the EAWS score.

FIGURE 5.17: Activity-Driven MMH Score: the sequence of tasks
and the associated EAWS risk ranges are reported.

stressed over the entire assembly process. To lower such activation, plant super-
visors may consider purchasing lifters, or eventually cobots, to complement the
physical capabilities of the workforce. Secondly, MMH events occur during both
the considered time windows. In the initial time window, the operator retrieves
the two previously assembled drawers from the adjacent worktable and positions
them inside the dresser; in the subsequent time frame, the operator inserts the last
drawer into the dresser. The algorithm for posture detection is executed on these
particular time intervals of the analyzed activity. Postures Time in MMH Windows
indicates the duration of postures, obtained as a percentage of the ratio between
the number of frames for which a certain movement lasts and the total frames con-
tained in the time windows. Notably, the first three bars in Figure 5.20 represent
mutually exclusive postures (i.e., the percentage sum of these movements is 100),
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FIGURE 5.18: Activity-Driven Load Data: the EAWS scores and
weights of loads that the operator lifts during the execution of as-

sembly tasks are provided.

while the last four bars contain postures that can be cumulative with each other or
with the first three. However, the posture considered in the final activity score is
the one posing the highest risk among those assumed by the operator during the
task (see section 5.1.2). In this instance, the trunk rotation posture emerges as the
most hazardous, comprising 92.3% of the total task duration, with an average crit-
ical angle of 31.3 ◦. Although overlooked in the final score, the bending movement
also has a significant impact, occupying 92% of the time with an average angle of
29.7 ◦. These postures are the most critical in the assembly test and also affect the
musculoskeletal risk perspective. Possible ergonomic enhancements include orga-
nizing tools and materials for easy access without unnatural movements, ensuring
workbenches are adjusted to the correct height, and utilizing ergonomic equipment
such as assisted mechanical arms to reduce the required physical effort. Addition-
ally, raising awareness among operators about health risks associated with incorrect
postures and implementing work rotation policies can help diversify tasks and re-
duce the repetitiveness of motion, thereby mitigating accidents.
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FIGURE 5.19: Muscle-Specific and Time-Oriented % VC: the graph
displays the % VC computed for the four surface electrodes po-
sitioned on the operator’s upper limbs for task #22. The values
are color-coded based on the EAWS risk level associated with the
channel-specific score, with highlighted time windows of interest.

FIGURE 5.20: Posture Time in MMH Windows: the percentage
of time spent in MMH postures relative to the total duration of

task #22 is reported.
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Chapter 6

PhD activities

"The streets I used to walk on
Are full of broken glass

And everywhere I’m looking
There’s memories of my past"

– The Rolling Stones, Whole Wide World, 2023

The scientific contribution and activities conducted during the PhD are reported in
the following sections.

Journal papers

• Tomelleri, F., Sbaragli, A., Picariello, F., & Pilati, F. (2024). Digital ergonomic
assessment to enhance the physical resilience of human-centric manufactur-
ing systems in Industry 5.0. Journal of Manufacturing Systems, 77, 246-265.

• Pilati, F., Sbaragli, A., Ruppert, T., & Abonyi, J. (2024). Goal-oriented cluster-
ing algorithm to monitor the efficiency of logistic processes through real-time
locating systems. International Journal of Computer Integrated Manufactur-
ing, 1-17.

• Pilati, F., & Sbaragli, A. (2023). Learning human-process interaction in man-
ual manufacturing job shops through indoor positioning systems. Comput-
ers in Industry, 151, 103984.
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Conference proceedings

• Sbaragli, A., Tomelleri, F., Picariello, F., Picariello, E., & Pilati, F. (2024). Safe
Operator 5.0 digital architecture: towards resilient human-centric manufac-
turing systems. IFAC-PapersOnLine, 58(19), 265-270.

• Tomelleri, F., Sbaragli, A., Picariello, F., & Pilati, F. (2024). Safe Assembly in
Industry 5.0: Digital Architecture for the Ergonomic Assembly Worksheet.
Procedia CIRP, 127, 68-73.

• De Vito, L., Picariello, E., Picariello, F., Rapuano, S., Tudosa, I., Sbaragli, A.,
& Pilati, F. (2024, June). IoT-Based System for Monitoring the Well-Being of
Industrial Operators Through Wearable Devices. In 2024 IEEE International
Symposium on Medical Measurements and Applications (MeMeA) (pp. 1-
6). IEEE.

• Ghafoorpoor Yazdi, P., Sbaragli, A., Peters, L., Pilati, F., & Thiede, S. (2024,
April). Cyber Physical System for Reconfigurable Learning Factories: Com-
bining 3D Simulations, Reconfigurable Layouts and Real-Time Locating Sys-
tems. In Conference on Learning Factories (pp. 28-35). Cham: Springer
Nature Switzerland.

• Pilati, F., Sbaragli, A., Papini, G. P. R., & Capuccini, P. (2023, June). An Arti-
ficial Neural Network Architecture to Classify Workers’ Operations in Man-
ual Production Processes. In International Conference on Flexible Automa-
tion and Intelligent Manufacturing (pp. 805-812). Cham: Springer Nature
Switzerland.

• De Vito, L., Picariello, E., Picariello, F., Tudosa, I., Sbaragli, A., Papini, G. P.
R., & Pilati, F. (2023, June). Measurement System for Operator 5.0: a Learn-
ing Fatigue Recognition based on sEMG Signals. In 2023 IEEE International
Symposium on Medical Measurements and Applications (MeMeA) (pp. 1-
6). IEEE.

• Pilati, F., Sbaragli, A., Tomelleri, F., Picariello, E., Picariello, F., Tudosa, I., &
Nardello, M. (2023, June). Operator 5.0: Enhancing the Physical Resilience of
Workers in Assembly Lines. In 2023 IEEE International Workshop on Metrol-
ogy for Industry 4.0 & IoT (MetroInd4. 0&IoT) (pp. 177-182). IEEE.

• Wolf, M., Rantschl, M., Auberger, E., Preising, H., Sbaragli, A., Pilati, F., &
Ramsauer, C. (2022). Real time locating systems for human centered produc-
tion planning and monitoring. IFAC-PapersOnLine, 55(2), 366-371.

• Pilati, F., Sbaragli, A., & Brunelli, D. (2022). Indoor positioning systems to
digitalize manual production processes. SUMMER SCHOOL FRANCESCO
TURCO. PROCEEDINGS.
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• Pilati, F., Sbaragli, A., Nardello, M., Santoro, L., Fontanelli, D., & Brunelli,
D. (2022). Indoor positioning systems to prevent the COVID19 transmission
in manufacturing environments. Procedia Cirp, 107, 1588-1593.

Contributions in press/under review

• Sbaragli, A., Ghafoorpoor Yazdi, P., Thiede, S. & Pilati, F. (2024) A cyber-
physical architecture to monitor human-centric reconfigurable manufactur-
ing systems. Journal of Intelligent Manufacturing, 3rd round of reviews on-
going.

• Sbaragli, A., Santoro, L., Nardello, M., Brunelli, D. & Pilati, F. (2024) SHIELD4US:
how to prevent pandemics in manufacturing systems. Flexible Services and
Manufacturing Journal, 1st round of reviews ongoing.

Conference presentations

• 32nd International Conference on Flexible Automation and Intelligent Man-
ufacturing (FAIM), Porto, Portugal (2023)

• 1st Operator 4.0 Symposium, Veszprèm, Hungary (2023)

• XXVII Summer school “Francesco Turco”, Riviera dei Fiori (Italy), 7-9 set-
tembre 2022

• 55th CIRP Conference on Manufacturing Systems, Lugano, Switzerland (2022)

• 14th IFAC Workshop on Intelligent Manufacturing Systems (IMS), Online
(2022)

• 11th Conference on Learning Factories, Online (2021)

Visiting scholar at University of Twente

Development of a cyber-physical system to monitor human-centric reconfigurable
manufacturing systems opertions (Supervisors: Prof. Sebastian Thiede & Dr. P.
Ghafoorpoor Yazdi).

Teaching activities

Teaching assistant for the Master Course in Management and Industrial Systems
Engineering of Digital production and Logistic Systems for three accademic years,
from 2021-22 to 2023-24.

Fundings

The visiting period at the University of Twente has been partially funded by the
SMART-ER seeds SPA1 of the ECIU consortium.
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Chapter 7

Conclusions

"Maybe I just wanna fly
Wanna live I don’t wanna die
Maybe I just wanna breathe
Maybe I just don’t believe"

– Oasis, Live Forever, 1994

This thesis explores and further remarks on the importance of developing data-
driven solutions to monitor industrial operations in human-centric environments.
In this regard, multiple CPS has been tested and validated to fill several gaps in
the scientific literature demonstrating that it is feasible to take into account sustain-
ability drivers while ensuring the desired rate of in-plant efficiency. This closing
discussion pinpoints how these digital solutions answer the research questions con-
ceptualized in Chapter 1 (e.g., RQ in the bullet point).

• RQ1 – How can cyber-physical systems powered by Real Time Locating Systems
and machine learning algorithms digitize human-centric processes executions?

RTLS are distinguished by notable performances in locating industrial as-
sets during process executions. Although indoor positions enhance the vis-
ibility of operations, these raw data fall short of providing decision-makers
with multidimensional metrics to monitor and eventually optimize indus-
trial environments. Indeed, the reviewed RTLS-driven investigations lever-
age assets’ positioning information combined with process metadata (e.g.,
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storage area location) with algorithms. However, these contributions are
distinguished by two notable limitations as already pointed out in Chap-
ter 1. In short, the cyber layers performances are not investigated and they
solely focus on efficiency, neglecting sustainability drivers. The three pre-
sented CPS offers a reliable path to trigger multidimensional process mon-
itoring in human-centric manufacturing systems. These intelligent systems
digitize the human factor and are validated in both logistic and production
environments with peculiar process configurations. Besides the RTLS flexi-
bility and metrological reliability, ML-based algorithms turns out as the best
computational method to detect process interactions with strategic indus-
trial assets (e.g., shelves, machines, etc.). This thesis leverages both super-
vised and unsupervised approaches. On the one hand, the Industrial DB
scan fills the limitations of its standard formulation and cluster worker po-
sitions to identify HPIs. This novel learning algorithm is firstly defined to
monitor human-centric job shops (see Chapter 2) and afterward validated
in RMS and warehousing systems. Chapter 4 demonstrates the fast deploy-
ment of this method because its performance validation in detecting fork-
lift interactions can avoid the time-consuming process of labeling ground
truth data. On the other hand, the LSTM-based neural network proposed in
[20] is benchmarked with the Industrial DB scan to monitor HPIs in human-
centric RMS (see Chapter 3). Also, the digital monitoring of RMS proves ML
algorithms’ modularity and flexibility structure. These features accommo-
date different industrial environments configurations while avoiding time-
consuming retraining and/or fine-tuning processes. The returned HPIs are
embedded into DSS and dashboard where specific callback functions com-
pute strategic metrics metrics to monitor the operations of these environ-
ments. The value added of these multicriteria variables is discussed while
addressing the last research question (e.g., RQ3).

• RQ2 – How can digital ergonomic assessment safeguard workers’ physical resilience?

A recurrent item of discussion of this thesis pinpoints the importance of dig-
itizing manual operations in human-centric environments, according to In-
dustry 4.0 principles. This paradigm shift replaces conventional managerial
approaches based on manager experience and commitment. Besides time-
consuming processes analysis, variable manufacturing configurations and
process designs affects the validity of such investigations. Ergonomic indices
represent a stark example of the digital transformation of manufacturing op-
erations. In recent years, several contributions have leveraged CPS to digi-
tize ergonomic checklists and screening tools. However, the vast majority of
these solutions consider a limited set of features to evaluate the physical re-
silience of workers during task executions (see section 1.3 and Tab. 1.2). The
EAWS widely used in the (German) automotive sector is the most complete
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one focusing on a heterogeneous set of parameters ranging from body pos-
tures to exerted forces. Chapter 5 fills the limitations of reviewed scientific
literature and proposes a CPS that following a Pareto approach automates
the EAWS assessment. In this regard, the lowest number of sensors was
used to digitize as much as possible the ergonomic tool sections. While the
RFID-based smart glove identifies HPIs to segment workers’ activities, a net-
work of MOCAP cameras and a four-channel sEMG-based wearable moni-
tor working postures and exerted forces, respectively. These measurements
are fed into computational algorithms to digitize the Whole Body sections of
the EAWS, namely Basic Postures, Action Forces, and Manual Material Han-
dling. This data-driven system is distinguished by two strategic strengths.
First, the synergy between the IoT enabling technologies and algorithms can
trigger ergonomic investigations in whichever assembly process. This activ-
ity insensitiveness facilitates decision-making processes in variable produc-
tion environments with high rotating product batches. Second, this CPS an-
alyzes ergonomic weaknesses for diversified workforces. The obtained KRIs
flow into a time-dependent ergonomic DSS that offers valuable insight to
operations managers under different perspectives following a top-down ap-
proach. The managerial insights of these risk-oriented metrics are discussed
in the next research question (e.g., RQ3).

• RQ3 – How can key performance and risk indicators be exploited to monitor the
operations of industrial environments?

IoT acquisition layers and computational algorithms are a necessary condi-
tions to embrace a digital transformation of industrial operations. However,
these cyber-physical entities do not represent a sufficient condition to mon-
itor human-centric environments. DSS or dashboards are required to facili-
tate managers’ decision-making processes. In this regard, all four CPS em-
bedd this final layer to close the monitoring loop of industrial environments.
The discussed managerial insights provide accurate and targeted informa-
tion on systems’ status as well as hints to eventually optimize manufactur-
ing systems design. To better analyze these implications, it is beneficial to
separate into two different sets the validated CPS.
On the one hand, the RTLS-oriented investigations present two complemen-
tary viewpoints to evaluate industries’ operations (see Chapters 2, 3 and 4).
These solutions demonstrate that indoor positioning data leveraged by ML
algorithms can derive KPIs to monitor the efficiency and sustainability of
human-centered manufacturing systems. The digital dashboard of Chapter
2 segments the activities of workers highlighting the different production
routines of monitored workers. In detail, the operator 2 spends the 44% of
his/her working time performing deburring operations while the percent-
ages of the other operator are fairly balanced among the industrial resources.
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The activity segmentation evaluates the resources utilization ratio as well,
where the deburring workbench registers the highest statistics accounting
for 55.9%. At the same time, the investigation into P/D activities suggests
a weak material allocation in storage areas. Indeed, worker 2 travels from
sub-area 1 to the defined SKUs 2.2 times the meters of worker 1, resulting
in a source of inefficiency and social unfairness. A similar take is offered
by the DSS in Chapter 3. Besides pointing out the utilization ratio of WS,
the distribution of value-added operations suggests that the third operator
is the least involved in the production process. Overallocations of workers
are detrimental to in-plant performances, especially in scenarios with inter-
connected job shops. Similarly, the investigation on WS interdependencies
highlights that the RMS should improve its social inclusiveness. In partic-
ular, the fourth operator is in charge of the vast majority of logistic activ-
ities leading to increased travelling times compared to his/her colleagues.
Finally, Chapter 4 combines efficiency investigations with the environmen-
tal drivers. While the amount of value-added operations (e.g., P/D) and
the OEE suggest that the last forklift (e.g., FL05) is the least exploited, the
comparison between time spent in activity-driven areas with the duration
in performing the operations itself highlights the compelling need to bet-
ter schedule activities during the order management and eventually a better
material allocation in storage areas. This last aspect contributes to reducing
the electric consumption of vehicles and reducing operating costs but most
importantly the carbon footprint of this logistic environment.
On the other hand, the EAWS-driven KRIs demonstrate the capability of the
digital solution to recognize the most risk-prone activities in the manufactur-
ing sequence (see Chapter 5). The CPS highlights process weaknesses based
on a wide spectrum of parameters. First, it identifies postures that may
exert significant strain on the operators’ musculoskeletal system. Second,
a muscle-specific assessment of exerted forces points out the most stressed
muscular group in assembly activities. Third, the system seamlessly detects
time windows when operators perform MMH activities, providing insights
into both muscular stress and body postures and reconstructing. Most im-
portantly, these KRIs are activity-driven and thus offer a strategic level of de-
tail for process redesigns. This feature is combined with a traffic light-based
system that intuitively suggests the intensity of risk. Therefore, different re-
configuration actions may be implemented. For instance, low repetitive sce-
narios with considerable risk could be addressed with lean approaches such
as visual management. On the contrary, increasing the frequency rate at the
same risk intensity may require structural changes. For instance, lowering
the workload of operators might involve better line balancing using heuris-
tic problems and/or the introduction of automation (e.g., robotic arms) to
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safeguard workforce stamina over time.

Further research opportunities

The discussed digital solutions yield significant advances in the development of
CPS to digitize industrial operations. These improvements target both the design
of cyber layers to derive insightful KRIs and KPIs as well as automate the develop-
ment of conventional managerial tools such as the EAWS. Most importantly, RTLS-
driven investigations prove it is possible to achieve the desired rate of in-plant pro-
ductivity while considering sustainability drivers, according to Industry 5.0 prin-
ciples. However, improvements are always possible to further refine the proposed
methodologies. I hope this final paragraph will inspire researchers to advance the
development of CPS in human-centric environments as well as be a good reminder
if I will investigate these exciting topics in the future.
A first potential improvement is to design human digital twin and thus scale in real-
time or close to the operative functioning of cyber layers. This different time resolu-
tion combined with early warning drastically reduces the impact of bottlenecks or
more in general operational disruption and hazardous events on process efficiency
and workers’ well-being. Interested readers may appreciate more details on this ap-
proch in [154]. An additional upgrade is to bundle optimization approaches (e.g.,
heuristic-based) with the existing monitoring modules. In this regard, these CPS
would be capable of suggesting the sub-optimal or even optimal process reconfigu-
ration for efficiency and sustainability drivers. This algorithm-oriented discussion
can be enhanced by the introduction of additional IoT measurements. For instance,
proximity-based technologies can upgrade the solutions presented in Chapters 2
and 4. RFID-based sensors could provide additional information on P/D activi-
ties and especially identify carried weight in MMH. In logistic environments, these
datastreams can automate the stock managment and increase the productivity of
warehousing systems operations. At the same time, workers may wear additional
IMUs and/or WS-specific MOCAP cameras to better classify value-added activities
in static manual tasks of human-centric RMS (see Chapter 3). Similarly, additional
measurands are required to digitize the fourth EAWS section, namely upper limbs
load in repetitive tasks (see Chapter 5).
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Appendix A

This appendix provides additional information on the CPS developed to monitor
operations in RMS (see Chapter 3).

ML-based cyber layer hyper-parameters

The following table list the relevant sets of hyper-parameters to be optimized during
the reconfiguration and operation-oriented computations (see subsubsection 3.1.2
and 3.1.2).

TABLE A1: LSTM hyper-parameters

Parameter Value

Window Size 50,128,256
Layer 1,2
Hidden Size 100,128,256
Learning Rate 1e−2,1e−3,1e−4

Batch Size 64,128
Dropout 0,0.3,0.5
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TABLE A2: Industrial DBSCAN hyper-parameters

Parameter Value

ϵ [0.1, 0.6] meters
NPts [10, 100] points
δt [10 100]Hz
α [1, 10] second
β [0.1, 2] meters
ϕ [0.1, 2] meters

TABLE A3: Random Forest hyper-parameters

Parameter Value

Estimators number 50,70,100,150
Criterion Gini, Entropy
Maximum Features sqrt, log2
Minimum sample split 2,3,4

TABLE A4: Gaussian Support Vector hyper-parameters

Parameter Value

C 1, 10, 100, 1000
γ 0.001 , 0.01, 0.1, 1,10

TABLE A5: Gradient Boosting hyper-parameters

Parameter Value

Estimators number 50,70,100,150
Loss Logarithmic
Learning rate 1e−1,1e−2,1e−3

Maximum Features sqrt, log2
Minimum sample split 2,3,4
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Production setups & dataset

These tables provide additional insights related to production setups. In particular,
the 2D indoor positions of WS and the dimension of the feature-engineered work-
ers’ motion pattern are highlighted.

TABLE A6: Absolute positions of industrial resources in different production setups

WS1 WS2 WS3 WS4 WS5 Robot

Setup Workers X Y X Y X Y X Y X Y X Y

1 6 4.57 3.35 4.43 1.22 6.76 4.13 6.56 2.34 6.23 1.03 6.37 3.12
2 6 4.40 2.79 6.23 4.29 6.17 1.39 4.7 5.12 9.82 3.26 8.44 3.36
3 5 8.20 3.27 6.35 3.96 6.63 1.84 4.94 1.06 4.29 1.73 4.05 3.08
4 4 5.00 3.11 6.24 4.23 6.10 2.03 4.51 5.21 8.87 3.61 9.01 1.86
5 5 4.50 3.31 4.32 1.29 6.23 4.51 5.85 2.08 8.25 3.77 8.04 1.75
6 4 4.57 3.35 4.43 1.22 6.76 4.13 6.56 2.34 6.23 1.03 6.37 3.12
7 5 4.75 0.91 4.30 3.61 7.34 4.25 5.97 3.82 4.78 5.07 6.30 5.70
8 6 4.53 3.37 6.13 2.46 6.34 4.21 4.56 0.88 8.72 3.19 7.98 3.42

TABLE A7: Operator-based dataset dimension

Operator Number of input data

1 92435
2 94147
3 99320
4 90947
5 68380
6 27118
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ML-based cyber layer performances

These illustrations details the confusion matrices related to the best classifiers for
the operation-oriented computations’ binary classification (e.g., working in a WS
and Idle state). Then, a bullet point lists the grid-search optimized set of hyper-
parameters.

(A) Random Forest classi-
fication between WS1 and

Idle states

(B) Random Forest classi-
fication between WS2 and

Idle states

(C) Random Forest classi-
fication between WS3 and

Idle states

(D) Gradient Boosting clas-
sification between WS4 and

Idle states

(E) Gradient Boosting clas-
sification between WS5 and

Idle states

(F) Gradient Boosting clas-
sification between Robot

and Idle states

FIGURE A1: Confusion matrices of the best performing classifiers
for the operation oriented computations

• Support Vector Machine:

– C: 1

– γ: 0.001

• Random Forest:

– Estimators number: 70

– Criterion: entropy
– Maximum Features: sqtr
– Minimum sample split: 3

• Gradient Boosting:

– Estimators number: 100

– Learning rate: 1e−1

– Maximum Features: sqrt
– Minimum sample split: 2



126

Appendix B

This Appendix details the body joint to evaluate workers’ body postures as well
as the sequence of activities performed by the operator during the assembly of the
dresser. At the beginning of each Task, the operator retrieves the necessary com-
ponents from the supermarket, as illustrated in Figure B1. The tools are already
conveniently positioned on the table of the workstation.

Task ID - Assembly Process Activities

• Task 1 - Mounting Plastic Plates: Collect screws and plastic plates, and place
them on the worktable. Retrieve two wooden panels (i.e., the sides of the
dresser) from under the table and place them on top. Position the sliding
plates on the wooden panels and secure them with screws using a Phillips
screwdriver, as indicated in Figure B2 (a). Move the panels aside to make
space on the table.

• Task 2 - Mounting Bracket L: Collect L-brackets and fastening screws, and
place them on the worktable. Retrieve a third wooden panel (i.e., the back
of the dresser) from under the table and place it on top. Position the L-
brackets on the wooden panel and secure them with screws using a Phillips
screwdriver, as indicated in Figure B2 (b).

• Task 3 - Inserting Wooden Dowels: Collect wooden dowels and stand in
front of the worktable. Manually insert the dowels into the sides of the back
panel of the dresser as indicated in Figure B2 (c).

• Task 4 - Tightening Black Screws: Collect black screws and place them on
the worktable. Retrieve two wooden panels (i.e., a side and the back of the
dresser) and align them. Secure the two parts with black screws using a
hexagonal Allen key as depicted in Figure B2 (d). Move the semi-assembled
piece aside to make space on the table.

• Task 5 - Inserting Wooden Dowels: Collect additional wooden dowels and
place them on the worktable. Retrieve two thin wooden panels (i.e., the sup-
ports of the dresser) from under the table and place them on top. Manually
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FIGURE B1: Layout of the supermarket showing the locations of
components required for the different assembly tasks.

insert the wooden dowels into the indicated spots as in Figure B2 (e) and
move the supports aside to make space on the table.

• Task 6 - Tightening Black Screws: Collect more black screws and place them
on the worktable. Bring the semi-assembled piece and the two support pan-
els closer, fitting the pieces one at a time. Secure the various parts with black
screws using a hexagonal Allen key. Align the remaining wooden panel (i.e.,
the other side of the dresser) with the semi-assembled piece and secure it
with black screws using a hexagonal Allen key (see Figure B2 (f)).

• Task 7 - Foot Assembly: Collect the specific nails and place them on the
worktable. Lift, turn, and move the semi-assembled dresser to the floor to
secure the nails with a hammer (see Figure B2 (g)). Turn and reposition the
dresser upright on the floor.

• Task 8 - Assembly of Drawer (1): Collect appropriate screws and place them
on the worktable. Retrieve a thin wooden panel (i.e., the outer face of the
drawer) from under the table and place it on top. Secure the screws with
a Phillips screwdriver in the spots indicated in Figure B2 (h) to allow the
insertion of the drawer’s side panels.

• Task 9 - Inserting Wooden Dowels (1): Collect additional wooden dowels
and place them on the worktable. Retrieve two thin wooden panels (i.e., the
sides of the drawer) from under the table and place them on top. Manu-
ally insert the dowels into the appropriate spots and slide the drawer’s side
panels onto the previously screwed front panel as in Figure B2 (i).

• Task 10 - Fixing Drawer (1): Collect appropriate screws and insert them into
the drawer’s side panels using a slotted screwdriver, securing them to the
previously prepared front panel (see Figure B2 (j)). Retrieve the drawer base
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and back panel, slide the base into the slots inside, and fit the back panel into
the free part of the base.

• Task 11 - Closing Drawer (1): Collect specific nails and secure the drawer
back with a hammer, fitting the side panels with the closing panel as indi-
cated in Figure B2 (k).

• Task 12 - Mounting White Caps (1): Collect white screws and manually
insert them into the drawer’s side panels without fully securing them. Move
the drawer to the adjacent worktable to make space on the main table.

• Task 13 - Assembly of Drawer (2): Repeat the same steps as Task 8 for the
second drawer.

• Task 14 - Inserting Wooden Dowels (2): Repeat the same steps as Task 9 for
the second drawer.

• Task 15 - Fixing Drawer (2): Repeat the same steps as Task 10 for the second
drawer.

• Task 16 - Closing Drawer (2): Repeat the same steps as Task 11 for the second
drawer.

• Task 17 - Mounting White Caps (2): Repeat the same steps as Task 12 for the
second drawer.

• Task 18 - Assembly of Drawer (3): Repeat the same steps as Task 8 for the
third drawer.

• Task 19 - Inserting Wooden Dowels (3): Repeat the same steps as Task 9 for
the third drawer.

• Task 20 - Fixing Drawer (3): Repeat the same steps as Task 10 for the third
drawer.

• Task 21 - Closing Drawer (3): Repeat the same steps as Task 11 for the third
drawer.

• Task 22 - Mounting White Caps (3): Collect white screws and manually in-
sert them into the third drawer’s side panels without fully securing them.
Retrieve the two previously assembled drawers from the adjacent worktable
and place them inside the dresser (see Figure B2 (l)). Secure the already in-
serted drawers in the dresser using a slotted screwdriver, then secure the
white screws on the last drawer. Insert the last drawer into the dresser, com-
pleting the assembly process. Note: Securing all the drawers at the end op-
timizes tool usage. Securing two drawers inside and one on the table is for
the operator’s convenience.
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(A) Task 1 (B) Task 2 (C) Task 3 (D) Task 4

(E) Task 5 (F) Task 6 (G) Task 7 (H) Task 8

(I) Task 9 (J) Task 10 (K) Task 11 (L) Task 22

(M) Tools

FIGURE B2: Visual representation of assembly tasks, showcasing
the operator’s interactions with components and tools at different

stages.
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TABLE B1: Posture-dependent body joints.

Posture Body Joint Group Number
Walking Pelvis 1

Standing
Back 1, 2, 3, 4
Leg (R) 1, 23, 24, 25
Leg (L) 1, 19, 20, 21

Low Bending (20 − 60◦)
Back 1, 2, 3, 4
Leg (R) 1, 23, 24, 25
Leg (L) 1, 19, 20, 21

High Bending (> 60◦)
Back 1, 2, 3, 4
Leg (R) 1, 23, 24, 25
Leg (L) 1, 19, 20, 21

Elbows Above Shoulders
Back 1, 2, 3, 4
Arm (R) 12, 13, 14, 15
Arm (L) 5, 6, 7, 8

Hands Above Head
Back 1, 2, 3, 4
Arm (R) 12, 13, 14, 15
Arm (L) 5, 6, 7, 8

Upright (Kneeling)

Back 1, 2, 3, 4
Knee (R) 23, 24
Knee (L) 19, 20
Ankle (R) 24, 25
Ankle (L) 20, 21

Bent Forward (Kneeling)

Back 1, 2, 3, 4
Knee (R) 23, 24
Knee (L) 19, 20
Ankle (R) 24, 25
Ankle (L) 20, 21

Elbows Above Shoulders (Kneeling)

Knee (R) 23, 24
Knee (L) 19, 20
Ankle (R) 24, 25
Ankle (L) 20, 21
Arm (R) 12, 13, 14, 15
Arm (L) 5, 6, 7, 8

Trunk Rotation (Asymmetric) Spine Naval, Hips 2, 19, 23
Spine Chest, Shoulders 3, 6, 13

Lateral Bending (Asymmetric) Back 1, 2, 3, 4
Hip (R) 1, 23

Far Reach (Asymmetric) Arm (R) 12, 13, 14, 15
Arm (L) 5, 6, 7, 8
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