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PHASE FIELD TOPOLOGY OPTIMISATION FOR 4D PRINTING∗
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and Andrea Signori4

Abstract. This work concerns a structural topology optimisation problem for 4D printing based on
the phase field approach. The concept of 4D printing as a targeted evolution of 3D printed structures
can be realised in a two-step process. One first fabricates a 3D object with multi-material active
composites and apply external loads in the programming stage. Then, a change in an environmental
stimulus and the removal of loads cause the object to deform in the programmed stage. The dynamic
transition between the original and deformed shapes is achieved with appropriate applications of the
stimulus. The mathematical interest is to find an optimal distribution for the materials such that the 3D
printed object achieves a targeted configuration in the programmed stage as best as possible. Casting
the problem as a PDE-constrained minimisation problem, we consider a vector-valued order parameter
representing the volume fractions of the different materials in the composite as a control variable. We
prove the existence of optimal designs and formulate first order necessary conditions for minimisers.
Moreover, by suitable asymptotic techniques, we relate our approach to a sharp interface description.
Finally, the theoretical results are validated by several numerical simulations both in two and three
space dimensions.
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1. Introduction

Four-dimensional (4D) printing [2, 52, 61] entails the combination of additive manufacturing (3D printing)
and active material technologies to create printed composites capable of morphing into different configurations in
response to various environmental stimuli. First designs of such composites consist of active material components,
such as piezoelectric ceramics, hydrogels or shape memory polymers [24], in the form of fibers integrated within
a passive elastomeric matrix [35]. In this work we refer to a material as active if it deforms when subjected
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to a specific stimulus, and we refer to a material as passive if it does not deform under the same stimulus.
These multi-material active composites were originally difficult to manufacture, owing to the fragility of the
materials involved [47]. However, with 3D printing techniques it is nowadays feasible to fabricate these active
composites to a high degree of precision, resulting in so-called printed active composites (PACs) [50]. For an
overview of other 4D printing strategies besides PACs in the construction of smart materials allowing direct
stimuli-responsive transformations, we refer to [67].

The shape shifting functionality of the active components enables the self-actuating and self-assembling
potentials of PACs, allowing them to fold, bend, twist, expand and contract when a stimulus is applied, and
return to their original configurations after the stimulus is removed. This property has led to the fabrication of
intelligent active hinges and origami-like objects [34, 35], mesh structures [24, 64] and self-actuated deformable
solids [59] in the form of in the form of graspers and smart key-lock systems. We refer to the review article
[52] and the references cited therein for more applications of 4D printing. The shape memory behaviour of the
PACs can be programmed in a two-step cycle: The first (programming) step involves deforming the structure
from its permanent shape to a metastable temporary shape, and the second (recovery) step involves applying an
appropriate stimulus so that the structure regains its original shape. A typical stimulus is heat (in combination
with light [42] or water [7]), in which programmed PACs alter their shapes when the temperature rises above
or drops below a critical value.

With the advances in the state-of-the art 3D printing technologies, the designs of PACs need not be limited
to the conventional fibre-matrix architectures first considered in [35]. In particular, the distribution of active
and passive materials in the designs can take on more complicated geometries to better fulfil the intended func-
tionalities of the PACs. This opens up the possibility of a computational design approach guided by a structural
topology optimisation framework. In the context of 3D printing, see, e.g., the review [40], this framework has
been applied to explore optimising support structures to overhang regions [3, 43, 51], as well as self-supporting
designs respecting the overhang angle constraints [20, 31, 44, 48]. For active materials and active composites,
[39, 54] studied how to pattern thin-film layers within a multi-layer structure with the aim of generating large
shape changes via spatially varying eigenstrains within the microstructures, while [50] aimed to optimise the
microstructures of PACs matching various target shapes after a thermomechanical training and activation cycle.
Later works incorporated nonlinear thermoelasticity [37, 59], thermo-mechanical cycles of shape memory poly-
mers [12], reversible deformations [49], as well as multi-material designs [65] within the topology optimisation
framework.

In many of the aforementioned contributions, the topology optimisation is implemented numerically with
the level-set method or the solid isotropic material with penalisation (SIMP) approach. In this work we employ
an alternative approach based on the phase field methodology [17], which allows a straightforward extension
to the multiphase setting [13, 63] involving multiple (possibly distinct) types of active materials within the
design. In particular, this opens up the design of multiphase PACs that can memorise more than two shapes
[36, 45, 58, 62, 66]. The phase field-based structural topology optimisation approach has been popularised in
recent years by many authors, with applications in nonlinear elasticity [55], stress constraints [19], compliance
optimisation [15, 60], elastoplasticity [4], eigenfrequency maximisation [30, 60], graded-material design [21],
shape optimisation in fluid flow [27–29] and more recently for 3D printing with overhang angle constraints [31].

Taking inspiration from the setting of Maute et al. [50], we formulate a structural topology optimisation prob-
lem for a multiphase PAC with the objective of finding optimal distributions of active and passive materials
so that the resulting composite matches targeted shapes as close as possible. An additional perimeter regular-
isation term, in the form of a multiphase Ginzburg–Landau functional, is added, and we study the resulting
PDE-constrained optimisation problem. To the best of our knowledge, the present contribution is the first
analytical work on such types of structural topology optimisation in the theme of 4D printing, where we pro-
vide rigorous mathematical derivation of minimisers and optimality conditions. Furthermore, we also perform a
sharp interface asymptotic analysis to obtain a set of optimality conditions applicable in a level set-based shape
optimisation framework, with a rigorous result in the two-phase setting. We perform numerical simulations in
two and three spatial dimensions to show the optimal distributions of active and passive components in order
to match with various target shapes for the PACs.
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The rest of this paper is organised as follows: in Section 2 we formulate the phase field structural optimisation
problem to be studied, and present several preliminary mathematical results. In Sections 3 and 4 we analyse the
design optimisation problem and establish analytical results concerning minimisers and optimality conditions.
The sharp interface limit is explored in Section 5 and, finally, in Section 6 we present the numerical discretisation
and several simulations of our approach.

2. Problem formulation

Within a bounded domain Ω ⊂ Rd, d ∈ {2, 3}, with Lipschitz boundary Γ := ∂Ω, we assume there are L
types of linearly elastic materials, whose volume fractions are encoded with the help of a vectorial phase field
variable ϕ = (ϕ1, . . . , ϕL) : Ω→ ∆L, where ∆L denotes the Gibbs simplex in RL:

∆L :=
{
x = (x1, . . . , xL) ∈ RL :

L∑

i=1

xi = 1, xi ≥ 0 for all i ∈ {1, . . . , L}
}
.

For our application to PACs, we take ϕL as the volume fraction of the passive elastic material, and ϕ1, . . . , ϕL−1

as the volume fractions of (possibly different) active elastic materials. Note that in the two-phase case L = 2, we
simply have ϕ = (ϕ1, ϕ2), and due to the relation ϕ1 +ϕ2 = 1 we may instead use the scalar difference function
ϕ := ϕ1 − ϕ2 to encode ϕ via the relation ϕ = ( 1

2 (1 + ϕ), 1
2 (1− ϕ)). This particular scenario will be employed

later on, when dealing with the connection between the problem we are going to analyse and the corresponding
sharp interface limit in Section 5, as well as for the numerical simulations presented in Section 6.

2.1. State equations

The shape shifting mechanism considered in [50, 68] involves two levels of temperature and one set of external
loads, with one temperature TH higher than a critical transition temperature Tg of the active materials (e.g.,
the glass transition temperature for shape memory polymers), and the other temperature TL lower than the
critical temperature. The printed composite is first heated to TH , and the shape memory cycle starts at TH and
proceeds as follows: First, external loads are applied to deform the printed composite while the temperature
remains at TH , with the new configuration being known as the programming stage (or Stage 1). Then, the
temperature is decreased gradually while the loads are maintained on the printed composite, which are then
removed once the temperature reached TL. The resulting shape at TL is the desired shape and we denote it as
the programmed stage (or Stage 2). Increasing the temperature to TH enables the printed composite to recover
its original shape, and this ends the shape memory cycle, see Figure 1 for the thermo-mechanical processing
steps involving the two stages.

To capture the above behaviour, following [50] we consider a model for each stage. In the programming
stage (Stage 1), we consider an elastic displacement u : Ω→ Rd and decompose the domain boundary Γ into a
partition Γ = cl(ΓD)∪ cl(ΓN ) with relative open subsets ΓD and ΓN such that ΓD ∩ΓN = ∅ and ΓD 6= ∅, where
cl(A) denotes the closure of a set A, and we assign a prescribed displacement U on ΓD and surface loads g on
ΓN . Under a linearised elasticity setting, the balance of momentum yields the following system of equations for
the displacement u:

−div
(
C(ϕ)E(u)

)
= F in Ω, (2.1a)

u = U on ΓD, (2.1b)
(
C(ϕ)E(u)

)
n = g on ΓN , (2.1c)
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Figure 1. Schematics of the the shape memory cycle from [50] involving a programming stage
(Stage 1) and a programmed stage (Stage 2).

with a phase-dependent elasticity tensor C, body force F, outer unit normal n, and symmetrised gradient E(u).
One example of C(ϕ) is

C(ϕ(x)) =

L∑

i=1

Ciϕi(x) for ϕ(x) = (ϕ1(x), . . . , ϕL(x)) ∈ ∆L, x ∈ Ω,

with constant tensors Ci, 1 ≤ i ≤ L.
After the change in temperature from TH to TL and after the programming loads in Stage 1 have been

removed, the PAC experiences deformations due to residual stresses generated during the thermomechanical
processing steps. When the temperature falls below Tg, the active elastic materials undergo a phase transition
from a soft rubbery state to a glassy state that has a higher Young’s modulus. We introduce a new variable
û : Ω → Rd to denote the displacement in the programmed stage (Stage 2), and as in [50], model the strains
from the programming stage (Stage 1) as eigenstrains for û. These eigenstrains are present only in the regions
of active elastic materials, which we model with a fixity function χ : RL → [0,∞). The shape fixity for a shape
memory material is the ratio (expressed as a percentage) between the strain in the stress-free state after the
programming step and the maximum strain [1]. For example, if the deformation elongates the material, the
fixity quantifies the ability of the material to hold the temporary elongated length when the stress is removed.
It is clear from the definition that for a passive elastic material, the fixity is zero, and so we set that χ = 0 in the
region {ϕL = 1} of the passive elastic material. Decomposing the domain boundary Γ into a possibly different

partition Γ = cl(Γ̂D)∪ cl(Γ̂N ) with relative open subsets Γ̂D and Γ̂N such that Γ̂D ∩ Γ̂N = ∅ and Γ̂D 6= ∅, where

we assign a prescribed displacement Û on Γ̂D and surface loads ĝ on Γ̂N , the equations for the programmed

Figure 1. Schematics of the the shape memory cycle from [50] involving a programming stage
(Stage 1) and a programmed stage (Stage 2).

with a phase-dependent elasticity tensor C, body force F, outer unit normal n, and symmetrised gradient E(u).
One example of C(ϕ) is

C(ϕ(x)) =

L∑

i=1

Ciϕi(x) for ϕ(x) = (ϕ1(x), . . . , ϕL(x)) ∈ ∆L, x ∈ Ω,

with constant tensors Ci, 1 ≤ i ≤ L.
After the change in temperature from TH to TL and after the programming loads in Stage 1 have been

removed, the PAC experiences deformations due to residual stresses generated during the thermomechanical
processing steps. When the temperature falls below Tg, the active elastic materials undergo a phase transition
from a soft rubbery state to a glassy state that has a higher Young’s modulus. We introduce a new variable
û : Ω → Rd to denote the displacement in the programmed stage (Stage 2), and as in [50], model the strains
from the programming stage (Stage 1) as eigenstrains for û. These eigenstrains are present only in the regions
of active elastic materials, which we model with a fixity function χ : RL → [0,∞). The shape fixity for a shape
memory material is the ratio (expressed as a percentage) between the strain in the stress-free state after the
programming step and the maximum strain [1]. For example, if the deformation elongates the material, the
fixity quantifies the ability of the material to hold the temporary elongated length when the stress is removed.
It is clear from the definition that for a passive elastic material, the fixity is zero, and so we set that χ = 0 in the
region {ϕL = 1} of the passive elastic material. Decomposing the domain boundary Γ into a possibly different

partition Γ = cl(Γ̂D)∪ cl(Γ̂N ) with relative open subsets Γ̂D and Γ̂N such that Γ̂D ∩ Γ̂N = ∅ and Γ̂D 6= ∅, where

we assign a prescribed displacement Û on Γ̂D and surface loads ĝ on Γ̂N , the equations for the programmed
stage (Stage 2) read as

−div
(
Ĉ(ϕ)(E(û)− χ(ϕ)E(u))

)
= F̂ in Ω, (2.2a)

û = Û on Γ̂D, (2.2b)



PHASE FIELD TOPOLOGY OPTIMISATION FOR 4D PRINTING 5

(
Ĉ(ϕ)(E(û)− χ(ϕ)E(u))

)
n = ĝ on Γ̂N , (2.2c)

with a phase-dependent elasticity tensor Ĉ and body force F̂. In the above, the change in the elasticity tensor
from C in Stage 1 to Ĉ in Stage 2 encodes the change in the elastic properties of the PAC when the temperature
changes from TH to TL. Similarly to [50], here we have neglected the strains arising from thermal expansion
in (2.1) and (2.2), as these are generally not observed [59], or are small in magnitude compared to mechanical
strains. Although the shape morphing behaviour involves changes in the temperature (from TH to TL during
programming and from TL to TH during shape recovery), the absence of an equation for the temperature
reflects the fact that the heating and cooling processes are performed in a slow and gradual manner, and thus
it is reasonable to assume as in [12] a uniform temperature field in our setting.

2.2. Cost functional

In the next section, under a suitable functional framework, we demonstrate that (2.1) and (2.2) are uniquely
solvable, with the solution depending continuously on ϕ. Since ϕ controls the distribution of the passive
and active elastic materials, it is natural to ask for specific material distributions that optimise certain cost
functionals related to the design of PACs. Motivated from [50], we primarily focus on the following cost functional

Jε(ϕ, û) :=
1

2

∫

Γtar

(
W (û− utar)

)
· (û− utar) dHd−1 + γ

∫

Ω

ε|∇ϕ|2 +
1

ε
Ψ(ϕ) dx, (2.3)

where γ > 0 is a weighting factor, û is a solution to (2.2) depending on ϕ (and also on u, a solution to (2.1)),

W ∈ Rd×d is a fixed weighting matrix, Γtar is a subset of the boundary Γ̂N , ε > 0 is a fixed constant related
to the thickness of the interfacial regions {0 < ϕi < 1}, i ∈ {1, . . . , L}, Hd−1 indicates the standard (d − 1)-
dimensional Hausdorff measure, and Ψ : RL → R is a non-negative multi-well potential that attains its minimum
at the corners {e1, . . . , eL} (the unit vectors in RL) of the Gibbs simplex ∆L. The first term in (2.3) consists
of a target shape matching term, where we like to match the displacement û in Stage 2 with a prescribed
deformation utar over the surface Γtar ⊂ Γ̂N by minimising the squared difference weighted by a matrix W . The
second term is the well-known Ginzburg–Landau functional in the multiphase setting that serves as a form of
perimeter regularisation. It provides some form of regularity to our design solutions and penalises designs that
have large interfaces between the different phases of elastic materials.

For our problem we introduce the design space

Uad =
{
ϕ ∈ H1(Ω,RL) : ϕ(x) ∈ ∆L for a.e. x ∈ Ω

}
,

and our design problem can be formulated as the following

(P) min
ϕ∈Uad

Jε(ϕ, û) subject to (ϕ,u, û) is a solution to (2.1)− (2.2).

Remark 2.1. For the existence theory for optimal designs to (P), it is also possible to consider a more general
form of the cost functional:

Jε(ϕ,u, û) =

∫

Ω

hΩ(x,u, û) dx +

∫

ΓN

h(s,u) dHd−1 +

∫

Γ̂N

ĥ(s, û) dHd−1 + γ

∫

Ω

ε|∇ϕ|2 +
1

ε
Ψ(ϕ) dx,

with Carathéodory functions hΩ, h and ĥ satisfying (see [14], Rem. 5)

|hΩ(x,v,w)| ≤ a1(x) + b1(x)|v|p + b2(x)|w|p for all v,w ∈ Rd, a.e. x ∈ Ω,

|h(s,v)| ≤ a2(s) + c1(s)|v|2 for all v ∈ Rd, a.e. s ∈ ΓN ,
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|ĥ(s,w)| ≤ a3(s) + c2(s)|w|2 for all w ∈ Rd, a.e. s ∈ Γ̂N ,

for any 2 ≤ p < ∞ if d = 2 and 2 ≤ p < 6 if d = 3, with functions a1 ∈ L1(Ω), b1, b2 ∈ L∞(Ω), a2 ∈ L1(ΓN ),

a3 ∈ L1(Γ̂N ), c1 ∈ L∞(ΓN ) and c2 ∈ L∞(Γ̂N ). In our current setting we have hΩ = h = 0 and ĥ(s, û) =
1
2XΓtar(s)W (û− utar) · (û− utar).

Remark 2.2. It is also possible to consider mass constraints for ϕ of the form

1

|Ω|

∫

Ω

ϕ dx ≤ α or
1

|Ω|

∫

Ω

ϕ dx ≥ β or β ≤ 1

|Ω|

∫

Ω

ϕ dx ≤ α,

for fixed vectors α,β ∈ ∆L (possibly also α = β), where in the above the inequalities are taken component-wise.
These are convex constraints and thus when included into the definition of Uad, the design space remains a closed
and convex set. Then, in the corresponding necessary optimality condition, associated Lagrange multipliers will
appear, see [13, 14] for more details.

2.3. Notation and assumptions

For a Banach space X, we denote its topological dual by X∗, and the corresponding duality pairing by 〈·, ·〉X .
For any p ∈ [1,∞] and k > 0, the standard Lebesgue and Sobolev spaces over Ω are denoted by Lp := Lp(Ω)
and W k,p := W k,p(Ω) with the corresponding norms ‖ · ‖Lp(Ω) and ‖ · ‖Wk,p(Ω). In the special case p = 2, these

become Hilbert spaces and we employ the notation Hk := Hk(Ω) = W k,2(Ω) with the corresponding norm
‖ · ‖Hk(Ω). For our subsequent analysis, we introduce the spaces

H
1

D(Ω,Rd) :=
{
v ∈ H1(Ω,Rd) : v = 0 a.e. on ΓD

}
,

and

Ĥ1
D(Ω,Rd) :=

{
v ∈ H1(Ω,Rd) : v = 0 a.e. on Γ̂D

}
.

For brevity, the corresponding norms are denoted by the same symbol ‖·‖H1(Ω) if no confusion may arise.
Vectors, matrices, and vector- or matrix-valued functions will be denoted by bold symbols. Furthermore, for a
subset ΓN ⊂ Γ, we consider the function space

H
1/2
00 (ΓN ,Rd) :=

{
v ∈ H1/2(ΓN ,Rd) : ṽ ∈ H1/2(Γ,Rd)

}
,

where ṽ denotes the trivial extension of v to Γ, and we endow it with the norm

‖v‖
H

1/2
00 (ΓN )

:= ‖ṽ‖H1/2(Γ), v ∈ H1/2
00 (ΓN ,Rd).

We highlight that the above definition is not redundant as in general the trivial extension of a H1/2(ΓN ,Rd)
function does not belong to H1/2(Γ,Rd). Besides, we remark that H

1/2
00 (ΓN ,Rd) is a Hilbert space and

(H
1/2
00 (ΓN ,Rd), L2(ΓN ,Rd), H1/2

00 (ΓN ,Rd)∗)

forms a Hilbert triple (see, e.g., [46]).
For the forthcoming analysis we make the following structural assumptions.
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(A1) The domain Ω ⊂ Rd, d ∈ {2, 3}, is a bounded domain with C1,1 or convex boundary Γ = ∂Ω that admits a
partition Γ = cl(ΓD) ∪ cl(ΓN ) with relative open subsets ΓD and ΓN such that ΓD ∩ ΓN = ∅ and ΓD 6= ∅.
Here, cl(A) denotes the closure of the set A. The same assumptions are made for Γ̂D and Γ̂N .

(A2) The elasticity tensor C is assumed to be a tensor-valued function

C : RL → Rd×d×d×d,

with Cijkl ∈ C1,1(RL,R), i, j, k, l ∈ {1, . . . , d}. Moreover, it fulfils the symmetry conditions

Cijkl = Cklij = Cijlk = Cjikl for all i, j, k, l ∈ {1, . . . , d},

and there exist positive constants C0, C1, and C2 such that, for all ϕ,h ∈ RL,

C0|A|2 ≤ C(ϕ)A : A ≤ C1|A|2 ∀A ∈ Rd×dsym \ {0}, (2.4)

|C′(ϕ)h A : B| ≤ C2|h||A||B| ∀A,B ∈ Rd×dsym \ {0}, (2.5)

where A : B =
∑n
i,j=1AijBij , |A| =

√
A : A, and for every h = (h1, . . . , hL) ∈ RL,

[C′(ϕ)h]ijkl :=

L∑

m=1

∂mCijkl(ϕ)hm for all i, j, k, l ∈ {1, . . . , d}.

The set Rd×dsym consists of the symmetric (d× d)-matrices. The same assumptions are made for Ĉ.
(A3) The multiwell potential Ψ possesses the form

Ψ : RL → R ∪ {+∞}, Ψ = Ψ̃ + I∆,

where Ψ̃ ∈ C1,1(RL) and the indicator function I∆ of the simplex ∆L is defined as

I∆(ϕ) =

{
0 if ϕ ∈ ∆L,

+∞ otherwise.

(A4) The function χ : RL → R is C1,1(RL) and there exist a positive constant χ0 such that

0 ≤ χ(ϕ) ≤ χ0 for all ϕ ∈ RL.

(A5) The data of the problems satisfy

F, F̂ ∈ L2(Ω,Rd), U ∈ H1/2(ΓD,Rd), Û ∈ H1/2(Γ̂D,Rd), g ∈ H1/2
00 (ΓN ,Rd)∗, ĝ ∈ H1/2

00 (Γ̂N ,Rd)∗.

(A6) The target displacement utar ∈ L2(Γtar,Rd), where Γtar ⊂ Γ̂N .

It is worth pointing out that condition (A3) entails that Ψ(ϕ) = Ψ̃(ϕ) for every ϕ ∈ Uad.
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3. Analysis of the design optimisation problem

3.1. Linear elasticity system with mixed boundary conditions

In this section we provide a preliminary well-posedness result for the following linear elasticity system with
mixed boundary conditions

−div
(
CE(u) + F

)
= f in Ω, (3.1a)

u = 0 on ΓD, (3.1b)

(CE(u) + F)n = g on ΓN . (3.1c)

The well-posedness of the system (3.1) is formulated as follows.

Proposition 3.1. In addition to (A1), suppose that C ∈ L∞(Ω,Rd×d×d×d) fulfils the symmetry conditions

Cijkl = Cklij = Cijlk = Cjikl for all i, j, k, l ∈ {1, . . . , d},

and satisfies

λ|A|2 ≤ (CA) : A ≤ Λ|A|2 for all A ∈ Rd×dsym \ {0} and a.e. in Ω, (3.2)

for some positive constants λ and Λ. Then, for every F ∈ L2(Ω,Rd×d), f ∈ L2(Ω,Rd) and g ∈ H1/2
00 (ΓN ,Rd)∗,

there exists a unique weak solution u ∈ H1
D(Ω,Rd) := {v ∈ H1(Ω,Rd) : v = 0 a.e. in ΓD} to the elasticity

system (3.1) in the sense that

∫

Ω

CE(u) : E(v) dx = −
∫

Ω

(F : E(v)− f · v) dx + 〈g,v〉
H

1/2
00 (ΓN )

∀v ∈ H1
D(Ω,Rd), (3.3)

and there exists a positive constant C independent of u such that

‖u‖H1(Ω) ≤ C
(
‖F‖L2(Ω) + ‖f‖L2(Ω) + ‖g‖

H
1/2
00 (ΓN )∗

)
. (3.4)

Note that whenever g ∈ L2(ΓN ,Rd) ⊂ H
1/2
00 (ΓN ,Rd)∗, we can identify the duality product in (3.3) as the

standard boundary integral, that is,

〈g,v〉
H

1/2
00 (ΓN )

=

∫

ΓN

g · v dHd−1.

Proof of Proposition 3.1. The variational equality (3.3) admits a unique solution by a direct application of the
Lax–Milgram theorem (cf., e.g., [5]). In this direction, we set

V = H1
D(Ω,Rd)

a(·, ·) : V ×V→ R, a(u,v) :=

∫

Ω

CE(u) : E(v) dx,

〈F,v〉 := −
∫

Ω

(F : E(v)− f · v) dx + 〈g,v〉
H

1/2
00 (ΓN )

.
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It is worth noticing that it readily follows from the assumptions on F, f , and g that F ∈ V∗. With the above
notation, (3.3) can then be rewritten as the variational problem

a(u,v) = 〈F,v〉 ∀v ∈ V.

Thus, to apply the Lax–Milgram theorem, it is sufficient to show the bilinear form a(·, ·) is continuous and
coercive in V. By (3.2) we have

|a(u,v)| ≤ C‖u‖H1(Ω)‖v‖H1(Ω) ≤ C‖u‖V‖v‖V ∀u,v ∈ V,

while (3.2) and Korn’s inequality yield the V-coercivity:

|a(v,v)| ≥ λ‖E(v)‖2L2(Ω) ≥ C(λ,CK)‖v‖2V ∀v ∈ V,

with a constant CK arising from Korn’s inequality. Thus, the existence and uniqueness of u ∈ H1
D(Ω,Rd) solving

(3.3), as well as the estimate (3.4), readily follow from the Lax–Milgram theorem.

We end this section with another abstract result that will be useful for the subsequent analysis. Consider the
following problem with inhomogeneous data on the Dirichlet boundary:

−div
(
CE(u)

)
= 0 in Ω,

u = U on ΓD,(
CE(u)

)
n = 0 on ΓN .

(3.5)

Well-known theory yields that, for every U ∈ H1/2(ΓD,Rd), there exists a unique weak solution u ∈ H1(Ω,Rd).
The proof follows similarly to the above as a direct consequence of the Lax–Milgram theorem. This allows us
to introduce the associated solution operator, that we call the extension operator

H : H1/2(ΓD,Rd)→ H1(Ω,Rd), H : U 7→ u, (3.6)

where u is the unique weak solution to system (3.5).

3.2. Well-posedness of the state systems

Similarly to (3.5) and (3.6), we can introduce the extension operators H and Ĥ related to C, ΓD and Ĉ, Γ̂D,

respectively. Then defining the functions H := H(U), Ĥ := Ĥ(Û) ∈ H1(Ω,Rd) allows us to transform (2.1) and
(2.2) into the equivalent problems

−div
(
C(ϕ)E(unew +H)

)
= F in Ω,

unew = 0 on ΓD,(
C(ϕ)E(unew +H)

)
n = g on ΓN ,

(3.7)

and

−div
(
Ĉ(ϕ)(E(ûnew + Ĥ)− χ(ϕ)E(unew +H)

)
= F̂ in Ω,

ûnew = 0 on Γ̂D,
(
Ĉ(ϕ)(E(ûnew + Ĥ)− χ(ϕ)E(unew +H)

)
n = ĝ on Γ̂N ,

(3.8)
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where we set

u = unew +H, û = ûnew + Ĥ.

For a cleaner presentation, we abuse notation and use the same variables u and û to denote unew and ûnew.
Then, the well-posedness of (2.1) and (2.2) (equivalently (3.7) and (3.8)) are formulated as follows.

Theorem 3.2. Under (A1)–(A5), for every ϕ ∈ L∞(Ω,RL), there exists a unique solution pair (u, û) ∈
H

1

D(Ω,Rd)× Ĥ1
D(Ω,Rd) satisfying

∫

Ω

C(ϕ)E(u) : E(ζ) dx =

∫

Ω

F · ζ dx−
∫

Ω

C(ϕ)E(H) : E(ζ) dx + 〈g, ζ〉
H

1/2
00 (ΓN )

, (3.9)

∫

Ω

Ĉ(ϕ)E(û) : E(ζ̂) dx−
∫

Ω

Ĉ(ϕ)χ(ϕ)E(u) : E(ζ̂) dx =

∫

Ω

F̂ · ζ̂ dx

−
∫

Ω

Ĉ(ϕ)E(Ĥ) : E(ζ̂) dx +

∫

Ω

Ĉ(ϕ)χ(ϕ)E(H) : E(ζ̂) dx + 〈ĝ, ζ̂〉
H

1/2
00 (Γ̂N )

(3.10)

for all ζ ∈ H1

D(Ω,Rd) and ζ̂ ∈ Ĥ1
D(Ω,Rd). Moreover, there exists a positive constant C, independent of ϕ, such

that

‖u‖H1(Ω) + ‖û‖H1(Ω) ≤ C. (3.11)

Proof. For (3.9) we invoke Proposition 3.1 with the specifications

u = u, C = C(ϕ), F = C(ϕ)E(H), f = F, g = g, ΓD = ΓD, ΓN = ΓN ,

and for (3.10) we consider

u = û, C = Ĉ(ϕ), F = Ĉ(ϕ)(E(Ĥ)− χ(ϕ)E(u +H)), f = F̂, g = ĝ, ΓD = Γ̂D, ΓN = Γ̂N ,

to obtain the existence and uniqueness of solutions u and û. Lastly the estimate (3.11) can be obtained from

(3.4) and the uniform boundedness of the tensors C and Ĉ in (A2).

Theorem 3.3. Under (A1)–(A5), for i = 1, 2, let ϕi ∈ L∞(Ω,RL) with ‖ϕi‖L∞(Ω) ≤ R, where R > 0 is fixed,
and let (ui, ûi) denote the unique solutions to systems (3.7) and (3.8) corresponding to ϕi, but with the same

data F, F̂, g, ĝ, H and Ĥ. Then, there exists a positive constant C, independent of the differences, such that

‖u1 − u2‖H1(Ω) ≤ C‖ϕ1 −ϕ2‖L∞(Ω),

‖û1 − û2‖H1(Ω) ≤ C‖E(u1 − u2)‖L2(Ω) + C‖ϕ1 −ϕ2‖L∞(Ω).
(3.12)

Proof. To start, let us set

ϕ := ϕ1 −ϕ2, u := u1 − u2, û := û1 − û2.

Then, we consider the difference between the variational equalities (3.9)–(3.10) written for (ϕ1,u1, û1) and for
(ϕ2,u2, û2) to infer that

∫

Ω

(
C(ϕ1)E(u1)− C(ϕ2)E(u2)

)
: E(ζ) dx = −

∫

Ω

(
C(ϕ1)− C(ϕ2)

)
E(H) : E(ζ) dx, (3.13)
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∫

Ω

(
Ĉ(ϕ1)E(û1)− Ĉ(ϕ2)E(û2)

)
: E(ζ̂) dx−

∫

Ω

(
Ĉ(ϕ1)χ(ϕ1)E(u1)− Ĉ(ϕ2)χ(ϕ2)E(u2)

)
: E(ζ̂) dx

= −
∫

Ω

(
Ĉ(ϕ1)− Ĉ(ϕ2)

)
E(Ĥ) : E(ζ̂) dx +

∫

Ω

(
Ĉ(ϕ1)χ(ϕ1)− Ĉ(ϕ2)χ(ϕ2)

)
E(H) : E(ζ̂) dx, (3.14)

for all ζ ∈ H1

D(Ω,Rd) and ζ̂ ∈ Ĥ1
D(Ω,Rd). Choosing ζ = u, invoking conditions (2.4) and (2.5) and Young’s

inequality yield

C0‖E(u)‖2L2(Ω) ≤ −
∫

Ω

(C(ϕ1)− C(ϕ2))(E(u2) + E(H)) : E(u) dx

≤ C0

2
‖E(u)‖2L2(Ω) + C‖ϕ‖2L∞(Ω).

(3.15)

By Korn’s inequality we infer

‖u1 − u2‖H1(Ω) ≤ C‖ϕ1 −ϕ2‖L∞(Ω). (3.16)

Then, inserting ζ̂ = û in (3.14), and invoking the Lipschitz continuity of Ĉ and χ from (A2) and (A4), as well
as (3.16), yields

C0‖E(û)‖2L2(Ω) ≤ −
∫

Ω

(Ĉ(ϕ1)− Ĉ(ϕ2))(E(û2) + E(Ĥ)) : E(û) dx

+

∫

Ω

(Ĉ(ϕ1)− Ĉ(ϕ2))χ(ϕ1)(E(u1) + E(H)) : E(û) dx

+

∫

Ω

Ĉ(ϕ2)(χ(ϕ1)− χ(ϕ2))(E(u1) + E(H)) : E(û) dx

+

∫

Ω

Ĉ(ϕ2)χ(ϕ2)E(u) : E(û) dx

≤ C0

2
‖E(û)‖2L2(Ω) + C

(
‖E(u)‖2L2(Ω) + ‖ϕ‖2L∞(Ω)

)
.

(3.17)

Applying Korn’s inequality leads to (3.12).

Corollary 3.4. Suppose that (A1)–(A5) hold. Let R > 0 and let {ϕn}n∈N be a sequence of functions in
L∞(Ω,RL) such that ‖ϕn‖L∞(Ω) ≤ R for all n ∈ N and ϕn → ϕ∗ strongly in L1(Ω,RL) as n→∞. Let (un, ûn)

denote the solutions to (3.9) and (3.10) corresponding to data ϕn, F, F̂, g, ĝ, H and Ĥ. Then, it holds that,
as n→∞,

un → u∗ strongly in H
1

D(Ω,Rd), ûn → û∗ strongly in Ĥ1
D(Ω,Rd),

where (u∗, û∗) ∈ H
1

D(Ω,Rd) × Ĥ1
D(Ω,Rd) are the unique solutions to (3.9) and (3.10) corresponding to data

ϕ∗, F, F̂, g, ĝ, H and Ĥ.

Proof. From (3.11) we infer that un and ûn are bounded in H
1

D(Ω,Rd) and Ĥ1
D(Ω,Rd), respectively, and thus

there exist limit functions (u∗, û∗) ∈ H
1

D(Ω,Rd) × Ĥ1
D(Ω,Rd) such that, along a non-relabelled subsequence,

un ⇀ u∗ in H
1

D(Ω,Rd) and ûn ⇀ û∗ in Ĥ1
D(Ω,Rd). To obtain strong convergence, in (3.13) and (3.14) we

substitute ϕ1 = ϕn, ϕ2 = ϕ∗, u1 = un, u2 = u∗, u = un − u∗ and û = ûn − û∗. Then, by virtue of the
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dominated convergence theorem, we infer the strong convergences, as n→∞,





(C(ϕn)− C(ϕ∗))E(u∗) → 0

(Ĉ(ϕn)− Ĉ(ϕ∗))E(û∗) → 0

(C(ϕn)− C(ϕ∗))E(H) → 0

(Ĉ(ϕn)− Ĉ(ϕ∗))E(Ĥ) → 0

in L2(Ω,Rd×d).

Hence, in the analogue of the first inequality in (3.15) we see that the integral on the right-hand side converges
to zero, which implies via Korn’s inequality that

‖un − u∗‖H1(Ω) → 0.

By the generalised dominated convergence theorem, we have the strong convergences





(Ĉ(ϕn)− Ĉ(ϕ∗))χ(ϕn)E(un) → 0

Ĉ(ϕ∗)(χ(ϕn)− χ(ϕ∗))E(un) → 0

Ĉ(ϕ∗)χ(ϕ∗)E(un − u∗) → 0

(Ĉ(ϕn)− Ĉ(ϕ∗))χ(ϕn)E(H) → 0

Ĉ(ϕ∗)(χ(ϕn)− χ(ϕ∗))E(H) → 0

in L2(Ω,Rd×d),

and thus, in the analogue of the first inequality in (3.17) we see that the integral on the right-hand side converges
to zero, leading to the assertion

‖ûn − û∗‖H1(Ω) → 0.

Thus, by combining the weak convergences with the above norm convergences the claim follows.

The above analysis for systems (3.7) and (3.8) allows us to define some solution operators. Namely, we
introduce

S : L∞(Ω,RL)→ Ĥ1
D(Ω,Rd), S : ϕ 7→ û = û(ϕ), (3.18)

as well as the intermediate operators:

S1 : L∞(Ω,RL)→ L∞(Ω,RL)×H1

D(Ω,Rd), S1 : ϕ 7→ (S1
1 (ϕ),S2

1 (ϕ)) = (ϕ,u),

S2 : L∞(Ω,RL)×H1

D(Ω,Rd)→ Ĥ1
D(Ω,Rd), S2 : (ϕ,u) 7→ û,

where u = u(ϕ) and û = û(ϕ,u) are the unique solutions obtained from Theorem 3.2. Then, the overall solution
operator S in (3.18) is simply the composition of the intermediate mappings S1 and S2, i.e., S = S2 ◦ S1. In
particular, we can define the reduced cost functional

Jεred : Uad → R, Jεred : ϕ 7→ Jε(ϕ,S(ϕ)).

We reuse the notation (P) to denote the optimisation problem minϕ∈Uad J
ε
red(ϕ).

3.3. Existence of optimal designs

Theorem 3.5. Under (A1)–(A6), the optimisation problem (P) admits at least one solution.
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Proof. As the proof is nowadays standard with the direct method of the calculus of variations, let us briefly
outline the main points. Consider a minimising sequence {ϕn}n∈N ⊂ Uad for the reduced cost functional Jεred,
which satisfies

lim
n→∞

Jεred(ϕn) = inf
ϕ∈Uad

Jεred(ϕ) ≥ 0.

This yields that {ϕn}n∈N is bounded in H1(Ω,RL)∩L∞(Ω,RL). By standard compactness arguments, since Uad

is closed and convex, we obtain a limit function ϕ∗ ∈ Uad such that ϕn → ϕ∗ weakly* in H1(Ω,RL)∩L∞(Ω,RL)
along a non-relabelled subsequence. Consequently, by (3.11) the sequence {ûn = S(ϕn)}n∈N is bounded in

Ĥ1
D(Ω,Rd), and on invoking Corollary 3.4 there exists a limit function û∗ ∈ Ĥ1

D(Ω,Rd) such that, along a non-

relabelled subsequence, ûn → û∗ strongly in Ĥ1
D(Ω,Rd) as n→∞. Continuity of the boundary trace operator

gives ûn → û∗ strongly in L2(Γ̂N ,Rd), and thus

∫

Γtar

W (ûn − utar) · (ûn − utar) dHd−1 →
∫

Γtar

W (û∗ − utar) · (û∗ − utar) dHd−1.

By Fatou’s lemma and the a.e. convergence of ϕn to ϕ∗, we have

lim inf
n→∞

‖Ψ(ϕn)‖L1(Ω) ≥ ‖Ψ(ϕ∗)‖L1(Ω),

and using also the weak lower semicontinuity of the L2-norm, we infer that

Jεred(ϕ∗) ≤ lim
n→∞

Jεred(ϕn) = inf
ϕ∈Uad

Jεred(ϕ).

This shows that ϕ∗ is a solution to (P).

4. Optimality conditions

To derive the first order necessary optimality conditions for ϕ∗, we first study the linearised system for the
linearised variables introduced below, and use adjoint variables to provide a simplification of the optimality
condition.

4.1. Linearised systems and Fréchet differentiability

Here, we analyse some differentiability properties of the solutions operators S1 and S2 introduced above. This
will help us to formulate the first order optimality conditions of (P).

Theorem 4.1. The solution operator S1 is Fréchet differentiable at ϕ as a mapping from L∞(Ω,RL) into

L∞(Ω,RL)×H1

D(Ω,Rd). Moreover, it holds that

DS1(ϕ) ∈ L(L∞(Ω,RL), L∞(Ω,RL)×H1

D(Ω,Rd)),

and its directional derivative at ϕ ∈ L∞(Ω,RL) along a direction h ∈ L∞(Ω,RL) is given by

DS1(ϕ)(h) = (h,v), (4.1)

where v ∈ H1

D(Ω,Rd) is the unique weak solution to the following system:

−div
(
C′(ϕ)h(E(u) + E(H)) + C(ϕ)E(v)

)
= 0 in Ω, (4.2a)
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v = 0 on ΓD, (4.2b)

(C′(ϕ)h(E(u) + E(H)) + C(ϕ)E(v))n = 0 on ΓN , (4.2c)

in the sense

∫

Ω

C(ϕ)E(v) : E(ζ) dx +

∫

Ω

C′(ϕ)h(E(u) + E(H)) dx : E(ζ) = 0 (4.3)

for all ζ ∈ H1

D(Ω,Rd), where u is the unique solution to (3.9) associated to ϕ obtained from Theorem 3.2.

Proof. Firstly, the unique solvability of the linearised system (4.2) follows directly from the application of
Proposition 3.1 upon choosing

u = v, C = C(ϕ), F = C′(ϕ)h(E(u) + E(H)), f = g = 0, ΓD = ΓD, ΓN = ΓN .

Next, we take ϕ ∈ Uad and h ∈ L∞(Ω,RL) such that ϕh := ϕ+ h ∈ Uad, and set uh = S2
1 (ϕh), i.e., (ϕh,uh) =

S1(ϕh). Since the first component of S1 is just the identity in L∞(Ω,RL), we only need to investigate the
Fréchet differentiability of the second component S2

1 . In this direction, we denote

w := uh − u− v ∈ H1

D(Ω,Rd)

with v being the unique solution to the linearised system (4.2) associated to ϕ and h. Our aim is to show the
existence of a positive constant C such that

‖w‖H1(Ω) = ‖S2
1 (ϕh)− S2

1 (ϕ)−DS2
1 (ϕ)h‖H1(Ω) ≤ C‖h‖2L∞(Ω), (4.4)

which would then imply the Fréchet differentiability of the operator S2
1 . To this end, we subtract from (3.9) for

ϕh the sum of (3.9) for ϕ and (4.3) for v to obtain

∫

Ω

C(ϕ)E(w) : E(ζ) dx +

∫

Ω

(C(ϕ+ h)− C(ϕ))(E(uh)− E(u)) : E(ζ) dx

+

∫

Ω

[C(ϕ+ h)− C(ϕ)− C′(ϕ)h](E(u) + E(H)) dx : E(ζ) = 0 ∀ζ ∈ H1

D(Ω,Rd).

Choosing ζ = w and using (2.4) we infer that

C0‖E(w)‖2L2(Ω) ≤ −
∫

Ω

(C(ϕ+ h)− C(ϕ))(E(uh)− E(u)) : E(w) dx

−
∫

Ω

[C(ϕ+ h)− C(ϕ)− C′(ϕ)h](E(u) + E(H)) dx : E(w).

Lipschitz continuity of C yields a positive constant CC′ such that

|C(ϕ+ h)− C(ϕ)− C′(ϕ)h| ≤ |h|
∫ 1

0

|C′(ϕ+ sh)− C′(ϕ)|ds ≤ CC′ |h|2, (4.5)

and keeping in mind the estimate obtained from Theorem 3.3:

‖uh − u‖H1(Ω) ≤ C‖h‖L∞(Ω), (4.6)
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we find that

∫

Ω

(C(ϕ+ h)− C(ϕ))(E(uh)− E(u)) : E(w) dx

≤ C‖h‖L∞(Ω)‖E(uh)− E(u)‖L2(Ω)‖E(w)‖L2(Ω) ≤
C0

4
‖E(w)‖2L2(Ω) + C‖h‖4L∞(Ω),

∫

Ω

[C(ϕ+ h)− C(ϕ)− C′(ϕ)h](E(u) + E(H)) : E(w) dx

≤ C‖h‖2L∞(Ω)(‖E(u)‖L2(Ω) + 1)‖E(w)‖L2(Ω) ≤
C0

4
‖E(w)‖2L2(Ω) + C‖h‖4L∞(Ω).

Then, by Korn’s inequality we infer (4.4), and whence the claimed Frechét differentiability of S1.

Before presenting the Fréchet differentiability of S2, let us provide a formal discussion. Recall that û =
S2(ϕ,u) and thus the directional derivative DS2(ϕ,u)(h,k) of S2 at (ϕ,u) along a direction (h,k) will be
given by

DS2(ϕ,u)(h,k) = DϕS2(ϕ,u)(h) +DuS2(ϕ,u)(k)

where Dϕ and Du represent the partial derivatives with respect to ϕ and u, respectively. Hence, we expect

ϑ̂ := DS2(ϕ,u)(h,k) to be a sum of two functions v̂ := DϕS2(ϕ,u)(h) and ŵ := DuS2(ϕ,u)(k), and the
Fréchet differentiability of S2 can be established by demonstrating

‖S2(ϕ+ h,u + k)− S2(ϕ,u)− ϑ̂‖H1(Ω) ≤ C‖(h,k)‖2L∞(Ω)×H1(Ω). (4.7)

The result is formulated as follows.

Theorem 4.2. The solution operator S2 is Fréchet differentiable at (ϕ,u) as a mapping from L∞(Ω,RL) ×
H

1

D(Ω,Rd) into Ĥ1
D(Ω,Rd). Furthermore,

DS2(ϕ,u) ∈ L(L∞(Ω,RL)×H1

D(Ω,Rd), Ĥ1
D(Ω,Rd)),

and its directional derivative at (ϕ,u) ∈ L∞(Ω,RL) × H1

D(Ω,Rd) along a direction (h,k) ∈ L∞(Ω,RL) ×
H

1

D(Ω,Rd) is given by

ϑ̂ := DS2(ϕ,u)(h,k) = DϕS2(ϕ,u)(h) +DuS2(ϕ,u)(k) =: v̂ + ŵ,

where ϑ̂ ∈ Ĥ1
D(Ω,Rd) is the unique weak solution to the following system:

−div
(
Ĉ′(ϕ)h

(
(E(û) + E(Ĥ))− χ(ϕ)(E(u) + E(H))

))

− div
(
Ĉ(ϕ)(E(ϑ̂)− χ′(ϕ)h(E(u) + E(H))− χ(ϕ)E(k))

)
= 0 in Ω, (4.8a)

ϑ̂ = 0 on Γ̂D, (4.8b)
(
Ĉ′(ϕ)h

(
(E(û) + E(Ĥ))− χ(ϕ)(E(u) + E(H))

))
n

+
(
Ĉ(ϕ)(E(ϑ̂)− χ′(ϕ)h(E(u) + E(H))− χ(ϕ)E(k))

)
n = 0 on Γ̂N , (4.8c)
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in the sense that

∫

Ω

Ĉ(ϕ)(E(ϑ̂)− χ′(ϕ)h(E(u) + E(H))− χ(ϕ)E(k)) : E(ζ) dx

+

∫

Ω

Ĉ′(ϕ)h((E(û) + E(Ĥ))− χ(ϕ)(E(u) + E(H))) : E(ζ) dx = 0

(4.9)

for all ζ ∈ Ĥ1
D(Ω,Rd), where u is the unique solution to (3.9) associated to ϕ and û is the unique solution

to (3.10) associated to (ϕ,u). Moreover, v̂ ∈ Ĥ1
D(Ω,Rd) and ŵ ∈ Ĥ1

D(Ω,Rd) are the unique solutions to the
following equations

∫

Ω

Ĉ(ϕ)(E(v̂)− χ′(ϕ)h(E(u) + E(H))) : E(ζ) dx

+

∫

Ω

Ĉ′(ϕ)h
(
(E(û) + E(Ĥ))− χ(ϕ)(E(u) + E(H))

)
: E(ζ) dx = 0, (4.10)

∫

Ω

Ĉ(ϕ)(E(ŵ)− χ(ϕ)E(k)) : E(ζ) dx = 0, (4.11)

for all ζ ∈ Ĥ1
D(Ω,Rd).

Proof. Unique solvability of (4.9), (4.10) and (4.11) are obtained by application of Theorem 3.1, and thus we
focus on demonstrating the crucial estimate (4.7). Let ϕ ∈ Uad, h ∈ L∞(Ω,RL) such that ϕh = ϕ + h ∈ Uad

and k ∈ H1

D(Ω,Rd). Setting

û = S2(ϕ,u), ûh := S2(ϕ+ h,u), ûk := S2(ϕ,u + k), ûh,k := S2(ϕ+ h,u + k),

then, setting ξ := ûh,k − û− ϑ̂, (4.7) is equivalent to

‖ξ‖H1(Ω) ≤ C‖(h,k)‖2L∞(Ω)×H1(Ω).

We observe that by subtracting from (3.10) for (ϕ+ h,u + k, ûh,k) the sum of (3.10) for (ϕ,u, û) and (4.9) for

ϑ̂, we obtain

∫

Ω

(
Ĉ(ϕ+ h)(E(ûh,k)− χ(ϕ+ h)E(u + k)

)
: E(ζ) dx

−
∫

Ω

Ĉ(ϕ)(E(û)− χ(ϕ)E(u)) : E(ζ) dx

−
∫

Ω

Ĉ′(ϕ)h(E(û)− χ(ϕ)E(u)) : E(ζ) dx

−
∫

Ω

Ĉ(ϕ)(E(ϑ̂)− χ′(ϕ)hE(u)− χ(ϕ)E(k)) : E(ζ) dx

= −
∫

Ω

[Ĉ(ϕ+ h)− Ĉ(ϕ)− Ĉ′(ϕ)h]E(Ĥ) : E(ζ) dx

+

∫

Ω

(
Ĉ(ϕ+ h)χ(ϕ+ h)− Ĉ(ϕ)χ(ϕ)

)
E(H) : E(ζ) dx

−
∫

Ω

(
Ĉ′(ϕ)hχ(ϕ) + Ĉ(ϕ)χ′(ϕ)h

)
E(H) : E(ζ) dx ∀ζ ∈ Ĥ1

D(Ω,Rd). (4.12)
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Before proceeding with some computations, let us point out the following identities:

Ĉ(ϕ+ h)E(ûh,k)− Ĉ(ϕ)E(û)− Ĉ′(ϕ)hE(û)− Ĉ(ϕ)E(ϑ̂)

+ [Ĉ(ϕ+ h)− Ĉ(ϕ)− Ĉ′(ϕ)h]E(Ĥ)

= Ĉ(ϕ)E(ξ) + (Ĉ(ϕ+ h)− Ĉ(ϕ))(E(ûh,k)− E(ûh))

+ (Ĉ(ϕ+ h)− Ĉ(ϕ))(E(ûh)− E(û))

+ [Ĉ(ϕ+ h)− Ĉ(ϕ)− Ĉ′(ϕ)h](E(û) + E(Ĥ)) =: Ĉ(ϕ)E(ξ) + Y1,

(4.13)

and

− Ĉ(ϕ+ h)χ(ϕ+ h)E(u + k) + Ĉ(ϕ)χ(ϕ)E(u) + Ĉ′(ϕ)hχ(ϕ)E(u)

+ Ĉ(ϕ)χ′(ϕ)hE(u) + Ĉ(ϕ)χ(ϕ)E(k)

−
(
Ĉ(ϕ+ h)χ(ϕ+ h)− Ĉ(ϕ)χ(ϕ)− Ĉ′(ϕ)hχ(ϕ)− Ĉ(ϕ)χ′(ϕ)h

)
E(H)

= −[Ĉ(ϕ+ h)− Ĉ(ϕ)− Ĉ′(ϕ)h]χ(ϕ)(E(u) + E(H))

− Ĉ(ϕ)[χ(ϕ+ h)− χ(ϕ)− χ′(ϕ)h](E(u) + E(H))

− (Ĉ(ϕ+ h)− Ĉ(ϕ))(χ(ϕ+ h)− χ(ϕ))(E(u) + E(H))

− (Ĉ(ϕ+ h)− Ĉ(ϕ))(χ(ϕ+ h)− χ(ϕ))E(k)

− Ĉ(ϕ)(χ(ϕ+ h)− χ(ϕ))E(k)

− (Ĉ(ϕ+ h)− Ĉ(ϕ))χ(ϕ)E(k) =: Y2.

(4.14)

Similar to (4.5), we have, for positive constants Cχ′ and CĈ′ , that

|χ(ϕ+ h)− χ(ϕ)− χ′(ϕ)h| ≤ |h|
∫ 1

0

|χ′(ϕ+ sh)− χ′(ϕ)|ds ≤ Cχ′ |h|2,

|Ĉ(ϕ+ h)− Ĉ(ϕ)− Ĉ′(ϕ)h| ≤ |h|
∫ 1

0

|Ĉ′(ϕ+ sh)− Ĉ′(ϕ)|ds ≤ CĈ′ |h|2,
(4.15)

and upon choosing ζ = ξ in (4.12), we infer that

‖E(ξ)‖L2(Ω) ≤ C‖Y1‖L2(Ω) + C‖Y2‖L2(Ω). (4.16)

Then, employing the Young and Hölder inequalities, (4.6), as well as the stability estimates

‖ûh,k − ûh‖H1(Ω) ≤ C‖k‖H1(Ω), ‖ûh − û‖H1(Ω) ≤ C‖h‖L∞(Ω)

deduced from (3.12), we find that

‖Y1‖L2(Ω) ≤ C‖h‖L∞(Ω)

(
‖ûh,k − ûh‖H1(Ω) + ‖ûh − û‖H1(Ω)

)

+ C‖h‖2L∞(Ω)(‖E(û)‖L2(Ω) + 1)

≤ C‖(h,k)‖2L∞(Ω)×H1(Ω),

‖Y2‖L2(Ω) ≤ C‖h‖L∞(Ω)

(
‖h‖L∞(Ω)(‖E(u)‖L2(Ω) + 1) + ‖h‖L∞(Ω)‖k‖H1(Ω) + ‖k‖H1(Ω)

)
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≤ C‖(h,k)‖2L∞(Ω)×H1(Ω),

and thus we obtain by Korn’s inequality

‖ξ‖H1(Ω) ≤ C‖(h,k)‖2L∞(Ω)×H1(Ω),

which verifies the Fréchet differentiability of S2. Furthermore, it is clear that by the uniqueness of the solutions,
the sum v̂ + ŵ is equal to ϑ̂. To establish the identification of the partial derivatives DϕS2(ϕ,u)(h) = v̂ and

DuS2(ϕ,u)(k) = ŵ, we argue as follows: Consider k = 0, so that from (4.11) we obtain that ŵ = 0 and ϑ̂ = v̂.
Then, in (4.12) with k = 0, we now have for ξ = ûh − û− v̂ the estimate (4.16), where

Y1 = (Ĉ(ϕ+ h)− Ĉ(ϕ))(E(ûh)− E(û)) + [Ĉ(ϕ+ h)− Ĉ(ϕ)− Ĉ′(ϕ)h](E(û) + E(Ĥ)),

Y2 = −[Ĉ(ϕ+ h)− Ĉ(ϕ)− Ĉ′(ϕ)h]χ(ϕ)(E(u) + E(H))

− Ĉ(ϕ)[χ(ϕ+ h)− χ(ϕ)− χ′(ϕ)h](E(u) + E(H))

− (Ĉ(ϕ+ h)− Ĉ(ϕ))(χ(ϕ+ h)− χ(ϕ))(E(u) + E(H)),

where we made use of ûh,0 = ûh. A short calculation shows that

‖ûh − û− v̂‖H1(Ω) ≤ C‖h‖2L∞(Ω),

which entails that DϕS2(ϕ,u)(h) = v̂. The other identification DuS2(ϕ,u)(k) = ŵ is in fact more straightfor-
ward as S2(ϕ, ·) is a linear operator. This completes the proof.

4.2. Adjoint systems

We now move to the investigation of some adjoint systems which, as typically happens in constrained
minimisation problems, will allow us to simplify the formulation of the optimality conditions of (P).

Theorem 4.3. Under (A1)–(A6), for every ϕ ∈ L∞(Ω,RL), there exists a unique solution q̂ ∈ Ĥ1
D(Ω,Rd) to

−div
(
Ĉ(ϕ)E(q̂)

)
= 0 in Ω, (4.17a)

q̂ = 0 on Γ̂D, (4.17b)

(Ĉ(ϕ)E(q̂))n = W (û− utar)XΓtar on Γ̂N , (4.17c)

in the sense

∫

Ω

Ĉ(ϕ)E(q̂) : E(ζ) dx =

∫

Γtar

W (û− utar) · ζ dHd−1 ∀ζ ∈ Ĥ1
D(Ω,Rd). (4.18)

Moreover, there exists a unique solution p ∈ H1

D(Ω,Rd) to

−div
(
C(ϕ)E(p)− Ĉ(ϕ)χ(ϕ)E(q̂))

)
= 0 in Ω, (4.19a)

p = 0 on ΓD, (4.19b)

(C(ϕ)E(p)− Ĉ(ϕ)χ(ϕ)E(q̂))n = 0 on ΓN , (4.19c)
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in the sense

∫

Ω

C(ϕ)E(p) : E(ζ) dx =

∫

Ω

Ĉ(ϕ)χ(ϕ)E(q̂) : E(ζ) dx ∀ζ ∈ H1

D(Ω,Rd), (4.20)

where q̂ ∈ Ĥ1
D(Ω,Rd) is the unique solution to (4.18).

As the proof of existence and uniqueness is simply an application of Theorem 3.1, we omit the details.

Remark 4.4. Notice that the adjoint variable p to the Stage 1 deformation u is dependent on the adjoint
variable q̂ to the Stage 2 deformation û. This backwards dependence has some parallels with the adjoint systems
associated to time-dependent state equations, which have to be solved backwards in time.

4.3. First order optimality conditions

Theorem 4.5. Under (A1)–(A6), let ϕ∗ ∈ Uad be a minimiser to Jεred with corresponding states u∗ = S2
1 (ϕ∗),

û∗ = S(ϕ∗), and adjoint variables (p, q̂) as unique solutions to (4.18) and (4.20) corresponding to (ϕ∗,u∗, û∗).
Then, it necessarily holds that

−
∫

Ω

C′(ϕ∗)(φ−ϕ∗)(E(u∗) + E(H)) : E(p) dx

−
∫

Ω

Ĉ′(ϕ∗)(φ−ϕ∗)((E(û∗) + E(Ĥ))− χ(ϕ∗)(E(u∗) + E(H))) : E(q̂) dx

+

∫

Ω

Ĉ(ϕ∗)χ′(ϕ∗)(φ−ϕ∗)(E(u∗) + E(H)) : E(q̂) dx

+ 2γε

∫

Ω

∇ϕ∗ · ∇(φ−ϕ∗) dx +
γ

ε

∫

Ω

Ψ̃,ϕ(ϕ∗) · (φ−ϕ∗) dx ≥ 0 ∀φ ∈ Uad, (4.21)

where we set Ψ̃,ϕ as the vector of partial derivatives of Ψ̃.

Proof. As Uad is a non-empty, closed and convex set, standard results in optimal control and convex analysis
yield that the first order necessary optimality condition for ϕ∗ is

〈DJεred(ϕ∗),φ−ϕ∗〉 ≥ 0 ∀φ ∈ Uad,

which reads, in view of Theorem 4.1 and Theorem 4.2, as

∫

Γtar

W (û∗ − utar) · ϑ̂dHd−1

+ 2γε

∫

Ω

∇ϕ∗ · ∇(φ−ϕ∗) dx +
γ

ε

∫

Ω

Ψ̃,ϕ(ϕ∗) · (φ−ϕ∗) dx ≥ 0 ∀φ ∈ Uad,

(4.22)

where ϑ̂ is the unique solution to (4.9) with ϕ = ϕ∗, u = u∗, û = û∗, h = φ− ϕ∗ and k = v from (4.3) (also
with h = φ − ϕ∗). To simplify the above relation, the procedure is to compare the equalities obtained from

(4.3) with ζ = p, (4.9) with k = v and ζ = q̂, (4.18) with ζ = ϑ̂ and (4.20) with ζ = v. A short calculation
then shows

0 =

∫

Ω

C(ϕ∗)E(v) : E(p) dx +

∫

Ω

C′(ϕ∗)(φ−ϕ∗)(E(u) + E(H)) : E(p) dx

+

∫

Ω

Ĉ(ϕ∗)(E(ϑ̂)− χ′(ϕ∗)(φ−ϕ∗)(E(u) + E(H))− χ(ϕ∗)E(v)) : E(q̂) dx
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+

∫

Ω

Ĉ′(ϕ∗)(φ−ϕ∗)((E(û) + E(Ĥ))− χ(ϕ∗)(E(u) + E(H))) : E(q̂) dx

−
∫

Ω

Ĉ(ϕ∗)E(q̂) : E(ϑ̂) dx +

∫

Γtar

W (û− utar) · ϑ̂dHd−1

−
∫

Ω

C(ϕ∗)E(p) : E(v) dx +

∫

Ω

Ĉ(ϕ∗)χ(ϕ∗)E(q̂) : E(v) dx.

Thus, rearranging the terms, it follows that

∫

Γtar

W (û∗ − utar) · ϑ̂dHd−1 = −
∫

Ω

C′(ϕ∗)(φ−ϕ∗)(E(u∗) + E(H)) : E(p) dx

−
∫

Ω

Ĉ′(ϕ∗)(φ−ϕ∗)
(
(E(û∗) + E(Ĥ))− χ(ϕ∗)(E(u∗) + E(H))

)
: E(q̂) dx

+

∫

Ω

Ĉ(ϕ∗)χ′(ϕ∗)(φ−ϕ∗)(E(u∗) + E(H)) : E(q̂) dx,

which allows us to remove the dependence of ϑ̂ from (4.22) and leads to (4.21).

5. Sharp interface asymptotics

In this section we study the behaviour of solutions in the sharp interface limit ε→ 0. For ε > 0, we denote

Eε(ϕ) = ε

∫

Ω

|∇ϕ|2 dx +
1

ε

∫

Ω

Ψ(ϕ) dx,

G(ϕ) =
1

2

∫

Γtar

W (S(ϕ)− utar) · (S(ϕ)− utar) dHd−1,

where S is the solution operator defined in (3.18), so that the corresponding reduced functional can be expressed
as the sum Jεred(ϕ) = G(ϕ)+γEε(ϕ). The asymptotic behaviour of solutions can be studied under the framework
of Γ-convergence. In order to state the result some preparation is needed. A function ϕ ∈ L1(Ω,RL) is termed
a function of bounded variation in Ω, written as ϕ ∈ BV(Ω,RL) if there exists a matrix-valued measure Dϕ of
dimension L× d on Ω such that

L∑

j=1

∫

Ω

ϕj(divψ)j dx = −
L∑

j=1

d∑

i=1

∫

Ω

ψji dDiϕj ,

for all ψ = (ψji )1≤i≤d,1≤j≤L where ψji ∈ C1
c (Ω). Let T = {e1, . . . , eL} where Ψ−1(0) = T . For ϕ ∈ BV(Ω, T ) we

set, for i ∈ {1, . . . , L},

Eiϕ = {x ∈ Ω : ϕ(x) = ei}

and define the essential boundary ∂∗Eiϕ as

∂∗Eiϕ =
{
x ∈ Rd : lim

ρ→0+

|Eiϕ ∩Bρ(x)|
|Bρ(x)| /∈ {0, 1}

}
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where, for any ρ > 0, Bρ(x) is the ρ-ball in Rd centered in x, i.e., Bρ(x) = {y ∈ Rd : |y − x| < ρ}. Consider
the extended functionals

Eε(ϕ) :=

{
Eε(ϕ) if ϕ ∈ H1(Ω,RL),

+∞ elsewhere in L1(Ω,RL),

E0(ϕ) :=

{∑L
i,j=1, i<j bijHd−1(Ω ∩ ∂∗Eiϕ ∩ ∂∗Ejϕ) if ϕ ∈ BV(Ω, T ),

+∞ elsewhere in L1(Ω,RL),

with constants bij defined as

bij = inf
{∫ 1

0

Ψ1/2(γ(t))|γ′(t)|dt : γ ∈ C1([0, 1]; ∆L), γ(0) = ei, γ(1) = ej

}
.

Then, the Γ-convergence of Eε to E0 as ε→ 0 is expressed as the following assertions:

– Liminf property. If {ϕε}ε>0 is a sequence such that lim infε→0 Eε(ϕε) <∞ and ϕε → ϕ0 in L1(Ω,RL),
then ϕ0 ∈ BV(Ω, T ) with E0(ϕ0) ≤ lim infε→0 Eε(ϕε).

– Limsup property. For any ϕ0 ∈ L1(Ω, T ), there exists a sequence {ϕε}ε>0 ⊂ H1(Ω,RL), such that
ϕε → ϕ0 in L1(Ω,RL) and lim supε→0 Eε(ϕε) ≤ E0(ϕ0).

– Compactness property. Let {ϕε}ε>0 be a sequence such that supε Eε(ϕε) < ∞. Then, there exists a
non-relabelled subsequence and a function ϕ0 ∈ BV(Ω, T ) such that ϕε → ϕ0 in L1(Ω,RL).

For a proof we refer to ([8], Thm. 2.5 and Prop. 4.1), see also ([11], Thm. 3.1 and Rmk. 3.3) with the choice
f(z,X) = |X|2.

5.1. Convergences of minimisers

Lemma 5.1. For each ε ∈ (0, 1], let ϕε ∈ Uad denote a minimiser to the extended reduced cost functional
Jεred(ϕ) = G(ϕ) + γEε(ϕ). Then, there exists a non-relabelled subsequence ε → 0 and a limit function ϕ0 ∈
BV(Ω, T ) such that ϕε → ϕ0 strongly in L1(Ω,RL), limε→0 J

ε
red(ϕε) = J0

red(ϕ0), where

J0
red(ϕ) = G(ϕ) + γE0(ϕ) for ϕ ∈ BV(Ω, T ),

and ϕ0 is a minimiser to J0
red.

Proof. The proof relies on the Γ-convergence of the Ginzburg–Landau functional and the stability of Γ-
convergence under continuous perturbations. By Corollary 3.4, and the continuity of the trace operator, we
see that G is continuous. For arbitrary ψ ∈ BV(Ω, T ), we invoke the limsup property to find a sequence
{ψε}ε>0 such that ψε → ψ strongly in L1(Ω,RL) and lim supε→0 Eε(ψε) ≤ E0(ψ) < ∞. Continuity of G
implies G(ψε)→ G(ψ) as ε→ 0, leading to

lim sup
ε→0

Jεred(ψε) ≤ J0
red(ψ) <∞.

As ϕε minimises Jεred, we see that

lim sup
ε→0

Jεred(ϕε) ≤ lim sup
ε→0

Jεred(ψε) ≤ J0
red(ψ) <∞.

By the non-negativity of G, the above estimate implies supε∈(0,1] Eε(ϕε) <∞, and by the compactness property

we deduce that there exists a limit function ϕ0 ∈ BV(Ω, T ) such that ϕε → ϕ0 strongly in L1(Ω,RL) along a
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non-relabelled subsequence. Continuity of G then gives G(ϕε) → G(ϕ0) and invoking the liminf property we
subsequently infer that

J0
red(ϕ0) ≤ lim inf

ε→0
Jεred(ϕε) ≤ J0

red(ψ).

As ψ is arbitrary, this shows that ϕ0 is a minimiser of J0
red. We now return to the beginning of the proof and

consider using the limsup property to construct a sequence {ϕε}ε>0 that converges strongly to ϕ0 in L1(Ω,Rd).
Then, following a similar argument we arrive at

J0
red(ϕ0) ≤ lim inf

ε→0
Jεred(ϕε) ≤ lim sup

ε→0
Jεred(ϕε) ≤ J0

red(ϕ0),

which provides the claimed assertion limε→0 J
ε
red(ϕε) = J0

red(ϕ0).

5.2. Formally matched asymptotic expansions

We turn our attention towards the optimality condition (4.21) and study its sharp interface limit ε → 0
with the method of formally matched asymptotic expansions, where we assume the functions ϕε, uε, ûε, pε,
and q̂ε admit asymptotic expansions in powers of ε. From Lemma 5.1 we saw that ϕε converges to a function
ϕ0 ∈ BV(Ω, T ) as ε → 0, and thus for 0 < ε < 1, we expect ϕε to change its values rapidly on a length scale
proportional to ε. This inspires us to consider two asymptotic expansions of (ϕε,uε, ûε,pε, q̂ε) in the bulk and
interfacial regions (to be defined below), and the procedure is to match these expansions in an intermediate
region to deduce the expected equations in the sharp interface limit. We follow the ideas in [13] that treats a
similar system of equations, and refer the reader to, e.g., [18, 25, 31, 32] for more details regarding the technique.

In this methodology we consider the strong formulation of the state systems (2.1) for uε, (2.2) for ûε, (4.17)

for q̂ε, and (4.19) for pε. Notice that we do not need to consider the function H and Ĥ that were used to
establish the well-posedness of weak solutions to the equivalent state systems (3.7) and (3.8), and thus in this
section they will not appear.

Recalling T = Ψ−1(0) = {e1, . . . , eL} as the set of corners of the Gibbs simplex ∆L, we partition the domain
Ω into regions Ωi, i = 1, . . . , L, where Ωi = {x ∈ Ω : ϕ0(x) = ei}. Then, we assume the functions ϕε, uε, ûε,
pε, and q̂ε are sufficiently smooth and admit the following asymptotic expansion in ε:

ϕε(x) =

∞∑

k=0

εkϕk(x), uε(x) =

∞∑

k=0

εkuk(x), ûε(x) =

∞∑

k=0

εkûk(x),

pε(x) =

∞∑

k=0

εkpk(x), q̂ε(x) =

∞∑

k=0

εkq̂k(x),

for all points x ∈ Ω away from the interfaces Γij = ∂Ωi ∩ ∂Ωj for i, j ∈ {1, . . . , L}, i 6= j. This is known as the
outer expansion. Furthermore, we assume that

ϕk(x) ∈ TΣL :=
{
v = (v1, . . . , vL) ∈ RL :

L∑

i=1

vi = 0
}
, k ≥ 1,

where TΣL is the tangent space of the affine hyperplane ΣL = {v ∈ RL :
∑L
i=1 vi = 1}, so that by the above

construction ϕε(x) ∈ ∆L for ε sufficiently small. We assume that there are constant elasticity tensors Ci and

Ĉi for i = 1, . . . , L, satisfying the standard symmetric conditions and are positive definite. Then, for ϕ =
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(ϕ1, . . . , ϕL) such that ϕ(x) ∈ ∆L, we consider

C(ϕ) =

L∑

i=1

Ciϕi, Ĉ(ϕ) =

L∑

i=1

Ĉiϕi.

Then, substituting the outer expansions into the state systems (2.1), (2.2) and the adjoint systems (4.17) and
(4.19), to leading order we obtain the following equations for i = 1, . . . , L:





−div
(
CiE(u0)

)
= F in Ωi,

u0 = U on ΓD ∩ ∂Ωi,

(CiE(u0))n = g on ΓN ∩ ∂Ωi,




−div
(
Ĉi(E(û0)− χiE(u0))

)
= F̂ in Ωi,

û0 = Û on Γ̂D ∩ ∂Ωi,

(Ĉi(E(û0)− χiE(u0)))n = ĝ on Γ̂N ∩ ∂Ωi,

(5.1)

where χi := χ(ei), and





− div
(
ĈiE(q̂0)

)
= 0 in Ωi,

q̂0 = 0 on Γ̂D ∩ ∂Ωi,

(ĈiE(q̂0))n = W (û0 − utar)XΓtar on Γ̂N ∩ ∂Ωi,




− div
(
CiE(p0)− ĈiχiE(q̂0))

)
= 0 in Ωi,

p0 = 0 on ΓD ∩ ∂Ωi,

(CiE(p0)− ĈiχiE(q̂0))n = 0 on ΓN ∩ ∂Ωi.

(5.2)

It then remains to furnish the above with boundary conditions for (u0, û0,p0, q̂0) on the interfaces Γij for
i, j ∈ {1, . . . , L}, i < j, which we assume are smooth hypersurfaces that can be obtained in the limit ε→ 0. These
boundary conditions can be inferred with the help of a corresponding inner expansion for (ϕε,uε, ûε,pε, q̂ε) in
the interfacial regions bordering two bulk regions Ωi and Ωj . To this end, we focus on one particular interface
Γij and introduce a change of coordinates with the help of a local parameterisation γ : U ⊂ Rd−1 → Rd of Γij ,
where U is a spatial parameter domain.

Close to γ(U), consider the signed distance function d such that d(x) > 0 if x ∈ Ωj and d(x) < 0 if x ∈ Ωi,
so that the unit normal ν to Γij points from Ωi to Ωj . Introducing the rescaled signed distance z = d

ε , a local
parameterization of x ∈ Rd close to γ(U) can be given as

x = Gε(s, z) = γ(s) + εzν(s), s ∈ U ⊂ Rd−1, z ∈ R.

This representation allows us to infer the following expansions for gradients, divergences and Laplacians [33]:

∇xb =
1

ε
∂z b̃ν +∇Γij

b̃+O(ε), divx j =
1

ε
∂z j̃ · ν + divΓij

j̃ +O(ε),

∇xj =
1

ε
∂z j̃ ⊗ ν +∇Γij

j̃ +O(ε), ∆xb =
1

ε2
∂zz b̃−

1

ε
κΓij

∂z b̃+O(1),

for scalar functions b(x) = b̃(s(x), z(x)) and vector functions j(x) = j̃(s(x), z(x)), along with the curvature
κΓij

of Γij , the surface gradient operator ∇Γij
, and the surface divergence operator divΓij

on Γij . Then, for
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points close by Γij , we assume an inner expansion of the form

ϕε(x) =

∞∑

k=0

εkΦk(s, z), uε(x) =

∞∑

k=0

εkUk(s, z), ûε(x) =

∞∑

k=0

εkÛk(s, z),

pε(x) =

∞∑

k=0

εkP k(s, z), q̂ε(x) =

∞∑

k=0

εkQ̂k(s, z).

Lastly, we assume in a tubular neighborhood of Γij the outer expansions and the inner expansions hold simulta-
neously. Within this intermediate region certain matching conditions relating the outer expansions to the inner
expansions must hold. For a scalar function b(x) admitting an outer expansion

∑∞
k=0 ε

kbk(x) and an inner
expansion

∑∞
k=0 ε

kBk(s, z), it holds that (see [33], Appendix D)

B0(s, z)→
{

limδ↘0 b0(x+ δν(x)) =: b+0 (x) for z → +∞,
limδ↘0 b0(x− δν(x)) =: b−0 (x) for z → −∞,

∂zB0(s, z)→ 0 as z → ±∞,

∂zB1(s, z)→
{

limδ↘0(∇b0)(x+ δν(x)) · ν(x) =: ∇b+0 · ν for z → +∞,
limδ↘0(∇b0)(x− δν(x)) · ν(x) =: ∇b−0 · ν for z → −∞,

for x ∈ Γij . Consequently, we denote the jump of a quantity b across Γij as

[b]+− := lim
δ↘0

b(x+ δν(x))− lim
δ↘0

b(x− δν(x)) for x ∈ Γij .

Note that the above matching conditions also apply to vectorial functions. We introduce the orthogonal
projection

PTΣ : RL → TΣL, PTΣϕ = ϕ−
( 1

L

L∑

i=1

ϕi

)
1

where 1 := (1, . . . , 1)>, so that the optimality condition (4.21) can be expressed in the following strong form

− 2γε∆ϕε + PTΣ

(γ
ε

Ψ̃,ϕ(ϕε) + Ĉ(ϕε)χ′(ϕε)E(uε) : E(q̂ε)
)

− PTΣ

(
Ĉ′(ϕε)(E(ûε)− χ(ϕε)E(uε)) : E(q̂ε) + C′(ϕε)E(uε) : E(pε)

)
= 0,

(5.3)

where with an abuse of notation, the displacements uε and ûε appearing in (5.3) are equal to u∗ + H and

û∗ + Ĥ appearing in (4.21). We substitute the inner expansions into the equations (2.1a), (2.2a), (4.17a),
(4.19a), and (5.3) and collect terms of the same order. Then, we perform some computations to deduce the
boundary conditions posed on Γij . As the subsequent analysis is similar to that performed in [13, 31], we omit
most of the straightforward details. In the sequel we use the notation

(B)sym =
1

2
(B +B>), EX := (∂zX1 ⊗ ν +∇ΓijX0)sym,

for second order tensors B and for X ∈ {U , Û ,P , Q̂}.
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To leading order O( 1
ε2 ), equations (2.1a) and (4.17a) yield

∂z

(
C(Φ0)(∂zU0 ⊗ ν)symν

)
= 0, ∂z

(
Ĉ(Φ0)(∂zQ̂0 ⊗ ν)symν

)
= 0.

Multiplying the first equation by U0, integrating over z ∈ R and integrating by parts yields

∫ ∞

−∞
C(Φ0)(∂zU0 ⊗ ν)sym : (∂zU0 ⊗ ν)sym dz −

[
C(Φ0)(∂zU0 ⊗ ν)symν ·U0

]∞
−∞

= 0.

Due to the matching conditions limz→±∞ ∂zU0(s, z) = 0 we notice the second term vanishes. From the coercivity
property (2.4) we then infer

C0‖(∂zU0 ⊗ ν)sym‖2L2(R) ≤
∫ ∞

−∞
C(Φ0)(∂zU0 ⊗ ν)sym : (∂zU0 ⊗ ν)sym dz = 0,

and hence ∂zU0 = 0 has to hold. Integrating this new relation over z ∈ R yields

0 =

∫ ∞

−∞
∂zU0 dz =

[
U0

]∞
−∞ = [u0]ji on Γij ,

where we have applied the matching conditions limz→−∞U0(s, z) = ui0 and limz→∞U0(s, z) = uj0, where uk0 ,

k ∈ {i, j}, denotes the outer solution to (5.1) in domain Ωk. Via a similar argument, we deduce that ∂zQ̂0 = 0,
and subsequently

[q̂0]ji = 0 on Γij .

Then, to leading order O( 1
ε2 ), equations (2.2a) and (4.19a) yield

∂z

(
Ĉ(Φ0)(∂zÛ0 ⊗ ν)symν

)
= 0, ∂z

(
C(Φ0)(∂zP 0 ⊗ ν)symν

)
= 0,

on account of the fact that ∂zU0 = ∂zQ̂0 = 0. Hence, we also obtain

[û0]ji = [p0]ji = 0 on Γij .

To first order O( 1
ε ), we get from (2.1a) and (4.17a) that

∂z

(
C(Φ0)EUν

)
= 0, ∂z

(
Ĉ(Φ0)EQ̂ν

)
= 0. (5.4)

Integrating over z ∈ R gives

[
C(Φ0)EUν

]∞
−∞

= 0,
[
Ĉ(Φ0)EQ̂ν

]∞
−∞

= 0,

and using the matching conditions

EU (s, z) = (∂zU1 ⊗ ν +∇Γij
U0)sym(s, z)→

{
E(uj0) as z →∞,
E(ui0) as z → −∞,
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yields

[CE(u0)ν]ji = 0, [ĈE(q̂0)ν]ji = 0 on Γij .

Similarly, from equations (2.2a) and (4.19a), we obtain to first order O( 1
ε ) that

∂z

(
Ĉ(Φ0)(EÛ − χ(Φ0)EU )ν

)
= 0, ∂z

(
C(Φ0)EP ν − χ(Φ0)Ĉ(Φ0)EQ̂ν

)
= 0. (5.5)

Integrating over z ∈ R and applying the matching conditions, we obtain

[Ĉ(E(û0)− χ(ϕ0)E(u0))ν]ji = 0, [(CE(p0)− χ(ϕ0)ĈE(q̂0))ν]ji = 0 on Γij .

Turning now to the optimality condition (5.3), we use the fact that ∂zU0 = ∂zÛ0 = ∂zP 0 = ∂zQ̂0 = 0 to see
that the elasticity terms do not contribute to leading order O( 1

ε2 ) and first order O( 1
ε ). Hence, to first order

O( 1
ε ) we obtain from (5.3) that

2∂zzΦ0 − PTΣ

(
Ψ̃,ϕ(Φ0)

)
= 0.

Following [18], Φ0 can be chosen independent of s and as the solution to the above ordinary differential system
such that limz→−∞Φ0(z) = ei and limz→+∞Φ0(z) = ej . To the next order O(1), we obtain

− 2γ∂zzΦ1 + γPTΣ

(
Ψ̃,ϕϕ(Φ0)Φ1

)
+ 2γκΓij

∂zΦ0 + PTΣ

(
Ĉ(Φ0)χ′(Φ0)EU : EQ̂

)

− PTΣ

(
Ĉ′(Φ0)(EÛ − χ(Φ0)EU ) : EQ̂ + C′(Φ0)EU : EP

)
= 0,

(5.6)

where Ψ̃,ϕϕ denotes the Hessian matrix of Ψ̃, and we have used that ∂zΦ0 ∈ TΣL. Note that by the fact that

∂zX0 = 0 for X ∈ {U , Û ,P , Q̂}, and by the symmetry of the elasticity tensors Cijkl = Cjikl, we have the
relations

∂zEX = (∂zzX1 ⊗ ν)sym, CEY : ∂zEX = ((CEY)ν) · ∂zzX1, (5.7)

for any X,Y ∈ {U , Û ,P , Q̂}. To obtain a solution Φ1, a solvability condition has to hold, which can be derived
by multiplying (5.6) with ∂zΦ0 and integrating over z. Using the relations PTΣ(∂zΦ0) = ∂zΦ0, PTΣ(∂zΦ1) =
∂zΦ1, after integrating by parts and applying the matching conditions, we obtain

0 =

∫ ∞

−∞
γ (−2∂zzΦ0 + PTΣ

(
Ψ̃,ϕ(Φ0)

)
)

︸ ︷︷ ︸
=0

· ∂zΦ1dz + 2γκΓij

∫ ∞

−∞
|∂zΦ0|2dz

+

∫ ∞

−∞
∂z[Ĉ(Φ0)χ(Φ0)]EU : EQ̂ − ∂zĈ(Φ0)EÛ : EQ̂ − ∂zC(Φ0)EU : EP dz.

(5.8)

We employ the identities obtained from (5.4), (5.5) and (5.7) to obtain that

−Ĉ(Φ0)EÛ : ∂zEQ̂ + Ĉ(Φ0)EÛν · ∂zzQ̂1 = 0, ∂z(Ĉ(Φ0)EQ̂ν) = 0,

as well as ∂zν = 0 to see that

− ∂zĈ(Φ0)EÛ : EQ̂
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= −∂zĈ(Φ0)EÛ : EQ̂ − Ĉ(Φ0)EÛ : ∂zEQ̂ − Ĉ(Φ0)EQ̂ : ∂zEÛ
+ Ĉ(Φ0)EÛν · ∂zzQ̂1 + Ĉ(Φ0)EQ̂ν · ∂zzÛ1

+ ∂z

(
Ĉ(Φ0)EQ̂

)
ν · ∂zÛ1 + ∂z

(
Ĉ(Φ0)(EÛ − χ(Φ0)EU )

)
ν · ∂zQ̂1

= −∂z
(
Ĉ(Φ0)EÛ : EQ̂

)
+ Ĉ(Φ0)EÛν · ∂zzQ̂1 + ∂z

(
Ĉ(Φ0)EÛ

)
ν · ∂zQ̂1

+ Ĉ(Φ0)EQ̂ν · ∂zzÛ1 + ∂z

(
Ĉ(Φ0)EQ̂

)
ν · ∂zÛ1 − ∂z

(
Ĉ(Φ0)χ(Φ0)EU

)
ν · ∂zQ̂1

= −∂z
(
Ĉ(Φ0)EÛ : EQ̂ − Ĉ(Φ0)EQ̂ν · ∂zÛ1 − Ĉ(Φ0)EÛν · ∂zQ̂1

))

− ∂z
(
Ĉ(Φ0)χ(Φ0)EU

)
ν · ∂zQ̂1.

Via a similar calculation we infer

− ∂zC(Φ0)EU : EP
= −∂z

(
C(Φ0)EU : EP − C(Φ0)EP ν · ∂zU1 − C(Φ0)EUν · ∂zP 1

)

− ∂z
(
Ĉ(Φ0)χ(Φ0)EQ̂

)
ν · ∂zU1,

∂z
[
Ĉ(Φ0)χ(Φ0)

]
EU : EQ̂

= ∂z

(
χ(Φ0)Ĉ(Φ0)EU : EQ̂

)

− χ(Φ0)Ĉ(Φ0)EUν · ∂zzQ̂1 − χ(Φ0)Ĉ(Φ0)EQ̂ν · ∂zzU1.

Hence, the second line of (5.8) can be rearranged to

∫ ∞

−∞
∂z

(
χ(Φ0)Ĉ(Φ0)EU : EQ̂

)
− ∂z

(
Ĉ(Φ0)EÛ : EQ̂

)
− ∂z

(
C(Φ0)EU : EP

)
dz

+

∫ ∞

−∞
∂z

(
Ĉ(Φ0)EQ̂ν · ∂zÛ1 + Ĉ(Φ0)EÛν · ∂zQ̂1

))
dz

+

∫ ∞

−∞
∂z

(
C(Φ0)EP ν · ∂zU1 + C(Φ0)EUν · ∂zP 1

)
dz

−
∫ ∞

−∞
∂z

(
Ĉ(Φ0)χ(Φ0)EU

)
ν · ∂zQ̂1 + ∂z

(
Ĉ(Φ0)χ(Φ0)EQ̂

)
ν · ∂zU1 dz

−
∫ ∞

−∞
χ(Φ0)Ĉ(Φ0)EUν · ∂zzQ̂1 + χ(Φ0)Ĉ(Φ0)EQ̂ν · ∂zzU1 dz.

Notice the last two lines can be combined as

−
∫ ∞

−∞
∂z

(
Ĉ(Φ0)χ(Φ0)EUν · ∂zQ̂1

)
+ ∂z

(
Ĉ(Φ0)χ(Φ0)EQ̂ν · ∂zU1

)
dz.

Thus, setting bij :=
∫∞
−∞ 2|∂zΦ0|2dz, and applying matching conditions

EU =
(
∂zU1 ⊗ ν +∇Γij

U0

)sym
(s, z)→

{
E(uj0) as z → +∞,
E(ui0) as z → −∞,
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∂zU1(s, z)→
{
∇(uj0)ν as z → +∞,
∇(ui0)ν as z → −∞,

likewise for EÛ , EP , EQ̂, ∂zÛ1, ∂zP 1 and ∂zQ̂1, we obtain from (5.8) the solvability condition

0 = γκΓij
bij + [χ(ϕ0)ĈE(u0) : E(q̂0)]ji − [ĈE(û0) : E(q̂0)]ji − [CE(u0) : E(p0)]ji

+ [ĈE(q̂0)ν · (∇û0)ν + ĈE(û0)ν · (∇q̂0)ν]ji − [χ(ϕ0)ĈE(u0)ν · (∇q̂0)ν]ji

+ [CE(p0)ν · (∇u0)ν + CE(u0)ν · (∇p0)ν]ji − [χ(ϕ0)ĈE(q̂0)ν · (∇u0)ν]ji

(5.9)

that has to hold on Γij . Thus, the sharp interface limit consists of the equations (5.1) and (5.2) posed in Ωi,
1 ≤ i ≤ L, furnished by the boundary conditions (5.9) and

[û0]ji = 0, [p0]ji = 0, [u0]ji = 0, [q̂0]ji = 0, [CE(u0)ν]ji = 0, [ĈE(q̂0))ν]ji = 0,

[Ĉ(E(û0)− χ(ϕ0)E(u0))ν]ji = 0, [(CE(p0)− χ(ϕ0)ĈE(q̂0))ν]ji = 0

on Γij , 1 ≤ i < j ≤ L.

Remark 5.2. It is possible to consider the sharp interface limit near a triple junction where three regions meet.
We refer to [13, 18, 53] for more details regarding the asymptotic analysis around a triple junction.

5.3. Rigorous convergence in the two-phase setting

In the two phase case L = 2, since ϕ = (ϕ1, ϕ2) ∈ ∆2, we may use the difference ϕ := ϕ2 − ϕ1 ∈ [−1, 1] to
encode the vector ϕ = ( 1

2 (1−ϕ), 1
2 (1 +ϕ)), so that |∇ϕ|2 = 1

2 |∇ϕ|2. Hence, the problem (P) can be rephrased
in terms of the scalar function ϕ ranging between −1 and 1, and it suffices to consider the following

(P ε) min
ϕ∈Uad

Jεred(ϕ) =
1

2

∫

Γtar

W (S(ϕ)− utar) · (S(ϕ)− utar) dHd−1

+ γ

∫

Ω

ε

2
|∇ϕ|2 +

1

ε
Ψ(ϕ) dx,

where Uad = {f ∈ H1(Ω) : f ∈ [−1, 1] a.e. in Ω}, and, as no confusion can arise, we use the short-hand notations
S(ϕ) and Ψ(ϕ) for the functions S(ϕ) and Ψ(ϕ) evaluated at ϕ = ( 1

2 (1− ϕ), 1
2 (1 + ϕ)). On recalling (A3), we

hence assume that

Ψ(s) = Ψ̃(s) + I[−1,1](s) for s ∈ R, (5.10)

for a Ψ̃ ∈ C1,1(R). To simplify the calculations, we consider U = Û = 0 (homogeneous Dirichlet data so that

H = Ĥ = 0), F, F̂ ∈ H1(Ω,Rd), g ∈ H2(ΓN ,Rd) and ĝ ∈ H2(Γ̂N ,Rd). We now consider deriving an alternative
set of optimal conditions for a minimiser ϕ∗ ∈ Uad based on geometric variations. To this end, we consider the
following admissible transformations and their corresponding velocity fields.

Definition 5.3. The space Vad of admissible velocity fields is defined as the set of all V ∈ C0([−τ, τ ]×Ω,Rd),
where τ > 0 is a fixed small constant, such that it holds:

– V(t, ·) ∈ C2(Ω,Rd), and ∃C > 0 such that ‖V(·,y)−V(·,x)‖C0([−τ,τ ],Rd) ≤ C‖x− y‖ for all x,y ∈ Ω;
– V(t,x) · n(x) = 0 for all x ∈ ∂Ω;

– V(t,x) = 0 for all x ∈ ΓD ∪ Γ̂D.
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Then, the space Tad of admissible transformations is defined as the set of solutions to the ordinary differential
equations

∂tTt(x) = V(t, Tt(x)), T0(x) = x

with V ∈ Vad.

Notice that by the second property it holds Tt(Ω) = Ω for all t ∈ [−τ, τ ]. Let V ∈ Vad be an admissible
velocity field with corresponding transformation T ∈ Tad. For ϕ ∈ Uad we define ϕt := ϕ ◦ T−1

t , along with the

unique solutions (ut, ût) ∈ H1

D(Ω,Rd)× Ĥ1
D(Ω,Rd), where ut = S2

1 (ϕt) and ût = S(ϕt).
Setting (ϕ0,u0, û0) = (ϕ,u, û), by following a similar proof to ([14], Lem. 25), we define for τ0 > 0 sufficiently

small the function F1 : (−τ0, τ0)×H1

D(Ω,Rd)→ (H
1

D(Ω,Rd))∗ by

F1(t,u)[v] =

∫

Ω

(
C(ϕ)(∇T−1

t ∇u)sym : (∇T−1
t ∇v)sym − ((F ◦ Tt) · v)

)
det(∇Tt) dx

−
∫

ΓN

(g ◦ Tt) · v det(∇Tt)‖∇T−>t n‖ dHd−1.

Using a change of variables y = Tt(x), the relation

∇T−1
t ∇(ũ ◦ Tt) = (∇ũ) ◦ Tt for ũ : Tt(Ω)→ Rd,

and also ([57], Prop. 2.47) for the boundary transformation, we obtain

F1(t,u)[v] =

∫

Tt(Ω)

C(ϕ ◦ T−1
t )Ey(u ◦ T−1

t ) : Ey(v ◦ T−1
t ) dy

−
∫

Tt(Ω)

F · (v ◦ T−1
t ) dy −

∫

Tt(ΓN )

g · (v ◦ T−1
t ) dHd−1

y ,

where Ey(u) = 1
2 (∇yu + (∇yu)>) for u : Tt(Ω) → Rd and dHd−1

y denotes the (d − 1)-dimensional Hausdorff

measure related to y. From the properties of the mapping Tt, we find that Tt(ΓN ) = ΓN and ṽ := v ◦ T−1
t ∈

H
1

D(Tt(Ω),Rd). Hence, from the above identity we observe that

F1(t,ut ◦ Tt)[v] =

∫

Ω

C(ϕt)Ey(ut) : Ey(ṽ)− F · ṽ dy −
∫

ΓN

g · ṽ dHd−1
y = 0

for all v ∈ H1

D(Ω,Rd). Denoting by DuF1 as the partial derivative of F1 with respect to its second argument,

we find that DuF1(0,u) : H
1

D(Ω,Rd)→ (H
1

D(Ω,Rd))∗ is given by

(
DuF1(0,u)[v]

)
[w] =

∫

Ω

C(ϕ)E(v) : E(w) dx

for all v,w ∈ H1

D(Ω,Rd), where we have used the relation ∇T−1
t |t=0 = I the identity matrix. As DuF1(0,u)

is an isomorphism by the Lax–Milgram theorem, the application of the implicit function theorem allows us to
infer that the mapping

t 7→ (ut ◦ Tt)
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is differentiable at t = 0 with derivative u̇[V] := ∂t|t=0(ut ◦ Tt) ∈ H
1

D(Ω,Rd) being the unique solution to the
distributional equation

DuF1(0,u)
[
u̇[V]

]
= −∂tF1(0,u) in (H

1

D(Ω,Rd))∗,

which reads as

∫

Ω

C(ϕ)E(u̇[V]) : E(ζ) dx =

∫

Ω

C(ϕ)(∇V(0)∇u)sym : E(ζ) dx

+

∫

Ω

C(ϕ)E(u) : (∇V(0)∇ζ)sym − C(ϕ)E(u) : E(ζ) div V(0) dx

+

∫

Ω

(
∇FV(0) + F div(V(0))

)
· ζ dx

+

∫

ΓN

(
∇gV(0) + g

(
div(V(0))− n · ∇V(0)n

))
· ζ dHd−1

(5.11)

for all ζ ∈ H1

D(Ω,Rd). In the above, we have made use of the following relations (see [57], Lem. 2.31, Prop. 2.36,
Lem. 2.49)

∂t∇Tt|t=0 = ∇V(0), ∂t∇T−1
t |t=0 = −∇V(0),

∂t det∇Tt|t=0 = div V(0), ∂t(f ◦ Tt)|t=0 = ∇f ·V(0),

∂t(det(∇Tt)‖(∇Tt)−1 · n‖)|t=0 = div V(0)− n · ∇V(0)n.

Furthermore, substituting ζ = u̇[V] into (5.11), by means of Korn’s inequality and the smoothness of V(0), we
obtain the estimate

‖u̇[V]‖H1(Ω) ≤ C
(
‖u‖H1(Ω) + ‖F‖H1(Ω) + ‖g‖H2(ΓN )

)
. (5.12)

Via a similar procedure, for a small τ0 > 0, we consider F2 : (−τ0, τ0)× Ĥ1
D(Ω,Rd)→ (Ĥ1

D(Ω,Rd))∗ defined as

F2(t,u)[v] =

∫

Ω

(
Ĉ(ϕ)(∇T−1

t ∇u)sym : (∇T−1
t ∇v)sym − ((F̂ ◦ Tt) · v)

)
det(∇Tt) dx

−
∫

Γ̂N

(ĝ ◦ Tt) · v det(∇Tt)‖∇T−>t n‖dHd−1

−
∫

Ω

χ(ϕ)Ĉ(ϕ)(∇T−1
t ∇(ut ◦ Tt))sym : (∇T−1

t ∇v)sym det(∇Tt) dx.

Then, by a change of variables y = Tt(x), we find that

F2(t, ût ◦ Tt)[v] =

∫

Ω

Ĉ(ϕt)Ey(ût) : Ey(ṽ)− F̂ · ṽ dy −
∫

Γ̂N

ĝ · ṽ dHd−1
y

−
∫

Ω

χ(ϕt)Ĉ(ϕt)Ey(ut) : Ey(ṽ) dy = 0
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where ṽ = v ◦ T−1
t ∈ Ĥ1

D(Tt(Ω),Rd). Since DuF2(0,u) : Ĥ1
D(Ω,Rd)→ (Ĥ1

D(Ω,Rd))∗ given by

(
DuF2(0,u)[v]

)
[w] =

∫

Ω

Ĉ(ϕ)E(v) : E(w) dx for all v,w ∈ Ĥ1
D(Ω,Rd)

is an isomorphism, by the implicit function theorem we infer that the mapping

t 7→ (ût ◦ Tt)

is differentiable at t = 0 with derivative ˙̂u[V] := ∂t|t=0(ût ◦ Tt) ∈ Ĥ1
D(Ω,Rd) being the unique solution to the

distributional equation

DuF2(0, û)
[

˙̂u[V]
]

= −∂tF2(0, û) in (Ĥ1
D(Ω,Rd))∗,

which reads as

∫

Ω

Ĉ(ϕ)E( ˙̂u[V]) : E(ζ) dx =

∫

Ω

Ĉ(ϕ)(∇V(0)∇û− χ(ϕ)∇V(0)∇u)sym : E(ζ) dx

+

∫

Ω

Ĉ(ϕ)(E(û)− χ(ϕ)E(u)) : (∇V(0)∇ζ)sym + χ(ϕ)Ĉ(ϕ)E(u̇[V]) : E(ζ) dx

−
∫

Ω

Ĉ(ϕ)(E(û)− χ(ϕ)E(u)) : E(ζ) div V(0) dx

+

∫

Ω

(
∇F̂V(0) + F̂ div(V(0))

)
· ζ dx

+

∫

Γ̂N

(
∇ĝV(0) + ĝ

(
div(V(0))− n · ∇V(0)n

))
· ζ dHd−1

(5.13)

for all ζ ∈ Ĥ1
D(Ω,Rd). Substituting ζ = ˙̂u[V] into (5.13), then using (5.12) and Korn’s inequality, we obtain the

estimate

‖ ˙̂u[V]‖H1(Ω) ≤ C
(
‖û‖H1(Ω) + ‖u‖H1(Ω)

)

+ C
(
‖F‖H1(Ω) + ‖g‖H2(ΓN ) + ‖F̂‖H1(Ω) + ‖ĝ‖H2(Γ̂N )

)
.

(5.14)

The next result details an optimality condition for minimisers ϕε to (P ε) obtained via geometric variations.

Theorem 5.4. Assume (A1)–(A6), and additionally suppose that F, F̂ ∈ H1(Ω,Rd), U = Û = 0,g ∈
H2(ΓN ,Rd), ĝ ∈ H2(Γ̂N ,Rd) and utar ∈ H2(Γtar,Rd) hold. Let ϕε ∈ Uad be a minimiser to (P ε), with cor-

responding solutions uε = S2
1 (ϕε) and ûε = S(ϕε). For every admissible velocity V ∈ Vad, let (u̇ε[V], ˙̂uε[V]) ∈

H
1

D(Ω,Rd) × Ĥ1
D(Ω,Rd) denote the unique solutions to (5.11) and (5.13) with (ϕ,u, û) = (ϕε,uε, ûε). Then,

for all V ∈ Vad, it holds that

0 =
1

2

∫

Γtar

W (ûε − utar) · (ûε − utar)
(

div V(0)− n · ∇V(0)n
)

dHd−1

+

∫

Γtar

W (ûε − utar) · ( ˙̂uε[V]− (∇utar)V(0)) dHd−1

+ γ

∫

Ω

(ε
2
|∇ϕε|2 +

1

ε
Ψ(ϕε)

)
div V(0)− ε∇ϕε · ∇V(0)∇ϕε dx.

(5.15)
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Remark 5.5. With more regularity, it is possible to relate (5.15) to the analogue optimality condition to (4.21)

for the two phase case L = 2, which reads in the case of homogeneous Dirichlet data U = Û = 0:

−
∫

Ω

C′(ϕ∗)(φ− ϕ∗)E(u∗) : E(p) dx

−
∫

Ω

Ĉ′(ϕ∗)(φ− ϕ∗)(E(û∗)− χ(ϕ∗)E(u∗)) : E(q̂) dx

+

∫

Ω

Ĉ(ϕ∗)χ′(ϕ∗)(φ− ϕ∗)E(u∗) : E(q̂) dx

+ γε

∫

Ω

∇ϕ∗ · ∇(φ− ϕ∗) dx +
γ

ε

∫

Ω

Ψ′(ϕ∗)(φ− ϕ∗) dx ≥ 0,

(5.16)

for all φ ∈ Uad = {f ∈ H1(Ω) : f(x) ∈ [−1, 1] a.e. in Ω}. For an admissible velocity field V ∈ Vad with corre-
sponding transformation Tt, we can consider the function ϕt := ϕ∗ ◦ T−1

t . It is clear that ϕt ∈ Uad for t > 0
sufficiently small, so that when substituting φ = ϕt in (5.16), dividing by t and sending t→ 0, under sufficient
regularity where the limit to be taken, we obtain for instance in the gradient term

lim
t→0

∫

Ω

∇ϕ∗ · ∇ϕt − ϕ
∗

t
dx =

∫

Ω

∇ϕ∗ · ∇∂t|t=0ϕt dx =
d

dt

1

2

∫

Ω

|∇(ϕ∗ ◦ T−1
t )|2 dx

=
1

2

∫

Ω

|∇ϕ∗|2 div V(0)− 2∇ϕ∗ · ∇V(0)∇ϕ∗ dx,

which appears in the last line of (5.15). After passing to the limit t → 0, and then performing the same
calculation again with t replaced by −t yields the equality (5.15). For the full details we refer the reader to
[14, 38].

Proof. For any V ∈ Vad, let T ∈ Tad be the associated transformation and consider the scalar function g(t) :=
Jεred(ϕε ◦ T−1

t ) for t ∈ (−τ0, τ0), where τ0 is sufficiently small. As ϕε is a minimiser of Jεred, we have

g′(0) =
d

dt
Jεred(ϕε ◦ T−1

t )|t=0 = 0.

The directional derivative

d

dt
Eε(ϕ

ε ◦ T−1
t )|t=0 =

∫

Ω

(ε
2
|∇ϕε|2 +

1

ε
Ψ(ϕε)

)
div V(0)− ε∇ϕε · ∇V(0)∇ϕε dx

can be obtained as in ([38], Lem. 7.5). Denoting by ûε(t) = S(ϕε ◦ T−1
t ), then the derivative of G(ϕε ◦ T−1

t ) can
be obtained by a standard change of variables:

d

dt
G(ϕε ◦ T−1

t ) =
1

2

d

dt

∫

Γtar

W ((ûε(t)− utar) ◦ Tt) · ((ûε(t)− utar) ◦ Tt) det(∇Tt)‖∇T−>t n‖dHd−1

=

∫

Γtar

W (ûε − utar) · d

dt
(ûε(t) ◦ Tt − utar ◦ Tt)|t=0 dHd−1

+
1

2

∫

Γtar

W (ûε − utar) · (ûε − utar)
d

dt
(det(∇Tt)‖∇T−>t n‖) dHd−1

=

∫

Γtar

W (ûε − utar) · ( ˙̂uε[V]− (∇utar)V(0)) dHd−1
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+
1

2

∫

Γtar

W (ûε − utar) · (ûε − utar)
(

div V(0)− n · ∇V(0)n
)

dHd−1

leading to (5.15).

The convergence of (5.15) to the sharp interface limit ε→ 0 is formulated as follows.

Theorem 5.6. Suppose the hypotheses of Theorem 5.4 hold, and let ϕε ∈ Uad be a minimiser to (Pε). For any
V ∈ Vad with corresponding transformation T ∈ Tad, there exists a non-relabelled subsequence ε→ 0 such that

ϕε → ϕ0 in L1(Ω), Jεred(ϕε)→ J0
red(ϕ0) in R,

u̇ε[V] ⇀ u̇0[V] in H
1

D(Ω,Rd), ˙̂uε[V] ⇀ ˙̂u0[V] in Ĥ1
D(Ω,Rd),

where ϕ0 ∈ BV(Ω, {−1, 1}) is a minimiser to the reduced functional J0
red(ϕ) = G(ϕ) + γTV (ϕ), where the total

variation TV (ϕ) for ϕ ∈ BV(Ω) is defined as

TV (ϕ) = sup
{∫

Ω

ϕdivφ dx s.t. φ ∈ C1
0 (Ω,Rd), ‖φ‖L∞(Ω) ≤ 1

}
.

Furthermore, u̇0[V] and ˙̂u0[V] satisfy (5.11) and (5.13), respectively, with (ϕ,u, û) replaced by (ϕ0,u0 =
S2

1 (ϕ0), û0 = S2(ϕ0)). Lastly, it holds that

d

dt
Jεred(ϕε ◦ T−1

t )|t=0 →
d

dt
J0

red(ϕ0 ◦ T−1
t )|t=0 in R, (5.17)

where

d

dt
J0

red(ϕ0 ◦ T−1
t )|t=0 =

∫

Γtar

W (û0 − utar) · ( ˙̂u0[V]− (∇utar)V(0)) dHd−1

+
1

2

∫

Γtar

W (û0 − utar) · (û0 − utar)
(

div V(0)− n · ∇V(0)n
)

dHd−1

+ γ

∫

Ω

(
div V(0)− µ · ∇V(0)µ

)
d|DX{ϕ0=1}|,

(5.18)

with µ =
DX{ϕ0=1}
|DX{ϕ0=1}|

as the generalised unit normal on the set {ϕ0 = 1}.

Remark 5.7. In a similar manner as Remark 5.5, with more regularity it is possible to relate (5.18) with the
solvability condition (5.9) in the two-phase setting, see [14, 38] for the full details.

Proof. The first two assertions on the convergence of ϕε and Jεred(ϕε) come from Lemma 5.1. Consequently, by
the calculations in the proof of ([26], Thm. 4.2) we infer the convergence, as ε→ 0,

∫

Ω

(ε
2
|∇ϕε|2 +

1

ε
Ψ(ϕε)

)
div V(0)− ε∇ϕε · ∇V(0)∇ϕε dx→

∫

Ω

(
div V(0)− µ · ∇V(0)µ

)
d|DX{ϕ0=1}|.

Next, from (5.11) and (5.13), we see that u̇ε[V] and ˙̂uε[V] satisfy

∫

Ω

C(ϕε)E(u̇ε[V]) : E(ζ) dx = Fϕε,uε(ζ),

∫

Ω

Ĉ(ϕε)E( ˙̂uε[V]) : E(ζ) dx = Fϕε,uε,ûε(ζ),
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where Fϕε,uε(ζ) and Fϕε,uε,ûε(ζ) denotes the right-hand sides of (5.11) and (5.13), respectively. Thanks to

Corollary 3.4, along a non-relabelled subsequence, uε → u0 ∈ H
1

D(Ω,Rd) and ûε → û0 ∈ Ĥ1
D(Ω,Rd) strongly

as ε→ 0. Hence, together with the dominated convergence theorem, it is clear that, as ε→ 0,

Fϕε,uε(ζ)→ Fϕ0,u0
(ζ), Fϕε,uε,ûε(ζ)→ Fϕ0,u0,û0

(ζ).

On the other hand, we infer from (5.12) and (5.14) that u̇ε[V] and ˙̂uε[V] are uniformly bounded in H
1

D(Ω,Rd)
and Ĥ1

D(Ω,Rd), which then implies the existence of limit functions u̇0[V] ∈ H1

D(Ω,Rd) and ˙̂u0[V] ∈ Ĥ1
D(Ω,Rd),

where

∫

Ω

C(ϕε)E(u̇ε[V]) : E(ζ) dx→
∫

Ω

C(ϕ0)E(u̇0[V]) : E(ζ) dx,

∫

Ω

Ĉ(ϕε)E( ˙̂uε[V]) : E(ζ) dx→
∫

Ω

Ĉ(ϕ0)E( ˙̂u0[V]) : E(ζ) dx.

Lastly, using the compactness of the boundary-trace operator, we obtain, as ε→ 0,

∫

Γtar

W (ûε − utar) · ( ˙̂uε[V]− (∇utar)V(0)) dHd−1

+
1

2

∫

Γtar

W (ûε − utar) · (ûε − utar)
(

div V(0)− n · ∇V(0)n
)

dHd−1

→
∫

Γtar

W (û0 − utar) · ( ˙̂u0[V]− (∇utar)V(0)) dHd−1

+
1

2

∫

Γtar

W (û0 − utar) · (û0 − utar)
(

div V(0)− n · ∇V(0)n
)

dHd−1.

This shows (5.17) and completes the proof.

6. Numerical simulations

In this section we present the finite element discretisation and showcase several numerical simulations in two
and three dimensions for the two-phase case. Namely, we have L = 2 and we consider the optimal distribution
of a single type of active material within a passive material. Let us summarise the weak formulations of the
state, adjoint and optimality conditions below, where for simplicity we consider for the rest of this section
homogeneous Dirichlet data U = Û = 0. The weak formulations of the state systems (3.9) for u and (3.10) for
û read as

∫

Ω

C(ϕ)E(u) : E(ζ) dx =

∫

Ω

F · ζ dx + 〈g, ζ〉
H

1/2
00 (ΓN )

, (6.1)

∫

Ω

Ĉ(ϕ)E(û) : E(ζ̂) dx−
∫

Ω

Ĉ(ϕ)χ(ϕ)E(u) : E(ζ̂) dx =

∫

Ω

F̂ · ζ̂ dx + 〈ĝ, ζ̂〉
H

1/2
00 (Γ̂N )

, (6.2)

while the weak formulations of the adjoint systems for p and for q̂ are

∫

Ω

Ĉ(ϕ)E(q̂) : E(ζ̂) dx =

∫

Γtar

W (û− utar) · ζ̂ dHd−1, (6.3)

∫

Ω

C(ϕ)E(p) : E(ζ) dx =

∫

Ω

Ĉ(ϕ)χ(ϕ)E(q̂) : E(ζ) dx, (6.4)
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holding for all ζ ∈ H1

D(Ω,Rd) and ζ̂ ∈ Ĥ1
D(Ω,Rd). We employ a gradient flow approach to treat the corre-

sponding optimality condition (5.16), leading to an artificial time dependence for ϕ∗ and the following weak
formulation

∫

Ω

(
ε∂tϕ

∗ − γ

ε
ϕ∗
)

(ζ − ϕ∗) dx + γε

∫

Ω

∇ϕ∗ · ∇(ζ − ϕ∗) dx

+

∫

Ω

Ĉ(ϕ∗)χ′(ϕ∗)E(u∗) : (ζ − ϕ∗)E(q̂) dx

−
∫

Ω

Ĉ′(ϕ∗)(E(û∗)− χ(ϕ∗)E(u∗)) : (ζ − ϕ∗)E(q̂) dx

−
∫

Ω

C′(ϕ∗)E(u∗) : (ζ − ϕ∗)E(p) dx ≥ 0

(6.5)

for all ζ ∈ Uad = {f ∈ H1(Ω) : f(x) ∈ [−1, 1] a.e. in Ω}, where in the above we have taken Ψ̃(s) = 1
2 (1− s2) so

that Ψ̃′(ϕ∗) = −ϕ∗. In the next section we introduce a finite element discretisation of (6.1)–(6.5). Furthermore,
all computations are performed without any weight or volume constraints.

6.1. Finite element discretisation

We assume that Ω is a polyhedral domain and let Th be a regular triangulation of Ω into disjoint open
simplices. Associated with Th are the piecewise linear finite element spaces

Sh =
{
ζ ∈ C0(Ω) : ζ|o ∈ P1(o)∀o ∈ Th

}
and Sh = Sh × · · · × Sh = [Sh]d,

where we denote by P1(o) the set of all affine linear functions on o, cf. [22]. In addition we define

Vh =
{
ζ ∈ Sh : |ζ| ≤ 1 in Ω

}
, (6.6)

as well as

S
h

D =
{
η ∈ Sh : η = 0 on ΓD

}
, ŜhD =

{
η ∈ Sh : η = 0 on Γ̂D

}
.

We also let (·, ·) denote the L2–inner product on Ω, and let (·, ·)h be the usual mass lumped L2–inner product
on Ω associated with Th. In addition, 〈A,B〉C = (CA,B) =

∫
Ω
CA : B dx for any fourth order tensor C and

any matrices A and B. Finally, τ denotes a chosen uniform time step size.
We now introduce finite element approximations of the state equations (6.1) and (6.2), adjoint systems (6.3)

and (6.4), as well as the time-dependent variational inequality (6.5) from the optimality conditions. The fully

discrete numerical scheme is formulated as follows: Given ϕn−1
h ∈ Vh, find (unh, û

n
h, q̂

n
h,p

n
h, ϕ

n
h) ∈ S

h

D × ŜhD ×
ŜhD × S

h

D × Vh such that

〈E(unh), E(ζ)〉C(ϕn−1
h ) =

(
F, ζ

)h
+

∫

ΓN

g · ζ dHd−1 ∀ζ ∈ S
h

D, (6.7a)

〈E(ûnh)− χ(ϕn−1
h )E(unh), E(ζ)〉Ĉ(ϕn−1

h ) =
(
F̂, ζ

)h
+

∫

Γ̂N

ĝ · ζ dHd−1 ∀ζ ∈ ŜhD, (6.7b)

〈E(q̂nh), E(ζ)〉Ĉ(ϕn−1
h ) =

∫

Γtar

W (ûnh − utar) · ζ dHd−1 ∀ζ ∈ ŜhD, (6.7c)

〈E(pnh), E(ζ)〉C(ϕn−1
h ) = 〈χ(ϕn−1

h )E(q̂nh), E(ζ)〉Ĉ(ϕn−1
h ) ∀ζ ∈ S

h

D, (6.7d)
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(
ε
τ (ϕnh − ϕn−1

h )− γ
εϕ

n
h, ζ − ϕnh

)h
+ γε(∇ϕnh,∇(ζ − ϕnh))

+ 〈χ′(ϕn−1
h )E(unh), (ζ − ϕnh)E(q̂nh)〉Ĉ(ϕn−1

h )

− 〈E(ûnh)− χ(ϕn−1
h )E(unh), (ζ − ϕnh)E(q̂nh)〉Ĉ′(ϕn−1

h )

− 〈E(unh), (ζ − ϕnh)E(pnh)〉C′(ϕn−1
h ) ≥ 0 ∀ζ ∈ Vh. (6.7e)

We implemented the scheme (6.7) with the help of the finite element toolbox ALBERTA, see [56]. To increase
computational efficiency, we employ adaptive meshes, which have a finer mesh size hf within the diffuse
interfacial regions and a coarser mesh size hc away from them, see [9, 10] for a more detailed description.

Clearly, we first solve the linear systems (6.7a) in order to obtain unh, then (6.7b) for ûnh, then (6.7c) for
q̂nh, then (6.7d) for pnh, and finally the variational inequality (6.7e) for ϕnh. In two space dimensions we employ
the package LDL, see [23], together with the sparse matrix ordering AMD, see [6], in order to solve the linear
systems (6.7a)–(6.7d). In three space dimensions, on the other hand, we use a preconditioned conjugate gradient
algorithm, with a W -cycle multigrid step as preconditioner. In order to solve the variational inequality (6.7e)
we employ a nonlinear multigrid method similar to [41].

For the computational domain we will choose Ω = [0, L1] × [− 1
2 ,

1
2 ] in two dimensions, and Ω = [0, L1] ×

[− 1
2L2,

1
2L2] × [− 1

2 ,
1
2 ] in three dimensions with positive lengths Li, i ∈ {1, 2}, given below. For the physical

parameters we loosely follow the settings in [50]. In particular, for the forcings we choose F = F̂ = 0 throughout,
as well as ĝ = 0 and

g(x) =

{
ge1 x1 = L1,

0 x1 < L1,
with g = 0.1. (6.8)

For the interpolated elasticity tensors we choose C(s) = 1
2 [(1 + s)C+ + (1 − s)C−], where the two tensors C±

are defined through the Young’s moduli E± and Poisson ratios ν± via

E+ = 3, E− = 0.7, ν+ = ν− = 0.45. (6.9)

Similarly, Ĉ(s) = 1
2 [(1 + s)Ĉ+ + (1− s)Ĉ−], with the Young’s moduli and Poisson ratios

Ê+ = 13, Ê− = 0.6, ν̂+ = ν̂− = 0.45. (6.10)

For the fixity function we choose

χ(s) =
2

5
(1 + s). (6.11)

For the visualisation of the progress of the discrete gradient flow computations, we define the discrete cost
functional

Jh(ϕhh, û
n
h) = γ

(
ε

2
|∇ϕnh|2 +

1

ε
ψ(ϕnh), 1

)
+

1

2

∫

Γtar

W (ûnh − utar) · (ûnh − utar) dHd−1

=: γEh(ϕnh) + Eh,tar(ûnh). (6.12)

As the initial data ϕ0
h we choose a random mixture with mean zero. Choosing other initial data, including

random mixtures with positive or negative mean had no visible influence on the obtained optimal shapes.
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Figure Profile Domain W Γtar ctar ktar

3 Parabolic (76a) [0, 6]× [− 1
2 ,

1
2 ] Id ∂Ω 0.075 -

4 Cosine (76b) [0, 6]× [− 1
2 ,

1
2 ] e2 ⊗ e2 ∂Ω 0.25 2

5 Parabolic (76a) [0, 12]× [− 1
2 ,

1
2 ] Id ∂Ω 0.02 -

6 Cosine (76b) [0, 12]× [− 1
2 ,

1
2 ] Id ∂topΩ 1 1.5

Table 1. Parameter details for numerical simulations in 2D.

Figure 2. Plots of the functions utar in (76a), with ctar = 0.02, (left) and utar in (76b), with
ctar = 1 and ktar = 1.5, (right), over the interval [0, L1] = [0, 12].

Not surprisingly, a very different distribution of material is obtained when changing the target shape func-
tional to enforce a cosine profile at the programmed stage. As can be seen from Figure 4, the optimal distribution
of the active material is now given by an elongated region that connects the lower left of the domain with the
upper right.

It turns out that on longer (or thinner) domains, far less active material is needed to achieve significant
deformations at the programmed state. For example, in Figure 5 a miniscule amount of active material, spread
in several connected components arranged at the bottom of the domain, is sufficient to result in the desired
parabolic target shape.

Similarly, we observe in Figure 6 that three strategically placed small amounts of active material guarantee
a cosine profile at the programmed stage for the printed active composite.

5.3. Numerical simulations in three dimensions

For the target shapes we consider a function of the form

utar(x1, x2, x3) = utar(x1, x2)e3

and choose utar from one of the following:

utar(x1, x2) = ctar(x1)2. (77)

utar(x1, x2) = ctar
(

1− cos
ktarπx1

L1

)
. (78)

utar(x1, x2) = ctarx1x2. (79)

Figure 2. Plots of the functions utar in (6.13a), with ctar = 0.02, (left) and utar in (6.13b),
with ctar = 1 and ktar = 1.5, (right), over the interval [0, L1] = [0, 12].
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Figure 3. Computation on Ω = [0, 6] × [− 1
2 ,

1
2 ] for the target shape (76a) with ctar = 0.075

and W = Id and Γtar = ∂Ω, with ε = 1
8π and γ = 0.01. In the top row we display ϕnh and

the displacements unh (red) and ûnh (green) at pseudo-times t = 0.1, 0.5, 1. In the bottom row
we show, from left to right, plots of the cost functional Jh(ϕnh, û

n
h), the proportion in it of the

elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed red), as well
as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time.

Figure 4. Computation on Ω = [0, 6] × [− 1
2 ,

1
2 ] for the target shape (76b) with ctar = 0.25,

ktar = 2 and W = e2⊗e2 and Γtar = ∂Ω, with ε = 1
8π and γ = 0.01. In the top row we display

ϕnh and the displacements unh (red) and ûnh (green) at pseudo-times t = 1, 2, 5. In the bottom
row we show, from left to right, plots of the cost functional Jh(ϕnh, û

n
h), the proportion in it of

the elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed red), as
well as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time.

Notice that (77) and (78) are simply the three dimensional analogues of the parabolic profile (76a) and the
cosine profile (76b), respectively. On the other hand, (79) yields a linear profile in x1 with a twisting in the
x2-direction.

Figure 3. Computation on Ω = [0, 6]× [− 1
2 ,

1
2 ] for the target shape (6.13a) with ctar = 0.075

and W = Id and Γtar = ∂Ω, with ε = 1
8π and γ = 0.01. In the top row we display ϕnh and the

displacements unh (red) and ûnh (green) at pseudo-times t = 0.1, 0.5, 1. In the bottom row we
show, from left to right, plots of the cost functional Jh(ϕnh, û

n
h), the proportion in it of the

elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed red), as well
as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time.

6.2. Numerical simulations in two dimensions

For the target shapes we consider the parabolic profile

utar(x1, x2) = utar(x1)e2, utar(x1) = ctar(x1)2, (6.13a)

with ctar > 0, and the cosine profile

utar(x1, x2) = utar(x1)e2, utar(x1) = ctar
(

1− cos
ktarπx1

L1

)
(6.13b)

with ctar > 0 and ktar > 0. In Figure 2 we plot two examples for the profiles in (6.13) for the domain length
L1 = 12.

In each of the Figures 3–6, we provide visualisations of the numerical solution ϕnh at various pseudo-times
(black denotes the passive material {ϕnh = −1} and grey denotes the active material {ϕnh = 1}), and the cor-
responding displacements unh (in red) and ûnh (in green). As mentioned before, each time the gradient flow is
started from a random mixture ϕ0

h with zero mean. We also provide pseudo-time plots of the cost functional
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Table 1. Parameter details for numerical simulations in 2D.

Figure Profile Domain W Γtar ctar ktar

3 Parabolic (6.13a) [0, 6]× [− 1
2 ,

1
2 ] Id ∂Ω 0.075 –

4 Cosine (6.13b) [0, 6]× [− 1
2 ,

1
2 ] e2 ⊗ e2 ∂Ω 0.25 2

5 Parabolic (6.13a) [0, 12]× [− 1
2 ,

1
2 ] Id ∂Ω 0.02 –

6 Cosine (6.13b) [0, 12]× [− 1
2 ,

1
2 ] Id ∂topΩ 1 1.5
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Figure 3. Computation on Ω = [0, 6] × [− 1
2 ,

1
2 ] for the target shape (76a) with ctar = 0.075

and W = Id and Γtar = ∂Ω, with ε = 1
8π and γ = 0.01. In the top row we display ϕnh and

the displacements unh (red) and ûnh (green) at pseudo-times t = 0.1, 0.5, 1. In the bottom row
we show, from left to right, plots of the cost functional Jh(ϕnh, û

n
h), the proportion in it of the

elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed red), as well
as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time.

Figure 4. Computation on Ω = [0, 6] × [− 1
2 ,

1
2 ] for the target shape (76b) with ctar = 0.25,

ktar = 2 and W = e2⊗e2 and Γtar = ∂Ω, with ε = 1
8π and γ = 0.01. In the top row we display

ϕnh and the displacements unh (red) and ûnh (green) at pseudo-times t = 1, 2, 5. In the bottom
row we show, from left to right, plots of the cost functional Jh(ϕnh, û

n
h), the proportion in it of

the elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed red), as
well as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time.

Notice that (77) and (78) are simply the three dimensional analogues of the parabolic profile (76a) and the
cosine profile (76b), respectively. On the other hand, (79) yields a linear profile in x1 with a twisting in the
x2-direction.

Figure 4. Computation on Ω = [0, 6]× [− 1
2 ,

1
2 ] for the target shape (6.13b) with ctar = 0.25,

ktar = 2 and W = e2 ⊗ e2 and Γtar = ∂Ω, with ε = 1
8π and γ = 0.01. In the top row we display

ϕnh and the displacements unh (red) and ûnh (green) at pseudo-times t = 1, 2, 5. In the bottom
row we show, from left to right, plots of the cost functional Jh(ϕnh, û

n
h), the proportion in it of

the elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed red), as
well as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time.

Jh(ϕnh, û
n
h), the proportion of the elastic Eh,tar(ûnh) and interfacial γEh(ϕnh) energies, as well as log-plots of the

elastic energies. The parameter details are summarised in Table 1.
For all the presented simulations we choose the parameters ε = 1

8π and γ = 0.01. In each case the cost
functional decreases monotonically, but the proportions of the two energies (elastic vs interfacial) differ from
case to case.

The first experiment in Figure 3 is for the parabolic profile on the domain [0, 6]× [− 1
2 ,

1
2 ]. We observe that

in the optimal distribution of material, the active phase occupies most of the lower domain. This ensures that
in the programmed stage, the printed active composite is able to attain the desired target shape.

Not surprisingly, a very different distribution of material is obtained when changing the target shape func-
tional to enforce a cosine profile at the programmed stage. As can be seen from Figure 4, the optimal distribution
of the active material is now given by an elongated region that connects the lower left of the domain with the
upper right.

It turns out that on longer (or thinner) domains, far less active material is needed to achieve significant
deformations at the programmed state. For example, in Figure 5 a miniscule amount of active material, spread
in several connected components arranged at the bottom of the domain, is sufficient to result in the desired
parabolic target shape.

Similarly, we observe in Figure 6 that three strategically placed small amounts of active material guarantee
a cosine profile at the programmed stage for the printed active composite.
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Figure 5. Computation on Ω = [0, 12] × [− 1
2 ,

1
2 ] for the target shape (76a) with ctar = 0.02

and W = Id and Γtar = ∂Ω, with ε = 1
8π and γ = 0.01. In the top row we display ϕnh and

the displacements unh (red) and ûnh (green) at pseudo-times t = 0.5, 1, 2. In the bottom row
we show, from left to right, plots of the cost functional Jh(ϕnh, û

n
h), the proportion in it of the

elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed red), as well
as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time.

Figure 6. Computation on Ω = [0, 12] × [− 1
2 ,

1
2 ] for the target shape (76b) with ctar = 1,

ktar = 1.5 and W = Id and Γtar = ∂topΩ, with ε = 1
8π and γ = 0.01. In the top row we display

ϕnh and the displacements unh (red) and ûnh (green) at pseudo-times t = 0.1, 0.5, 1. In the
bottom row we show, from left to right, plots of the cost functional Jh(ϕnh, û

n
h), the proportion

in it of the elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed
red), as well as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time.

In each of the Figures 7, 8, and 9, 10 we provide visualisations of the numerical solution ϕnh at various
pseudo-times (black denotes the passive material {ϕnh = −1} and grey denotes the active material {ϕnh = 1}),
and the corresponding displacements ûnh (darker colours indicating lower values of ûnh · e3 and lighter colours
indicating higher values of ûnh · e3). We also provide pseudo-time plots of the energy functionals, similarly to
the 2D simulations in the previous subsection. The parameter details are summarised in the Table 2.

Figure 5. Computation on Ω = [0, 12]× [− 1
2 ,

1
2 ] for the target shape (6.13a) with ctar = 0.02

and W = Id and Γtar = ∂Ω, with ε = 1
8π and γ = 0.01. In the top row we display ϕnh and the

displacements unh (red) and ûnh (green) at pseudo-times t = 0.5, 1, 2. In the bottom row we
show, from left to right, plots of the cost functional Jh(ϕnh, û

n
h), the proportion in it of the

elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed red), as well
as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time.
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Figure 5. Computation on Ω = [0, 12] × [− 1
2 ,

1
2 ] for the target shape (76a) with ctar = 0.02

and W = Id and Γtar = ∂Ω, with ε = 1
8π and γ = 0.01. In the top row we display ϕnh and

the displacements unh (red) and ûnh (green) at pseudo-times t = 0.5, 1, 2. In the bottom row
we show, from left to right, plots of the cost functional Jh(ϕnh, û

n
h), the proportion in it of the

elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed red), as well
as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time.

Figure 6. Computation on Ω = [0, 12] × [− 1
2 ,

1
2 ] for the target shape (76b) with ctar = 1,

ktar = 1.5 and W = Id and Γtar = ∂topΩ, with ε = 1
8π and γ = 0.01. In the top row we display

ϕnh and the displacements unh (red) and ûnh (green) at pseudo-times t = 0.1, 0.5, 1. In the
bottom row we show, from left to right, plots of the cost functional Jh(ϕnh, û

n
h), the proportion

in it of the elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed
red), as well as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time.

In each of the Figures 7, 8, and 9, 10 we provide visualisations of the numerical solution ϕnh at various
pseudo-times (black denotes the passive material {ϕnh = −1} and grey denotes the active material {ϕnh = 1}),
and the corresponding displacements ûnh (darker colours indicating lower values of ûnh · e3 and lighter colours
indicating higher values of ûnh · e3). We also provide pseudo-time plots of the energy functionals, similarly to
the 2D simulations in the previous subsection. The parameter details are summarised in the Table 2.

Figure 6. Computation on Ω = [0, 12] × [− 1
2 ,

1
2 ] for the target shape (6.13b) with ctar = 1,

ktar = 1.5 and W = Id and Γtar = ∂topΩ, with ε = 1
8π and γ = 0.01. In the top row we display

ϕnh and the displacements unh (red) and ûnh (green) at pseudo-times t = 0.1, 0.5, 1. In the bottom
row we show, from left to right, plots of the cost functional Jh(ϕnh, û

n
h), the proportion in it of

the elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed red), as
well as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time.

6.3. Numerical simulations in three dimensions

For the target shapes we consider a function of the form

utar(x1, x2, x3) = utar(x1, x2)e3
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Table 2. Parameter details for numerical simulations in 3D.

Figure Profile Domain W Γtar ctar ktar

7 (6.14) [0, 6]× [− 3
2 ,

3
2 ]× [0, 1] Id ∂topΩ 0.075 -

8 (6.15) [0, 12]× [− 3
2 ,

3
2 ]× [0, 1] e3 ⊗ e3 ∂topΩ 1 2

9 (6.15) [0, 12]× [− 3
2 ,

3
2 ]× [0, 1] Id ∂topΩ 1 2

10 (6.16) [0, 6]× [−3, 3]× [0, 1] e3 ⊗ e3 ∂rightΩ 0.1 –
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Figure Profile Domain W Γtar ctar ktar

7 (77) [0, 6]× [− 3
2 ,

3
2 ]× [0, 1] Id ∂topΩ 0.075 -

8 (78) [0, 12]× [− 3
2 ,

3
2 ]× [0, 1] e3 ⊗ e3 ∂topΩ 1 2

9 (78) [0, 12]× [− 3
2 ,

3
2 ]× [0, 1] Id ∂topΩ 1 2

10 (79) [0, 6]× [−3, 3]× [0, 1] e3 ⊗ e3 ∂rightΩ 0.1 -
Table 2. Parameter details for numerical simulations in 3D.

Figure 7. Computation on Ω = [0, 6]× [− 3
2 ,

3
2 ]× [0, 1] for the target shape (77) with ctar =

0.075 and W = Id and Γtar = ∂topΩ, with ε = 1
4π and γ = 0.01. In the top row we display

ϕnh (side view and bottom view) and the displacement ûnh (with colour coding for ûnh · e3) at
pseudo-times t = 1, 2, 5. In the bottom row we show, from left to right, plots of the cost
functional Jh(ϕnh, û

n
h), the proportion in it of the elastic energy Eh,tar(ûnh) (solid blue) and the

interfacial energy γEh(ϕnh) (dashed red), as well as of log10 Eh,tar(ûnh). The horizontal axes
denote the pseudo-time.

In the first three figures we take ε = 1
4π and for γ choose either 0.1 or 0.01. In each simulation the cost

functional decreases monotonically, but the proportions of the two energies (elastic vs interfacial) differ from
case to case.

The first simulation shown in Figure 7 is a direct 3D analogue for the computation previously shown in
Figure 3, the only difference being that here we restrict the set Γtar to the upper part of the boundary ∂Ω. As
expected, the observed results are very close to the ones seen previously in the 2D setting. In particular, the
active phase occupies the lower half of the domain, with a dip towards the right end of the domain.

On more elongated domains we once again observe that relatively little active material can result in large
deformations at the programmed stage. For example, the strategic placement of the active component seen
in Figure 8 yields a large cosine profile deformation. It is interesting to note that by simply changing the

Figure 7. Computation on Ω = [0, 6]× [− 3
2 ,

3
2 ]× [0, 1] for the target shape (6.14) with ctar =

0.075 and W = Id and Γtar = ∂topΩ, with ε = 1
4π and γ = 0.01. In the top row we display

ϕnh (side view and bottom view) and the displacement ûnh (with colour coding for ûnh · e3)
at pseudo-times t = 1, 2, 5. In the bottom row we show, from left to right, plots of the cost
functional Jh(ϕnh, û

n
h), the proportion in it of the elastic energy Eh,tar(ûnh) (solid blue) and

the interfacial energy γEh(ϕnh) (dashed red), as well as of log10 Eh,tar(ûnh). The horizontal axes
denote the pseudo-time.

and choose utar from one of the following:

utar(x1, x2) = ctar(x1)2. (6.14)

utar(x1, x2) = ctar
(

1− cos
ktarπx1

L1

)
. (6.15)

utar(x1, x2) = ctarx1x2. (6.16)

Notice that (6.14) and (6.15) are simply the three dimensional analogues of the parabolic profile (6.13a) and
the cosine profile (6.13b), respectively. On the other hand, (6.16) yields a linear profile in x1 with a twisting in
the x2-direction.
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Figure 8. Computation on Ω = [0, 12]× [− 3
2 ,

3
2 ]× [0, 1] for the target shape (78) with ctar = 1,

ktar = 2 and W = e3 ⊗ e3 and Γtar = ∂topΩ, with ε = 1
4π and γ = 0.1. In the top row

we display ϕnh (side view and bottom view) and the displacement ûnh (with colour coding for
ûnh · e3) at pseudo-times t = 1, 2, 10. In the bottom row we show, from left to right, plots of
the cost functional Jh(ϕnh, û

n
h), the proportion in it of the elastic energy Eh,tar(ûnh) (solid blue)

and the interfacial energy γEh(ϕnh) (dashed red), as well as of log10 Eh,tar(ûnh). The horizontal
axes denote the pseudo-time.

weighting matrix W in the target energy functional, we obtain a completely different optimal distribution of
active material. This can be seen in Figure 9, where the only change to the previous simulation is W = Id,
rather than W = e3 ⊗ e3. Now there are just two connected components for the active phase, one at the lower
left part of the domain, and one at the middle of the top of the domain. Yet the obtained deformations at the
programmed stage are very similar.

Our final numerical simulation is for a twisted target shape. In particular, we use the target function (79)
with ctar = 0.1 on the domain Ω = [0, 6]× [−3, 3]× [0, 1], with W = e3⊗e3 and Γtar = ∂rightΩ. In Figure 10 we
provide visualisations of the numerical solution ϕnh at various pseudo-times, and the corresponding displacements
ûnh (here darker colours indicate lower values of |ûnh| and lighter colours indicate higher values of |ûnh|). For this
computation we take ε = 1

2π and γ = 0.02. At the optimal configuration we observe an elaborate distribution
of the active material, which yields a twisted shape of the component at the programmed stage.

6. Conclusion

In this work, we studied a structural topology optimisation problem in the context of 4D printing, that
combines the models in [50] with a multiphase phase field formulation. A linearly elastic description is used
for the mechanical responses of the active and passive materials, which is suitable for practitioners aiming
to compute some first designs during the initial development stage. We provide rigorous analytical results
concerning minimisers and optimality conditions for the resulting PDE-constrained optimal design problem.
With the sharp interface limit, the optimality conditions based on shape optimisation frameworks that have
been extensively used in earlier works can be recovered from the optimality conditions derived with the phase

Figure 8. Computation on Ω = [0, 12]× [− 3
2 ,

3
2 ]× [0, 1] for the target shape (6.15) with ctar = 1,

ktar = 2 and W = e3⊗e3 and Γtar = ∂topΩ, with ε = 1
4π and γ = 0.1. In the top row we display

ϕnh (side view and bottom view) and the displacement ûnh (with colour coding for ûnh · e3) at
pseudo-times t = 1, 2, 10. In the bottom row we show, from left to right, plots of the cost
functional Jh(ϕnh, û

n
h), the proportion in it of the elastic energy Eh,tar(ûnh) (solid blue) and

the interfacial energy γEh(ϕnh) (dashed red), as well as of log10 Eh,tar(ûnh). The horizontal axes
denote the pseudo-time.

In each of the Figures 7, 8, 9, and 10 we provide visualisations of the numerical solution ϕnh at various
pseudo-times (black denotes the passive material {ϕnh = −1} and grey denotes the active material {ϕnh = 1}),
and the corresponding displacements ûnh (darker colours indicating lower values of ûnh · e3 and lighter colours
indicating higher values of ûnh · e3). We also provide pseudo-time plots of the energy functionals, similarly to
the 2D simulations in the previous subsection. The parameter details are summarised in Table 2.

In the first three figures we take ε = 1
4π and for γ choose either 0.1 or 0.01. In each simulation the cost

functional decreases monotonically, but the proportions of the two energies (elastic vs. interfacial) differ from
case to case.

The first simulation shown in Figure 7 is a direct 3D analogue for the computation previously shown in
Figure 3, the only difference being that here we restrict the set Γtar to the upper part of the boundary ∂Ω. As
expected, the observed results are very close to the ones seen previously in the 2D setting. In particular, the
active phase occupies the lower half of the domain, with a dip towards the right end of the domain.

On more elongated domains we once again observe that relatively little active material can result in large
deformations at the programmed stage. For example, the strategic placement of the active component seen in
Figure 8 yields a large cosine profile deformation.

It is interesting to note that by simply changing the weighting matrix W in the target energy functional, we
obtain a completely different optimal distribution of active material. This can be seen in Figure 9, where the
only change to the previous simulation is W = Id, rather than W = e3 ⊗ e3. Now there are just two connected
components for the active phase, one at the lower left part of the domain, and one at the middle of the top of
the domain. Yet the obtained deformations at the programmed stage are very similar.

Our final numerical simulation is for a twisted target shape. In particular, we use the target function (6.16)
with ctar = 0.1 on the domain Ω = [0, 6]× [−3, 3]× [0, 1], with W = e3 ⊗ e3 and Γtar = ∂rightΩ. In Figure 10 we
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Figure 9. Computation on Ω = [0, 12]×[− 3
2 ,

3
2 ]×[0, 1] for the target shape (78) with ctar = 1,

ktar = 2 and W = Id and Γtar = ∂topΩ, with ε = 1
4π and γ = 0.01. In the top row we display

ϕnh (side view and bottom view) and the displacement ûnh (with colour coding for ûnh · e3) at
pseudo-times t = 0.1, 0.5, 1. In the bottom row we show, from left to right, plots of the cost
functional Jh(ϕnh, û

n
h), the proportion in it of the elastic energy Eh,tar(ûnh) (solid blue) and the

interfacial energy γEh(ϕnh) (dashed red), as well as of log10 Eh,tar(ûnh). The horizontal axes
denote the pseudo-time.

field approach. Numerical simulations in two and three space dimensions showcase the proposed phase field
approach in obtaining the optimal distributions of materials achieving the desired deformations associated to
the given target profiles.
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provide visualisations of the numerical solution ϕnh at various pseudo-times, and the corresponding displacements
ûnh (here darker colours indicate lower values of |ûnh| and lighter colours indicate higher values of |ûnh|). For this
computation we take ε = 1

2π and γ = 0.02. At the optimal configuration we observe an elaborate distribution
of the active material, which yields a twisted shape of the component at the programmed stage.

7. Conclusion

In this work, we studied a structural topology optimisation problem in the context of 4D printing, that
combines the models in [50] with a multiphase phase field formulation. A linearly elastic description is used
for the mechanical responses of the active and passive materials, which is suitable for practitioners aiming
to compute some first designs during the initial development stage. We provide rigorous analytical results
concerning minimisers and optimality conditions for the resulting PDE-constrained optimal design problem.
With the sharp interface limit, the optimality conditions based on shape optimisation frameworks that have
been extensively used in earlier works can be recovered from the optimality conditions derived with the phase
field approach. Numerical simulations in two and three space dimensions showcase the proposed phase field
approach in obtaining the optimal distributions of materials achieving the desired deformations associated to
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display ϕnh and the displacement ûnh (with colour coding for |ûnh|) at pseudo-times t = 0.1, 1, 2.
In the middle row we show plots of the cost functional Jh(ϕnh, û

n
h), the proportion in it of the

elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed red), as well
as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time. In the bottom row we show
a backward view of the first row of plots.
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Figure 10. Computation on Ω = [0, 6] × [−3, 3] × [0, 1] for the target shape (6.16)(b) with
ctar = 0.1 and W = e3 ⊗ e3 and Γtar = ∂rightΩ, with ε = 1

2π and γ = 0.02. In the top row we
display ϕnh and the displacement ûnh (with colour coding for |ûnh|) at pseudo-times t = 0.1, 1, 2.
In the middle row we show plots of the cost functional Jh(ϕnh, û

n
h), the proportion in it of the

elastic energy Eh,tar(ûnh) (solid blue) and the interfacial energy γEh(ϕnh) (dashed red), as well
as of log10 Eh,tar(ûnh). The horizontal axes denote the pseudo-time. In the bottom row we show
a backward view of the first row of plots.
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