IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 24, 2021, accepted June 16, 2021, date of publication June 21, 2021, date of current version July 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3090957

Unsupervised Algorithms to Detect Zero-Day
Attacks: Strategy and Application

TOMMASO ZOPPI*, ANDREA CECCARELLI", AND ANDREA BONDAVALLI"“, (Member, IEEE)

Department of Mathematics and Informatics, University of Florence, 50134 Florence, Italy

Corresponding author: Tommaso Zoppi (tommaso.zoppi @unifi.it)

This work was supported in part by the H2020 Programme through the Marie Sktodowska-Curie (ADVANCE) Project under
Grant 823788, and in part by the Regione Toscana SPaCe Project under Grant PORFESR2014-2020.

ABSTRACT In the last decade, researchers, practitioners and companies struggled for devising mechanisms
to detect cyber-security threats. Among others, those efforts originated rule-based, signature-based or
supervised Machine Learning (ML) algorithms that were proven effective for detecting those intrusions
that have already been encountered and characterized. Instead, new unknown threats, often referred to as
zero-day attacks or zero-days, likely go undetected as they are often misclassified by those techniques.
In recent years, unsupervised anomaly detection algorithms showed potential to detect zero-days. However,
dedicated support for quantitative analyses of unsupervised anomaly detection algorithms is still scarce
and often does not promote meta-learning, which has potential to improve classification performance.
To such extent, this paper introduces the problem of zero-days and reviews unsupervised algorithms for
their detection. Then, the paper applies a question-answer approach to identify typical issues in conducting
quantitative analyses for zero-days detection, and shows how to setup and exercise unsupervised algorithms
with appropriate tooling. Using a very recent attack dataset, we debate on i) the impact of features on the
detection performance of unsupervised algorithms, ii) the relevant metrics to evaluate intrusion detectors,
iii) means to compare multiple unsupervised algorithms, iv) the application of meta-learning to reduce
misclassifications. Ultimately, v) we measure detection performance of unsupervised anomaly detection
algorithms with respect to zero-days. Overall, the paper exemplifies how to practically orchestrate and apply
an appropriate methodology, process and tool, providing even non-experts with means to select appropriate
strategies to deal with zero-days.

INDEX TERMS Zero-day attacks, intrusion detection, machine learning, anomaly detection, RELOAD,

security, unsupervised learning, cyber-attacks.

I. INTRODUCTION

It is undeniable that new cyber-attacks are being contin-
uously crafted against essentially any kind of system and
service [29], [30], [32], [33]. Attacks have different charac-
teristics: they may exploit known vulnerabilities, overload a
system, deliver or install malicious software, etc. Throughout
years, rule-based, signature-based and supervised Machine
Learning (ML) algorithms [2], [11], [54] have proven to
be effective to detect known and fully characterized attacks
that show distinguishable patterns, often referred to as sig-
natures or fingerprints. Amongst many other things, it has
been shown that attacks may alter memory [31], bytes
exchanged through the network [5], packets routing [39],

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

communication buses [6], interactions between compo-
nents [32], system calls [47], active threads and opened
files [29]. In the security domain, supervised ML algorithms
are commonly adopted to defend against known threats, and
they are embedded into antiviruses or Intrusion Detection
Systems (IDSs) which aim to detect attackers that exploit
known security breaches [28] or vulnerabilities [30], [31].

A. DETECTION OF ZERO-DAY ATTACKS

However, many IDSs show deficiencies in identifying novel,
zero-day attacks [33]. These attacks exploit either new vul-
nerabilities or known vulnerabilities in novel and different
ways and cannot be matched against known signatures. Com-
plexity and dynamicity of systems are rapidly increasing,
to the extent that a correct and complete characterization of all

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 9, 2021

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

90603

https://orcid.org/0000-0001-9820-6047
https://orcid.org/0000-0002-2291-2428
https://orcid.org/0000-0001-7366-6530

IEEE Access

T. Zoppi et al.: Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

possible security threats becomes almost impossible. More-
over, the growth of hacking activities often exposes systems
to brand new attacks. In such scenario, the likelihood of being
targeted by zero-day attacks is getting higher and higher.
This motivates a relevant research effort towards detection
mechanisms able to efficiently deal with zero-day attacks,
such as anomaly detectors [1]-[4], [40].

Differently from signature-based approaches, which
require detailed knowledge on each attack, unsuper-
vised anomaly detection algorithms first model the nor-
mal (expected) behavior of a system. Then, they use this
knowledge to find patterns in data that do not conform to the
model of such expected behavior: these patterns are called
anomalies [1]. Unsupervised algorithms infer patterns from
a training set and discover the underlying structure of the
data without reference to known outcomes (i.e., labels are
unknown at training time). Instead, they assume that ongoing
attacks temporarily alter the values of system indicators with
respect to their expected values. This way, they learn a model
that is decoupled from labels assigned to data points in
the training set and therefore fit the detection of zero-day
attacks [4], [37], [40].

B. MOTIVATION

Unfortunately, it is acknowledged that unsupervised anomaly
detection algorithms may show poor detection perfor-
mance [78]-[80] when used as the sole or main instrument for
intrusion detection. In particular, they are likely to generate a
high amount of False Positives (the detector raises a secu-
rity alert but no attacks are happening) and False Negatives
(attacks going undetected), thus lowering correct classifica-
tions as True Positives or True Negatives. On the other hand,
they have shown an discussed superiority in detecting zero-
days, therefore a sensible strategy appears to create a synergy
between supervised ML algorithms and unsupervised ones to
build effective IDSs that deal with both known and zero-day
attacks [83]-[85].

Regardless of the many different ways to combine the
two approaches, employing an unsupervised anomaly detec-
tion algorithm without properly optimize its behavior will
lead to poor detection performance and drive the encom-
passing IDS towards misclassifications, with obvious detri-
mental effects. Consequently, researchers and practitioners
have to perform quantitative analyses to select the most
appropriate unsupervised algorithm for a given system or
use case. Unfortunately, frameworks or supporting tools
that perform quantitative analyses mostly implement super-
vised ML algorithms, whereas unsupervised algorithms are
scattered in different libraries. Additionally, the support
to meta-learning [42], [43], which was recently proven
effective in reducing misclassifications of unsupervised
algorithms [41], [46], is actually scarce. Those aspects com-
plicate the execution of different algorithms with the same
methodology, because different tools have their own way to
perform optimizations, normalizations, batching or to derive
additional features.

90604

To such extent, this paper highlights the problem of zero-
day attacks and explains why unsupervised algorithms can
detect them. Then, it reviews the most common research
questions that originate when comparing unsupervised algo-
rithms for intrusion detection, including the usage of meta-
learning. Afterwards, the paper analyses a recent, public
attack dataset using an open source tool tailored for unsuper-
vised anomaly detection. This shows how relevant research
questions can be easily answered, originating unsupervised
algorithms with excellent detection performance and also
encouraging personnel with limited experience to correctly
approach and deal with zero-day attacks.

C. PAPER STRUCTURE

This paper is structured as follows: Section II overviews
the problem of zero-day attacks, while Section III presents
anomaly detection algorithms for unsupervised intrusion
detection. Section IV describes best practices and introduces
some research questions that drive quantitative analyses of
unsupervised algorithms. Section V reports on tooling tai-
lored to perform such analyses. Section VI describes the
quantitative comparison of unsupervised anomaly detection
algorithms applied to a recent dataset for network intrusion
detection. This shows how the methodology, the process
and tooling can be practically applied, even by non-experts.
Finally, Section VII wraps up and concludes the paper.

II. INTRUSION DETECTION AND ZERO-DAYS

A. SECURITY AND CYBER-ATTACKS

The U.S.A. Committee on National Security Systems
Glossary defines cybersecurity as prevention of damage
to, protection of, and restoration of computers, electronic
communications systems or services, and wire communi-
cation, including information contained therein, to ensure
availability, integrity, authentication, confidentiality, and
nonrepudiation [72].

Regardless of their characteristics, attacks should be timely
identified to block an ongoing attack or protect critical assets.
Different attacks may be crafted against different kinds of
systems [10], [29], [32]. Agencies such as ENISA [48]
highlight attacks that use web services, whose main vectors
are Browser Exploits, Drive-by-Download, malicious URLSs
or SQL-injection (SQLi). Other attacks are frequently created
and delivered through spam or phishing attacks: over 90% of
malware infections in organizations originate from phishing
attacks [47]. As a last example, attacks to system availability
aim at denial of service [81], or they exploit vulnerabilities of
the UDP, TCP and ICMP network protocols, possibly through
the orchestration of botnets.

These attacks are generally detected by means of rule-
based, signature-based or supervised machine learning tech-
niques implemented into firewalls, which have become more
and more effective in detecting these known attacks.

B. UNKNOWN OR ZERO-DAY ATTACKS
Unfortunately, most firewalls cannot effectively deal with
zero-day attacks [33] (also just called zero-days). The reader

VOLUME 9, 2021

T. Zoppi et al.: Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

IEEE Access

can associate a zero-day attack (or unknown exploit) to a door
of a garage that the owner did not lock correctly. Whenever
thieves discover that the door is unlocked, they can step into
the garage, steal or damage many things and then close the
door again. Such exploit may go unnoticed for many hours or
days. At some point, the owner will discover the problem and
correctly lock the door: now, the unknown exploit is no more
a zero-day as it was ‘““patched”. Unfortunately, at that time
the damage is already done and the thieves are long gone.
A zero-day attack does not necessarily exploit a zero-day
vulnerability: in fact, many known vulnerabilities are subject
to unknown exploits [34].

In the last decade there was a rapid growth of mar-
kets [33], [35] where anyone can “‘sell” zero-days they
discovered but not yet put into practice or shared publicly.
Those may either be exploited by malicious entities or used
to patch a system or a software. For example, demand and
price of zero-days in online messaging / video-call software
is nowadays growing thanks to the increasing need for virtual
meetings, with buyers that are willing to pay hundreds of
thousands of dollars [36] to get to know such exploits.

More in general, we cannot avoid zero-days: instead,
once a zero-day is discovered by companies, agencies or
(ethical) hackers, system owners should race towards patch-
ing such exploit. This has two main benefits: it prevents
similar exploits and minimizes damages due to past or ongo-
ing attacks. As pointed out by [34], the costs associated
to the detection and mitigation of zero-days are undeniably
higher than the costs of adopting classic countermeasures
as antiviruses. Additionally, their effectiveness is usually
situational and therefore the detection of unknown attacks
represents a hot and active research topic for both academia
and industry.

C. DETECTION OF KNOWN AND UNKNOWN ATTACKS
Intrusion detectors that rely on supervised ML algorithms
require historical system observations for which a label is
known. Supervised algorithms learn a model allowing to
classify any new observation (a data point) as either collected
when a system is targeted by a malicious attack, or dur-
ing normal operations. For example, the literature reports
on the successful usage of Random Forests [44], Support
Vector Machines [53], [81], Convolutional Deep Neural Net-
works [38], [54], [70] for the detection of attacks through
the analysis of network traffic, assuming that those attacks
are known at training time by the supervised ML algorithms.
On the other hand, unsupervised anomaly detection algo-
rithms do not assume any knowledge on the attacks. They
model the expected (normal) behavior of the system, and clas-
sify any deviation from the normal behavior as anomaly [1]
(i.e., a suspect activity, possibly an attack): therefore, they do
not distinguish between known attacks and zero-day attacks.
As a drawback, their detection performance is often not
optimal. In particular, in [80] authors show how a regu-
lar neural network outperforms an unsupervised algorithm
(i.e., Self-Organizing-Maps [17]), while other works show

VOLUME 9, 2021

how unsupervised algorithms result in lower sensitivity
(i.e., many false positive) [78] or lower detection perfor-
mance overall [79].

As a result, unsupervised algorithms are meant to syner-
gize with supervised ML algorithms rather than be used to
replace them into IDSs. In [83] authors combine an unsu-
pervised (clustering) strategy to derive additional features
which are then provided to the supervised ML algorithm.
Other researchers [84] aimed to ‘““‘detect and isolate malicious
flows from the network traffic and further classify them as
a specific type of the known malwares, variations of the
known malwares or as a completely new malware strain.”
As a last example, in [85] authors use a stacking ensem-
ble with unsupervised base-level learners and a supervised
meta-level learner. It should be noted that combining both
approaches is not trivial and does not always result in
improved capabilities: some misleading algorithms may let
their combination leaning towards a misclassification.

Independently on how the unsupervised algorithm will
be combined with supervised solutions it is evident that
minimizing the misclassifications of unsupervised anomaly
detection algorithms is highly desirable and represents a key
challenge for researchers and practitioners working in the
security domain.

IIl. UNSUPERVISED ANOMALY DETECTION

A. FAMILIES OF UNSUPERVISED ALGORITHMS

Different unsupervised anomaly detectors have been pro-
posed throughout years and grouped into families [1],
[31-[5], [40]. We describe them with the support
of Figure 1. First, Figure 1a depicts various normal data points
and four anomalous data points (supposedly, corresponding
to attacks). The successive Figure 1b to Figure 1i graphically
describe the different families, reviewed below.

Clustering algorithms [18], [26] partition a dataset by
grouping data points in the same cluster if they share similar
characteristics. Data points that cannot be assigned to any of
the existing clusters, or that do not meet specific inclusion
criteria, are anomalous. An example of such behavior is
shown in Figure 1b, which identifies 3 separate clusters. In the
example, the clustering algorithm identifies two true positives
(green tick marks) and two false negatives (red crosses).
Similarly, density-based algorithms in Figure 1c estimate the
density of a region: data points lying in dense regions of
the input space are considered normal, while anomalies are
expected in sparse areas.

Classification algorithms identify the binary class of a new
data point devising proper boundaries, which may either be
linear (Figure 1d) [25] or non-linear (Figure 1e) [15].

Statistical algorithms (Figure 1f) assume that anomalous
data points occur in low probability regions of a given statis-
tical distribution (e.g., frequency of histograms [12]) derived
during training.

An alternative group of unsupervised algorithms is shown
in Figure 1g, which depicts how angle-based algorithms [13]
perform anomaly detection. They define angles of a data

90605

IEEE Access

T. Zoppi et al.: Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

3 * Y
* L
. * .
* L . *

v t v

o

a) Sample 2D dataset: red stars represent
anomalies

b) Clustering behaviour

¢) Density-based behaviour

DDDDDDDDD

e) Non-Linear (Cubic) Classification
behaviour

.. ‘{
I~ o

f) Statistical (histograms) behaviour

g) Angle-based behaviour

h) Neighbour-based (1-NN graph) behaviour

1) Neural Network (map) behaviour

FIGURE 1. Sample behaviour on a 2-D dataset for algorithms belonging to different families. Light blue areas identify normal regions, crosses indicate
false negatives while green ticks indicate true positives. Points lying in the white area that are not marked as ticks identify false positives, while others

represent true negatives.

point with couples of other data points in the training set
(see solid and dashed lines in the figure, which define two
angles for each data point) and then measure the variance
of those angles; anomalies typically result in very small
variance.

Instead, neighbor-based algorithms [24] classify a data
point as anomalous or expected depending on the distance
with respect to its nearest neighbor(s). Figure 1h shows how
a kNN graph (with k = 1) can be used to perform unsuper-
vised anomaly detection [14] differently from the traditional
kNN approaches, which are supervised.

Last, unsupervised neural networks [17] produce a
two-dimensional, discretized representation (a 4 x 4 map
in Figure 1i) of the input space, which during training

90606

adapts its weights to map normal data and - consequently -
anomalies.

It is worth noticing that there are some unavoidable
semantic overlaps among families; for example, neighbors
identification is employed to reduce noise and computational
complexity in the stochastic ISOS [21], the angle-based
FastABOD [13] and in the density-based LOF [23] and
COF [20]. DBSCAN [22] and LDCOF [19] build a
density-based anomaly detector on top of an internal cluster-
ing procedure.

B. UNSUPERVISED INTRUSION DETECTION
Algorithms belonging to different families usually do not
exhibit similar detection performance. Although most of

VOLUME 9, 2021

T. Zoppi et al.: Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

IEEE Access

those algorithms have a generic, context-independent for-
mulation, they are often more effective to detect specific
attacks on specific systems or applications. For exam-
ple, Leung and Leckie [37] describes how a clustering
algorithm outperforms neighbor-based and classification
(i.e., One-Class SVM) alternatives to detect attacks in
the KDDCupp99 dataset. Instead, [5] describes how
neighbor-based algorithms show potential in detecting point
anomalies due to attacks in 4 different datasets, whereas
One-Class SVM detects contextual anomalies better than
other algorithms considered in the study. Differently, studies
as [3], [4], [37] focus on the comparison of different (unsu-
pervised) algorithms for anomaly detection in different sys-
tems. They quantitatively evaluate detection performance of
unsupervised algorithms and values of hyper-parameters that
minimize misclassifications.

Additionally, some algorithms may require too much pro-
cessing time to be efficiently incorporated into specific sys-
tems. In particular, while clustering and statistical algorithms
usually show linear training time, others require at least
quadratic time complexity. However, all unsupervised algo-
rithms apart from neighbor-based have constant test time,
and therefore are able to instantaneously process and classify
novel data points, which is important for example for the
analysis of data streams.

C. UNSUPERVISED META-LEARNING
Recent studies [41], [46] started investigating applica-
tions of meta-learning for unsupervised anomaly detection.
Meta-learning is defined in [42] as ‘“‘the study of principled
methods that exploit meta-knowledge to obtain efficient mod-
els and solutions by adapting machine learning and data
mining processes’. A meta-learner is a classifier that uses
knowledge acquired during base-learning episodes i.e., meta-
data, to improve classification performance. Meta-data is usu-
ally composed of dataset features and meta-features, which
describe attributes of both dataset and base-learners [42].
More specifically, a base-learning process starts by feeding
dataset features into one or more ML algorithms to derive
one or more models to be used for classification at a first
stage. Results of base learners build meta-data that is provided
alongside with other features to the meta-classifier, represent-
ing the classification result of the whole meta-learner [43].
For instance, bagging builds several base-learners of the same
type, trains them using bootstrap replicas of the training
set [68] and then combines their individual results through
majority voting. Instead, boosting aims at orchestrating sev-
eral weak learners to build a strong meta-learner [69]. Each
weak learner is trained hierarchically to discriminate more
carefully specific complex regions in the input space.
Meta-learners were primarily meant to enhance super-
vised ML algorithms, originating well-known algorithms as
Random Forests [44] or ADABoost [45], which orches-
trate ensembles of decision trees to reduce misclassifications.
Unsupervised boosting and often bagging meta-learners were
recently proven [41] to outperform regular unsupervised

VOLUME 9, 2021

algorithms for both network intrusion detection and the anal-
ysis of biometric data, and therefore should be considered
when planning comparison studies in the security domain
through anomaly detection.

IV. QUANTITATIVE ANALYSES AND RESEARCH
QUESTIONS

The growing relevance of zero-days forces system owners to
adopt ad-hoc countermeasures. However, the many possible
alternatives for unsupervised intrusion detection make the
selection and comparison process tedious, time-consuming
and often difficult to execute without knowledge on the
insights of the algorithms.

Section IV-A addresses the most suitable metrics to mea-
sure detection performance of unsupervised intrusion detec-
tors. Then, Section IV-B discusses on datasets, features, and
basic pre-processing activities. Section IV-C explains how
to evaluate detection capabilities of algorithms with respect
to zero-days. Finally Section IV-D highlights the research
questions that usually arise when conducting comparison
studies; such questions will find answers in Section VI.

A. METRICS TO CALCULATE DETECTION PERFORMANCE
The detection performance of anomaly detectors is usually
scored by means of a confusion matrix [7]. Correct classifi-
cations i.e., True Positives (TPs) and True Negatives (TNs)
are desirable, while misclassifications, classified as False
Positives (FPs) and False Negatives (FNs), should be avoided
as much as possible [7], [9].

Security-critical applications as IDSs should primarily
focus on reducing FNs, that is, when attacks are being carried
out but no anomalies are detected. However, it is also evident
that a very suspicious IDS - which heavily reduces the amount
of FNs at the price of increasing FPs - may detect many
attacks but also generate (too) many false alarms. Therefore,
IDSs should be evaluated by focusing on metrics that account
for both FPs and FNs, possibly weighting FNs more than FPs.

Consequently, we propose to measure and rank detection
performance of unsupervised intrusion detectors by means of
two main metrics. The first one is:

o FB-Score [7], which becomes a FN-oriented metric
when considering 8 > 1. In particular, F2-Score doubles
the importance of Recall (which accounts for FNs) over
Precision (which is linked to FPs) and accounts also for
True Positives (TPs).

Precision x Recall
B2 x Precision + Recall

FB — Score = (1 + p?)

where Precision = % Recall = Tl'ﬂ-%

However, this metric does not account for TNs and there-
fore offers a partial view on the confusion matrix. This is
not adequate [9] in case of unbalanced datasets, i.e., datasets
mostly containing normal data points and only few attacks,
which are very common in the security domain. Therefore,

an additional metric can be used:

90607

IEEE Access

T. Zoppi et al.: Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

o Matthews Correlation Coefficient (MCC) [8], which
aggregates all classes of the confusion matrix and cor-
rectly measures detection performance even with unbal-
anced datasets.

McCC
TP x TN — FP x FN

- /(TP + FP) (TP + FN) (IN + FP) (IN + FN)

B. DATASETS, FEATURES AND PRE-PROCESSING

Recent surveys [54], [55] describe security-related datasets
(mostly gathered from publicly available sources) collected
by monitoring a given system. Monitoring activities may
be either event-based or time-based; under both cases this
influences the semantics of features and consequently the
interpretation of their values.

Overall, datasets may contain features that are either of
i) textual, ii) numeric categorical, or iii) numeric ordinal type.
The type of a feature has great relevance in the classification
process. Numeric ordinal features (e.g., number of cache hits,
bytes sent through the network) express numeric values and
therefore can be used for any type of computation. Textual
(e.g., name of system call) and numeric categorical (e.g., net-
work port number) features should be individually examined
to understand how they can contribute to the classification
process.

Some algorithms compute operations such as distance
between two feature values or statistics as averages; however,
those operations may not be meaningful when processing
categorical features as port numbers. It should be mentioned
that some algorithms can effectively process categorical
values [57]: however, when running comparative studies we
should aim at processing features that can be adequately
processed by many algorithms rather than optimizing spe-
cific characteristics of single algorithms. As a consequence,
categorical features should be dropped or re-shaped [56] to
become meaningful for anomaly detection.

As a specific case, we highlight a frequent mistake on the
usage of IP Address and Port Number as features for intrusion
detection. These features should be used only when building
an intrusion detector which is for a specific network topology.
In the majority of cases, we cannot assume to know the
IP address of the attacker(s), or even the exact port to which
they will conduct their attack, and therefore we should disre-
gard the usage of IP/port as features.

C. EVALUATING DETECTION PERFORMANCE IN CASE
OF ZERO-DAYS
By definition of zero-days, zero-days attacks are not present
in any attack dataset. This raises a major question for our
study, which specifically aims at evaluating detection capa-
bilities of unsupervised anomaly detection algorithms when
exposed to zero-days.

The ability of anomaly detection algorithms to detect
zero days can be studied as follows. Algorithms build their
model by relying on a training dataset, which represents the

90608

knowledge of the algorithm. A type of attack that does
not appear in the training set will be a zero-day when-
ever it appears in the test set as it was never encountered
(is unknown to) by the algorithm. For example, let us consider
a dataset containing multiple attacks and that can be split in
a training set and a test set. If the test set contains one or
more types of attacks that do not appear in the training set,
such attacks can be considered zero days for the algorithm
(which has been trained observing only the attacks present in
the training set).

Therefore, it is possible to mimic the occurrence of
zero-days by removing specific attacks from the training
set, and providing them only during evaluation in the test
set. This reproduces the occurrence of zero-days and allows
quantitatively evaluating and comparing the performance of
algorithms in detecting zero-days.

D. RESEARCH QUESTIONS FOR QUANTITATIVE
COMPARISONS

The vast majority of analyses performed toward the study of
unsupervised detection algorithms and IDS usually revolve
around the following research questions (RQ):

RQI1. Which are the features that contribute the most to a
correct classification of data points? In other words,
which indicators of the system should be monitored?

RQ2. Which value of hyper-parameters of a given algo-
rithm should be employed to maximize its detection
performance?

RQ3. Given a set of potential unsupervised intrusion detec-
tors, which is the best candidate to be deployed in a
specific system?

RQ4. Does meta-learning help in reducing misclassifica-
tions of unsupervised anomaly detection algorithms?

RQ5. How to evaluate detection performance of unsuper-
vised intrusion detectors with respect to zero-days?

V. A TOOL FOR UNSUPERVISED ANOMALY DETECTION
The paramount importance of tools for the evaluation and
comparison of unsupervised anomaly detection algorithms
is intuitive. Actually, it is extremely difficult to perform an
extensive experimental campaign without supporting frame-
works that automate execution of experiments and data
analysis.

A. AVAILABLE TOOLS AND FRAMEWORKS

Frameworks as PyTorch [67], Tensorflow [52], CAFFE [75]
or even Apache Spark [76] offer a few implementations of
unsupervised algorithms such as auto-encoders and cluster-
ing algorithms. Those frameworks are primarily meant to
optimize performance and scale well in distributed environ-
ments by balancing processing load between CPU and GPU.
Similarly, SMILE [74], Scikit-Learn [51], and the Statistical
and Machine Learning (SML) Toolbox [77] for MATLAB
offer many more unsupervised algorithms but again are pri-
marily meant to optimize performance rather than usability.
Overall, those frameworks suit the implementation of spe-
cific and high-performing algorithms rather than exploratory

VOLUME 9, 2021

T. Zoppi et al.: Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

IEEE Access

TABLE 1. Comparison of different frameworks and tools that run unsupervised machine learning algorithms.

Framework /Tool Ref (U GUI Coding Language 13 P00 R0 L rithms _ Meta Learning

Scikit-Learn [51] v Python 20 5 v

PyTorch/Tensorflow [52],[67] ¢ Python 4 2 v

RELOAD [27] 4 "4 Java 17 7 v
ELKI [49] v v Java 100+ 5
WEKA [50] v v Java 9 2
RapidMiner [19] v Java 10 4
SMILE [74] v Scala, Java 15 3
Spark Apache [76] v Scala, Java, Python 3 3
SML Toolbox [77] MATLAB 10 3
LibSVM [53] v C++, Java 1 1
CAFFE [75] v C++ 1 1

and comparative studies which embrace different algorithms.
Moreover, they do not provide the user with a GUI but require
coding, which may prevent non-domain experts to approach
unsupervised algorithms.

On the other hand, Java-based tools as RELOAD [27],
ELKI [49], WEKA [50], and RapidMiner [19] come as
tools that do not force the user to implement code. In fact,
the choice of the Java language goes more towards enhanc-
ing usability rather than optimizing performance, which is
typically done by using lower-level languages as Python,
MATLAB and C/C++.

As shown in Table 1, each framework or tool has its own
advantages and limitations. Unfortunately, there is no high-
performing tool that offers a complete set of unsupervised
algorithms through an user-friendly interface. Additionally,
only a few options (i.e., Scikit-Learn, PyTorch, Tensorflow
and RELOAD) allow to instantiate ensembles of unsuper-
vised algorithms through meta-learning, which improves
classification capabilities of unsupervised algorithms as we
already discussed in Section III-C.

B. RAPID EVALUATION OF ANOMALY DETECTORS
Amongst all the possible alternatives, our preference lies
in RELOAD [27], a tool to perform Rapid EvaLuatiOn of
Anomaly Detectors that is explicitly shaped to:

o exercise unsupervised anomaly detection algorithms
belonging to many different families, even with the sup-
port of meta-learning,

« expose a simple GUI that allows also non-experts to
perform experiments in a simplified fashion, and

o be lightweight and portable thanks to its Java-based
(Version 8+ compatibility) implementation.

RELOAD is an open-source software [63] released under
AGPLV3 license that embeds 17 different unsupervised algo-
rithms, either with custom implementation as HBOS [12],
LDCOF [19], SDO [16], SOM [17], G-Means [18] or
inherited from existing frameworks, namely COF [20],
LOF [23], (Fast)ABOD [13], (i)SOS [21], K-Means [26],
DBSCAN [22], kNN [24], ODIN [14] from ELKI [49],

VOLUME 9, 2021

One-Class SVM [15] from LibSVM [53], and Isolation
Forests (iForest, [25]) from WEKA [50].

In a nutshell, the tool wraps existing implementations of
unsupervised algorithms from publicly available frameworks,
and adds additional algorithms to provide a comprehensive
choice. Moreover, it provides a simple GUI for setup oper-
ations, such as load a dataset, select features, choose tar-
get algorithms and metrics. More sophisticated settings are
allowed but not required, providing transparency that allows
also non experts to run unsupervised algorithms with the same
methodology. Insights of the tool are reported in [27]; in the
rest of this paper we will use RELOAD to support experimen-
tal analyses and answer the questions of Section IV.

VI. QUANTITATIVE COMPARISON OF UNSUPERVISED
ALGORITHMS FOR NETWORK INTRUSION DETECTION
Answers to research questions RQ1 — RQS5 are provided in
this section with the support of a publicly available dataset.
Out of the many alternatives [54], [55], we perform our
experiments using the recent SDN20 [58] dataset, which was
released in 2020.

A. DATASET AND PREPROCESSING

SDN20 [58] is a recent dataset built by monitoring a Soft-
ware Defined Network installed at the University College
Dublin (Ireland). Five types of attacks appear in SDN:
i) Probe i.e., network scanning, ii) Denial of Service (DoS),
iii) Distributed DoS, iv) Brute-Force (BFA) to bypass the
username-password login, and v) Exploits (privilege esca-
lation known as U2R). The dataset contains 85 features:
5 textual, 3 categorical and 77 ordinal. Features include
classic network data plus Bidirectional Flows where the first
packet determines the forward (source to destination) and
backward (destination to source) directions.

Starting from the archive made available in [73], we builta
portion of this dataset by merging and shuffling the “Normal-
Data.csv” and “metasploitable-2.csv” files contained in
archive available at [73]. This allowed creating an unique
file of 10° data points that includes normal traffic and the

90609

IEEE Access

T. Zoppi et al.: Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

1 |

L Setup of 'SDN20.loader

General Char

Loader Path SDN20.loader Open File

Save Changes ‘ :

Sources Setup-

Discard Changes

Train File SONZD_Shufledcsv Size' 40.0 MB, 100000 rows Q%

P
Test File SON20_Shufled csv Size' 400 MB, 100000 raws k.)%

Label Feature Label L4 84 features
Features to Avoid Flow ID, Stc IP, Sre Port, Dst IP, Dst Port, Protocol B4 features
Train Setup
Train Data Points 0-29999 30000 valid runs

Train Anomaly Tags DDoS, DoS, Probe, UZR, BFA Anomaly Rate: 66.71%

Train Tags to Skip Skip Rate: 0%

Validation Setup

Test Data Points 30000 - 100000 70000 vaid runs

Test Anomaly Tags DDoS, DoS, Probe, UZR, BFA Anomaly Rate: 66.85%

Test Tags to Skip Skip Rate: 0%

FIGURE 2. SDN20_full loader that connects RELOAD to the
SDN20 dataset, with a 30-70 train-test split.

5 attack types. Such file contains 33.2% of normal data
points plus data points related to each of the 5 attacks DDoS
(35.9%), DoS (0.5%), Probe (30.2%), U2R (0.01%), BFA
(0.1%). We then use RELOAD to setup the SDN20_full
loader through a dedicated GUI which is also shown
in Figure 2. The reader should notice how categorical features
Flow ID, Src IP. Src Port, Dst IP, Dst Port, Protocol are
not included in this analysis (see “Features to Avoid™ in the
upper portion of Figure 2) in accordance to the discussion in
Section IV.B. In addition, we use a 30-70 train-test split.

B. RQI1-IMPACT OF FEATURES

Estimating the impact of features on the detection perfor-
mance of algorithms is a typical question. Briefly, it is
important to understand which features contribute the most
to distinguish between normal and anomalous (intrusions)
behaviour, leaving out noise or redundant information.
A quantitative evaluation of the impact of features can be con-
ducted by means of different filter or wrapper-based feature
selection and features ranking strategies [60], [62], which
i) do not depend on the ML algorithm to be used at a later
stage, and ii) measure similarity of feature values with respect
to the label of data points. Algorithm-specific feature selec-
tion (e.g., [66] for kKNN) or representation learning [65] are
usually disregarded for comparison studies as they introduce
specific optimizations that complicate discussion.

RELOAD allows selecting features through a dedicated
window (see Figure 3, item @) which shows the available
features, their distribution and calculates rankings. Feature
ranking results are shown in Figure 3, item @, and enlarged
for readability convenience in Figure 3, item ®. This detailed
view shows the features that have the highest Information
Gain [59] score (the highest, the better): Bwd Header Len,
which describes the length of the header of packets in
backward direction, scores 0.802. It is worth noticing
that different feature selection strategies generate different

90610

feature rankings. For example, out of the features in Figure 3,
the highest absolute score of Pearson Correlation [61] is
achieved by Pkt Size Avg (a feature reporting on the aver-
age bytes contained in a packet). Depending on the specific
needs, different feature ranking strategies may be adopted to
drive the selection of the most relevant features and identify
extremely noisy features. Overall, the literature acknowl-
edges [59], [60] Information Gain as a feature ranking and
selection strategy that suits most of the domains and systems.

C. RQ2-CHOICE OF HYPER-PARAMETERS

The vast majority of ML algorithms (both supervised and
unsupervised), depends on several hyper-parameters to tune
the behaviour of the algorithm itself e.g., the size of the
neighbourhood for kNN-based algorithms [24] or num-
ber of clusters in K-Means [18]. Therefore, when exercis-
ing an algorithm we usually aim at devising the value of
hyper-parameters that maximize a given classification metric.
Finding this exact value (i.e., learning-to-learn [70]) is often
not possible, or very time-consuming: therefore, in most of
the cases hyper-parameters are chosen out of approximations.
For instance, all tools in Table 1 offer the opportunity to
run grid or random searches, which consist of building a
pool of n potential sets of hyper-parameters that are used to
build »n instances of the algorithm. If sets of parameters are
user-defined, we talk about grid searches; if those sets are
randomly generated, we end up conducting random searches.
In any case, the values of hyper-parameters that maximise
a given metric are chosen as the preferred setup for the
algorithm to be used during testing.

Figure 4 shows the GUI of RELOAD that describes detec-
tion performance of One-Class SVM on the SDN20 dataset.
In addition to the metric scores which are shown in the
bottom of the figure, the blue dashed box in the middle of the
figure highlights the values of hyper-parameters that maxi-
mized MCC (the target metric) at the end of grid searches.
Particularly, studies as [15] show how the value nu and the
type of kernel have a major impact on the way the SVM
builds the model. Therefore, after setting 4 type of kernel =
{linear, quadratic, cubic, radial basis function} and 3 values
of nu={0.02,0.1,0.2}, RELOAD conducted a grid search by
iterating training 12 times with different kernel and nu values.
As shown in the figure, a cubic kernel and nu = 0.1 produced
the highest MCC value of 0.873 out of the 12 combinations.

D. RQ3-COMPARISON OF ALGORITHMS
The process we followed in RQ2 for One-Class SVM can be
repeated to compare the performance of an arbitrary number
of algorithms. This process starts by defining one or more
metrics that will be used to rank detection performance of
algorithms. As explained in Section IV-A, metrics as MCC
and F2-Score properly describe detection performance of
anomaly detectors and therefore should be the first consid-
ered when comparing different intrusion detectors.

Results of our analysis embracing all 17 unsupervised
anomaly detection algorithms provided by RELOAD on
the SDN20 dataset are shown in Table 2, ranked by

VOLUME 9, 2021

T. Zoppi et al.: Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

IEEE Access

£ Dataset Info for ‘CSV - SDN20_Shuffled — “
Feature Aug Al StaAl Avg Normal Stahomal AvgAnomaly StdAnomaly | Distribution of Feature 'Down/Up Ratio' (0 infinite)
PitLen Min 8651 41715 21581 761.583 0 0 A
FWdURG Flags 0 0 0 0 0 0 5,500
PSH Flag Cnt 0.003 0.003 0.086 0.087 0.003 0.003 5,000
FwdIATTol 5178204862 47283759766 12213984633 10393000005 219810605 17367718091 4500
Bwd IAT Min 17933721 37802877509.. 39634369 882 1215822 19536536.549 B
Active Std 56426280 43972613009.. 111746116 3460931 78353237223 00
Idie Min 9119064956 45071035852.. 3968300.047 8050300.405 43507774589.. £ 3500
TotLen Fwd Pkis 60287887.99 1747.009 8596 503.737 3300
Bwd Pidsi Avg 0 0 0) 0 =
PktLen Mean 90693 91930.198 255674 1671 8659 -
Fwd P Len Min 9.032 1047.882 22352 2 0 0 &
Fwd IAT Min 74400335 27898842203 1410210 58470767466 10662961 11492792820
Fwd Header Len 95924 590957 697 216.131 1658819 964 30.559 3150504 1,000
PH Len lax 687.234 18042325.933 1944.92 49049972.11 814 179.599 500
Bwd Pkt Len Max 617.45 17757658.848 1708378 4773955273 8047 17829 0
Bwd BlkRale A. 0 0 0 0 0 0 0.0 05 1.0 15 2.0 25 3.0 35 4.0
Flow IAT Max 7262395346 36485334734 5103518201 19653022821 8079777 867 43495894355
Fwd Piis/s 1358102 828703740232 7982633 65460444863.. 1168518 1052066581.0... 17| 8 Anomaly Series B Normal Series
Dataset Detail
Features: 77 Data Points: 100000 Size (MB): 40.0 Anomaly Rate: 66.6 % Skip Rate: 0 %
Feature Ranking
[vARIANCE (] PEARSON_CORRE .. [[] INFORMATION_GAIN [RELIEF [] ONER O Pca Feature PEARSON_CORRELATION INFORMATION_GAIN
Calculate Feature Rank - -
Bwd Header Len -0.096 0802
Feature VARIANCE PEARSON_CORRE.. INFORMATICN_GAIN RELIEF ONER Fwd Header Len -0.121 0.766 ul
Bwd Header Len - 0,096 0802 g c PitLen Max 022 0692 i
Fwd Header Len -0.121 0.766 Pkt Len Mean -0.404 0.688
PKt Len Max P 022 0.692 Pkt Size Avg -0.431 0.684
EREel w04 Q088 TotFwd Pkis -0.137 0.671
PHt Size Ave -0.431 0.684 % &
M : ! O oEs Subflow Fwd Pits 0137 0671
Subllow Fwd Pids -0.137 0.671 Pkt Len Std -0.324 0.67
Pkt Len Std -0.324 067 Pkt Len Var -0.105 0.67
e - oA = TotBwd PKis -0.103 0663 =
Subflow Bwd Pkts -0.103 0.663
Fwd Pkt Len Mean -0.226 0629

FIGURE 3. Visual analytics for datasets and feature ranking through RELOAD. The user can visualize details of the dataset ® and rank features

through feature selectors @ and ®.

Details
30000
70001
0.8733585880796095

Train Data Points
Evaluation Data Points
MCC Score
Hyper-Parameters

Evaluation Results (Global)
FN FPR P R
0.14 0.17 0.92 1

F2
0.98

MCC
0.87

TP TN
66.71 27.61

FP
5.55

F1
0.96

FIGURE 4. Results of one-class SVM on the SDN20_full loader with
RELOAD. Blue box highlights the result of grid search.

decreasing MCC. The table reports, for each algorithm,
its name and family(ies), the values of hyper-parameters
obtained through grid searches, the confusion matrix (TP, TN,
FP, FN), Precision, Recall, F2-Score and MCC. Such table,
which is provided as output of RELOAD both in the GUI
and in a CSV file, allows comparing detection performance
of many algorithms according to a common methodology
and using the same train set and test set. It is worth noticing
that different algorithms exhibit different metric scores, and
that algorithms belonging to specific families often show
similar behaviour. Classification algorithms as One-Class
SVM [15] and iForest [25] show the highest MCC, while
statistical algorithms as HBOS [12], SOS and iSOS [21]
do not excel. Instead, F2-Score is usually higher than 0.9,
and only few neighbour-based algorithms as kNN [24] and
COF [20] show many FNs and, consequently, low Recall and
F2-Score.

E. RQ4-IMPACT OF META-LEARNING

To check whether improvements are possible, we extend
the comparison in RQ3 and include meta-learners, known
for having better detection performance (see Section II1.C)

VOLUME 9, 2021

Algorithms

HBOS [STATISTICAL]

Add Algorithm

& Meta-Learning Setup of 'HBOS' =
Learner: HBOS
Current Learner: BOOSTING(HBOS,10,2)
Meta-Learning Option:
O BAGGING
@® BOOSTING Ensembles 10 Learn Speed 2 =
O CASCADING
O CASCADE_GENERALIZATION -
© STACKING
© STACKING_FULL
© DELEGATING
O VOTING
O WEIGHTED_VOTING
L Save Changes J L Clear Meta J L Discard Changes J
Algorithms
BOOSTING(HBOS,10,2) [META] Meta B -

Add Algorithm Open Algorithms

FIGURE 5. GUI for instantiating meta-learning in RELOAD.

than basic unsupervised algorithms. RELOAD allows
creating meta-learners as Bagging, Boosting, Stacking, Cas-
cading, Voting, Arbitrating, and Delegating through the
dedicated GUI which is shown in Figure 5. According
to [41], we instantiate Bagging and Boosting ensembles
of 10 items each to be exercised and compared with

90611

IEEE Access

T. Zoppi et al.: Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

TABLE 2. Detection performance of different unsupervised anomaly detection algorithms on the SDN20_full loader.

Algorithm Ref Family Hyper-Parameters TP TN FP FN Precision Recall F2-Score MCC

iForest [25] Classification samples:500, trees:5 65.717 29.407 3.746 1.130 0.946 0983 0.975 0.889

One-Class SVM [15] Classification kernel:CUBIC, nu:0.1 66.71027.605 5.547 0.137 0.923 0.998 0.982 0.873

SDO [16] Density Q0.1 x:5k:50 65.34325.547 7.606 1.504 0.896 0.977 0.960 0.793

G-Means [18] Clustering no params 66.84823.515 9.637 0.000 0.874 1.000 0.972 0.787

K-Means [26] Clustering k:10 66.84823.495 9.657 0.000 0.874 1.000 0.972 0.787

LDCOF [19] Demsity, k:10, gamma:0.3 66.84823.294 9.858 0.000 0.871 1.000 0.971 0.783
Clustering

SOM (7 Newral min_2:0.1,dec:0.9, - ¢r 04623 195 9.957 0.001 0.870 1.000 0971 0.780

Network base a:0.6

FastABOD [13] Angle. k:50 66.53722.046 11.107 0.310 0.857 0.995 0.964 0.746
Neighbour

LOF [23] Density, k:2000 60.54226.285 6.867 6306 0.898 0.906 0.904 0.702
Neighbour

ODIN [14] Neighbour k:2000 60.64825.718 7.434 6200 0.891 0907 0.904 0.690

isos [p1) Statistical, phi:0.1, k:5 66.743 18.984 14.169 0.104 0.825 0998 0958 0.684
Neighbour

DBSCAN [22] Cges;zrilt‘;g’ eps:1000, minPts:1 63.94320.519 12.634 2.904 0.835 0.957 0929 0.640

SOS [82] Statistical h:20 60.05622.487 10.666 6.791 0.849 0.898 0.888 0.597

COF [20] Density, k:50 49.70429.285 3.867 17.144 0.928 0.744 0774 0.592
Neighbour

ABOD [13] Angle no params 66.499 14.229 18.924 0349 0.778 0.995 0.942 0.566

kNN [24] Neighbour k:10 35.49733.152 0.000 31.351 1.000 0.531 0.586 0.522

HBOS [12] Statistical k:50 66.427 10.740 22.413 0420 0.748 0.994 0.932 0.475

TABLE 3. F2-score and MCC scores of SDO, HBOS, COF (boosting ensemble) and ODIN (bagging ensemble) on 8 different loaders from the same
SDN20 dataset. Each loader exposes different types of attacks and zero-days in the test set.

Loader Train Set Test Set SDO HBOS Boosting COF |Bagging ODIN
Code Attacks Known Attacks Zero-Days |[F2-Score MCC [F2-Score MCC [F2-Score MCC [F2-Score MCC
(ggﬁlgg}fg) DO%ronlz?%z?{FA’ DO%rglg?%z?zFA’ - 0.960 0.793 | 0.932 0.475| 0.995 0.986 | 0.958 0.682
T3_K3_Z2| DoS, Probe, U2R | DoS, Probe, U2R DDoS, BFA 0.928 0.799 | 0.885 0.520| 0.995 0.986| 0.964 0.727
T3_KO0 Z2| DoS, Probe, U2R - DDoS, BFA 0.909 0.756 | 0.920 0.550 | 0.990 0.983 | 0.943 0.687
T3_KO0 _Z1| DoS, Probe, U2R - DDoS 0.973 0.808 | 0.941 0.576 | 0.998 0.992 | 0.955 0.705
T2 K2 73 DDoS, BFA DDoS, BFA DoS, Probe, U2R | 0.956 0.792 | 0.782 0.532| 0.989 0.971| 0.958 0.682
T2 KO Z3 DDoS, BFA - DoS, Probe, U2R | 0.917 0.733 | 0.731 0.472| 0.977 0.947| 0913 0.699
T2 K0 72 DDoS, BFA - DosS, Probe 0918 0.737 | 0.733 0.472| 0978 0.949| 0.915 0.697
T2 KO0 Z1 DDoS, BFA - Probe 0918 0.734| 0.736 0.477 | 0.986 0.956| 0918 0.699
St.Dev 0.025 0.032| 0.096 0.041 | 0.008 0.018| 0.022 0.015

unsupervised algorithms. Figure 6 plots scores of MCC and
F2-Score into two separate charts for i) the 17 algorithms
from RQ3, ii) bagging and iii) boosting ensembles.

A detailed analysis of these scores should be driven by
the specific requirements of the study and by the charac-
teristics of the system under investigation. For example,
we may comment that Boosting ensembles usually outper-
form regular unsupervised algorithms: the green line with
crosses in Figure 6 is above the blue diamonds in the
majority of cases. According to the scores in Figure 6,
it turns out evident how boosting ensembles of either
ABOD or COF show the highest MCC and F2-Score scores

90612

(i.e., green lines for plots in the figure are close to the
maximum of 1 for both metrics) and therefore are good can-
didates to perform intrusion detection in the SDN20 dataset.
Noticeably, Boosting(COF) achieves Precision, Recall,
F2-Score, and MCC of {0.997, 0.994, 0.995, 0.986}. Those
scores are decisively better than those of the best algorithm
in Table 2 (i.e., iForest, which achieves 0.946, 0.983, 0.975,
0.889} for the metrics above), and clearly remark how
meta-learning has potential to dramatically improve clas-
sification performance of unsupervised anomaly detection
algorithms and should always be considered in comparison
studies.

VOLUME 9, 2021

T. Zoppi et al.: Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

IEEE Access

1.00
0.90
0.80
e
]
%070
50
o
2
0.60
0.50
~——Single ———Bagging Boosting
0.40
Z2 2589 238 828z28z28:=888¢z:2+8
5808525223535 328n3 5
2 < < s s = g =
a J: G =
fid
1.00 = = o
095 e i s.aBias
<@
0.90
0.85
5080
3075
Qo
e
0.70
0.65
0.60
0.55
=—4—Single =———Bagging Boosting
0.50
€ o & 0 g v B 2 WL 2 u 0w w0 %
2883585295838 ¢88%¢
= o “ a w o
a < g = s = p
a g] <
o

FIGURE 6. MCC (up) and F2-score (down) values for unsupervised
algorithms (blue diamonds), ii) bagging ensemble (red line), and iii)
boosting ensemble (green crosses).

F. RQ5-DEALING WITH UNKNOWNS

Last, but not least, we show how to evaluate the effectiveness
of unsupervised algorithms in detecting zero-days according
to the discussion in Section IV-C.

Table 3 reports F2-Score and MCC values obtained by
exercising 2 unsupervised algorithms (i.e., HBOS, SDO),
a Bagging ensemble of ODIN, and a Boosting ensemble of
COF using different loaders (i.e., subsets) of the SDN20
dataset. According to the methodology previously described,
each loader exposes different zero-days and is associated to a
code Ta_Kb_Zc where a) is the number of different types of
attacks in the training set, b) is the number of types of attacks
that occur both in training and test set (i.e., known attacks),
while c) is the number of zero-days, i.e., attacks which appear
only in the test set. For example, the loader T3_K3_Z2 builds
a training set with normal data and 3 types of attacks (T3),
whereas the test set contains 5 types of attacks: 3 known (K3)
and 2 zero-days (Z2).

For each loader, Table 3 shows the code, types of attacks
that respectively appear in the train and test set, and then
reports metric scores of algorithms. The first row reports
the loader T5_KS5_Z0 in which no zero-days appear in the
test set (Z0). Instead, the 2nd 31d and 4t row of Table 3
detail three loaders whose training set includes normal data,
DoS, Probe and U2R attacks. In these cases, the occurrence
(if any) of DDoS or BFA in the test set is a zero-day for the
algorithms.

VOLUME 9, 2021

Noticeably, in some cases metric scores even improve
when using loaders that expose zero-days (2™ to 8 row)
compared to the case with no zero-days (first row of
Table 3). In particular, MCC achieved by HBOS using the
T3_K3_Z2 loader (0.520, 204 row of Table 3) is slightly
higher than the MCC obtained using T5_K5_Z0 (0.475, first
row of the same table). Moreover, loaders as T3_KO0_Z2,
T3_KO0_Z1, T2_KO0_Z3, T2_KO0_Z2, and T2_KO0_Z1 only
expose normal data and zero-days in the test set. Even for
those loaders, metric scores are not clearly lower with respect
to setups with less or even no zero-days.

Additionally, we report the standard deviation of metric
scores at the bottom of the table. Those low standard devi-
ation values confirm that metric scores obtained by the same
algorithm by using different loaders only slightly fluctu-
ate, further remarking the robustness of unsupervised (meta-
learning) algorithms to detect zero-days. Ultimately, Table 3
shows that not all meta-learners improve classification per-
formance with respect to basic unsupervised learning algo-
rithms: the SDO algorithm alone has higher metric scores
than the Bagging ensemble of ODIN. On the other hand,
the Boosting ensemble of COF shows excellent detection
capabilities which hold even when dealing with zero-days.

VII. CONCLUSION

This paper motivated the need to adopt unsupervised anomaly
detection algorithms as intrusion detectors to deal with
zero-day (unknown) attacks. We first elaborated on zero-day
attacks, explaining how they differ from known attacks
and why intrusion detectors which rely only on rule-based,
signature-based and supervised machine learning algorithms
may not reliably identify them. Then, we introduced unsuper-
vised anomaly detection algorithms as well as unsupervised
meta-learning approaches that can improve their detection
performance.

We then addressed the need for allowing specific unsu-
pervised anomaly detector to be installed in a given system.
Proper tuning and selection has to be derived according to a
precise strategy and its application through appropriate tool-
ing and experimental campaigns. To achieve this, our study
summarizes 5 research questions that impact the vast majority
of studies related to the detection of zero-day attacks. Taking
advantage of a public attack dataset, we then answer the
research questions above. Our study ends up showing that it
is possible to derive an unsupervised anomaly detection algo-
rithm built on boosting meta-learning which has much better
detection performance than regular unsupervised algorithms
and is robust to zero-day attacks. This paper provides the
reader with immediate and readily available means to elab-
orate on unsupervised algorithms and apply them to protect
their systems, even against zero-day attacks.

Particularly, we showed how the adoption of meta-learning
has the potential to dramatically improve detection per-
formance. This opens an interesting scenario and future
works on whether and under which circustances unsupervised
meta learning may achieve detection performance that can

90613

IEEE Access

T. Zoppi et al.: Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

compete with supervised solutions. To such extent, we fore-
see a validation process which involves more public datasets
in the domain of security, as well as widely used supervised
algorithms and deep neural network that suit the analysis of
tabular data.

REFERENCES

(1]
[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 1-58, 2009.

S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log
analysis for anomaly detection,” in Proc. IEEE 27th Int. Symp. Softw. Rel.
Eng. (ISSRE), Oct. 2016, pp. 207-218.

M. Goldstein and S. Uchida, “A comparative evaluation of unsupervised
anomaly detection algorithms for multivariate data,” PLoS ONE, vol. 11,
no. 4, Apr. 2016, Art. no. e0152173.

T. Zoppi, A. ceccarelli, T. Capecchi, and A. Bondavalli, “Unsuper-
vised anomaly detectors to detect intrusions in the current threat land-
scape,” 2020, arXiv:2012.11354. [Online]. Available: http://arxiv.org/
abs/2012.11354

T. Zoppi, A. Ceccarelli, L. Salani, and A. Bondavalli, “On the educated
selection of unsupervised algorithms via attacks and anomaly classes,”
J. Inf. Secur. Appl., vol. 52, Jun. 2020, Art. no. 102474.

M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “CANet: An
unsupervised intrusion detection system for high dimensional CAN bus
data,” IEEE Access, vol. 8, pp. 58194-58205, 2020.

G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenkovai,
E. Schubert, I. Assent, and M. E. Houle, “On the evaluation of outlier
detection: Measures, datasets, and an empirical study,” in Proc. CEUR
Work-Shop Lernen, Wissen, Daten, Analysen, Sep. 2016, pp. 1-43.

S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for imbal-
anced data using matthews correlation coefficient metric,” PLoS ONE,
vol. 12, no. 6, Jun. 2017, Art. no. e0177678.

D. Chicco and G. Jurman, “The advantages of the matthews correlation
coefficient (MCC) over fl score and accuracy in binary classification
evaluation,” BMC Genomics, vol. 21, no. 1, pp. 1-13, Dec. 2020.

Y. Chen, Y. Li, X. Q. Cheng, and L. Guo (2006 November), “Survey and
taxonomy of feature selection algorithms in intrusion detection system,” in
Proc. Int. Conf. Inf. Secur. Cryptol. Berlin, Germany: Springer, Nov. 2006,
pp. 153-167.

M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, ‘“Deep learning
approach combining sparse autoencoder with SVM for network intrusion
detection,” IEEE Access, vol. 6, pp. 52843-52856, 2018.

M. Goldstein and A. Dengel, ‘“‘Histogram-based outlier score (hbos): A
fast unsupervised anomaly detection algorithm,” in KI-2012: Poster and
Demo Track, 2012, pp. 59-63.

H.-P. Kriegel, M. S Hubert, and A. Zimek, “Angle-based outlier detection
in high-dimensional data,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2008, pp. 444-452.

V. Hautamaki and I. P. K. Franti, “Outlier detection using k-nearest neigh-
bour graph. Pattern Recognition. ICPR 2004,” in Proc. 17th Int. Conf,
vol. 3, Aug. 2004, pp. 430-433.

M. Amer, M. Goldstein, and S. Abdennadher, ‘“Enhancing one-class sup-
port vector machines for unsupervised anomaly detection,” in Proc. ACM
SIGKDD Workshop Outlier Detection Description (ODD), 2013, pp. 8-15.
F. Iglesias Vazquez, T. Zseby, and A. Zimek, “Outlier detection based on
low density models,” in Proc. IEEE Int. Conf. Data Mining Workshops
(ICDMW), Nov. 2018, pp. 970-979.

T. Kohonen, “Exploration of very large databases by self-organizing
maps,” in Proc. Int. Conf. Neural Netw. (ICNN), Jun. 1997, pp. PL1-PL6.
G. Hamerly and C. Elkan, “Learning the k in k-means,” in Proc. Neural
Inf. Process. Syst., 2004, pp. 281-288.

M. Amer and M. Goldstein, ‘“Nearest-neighbor and clustering based
anomaly detection algorithms for rapidminer,” in Proc. 3rd RapidMiner
Community Meeting Conf. (RCOMM), 2012, pp. 1-12.

J. Tang, Z. Chen, A. W.-C. Fu, and W. D. Cheung, “Enhancing effctive-
ness of outlier detections for low density patterns,” in Proc. Pacific-Asia
Conf. Knowl. Discovery Data Mining. Berlin, Germany: Springer, 2002,
pp. 535-548.

E. Schubert and M. Gertz, “Intrinsic t-stochastic neighbor embedding for
visualization and outlier detection,” in Proc. Int. Conf. Similarity Search
Appl., Cham, Switzerland: Springer, Oct. 2017, pp. 188-203.

90614

(22]

(23]

(24]

[25]
(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

[40]

[41]

(42]

[43]

[44]
[45]

(46]

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proc. 2nd
Int. Conf. Knowl. Discovery Data Mining (KDD), 1996, pp. 226-231.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data (SIGMOD), 2000, pp. 93—-104.

M. Radovanovic, A. Nanopoulos, and M. Ivanovic, “Reverse nearest
neighbors in unsupervised distance-based outlier detection,” IEEE Trans.
Knowl. Data Eng., vol. 27, no. 5, pp. 1369-1382, May 2015.

F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation forest,” in Proc. 8th Int.
Conf. Data Mining, Dec. 2008, pp. 413-422.

J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clustering
algorithm,” Appl. Statist., vol. 28, no. 1, pp. 100-108, 1979.

T. Zoppi, A. Ceccarelli, and A. Bondavalli, “Evaluation of anomaly detec-
tion algorithms made easy with RELOAD,” in Proc. IEEE 30th Int. Symp.
Softw. Rel. Eng. (ISSRE), Oct. 2019, pp. 446-455.

A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable Secure Comput., vol. 1, no. 1, pp. 11-33, Jan. 2004.

Y. Zeng, X. Hu, and K. G. Shin, “Detection of botnets using com-
bined host- and network-level information,” in Proc. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2010, pp. 291-300.

B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “EPVF:
An enhanced program vulnerability factor methodology for cross-layer
resilience analysis,” in Proc. 46th Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw. (DSN), Jun. 2016, pp. 168-179.

K. Pan, E. Rakhshani, and P. Palensky, “False data injection
attacks on hybrid AC/HVDC interconnected systems with virtual
inertia—Vulnerability, impact and detection,” IEEE Access, vol. 8,
pp. 141932-141945, 2020.

I. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaaniche, and
Y. Laarouchi, “Survey on security threats and protection mechanisms in
embedded automotive networks,” in Proc. 43rd Annu. IEEE/IFIP Conf.
Dependable Syst. Netw. Workshop (DSN-W), Jun. 2013, pp. 1-12.

J. Meakins, “A zero-sum game: The zero-day market in 2018,” J. Cyber
Policy, vol. 4, no. 1, pp. 60-71, Jan. 2019.

The Cost of Zero-Day Attack Protection. Accessed: May 23, 2021.
[Online]. Available: https://2020infosec.com/the-cost-of-zero-day-attack-
protection

A Zero-Day Guide for 2020: Recent Attacks and Advanced
Preventive Techniques. Accessed: May 23, 2021. [Online]. Available:
https://blog.malwarebytes.com/exploits-and-vulnerabilities/2020/06/a-
zero-day-guide-for-2020/

A Zoom Zero-Day Exploit is up for Sale for 500,000. Accessed:
May 23,2021. [Online]. Available: https://securityboulevard.com/2020/04/
a-zoom-zero-day-exploit-is-up-for-sale-for-500000

K. Leung and C. Leckie, “Unsupervised anomaly detection in network
intrusion detection using clusters,” in Proc. 28th Australas. Conf. Comput.
Sci., vol. 38. Darlinghurst, SYD, Australia: Australian Computer Society,
Jan. 2005, pp. 333-342.

K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, and M. Xu, “A survey
on machine learning techniques for cyber security in the last decade,” IEEE
Access, vol. 8, pp. 222310-222354, 2020.

Z.Shu, J. Wan, J. Lin, S. Wang, D. Li, S. Rho, and C. Yang, “Traffic engi-
neering in software-defined networking: Measurement and management,”
IEEE Access, vol. 4, pp. 3246-3256, 2016.

P. Casas, J. Mazel, and P. Owezarski, ‘“Unsupervised network intrusion
detection systems: Detecting the unknown without knowledge,” Comput.
Commun., vol. 35, no. 7, pp. 772-783, Apr. 2012.

T. Zoppi, M. Gharib, M. Atif, and A. Bondavalli, ‘“Meta-learning to
improve intrusion detection in cyber-physical systems,” in ACM Transac-
tions on Cyber-Physical Systems Special Issue on Artificial Intelligence in
CPSs. New York, NY, USA: Association for Computing Machinery, 2021.
P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta, Metalearning:
Applications to Data Mining. Berlin, Germany: Springer, 2009.

J. Vanschoren, “Understanding machine learning performance with exper-
iment databases,” Ph.D. dissertation, Arenberg Doctoral School Sci., Eng.
Technol., Katholieke Universiteit Leuven, Brussels, Belgium, 2010.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

Y. Freund and R. E. Schapire, “Experiments with a new boosting algo-
rithm,” in Proc. Int. Conf. Mach. Learn., vol. 96, 1996, pp. 148-156.

J. A. Saez and E. Corchado, “A meta-learning recommendation system for
characterizing unsupervised problems: On using quality indices to describe
data conformations,” IEEE Access, vol. 7, pp. 63247-63263, 2019.

VOLUME 9, 2021

T. Zoppi et al.: Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

IEEE Access

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

(2019). Accessed: May 23, 2021. [Online]. Available:
https://enterprise.verizon.com/resources/reports/2019/2019-data-breach-
investigations-report-emea.pdf

ENISA. (2020). Threat Landscape Report. [Online]. Available: https://
WWwWw.enisa.europa.eu/news/enisa-news/enisa-threat-landscape-2020

E. Achtert, H. P. Kriegel, and A. Zimek, “ELKI: A software system for
evaluation of subspace clustering algorithms,” in Proc. Int. Conf. Sci. Stat.
Database Manage., Berlin, Germany: Springer, Jul. 2008, pp. 580-585.
S. R. Garner, “Weka: The waikato environment for knowledge analy-
sis,” in Proc. New Zealand Comput. Sci. Res. Students Conf., Apr. 1995,
pp. 57-64.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
pp. 2825-2830, Oct. 2011.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, and M. Devin,
“Tensorflow: A system for large-scale machine learning,” in Proc.
12th USENIX Symp. Operating Syst. Design Implement. (OSDI), 2016,
pp. 265-283.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector mach-
ines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, Apr. 2011.
H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. Atkinson,
and X. Bellekens, “A taxonomy of network threats and the effect of
current datasets on intrusion detection systems,” 2018, arXiv:1806.03517.
[Online]. Available: http://arxiv.org/abs/1806.03517

M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A survey
of network-based intrusion detection data sets,” Comput. Secur., vol. 86,
pp. 147-167, Sep. 2019.

N. Lee and J.-M. Kim, “Conversion of categorical variables into numeri-
cal variables via Bayesian network classifiers for binary classifications,”
Comput. Statist. Data Anal., vol. 54, no. 5, pp. 1247-1265, May 2010.

J. T. Hancock and T. M. Khoshgoftaar, “Survey on categorical data for
neural networks,” J. Big Data, vol. 7, no. 1, pp. 1-41, Dec. 2020.

M. S. Elsayed, N.-A. Le-Khac, and A. D. Jurcut, “InSDN: A novel SDN
intrusion dataset,” IEEE Access, vol. 8, pp. 165263-165284, 2020.

B. Azhagusundari and A. S. Thanamani, “Feature selection based on
information gain,” Int. J. Innov. Technol. Exploring Eng., vol. 2, no. 2,
pp. 18-21,2013.

A. G. Karegowda, A. S. Manjunath, and M. A. Jayaram, “Comparative
study of attribute selection using gain ratio and correlation based feature
selection,” Int. J. Inf. Technol. Knowl. Manage., vol. 2, no. 2, pp. 271-277,
2010.

H.F Eid, A. E. Hassanien, T. H. Kim, and S. Banerjee, ‘‘Linear correlation-
based feature selection for network intrusion detection model,” in Proc. Int.
Conf. Secur. Inf. Commun. Netw., Berlin, Germany: Springer, Sep. 2013,
pp. 240-248.

M. Kuhn and K. Johnson, Feature Engineering and Selection: A Practical
Approach for Predictive Models. London, U.K.: Chapman & Hall, 2019.
RELOAD Github. Accessed: May 23, 2021. [Online]. Available:
https://github.com/tommyippoz/RELOAD

S. Dzeroski and B. Zenko, “Is combining classifiers with stacking better
than selecting the best one?” Mach. Learn., vol. 54, no. 3, pp. 255-273,
Mar. 2004.

W. Guo, J. Wang, and S. Wang, “‘Deep multimodal representation learning:
A survey,” IEEE Access, vol. 7, pp. 63373-63394, 2019.

I. M. El-Hasnony, S. I. Barakat, M. Elhoseny, and R. R. Mostafa,
“Improved feature selection model for big data analytics,” IEEE Access,
vol. 8, pp. 66989-67004, 2020.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, and A. Desmaison, ‘“‘PyTorch:
An imperative style, high-performance deep learning library,” 2019,
arXiv:1912.01703. [Online]. Available: http://arxiv.org/abs/1912.01703
L. Breiman, ‘“Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123-140, Aug. 1996.

R. E. Schapire, “The strength of weak learnability,” Mach. Learn., vol. 5,
no. 2, pp. 197-227, Jun. 1990, doi: 10.1007/BF00116037.

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. de Freitas, “Learning to learn by gradient
descent by gradient descent,” 2016, arXiv:1606.04474. [Online]. Avail-
able: http://arxiv.org/abs/1606.04474

B. H. Barlow, “Unsupervised learning,” Neural Comput., vol. 1, no. 3,
pp- 295-311, Mar. 1989.

NIST Computer Security Resource Center (Glossary). Accessed:
May 23, 2021. [Online]. Available: https://csrc.nist.gov/glossary/term/
cybersecurity

Source Files of SDN Dataset. Accessed: May 23,2021. [Online]. Available:
http://iotseclab.ucd.ie/datasets/SDN/inSDNDataset_CSV.zip

VOLUME 9, 2021

(74]

(751

[76]

(77]

(78]

[79]

[80]

(81]

(82]

(83]

(84]

(85]

(2014). SMILE Smile, Haifeng Li. [Online]. Available: https://haifengl.
github.io

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, ““Caffe: Convolutional architecture for fast
feature embedding,” in Proc. 22nd ACM Int. Conf. Multimedia, Nov. 2014,
pp. 675-678.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, and
J. Freeman, “Mllib: Machine learning in apache spark,” J. Mach. Learn.
Res., vol. 17, no. 1, pp. 1235-1241, 2016.

“Statistics and machine learning toolbox,” MathWorks, Natick, MA, USA,
Tech. Rep., 2018.

N. S. Arunraj, R. Hable, M. Fernandes, K. Leidl, and M. Heigl, “Compar-
ison of supervised, semi-supervised and unsupervised learning methods in
network intrusion detection system (NIDS) application,” in Anwendungen
Und Konzepte Der Wirtschaftsinformatik, 2017.

X. Niu, L. Wang, and X. Yang, “A comparison study of credit card fraud
detection: Supervised versus unsupervised,” 2019, arXiv:1904.10604.
[Online]. Available: http://arxiv.org/abs/1904.10604

K. Lee, D. Booth, and P. Alam, “A comparison of supervised and unsuper-
vised neural networks in predicting bankruptcy of korean firms,” Expert
Syst. Appl., vol. 29, no. 1, pp. 1-16, Jul. 2005.

K. S. Sahoo, B. K. Tripathy, K. Naik, S. Ramasubbareddy, B. Balusamy,
M. Khari, and D. Burgos, “An evolutionary SVM model for DDOS
attack detection in software defined networks,” IEEE Access, vol. 8,
pp- 132502132513, 2020.

J. H. M. Janssens, F. Huszar, E. O. Postma, and H. J. van den Herik,
“Stochastic outlier selection,” Tilburg Centre Creative Computing, Hern-
don, VA, USA, Tech. Rep. 2012-001, 2012.

F. Carcillo, Y.-A. Le Borgne, O. Caelen, Y. Kessaci, F. Oblé, and
G. Bontempi, “Combining unsupervised and supervised learning in credit
card fraud detection,” Inf. Sci., vol. 557, pp. 317-331, May 2021.

P. M. Comar, L. Liu, S. Saha, P-N. Tan, and A. Nucci, “Combining
supervised and unsupervised learning for zero-day malware detection,” in
Proc. IEEE INFOCOM, Apr. 2013, pp. 2022-2030.

T. Zoppi and A. Ceccarelli, “Prepare for trouble and make it double!
supervised—Unsupervised stacking for anomaly-based intrusion detec-
tion,” J. Netw. Comput. Appl., vol. 189, Sep. 2021, Art. no. 103106.

TOMMASO ZOPPI is currently a Research Asso-
ciate with the University of Florence. He is
involved in several European/national funded and
even industrial projects. He currently serves as
a member of the program committee of several
international conferences. His research interests
include anomaly detection, security and safety,
often applying standards to plan, design, develop,
and implement appropriate architectures or soft-
ware in the domain of critical systems.

ANDREA CECCARELLI received the Ph.D. degree
in informatics and automation engineering from
the University of Florence, Florence, Italy, in 2012.
He is currently a tenured Assistant Professor of
computer science at the University of Florence.
His research interests include the design, moni-
toring, and experimental evaluation of dependable
and secure systems and systems-of-systems. His
scientific activities originated more than 100 arti-
cles, which appeared in international conferences,
workshops, and journals.

ANDREA BONDAVALLI (Member, IEEE) is
currently a Full Professor of computer sci-
ence at the University of Florence. His research
interests include the design and evaluation of
resilient and secure systems and infrastructures.
His scientific activities originated more than
220 articles appeared in international journals and
conferences. He led various national and European
projects and has been chairing the program com-
mittee in several international conferences. He is a

member of the IFIP W. G. 10.4 Working Group on ““Dependable Computing
and Fault-Tolerance.”

90615

http://dx.doi.org/10.1007/BF00116037

