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Abstract

This doctoral thesis presents a comprehensive exploration of ultrawide-
band technology in addressing diverse challenges within localization sys-
tems. Beginning with the development of an innovative, cost-effective, and
anonymous contact tracing solution for industrial environments during the
COVID-19 pandemic, the research integrates ultra-wideband positioning,
Bluetooth low-energy, and inertial measurement units. The subsequent
sections delve into relative positioning systems, device-free localization,
UWB bistatic radar sensors, and UAV-based tracking, showcasing novel
methodologies and hardware implementations with promising outcomes.
The work extends to groundbreaking approaches in deploying UWB in-
frastructure through self-deployable robots and cooperative positioning
schemes using a UAV swarm. The contributions highlight versatility, cost-
effectiveness, and scalability, opening new possibilities for applications in
security, logistics, IoT services, and space exploration. In summary, this
thesis represents a significant advancement in localization systems, offering
practical solutions and paving the way for future research and applications.
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Preface

The advent of the global navigation satellite system (GNSS) has ushered in a
plethora of new deployment opportunities. This technology revolutionizes
navigation and environmental awareness by providing precise positioning
data for objects, individuals, and robots, even down to a few meters. Con-
sequently, it has spurred the development of various downstream services,
particularly in logistics, consumer applications, and robotics.

While GNSS excels in outdoor environments, where unobstructed commu-
nication with satellites enables accurate positioning, its limitations become
apparent indoors. This underscores the necessity for indoor localization
systems, which can extend outdoor applications to indoor settings and
facilitate the creation of new applications.

This doctoral thesis tackles the challenges specific to indoor environments
and puts forth practical and theoretical solutions aimed at expanding and
enhancing the implementation of positioning systems within indoor spaces.
It offers solutions tailored for both human-centric and robotic applications,
thereby addressing a wide range of needs and scenarios. Addressing these
challenges entails several aspects, such as designing wearable devices with
integrated sensors to improve navigation and localization accuracy. Ad-
ditionally, specialized algorithms are necessary to handle the localization
of multiple receivers, with scalability being a significant concern for in-
door positioning systems. Unlike GNSS, indoor systems demand precise
scheduling to prevent message conflicts during position calculations, lead-
ing to inevitable delays that scale with the number of receivers involved.
Furthermore, the need for temporary and self-deployable infrastructure
to facilitate navigation for both humans and robots within unstructured
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environments is increasingly apparent in this field, a challenge that this
thesis aims to address. Furthermore, there is a notable gap in research
concerning relative positioning systems reliant solely on ranging informa-
tion, presenting promising avenues for exploration in both human and
robotics applications. Another captivating area of study revolves around
device-free localization, which facilitates the tracking of moving entities
devoid of electronic devices. This thesis tackle these challenges and make
significant contributions to the growth of indoor positioning systems and
their applications.

The organization of this thesis is as follows:

Chapter 1 offers a concise overview of current indoor positioning technolo-
gies, outlining the challenges associated with indoor positioning systems
and methods for evaluating their performance. Additionally, an intro-
duction to ultrawide-band technology, which is utilized in this thesis, is
provided. This section discusses the advantages and disadvantages of this
technology, as well as the fundamental mechanisms for leveraging it in the
field of localization.

Chapter 2, focus on positioning systems tailored for human applications,
examining and suggesting solutions for the aforementioned issue. In par-
ticular, in Section 2.1 a customized anonymous tracking device designed for
workers and operators of manufacturing companies and logistic providers.
The device exploits a mesh UWB/BLE approach to extend the device’s
battery life without the need for a big battery. The system is able to dy-
namically discover new workers/tags within the monitoring area without
time synchronization. The tracking device also integrates an inertial and a
magnetometer module for gathering more insightful information regarding
the tracked worker, such as moving directions and orientation. Thanks
to the data provided by the tracking device, adequate data analytics can
be done to measure the interaction between workers automatically in the
different monitored factory areas. These algorithms are designed to provide
each operator a detailed assessment of her/his personal behavior during
the working shift and a risk index of the monitored processes or plant
areas to their responsible/leader. The results can be used to proceed with a
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spatial re-layout of the workplace, e.g., face-to-back or side-to-side layout
workstations [1], and/or temporal rescheduling the activities to reduce the
risk of Covid-19 contagion and diffusion at the workplace and targeted
cleaning activities based on busiest areas. The main contribution of this
sections is two-fold:

• The development and characterization of a custom wearable sensor
able to provide localization information along with orientation and
direction

• The development of an anonymous contact tracing framework to re-
duce contagion and improve the implementation of social distancing
measures.

Regarding the relative localisation system Section 2.2 aims at providing a
preliminary study to build a lightweight systems, dubbed Where Are You
(WAY), that is able to generate a common map for every agent belonging to
the WSN and removing the ambiguities given only pairwise distances. We
identify the minimal set of information needed to solve the problem and
we additionally provide an uncertainty analysis, investigating via Monte
Carlo simulations how the ranging uncertainties impact on the overall
final estimates. Finally, we propose a compact device prototype, based on
ultrawide-band technology, used for the experiments and to practically
show the technical viability of the solution.

To face with the device-free positioning system Section 2.3 presents the pre-
liminary evaluation of a radar-like localization system based on commercial-
off-the-shelf components. Our work aims to assess the feasibility of realiz-
ing an UWB-based radar exploiting the capability to estimate the CIR of
cost-effective DecaWave’s DWM1001 UWB transceiver. The validation was
done by implementing a simple mono-dimensional tracker exploiting just
two DWM1001 UWB transceivers. The relationship between target speed,
baseline, and sampling frequency of the system was assessed in different
scenarios demonstrating that an inexpensive UWB-based radar solution is
feasible.
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Section 2.4 extends the preliminary evaluation done in 2.3 of an ultrawide-
band bistatic radar in the following ways:

• We introduce a cost function to improve the estimates;

• We realised a distributed system to detect and track moving entities
in the surrounding environment;

• We developed an IoT architecture to handle and sort the data using
as much as possible the available bandwidth of the chosen UWB
module;

• We enhance the processing update rate of the receiver, improving the
maximum target velocity that the proposed system can track.

Furthermore, Section 2.4 provides a comparison with the latest generation
of UWB modules.

Finally, to solve the problem of scalability on the indoor positioning sys-
tems, Section 2.5 presents innovative DTDoA ranging techniques solving
both accuracy and scalability problems of the current state of the art. Re-
sults highlight how the systems can theoretically scale to infinity (i.e., any
number of assets can be tracked), improving the measurement accuracy
with an error in the range of 20 cm, at worst. The evaluation is carried out
in a structured indoor environment encompassing 8 Qualisys Arqus A9
high-performance cameras1 providing a position estimation with a much
higher accuracy with respect to the UWB infrastructure (down to 0.03 mm).
By using the MoCap estimated trajectory as a reference, we validated the
UWB one. Results highlights that the effect of the tag motion for the typical
human being speed, is negligible.

It’s worth noting that due to the research conducted in this thesis, Section 2.6
presents a project that emerged as the recipient of the prestigious 10th
Fondazione VRT Mountain Innovators Grant. This project delves into the
examination of how positioning systems can offer a solution to a pertinent
issue in my hometown of Trento — the dynamic between humans and
wildlife in the surrounding forests.

1https://cdn-content.qualisys.com/2020/06/PI_Arqus.pdf
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Chapter 3 discusses the integration of positioning systems into the robotics
domain, drawing insights from developments in human-centric position-
ing. It presents solutions across various domains, spanning from human
tracking to applications in space exploration.

In particular Section 3.1 presents the preliminary results of a human-robot
interaction use case in which an autonomous UAV is in charge of following
a human subject exploiting only UWB-based positioning. The paradigm
chosen for the UAV control is known as Leader-Follower and consists of an
autonomous UAV follower that plans its action from the action of a human
leader. This paradigm applies to different type of mobile robots and it is
based on the computation of a reference point placed in the neighbours of
the human being and used for scheduling its motion [2]. In the proposed
application, the human being is equipped with a single UWB transceiver
(referred to as the target or tag), while the follower is a compact 250 mm
wheelbase UAV equipped with 3 UWB transceivers (called anchors) de-
ployed in a triangular shape to avoid positioning ambiguities [3]. The main
contributions of this section are:

• An analysis of the impact of the geometric shape and baseline of
the 3 UWB anchors mounted on the follower on the accuracy of the
position estimates;

• The development of an algorithm that given the position estimates,
track the tag with desired precision;

• The development of Hardware-in-the-Loop simulations for the algo-
rithm evaluation and the integration of the proposed solution on a
commercial compact 250 mm UAV with preliminary experimental
results.

When an absolute reference frame is required for the positioning phase, it
is common to see a network of reference nodes deployed by the human
being.

From this perspective a self-deployable network is preferable, and under
this perspective Section 3.2 propose a solution that overcome infrastructure
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setup inaccuracies and provide a positioning system also for unstructured
environments, where off-line analysis is inapplicable, we developed a
method for dynamic placement and runtime extension of the infrastructure
anchors. In the discussed solution, while exploring the environment, the
mobile robot deploys new anchors to strengthen the infrastructures. Thus
the ranging sensors are self-deployable and will extend the positioning
reference at runtime during the robot exploration. Notice that this marks a
striking difference with respect to the known literature. Indeed, existing so-
lutions, e.g., [4, 5], cannot change the nodes infrastructure at runtime based
on robot needs nor can adequately leverage the ratio of information versus
uncertainty that a new added anchor injects in the multilateration problem.
Moreover, our solution is robot-centered: existing solutions usually try to
optimize the entire region as a whole, with evident computational burden
issues and difficulties in unknown or partially known environments, while
our solution is extremely light in terms of computing power and can be
computed onboard the vehicle while it explores the (possibly unknown)
environments. In particular, our solution proposes an online-incremental al-
gorithm based on a genetic approach to solve the constrained optimization
problem, which finds the most convenient placement for new anchors and
reduces the number of deployments. The algorithm keeps the maximum
target uncertainty below the user requirement, which is based on the Geo-
metric Dilution of Precision (GDoP). It has to be noted that the proposed
solution works with any metric able to express the positioning uncertainty,
but the GDoP comes handy for this purpose [6].

Finally Section 3.3 makes significant contributions to the progress in the
complex field of exploration, with special reference to planetary exploration,
including: i) the design of a distributed algorithm for Unmanned Aerial
Vehicles (UAVs) cooperative localisation; ii) the definition of a positioning
framework for multiple robots with unlimited scalability; iii) the analysis of
the uncertainties involved in the process and their experimental validation.
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Chapter 1

Unveiling the World of Indoor

Positioning Systems: An Introductory

Exploration

Positioning, encompassing the determination of locations for entities such
as humans, equipment, and robots, has emerged as an active and dynamic
research domain. Positioning systems are categorised into outdoor and
indoor types, depending on the specific environment in which a position-
ing problem occurs. Outdoor positioning unfolds in open spaces, whereas
indoor positioning is restricted to interior spaces such as homes, health-
care facilities, and shopping malls, introducing distinct challenges and
considerations.

Indoor positioning systems continuously and in real-time determine the
position of an object within a physical space, as illustrated in Figure 1.1.
IPSs employ a variety of positioning approaches, exhibiting differences in
accuracy, cost, precision, technology, scalability, robustness, and security [7,
8]. The escalating demand for precise indoor positioning has transformed
it into an active research area, yielding diverse proposed solutions [9].

Indoor positioning presents specific demands that make it radically differ-
ent from outdoor positioning. The evaluation of indoor positioning systems
revolves around four pivotal quality metrics, as outlined in [10]:
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FIGURE 1.1: Multilateration: positioning using four reference point.

• System accuracy and precision;

• Coverage and resolution;

• Latency in updating positions;

• Susceptibility to signal interference (e.g. reflections).

Indoor positioning finds numerous applications, such as the development
of indoor navigation systems for individuals with visual impairments, lo-
cating devices within buildings, assisting tourists in museums, guiding
individuals to emergency exits, tracking children in crowded areas, and
facilitating robotics in navigating shared environments with humans. The
diverse range of indoor positioning applications requires careful consider-
ation of various quality attributes, prompting the meticulous selection of
IPSs tailored to meet the specific requirements of each application. Devel-
opers of indoor positioning systems must struggle with two fundamental
questions: (1) which technologies are suitable for implementing the desired IPS?
and (2) how can we achieve an optimal equilibrium among various quality metrics
to establish an efficient IPS?

Accuracy and precision in position measurement stands as a crucial pre-
requisite for indoor positioning techniques. With ultra-wide band (UWB)
emerging as a pivotal technology demonstrating effectiveness in indoor
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FIGURE 1.2: Number of scientific documents in the five-year period
2018 − 2023.

positioning, coupled with the authorization by the Federal Communica-
tions Commission (FCC) for unlicensed UWB communications, there has
been an intensive exploration and study of civilian applications employing
UWB.

Hence, the active pursuit of developing novel algorithms to enhance UWB
positioning performance and the exploration of new applications are evi-
dent in current research trends, as indicated by the Scopus database query
(refer to Figure 1.2). There has been a significant surge in activity, partic-
ularly in 2020, likely attributed to the recent pandemic crisis, which has
underscored the importance of indoor positioning systems utilizing UWB
technology as a key solution for monitoring interpersonal distances in
confined spaces.
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FIGURE 1.3: In (a) LoS condition, in (b) NLoS condition.

1.1 Challenges of Indoor Positioning Systems

Indoor positioning differs significantly from outdoor positioning, as out-
lined in prior research [11]. The intricate nature of indoor environments
arises from the presence of numerous elements, posing challenges such as
signal reflection that give rise to multipath and delay issues. Moreover,
indoor settings frequently feature non-line-of-sight (NLoS) propagation,
hindering signals from traveling directly in a straight path from an emitter
to a receiver. This characteristic introduces irregular time delays at the
receiver, as depicted in Figure 1.3. Furthermore, the existence of objects
contributes to substantial signal attenuation and scattering. Indoor po-
sitioning encounters issues associated with signal stability, as the signal
strength is susceptible to frequent fluctuations due to the presence of numer-
ous radio-frequency interference sources in the surrounding environment,
including mobile devices, Bluetooth devices, Zigbee devices, and other
wireless devices [12].

1.2 Indoor Positioning: Systems Performance Metrics

IPSs utilize various positioning methodologies that exhibit significant varia-
tions in terms of cost, accuracy, precision, technology, scalability, robustness,
and security [7, 11, 13]. Certain applications may demand cost-effective IPS
solutions, while others necessitate high-precision IPS, as seen in medical
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tracking or industrial environmental monitoring. In the subsequent section,
we will delineate the principal features of IPSs.

• Accuracy: The concept of accuracy, refers to "the closeness of agree-
ment between a measured quantity value and a true quantity value of
a measure" [11]. Within the realm of an indoor positioning system,
accuracy is defined by the average Euclidean distance between the es-
timated and true positions [13]. While IPS accuracy holds paramount
importance across various applications, there are situations where
trade-offs between accuracy and other performance metrics must be
contemplated [11, 13];

• Availability: This denotes the percentage of time during which the
positioning service is operational, taking into account the required
level of accuracy. Typically, availability is categorised into three tiers:
1) low availability if ≤ 95%, 2) standard availability if between 95%
and 99%, 3) high availability if ≥ 99% [14];

• Coverage area: In the context of indoor positioning systems, cover-
age is classified into two levels: local and scalable. Local coverage
relates to a well-defined but limited area, such as a building, where
the coverage size is specified. On the other hand, scalable cover-
age denotes a system’s capability to expand the area by deploying
additional sensors [11];

• Scalability: Denotes the system’s capability to ensure its standard
positioning function while expanding in either of two dimensions:
area and the number of users. Scalability concerning the number of
users indicates a rise in the number of units located per time period
within a specified area.

• Cost: The cost of an IPS is evaluated in terms of money, time,
space, and energy across various system levels, including instal-
lation, maintenance, infrastructure components, and positioning
devices [8, 13]. Installation and maintenance costs encompass initial
setup and ongoing expenses, while infrastructure and device costs
include acquisition of required hardware, configuration, and energy
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usage.Moreover, efficient energy management is crucial in IPSs to
ensure service continuity and support enhanced mobility solutions.

• Privacy: Strengthening user privacy necessitates the implementation
and maintenance of security measures to protect data from unautho-
rized access, theft, and misuse.

1.3 Indoor Positioning: Systems Technologies

Indoor positioning technologies are structured into two main categories:

• Building-Dependent Technologies: These technologies hinge on the
specific building in which they operate, leveraging either existing
technologies or the building’s map and structure. The suite of tech-
nologies employing the building’s infrastructure includes 1) WIFI, 2)
cellular based; and 3) Bluetooth. Further segmentation within this
category are Technologies Requiring Dedicated Infrastructure such
as 1) radio frequency (RFID or UWB), 2) infrared, 3) ultrasonic, 4)
Zigbee, and 5) laser.

• Building-Independent Technologies: This classification encompasses
technologies that do not depend on specific hardware within a build-
ing. Examples include dead reckoning, where an object establishes
its current position based on past position, speed, and direction, and
image-based technologies utilizing cameras.

It is important to note that image-based technologies may be categorised
as building-dependent if they depend on special signs or a map within the
building. In contrast, building-independent technologies do not require
such information. Figure 1.4 provides a comprehensive overview of the
classification based on the infrastructure of the system implementing these
technologies. A brief introduction regarding each technology can be found
in the subsequent subsections.
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FIGURE 1.4: Categorazation for IPS.

1.3.1 Radio Frequency Identification

Radio Frequency Identification (RFID) employs radio waves for wireless
transmission of an entity’s identity. Mainly employed for automated identi-
fication within expansive systems, RFID operates through the exchange of
radio signals at various frequencies between readers and tags. While vari-
ous positioning methods can be employed with RFID, proximity sensing is
the most common, known as Cell of Origin, detecting the presence of RFID
tags rather than their exact position by using techniques based on received
signal strength indicators [11, 13, 15].

1.3.2 Infrared

Infrared (IR) wireless communication utilizes the non-visible spectrum of
light near the red edge of the visible spectrum. Infrared technology can
be deployed in two distinct manners: a) direct IR and b) diffuse IR. Direct
IR is illustrated by the Infrared Data Association (IrDA), which is a point-
to-point ad-hoc data transmission standard specifically designed for very
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low-power communications and short distances, supporting data rate up
to 16 Mbps. On the flip side, diffuse IR generates more robust signals
compared to direct IR, facilitating an extended communication distance,
typically ranging from 9 meters to 12 meters. Diffuse IR allows point-to-
multipoint communication (P2MP) without requiring a LoS condition [15]
by using wide-angle LEDs. Positioning methods are commonly associated
with IR technology are proximity, differential phase-shift, and angle of
arrival (AoA) [16–18].

1.3.3 Ultrasonic

Sound represents a mechanical wave distinguished by pressure oscillations
transmitted through a medium, commonly air in the context of positioning
systems. Determining the distance between nodes deployed in the envi-
ronment entails measuring the time it takes for ultrasound pulses to travel
from an emitter to a receiver. Architectures employing this approach are
referred to as active device systems and commonly utilize a multilateration
approach. This approach relies on three or more ranges to fixed receivers
at known locations, enabling the estimation of the emitter’s coordinates.
Conversely, an alternative architecture utilizes a backward signal direction,
deploying multiple static emitters at known locations and one or more
passive receivers to capture the signal, thereby enhancing flexibility and
adaptability.

1.3.4 Zigbee

ZigBee is a wireless technology standard classified as a low-rate Wireless
Personal Area Network (WPAN), specifically designed for applications that
demand low power consumption and low data throughput [11]. In free
space and LoS conditions, a ZigBee node can achieve a communication
range of up to 100 meters. However, in indoor environments, this range
typically falls within 20 to 30 meters. A ZigBee node is characterized by low
complexity and cost, incorporating a microcontroller and a multichannel
two-way radio [19]. Positioning functionalities are reached through coordi-
nation and communication with neighboring nodes. Typically, Received
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Signal Strength Indication (RSSI) values are employed to estimate the dis-
tance between nodes [11].An alternative method, proposed for determining
the distance between nodes in the ZigBee network [20, 21], utilizes the
phase shift of the reflected signal from the target node. This shift is a result
of the time delay between the target and transmitter.

1.3.5 Ultrawide-Band

Ultra-Wideband stands out as a radio technology tailored for short-range,
high-bandwidth communication, featuring robust multipath resistance and
a certain level of penetrability through building materials. These charac-
teristics make UWB particularly well-suited for activities such as indoor
distance estimation, localisation, and tracking. A standard UWB setup
comprises a radio wave generator and receivers for capturing both propa-
gated and scattered waves. A radio wave qualifies as UWB if its bandwidth
is (≥ 500 MHz) or constitutes 20% of the carrier frequency. To mitigate
interference with other radio services, the Federal Communications Com-
mission (FCC) in the USA has imposed restrictions on the unlicensed use of
UWB. This includes maintaining an equivalent isotropically radiated power
density of −41.3 dBm/MHz and confining the frequency band to 3.1 GHz
- 10.6 GHz, or 6.0 GHz - 8.5 GHz as per the European Communications
Committee (ECC) guidelines.

1.3.6 WLAN/WiFi

Indoor positioning systems utilizing WiFi technology depend on acquiring
information about the accessible wireless routers within the operational
area of the system. The most common approach for WLAN positioning is
founded on RSSI, easily obtainable in 802.11 networks and compatible with
off-the-shelf WLAN hardware [11]. Less frequently utilized methods over
this technology include Time of Arrival (ToA), Time Difference of Arrival
(TDoA), and Angle of Arrival (AoA), primarily due to challenges associated
with angular measurements and the complexity of time delays. Positioning
systems usually attain accuracy levels within the range of 3 to 30 meters, as
indicated by [13].



Chapter 1. Unveiling the World of Indoor Positioning Systems: An
Introductory Exploration

16

1.3.7 Cellular Based

The Global System for Mobile Communications (GSM) network offers
global accessibility in most countries, surpassing WLAN coverage, al-
beit with reduced positioning accuracy. GSM operates in licensed bands,
minimizing interference from devices using similar frequencies, unlike
WLAN [11]. Indoor positioning becomes viable on a mobile cellular net-
work when a building is covered by one or more base stations with strong
RSSI [13]. As documented in the literature, 5G has bring a plethora of tech-
nologies, encompassing large-scale antenna arrays, ultradense networking,
novel multi-access schemes, full-spectrum access, and a new network archi-
tecture built upon software-defined networks (SDNs). These advancements
enable the development of cellular based positioning algorithms, which are
typically classified into two primary categories: geometry-based methods
and feature matching-based methods [11, 22].

1.3.8 Bluetooth

Bluetooth serves as a standard for wireless personal area networks
(WPANs) [11]. Designed as a very low-power technology for peer-to-peer
communications, Bluetooth operates within the 2.4 GHz ISM band. Com-
pared to WLAN, Bluetooth exhibits a lower bit rate and a shorter range,
typically ranging from approximately 10 cm to 10 m [13, 19]. Proximity
and RSSI methods are commonly employed in Bluetooth technology for
position estimation [19].

1.3.9 Dead Reckoning

Dead reckoning involves estimating a position based on previously deter-
mined positions and known or estimated speeds over elapsed time, pri-
marily utilizing an inertial navigation system as the main sensor. However,
a drawback of dead reckoning lies in its cumulative inaccuracy, leading
to deviation in the position that increase with time. By incorporating a
sufficient number of absolute position updates, dead reckoning aims to re-
strict the linear growth of position errors within predetermined bounds [23].
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To enhance accuracy and minimize errors, dead reckoning must employ
additional methods to adjust the object’s position after each interval [24].

1.3.10 Image-based

Indoor positioning technologies based on images encompass camera and
computer vision-based technologies [11, 25]. Various types of cameras,
spanning from smartphone cameras and 3D cameras to 360-degree cameras,
can be utilized; however, their performance varies based on the information
obtainable from their images [26]. Image-based positioning systems can
be divided into: a) egomotion systems, utilizing the motion of a camera in
relation to a fixed scene to estimate its present position, and b) static sensor
systems, which detect mobile entities within the images.

1.4 Ultrawide-Band Indoor Positioning Systems

UWB emerges as an accurate, precise, and promising technology for real-
time inventory indoor tracking, localisation systems for emergency services,
and indoor navigation [27, 28]. It spreads radio energy across a wide fre-
quency band with low power spectral density, ensuring high data through-
put and effective signal penetration through obstacles such as walls and
objects [27]. The main application areas for UWB encompass 1) communi-
cation, 2) localisation, 3) radar [27, 29].

UWB stands out among other technologies due to its distinctive features [13,
27, 30]. It boasts a high data rate, reaching up to 100 Mbps, making it a
favorable choice for near-field data transmission. Additionally, its high
bandwidth and short pulses contribute to mitigate the multipath problem.
This characteristic permits to accurately determining the reception time
of messages between transmitter and corresponding receiver, making this
technology the preferred option for indoor positioning in comparison to
alternative technologies [19, 28, 31].

The UWB period pulse signals define the maximum observable multipath
delay, allowing for unambiguous resolution of multipath, while the dura-
tion of UWB pulses determines the resolution on the path delay.
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Unlike positioning technologies such as infrared and ultrasound sensors,
UWB technology does not need line-of-sight, thanks to the ability of its
low-frequency components to penetrate building materials. This feature is
advantageous for indoor positioning, allowing ranging under non-line-of-
sight conditions. Moreover, UWB remains unaffected by the presence of
other communication devices or external noise due to its high bandwidth
and signal modulation capabilities [32, 33]. Furthermore, UWB equipment
is cost-effective and consumes less power than alternative solutions.

Due to these characteristics, UWB has garnered attention not only from
the scientific community but also from businesses, as evidenced by the
TechNavio report forecasting a growth from 21.8 billion dollars in 2022 to
182.2 billion dollars by 2030. This reflects a compound annual growth rate
of 30.4%1.

1.4.1 Basic Measuring Principles

UWB positioning systems rely on various estimation algorithms to deter-
mine the location of objects. These algorithms are classified into three main
categories: 1) Time of Arrival (ToA), 2) Angle of Arrival (AoA), and 3) Time
Difference of Arrival (TDoA). Each of these techniques utilizes different
principles to calculate position information based on the timing or angles
of radio signals transmitted between reference nodes and the target device.

ToA algorithms measure the time taken for a signal to travel from the trans-
mitter to the receiver, providing information on the distance between them.
AoA algorithms, on the other hand, determine the direction from which the
signal arrives at the receiver, typically by analyzing the phase differences
between signals received by multiple antennas. TDoA algorithms calculate
position based on the differences in arrival times of signals at different ref-
erence nodes, leveraging the known locations of these nodes to triangulate
the position of the target device.

1https://www.researchandmarkets.com/report/ipin#tag-pos-8

https://www.researchandmarkets.com/report/ipin#tag-pos-8
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FIGURE 1.5: Angle of arrival principles.

Each of these algorithms has its strengths and weaknesses, and the choice
of which to use depends on factors such as accuracy requirements, environ-
mental conditions, and hardware constraints. In the upcoming sections, a
concise overview of each of these algorithms is provided.

Angle of Arrivals approach

Calculating the AoA involves determining the direction of a radio-
frequency wave by comparing either the signal amplitude or carrier phase
across an antenna array. This process includes measuring the TDoA be-
tween elements of the antenna array and considering the antenna’s geo-
metrical properties. The positioning feature is obtained by the intersection
of the angle lines corresponding to each signal source, as illustrated in the
Figure 1.5. AOA estimation algorithms exhibit higher complexity compared
to other methods and are highly sensitive to various factors, potentially
leading to errors in the estimation of the target position.

Time of Arrival approach

The Time of Arrival principle revolves around measuring the signal travel
time from a transmitter to a receiver. This measurement allows us to derive
the Euclidean distance between two devices by multiplying the travel time
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FIGURE 1.6: In (a) Time of arrivals principles; in (b) Time of differ-
ence arrivals principles.

by the wave speed across the medium (e.g., speed of light in a vacuum).
The drawback of this approach is its dependence on precise synchronisation
among the devices’ clocks. Even a one-nanosecond error in synchronisation
can result in a distance estimation error of 30 centimeters. To address
the challenge of tight time synchronisation, Round-Trip-Time (RTT), also
known as Two-Way Ranging (TWR), is employed. This involves measuring
the time taken by the signal to travel from a transmitter to a receiver and
back. However, this method necessitates sequential message transmission,
which may introduce significant latencies. The Time of Arrival or Round-
Trip-Time approaches for positioning functionality typically involve the
geometric intersection of circles originating from multiple transmitters, as
illustrated in Figure 1.6-(a).

Time Difference of Arrival approach

The Time Difference of Arrival (TDOA) method relies on measuring the
time difference between when a signal is transmitted by an object and its
reception by three or more receivers, as depicted in Figure 1.6-(b). Unlike
the Time of Arrival approach, the receiver doesn’t need to know the absolute
transmission time; only the time difference of arrival from synchronised
receivers is required. In 3D space, the coordinated of an emitter can be
determined from four synchronised receivers by the intersection of three
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hyperboloids. However, the precise synchronisation of all receivers remains
a prerequisite for this approach.

Given the requirements of indoor environments, which demand technology
capable of achieving accuracy, precision, and robustness against multi-
path phenomena, as well as seamless integration into various applications
with different communication schemes, UWB technology emerges as the
most promising solution. In this thesis, we address positioning systems
for both humans and robots, necessitating flexibility, compactness, and
adaptability in the implementation of positioning solutions. Leveraging
commercial UWB modules, this thesis explores the diverse applications
of this technology, demonstrating its potential as a viable and assistive
solution.
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Chapter 2

Human-Centric Positioning Systems:

Enhancing Spatial Awareness and

Navigation

In light of what we have seen so far, Ultra-Wideband technology emerges
as a compelling solution for calculating distances among individuals. This
innovative approach presents a promising avenue for addressing the spread
of the Covid-19 virus during the pandemic, which has instigated significant
changes in various aspects of billions of people’s lives worldwide. One of
the most relevant changes was the temporary interruption of the production
activities of many manufacturing companies. At the same time, however,
most of the logistic providers could not reduce their operations. Instead,
during the 2020 lockdown, they faced a remarkable increase in the required
delivery orders, particularly by private citizens forced to stay at home.
However, both these scenarios are distinguished by the same criticalities
determined by the necessity to fully operate after the first wave of Covid-19
diffusion coping with the eventual virus presence at the workplace. This
particular circumstance generates on the manufacturing and logistics com-
panies’ non-decreasing productivity while guaranteeing workers’ safety
and health.

Unfortunately, guidelines widely promoted to prevent Covid-19 contagion
at the workplace were not enough if left alone [34]. In fact, during the
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first wave of Covid-19 from March to May 2020, more than 50’000 Italian
workers get infected at the workplace, while a German area of 500’000 pop-
ulation experienced a second lockdown due to a new hotbed of coronavirus
originated in a slaughter industrial plant. Similar mass contaminations in-
side a factory were also experienced even in the UK and USA [35]. It is clear
that further organizational and technological measures are fundamental
and largely asked to be developed to ensure employees’ safety and protect
their health during the necessary working activities [36, 37].

Proper technologies could be of substantial help to reach such a funda-
mental goal [38]. In particular, Internet of Things (IoT) solutions combined
with Indoor Localization Systems (ILS) could offer relevant and remarkable
opportunities. ILS or Real-Time Location Services (RTLS) are known to be a
set of hardware/software architectures developed to provide the location of
a tagged entity in a specific time frame, usually within a building or other
contained area [39]. These technologies are typically leveraged to trace
the evolution of tagged entities’ positions over time, thus evaluating their
spatial movement inside a monitored area or facility [40]. In the literature
we can already find several implemented architectures, exploiting differ-
ent communication technologies; including, Bluetooth [41], ZigBee [42],
ultrasound [43], vision [44], infrared [45], Wi-Fi [46], RFID [47], and more
recently ultra-wide-band (UWB) [48].

RTLS is an emerging technology for manufacturing and logistic companies
that recently began to adopt it for multiple purposes [49]. For example,
RTLS is used to monitor the actual travel paths of human-driven forklifts
between the isles of warehouses [50], to identify the current location of
missing parts or components of manufacturing processes, and to ensure
the operator safety avoiding their entrance in dangerous areas of industrial
plants [51]. UWB is considered one of the most promising technologies for
high-precision ILS due to a number of desirable advantages like low-power
capabilities, centimeter-level resolution, robustness to multi-path effect,
and a certain degree of obstacle penetration capability [52].

In their pioneering work, Cheng et al. [53] proposed the utilization of
RFID-Based Real-Time Location Systems (RTLS) technologies to mitigate
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the risk of epidemic outbreaks, specifically addressing the SARS pandemic
within a Hong Kong hospital setting. A parallel approach has been recently
introduced by Ho et al. [54], who applied a similar strategy to avert potential
patient-to-medical-staff contagion, thereby safeguarding the well-being of
hospital employees during the Covid-19 outbreak in Singapore.

Contrary to these efforts, various solutions, such as smartphone applica-
tions like Tabaud, Aarogya Setu App, TraceTogether, COVID Safe, Immuni,
and COVID Watch [55], rely on Bluetooth beaconing or GPS positioning,
rendering them unsuitable for achieving precise indoor localization. Ad-
dressing the inherent accuracy limitations associated with Bluetooth and
RFID technologies, Istomin et al. [56] proposed the use of Ultra-Wideband
technology to develop a robust contact tracing system. Their work intro-
duces a comprehensive hardware/software architecture based on a UWB
Indoor Localization System (ILS), aimed at preventing COVID-19 contagion
in industrial environments through anonymous contact tracing.

Among the solutions outlined above, the most promising one involves
harnessing UWB technology. This approach leverages a predeployed net-
work of UWB nodes, referred to as anchors, serving as reference points
for multilateration-based techniques. Although categorized as an absolute
localization system, it is noteworthy that our focus may not necessarily be
on determining the absolute positions of receivers. Instead, our emphasis
may lies in establishing relative positions with respect to other nodes, es-
sentially realizing a relative localization system. This entails the creation of
a Wireless Sensor Network (WSN) among the mobile nodes, eliminating
the necessity for a predeployed infrastructure.

WSN are becoming a reality in many application fields, manly due to the
ever decreasing cost and reduced and effective power consumption. Low
energy radio frequency modules for data transmission make WSN a viable
solution for, e.g., health care [57], assisted living [58], fitness monitoring [59],
building automation [60] and security [61] application scenarios.

WSNs have been widely applied to tracking and positioning systems. This
is witnessed by the large literature solutions available in the field, where
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the adopted technologies range from ultrasound [62] to visible light [63],
WiFi [64] to ultrawide-band [65–69]. One emerging problem in this research
area refers to relative localisation, that is localising the nodes of the network
with respect to each other but without a fixed, external and global reference.
In such a case, each node has to reconstruct the location of all the other
nodes with respect to a local reference. Application scenarios where this is
turning to be quite useful are coverage, deployment and routing, especially
if they are carried out autonomously by either human beings or robots.

Given that one of the most effective measurements obtainable from WSN
nodes is the relative distance between a pair of node, utilizing techniques
such as time-of-flight [70] or RSSI [71], distance-based solutions are com-
monly applied to tackle the challenge of relative localization. These solu-
tions employ diverse methodologies, including trilateration, multilatera-
tion, and multidimensional scaling (MDS) [72–74].

The MDS algorithm, in particular, represents dissimilarities within the
data as distances in an N -dimensional space, creating a map of the mea-
surements. In the realm of robot localization, MDS finds extensive use in
constructing relative maps of agents when the system lacks reliance on an
external infrastructure [75]. Although MDS is a straightforward approach,
it contends with geometric ambiguities, limiting the map estimation to
isometric transformations, a common drawback shared by various relative
localization algorithms.

The problem of relative localisation and tracking has been addressed ex-
tensively using the MDS algorithm for robotic applications in conjunction
with known positions of some team members. For example, in [72, 76], the
authors extend and generalise the MDS algorithm including the knowledge
of some nodes positions. In [77, 78], the geometric ambiguities are miti-
gated by the knowledge of the node velocities, which are used to correlate
the relative maps at two consecutive time instants. A similar problem is
investigated in [79, 80] considering the additional complexity enforced by
the partial connectivity between the nodes. In [81], the authors build a coop-
erative navigation for coordinated-team based on dead reckoning, ranging
data and particle filters, while [82] uses inter-node range measurements and
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odometry data to estimate the nodes positions. Wenchao et al. [83] address
the ambiguity problem by letting one agent to move and using the displace-
ment vector computed via inertial information to produce an analytical
solution for the ideal noise-free case. All the presented literature entries
are based on the (partial) knowledge of a subset of the node positions, thus
automatically solving the roto-translation and flipping geometric ambigui-
ties, or mitigating the inconsistencies induced by the MDS algorithm fusing
additional available data, such as velocity and acceleration, to the ranging
measurements. In situations where ranging measurements serve as the sole
source of information, it becomes apparent that existing solutions may not
be applicable. This characteristic not only streamlines the computational
and communication aspects of the nodes but also results in inherent power
savings for the nodes.

The prospect of a solution relying solely on ranging measurements opens
up the possibility of its application to scenarios involving human subjects
equipped with ranging sensors, navigating through either structured or un-
structured environments. Examples include groups of individuals hiking in
the mountains, families attending large public events, or patrons exploring
a vast shopping mall. In all these instances, the knowledge of members’
locations becomes a critical safety factor.

Up until now, the approaches we have discussed depend on the collabora-
tion of individuals who are equipped with either active or passive electronic
devices, seamlessly integrated into UWB networks. However, there specific
application scenarios, such as surveillance or patient monitoring, where
we can not - or do not want to - equip the entity to be tracked with an elec-
tronic device. In those scenarios, device-free approach is getting increasing
attention as a solution that offer the flexibility of not equipping an entity
with electronic, paying a small cost in term of accuracy.

As a direct result of the escalating interest in this domain and the substantial
advancement of wireless technologies, there has been a surge in the devel-
opment of innovative indoor positioning technologies and algorithms [84].
Notably, many of these technologies are categorized as device-based, indi-
cating that the tracked agents need to be outfitted with active devices to
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determine their spatial location.. This approach takes the name of Device-
Based-Localization (active localization). While these solutions still cover a
key role as positioning solutions [85], a significant amount of work has also
been dedicated to the development of Device-Free (DF) methods [86]. DF po-
sitioning systems localize targets within an environment without the need
for target-mounted sensors. This approach is particularly useful in all the
scenarios where we can not – or do not want to – fit an active device on the
entity we want to track and takes the name of Device-Free-Localization [87]
(passive localization). Multiple applications in the literature exploit passive
localization, intrusion detection, assisted living, customer and/or worker
tracking, and smart-home monitoring.

Passive localization techniques have the potential to greatly increase in
number in the coming years [88], as the advantages of not using a target-
mounted device will outweigh the loss of precision of passive systems with
respect to active solutions [66, 67, 89, 90]. Device-Free localization can
be implemented in multiple ways and can mainly be divided into 3 big
classes [91]: 1) RF-Based; 2) Light-based; 3) Acoustic-Based. In the literature,
we can find passive localization infrastructures that have been realized by
using cameras [92] or by detecting changes in the infrared spectrum of
the analyzed environment [93]; by tracking echos of ultrasonic signals in a
sonar-like fashion [94, 95].

Apart from the prominent radar systems developed at the beginning of the
20th century, contemporary research interests in device-free localization,
particularly in indoor and IoT applications, freshen by low-power radio
systems and human-centric services. A comprehensive exploration of IoT
localization methods is available in [96]. The Ultra-Wide-Band technology
stands out among RF-based techniques due to its recognized robustness
against multipath effects [97] and compatibility with various radio commu-
nication technologies.

An in-depth analysis of the UWB radio frequency spectrum, particularly
addressing the Channel Impulse Response (CIR), enables the localization
of moving objects within the propagation area. The CIR, representing
signal power at different time delays, provides insights into the various
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paths a signal takes from a transmitter to a receiver. UWB radar systems
leverage this information to detect objects based on the trace identified in
the measured CIR.

An interesting approach involves employing UWB sensors in a radar-like
system inspired by the concept of pulsed radar, as elucidated in [68, 98]. In
an RF-flooded environment, the movement of entities induces disturbances
on the RF spectrum, allowing the detection of the target’s location. This
method, termed multipath-assisted localization, relies on detecting RF scat-
tering sources using multipath components or the originally transmitted
signal. To implement this technique, an analysis of the RF spectrum of the
static environment is required to establish the background model. Upon the
entry of a moving entity, the background and RF spectrum are compared
to localize the entity by observing CIR time variations. Signal reflections,
known as Multi-Path Components (MPC), are replicas of the original sig-
nal reaching the receiver side with an unavoidable delay. While MPCs
are generally considered noise in localization, target-originated MPCs are
pivotal in device-free systems, often termed multipath-assisted localization
techniques. These solutions rely on evaluating the CIR, representing the RF
channel’s status through the magnitude and phase of the MPCs. Once the
background contribution is computed, variations in the CIR can be corre-
lated with the motion of entities in specific positions, enabling Device-Free
Localization (DFL).

Until now, the indoor positioning approaches discussed share a common
drawback: scalability. This aspect distinguishes positioning systems based
on GNSS from indoor positioning systems utilizing the aforementioned
technologies, as it pertains to the effective tracking capacity of nodes, or
in other words the scalability of the system. This poses a big problem due
to the necessity of scheduling all nodes in the network to prevent conflicts
in transmitted messages. The requirement for scheduling translates into
a maximum number of nodes that can be tracked before saturating the
bandwidth of UWB networks. Furthermore, this imposes an update rate
on localization that is contingent on the number of nodes involved in the
network.
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FIGURE 2.1: In (a) the traditional UTDoA approach where the tag
emits the broadcast message, thus limiting the scalability of the sys-
tem. In (b) the implemented DTDoA approach, where the anchors

emit the messages used by the entity to localisation awareness.

In the case of RF-based localisation systems, the fundamentals ranging tech-
niques to estimate the distance from two nodes are: Received Signal Strength
(RSS); Time of Arrival (ToA); Time Difference of Arrival (TDoA) and Angle of
Arrival (AoA). ToA and TDoA ranging techniques are the most commonly
used. In ToA, two different communication schemes can be implemented:
Single-side (SS) or double-side (DS) two-way ranging (TWR) [99]. With
TWR, a synchronisation mechanism between nodes is not required. In
fact, accurate calibration of the crystal oscillators is sufficient to achieve the
desired accuracy, especially in SS-TWR. The maximum achievable measure-
ments data rate [100] is one of the major drawbacks of TWR, and it depends
on the number of messages that the tag has to exchange with the anchors.
To overcome this issue, the TDoA approach has been proposed. In this case,
a crystal oscillator trimming is not enough to achieve the desired accuracy
because a tighter synchronisation between the nodes is required. As for the
ToA approach, also for TDoA two possible schemes can be implemented. A
centralised, or uplink, TDoA (UTDoA) and a decentralised, or downlink,
TDoA (DTDoA). Figure 2.1 presents the DToA and UTDoA approaches.
In the first approach, a tag emits a UWB signal, and the difference in the
reception times at the anchors side is used to calculate the position of the
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tag with respect to a reference point [101]. On the contrary, the second
transmission scheme mimics a common GPS. The anchors – as the satellites
– continuously broadcast timestamped messages that can be received by
listening tags/robots. The Uplink Time Difference of Arrival (UTDoA)
communication protocol assumes that position information is stored on the
infrastructure side, which can be problematic in some applications, e.g.,
robotic swarm. Sharing position information among all robots can add
unnecessary overhead to the estimation process, and installing a router to
create a sink node may not always be feasible. The proposed solution is a
distributed system where information resides directly on the tag, allowing
each entity to choose the right update rate for its calculation without being
affected by other tags accessing the information. Notice that the proposed
approach generalises the UTDoA, since each entity can in case share the
information with the infrastructure, thus resuming the UTDoA paradigm.

In [102, 103] authors developed a DTDoA system, where a tag can deter-
mine its position with respect to a reference point exploiting the concurrent
ranging (i.e., anchors simultaneously emit a UWB signal). Unfortunately,
due to hardware limitations and the precision of the timestamps, the sys-
tem can achieve a maximum position accuracy in the order of a couple
of meters. To mitigate this problem in [104] the authors exploit the idea
that each anchor sequentially blinks a message, reducing the error on the
estimated position below 1 meter.

The next sections delves into the methodologies for implementing the
previously described solutions, providing a theoretical perspective and pre-
senting simulative and experimental results. The discussion encompasses
various aspects that influence the accuracy of UWB-based systems. The
evaluations of applications below explore strategies to optimize the place-
ment of solutions within energy budgets and address scalability concerns.
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2.1 The Absolute Localisation System’s Role in Safeguard-
ing Industrial Environments

This section introduces an anonymous tracking device tailored for workers
and operators in manufacturing and logistics sectors. Utilizing a mesh
UWB/BLE approach, the device conserves battery life without requiring
a large battery. It dynamically identifies new workers/tags within the
monitoring area, independent of time synchronization. Additionally, the
device integrates inertial and magnetometer modules to gather comprehen-
sive data on the tracked worker’s movements and orientation. This data
facilitates detailed analytics to assess worker interaction and measure risk
levels in various factory areas automatically. Algorithms provide operators
with personalized behavior assessments and risk indices for monitored
processes or plant areas. Findings can be used for spatial re-layouts of
the workplace and temporal rescheduling activities to minimize Covid-19
transmission risks.

2.1.1 Data analytics for COVID-friendly re-layout

The developed ILS based on the mesh approach is adopted to tackle the
COVID spread in workplaces and contagion among operators. For an
effective and proactive countermeasure, it is necessary to define in which
area, department, or workspace the proposed technology must be used.
Then, the anchors must be properly displaced in the monitored layout to
avoid possible NLOS problems. Consequently, to ensure a correct COVID
safeguard system, each operator involved must wear the developed BLE-
UWB tag on her/his belt like a pager or like a pendant badge for the entire
shift duration. It is relevant to underline the peculiarities of wearing such
devices by workers. Indeed, it would be likely to encounter some reluctance
or aversion to such ILS for multiple reasons, from fears of being constantly
monitored by the employer to worries of potential health damage due to
radio propagation. Thus, several measures have been conceived to mitigate
these barriers as:
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• participatory design or co-design to involve the final adopters (work-
ers) since the early stages of tag definition to integrate in its design
their possible requirements;

• involvement of operators on voluntary basis and informed consent
to provide them with all the necessary information about potential
effect on the health of the adopted BLE and UWB technologies as
well as the usage and access to the data collected by their tags.

• compliance to GDPR requirements for data protection and utilization.
In particular, the data collected data by the ILS are not managed
by the company in which the ILS is installed and are secure-by-
design. In fact, the report generation is provided to the company in
an anonymous and aggregated manner, to ensure the highest privacy
requirements to the end-users (i.e., the workers).

The proper adoption of the proposed mesh based ILS enables to collect at
worker level a set of precious information to prevent and limit the COVID
contagion at the workplace. In particular, the proper combination of BLE
and UWB allows recording relevant data only in risky circumstances for
COVID contamination, i.e., the distance between two or more workers
wearing the tag, is less than a specific safety fence (e.g., 2.0 meter). For
every time instant in which this safeguard condition is not satisfied, the ILS
records a set of information for every operator:

• Indoor location (e.g., occupied area, zone, or workplace with accurate
positioning on facility layout).

• Distance between the other workers at decimeter accuracy (e.g., 0.8
m).

• Absolute orientation of the worker (e.g., north-west).

• The timestamp of the human contact (e.g., 13/07/2020-10:04:37).

All the information is locally recorded on the worker’s tag. Data are further
processed overnight by customized data analytics algorithms to extract
value and provide risk assessment measures daily. In particular, the core
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TABLE 2.1: Possible classification of risk level for COVID contami-
nation at workplace.

Risk Level
Work Process Feature Low Medium High

Worker contact
duration [min] <1 1-5 >5

Worker contact
distance [m] >2 1-2 <1

Worker Contact
orientation

Back to
back

Shoulder to
shoulder

Face to
face

Workspace
ventilation Substantial Limited Absent

Worker density at
workplace [m2/worker] >4 2-4 <2

of the proposed method consists of comparing the multiple information
generated by the worker contacts that occurred during the shift with the
layout characterization and the risk factors. Concerning the former, it is
necessary to define the most relevant features of the monitored working
spaces as their ventilation and the available area in square meters. For
the latter, the classification of risk levels must be defined to let the data
analytics algorithms automatically assess the COVID contagion risk at
the workplace. An example of processed classification is proposed in the
following Table 2.1. The aim of the developed data analytics is threefold,
and it is summarized in the following. It is important to underline that
its purpose is not only the damage containment (number of infected co-
workers) in case of an adverse event (employee positive to COVID), but
also the prevention of possible contagions by reducing their probability of
occurrence.

1. Prevention of COVID contagion by assessing individual behav-
ior. The system generates a personalized daily report that can be
consulted privately only by each employee, indicating the activities
done during the day and where he has been considered at risk of
possible COVID contagion. (e.g., at 4:07 p.m., he/she worked for 8
minutes near the test bench with an anonymous colleague at 0.9 m
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distance with face-to-face orientation). The daily feedback gives use-
ful guidance to each worker to improve his/her personal behavior at
the workplace to protect his/her own health and the community.

2. Prevention through COVID-friendly re-layout. It provides a report
to the manager/responsible/head of the working area (e.g., ware-
house, production plant, office, laboratory, etc.) about the riskiness
of the work activities done by his/her employees. This assessment is
carried out automatically and quantitatively at fixed intervals (e.g.,
daily/weekly), evaluating the real interactions within the considered
workplace. Thus, the manager is enabled to assess which corrective
action to take to reduce the risk of COVID contagion in his/her work-
ing area of responsibility (e.g., changing the layout of the workplace,
rescheduling the production activities, etc.).

3. Reconstruction of the COVID contagion chain. In the unfortunate
event that a worker in the facility should test positive to COVID, it
would be possible to objectively and accurately trace all the interper-
sonal contacts that she/he had in the different facility areas in the
time window of coronavirus incubation (e.g., 14 days). By leveraging
the information collected in the previous days, it would be possible
to assess the risk of infection of his/her colleagues accurately for
each of them (e.g., personal contact lasted 7 mins, 0.7 m distance,
face-to-face orientation, in a small and airless area, etc.) and proceed
to the quarantine/medical tests of the employees most at risk of
contagion.

2.1.2 Indoor localization System Architecture

An Indoor Localization System (ILS) is a framework that allows to localize
an entity, in a given area, as the GPS system normally permits outdoors.
There is no standard in terms of the wireless spectrum for indoor posi-
tioning due to all the various types of complex indoor environments and
different technologies available.
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FIGURE 2.2: Wearable Sensor schematic block diagram.

UWB is considered one of the promising technologies for high-precision ILS
due to a number of desirable properties, including low energy consump-
tion, centimeter-level range resolution, immunization to multipath, and
certain obstacle penetration capability [52]. However, the UWB localization
accuracy deteriorates when the signal propagates under non-line-of-sight
(NLOS) conditions, like the case of a harsh industrial environment. There-
fore, NLOS identification and mitigation have been a popular research topic
in UWB localization [105].

A possible strategy to reduce the probability of NLOS condition is to split
the environment that we want to monitor into smaller areas covered by
different anchors’ sets. In this way, the probability of working under NLOS
is lower, making the system more robust and accurate. However, this
approach requires the ability to discover new tags that can arrive from
different sub-area dynamically. Therefore, the proposed tracing framework
implements a dynamic node discovery and positioning strategy, allowing
adequate flexibility and scalability.
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Hardware

The wearable sensor’s schematic block is presented in Figure 2.2. As can
be noted, it is based on a nRF521 low-power MCU from Nordic Semi-
conductor with integrated Bluetooth functionalities. The MCU is then
connected using SPI communication to a DWM1000 module, a fully in-
tegrated single chip Ultra Wideband low-power low-cost transceiver IC
compliant to IEEE802.15.4-2011. These two modules are provided by Qorvo
DWM1001C2 compact SoM. To detect the moving direction and orientation
of the sensor, the device integrates respectively a LSM6DSOX3 low-power
6D digital accelerometer and gyroscope and a LIS2MDL4 low-power 3-axis
magnetometer. The sensor also integrates a battery charger and a buck
power module to provide a stable power line to the DWM1001 SoM and
inertial sensors.

Software

The firmware implemented is presented in the flowchart in Figure 2.3 and it
is mainly divided into two phases: 1) Node discovery; 2) Node Localization

1. Dynamic Node Discovery: A master anchor coordinates and sched-
ules the operations to avoid radio collisions and to permit the dis-
covery of new nodes. This, however, poses tight constraints on the
tag’s battery life, as it must always be in receiving mode waiting for
commands from the master anchor that coordinates the network.

The developed wearable sensor presents different approaches that
can be exploited by the master anchor to discover new nodes. The
first one is implemented using only the UWB radio and a periodic
message sent by the master anchor. The second one exploits the
BLE capabilities of the DWM1001 module to discover new nodes
periodically.

1https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52832
2https://www.qorvo.com/products/p/DWM1001C
3https://www.st.com/en/mems-and-sensors/lsm6dsox.html
4https://www.st.com/en/mems-and-sensors/lis2mdl.html
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FIGURE 2.3: ILS flowchart. On the left the wearable sensor’s
flowchart. On the right the infrastructure flowchart

In the presented implementation, the wearable devices are periodi-
cally discovered by leveraging BLE Advertising and Scanning func-
tionalities. The discovery window is set to 750 ms to increase the
probability of discovering all the nodes in the monitored area before
the localization phase.

This strategy avoids keeping the UWB radio in RX mode all the time,
and reduces remarkably the wearable tag’s energy requirements. In
turn, we can achieve the same lifetime with a smaller battery, making
the tracking device more compact and less intrusive while worn.
The result is a 50 × 55 × 20 mm device. The prototype is showed in
Figure 2.4.

2. Node Localization: Different approaches exist to estimate a tag’s
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FIGURE 2.4: Wearable Sensor prototype.

location. Most of the time, they are based on ranging techniques that
involve exchanging UWB packets between tags and anchors. These
techniques can mainly divide into two methods, Time of Arrival and
Time Difference of Arrival. Time of Arrival is the simplest method
that can be used to estimate a position [106]. This approach, however,
is not suitable for implementing a battery-powered contact tracing
system. This due to the large number of messages required to be
exchanged between the anchors and the tag to complete a localization
cycle.

To enable the capability of tracking simultaneously multiple tags we choose
to implement a TDoA approach. TDoA architectures are mainly divided
into two categories [107] [108]:

1. Centralized In this architecture, a tag emits a signal that is received
simultaneously from the anchors. Thanks to a tight synchronization
among the anchors, a difference in reception times of the signal with
respect to the reference anchor are used to compute the tag’s location.

2. Decentralized. In this architecture, a signal is emitted from the
anchors. The difference in time of signals reception at tag side is used
to estimate the position.
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FIGURE 2.5: Power consumption trace of a single execution discov-
ery and localization tasks exploiting only UWB radio. As can be
noted, the tasks take around 25 ms to complete (without considering

the INIT phase executed only once at startup).

Since the tag location information has to be collected by the infrastruc-
ture, we choose to implement a centralized TDoA architecture. Finally,
to improve the accuracy of the system, we created an anchor-redundant
infrastructure.

2.1.3 Evaluation

Figure 2.5 and Figure 2.6 present the power consumption traces of a tag.
Figure 2.5 shows the current consumption when both discovery and local-
ization tasks are implemented using only the UWB radio. Figure 2.6 shows
the current consumption for the mesh approach that uses the BLE radio
for node discovery and the UWB radio for the localization. A drawback
of this approach is the maximum achievable location update rate. In the
case of a pure UWB approach, we can achieve up to 40 Hz refresh rate,
while the mesh approach can update measurements at 1.6 Hz rate, which is,
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FIGURE 2.6: Power consumption trace of a single execution of dis-
covery and localization tasks exploiting both BLE and UWB. As
can be noted, the tasks take around 600 ms to complete (without

considering the INIT phase executed only once at startup).

however, enough for the COVID risk assessment service. This can also be
noted by comparing Figure 2.5 and Figure 2.6 that present the time needed
for a single cycle of node discovery and localization. Even if the localization
update rate is lower, the proposed mesh approach allows to gain much
higher energy efficiency. For example, in an 8-hour shift, the BLE discovery
mechanism reduces battery usage by 65%. Finally, Figure 2.7 presents a
preliminary example of the report generated by the proposed work.

2.2 Navigating Spaces: an UWB Relative Localisation Sys-
tem for Pedestrians with Ranging Information

This section aims to conduct an initial investigation into developing a
lightweight system, named Where Are You (WAY), capable of creating a
shared map for every person within the network and resolving ambiguities
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FIGURE 2.7: Example of a report generated starting from the data
provided by the proposed system. The orange track shows a tag that
implements both discovery and localization using UWB, while the
blue one is a tag with a mesh approach. The system detects real-time

risk of contagion due to the small distance between employees.

outlined in the introduction of Chapter 2 using only pairwise distances.
We determine the minimal information required to address the issue and
conduct an uncertainty analysis, utilizing Monte Carlo simulations to as-
sess how ranging uncertainties affect final estimates. Furthermore, we
introduce a compact device prototype, utilizing ultrawide-band technology,
for experimental purposes to demonstrate the technical feasibility of the
solution.

2.2.1 Background and Problem Formulation

Let us consider a set of nodes distributed in a certain area, representing
a group of mobile agents (i.e., from now on, each agent is assumed to
correspond to one node). We can describe each node by its unknown
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coordinate Ni and orientation γi, i.e.

N =
[

N0 · · · Nn

]
=

[
x0 · · · xn

y0 · · · yn

]
,

γT =
[
γ0 · · · γn

]
.

(2.1)

Let us assume that the i-th node has access to the distances

ρi,j = ∥Ni − Nj∥ =
√
(xi − xj)2 − (yi − yj)2, (2.2)

so that the symmetric squared Euclidean matrix

D =


0 ρ2

0,1 . . . ρ2
0,n

ρ2
1,0 0 . . . ρ2

1,n
...

...
. . .

...
ρ2

n,0 ρ2
n,1 . . . 0

 , (2.3)

can be built. Using the double centring matrix

H = In+1 −
e eT

n + 1
, (2.4)

where e eT = 1n+1 × 1T
n+1, 1n+1 is a column vector filled with n + 1 ones

and In+1 is the identity matrix of dimension n+ 1× n+ 1 to transform (2.3),
we obtain the Gram matrix

G = −1
2

HDH, (2.5)

that turns pairwise Euclidean distances into pairwise inner products of vec-
tors. Let us define with P = [p0, p2, . . . , pn]T the matrix of node coordinates
that generates the symmetric Euclidean matrix in (2.3) and that is a replica
of N in (2.1) but affected by the geometric ambiguities. In order to derive P,
the following optimisation problem has to be solved

arg min
P

||G − PPT ||2. (2.6)
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FIGURE 2.8: MDS algorithm may generate an ambiguous map (pur-
ple squares), resulting in a wrong final reciprocal position recon-

struction.

The solution to (2.6) is given by the eigen-decomposition of (2.5), i.e.

P =
[

p0 · · · pn

]
=

[
x̃0 · · · x̃n

ỹ0 · · · ỹn

]
= U

√
V, (2.7)

where V is the diagonal matrix of the eigenvalues, U the eigenvector matrix
of G in (2.5). As aforementioned, the points P are affine transformations of
the original set N, i.e., the points in P are rotated and/or flipped versions
of the points in N and both verifying the distance matrix D. More precisely,
if there exists an angle θ ̸= 2kπ with k ∈ N such that

N =

[
cos θ − sin θ

sin θ cos θ

]
P = R(θ)P (2.8)

then a rotation ambiguity occurs. The flipping problem takes place if

N = ±
[
−1 0
0 1

]
P = ±SP. (2.9)

An example of geometric ambiguity is reported in Figure 2.8.
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Problem formulation and solution overview

Given, ∀i = 0, . . . , n, the ranging measurements ρi,j + ηi, where ρi,j is given
in (2.2) and where ηi,j are the ranging uncertainties, we want to estimate
the location of all the nodes N̂ in a local reference frame centred in one
agent, say N0.

In order to tackle this problem, we first derive an estimate of P̂ of the points
P, solution of the minimisation problem (2.6). Then, we infer R(θ) and
α ∈ {−1, 1} such that

N̂ = R(θ)αSP̂. (2.10)

For the this second step, we will use minimalistic information, that is the
fact than only one agent, say N0, moves and we assume the knowledge
of its turning direction, i.e., if it turns clockwise and counter-clockwise.
We will prove that this information is necessary and sufficient to solve the
problem at hand. It is worthwhile to note that this information does not
need a precise measurement, but just an indicator.

2.2.2 WhereAreYou: the WAY Algorithm

Let us consider three consecutive time instants, i.e., k, k + 1 and k + 2, in
which the moving node N0 starts from position Nk

0 and moves towards
Nk+1

0 = Nk
0 + tk and Nk+2

0 = Nk+1
0 + tk+1, where tk = [∆xk, ∆yk]

T and
tk+1 = [∆xk+1, ∆yk+1]

T are two generic translation vectors, both different
from zero (see Figure 2.8). Given the measurements ρi,j + ηi,j for such three

consecutive time instants, it is possible to build the matrices Dk, Dk+1, Dk+2

described in (2.3) (we use the · notation to denote the measurement results
or the function of the measurement results). As described in Section 2.2.1,
it is then possible to compute P̂k, P̂k+1 and P̂k+2, solution of the optimal
problem (2.6) given by (2.7).

Then, we first translate P̂k centred with respect to the moving agent 0, i.e.,
P̂k = P̂k − p̂0,k, and then we align P̂k+1 to P̂k by solving the following
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the other nodes. Back-projecting T reconstruct the moving node

displacements tk and tk+1.

optimisation problem

arg min
θ,T

P̂ = Pk − (R(θ)αSPk+1 + T), (2.11)

where θ and T describes the roto-translation between the two sets of points.
The situation after this step is depicted in Figure 2.9: the moving node 0
at step k and k + 1 computes the other nodes’ position and centre P̂k to
P̂k+1 on itself. From the node 0 view point, the displacement tk it had taken
is exactly the translation T in an opposite direction (see Figure 2.9). As a
side effect, the solution of Equation (2.11), once applied also to the points
P̂k+1 to P̂k+2 returns the sequence of motions, i.e. the path, the node 0 has
travelled. In essence, we have solved the problem of the localisation of
node 0 in the relative frame (i.e., the one centred on the estimated initial
position p̂0,k) and have solved the mapping of all the other nodes.

However, as discussed in the previous section and explicitly reported
in (2.10), the roto-translation does not solve the problem entirely. Indeed,
the flipping problem, modelled by α and S remains untouched, whatever
is the number of measurement collected, as described in the following
theorem.
Theorem 1. Given a set of m > 0 node 0 motions, i.e., Nk+q

0 = Nk+q−1
0 +

tk+q−1, with q = 1, . . . , m, it is not possible to determine αS if no knowledge is
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given about tk+q−1.

Proof. Let us consider the set N in (2.1) and its flipped version N = αS.
Since ∥x∥ = ∥αSx∥ (indeed, ∥x∥ =

√
xT x =

√
xTSTααSx), it turns out that

∥Nk+q
0 − Ni∥ = ∥αS(Nk+q

0 − Ni)∥ = ∥Nk+q
0 − Ni)∥,

which is true for q = 0, . . . , m and for an arbitrary number of nodes in
the network, i.e., ∀i = 1, 2, . . . . This case is depicted in Figure 2.8. As a
consequence, given the relative distances (2.2), we obtain the same set of
matrices (2.3), hence the same solutions to (2.11). Therefore, without any
knowledge about the translations tk+q−1, it is not possible to retrieve αS,
which concludes the proof.

One immediate consequence of Theorem 1 is that (2.11) can only estimate
the roto-translation but not the flipping. This situation is depicted in Fig-
ure 2.10, where roto-translated locations Ni are removed by the solution
to (2.11). The following corollary, instead, expresses the minimum amount
of additional information needed to solve the flipping problem.
Corollary 2. Given a set of two node 0 motions, i.e., Nk+q

0 = Nk+q−1
0 + tk+q−1,

with q = 1, 2, it is possible to determine αS if the sign of the angle β =

arctan ∆yk+1−∆yk
∆xk+1−∆xk

, i.e., the relative angle between tk and tk+1, is known.

Proof. The knowledge of the sign of the angle β is equivalent to the knowl-
edge of the change of direction for the moving agent, i.e., if it is rotating
clockwise or counter-clockwise. It is evident to note that a flipping oper-
ator as αS transform clockwise rotations into counter-clockwise ones: the
knowledge of the sign of β, hence, removes the flipping ambiguity.

The proof of Corollary 2 is clearly depicted in Figure 2.10, where the flipped
locations ′Ni are removed by the knowledge of the angle β: indeed, to
be consistent with the distances among the nodes ′Ni, the moving node 0
should rotate clockwise from ′Nk+1

0 to ′Nk+2
0 . The fact that the node has

moved in counter-clockwise direction (motion between Nk+1
0 and Nk+2

0 ),
removes the flipping ambiguity.
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2.2.3 Uncertainty analysis

To analyse how the ranging uncertainties impact on the final computation,
we model the relative distance uncertainties ηi,j as a white, stationary, zero
mean process with standard deviation σρ

ρi,j =
√
(xi − xj)2 + (yi − yj)2 + ηi,j = ρi,j + ηi. (2.12)

The distance matrix (2.3) is then computed using the square of (2.12), i.e.

ρ̂2
i,j = ρ2

i,j + 2ρi,jηi,j + η2
i,j, (2.13)
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TABLE 2.2: Monte Carlo analysis: Theoretical performance of the
proposed system against 5 values σρ. All the quantities are expressed

in mm

ηi = 0 mm ηi = 100 mm ηi = 200 mm ηi = 300 mm ηi = 400 mm
ID p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4
µx < 10−3 < 10−3 < 10−3 < 10−3 -2 -2 -3 -1 4 -1 -1 -3 -3 -18 -8 -3 11 14 23 7
µy < 10−3 < 10−3 < 10−3 < 10−3 -2 -5 -3 -1 1 -6 1 8 5 -11 3 -15 -17 -23 -13 -26
σx < 10−3 < 10−3 < 10−3 < 10−3 78 72 75 75 150 157 150 150 229 228 236 222 313 291 289 294
σy < 10−3 < 10−3 < 10−3 < 10−3 88 83 89 87 192 191 189 189 257 280 268 285 359 370 381 376

where 2ρi,jηi,j has variance 4ρ2
i,j and η2

i,j is distributed like a chi-square
distribution with one degree of freedom. If we consider that |ηi,j| << ρi,j,
it is possible to approximate

ρ̂2
i,j = ρ2

i,j + ϵi,j, (2.14)

where ϵi,j follows a Gaussian probability density function with zero-mean
and variance equal to 4ρ2

i,jσ
2
ρ . Since the estimation process of the node

positions P̂ is based on a non-linear solution (2.7), which involves an eigen-
value decomposition, it is very complex to derive an explicit solution to
propagate the uncertainties starting from the single distance measurements,
especially it the number of nodes in the network is larger than 4.

Therefore, the uncertainty analysis has to follow a statistical approach by
means of Monte Carlo simulations. In particular, we evaluate the per-
formance of the proposed system against 5 different values standard de-
viations ηi,j. To randomise on the node configurations, for each level of
uncertainty we generated 1000 configurations randomly distributed on an
area of 225 m2. The result of the Monte Carlo simulations are reported
in Table 2.2. The system exhibits a linear behaviour with respect to the
injected noise ηi,j. Notice that we chose to simulate the ideal case of ηi,j = 0
to validate in simulation the theoretical analysis reported previously.

2.2.4 Results

In this section, the experimental test result is presented to validate the
effectiveness of the solution. In addition, a description of the realised
prototype and the hardware involved in the experiment is also described.
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FIGURE 2.11: (a) Schematic block of the proposed device. (b) and (c)
3D rendering of the proposed device.

Hardware Implementation

To evaluate the proposed relative positioning system, a custom, battery
powered, portable device was developed. The device, presented in Fig-
ure 2.11, is made of COTS components and was developed to be compact,
energy-efficient and low-cost. It is based on an Espressif ESP32-S35 dual
core MCU. It integrates a Qorvo DWM10016 SoM for distance measure-
ments and it has a 240 × 240 LCD display for showing to the user the
navigation map, remaining battery level and other useful information.
Moreover, it is endowed a complete battery management system for both
providing power to the device’s peripheral and to charge the integrated

5https://www.espressif.com/en/products/socs/esp32-s3
6https://www.decawave.com/sites/default/files/dwm1001_datasheet.pdf
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LiPo battery and a Luminosity sensor to optimise the energy consumption
of the LCD by dynamically change its backlight level. Finally, it integrates a
2000 mAh LiPo battery able to power the device for 5 to 8 hours, depending
on WiFi connectivity. During the test, the UWB module was configured
to use UWB Channel 5 ( fc = 6489.6 MHz, BW = 499.2 MHz), a preamble
length of 128 symbols, the highest Pulse Rate (PR = 64 MHz), and the
highest Data Rate (DR = 6.8 Mbps). Figure 2.11-(a) presents the archi-
tecture overview of the prototype, while device 3D model is presented in
Figure 2.11-(b) and Figure 2.11-(c).

Regarding the communication protocol, a TWR [99] is adopted to estimate
the distance between two nodes. In particular, the communication is or-
ganised into two phases: the first one regards the measurements, while the
second is meant to share the data, according to Figure 2.12. The resulting
update rate f has a quadratic dependency from the nodes number, i.e.

f =
1

∆(n − 1)2 , (2.15)

where n is the number of nodes and ∆ is a predefined time slot in which a
node has to complete one TWR-cycle and share via wifi the measurements.
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FIGURE 2.13: Experimental results. N (blue circles) represent the
true position of the nodes retrieved from the MoCap, P̂ (red squares))
represent instead the estimated position using the proposed system.
True displacement of the moving node is denoted with s (dashed
blue line), while ŝ is the estimated displacement retrieved form the

algorithm (dashed red line).

For the experimental test n = 6, ∆ = 5 ms.

Experimental results

The proposed system is finally validated with a laboratory test using 6
anchors, with one that is able to move. We collect 100 inter-distance matrices
for each positions, supposed to be taken at time k, k + 1 and k + 2. The
result is reported in Figure 2.13. To generate a ground truth to assess
the obtained results from the UWB relative positioning system, we have
acquired the nodes’ positions Ni from a Motion Capture (MoCap) system.
In particular, the MoCap system adopted is provided by Qualisys with
7 Arqus A9 cameras. The optical tracking system is configured with a
working frequency of 240 Hz, with a residual error7 of lees than 1 mm.
Nodes coordinate estimation error are reported in Table 2.3. The mean

7The adopted calibration procedure can be found here https://docs.qualisys.
com/getting-started/content/getting_started/running_your_qualisys_system/
calibrating_your_system/calibrating_your_system.htm

https://docs.qualisys.com/getting-started/content/getting_started/running_your_qualisys_system/calibrating_your_system/calibrating_your_system.htm
https://docs.qualisys.com/getting-started/content/getting_started/running_your_qualisys_system/calibrating_your_system/calibrating_your_system.htm
https://docs.qualisys.com/getting-started/content/getting_started/running_your_qualisys_system/calibrating_your_system/calibrating_your_system.htm
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TABLE 2.3: Comparison between the true nodes’ position N and
estimated one P̂ . All the quantities are expressed in mm.

ex ey σx σx
∥N1 − P̂1∥ -95 163 55 119
∥N2 − P̂2∥ 53 82 100 115
∥N3 − P̂3∥ -160 -70 116 97
∥N4 − P̂4∥ 38 -392 55 310
∥N5 − P̂5∥ 135 -28 175 74

∥N0(k + 1)− P̂0(k + 1)∥ -6 -99 - -
∥N0(k + 2)− P̂0(k + 2)∥ 81 12 - -

error on the reconstruction of the moving node in position N0(k + 1) and
N0(k + 2) is also reported in Table 2.3. Notice that N0(k) is known from
the beginning: indeed, since we are referring to relative positions, N0(k) is
assumed to be known and placed in the origin of the reference frame.

The experimentally retrieved ranging standard deviation is about σρ =

100 mm. The experimental results shows a nice matching with the Monte
Carlo simulations in Table 2.2. We argue that the motivations for the non
perfect matching could be traced to the non perfect-isotropic radiation
pattern effect of the UWB antenna and the delay introduced by the internal
circuitry. Moreover, although the non-line-of-sight (NLOS) condition is
beyond the aims of this study, the data gathered during the experiments
are intentionally collected without particular attention to possible NLOS
conditions, i.e., a realistic conditions, which exacerbate the difference with
the theoretical Monte Carlo simulations results. Finally, in the experimental
results collection has been performed without a calibration phase, since the
nodes are assumed to be deployed randomly in the environment.

2.3 Beyond Devices: Harnessing Cost-Effective Bistatic
Radar and Ultrawide-Band Radios in a Device-Free
Localisation System

This application evaluates the feasibility of a radar-like localization system
using commercial-off-the-shelf components, particularly the DecaWave’s
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DWM1001 UWB transceiver. By assessing the relationship between tar-
get speed, baseline, and sampling frequency, the study demonstrates the
potential for an inexpensive UWB-based radar solution.

2.3.1 Related Work

RF-Based DF localization techniques usually rely either on Radio Signal
Strength (RSS) or Channel State Information [109] (CIR/CSI) techniques.
For what concerns RSS methods, in the literature, we can already find
notable examples as [110]. Another interesting approach is Radio Tomog-
raphy Imaging (RTI) [111]. RTI uses the shadowing created by the target
between a couple of anchors to reconstruct an interference image of the
environment. Shadowing is measured as either drop-in RSS mean or in-
creased RSS variance. Another RSS-based approach is presented in [112],
where temporal variations in node RSS measurements are linked to the
target position through a new RSS model. While previous RSS-based so-
lutions located a target only by estimating non-line-of-sight conditions,
which are caused among couples of anchors, this work also makes use
of target-induced multi-path components for localization. Unfortunately,
RTI based approaches require first collecting an RSS fingerprinting with a
pre-deployment data gathering and a training phase.

Concerning CIR/CSI based methods, they are inherently less coarse in
terms of positioning accuracy and precision and more informative/stable
with respect to RSS measurements. Previous works have focused on UWB
pulse radars before [98, 113–116], though these projects were based on
DWM1001’s more capable but more expensive alternative, the TREK1000.
In [115] authors present a system based on a single TX/RX UWB couple
transceivers using CIR-based fingerprinting to localize a moving person.
Fingerprint collection involves CIR measurement as a person moves on a
grid to create a feature map that the localization algorithm can later use. In
this case, MPC magnitude and phase information are stored in a feature
table representing the point in the grid where the person was standing.
MPC components in this work are relative to the environment and are not
target originated, unlike in other CIR-based works: by assuming that the
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environment is known – making the position of environment-caused reflec-
tions known – it is possible to associate the amplitude and phase change
with the target’s motion. Finally, position estimation results from a trained
kNN machine learning algorithm, finding the closest matching fingerprint
to the measured CIR. It is worth noting that, to overcome the problem of
model training, avoiding the need for feature map creation, authors have
also proposed a knife-edge diffraction radio propagation model as future
expansion, linking target position to MPCs phase and amplitude variation.
In [117] a WiFi-based system that doesn’t require offline training or the
construction of a database on deployment is proposed, overcoming the
problem of a fingerprint map, and linking the target position and measured
CSI through a model.

In [98] authors implement a multi-static UWB radar network to track CIR
variance in the area associated with MPCs caused by a moving target.
While the variance detection in this work is based on a background sub-
traction and thresholding algorithm, Chenglong [113] proposes to use a
CNN network to detect the target path position within the CIR. Despite
the promising results, the proposed method needs a preliminary training
phase specific to the deployment environment. Another interesting work
in the UWB radar development is [114]: in this work, Pearson’s correlation
is computed between background CIR and incoming CIR, as it was noted
that the presence of a moving human formed uncorrelated peaks in the
area after the target path location in the CIR.

2.3.2 Methodology

In this paragraph, we briefly introduce the proposed model for estimating
the location of an entity inside an area under monitoring. The idea is to
exploit a model describing the RF propagation of a UWB signal. In our case,
we use the DWM1000 CIR accumulator to derive the MPC components
relative to the entity we want to track.

The Channel Impulse Response can be modeled as shown in the Equa-
tion (2.16) and presented in [116]. It consists of a sum of deterministic
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multipath components with amplitude ai and delay τi and diffuse mul-
tipath components modeled as Additive Gaussian White Noise whose
autocorrelation is equal to equation (2.17).

h(t) =
i=L

∑
i=1

aiδ(t − τi) + ν(t) (2.16)

E(ν(t)[ν(τ)]∗) = S(t)δ(t − τ) (2.17)

The reflected signal can then be modeled as a delayed signal transmitted
from virtual anchors. The delay taui in the Equation (2.18), represents the
time of flight between the i − th virtual anchor ai and the receiver p for the
i − th multipath component.

ti =
1
c
∥p − ai∥ (2.18)

This model assumes that deterministic MPCs are the delayed and attenu-
ated versions of the transmitted signal. In this case, we chose to neglect
the distortion that the UWB pulse experiences due to Fresnel reflection
coefficient [118].Considering the bistatic radar configuration as shown in
Figure 2.14, composed of a single transmitter-receiver pair, the distance at
which the target is detectable depends on several parameters such as the
peak transmitted power and the sampling resolution of the receiver [119].
Table 2.5 shows the available CIRs length, which represents the window
within it is possible to detect an echo, and it is calculated in Equation (2.19).

w = c l tre f (2.19)

where c is the speed of light, l is the length of the CIR and tre f is the unit
time of each CIR’s sample. Imposing the equation system

τFP
LOS

2

4 + τ2
R = τRx

T
2

τFP
LOS

2

4 + τ2
R = τTx

T
2

τTx
T

2
+ τRx

T
2 ≤ w

(2.20)

we can compute the maximum target distance for which the delayed echo
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FIGURE 2.14: Bistatic radar configuration. τFP
LOS is the time of flight

(ToF) in line-of-sight condition between receiver and transmitter,
τRx

T and τTx
T is the ToF of the reflected signal between target and

receiver and transmitter, respectively, τR the ToF with respect the
centre of the bistatic radar and the target and τT is the major axis of

the ellipse.

falls inside the observation window. Figure 2.15 shows the maximum
geometrical distance at which a target can be identified. This is a simple
view of the problem with respect to the problem’s formulation presented
in [119], considering only the window’s length of the collected echoes.

DW1000 CIR estimate

The CIR can be exploited to retrieve information about how signals travel
in the air between a couple of transceivers. A single, narrow, and powerful
UWB pulse is usually generated at the transmitter side, to collect a CIR
measurement. On the receiver side, the impulse response can then be
collected [120]. A common method is the so-called matched filter [121].
This approach foresees the transmission of a signal whose auto-correlation
function is close to a Dirac delta. On the receiver side, the cross-correlation
of the incoming signal with the known transmitted signal can be exploited
to estimate the CIR.
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FIGURE 2.15: Different configuration for the bistatic radar, varying
the values of the distance between the transmitter and the receiver.

TABLE 2.4: DW1000 supported UWB channels.

Channel Center frequency (MHz) Bandwidth (MHz)
1 3494.4 499.2
2 3993.6 499.2
3 4492.8 499.2
4 3993.6 1331.2
5 6489.6 499.2
7 6489.6 1081.6

As reported in Table 2.4 and Table 2.5, the DW1000 can be configured by
setting the channel, the Pulse Repetition Frequency (PRF) configuration, the
data rates (110 kbps, 850 kbps, and 6.8 Mbps), and the preamble code.From
the IEEE 802.15.4z-2020 standard, the UWB limits the maximum transmit-
ted energy to 37 nJ for a 500 MHz bandwidth. The PRF influences the
radios’ peak power transmitted in the air, and the maximum detectable
target distance. The number of samples, that the CIR accumulator can hold,
depends on the PRF selected, according to Table 2.5. Each CIR sample corre-
sponds to an accumulator tap, which is half the period of the fundamental
frequency – equal to 499.2MHz in this case – and it is represented by a
complex number with 16 bit signed integer real and imaginary part, ℜi +ℑi.
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TABLE 2.5: CIR characteristics with varying PRF.

Mean PRF Accumulator size Sample capacity Symbol time
16 MHz 3968 bytes 992 samples 496/499.2 µs
64 MHz 4064 bytes 1016 samples 508/499.2 µ s

Each sample’s amplitude is computed as shown in the equation (2.21)

A =
1
K

K

∑
1

√
ℜ2

i +ℑ2
i (2.21)

where K is the number of preamble accumulated symbols. Accumulation
stops either when SFD is detected [114], when the memory needed for stor-
ing signed integer values representing real and imaginary parts of a sample
within the CIR accumulator grow to be 16 bit numbers, or if SFD timeout
condition is reached. Once collected, the CIR has to be normalized with
respect to the number of accumulated preamble symbols, as the CIR is the
result of the accumulation of the correlator output over the detected pream-
ble symbols [122]. The DWM1001 chip uses CIR estimation to support the
timestamping of the RMARKER of a message with a 15.65 ps precision.
This is done thanks to DecaWave’s internal Leading Edge Detection (LDE)
algorithm, which determines the index of the direct path component within
the collected CIR. This is implemented using a dynamic threshold that
adjusts the RX timestamp estimation, also correcting the delay introduced
by the antenna.

Proposed solution

A static environment around a TX-RX couple always provides the same
response to a know RF signal, meaning that it always responds by pro-
ducing the same MPCs. When we introduce a moving object within the
environment, new MPCs linked to this entity will appear within the CIR.
By subtracting the newly obtained CIR to the previous static CIR, which
represents the background CIR, we obtain a signal with just the MPCs com-
ponents caused by the moving entity at the so-called target path location,
τTP. The difference between τTP and the identified direct path component
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TABLE 2.6: DWM1001 configuration parameters: standard SFD and
PHY header mode are used, SFD timeout is set to 129, transmitted

power gain is set to 19 dB.

Channel PRF Pr. length PAC Preamble code Data rate
4 16 MHz 128 8 7 6.8 MHz

TABLE 2.7: Tested conditions.

Mean PRF Baseline Rounds walked Target average velocity
16,64 MHz 1.2,2.1 m 1,2,3 0.13, 0.26, 0.39 m/s

τDP, constrains the object location pTP to an ellipse having focal points
located at pRX and pTX as described in the Equation (2.22).

∥pRX − pTP∥+ ∥pTX − pTP∥ = c(τDP − τTP) (2.22)

To obtain τTP from the incoming CIR measurements, we use the algorithm
described in [98], having the DWM1001 configured as reported in Table 2.6.

2.3.3 Experimental Setup

To assess the effectiveness of our method, the experimental setup consists
of a single orthogonally oriented transmitter-receiver couple, as shown
in Figure 2.14. The two UWB transceivers are configured to sample the
environment at a frequency of about 125 Hz

Results

The experiments consider target speed, TX-RX baseline, and mean PRF on
the detection of the identified target distance along the orthogonal direction
with respect to the baseline, as shown in Figure 2.14.

To highlight the investigated phenomena, a back-forward motion is
adopted, changing the repetition of the movement. Table 2.7 shows the
different tested conditions. In Figure 2.16 is reported the experiment for
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FIGURE 2.16: Estimated target distance cτTP with target speed
0.13 m

s .

(a) (b)

FIGURE 2.17: In (a) Estimated target distance cτTP with target speed
0.26 m

s ; in (b) Estimated target distance cτTP with target speed
0.39 m

s .

unique backward-forth motion with a walking speed of about 0.13 m
s . The

x-axis reports the number of the acquired CIR, and the y-axis estimates
the target distance from the baseline. Figure 2.17-(a) and Figure 2.17-(b)
describe the results obtained for different repetition numbers of the motion
pattern, confirming that the estimated distance reflects the real motion.

In all experiments can be observed that the estimation cτTP at the maximum
distance of the target fails.According to the theoretical maximum detectable
distance, as shown in Figure 2.15, the extreme position of the target resides
on the limit bound of the ellipse, calculated without considering system
losses, causing the non-observability of the target from radar. In Figure 2.18
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FIGURE 2.18: Error on the estimated distance by the bistatic radar.
The ground truth is a motion capture system power by Qualisys.

is shown the histogram of the estimated distance error using as ground
truth a motion capture. The proposed bistatic radar has a mean error equal
to 16 cm and a variance 33 cm.

2.4 Invisible Trails: Unveiling the Capabilities of a Tag-
Less Ultrawide-Band Passive Tracking System

This section builds upon the initial evaluation presented in Section 2.3 of
an ultrawide-band bistatic radar, delving into the following aspects:

• We introduce a cost function to improve the estimates;

• We realised a distributed system to detect and track moving entities
in the surrounding environment;

• We developed an IoT architecture to handle and sort the data using
as much as possible the available bandwidth of the chosen UWB
module;
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• We enhance the processing update rate of the receiver, improving the
maximum target velocity that the proposed system can track.

2.4.1 Background and Problem Formulation

This paragraph provides a brief overview of the equations and models
utilised position estimation of a mobile entity. However, for a more detailed
understanding, we refer to our previous work that provides an in-depth
reference on the topic [68].

Without compromising generality, we assume a scenario with three UWB
transceivers consisting of one transmitter and two receivers deployed in a
known area. We can describe each node by its known coordinates Pi, i.e.,

P = [PTX
1 , PRX

2 , PRX
3 ] =

[
x1 x2 x3

y1 y2 y3

]
. (2.23)

By employing the UWB signal propagation model and sequentially gath-
ering CIRs, we can extract the multipath components scattered from the
target we intend to track. The Channel Impulse Response model, which
includes deterministic multipath components with amplitude ai and delays
τi, and diffuse multipath components ϵ(t) modelled as Additive Gaussian
White Noise is reported next

h(t) =
l

∑
i=1

aiδ(t − τi) + ϵ(t), (2.24)

where l is the length of the CIR signal and where the autocorrelation of the
uncertainty ϵ(t) is given by

E(ϵ(t) ∗ ϵ(t)) = S(t)δ(t − τ). (2.25)

The tracked target can be considered as a virtual anchor with coordinates
PT = [xT , yT ]

T that transmits a delayed and attenuated version of the
original signal emitted from the transmitter. The time of flight ti between
the receiver PRX

i and the target for the i-th multipath component is given
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by

ti =
1
c
∥Pi − T∥. (2.26)

Considering a bistatic radar configuration as reported in Figure 2.14, the
maximum distance at which the target is detectable can be calculated us-
ing the transmitted power peak and the sampling resolution of the re-
ceiver [119]. By imposing the following system of inequalities (2.20) we can
compute the theoretical maximum distance for which the delayed signal
falls inside the observation window permitted by the selected hardware, i.e.,
the hardware enables varying CIR lengths, which establishes the maximum
duration of the observation window. In (2.20), the observation window
is denoted by w, the speed of light by c, the length of the CIR by l, and
the unit time for each CIR sample by tre f . Additionally, we define τFP

LOS as
the time-of-flight (ToF) in line-of-sight (LoS) between the transmitter and
receiver, τR as the ToF between the target and the baseline of the bistatic
radar, and τRx

T and τTx
T as the ToF between the target and the receiver and

transmitter respectively.

The CIR signal should remain constant in a stable environment, but due to
the instability of transmitters and receivers, a phase difference can occur
between them. As a result, when a single receiver samples the CIR of
a packet, the sampling point may differ from the previous sample. This
sampling drift can be utilised to accumulate data and generate a more
detailed structure of the CIR. In other words, by exploiting clock drift, we
can obtain multiple samples, resulting in a wider sample rate compared to
a single sampling operation. Once a series of consecutive CIRs are obtained,
they can be aligned based on the line-of-sight (LOS) peak time instant τFP

LOS.

In a static environment, a TX-RX couple will consistently produce the same
response to a known RF signal, resulting in the same Multipath Compo-
nents (MPCs) being generated. As such, the model of the background
response hB through the CIRs measurements can be obtained. A moving
object into the environment results in new MPCs within the CIR associated
with this entity. Computing the differences between the incoming and
the background CIRs, the MPCs components coming from the moving
entity can be determined. Considering each bistatic configuration of the



Chapter 2. Human-Centric Positioning Systems: Enhancing Spatial
Awareness and Navigation

64

Target𝑅𝑋ଵ

𝑅𝑋ଶ𝑇𝑋

FIGURE 2.19: Representation of the detection area identified by
anchors and transmitter.

system proposed in Figure 2.14, the target’s position PT , is subject to the
constraint of lying on an ellipse. This ellipse has focal points located at PTX

1
and PRX

i , major axis equal to c τT , and is described by (2.22) where τT is
obtained using a variation of the algorithm described in [68, 98]. Once the
location PT is determined, we implicitly obtain the ranging information.
With two receivers, we can compute the target position within the convex
area defined by the line-of-sight between each couple TX-RX as shown in
Figure 2.19, with a maximum detecting range defined by (2.20).

Position estimation

Once τT is obtained, different approaches could be used to estimate the
coordinate of the target P̂T = [x̂T , ŷT ]

T . For example, in [123] a method is
presented that employs analytical techniques to determine the intersection
points of multiple ellipses. In [124], an ellipse-resampling particle filter
is developed for cooperative target tracking. This study does not focus
on creating a complex estimation filter. Instead, we aim to enhance the
precision of the raw data, which motivates the use of a particle filter. The
particles’ movements are modelled using a random walk, meaning that the
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position of each particle p = [xp, yp]T is assumed to change over time asxt+∆t
p = xp(t) + ∆tηxp (t),

yt+∆t
p = yp(t) + ∆tηyp (t).

(2.27)

At each prediction step, particle positions are updated with ∆t, that is the
elapsed time since the last measurement reception. The random variables
ηxp (t) and ηyp (t) are a realisation of a stochastic process that follows a
normal distribution with zero mean and standard deviation ση . Whenever
an estimated τ̂T is received, the particles’ weights are updated according to
the marginalisation

wp = p(τT |τ̂T), (2.28)

where the expected τT is calculated using (2.22).

Problem formulation and solution overview

Considering a multi-static radar as depicted in Figure 2.19 and given the
CIRs measurements h(t) in (2.24), we want to improve the (τ̂RX1

T , τ̂RX2
T )

estimates. Besides, an IoT architecture capable of handling, sorting, and
processing the CIRs measurements to estimate the target location p̂T within
the tracked area is required.

We have developed an IoT infrastructure using MQTT for realising data
sharing between the UWB nodes and the processing unit. We have also
introduced a new cost function to enhance the estimates of τ̂T and increased
the update rate of the bistatic radar, thus making the infrastructure more
flexible and user-friendly. Moreover, to prevent the bottleneck effect, we
have implemented a message size reduction strategy to minimise the data
transmitted within the IoT network.

2.4.2 Solution

To estimate the target distance from each TX-RX couple, we need to build
the RF response of the static environment by using consecutive CIR mea-
surements h. Once the background model hB is computed, to highlight the



Chapter 2. Human-Centric Positioning Systems: Enhancing Spatial
Awareness and Navigation

66

foreground hF, i.e., the moving objects, the following background subtrac-
tion technique is performed

hF = h − αhB, (2.29)

where α ∈ (1, 2] is a constant value that scales the background signal to
avoid ripples for very small values after applying (2.29). To improve the
precision of the estimate of τ̂T , we introduce a cost function to weight each
single values of the signal hF, i.e.

cost = W(hF
i , hF

j )
hF

i
hF

max

hF
peak

hF
max

, (2.30)

where W(hF
i , hF

j ) is the observation window, whose length is defined by

the number of elements in {i, . . . , min{j ∈ N|hF
j ≤ h f

i ∧ j ≥ i} − 1}, hF
peak

is the value of the the first peak within W(hF
i , hF

j ), hF
i is the i-th sample of

the resulting signal hF, and hF
max the maximum value of the entire CIR.

The cost function in (2.30) emphasises the significance of several factors that
affects the estimate of τ̂T . One such factor is the window dimension, since
it should be large enough to ensure that the detected target has produced
multiple MPCs that were not present in the background model. The starting
value hi of the window is also essential, as a higher value suggests that the
target detection is more significant. Finally, the first peak value is critical
since it indicates the direct multipath generated when an object enters the
scene. This value should be sufficiently high to ensure that the starting
point of the window coincides precisely with the direct multipath time
location τ̂T . To avoid erroneous timestamps transmitted by the receivers,
caused by the influence of ambient noise that may lead to a faulty reading of
the complex values to reconstruct the CIR, the incoming signals are filtered
by a Gaussian filter. At this stage, we can multiply the value of τ̂T by the
speed of light c to obtain the estimated distance between the i-th radar
baseline and the target. Once at least two measurements τ̂T are collected,
we can use the particle filter to estimate the target position.

Sensor data is gathered and transmitted to a Raspberry Pi via the UART
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FIGURE 2.20: Experimental setup

interface, which enables string-based data transfer. As a result, all important
sensor data must be serialised to obtain a string of data representing the
incoming information in ASCII format. To optimise the performance in
real-time applications, we strive to keep the size of the transmitted data as
small as possible.

After decoding all the data, they need to be sent to the central comput-
ing unit for processing and extracting the location of the tracked object.
To achieve this, we utilise MQTT middleware, which operates on a pub-
lish/subscribe protocol. The overall architecture is reported for reference
in Figure 2.20.

2.4.3 Experimental Results

We performed multiple tests to evaluate the proposed architecture and the
effectiveness of the cost function. Initially, we concentrated on a single cou-
ple TX-RX, to assess the effectiveness of the previously depicted estimation
process of τT . This first phase is also helpful to highlight the issues related
to the reconstruction using sequential CIR measurements and the leading
edge detection algorithm
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FIGURE 2.21: In (a) the developed prototype, in (b) the HW architec-
ture.

Hardware

We have developed an UWB radar node, as shown in Figure 2.21, to imple-
ment the proposed IoT architecture. The UWB radio module is built around
the Qorvo DWM1001 transceiver, compliant with the IEEE 802.15.4-2011
standard [125]. It can operate on six different frequency bands with centre
frequencies ranging from 3.5 to 6.5 GHz and bandwidths of either 500 or
900 MHz. The chip can measure range and retrieve the measured CIR, and
it offers three different data rates: 110 kbps, 850 kbps, and 6.8 Mbps. The
DW1000 timestamps transmitted and received frames with a precision of
40 bits, using a nominal 64 GHz resolution. This results in a timing preci-
sion of 15.65 ps for packet timestamps. The UWB module is connected to
an Espressif ESP32 microcontroller through the UART port. This microcon-
troller is powered by the Xtensa dual-core 32 bit LX6 microprocessor with a
clock speed of up to 240 MHz. It also features WI-FI and Bluetooth modules
enabling seamless wireless network integration. The microcontroller is also
optimised for low power consumption, making it well-suited for wireless
IoT applications. In order to facilitate tracking in areas without access
to electricity, we have incorporated two solar panels to power the radar
node. We track the experimental area using both the radar system and a
motion capture system, which provides the ground truth to evaluate the
accuracy of the proposed system. For the following experiments, we used
a motion capture system provided by Qualisys with 8 Arqus A9 cameras, a
synchronisation unit, and a dedicated workstation (see Figure 2.24).
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FIGURE 2.22: In (a) comparison between the distance estimated
by our approach (blue line) and distance retrieved by the motion

capture (dashed-orange line), in (b) the histogram of the error.

One crucial factor to consider in the setup is the placement of the sensors
within the environment. It is imperative to position the receivers at a
distance from each wall in the room that is not similar to the distance
estimated for the tracked entity. Otherwise, the wall could cause a peak in
CIRs, leading to a false detection by the leading edge detection algorithm.
In order to address this issue, it may be advisable to relocate the transceiver
nearer to the wall. However, in our particular experimental configuration,
this course of action is not feasible due to the physical limitations imposed
by the furniture and the requirement to connect the receivers to a USB
cable for the purpose of downloading supplementary data that is crucial to
validate the proposed system.

Results

Initially, a single couple TX-RX is used to evaluate the proposed method’s
effectiveness in distance calculation. In Figure 2.22-(a) is shown the results
of the experiment conducted while performing a backward-forth movement
with a varying motion speed ranging from 0.5 m/s to 1.5 m/s. As high-
lighted in Figure 2.22-(a) and described in the previous work [68], regions
that are closer or farther away from the bistatic radar exhibit greater errors
in the distance estimation. In Figure 2.22-(b) is reported the histogram of
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FIGURE 2.23: Comparison between target path estimated by UWB
and by the MoCap.

the experiment, with a mean error µ = 101 mm and a standard deviation
σ = 195 mm.

It is worthwhile to note that the sampling rate of the receivers is fundamen-
tal. In our previous work [68], we limit the target velocity to be lower than
0.15 m/s to account for the system sampling rate and increase the tracking
precision. Indeed, the bottleneck of the previous architecture was related to
the bandwidth of the UART interface. Due to this constraint, we take care
of the data encoding and, after the fine-tuning the algorithm, the system
can now process and transmit data via MQTT at a frequency of 115 Hz,
which is four times the previous work, that was capable of operating at
30 Hz rate.

Finally, Figure 2.23 shows the result of one tracking experiment. After the
initial stage of convergence, the estimated position has an RMSE(P̂T) of
approximately 30 centimetres.
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FIGURE 2.24: In (a) experimental setup. A single couple Tx-Rx
oriented in the same direction. The receiver analyses CIR to identify
the time delay of the target and computes the distance. The target
performs various motion patterns within a range of 1-5 m. In (b)

radar node prototype.

2.4.4 Crossing Channels: Assessing the Performance of UWB
Bistatic Radar Sensors in an Across-Channels Evaluation

With the availability of new commercial-off-the-shelf UWB modules that
also integrate the transmission channel 9, operating at a center frequency
of 7987.2 MHz, additional tests are conducted to assess the potential for
enhancing the accuracy of the DFL systems. To evaluate the effectiveness
of our method, we designed an experimental setup consisting of a single
transmitter-receiver pair aligned in the same direction, as depicted in Fig-
ure 2.24-(a). Both the UWB transceivers were configured to sample the
surrounding environment at a frequency of approximately 125 Hz.

Hardware

The DWM3120 is a second-generation, fully integrated UWB transceiver
developed by Qorvo as part of their DW3000 family. It follows the IEEE
802.15.4z and has the new communication channel 9, operating at a carrier
frequency of 7987.2 MHz. Moreover, it is optimized for low-power battery-
operated operation, making it suitable for a wide range of mobile, consumer,
and industrial applications. To ensure smooth integration into networks, we
have developed a prototype whose hardware architecture enables seamless
connectivity as depicted in Figure 2.24-(b). The prototype is endowed
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with a Espressif ESP32 microcontroller, a cost-effective and energy-efficient
device that comes with built-in WiFi and Bluetooth functionalities; a TP4056
handling the charge of the batteries; a 3.7 V 1900 mAh LiPo battery; two 5V
1W photovoltaic panels.

Preliminary experimental results

The experiments consider four baselines bl = (1.3, 2.3, 3.3, 4.3) m between
the transmitter and the receiver, the communication channel 5 and 9, and
two transmission power levels 28.6 dBm/MHz and 24.6 dBm/MHz, while
various motion patterns are considered, as depicted in Figure 2.24-(a). The
experiments presented in Figure 2.25 report the results obtained from con-
ducting experiments with channel 9 using both transmission power levels
and two different baselines while performing a ”Z”-shaped pattern. Based
on these preliminary results shown in Figure 2.25, the choice of the baseline
impacts the target distance estimation. Note that for smaller baseline values,
the distance estimation significantly deteriorates. We have determined the
optimal baseline for our experimental setup through these experiments.
This baseline will serve as the reference for comparing and evaluating
the performance with channel 5, now. The evaluation is done in a struc-
tured indoor environment by using 8 Qualisys Arqus A9 high-performance
cameras8. Figure 2.26-(a) illustrates the comparison between the UWB
and MoCap traces, while Figure 2.26-(b) displays the histogram represent-
ing the error. Note that the point tracked with motion capture does not
align with the virtual point tracked by the UWB radar (i.e., the human
body). Consequently, this discrepancy introduces a systematic error in the
evaluation, which can be quantified to be approximately 10 cm. For the
remaining experiments, raw traces are depicted to provide a comprehen-
sive overview of the experiment’s dynamics. A qualitative comparison
confirms the improved estimation on channel 9, showing a more stable
signal. Channel 5 produces the worst outcomes compared to channel 9,
primarily because channel 9 is less susceptible to RF noise in the indoor
environment (e.g., WiFi), owing to its higher center frequency. Better results
are achieved when the default power transmission (i.e., 24.6 dBm/MHz)

8https://t.ly/kPI_7

https://t.ly/kPI_7
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(a) (b)

(c) (d)

FIGURE 2.25: Bistatic radar for the ”Z” shaped motion pattern of
Figure 2.24-(a) with channel 9. (a,c) baseline 2.3 m, (b,d) baseline
4.3 m. (a,b) Tx power level 28.6 dBm/MHz, (c,d) low Tx power level

24.6 dBm/MHz.

is utilized. The increase in transmission power amplifies the amplitude of
the noise, leading to more significant fluctuations in the estimated τT value.
It is important to note that these fluctuations are not solely caused by the
estimator but also arise from the variability in timestamping due to internal
circuitry sources and the outcome of the leading edge algorithm. Finally,
the weighting function (2.30) greatly enhances the stability and reliability
of target distance estimation as compared to our previous work [126] (see
Figure 2.27).
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(a) (b)

(c) (d)

FIGURE 2.26: (a,b) Channel 9 and baseline 4.3 m Square motion pat-
tern of Figure 2.24-(a): (a) comparison between MoCap and UWB;
(b) Histogram of the error. (c,d) UWB radar traces (collected simul-
taneously) with baseline 2.3 m and back and forth motion pattern of
Figure 2.24-(a): (c) channel 5 (d) channel 9, power transmission level

24.6 dBm/MHz.

2.5 Overcoming Scalability Hurdles: UWB-based Indoor
Positioning System with Infinite Scalability

This section introduces the DTDoA ranging technique proposed in [66],
which addresses both accuracy and scalability issues in current localization
methods. Scalability is identified as a significant challenge in various multi-
agent environments, such as smart cities and Industry 4.0, due to limitations
in UWB systems where each subject must complete its localization before
others can start. The proposed technique offers a constant update rate for
positioning services, theoretically scalable to track an infinite number of
assets while maintaining an error range of 20 cm at worst. Validation against
MoCap movement data confirms the accuracy of the UWB positioning
infrastructure. In particular, the main contributions of this section are:
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(a) (b)

FIGURE 2.27: In (a), the estimated distance using the standard win-
dowing approach on the old generation of UWB devices using chan-
nel 5. In (b), the new UWB generation devices using channel 9.

Transmission power 24.6 dBm/MHz and baseline 2.3 m

• We revised the models presented in [66], and we validated the model
experimentally with a ground truth provided by optical tracking
MOCAP system [127]. Furthermore, we developed a testbed using
the sync unit [127] and a wired connection with the UWB receiver.

• We analysed the effect of the tag motion on the positioning and the
effect of additional distortions generated by a harsh environment
like in our laboratory (small gantry crane, pvc panels).

• We evaluate the performance of the proposed system in both domi-
nant and complete Non-Line-of-Sight (NLoS) conditions, evaluating
how the proposed system works in more realistic and complex sce-
narios.

2.5.1 Measurement models

The Local Positioning System (LPS), detailed in [66], considers an environ-
ment with a master UWB, a set of n anchors ai and a tag. We can thus
denote t as the actual, ideal time and with τ the time measurement from
either the master τm(t); the i-th anchor ai as τi(t); or the tag τ(t). Since we
do not have an external time reference, we can assume that the time mea-
surements of the master are the reference signal for the UWB positioning
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algorithm, following the simplified clock model presented in [66], i.e.

τm⋆(t) = om + νmt + ηm(t) = τm(t) + ηm(t), (2.31)

where we use the superscript ·⋆ to denote each measurement result. om is

the time offset of the master, νm =
f m(t)

fm
the normalised clock rate with re-

spect to the ideal time (i.e., the ratio between the instantaneous frequency of
the local oscillator f m(t) and the corresponding nominal value fm, usually
on the order of some part per million (ppm) [128]) and we implicitly assume
that the measurement uncertainty ηm(t) is a random variable generated by
a white, stationary and zero mean process with variance σ2

ηm
. Notice that

the main source of uncertainties – neglecting the effects of ageing or the
drift changes induced by harsh environmental conditions (e.g., mechan-
ical vibrations or temperature effects [128]) – is related to timestamping
operations accuracy. Albeit those effects can be mitigated by implementing
double consecutive message transmissions, the effect cannot be entirely
removed. Similarly, for the i-th anchor ai we have

τi⋆(t) = oi + νit + ηi(t) = τi(t) + ηi(t), (2.32)

where oi and νi are the i-th offset and clock rate of the time of the anchors
with respect to the ideal time, while ηi(t) ∼ N (0, σ2

ηi
) and white as before.

Finally, for the tag time measurements, we have

τ⋆(t) = o + νt + η(t) = τ(t) + η(t), (2.33)

where the quantities have the same meaning as in the previous two cases.

Anchors clock analysis The main idea underlying this approach is that
no message exchange should be carried out from the tag to the anchors,
but only from the anchors to the tag, thus ensuring infinite scalability in
terms of trackable number of tags. In the ideal case, the quantities oi, νi

(with i = 1, . . . , n) in (2.32) with respect to the master reference time are
retrieved through the following synchronisation algorithm: starting at a
generic time t, the master anchor sends two messages τm(t) and τm(t +
∆i,m) to ai, whose timestamps at the receiving side are τi(t + δi,m) and
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τi(t + ∆i,m + δi,m), where δi,m is the Time of Flight (ToF) from the master to
the anchor. By denoting with [xm, ym]T and ai = [xi, yi]

T respectively the
master and the anchor known Cartesian coordinates in the Xw × Yw plane
with respect to a fixed reference frame ⟨W⟩ = {Xw, Yw, Zw}, it turns out
that

ρi,m = ∥[xm, ym]
T − ai∥ =

√
(xm − xi)2 + (ym − yi)2,

is the distance among the two anchors. Therefore, assuming that c is the
known propagation speed of the radio frequency signal in LOS conditions,
we have that the ideal ToF δi,m can be obtained as

δi,m =
ρi,m

c
. (2.34)

As a consequence, using (2.31) and (2.32) and defining νi,m = νi
νm

, we can
derive the first-order Taylor approximation for the relative clock rate

νi,m
⋆ =

τi⋆(t + ∆i,m + δi,m)− τi⋆(t + δi,m)

τm⋆(t + ∆i,m)− τm⋆(t)
≈ νi,m + β, (2.35)

where the uncertainty mean µβ = E {β} = 0 (the E {·} is the usual expected
operator), while its variance is

E
{

β2
}
= σ2

β =
2

ν2
m∆2

i,m
(σ2

ηi
+ ν2

i,mσ2
ηm
).

It can thus be argued that the larger the synchronisation interval ∆i,m, the
smaller the uncertainty on the indirect measurement of νi,m

⋆ (i.e., this is the
effect of averaging on longer periods).

Similarly, by defining the actual relative offset as

oi,m = τi(t + δi,m)− νi,mτm(t)− δi,m =

= oi − νi,mom − (1 − νi)δi,m,
(2.36)

we have that

oi,m
⋆(t) = τi⋆(t + δi,m)− νi,m

⋆τm⋆(t)− δi,m ≈ oi,m + γ(t), (2.37)
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whose uncertainty has mean µγ(t) = E
{

γ(t)
}
= 0 and variance

σ2
γ(t) = E

{
γ(t)2

}
=

(
1 − 2

τm(t)
νm∆i,m

)
σ2

ηi
+

+ ν2
i,m

(
1 + 2

τm(t)
νm∆i,m

)
σ2

ηm
+ τm(t)2σ2

β.

Applying (2.37) to the timestamp quantities delayed by ∆i,m, we have
oi,m

⋆(t + ∆i,m). It is then possible to formulate a new estimate as

ôi,m =
oi,m

⋆(t) + oi,m
⋆(t + ∆i,m)

2
= oi,m + γ(t), (2.38)

that is now affected by a zero mean uncertainty with variance

σ2
γ(t) =

σ2
ηi

2
+

σ2
ηm

2
+ τm

(
t +

∆i,m
2

)2
σ2

β, (2.39)

which may or may not be more useful than (2.37) depending on the value
of ∆i,m. In fact, this is a direct consequence of the correlation between
oi,m

⋆(t) and oi,m
⋆(t + ∆i,m) by means of νi,m

⋆. In this case, the ∆i,m should
be chosen as small as possible. By assuming that the clock rates νm and νi

are approximately constant between two synchronisation periods (usually
executed every tens of seconds) and that the master and the anchors do
not change their relative positions (i.e., the ToF δi,m is constant), the relative
offset oi,m is constant as well. With the previous quantities, we can convert
the anchor time scale to the common master time-scale using again a first-
order Taylor approximation to have

τi⋆(t)− ôi,m
νi,m

⋆ ≈ τm(t) + ei,m + ε(t). (2.40)

where ei,m = 1−νi
νi,m

δi,m, E {ε(t)} = 0 and

σ2
ε (t) =

σ2
ηi

ν2
i,m

+
σ2

γ(t)

ν2
i,m

+

+

[
(τm(t) + ei,m)

2

ν2
i,m

− 2
τm(t) + ei,m

ν2
i,m

τm(t)

]
σ2

β.
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Tag clock analysis Due to the DTDoA approach used, also tag’s clock
have to be corrected. Let’s consider the tag at time t be in position p(t) =
[x(t), y(t)]T in ⟨W⟩. By denoting with

ρi(t) = ∥p(t)− ai∥ =
√
(x(t)− xi)2 + (y(t)− yi)2,

the actual distance between the tag and the i-th anchor, we have that the
ToF δi(t) is given by (2.34) when ρi,m is substituted with ρi(t). To perform
the algorithm, the relative clock rate νm = ν

νm
between the tag and the

master (i.e., the reference for all the anchors) is needed and it is computed
using the relation (2.35) specialised for the tag. Therefore, two messages at
time ti and ti + ∆i are received by tag from the i-th anchor and containing
the corrected anchor time (2.40). We first notice that the motion of the tag
can induces a variability in the distance to the i-th anchor in the period ∆i,
which is expressed as

ρi(ti + ∆i) = ∥p(ti) + di(∆i)ui(ti)− ai∥,

where di(∆i) the tag displacement taking place at time ti in the period ∆i

and ui(ti) it unit direction vector in the plane. An upper bound on the effect
of di(∆i) can be found noticing that the maximum increase (or decrease) of
the distance takes place when ui(ti) = [x(t)− xi, y(t)− yi]

T , i.e., directed
towards the anchor ai. Therefore the ToF (2.34) induced variation will be
δi(ti + ∆i) = δi(ti) + α

di(∆i)
c , where α ∈ [−1, 1] depends on the orientation

of ui(ti) as explained before. Therefore, relative clock skew will be affected
as well, which will be given by

νm =
ν

νm

(
1 + α

di(∆i)

c∆i

)
. (2.41)

For what concerns the TDoA, the two timestamped messages are received
by the tag at τ⋆(ti + δi(ti)) and τ⋆(ti + ∆i + δi(ti + ∆i)), both obviously
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expressed in the tag time-scale. Therefore, using the relation (2.35), we have

τ⋆(ti + ∆i + δi(ti + ∆i))− τ⋆(ti + δi(ti))
τi⋆(ti+∆i)−ôi,m

νi,m
⋆ − τi⋆(ti)−ôi,m

νi,m
⋆

≈

≈ νm + ξ(∆i) = νm
⋆,

(2.42)

with E {ξ(∆i)} = 0 and

σ2
ξ (∆i) =

2ν2
m

ν2
i ∆2

i
σ2

ηi
+

2
ν2

m∆2
i

σ2
η +

ν2
m

ν2
i,m

σ2
β.

Indoor GPS TDoA The UTDoA relies on an implicit event: all the anchors
receive a tag’s generated broadcast message that acts as an implicit syn-
chronisation event. In the case of the proposed DTDoA with unbounded
scalability, the messages are transmitted from anchors side to the tags side,
hence a synchronisation event cannot be defined. Strictly speaking, if such
a possibility would exist, the master and the anchors would send their pack-
ets simultaneously at time tm. The tag would then measure the difference
in reception times as τ(tm + δm(tm)) and τ(tm + δi(tm)) and, hence be able
to compute the TDoA as

c [τ(tm + δi(tm))− τ(tm + δm(tm))] =

= cν(δi(tm)− δm(tm)) = ν(ρi − ρm),
(2.43)

∀i = 1, . . . , n. Notice that such a measure is only affected by the relative
clock rate ν, which is of course negligible since it generates an error in the
order of some micrometers.

Since such a synchronised event cannot be generated, at time tm a broadcast
message is transmitted from the master, followed by a second message at
time tm +∆m. The tag timestamps the messages at reception times, denoted
as τ⋆(tm + δm(tm)) and τ⋆(tm + ∆m + δm(tm + ∆m)), and then stores the
transmission timestamps τm⋆(tm) and τm⋆(tm + ∆m) encapsulated inside
the broadcasted messages. The same mechanism is applied when the
anchor i transmits at time ti and ti + ∆i, with tag’s transmitted timestamps
modified according to (2.40), which are then used by the tag to compute the
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relative clock rate (2.42). The absence of a synchronisation event and the
presence of the protocol time interval ∆i,m = ti − tm generates the following
protocol-induced uncertainty

g⋆(∆i,m) = νm
⋆

(
τi⋆(ti)− ôi,m

νi,m
⋆ − τm⋆(tm)

)
≈

≈ ν∆i,m + να
di(∆i,m)

c
+ νmei,m + φ(ti, tm)

= g(∆i,m) + φ(ti, tm).

(2.44)

In this case E {φ(ti, tm)} = 0 and

σ2
φ(ti, tm) = ν2

m(σ
2
ε (ti) + σ2

νm
) + (νm∆i,m + ei,m)

2σ2
ξ (∆i)+

+
2ν2

m
νm∆i

(νm∆i,m + ei,m)(σ
2
ε (ti)− σε(ti, ti + ∆i)),

(2.45)

where σε(ti, ti + ∆i) is the correlation between the uncertainties ε(ti) and
ε(ti + ∆i), given by

E {ε(ti)ε(ti + ∆i)} =
(τm(ti) + ei,m)(τ

m(ti + ∆i)

ν2
i,m

σ2
β+

+
σ2

γ(t)

ν2
i,m

−
τm(ti) + τm(ti + ∆i) + 2ei,m

ν2
i,m

τm
(

t +
∆i,m

2

)
σ2

β.

We are now ready to conclude the uncertainty analysis by computing the
DTDoA relation (2.43) with measured quantities

c
[
τ⋆(ti + δi(ti))− τ⋆(tm + δm(tm))− g⋆(∆i,m)

]
=

= ν(ρi − ρm)− cνmei,m + λ(ti, tm),
(2.46)

resulting in an overall uncertainty with mean E {λ(ti, tm)} = 0 and variance

σ2
λ(ti, tm)= c2

[
2
(

1+
νm∆i,m + ei,m

νm∆i

)
σ2

η+σ2
φ(ti, tm)

]
. (2.47)

It is worthwhile to note that those quantities can be equivalently computed
for the delayed messages, by considering τm⋆(tm + ∆m) and τ⋆ i(ti + ∆i)
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in (2.44), and τ⋆(tm + ∆m + δm(tm + ∆m)) and τ⋆(ti + ∆i + δi(ti + ∆i))

in (2.46). Of course, comparing (2.46) and (2.43), we can notice that the
presence of multiple time sources (i.e., having n anchors) induces potential
errors stemming from the synchronisation uncertainty with the master ε(t),
highlighted in (2.40), which is, unfortunately unavoidable.

2.5.2 Uncertainty Models Validation

The article [66] showed that the first-order approximation for (2.47) works
remarkably well in simulation. We present here the experimental set-up
and the detailed analysis towards experimental validation of the proposed
models in an actual environment, also focusing on the detrimental effects
of the target motion described in Section 2.5.1, thus deriving the practical
relevance of the performed analysis.

Indoor testing environment The testing environment is depicted in Fig-
ure 2.28. The environment is equipped with a MoCap system for ground
truth and a network of UWB anchors, described in what follows. It has
to be noted that the laboratory in which the system has been tested is
very challenging (see Figure 2.29), due to the presence of many artefacts
generating additional sources of uncertainty on the LPS.

MoCap system To create a ground truth trajectory to evaluate the ac-
curacy of the UWB positioning system, we have adopted a Motion Cap-
ture system, specifically a system provided by Qualisys with 8 Arqus A9
cameras, a sync unit, and the workstation for system configuration (see
Figure 2.28). The cameras are configured to work at a frequency of 240 Hz
to achieve a suitable frame rate with respect to the UWB data rate. The tag
is equipped with a Hand Rigid Bodies Marker and tracked by the MoCap
software, measuring its 3D position at each captured frame. After calibra-
tion, the system reports a sub-millimetre accuracy with less than 1 mm
standard uncertainty 9.

9The adopted calibration procedure can be found here https://docs.qualisys.com/getting-
started/content/getting_started/running_your _qualisys_system/calibrating_your_system/
calibrating_your_system.html
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FIGURE 2.28: Indoor testing infrastructure. In the top, we show the
MoCap cameras along with the UWB anchors and the acquisition
chain. The bottom part depicts the effect of tag moving affecting
reception’s time instant and the spatial location of the 12 messages
sent by the n = 5 reference anchors (the sixth is the master). Each
message is received at a different time/space instant/location, caus-
ing the estimation shifting problem. The highlighted Pi locations

show where the static tests were conducted.

UWB system To implement our LPS, we decided to use the commercial-
off-the-shelf COTS) Decawave DWM100110 SoM, a customary choice for
indoor positioning systems [129]. The DWM1001 is a compact module that
integrates both a low-power nRF52832 MCU and the Decawave DW100011

UWB transceiver. It also integrates RF circuitry, a UWB antenna, and a
motion sensor for sensor fusion applications [130].

The DW1000 chip is an IEEE 802.15.4-2011 [125] compliant UWB transceiver,
which can operate on six different frequency bands with centre frequencies
between 3.5 to 6.5 GHz and bandwidth of 500 or 900 MHz. It provides
the possibility of ranging measurements and retrieving the measured CIR.

10https://www.decawave.com/sites/default/files/dwm1001_datasheet.pdf
11https://www.decawave.com/sites/default/files/resources/dw1000-datasheet-v2.09.pdf
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FIGURE 2.29: Laboratory environment. In particular, the quadruped
and barrier for the anthropomorphic robotic arm created the condi-

tions for the multi-path effect and NLoS condition, respectively.

The chip also offers three different data rates: 110 kbps, 850 kbps, and
6.8 Mbps. The DW1000 clocking scheme is based on three main circuits;
crystal oscillator (trimmed in production to reduce the initial frequency er-
ror to approximately 3 ppm), Clock Phase-Locked Loop (PLL), and RF PLL.
The on-chip oscillator is designed to operate at a frequency of 38.4 MHz.
This clock is then used as the reference input to the two on-chip PLLs.
The clock PLL generates a 63.8976 GHz reference clock required by the
digital backend for signal processing. The RF PLL generates the clock for
the receive and transmit chain. The DW1000 automatically timestamps
transmitted and received frames with a precision of 40 bits. Working at a
nominal 64 GHz resolution, packets are timestamped with a 15.65 ps event
timing precision12.

The DWM1001 SoM was configured, during the experimental tests, to use
UWB Channel 5 (with a frequency of 6489.6 MHz and a bandwidth of
499.2 MHz) preamble length of 128 symbols, the highest Pulse Rate of
64 MHz and the highest Data Rate of 6.8 Mbps.

12https://www.decawave.com/dw1000/usermanual/
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To implement the LPS method on UWB, a specific number of DWM1001
modules are programmed to act as anchors to provide a reference infras-
tructure for the tags. Hence, each anchor is interfaced with a Raspberry
PI 3 and a DWM1001 module. Finally, data sharing and acquisition is
implemented by leveraging the MQTT protocol to enable data transfer
by a remote system. To create an infrastructure referenced by the motion
capture, we have installed the UWB anchors on top of the MoCap cameras,
while the MoCap sync unit is connected with a wired cable to one of the
GPIO of the DWM1001’s MCU of the tag for synchronisation of all the
sensor readings. Indeed, the sync unit allows external recording events and
matching them with the captured frames. Given the standard uncertainty
of the MoCap system previously mentioned and the typical accuracy of the
UWB positioning system (typically, in the order of some centimetres), we
limit the uncertainty analysis to 1 mm of minimum resolution.

The infrastructure parameters for the algorithm are: ∆i,m = 3 ms, ∆i =

1.1 ms, ρi,m = {6.063, 11.230, 9.716, 7.484, 4.048} m for the n = 5 anchors,
c = 299792458 m/s.

Model validation Notice that, to validate the final DTDoA uncer-
tainty (2.47), the compounding experimental quantities must be retrieved,
which are impossible to be gathered from any measurement system. There-
fore, we adopt a mixture of simplifications and nominal values to validate
the equation. The results presented in this section refer to the static case,
i.e., where α = 0 in (2.41) and (2.44). We first analyse the synchronisa-
tion period ∆i,m influence, as mentioned in Section 2.5.1,Anchors clock
analysis. Indeed, there is a linear dependency between the offset estima-
tion error õi,m = ôi,m − oi,m and ∆i,m, which is empirically evaluated to be
õi,m ≈ 8 · 10−6∆i,m (e.g., for ∆i,m = 10 ms, õi,m = 80 ns). Similarly, increas-
ing the anchors transmission delay ∆i+1,m − ∆i,m of some milliseconds, the
relative clock rate estimation error ν̂i,m − νi,m increases of some ppm. We
then recall that the reference time for our platform is given by the master
clock, hence we assume for the model (2.31) that νm = 1, so as that (2.44)
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TABLE 2.8: Experimental standard uncertainty σλ(ti , tm) collected
from the positions reported in Figure 2.28. All the quantities are
expressed in millimetres and should be compared with the model-
based value of the standard uncertainty σλ(ti , tm). Results are the

same for all the testing positions P1, P2, ..., P9 in Figure 2.28.

Anchors 1 2 3 4 5
σλ(ti, tm) 97 125 147 167 184
σλ(ti, tm) 72 93 110 124 137

turns to

g⋆(∆i,m) = (ν + ξ(∆i))

(
τi⋆(ti)− ôi,m

(νi + β)
− τm⋆(tm)

)
≈

≈ ν(∆i,m + ei,m) + φ(ti, tm).

Moreover, considering the standard uncertainty of the DWM1001’s clock of
10 ppm [131], we assume that σηm = σηi = ση = 0.45 ns for all the uncer-
tainty sources in (2.31), (2.32) and (2.33). Given these rated uncertainties
and the fact that the involved time intervals ∆i,m and ∆i are in the order
of few milliseconds, we can safely assume for the sake of validation that
ν ≈ 1, thus (2.47) turns to

σ2
λ(ti, tm) =

c2

2

1 +
τi⋆(ti)−ôi,m

νi
− τm⋆(tm)

∆i

 σ2
η + σ2

φ(ti, tm)

 .
(2.48)

The only missing ingredient is σ2
φ(ti, tm) in (2.45), which is experimentally

retrieved by directly computing the variance of (2.44), i.e., of the measured

quantities τi⋆(ti)−ôi,m
νi,m

⋆ − τm⋆(tm). Hence, with the described approach, we
had the theoretical standard uncertainty σλ(ti, tm) reported in Table 2.8.
This value is then compared with the experimental standard uncertainty
σλ(ti, tm) retrieved from the MoCap described in Section 2.5.2 and consider-
ing 5000 UWB samples from each position (see Table 2.8). In both cases, the
standard uncertainties are independent from the testing positions P1, . . . , P9

depicted in Figure 2.28, while the terms governing the equations are ∆i,m,
σ2

η and σ2
φ(ti, tm). Notice that the theoretical overall DTDoA uncertainty
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TABLE 2.9: Comparison between the theoretical nonlinear
value (2.48) and the CRLB. All the quantities are expressed in mm2.

Anchor 1 2 3 4 5
Nonlinear (2.48) 3 10 21 37 55
CRLB 1 3 7 12 18

model (2.47) approaches remarkably well the results obtained in the field.
Moreover, the synchronisation algorithm among the infrastructure nodes
makes the proposed solution rather flexible and allows new receivers to
join the network without any particular calibration procedure or reset of the
infrastructure, which partially induces a part of the uncertainties subsumed
in the statistical analysis of Table 2.8.

To further substantiate the analysis, we first experimentally verified that the
DTDoA measurements actually follow a biased Gaussian distribution, with
a bias that is mainly induced by non line of sight conditions and delays in
the message timestamp processing times. Then we carried out a Cramer-
Rao Lower Bound (CRLB) analysis as reported in [132] to be compared to
the nonlinear (i.e., without first-order approximations) version of (2.48),
both reported in Table 2.9. As can be seen, the analysis carried out is a good
approximation of the actual CRLB, thus further validating the proposed
analysis. Notice that the uncertainty is a function of the anchor position,
thus showing a perfect match with the importance of anchor deployment
geometry [3]. Moreover, as mentioned in Section 2.5.1, ∆i,m should be
chosen as small as possible to limit the uncertainty: from Table 2.9, it is
evident a quadratic dependency for both the CRLB and the nonlinear (2.48)
(indeed, ∆i,m < ∆i+1,m as aforementioned), which, instead, is lost for the
first order linearised values in Table 2.8. Nevertheless, by comparing the
standard deviations in Table 2.8 and the variances in Table 2.9, it turns out
that (2.47) is a good approximation of the nonlinear version of (2.48) despite
the first-order approximations adopted, and thus can be considered as a
nice figure of merit for the proposed solution.

Effect of a moving tag We now investigate the effects of the tag motion,
thus α ̸= 0 and unknown in (2.41) and (2.44). The main effect is dictated,
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once again, by the absence of a synchronisation event for the infrastructure,
hence when the tag starts to move, the anchor timestamped values are
acquired at different locations as shown at the bottom of Figure 2.28: the
position signed as Mj

i stand for the i-th message (i = 1, 2) form the j-th
anchor (j = 2, . . . , 5, being j = 1 the master). Therefore, it is not defined as
a unique position from the MoCap to act as the ground truth. Therefore, we
decided to compare the DTDoA estimated values with three sample points:
with reference to Figure 2.28, the first position M1

1, the average position
M = 1

2(n+1) ∑5
j=1 Mj

1 + Mj
2 and the last position M6

2 . To synchronise the tag
and the MoCap, we used the wired connection described in Section 2.5.2
and, in particular, we raised the GPIO of the DWM1001’s MCU at M1

1 and
lowered at M6

2, thus defining the UWB positioning cycle. It is worth to be
noted that since ∆i = 1.1 ms and the sync unit maximum event capture
rate is equal to 200 Hz, it was not possible to capture all the intermediate
positions in the middle of the positioning cycle. To circumvent this limi-
tation, the experimental setup comprised two support to hold a prismatic
guide on which a vertical bar is mounted on the carriage. The experiment
is performed over a distance of 3 m and moving the carriage linearly at a
constant speed of about 1 m/s (e.g., an average walking speed of a human
being) and only the first M1

1 and last M6
2 position of each positioning cycle

were actually stored (see the bottom of Figure 2.28): with this setup, the
average positions were computed correctly as well.

Nevertheless, such drawback makes the analysis of σ2
λ(ti, tm) in (2.47) car-

ried out previously hard to be pursued. Therefore, we decided to consider
the effect of the motion of the tag on the standard uncertainty of the esti-
mated position. To this end, we adopted the standard Least Squares (LS)
solution that can be found in [133]. Hence, the mean error on the Xw and
Yw axes computed on 5000 position cycles are reported in Table 2.10. It is
evident how the tag’s motion induces a constant bias, which is a conse-
quence of the linear motion of the tag generating the effect described in
Section 2.5.1, no matter the adopted ground truth reference and that the
UWB positioning system underestimates the tag position. We also report in
Figure 2.30 the probability mass function of the positioning error for the
moving tag. Since the standard uncertainties, in this case, are σx = 67 mm
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TABLE 2.10: Mean error of the UWB position estimates on 5000 posi-
tion cycles for a linearly moving tag with respect to the three ground

truth references. All the quantities are reported in millimetres.

M1
1 M M6

2
µx −93 −93 −94
µy −173 −174 −173

(a) (b)

FIGURE 2.30: Histogram of the error for the dynamic test along the
Xw (a) and Yw (b) reference axes over 5000 repeated measurements.

and σy = 78 mm along the Xw and Yw reference axes, they are compara-
ble to standard deviations of the positioning experiments in Section 2.5.2,
hence implying that the effect of the tag motion, for the typical human
being velocity, is negligible in (2.47). It has to be noted that the proposed
indoor positioning system is conceived for pedestrians or objects moving
inside indoor environments. While such environments make the restric-
tion to 2D scenarios quite natural, they also impose potential constraints
once 3D problems are considered, since the anchor deployment is typi-
cally restricted by the presence of furniture or production machinery. As
such, the anchors are most often placed at similar heights, thus increasing
the uncertainty on the third dimension (i.e., Vertical Dilution of Precision
(VDoP) issue [134]). In robotic systems, like Unmanned Aerial Vehicles
(UAVs), where the z-coordinate plays a crucial role in navigation, obtaining
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(a) (b)

FIGURE 2.31: Distribution of the error in the static positions of
Figure 2.28 along the Xw (a) and Yw (b) over 5000 repeated measure-

ments.

accurate altitude information is paramount. To this end, additional sensors
such as barometers, ultrasonic sensors, Time-of-Flight (ToF) sensors, and
LIDAR can be integrated into the system. The data from these sensors can
then be fused to produce a more precise position estimation. An ad-hoc
anchor deployment to account for this additional issue for 3D problems is
a challenging research problem per se, thus left for future investigations.

Positioning Results We now present the results on the position of the tag
that can be attained by the proposed solution by applying the mentioned
multilateration solution for the TDoA. As a first comment, the validation
analysis in Section 2.5.2 shows clearly that the standard LS solution can
be adopted to solve the multilateration problem of the DTDoA, being a
Weighted LS useless (i.e., the σ2

λ(ti, tm) in (2.47) is the same for all the
anchors).

To evaluate the accuracy of the proposed system, we collected 5000 sam-
ples of a static tag in the positions Pi reported in Figure 2.28 and with
the same choice of the parameters reported in Section 2.5.2. Figure 2.31
shows the empirical probability mass function of the positioning error with
respect to the ground truth of the MoCap system. Despite the closeness
to a Gaussian-shaped curve obtained (which has been correctly assumed
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FIGURE 2.32: Experimental setup inside the hall of the "Diparti-
mento Ingegneria Industriale" of the University of Trento. Inside the

orange circle the receiver mounting point on the tester arm.

throughout the analysis of Section 2.5.2), the distribution presents a bias
induced by the previously mentioned angle-dependent UWB pulse dis-
tortion and path overlaps [135]. Moreover, the measure is also subjected
to the anchors deployment geometry in the testing room that may cause
reflections due to the presence of metallic objects (see Figure 2.29). In partic-
ular, the bias is quantifiable in µx = 203 mm and µy = −49 mm for the Xw

and Yw axes, respectively, while the standard uncertainty is σx = 27 mm
and σy = 69 mm. To summarise, also considering the dynamic conditions
reported in Figure 2.30, we can claim a positioning error that is below 30 cm,
specifically a 2σ of 156 mm, and with an arbitrary number of positioned
tags. To further assess the proposed system, we test the proposed solution
in a larger area, as shown in Figure 2.32. Both static and dynamic tests are
reported to assess the performance of the system in a natural scenario. In
Figure 2.33, both the positions of the UWB anchors and the static tested
points are reported, while Table 2.11 shows the mean error and the standard
deviation in those static locations. In the same area, the dynamic tests are
instead organised adopting two challenging paths: 8-shaped and Z-shape
patterns, whose actual and estimated trajectories are reported in Figure 2.34.
The result of the dynamic tests are reported in Table 2.12. The results of
these experimental tests confirm how the environment affects performance:
the mean error is indeed smaller than the one observed in Figure 2.30
due to the favourable environmental conditions for the initial wireless
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FIGURE 2.33: Graphical representation of the experimental setup,
with the static testing point reported.

TABLE 2.11: Mean error {µx , µy} and standard deviation {σx , σy}
along the X and Y axis, respectively, and computed in the five loca-
tions of Figure 2.33. All the quantities are expressed in millimetres.

Test Point µx µy σx σy
s1 7 -56 119 82
s2 50 -91 141 128
s3 98 -92 166 111
s4 131 -84 174 115
s5 170 59 242 196

(a) (b)

FIGURE 2.34: Dynamic test trajectories: 8-shape pattern (a) and
Z-shape pattern (b). The trajectories are executed by the tester in the

area depicted in Figure 2.32.
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TABLE 2.12: Mean error {µx , µy} and standard deviation {σx , σy} for
the dynamic tests of Figure 2.34. All the quantities are expressed in

millimetres.

Pattern µx µy σx σy
Z-shape 45 8 207 201
8-shape 29 36 238 245

synchronisation and despite the more challenging trajectories adopted (in
Figure 2.34-(b) it is possible to appreciate the antenna pattern effect at the
sharp turns). The standard deviation, instead, is considerably increased
due to the arm-mounted receiver position (See Figure 2.32), generating
several NLoS conditions. We finally analyse the effect on the choice of the
positioning cycle length. Indeed, at a first glance, making ∆i large may
have a positive effect on σ2

λ(ti, tm) in (2.47) (and, hence, on the positioning
accuracy). However, ∆i,m enters several times in the computation of the
final uncertainties: for instance, the large is ∆i, the more will be the syn-
chronisation uncertainty due to the incorrect clock tag drift ν (2.33). We
propose here empirical proof using the resulting positioning uncertainties
as a figure of merit. Let us recall that ∆i,m = 3 ms, hence having n = 5
anchors (the first is the master), this corresponds to a positioning cycle of
15 ms. By setting ∆i,m = 16 ms, we obtain the empirical probability mass
function in Figure 2.35 for the positioning error over 5000 repetitions. It
can be immediately noticed how the effect of the not modelled nuisances
becomes remarkable, generating quite long tails in the distribution. More-
over, we have µx = 288 mm (with σx = 797 mm) and µy = −323 mm (with
σy = 1.01 m), i.e., highly noticeable detrimental effects. This is also reflected
in the experimental value of (2.47), which turns to σλ(ti, tm) = 279 mm.
Therefore, the longer is ∆i,m, the worse is the positioning accuracy, which
verifies the hypothesis in [136].

Validation in challenging scenarios To further experimentally validate
the proposed positioning system, we report here tests under different sce-
narios, including those with dominant NLoS conditions as well as under
completely NLoS conditions. The experimental setup arena is the hall
of our department shown in Figure 2.36. The area comprises obstacles
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(a) (b)

FIGURE 2.35: Distribution of the error in the static positions of
Figure 2.28 along the Xw (a) and Yw (b) over 5000 repeated measure-

ments and with ∆i,m = 16 ms.
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FIGURE 2.36: Graphical representation of the experimental setup,
with the static testing point reported.

and vending machines, while the experiments have being conducted in
a working day populated with many students. The system was firstly
tested at static points [P1, P2, P3, P4, P5] selected to cover an area from the
infrastructure boundary, where the positioning performance is known to
be reduced due to the Position Dilution of Precision (PDoP) [134] value,
to the center of the area. Metal bulletin boards were intentionally placed
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TABLE 2.13: Mean error {µx , µy} and standard deviation {σx , σy}
along the X and Y axis, respectively, and computed in P5 of Fig-

ure 2.36. All the quantities are expressed in millimetres.

Test Point µx µy σx σy
P5 210 -270 125 245

in the middle to introduce dominant NLoS conditions during the tests at
points [P1, P2, P3, P4], obstructing the propagation of the UWB signal with
at least three anchors. The experiment resulted in a maximum of 30 cm
of uncertainty, consistent with the previously reported results. The point
P5 was tested under fully NLoS conditions by creating a barrier using the
metal bulletin boards, resulting in worse performance compared to the
results obtained for the testing point s1 of Figure 2.36 that present a similar
spatially relationship with the anchors. The results of this experiment are
reported in Table 2.13. We additionally consider dynamic tests in the same
scenario. Unfortunately, since NLoS conditions are present, the motion
capture system was not available (indeed, it works only when Line-of-Sight
conditions hold). Therefore, we used fiducial points to walk through. The
results obtained from this approach, albeit qualitative due to the explained
shortcomings, are shown in Figure 2.37, demonstrating once more the ef-
fectiveness of the proposed solution in dynamic and natural populated
environments.

2.6 INFALLIBLE: Positioning Systems Enhancing Human
Welfare

This section provides a brief overview of the awarded grant and highlights
the ongoing advancements in positioning systems research, showcasing
its significance as a constantly evolving field. The research conducted in
indoor positioning systems for humans has provided a tangible solution for
fostering coexistence between humans and wild animals in shared spaces,
leveraging previously proposed strategies. The project submitted to the
prestigious 10th Fondazione VRT Mountain Innovators Grant, which emerged
as the grant recipient, is geared towards addressing the growing concern
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FIGURE 2.37: Dynamic test trajectory. The tester walks along a
predefined path.

of heightened human activity in areas inhabited by potentially dangerous
wildlife in recent times.

This phenomenon occurs in certain mountainous regions and/or at specific
times of the year due to tourism. Moreover, the population’s lifestyle
changes have led to a rise in outdoor activities. Additionally, residents
of mountainous areas spend a significant amount of time in these zones,
engaging in activities such as grazing, wood collection, haymaking, litter
collection, and hunting.

Among the animals considered potentially dangerous to human life in our
territories are bears, wolves, and lynxes. Bears have always been present
in the western Trentino territories, and in recent years, there has been a
process of spontaneous recolonization by bears, as well as involvement by
wolves and lynxes. The estimated total population of bears, based on the
latest official data from 2019, is 82-93 individuals, with population trends
illustrated in Figure 2.38. The INFALLIBLE project, accessible at https:
//www.fondazionevrt.it/mountaininnovatos2023, seeks to respond to
the challenges posed by the resurgence of animals, notably bears, in regions
increasingly frequented by humans for both work and leisure activities. It

https://www.fondazionevrt.it/mountaininnovatos2023
https://www.fondazionevrt.it/mountaininnovatos2023
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FIGURE 2.38: Bear Population Trend

endeavors to establish a cooperative and distributed localization network
encompassing both humans and animals, thereby eliminating the necessity
for deploying extensive infrastructure solely for bear localization across
the territory. Presently, the province of Trento employs radio collars to
track bear movements; however, this method often proves ineffective due
to unreliable GPS signals or poor position information as outlined in the
previous chapter. A cooperative positioning network renders the current
GPS framework obsolete, offering the following advantages:

• No service interruption due to GPS signal gaps

• No need for a dedicated server and data coverage to access informa-
tion for users directly involved

• A distributed system provides a level of robustness and flexibility
unattainable with traditional centralized systems, reusable for any
area and number of users without modification

• Strategic fiducial points within the area offer global information on
positioning

The strategies implemented in this project are detailed in the preceding sec-
tions. For a more comprehensive understanding, please visit the dedicated
webpage at https://www.youtube.com/@fondazionevrt8859.

https://www.youtube.com/@fondazionevrt8859
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Chapter 3

Robot-Centric Positioning Systems:

Enhancing Spatial Awareness and

Navigation

In this chapter, we delve into the realm of positioning systems designed for
robotic applications. Building upon the algorithms and fundamental tech-
niques discussed in the previous chapter, we specifically focus on exploring
the utilization of Unmanned Aerial Vehicles (UAVs) as transformative
robotic platforms for diverse applications.

UAVs have transitioned from specialized tools to commonplace devices,
making their way into both households and industrial installations. Concur-
rently, the spectrum of their applications continues to expand. Researchers
have directed their attention towards investigating various application chal-
lenges, including autonomous navigation [137], obstacle avoidance [138],
goods transportation [139, 140], logistics management [141], and precision
agriculture [142].

In recent years, UAV control techniques have progressed steadily, and one
of the still most investigated topics tackle the localisation and positioning
problem. In the classical approach, UAVs obtain their position, and even-
tually the one of a target, exploiting the Global Positioning System (GPS).
This approach, however, is not always reliable or available as in the case of
GPS-denied environments [143], such as airports, alleys, parking lots and
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underground locations, where satellite signals and other technologies lack
precision or fail entirely.

To solve this problem, researchers have proposed different positioning and
localisation technologies. These solutions can be categorised into 3 main
families: Vision based, like Visual-Inertial Navigation, Infrared and/or Li-
dar; Radio Frequency based, such as Ultra-Wide Band (UWB), Bluetooth and
Radio Frequency IDentification; Audio signal based, exploiting Ultrasound
technologies [144–147]. Among all the listed solutions, UWB presents some
unique characteristics like low-cost, low latency, low energy consump-
tion, and centimeter-level accuracy that have attracted researchers’ interest
lately [148, 149]. Moreover, unlike vision-based technologies, the RF will
never suffer from the low-visibility condition and does not require costly
infrastructures or computationally hungry processing algorithms. There-
fore, fuelled by recent advancements in the development of localisation
infrastructures based on UWB [66, 150], researchers have investigated the
application of such technologies in robotics [67, 100], even for multi-agent
formation control [151]. For instance, in [152], a combination of UWB rang-
ing with GPS way pointing is adopted to achieve cooperative flight for
cooperative goods transportation. In [153], a swarm of miniature, fully
autonomous flying robots capable of exploring unknown environments
autonomously while satisfying various requirements, including flight ef-
ficiency, obstacle avoidance, inter-robot collision avoidance, and swarm
coordination has been presented.

As the number of personal UAVs is constantly growing, it becomes impor-
tant to study the interaction between humans and such systems [154, 155].
Currently, most of the research is devoted to the evaluation and the de-
velopment of new control modalities to enhance human-drone interaction
and extend the set of possible use cases [156, 157]. However, the need for
complex hardware interfaces, such as joysticks or haptic devices along with
visual/auditory control as voice recognition or the interpretation of face
poses and body postures, limits the possible use cases and the wide spread
application of UAVs in service robotics scenarios [158].

As the demand for robots continues to rise, there is a parallel escalation in
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the necessity for robust positioning infrastructure. Specifically, in applica-
tions such as the exploration of unknown environments, the conventional
approach for RF localisation involves human efforts to deploy a set of
anchors in known coordinates.

The exploration of unknown environments has attracted increased atten-
tion due to its broad range of application scenarios, including search and
rescue missions [159], disaster recovery [160], planetary exploration [161],
photogrammetry [162], aerial inspection and monitoring of buildings and
structures [163] [164], agriculture [165], and predictive maintenance [166].
Localisation and positioning capabilities are primary features for any au-
tonomous exploration system. According to the application scenarios,
several solutions can be used. The capability of positioning in an absolute
reference system, usually with the GPS signal [167], is one of the most
used techniques. However, many robot exploration activities are in GNSS-
denied environments, such as indoor. In such challenging cases, alternative
positioning methods are usually considered, e.g., visual-SLAM [168] [169],
laser scanners [170]. Some of these techniques require non-negligible com-
puting resources, work preferably in information-rich environment, and
cannot guarantee a maximum target uncertainty (e.g., SLAM) [171]. Others,
instead, have limited computational burden and can compute positioning
under controlled uncertainty. Nevertheless, this class of solutions usually
requires instrumented infrastructure in the surrounding with active or pas-
sive markers. Examples of this category are Radio Frequency (RF) active
beacons for Radio Signal Strength Identification (RSSI) [172] or Ultra Wide
Band (UWB) [100] [173] [66], while for passive solutions we can mention
visual markers [174] or passive RFID tags [175]. The nature of the technol-
ogy and the sensors embedded into the environment determine uncertainty
during the exploration.

Providing positioning measurements with limited uncertainty for au-
tonomous robot navigation is hard if an absolute reference as the GPS
is not available. The achievable positioning performance depends both on
the specific technology used by the sensing devices and on the algorithm
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defined for the placement of such devices [176]. When RF ranging sen-
sors are considered, two different approaches are usually implemented to
achieve the optimal placement in an unknown environment:

1. Off-line. The environment is analyzed, e.g., using statistics about
the navigation paths, and the placement positions are determined to
guarantee the desired target uncertainty. For example, in [177], three
off-line algorithms are assessed and compared to find the candidate
points of an additional beacon that maximizes the accuracy of the
localisation service over the entire region.

2. Online. In this case, the environment may not be known upfront,
and the anchors are deployed on-demand, e.g., when the localisation
uncertainty approaches the maximum tolerable value. For instance,
in [178], the robots use two different strategies to place a new sensor
in the environment: measure the average of RSSI, and place the new
sensor when this value falls under a predetermined value or based
on a fixed distance.

Expanding the scope of positioning systems for robotic applications, one
of the most complex challenges is encountered in the realm of space explo-
ration.

Within this context, the pivotal technological solution revolves around the
localization and positioning of robots, human beings, and any other entities
of interest navigating the environment. Presently, a myriad of solutions
exists to address positioning from a comprehensive standpoint.

For instance, the Global Navigation Satellite System (GNSS) enables the
computation of a receiver’s position on the Earth’s surface: in this respect,
the Global Positioning Unit (GPS) is part of the quartet of available GNSSs,
which also includes the GLONASS, the GALILEO and the BeiDou systems.
However, it is widely acknowledged that signals from these systems may
prove unreliable or unavailable in specific environments, such as mines.
Moreover, in terrains with varying morphology featuring hills and val-
leys, the accuracy of GNSS significantly diminishes. Another fascinating
scenario that has become quite popular in the last few years is the Mars
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FIGURE 3.1: Scenario: a swarm of UAVs that localise themselves
and provides simultaneously a positioning services to humans and
robots on the ground. This image was created with the assistance of

DALL-E.

Exploration Program1: exploring the most accessible locations in the solar
system provides an opportunity to unravel the mysteries surrounding the
origin and evolution of life.

As of the current writing, five active orbiter missions are dedicated to
analysing Mars’s atmosphere and categorising surface locations for au-
tonomous robot exploration, with two missions currently in operation. As
said, Mars lacks a Global Navigation Satellite System; hence huge and
highly recognised positioning issues arise in such conditions, asking for
the development of alternative strategies for localising robots, astronauts,
and sensors on the ground, as shown in Figure 3.1. Due to the challenging
operational constraints of such a scenario, there is also the clear need for a
self-deployable system that should limit the human interventions just to
sporadic high-level decision-making (such as controlling and managing
the localisation network): this is also a field of growing interest in the com-
munity. Finally, there may be situations where a positioning network is
essential for a specific task but only temporarily; hence, it becomes highly

1https://mars.nasa.gov/mars-exploration/missions/?page=0&per_page=99&order=
date+desc&search=&category=170%3A172

https://mars.nasa.gov/mars-exploration/missions/?page=0&per_page=99&order=date+desc&search=&category=170%3A172
https://mars.nasa.gov/mars-exploration/missions/?page=0&per_page=99&order=date+desc&search=&category=170%3A172
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desirable to have an autonomous system capable of rapidly providing such
services without extensive human involvement.

In the literature, several works are proposed to supply a positioning system
where the GNSS signal is not available or unreliable. In [63, 92, 179], a
positioning system based on visible light communication (VLC) technology
is proposed: the choice of this particular means of communication turns
out to be intrinsically robust to the radio-frequency positioning systems
downsides, like multipath reflections. Other researchers propose systems
based on acoustic signals [62, 180, 181] to compute the receiver’s position.
The solution proposed in [182, 183] leverages a vision system to implement
a tracking system. All the solutions mentioned above need a structured
environment, where the human plays a central role in manually placing the
positioning infrastructure, not to mention the cost of the devices (especially
for vision systems), possible acoustic environmental pollution, and the need
for power supply. A cooperative and self-organising positioning system
is desirable to avoid these limitations and provide a viable solution for
planetary explorations.

In [184], a cooperative localisation algorithm is proposed when no fixed
infrastructure is available, building upon the theory of factor graph and
the sum-product algorithm. In [67], a positioning infrastructure is built on
the fly, orchestrating multiple vehicles. In [185], a localisation and target
tracking system is proposed for an underwater autonomous vehicle using
a particle filter, where a fraction of the involved vehicles act as temporary
anchors for the others. In [186], a positioning system based on ranging
information is proposed, leveraging the multidimensional scaling algo-
rithm. Despite their effectiveness, all these solutions are either based on
tracking, i.e., the positioning data is computed and stored in the temporary
anchors and, hence, it should be sent to the receiver, thus affecting the
overall update rate and limiting the scalability of the system, or they are
solutions that do not explicitly consider the target motion.

The most promising solution to reduce the complexity of the problem and
pass from a centralised to a decentralised system is the multidimensional
scaling (MDS) algorithm. [186] provides a distributed and weighted version
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of the traditional MDS assuming that an initial guess of the node positions,
for instance provided by a GNSS module (indeed, the MDS encounters
an intrinsic geometric ambiguity of the solutions [77]). Nonetheless, the
problem of the scalability of the number of receivers and the limitations on
the communication scheduling still needs to be addressed. In our previous
work [187], we have proposed a solution for the geometry ambiguity that
uses no additional information. Moreover, we have definitely solved the
scalability problem on the receivers’ side using an innovative algorithm
to supply a positioning service based on the same principle of GNSS [66,
188] that guarantees a certified uncertainty level to all the receivers, which
is not possible using the standard approach (if more receivers are asking
for positioning information, dedicated messages should be sent, hence
increasing the network congestion and, as a consequence, the positioning
uncertainty).

3.1 Flight Dynamics: Exploring an Infrastructure-Less
UWB-Based Leader-Follower System for Compact
UAVs in a Relative Positioning Framework

As highlighted above, robots are becoming increasingly prevalent in our
daily lives, with aerial robotic platforms being particularly prominent for
various tasks. Section 3.1 delves into an initial exploration of human-robot
interaction, focusing on a scenario where an autonomous UAV is assigned
the role of tracking a human subject using solely UWB-based positioning
technology. The approach, termed the "Leader-Follower" paradigm, entails
an autonomous UAV follower mirroring the actions of a human leader. This
paradigm is applicable to various mobile robots and involves computing a
reference point near the human for guiding the follower’s movements. The
setup involves a human subject equipped with a single UWB transceiver
(referred to as the "target" or "tag"), while the follower is a compact 250 mm
wheelbase UAV fitted with three UWB transceivers (referred to as "anchors")
arranged in a triangular formation to mitigate positioning ambiguities. (see
Figure 3.2 for a snapshot of the developed UAV follower prototype). Within
the described application, the main contributions of this section are:
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FIGURE 3.2: (a) UAV follower prototype. (b) Follower system ar-
chitecture. On the left the three UWB radios along with the RPi 4
companion board. The master DWM1001C is in charge of collecting
the data from the other UWB radios and stream them to the RPi 4.
On the right the UAV avionics. Companion board to flight controller

communication is implemented using a MAVLINK.

• An analysis of the impact of the geometric shape and baseline of
the 3 UWB anchors mounted on the follower on the accuracy of the
position estimates;

• The development of an algorithm that given the position estimates,
track the tag with desired precision;

• The development of Hardware-in-the-Loop simulations for the algo-
rithm evaluation and the integration of the proposed solution on a
commercial compact 250 mm UAV with preliminary experimental
results.

3.1.1 The Catch-Me-If-You-Can Solution

Let us consider the UAV follower prototype reported in Figure 3.2, which is
endowed with three UWB anchors placed at distance b with respect to the
centre of mass of the UAV on an equilateral triangular configuration. The
target person, i.e., the leader, is tracked using an UWB tag, whose position
is determined by the Cartesian coordinates of the tag in the UAV reference
frame, dubbed ⟨U⟩, and whose coordinates are expressed as p = [x, y, z]T .
The three UWB anchor positions, i.e., ai = [xi, yi, zi]

T , are known and
expressed in the same reference frame ⟨U⟩, with zi = 0, ∀i = 1, 2, 3, and are
depicted with blue circles in Figure 3.3. The i-th anchor is able to deliver a
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FIGURE 3.3: Reference systems considered for the leader-follower
application. The blue circles represent the positions of the three
UWB anchors, all expressed in the depicted UAV reference frame

⟨U⟩.

distance to the UWB tag, i.e.,

ρi =
√
(xi − x)2 + (yi − y)2 + (zi − z)2 + ηi = ρi + ηi, (3.1)

where ηi is the uncertainty contribution, which is supposed to be normally
distributed, zero-mean and white, that is ηi ∼ N (0, σ(ρi)

2). Its variance
in general depends on the actual distance ρi and on the UWB signal band-
width [189]. Considering Line of Sight (LOS) conditions and neglecting
shadowing and multipath effects (a customary assumption for outdoor
applications), the UWB module introduces a delay in the timestamp due to
internal circuitry [190], which is different for each radio and a function of
the actual distance [191]. Therefore, the ranging measurements (3.1) turns
to

ρi = βi(ρi) + ρi + ηi, (3.2)

where βi(ρi) is a bias that has to be taken into account for the foreseen
application.

In order to keep the structure of the UAV compact and cheap, only three pla-
nar anchors can be installed on the platform at distance b. As a consequence,
having just three anchors, only planar estimates can be carried out using
trilateration [134], which is, however, a quite common assumption when
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UAVs are considered [67]. To solve this issue for the problem at hand, we
assume that the UAV collects the measurements about its height h from the
ground using additional sensors (e.g., a sonar pointing downwards and/or
a barometer). Assuming that the target moves on the ground as well, the z
coordinate of the tag p in ⟨U⟩ along the Zu axis (that is the axis pointing
downwards in Figure 3.3) is actually unknown and cannot be estimated if
no knowledge about the motion of the target is considered. Therefore, let
us denote with d∗ the desired distance between the leader and the follower
along the Xu axis (see Figure 3.4), while d is the actual distance in ⟨U⟩,
i.e., d = ∥p∥ =

√
x2 + y2 + z2. If the z coordinate of the tag p would be

known, it would be possible to consider the projection p∗ of the vector p
onto the Xu × Yu plane, i.e., p∗ = [x, y, 0]T , and then control the UAV in
order to have p∗ → [d∗, 0, 0]T . Since the coordinate z is unknown and not
observable, we conservatively assume that z = h, i.e., the height of the UAV
from the ground, thus yielding a projection p̃∗ = [x − δx, y − δy, 0]T , with
δx ≥ 0 and δy ≥ 0. This way, the target appears closer than it is in reality.
Hence, when p̃∗ → [d∗, 0, 0]T , the UAV will be at a larger distance from the
leader. Notice that, in the worst scenario, that is when z = 0, the distance
from the tag will be

√
d∗2 + h2.

Another issue to deal with is the presence of the bias, reported in (3.2). As a
matter of fact, this bias cannot be estimated online without the knowledge
of the motion of the leader. However, its effect can be highly mitigated
through calibration. Indeed, by assuming that the bias is mainly induced
by the available hardware, it can be considered time invariant. Albeit its
value still depends on the actual distance, we can safely assume for the
i-th anchor that βi(ρi) ≈ βi(d∗), which allows us to increase the efficacy of
this approximation once the UAV is driven towards the desired location.
Similarly, we will assume that the uncertainty ηi standard deviation σ(ρi)

is sufficiently small, constant and equals to σ. Therefore, we will consider
from this point on the availability of the bias-compensated ranging mea-
surement (3.1) instead of (3.2). The validity of this assumption and the
calibration procedure will be investigated in Section 3.1.2.
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In light of the previous discussion and the conservative assumption de-
rived, we will consider henceforth the planar problem that can be solved
with a trilateration approach. In particular, we will propose two different
approaches for positioning, namely the Linear Least Square (LLS) and the
Non-Linear Least Square (NLLS), and the Kalman filter for continuous track-
ing of the leader. Notice, nonetheless, that the distance between the anchors
ai plays a crucial role in the reachable positioning uncertainty of the leader.
Indeed, geometry matters in the deployment of the anchors for positioning
problem, which can be related to the Geometric Dilution of Precision and
to the Cramer-Rao Lower Bound (CRLB), as reported in [3].

Leader positioning solutions

In what follows, we will assume that the sampling frequency of each anchor
ai, i = 1, 2, 3, is approximately the same. As reported in [192], the estimates
of the planar coordinates pr = [x, y]T in ⟨U⟩, dubbed p̂r = [x̂, ŷ]T , can be
retrieved by the following unconstrained minimisation problem

p̂r = arg min
pr

3

∑
i=2

(
∥pr − ai∥2 − ρ2

i

)
−
(
∥pr − a1∥2 − ρ2

1

)
, (3.3)

which turns to the following LLS problem and related solution

p̂r = arg min
pr

(Apr − c)T(Apr − c) = (AT A)−1 ATc (3.4)

where

A = −
[

2(x2 − x1) 2(y2 − y1)

2(x3 − x1) 2(y3 − y1)

]
,

and

c =

[
(x2

1 + y2
1 − ρ2

1)− (x2
2 + y2

2 − ρ2
2)

(x2
1 + y2

1 − ρ2
1)− (x2

3 + y2
3 − ρ2

3)

]
,

and the implicit approximation that p̂ = [p̂T
r , h]T , i.e., the tag is on the

motion plane, as discussed above.
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The NLLS solution, instead, solves the following nonlinear cost index
directly

p̂r = arg min
pr

3

∑
i=1

(∥pr − ai∥ − ρi)
2 . (3.5)

This problem can be solved with many different numerical methods, how-
ever it has been shown in [3] that, starting from the LLS solution (3.4) as
first initial guess, the estimation precision reaches the CRLB with just a
couple of iterations of the Gauss-Newton method.

It is worthwhile to point out that if the dynamic of the leader is slow enough
in comparison with the sampling time of the anchors, it is possible to use
multiple measurements from each anchor. In such a way, assuming that mi

is the number of measurements available for the i-th anchor, (3.3) turns to

arg min
pr

3

∑
i=2

mi

∑
j=1

(
∥pr − ai∥2 − ρ2

i,j

)
−
(
∥pr − a1∥2 − ρ2

1,j

)
,

while (3.5) turns to

arg min
pr

3

∑
i=1

mi

∑
j=1

(
∥pr − ai∥ − ρi,j

)2
,

where ρi,j stand for the j-th measurements from the anchor ai. Of course, in
both cases, the solutions remains the same as in the single measurement
case.

Kalman filter for tracking

The measured positions p̂r obtained either by (3.4) or by (3.5) are used in
the update step of a Kalman Filter (KF) that keeps track of the location
of the leader in ⟨U⟩. Such measurements are considered affected by an
uncertainty ν, which is assumed to be Gaussian, zero-mean and white, i.e.,
ν ∼ N (0, R). The covariance matrix R is hence a 2× 2 matrix whose entries
are experimentally determined in Section 3.1.2.

Instead, for the prediction step of the KF, we first assume that both the
velocity of the UAV and of the target are limited by vm = 2.0 m/s, which
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is a standard choice when the leader is a human being walking in free
space. The dynamic model considered in the prediction step represents
the relative motion between the follower and the leader, i.e., a motion
model expressing the difference of the dynamic between the UAV and the
target. Even though human beings motion models exists in the literature,
for instance [193], we decided to use a constant velocity model due to its
simplicity and due to the effectiveness in non-cluttered environments [194].
The effect of such assumptions is that the motion of the human being does
not change abruptly during the KF time step δt, which is usually the same
of the sampling time of the ranging measurements and in the order of tens
of milliseconds. As such, the Euclidean distance between the UAV and the
tracked person does not change significantly, while a change of direction
can be entirely devoted to the yaw angle rate of the UAV. Therefore, the
simplified model for predicting the person’s position in ⟨U⟩ boils down to

p̂ f ,k+1 = Ckp̂ f ,k + εk (3.6)

where p̂ f ,k+1 is the estimate of the KF at time (k+ 1)δt and where, assuming
that θk is the yaw of the UAV, the transition matrix

Ck =

[
cos(θk−1 − θk) − sin(θk−1 − θk)

sin(θk−1 − θk) cos(θk−1 − θk)

]
.

The model uncertainty εk is responsible of the inaccurate motion model as-
sumed, and it is generated by a Gaussian, zero-mean, white and stationary
stochastic process, whose covariance matrix Q is given by

Q =

[
(vmδt)

2 0
0 (vmδt)

2

]
.

The KF estimation error covariance matrix at time kδt, i.e., Pk, is initialised
with R, that is P0 = R, since the first estimate of p̂ f ,0 is given directly by (3.4)
or by (3.5).

As reported in Figure 3.4, when two consecutive position estimates p̂ f ,k+1

and p̂ f ,k are determined in ⟨U⟩ and by knowing the motion of the UAV
(obtained directly by the applied control law), it is possible to identify the
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FIGURE 3.4: Position of the UAV desired position pd, which is com-
puted using two consecutive KF position estimates p̂ f ,k+1 and p̂ f ,k .

desired robot position pd, which is on the back of the leader at distance d∗.
Now, the controller has all the ingredients to generate a velocity set-point
v = [vx, vy]T for the UAV in order to move towards pd and, hence, follow
the target at the desired distance d∗. In particular, v is generated so as to
let the UAV asymptotically approach pd plus the estimated target velocity,
i.e., 1

δt
(p̂ f ,k+1 − p̂ f ,k). To further enforce safety, the UAV stops when the

detected distance to the target is smaller than d∗.

3.1.2 Characterisation and preliminary results

A proper characterisation of the target positioning error is required for
designing the system and finding the right balance among the elements to
ensure the effectiveness of the system.

UWB characterisation and calibration

To characterise the precision and improve the accuracy of the ranging
measurements, as well as to compensate for the effect of the bias term
in (3.2), we conducted static and dynamic indoor experiments in which we
compare the ranging measurements ρi obtained from the available UWB
anchors with the distances ρi retrieved from the motion capture (MOCAP)
system, here considered as ground truth. As aforementioned, considering
an outdoor obstacle-free area, where the UWB anchors can operate in LoS
conditions, we first analyse the influence of the bias βi(ρi). From the results
in Figure 3.5-a where the anchor a1 has been tested (similar results are
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FIGURE 3.5: (a) Distance measured by a1 (red line) and the actual
distance (blue line) to infer the bias β1(ρ1). (b) Error histogram of

ρ1 − ρ1 after the bias in Table 3.1 has been compensated.

TABLE 3.1: Value of bias βi and σi for the UWB anchors. The size of
the batch for each anchor in each position is of 2000 samples.

Parameter a1 a2 a3
βi [mm] 584 695 617
σi [mm] 41 48 38

obtained for all the other anchors), it turned out how the bias is indeed
independent from ρi, since for different actual locations of the tag, the
difference between the MoCap data (blue line, corresponding to ρi) and
the UWB data (red line, corresponding to ρi) is approximately the same.
In order to collect quantitative results, during the calibration process, we
removed the outliers that consist on average of around 0.5% of each given
batch of data, thus obtaining the estimates for both the bias and the standard
deviations for all the anchors reported in Table 3.1. Figure 3.5-(b) illustrates
the histogram of the estimated distance after the bias compensation for
anchor a1.
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Simulation results

In this section, we assess the performance and the sensitivity of the posi-
tioning LLS and NLLS solutions presented in Section 3.1.1 through compre-
hensive simulations using the Gazebo simulator and with the purpose to
analyse the effects of

1. Distance b between anchors and centre of mass of the UAV;

2. Bias in measurements;

3. Number of measurements available.

In the simulator the ranging measurements for the three anchors installed
on the drone are corrupted by a gaussian noise η ∼ N (0, σ2

i ) with reference
to (3.2) and Table 3.1.

Anchors distance

The three UWB anchors are deployed around the UAV centre of mass in a
triangular configuration to reduce the detrimental effects of the position
dilution of precision [3]. The output of this first analysis shows how the
performance of the positioning method is affected by the baseline b of the
anchors. To this end, we set up a Monte Carlo experiment with 52000 trials
in which we vary the baseline between the anchors as b ∈ [0.1, . . . , 0.5] [m].
The average position error considering mi = 5 repeated ranging measure-
ments for each anchor are reported in Figure 3.6. As expected, the increase
of the baseline b leads to a better accuracy. However, a baseline b = 20 cm
is sufficient to have good precision and to place the radio hardware on most
compact commercial drone airframes (i.e., 250-class). Moreover, we also
noticed that the NLLS solution yields better results with respect to the LLS.

Effect of bias on measurements

WE additionally conducted Monte Carlo simulations with 4000 trials to un-
derstand the effect of the bias βi on both the solution NLLS and LLS. In each
experiment, we change the value of the bias as βi = {0, 5, 10, 15, 20} [cm].
The results obtained in the worst case are reported in Figure 3.7 with respect
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FIGURE 3.6: Average position error ∥pr − p̂r∥ of the Monte Carlo
simulations for different values of the baseline b and for both the

LLS and the NLSS solutions.

to the position error ∥pr − p̂r∥. Also in this case the error is well contained
by the NLLS, while the LLS returns quite bad results. By comparing Fig-
ure 3.6 and Figure 3.7, it becomes evident how the bias calibration and
compensation turns to be a clear performance booster.

Consistency of the position algorithms

To verify that the NLLS positioning algorithm is consistent even in our case
when more data is made available [134], the following cycle is repeated
Nrep times:

• A set of mi = 5 ranging measurements between the target and each
anchors is collected;

• The average position of the target is estimated using both the LLS
and the NLLS algorithms.

Looking at Figure 3.8 we can see that increasing Nrep significantly improves
the accuracy of the position estimate. Using the results obtained for the
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FIGURE 3.7: Histogram of the position error ∥pr − p̂r∥ for the NLLS
and LLS solutions with a bias βi = 0.2 m.

NLLS and with the aforementioned parameters, it is possible to compute the
empirical Monte Carlo-based covariance matrix of the position estimation
error for the NLLS solution to be used as the matrix R in the KF, i.e.

R = E
{

eeT
}
≈
[

0.627 m2 0.001 m2

0.001 m2 0.630 m2

]
,

where ex = x − x̂ and ey = y − ŷ are the positioning errors along the Xu

and Yu axis of ⟨U⟩, respectively, while e = [ex − E {ex} , ey − E
{

ey
}
]T .

Validation

A Hardware-in-the-Loop (HITL) experiment was conducted to validate the
proposed low-cost UWB-based person tracking system. Based on the previ-
ous analysis, the distance between the UAV centre and the UWB anchors
is chosen to be b = 20 cm, while the number of repeated measurements
for each UWB radio is set to mi = 5. To test the positioning and control
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(a) (b)

FIGURE 3.8: Distributions of error ex = x − x̂ and ey = y − ŷ for the
solutions with Nrep = {1, 25}.
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FIGURE 3.9: (a) Gazebo simulation environment with the UAV (a
quadrotor) and the target (represented by the red cylinder). (b) The

path traveled by the target.

algorithms, a typical motion pattern is applied to the target based on [195],
as shown in Figure 3.9.

The histogram of the error of the estimated positions is shown in Figure 3.10.
It can be noticed that, despite the approximations described, the error
remains limited even in the human beings sharp change of directions
reported in Figure 3.9-b.

Preliminary experimental results

At the stage of the writing, the outdoor test are executed without a ground
truth. In Figure 3.11 is shown a frame of the outdoor test, while a full video
of the experiment is available at the following link2. In the video material,

2https://www.youtube.com/watch?v=_SPHzfz6aXU
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FIGURE 3.10: Histogram of the tracking error x − x̂ f and y − ŷ f
returned by the KF.

FIGURE 3.11: Preliminary outdoor test.

there is a manoeuvre, called twirl, executed during the lock on target: its
purpose is only to give a visual feedback to the user and increase the user
confidence and trustfulness. The outdoor experiments are very promising
and the system was able to correctly track the human being at the desired
distance with minor errors (in the order of some tens of centimetres) even
along sharp turns.



Chapter 3. Robot-Centric Positioning Systems: Enhancing Spatial
Awareness and Navigation

118

3.2 Optimizing Exploration: On-Line Deployment of Opti-
mal Ranging Sensors for Robotic Exploration

In the previous section, we explored a specialized tracking system tai-
lored for interactions between UAVs and humans. However, this system
serves a specific purpose where a global reference frame for navigation
is not required. In contrast, traditional indoor positioning systems rely
on pre-deployed infrastructure for navigation. The key feature of UWB
technology lies in its utilization of message exchange between mobile and
fixed nodes. Generally, mobile nodes are installed on the robot, while fixed
nodes, termed anchors, establish an infrastructure with predetermined
geometric properties. The fixed structure of nodes is usually deployed
before starting any operations in the environment [196], hence adopting an
off-line placement procedure. Although it seems simple, off-line placement
is time-consuming and critical because any fault in this phase or anchor
position uncertainty seriously influences the positioning system’s precision.

We devised a novel method to address inaccuracies in infrastructure setup
and enable positioning in unstructured environments where offline analysis
is impractical. The proposed approach involves dynamically placing and
extending infrastructure anchors at runtime, a feature not found in existing
literature. As a mobile robot explores the environment, it autonomously
deploys new anchors to bolster the infrastructure, thereby expanding the
positioning reference in real-time. This contrasts sharply with prior so-
lutions which lack the capability to adapt infrastructure based on robot
requirements or effectively manage information uncertainty introduced by
new anchors. Unlike traditional methods that optimize the entire region
at once, the proposed robot-centered solution is lightweight computation-
ally and can operate in unknown or partially known environments. We
propose an online-incremental algorithm, employing a genetic approach,
to optimize anchor placement and minimize deployments while ensuring
positioning uncertainty meets user-defined requirements, measured by
Geometric Dilution of Precision (GDoP). While the proposed solution is
compatible with various positioning uncertainty metrics, GDoP is particu-
larly suited for this purpose.
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(a)

(b)

FIGURE 3.12: Circular sector intersections from (a) bad or (b) good
distributions of satellites

In this section, we focus on positioning accuracy problems and not strictly
on robot localisation, which requires the analysis of the problem’s observ-
ability and the model of the robot dynamics [197]. We present how to use
the proposed approach for a generic class of robot dynamics (e.g., ground
or aerial vehicles), mainly focusing on positioning uncertainty.

3.2.1 Background and Problem Formulation

GDoP is a metric adopted to quantify the precision and accuracy of the
data received from GPS satellites, which is now being adopted to the wider
set of generic positioning system [198, 199]. This metric indicates how well
the satellites are geometrically organized. The lower the value, the better is
the position accuracy [200]. A graphical representation of a poor or good
geometric configuration is given in Figure 3.12. GDoP is proportional to the
ratio between the range error and position error [201], thus it is inversely
proportional to the volume formed by the vectors from user to satellites
and the number of satellites. Given the distance ρi from the i-th anchor and
assuming that all the ranging measurements have the same finite variance
(hence, the homoscedastic property is satisfied), we define the variance
associated to the ranging as σ2

ρ and, from [202], the covariance matrix of the
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positioning error is

C = σ2
ρ


σ2

xx σ2
xy σ2

xz σ2
xt

σ2
yx σ2

yy σ2
yz σ2

yt

σ2
zx σ2

zy σ2
zz σ2

zt

σ2
tx σ2

ty σ2
tz σ2

tt

 , (3.7)

where σ2
ρ σ2

xx, σ2
ρ σ2

yy, σ2
ρ σ2

zz represent the variance of the estimated location
along the corresponding axes and σ2

tt is the time offset of the receiver.
Sub-metrics can be defined from (3.7) by adopting the trace on different
sub-matrices, such as

HDoP =
√

σ2
xx + σ2

yy,

VDoP = σ2
zz,

PDoP =
√

σ2
xx + σ2

yy + σ2
zz,

GDoP =
√

σ2
xx + σ2

yy + σ2
zz + σ2

tt,

(3.8)

where HDoP, VDoP and PDoP are the Horizontal, Vertical and Position
Dilution of Precision, respectively, all derived from the GDoP. We moved
these metrics to UWB infrastructures. Thus the position estimate of a
receiver (called tag) in a generic three-dimensional space requires at least
four UWB devices (called anchors). In contrast to (3.7), the time t is not
of interest for UWB ranging system because the propagation time of the
signal is directly used for the time-of-flight measurement [203], hence the
last column of C will be neglected. Consequently, the PDoP metric in (3.8)
is used in place of the GDoP.

Problem formulation

The issue addressed in this section is to derive an optimal self-deployment
on-line solution for UWB anchors during exploration problems and using
the PDoP metric to define the target uncertainty. The optimal reduction
of positioning uncertainties is tailored to the robotic platforms’ require-
ments, saving onboard hardware and computation resources and time. The
algorithm calculates the minimum number of anchors to deploy during
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FIGURE 3.13: A graphical representation of the problem statement.
Example of subareas S(i + (j − 1)r/n, jr/n), with j=1,...,n, using the

described simplified approach.

the mission to accomplish the robot goal. More formally, let us consider
the situation depicted in Figure 3.13. We assume that the anchors can only
be deployed on the Xw × Yw plane of the right-handed reference frame
⟨W⟩ = {Xw, Yw, Zw}, since the altitude of the placement is assumed to
be not controllable. Notice that assuming no knowledge about the envi-
ronment, we consider the worst possible conditions for the z coordinates,
i.e., that the multilateration algorithm is applied using coplanar anchors
(flat terrain), hence we are assuming very poor VDoP. We denote with
ai = [Xi, Yi]

T the known coordinates of the anchor in ⟨W⟩ and projected
on the plane Xw × Yw. Moreover, given Ak the set of all the anchors ai,
we define with Ak,n as the set of all the combinations of n anchors in Ak.
Therefore, Dk(s) ∈ Ak,4 denote the set of 4 anchors attaining the minimum
value of PDoP in a certain position s. As a consequence, given:

• A sampling time Ts, which is induced by the sampling time of the
available anchors;
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• A planned exploration path Sp = {qi}h
i=1 is a set of h viapoints on

the plane, i.e. qi = [xqi , yqi ]
T ;

• The actual position of the robot sk = [xk, yk]
T at time kTs, supposed

to be projected on the plane X × Y, while Sk = {si}k
i=0;

• An initial set A0 of 4 anchors that are in communication with the
robot;

• A set of the overall deployed anchors Ak up to time kTs;

• A maximum tolerable value pm of the PDoP along the exploration
path;

• A maximum distance ρm from an anchor to retrieve the ranging
measurement;

• A PDoP function g(Dk(sk), sk) computed on the position sk given the
anchors ai ∈ Dk;

the goal is to guarantee the existence of at least four anchors Dk ⊂ Ak

at time kTs, such that the UWB positioning system can provide a PDoP
g(Dk(sk), sk) ≤ pm, ∀sk during the exploration while using the ranging
data ρi,k = ∥sk − ai∥ ≤ ρm. To this extend, we define two problems:
i) the first is the Optimal placement problem (OPP)

min #Ak s.t.

∃Dk(qi) ⊆ Ak with g(Dk(qi), qi) < pm, ∀qi ∈ Sp,

where of course #Ak are the number of elements in Ak.
ii) The second, named Optimal Exploration and Placement Problem (OEPP),
is based on OPP and defined on the actual robot positions sk, instead of
the planned positions qi. The difference between the two problems is that
OPP refers to the nominal robot trajectory, while OEPP considers all the
maneuvers needed to deploy the new anchors.

In this application we will make explicit reference to a particular class of
robots, namely Unmanned Aerial Vehicles (UAVs), even though the solution
remains of general validity. It is worthwhile to mention that the algorithm
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is totally agnostic about the planner used to synthesize the robot path. One
of the most used exploration methods is the sampling-based algorithm
such as RRT [204]. Moreover, notice that the robot should entirely cover the
exploration path at least once, i.e. ∃k ∈ N such that sk = qi, ∀qi ∈ Sp.

3.2.2 Anchors Deployment Algorithm

At a first glance, OPP may appear a trivial problem that could be solved
by computing g(Dk(sk), sk) at time kTs for the positions sk = qi and place
a new set of 4 anchors on the same pattern of Figure 3.13, when either
g(Dk(sk), sk) = pm or ρi,k = ρm for some ai ∈ Ak. Then the robot starts
over. However, we observe three different problems with this approach
(which is inspired by [205] applied to ground wheeled vehicles):

1. While placing 4 anchors satisfies the sufficient requirement for posi-
tioning, it does not guarantee that it is the only possible deployment.

2. When the UAV places the 4 anchors, the PDoP should be kept under
control on the placement trajectory as well, hence a PDoP threshold
p∗ < pm should be considered;

3. The next location to place the anchors may be a function of the future
exploration path viapoints Sp, thus making some locations more
favorable than others.

To address these issues, we propose the Genetic Anchor Node Placement
(GANP) algorithm, which comprises a prediction of the PDoP function
along the future path positions with a finite horizon r and then compute the
most favourable locations using a Genetic Algorithm (GA). More precisely,
let us consider the robot is in position sk = qi, the algorithm starts by evalu-
ating if ∃qj ∈ {qi, qi+1, . . . , qi+r} = S(i,r)

p ⊂ Sp such that g(Dk(qj), qj) > pm.
In such a case, we need to add at least one anchor. We can then grow a
region S (i,r)

p around the path portion S(i,r)
p of width w by simply taking the

local perpendicular to the path of length w passing through each position
qj = S(i,r)

p . However, to avoid a placement that concentrates the anchors in
nearby positions, we split the finite horizon r in n subsets of r/n points and
then we could define non-overlapping regions S (i,r/n)

p , . . . ,S (i+r−r/n,i+r)
p
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FIGURE 3.14: Flowchart of GANP algorithm.

each hosting at most one new anchor. To simplify the subareas splitting, we
simply take the line joining qi and qi+r and consider it as an approximation
of the path, thus simplifying the searching regions comprised in S (i,r)

p as
sketch in Figure 3.13. Of course, the width w of the searching region, the
forecasting horizon r, and the number of sub-paths n plays a crucial role
in the algorithm performance, hence a tuning procedure is presented in
Section 3.2.4.

A flowchart of the GANP algorithm is depicted in Figure 3.14. Whenever
one or more anchors should be placed according to the PDoP function, a
list of the possible deployment coordinates is computed. The main idea
is to allow at most one anchor in each subarea S (i+(j−1)r/n,jr/n)

p , with j =
1, . . . , n. Suppose four anchors result placed in the j-th area to achieve
an optimal PDoP value. In that case, it means that the considered j-th
area is too detached (i.e., far) from the infrastructure, then j − 1-th area is
considered forcing the algorithm to generates at least one additional anchor.

The GA fitness function considers the optimal PDoP values for each point
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qj ∈ Si,r
p by determining the set Dk(qj). The PDoP quantities are then

stored into a list and weighted according to the distance from qi: the more
∥qj − qi∥ is larger, the higher is the weight. These values are then summed
up and constitute the objective function to minimize, i.e.

Y =
r

∑
i=1

g(Dk(sk), sk) log(∥qj − qi∥).

Notice that the weighting mechanism pushes the new possible anchors
deeper along the exploration path, maximizing the effect of the coverage
and ensuring the minimum number of anchors for the considered subset
Si,r

p . The GA constraint function checks the following three conditions for
each generated possible anchor location:

• The position of the generated anchor should have a PDoP value
below the maximum threshold pm;

• The path joining the robot position and the anchor candidate location
should have a PDoP below pm as well;

• The PDoP of all the positions in Si,r
p should be below pm.

Notice that the GANP algorithm ensures the optimality of the OPP only.
To extend the results to the OEPP, the nature of the deploying maneuver
should be taken into account.

Deploying Manoeuvres

The GANP algorithm ensures that the value of PDoP never exceeds the
maximum target value pm. In fact, the algorithm governs the UAV con-
trolled behaviour based on three states of a Finite State Machine. The UAV
starts in Mission State (MS) where it follows the exploration path. When
the condition is violated on the path horizon r, the optimal position of
the anchor is determined, and the UAV switches to the Deployment State
(DS). The UAV stores the last point reached along the mission path, say
qi ∈ Sp, and follows the shortest path towards the deploying location. After
the anchor is positioned, the UAV either continues on the placement (if
convenient, as described in the rest of this section) or it switches to the
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FIGURE 3.15: Overall logic that govern the behaviour of the drone
during its mission.

Placed State (PS). Here, a return-path to qi is generated and followed. When
the robot reaches qi either switches back to DS (if additional anchors should
be placed, or returns to MS, where the exploration continues. This motion
pattern is pursued until the last point of the mission is reach, where the
UAV decides which action to perform:

• Landing (or stopping) and becoming an integral part of UWB posi-
tioning infrastructure with its tag that switches to an anchor. This
action can be fired by the battery level when it falls below a certain
threshold;

• Continue the exploration mission, selecting a new exploration area
with a new synthesized path and executing the described process;

• Alternatively, the robot can move back to the starting position, in-
creasing the accuracy of the placed anchors.

The flowchart of the depicted algorithm is reported in Figure 3.15. The
path followed in the DS and PS states is crucial for any vehicle autonomy,
especially when UAVs are considered. Therefore, the maneuver should
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FIGURE 3.16: Deployment manoeuvres followed in DS and PS: (a)
Deployment path generation, each anchor has its relative intersec-
tions point. (b) Deployment path generation, from first intersection

point, all anchors in list are deployed.

take the shortest. While the placement path for a single anchor is straight-
forward, i.e., it is sufficient to move along the local perpendicular segment
with respect to the planned path (see Figure 3.16-(a)), the placement of
more than one anchor may be tricky. When the new anchor locations ai

and aj are determined, two possible strategies are considered. The first is
reported in Figure 3.16-(a): the back-and-forth motion is adopted whenever
the UAV reaches an intersections points on the path (first qi, then qj). The
second more involved situation is depicted in Figure 3.16-(b), where the
UAV starts the deployment manoeuvres from the first intersection point,
qi, and sequentially place all the anchors before going back to the point
qi. The selection of the two strategies is made on the fly by comparing
the perimeter of standard geometric shapes (recall that at most 4 anchors
should be placed at once), with the constraint that the manoeuvre in DS
starts and ends in the same point qi (to cover the entire exploration path).
For example, the path followed in DS for Figure 3.16-(b) is shorter than the
path of Figure 3.16-(a), thus it will be selected. It is now evident that, by
embedding this manoeuvre generation in the constraint function of the GA,
the OEPP problem is solved requiring the limit of the PDoP to be satisfied
along the shortest deployment manoeuvres.
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3.2.3 Uncertainty analysis

In this section, we first present the explicit derivation of the PDoP function
g(Dk(sk), sk) and an analysis of the positioning uncertainty accounting for
the incorrect anchor deployment.

Position Dilution of Precision

As described in Section 3.2.1, the PDoP function used in this work
g(Dk(sk), sk) is a function of the anchor locations Dk(sk) = {ai1 , . . . , aim}
and of the point sk considered. In particular, defining with

P =


xk−Xi1

ρi1,k

yk−Yi1
ρi1,k

...
...

xk−Xim
ρim ,k

yk−Yim
ρim ,k

 , (3.9)

the Jacobian of the ranging function (3.10) and denoting with Q the covari-
ance matrix of the positioning error

Q = σ2
ρ (PT P)−1 = σ2

ρ

[
σxx

2 σxy
2

σyx
2 σyy

2

]
,

the PDoP function g(Dk(sk), sk) =
√

σxx2 + σyy2.

Anchor deployment uncertainty

The position of the UAV is computed using multilateration on distance mea-
surements. The ranging measurements are collected by means of an UWB
infrastructure, using a Single Side Two-Way-Ranging (SS-TWR) communica-
tion protocol. Assuming n UWB anchors in known positions ai = [Xi, Yi]

T ,
i = 1, . . . , n, the ranging measurement from the i-th anchor at time kTs is
defined as

ρ̄i,k = ρi,k + ϵi,k =
√
(xk − Xi)2 + (yk − Yi)2 + ϵi,k, (3.10)

where ϵi,k is the ranging measurement uncertainty, usually considered
as a white sequence with zero mean and variance σ2

ρ for all the anchors.
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Computing the difference of the squares of the distances ∆ij,k = ρ̄2
i,k − ρ̄2

j,k
from at least three anchors and using the same solution reported in [206], it
is possible to derive the robot position estimates using a Weighted Least
Squares (WLS) solution as

ŝk =

[
x̂
ŷ

]
=

1
2
(A(n)T

N(n)−1

k A(n))−1 A(n)T
N(n)−1

k h(n)k , (3.11)

where h(n)k is the vector of the indirect measurements ∆ij,k and anchor
positions, A(n) is a matrix containing the known anchor positions, while

N(n)
k = σ2

ρ


ρ2

1,k + ρ2
2,k ρ2

1,k . . . ρ2
1,k

ρ2
1,k ρ2

1,k + ρ2
3,k . . . ρ2

1,k
...

...
. . .

...
ρ2

1,k ρ2
1,k . . . ρ2

1,k + ρ2
n,k

 , (3.12)

the covariance matrix of the measurements, which is a function of the
actual distances ρi,k. The robot position uncertainty s̃k = ŝk − sk derived
from (3.11) has, hence, the following multilateration covariance matrix

Ξ(n) = (A(n)T
N(n)−1

k A(n))−1 =

[
σ2

x,k σ2
xy,k

σ2
yx,k σ2

yy,k

]
, (3.13)

whose explicit form is reported in [206] and holds true when the anchor
positions are perfectly known a-priori, i.e., a map of the anchors is available.

The problem presented in this section is different from the classic multilat-
eration just reported, since for the problem at hand, the positions of the
anchors are deployed by the robot, hence affected by uncertainty except
for the very first set A0. From this perspective, the problem is more simi-
lar to a Simultaneous Localisation And Mapping (SLAM) problem rather
than a standard positioning problem, since the anchor map is built on
the fly. Indeed, while the ranging measurements from an anchor in A0 is
simply (3.10), from the i-th deployed anchor turns to

ρ̄i,k =
√
(xk − X̂i + δix )

2 + (yk − Ŷi + δiy )
2 + ϵi,k, (3.14)
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where we denote with δi = [δix , δiy ]
T the deployment error and with âi =

[X̂i, Ŷi]
T the estimated anchor position (i.e., ai = âi − δi). Assuming that

the i-th anchor has been deployed at time kTs, we have that âi = ŝk, hence
given by (3.11), thus affected by an uncertainty described by the covariance
matrix (3.13). In a typical SLAM problem, the first estimate of the position
of a feature (which is used in the next steps as a landmark for localisation)
is treated as the mean value of a random variable, usually considered as
Gaussian. Applying this idea to the problem at hand, the feature estimate
turns to be the anchor estimated position âi and the δi the corresponding
random variable of the uncertainty, customarily assumed with zero-mean
and generated by a white stochastic process. To analyze the effect of this
uncertainty, we may rewrite (3.14) with its first order Taylor approximation
with respect to ϵi,k and δi, thus obtaining

ρ̄i,k = ρi,k + ϵi,k + Fδi = ρi,k + ηi,k, (3.15)

where F =
∂ρ̄i,k
∂δi

is the gradient of (3.14) evaluated in the mean value of δi,
i.e. F is the same of P in (3.9), but evaluated in âi. Therefore, using (3.15)
instead of (3.10), the overall uncertainty for the ranging measurements from
deployed anchors is expressed by ηi,k, which is a white zero-mean sequence
with variance

σ2
ηi,k

= σ2
ρ + FΞ(n)FT , (3.16)

where Ξ(n) is given in (3.13) (i.e., the robot position uncertainty during
the placement). Since σ2

ηi,k
≥ σ2

ρ , when the i-th deployed anchor is used,
the ranging uncertainty will be larger. For instance, assuming that at time
kTs the robot uses the anchors 1 and 2 from A0 and anchors i and j newly
placed, i.e. for which only the estimates âi and âj are available, we have the
new form of (3.12) as

N(n)
k =

σ2
ρ (ρ

2
1,k+ρ2

2,k) σ2
ρ ρ2

1,k σ2
ρ ρ2

1,k
σ2

ρ ρ2
1,k σ2

ρ ρ2
1,k+σ2

η ρi,k σ2
ρ ρ2

1,k
σ2

ρ ρ2
1,k σ2

ρ ρ2
1,k σ2

ρ ρ2
1,k+σ2

η ρj,k

.

However, the previous development along the lines of the classic SLAM ap-
proach is not entirely correct, as empirically proved in Section 3.2.4. Indeed,
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δi should not be considered as a white random variable with zero-mean
and covariance (3.13) but, instead, as a realization of a random variable
at time kTs, i.e., a realization of the random variable modelling the robot
positioning uncertainty, hence an unknown but constant offset. With this
assumption, a typical non Bayesian approach as the nonlinear WLS can
be adopted. More precisely, given at least three consecutive ranging mea-
surements ρ̄i,k, ρ̄i,k+1 and ρ̄i,k+2 described in (3.14), the value of δi is given
by

δ̂i =argmin
(δix ,δiy )

k+2

∑
j=k

[(x̂j − X̂i + δix )
2+ (ŷj − Ŷi + δiy )

2− ρ̄2
i,j]

2. (3.17)

This way, the offset δi induced in the anchor placement by the robot position
uncertainty s̃k can be estimated and, hence, removed from the anchor
estimated position âi by means of this nonlinear unconstrained regression
problem, as shown in the next section. It is important to remark that the
PDoP in (3.9) does not consider the effect of the offset on the deployed
anchors position. These effects are voluntarily neglected because their
contributions to the estimation of the PDoP generate. In the worst case of
an offset in the order of tens of centimetres, a difference with the actual
PDoP is less than 3% of pm. Therefore, being the offset errors after (3.17) of
the order of few centimetres, we simply impose a PDoP threshold of 95%
of pm to account for those effects and design a conservative approach.

3.2.4 Simulations and Experiments

To evaluate the effectiveness of the GANP algorithm, we first present here
the simulation results. We assume that the maximum ranging distance
is ρm = 60 m, which is derived by the hardware specification of the De-
cawave DWM1001 UWB anchors. To fine-tune the parameters of the GANP
algorithm, i.e., the area width w, the number of subareas n and the hori-
zon of the prediction r, we report here an analysis based on the Taguchi
Orthogonal Array (OA) design [207]. To this end, we impose the maximum
PDoP value to be pm = 1.5 (a value guaranteeing low positioning uncer-
tainty and a sufficiently large feasible placement region) and an exploration
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TABLE 3.2: Performance of the GANP algorithm versus parameter
choices.

Parameters Performance indices
w [m] r [m] n m dt [m] ct [s]

10 10 2 12 138 1118
10 20 4 12 140 1007
10 30 3 11 145 450
30 10 4 10 166 307
30 20 3 9 154 362
30 30 2 9 146 895
50 10 3 9 170 680
50 20 2 9 180 650
50 30 4 9 176 526

TABLE 3.3: Optimal choices of the parameters.

Performance indices w [m] r [m] n
m 50 30 3
dt 10 30 2
ct 30 30 3

Average value 27 30 3

path length of approximately 60 m. The result of the analysis, reported in
terms of the performance indices number of anchors m, travelled distance
dt and computational time ct, is subsumed in Table 3.2. It is evident that a
larger area minimises the number of deployed anchors, since the feasible
deploying space increases, at the price of a higher travelled distance. In-
stead, while the computation time clearly increases for larger areas (i.e., a
larger space to explore for the GA algorithm), too small areas may imply
difficulties in the search for a suitable solution. Hence the computation
time increases as well. An optimal choice of the parameters would lead
to the optimization of all the performance indices at once, which is hardly
possible for the contrasting goals explained. Therefore, we compute the
choice of the parameters w, r and n minimising each selected performance
index at once and then compute the average among them, as reported
in Table 3.3. The placement obtained with the depicted tuning is then
applied to a simulation example, thus obtaining the level curves of the
PDoP reported in Figure 3.17-(a). In this case, just 4 new anchors have
been added to cover the entire exploration path and respecting the PDoP
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FIGURE 3.17: (a) PDoP level curves computed using Dk(sk), where
sk covers the entire map; (b) PDoP level curves computed using
Dk(sk) for the straightforward algorithm sketched at the beginning

of Section 3.2.2.

limit pm = 1.5. For comparison, Figure 3.17-(b) reports the same scenario
assuming the trivial approach sketched at the beginning of Section 3.2.2. It
is evident that, albeit simple, this algorithm implies a waste of resources,
imposing the PDoP region g(Dk(sk), sk) ≥ pm to be too wide comapred to
the exploration task. Moreover, as it can be observed from Figure 3.18, the
PDoP constraint is not always verified along the exploration path or the
placement path for the simple approach, while it is strictly satisfied for the
GANP algorithm. As a final simulation test, we verified that the SLAM-like
assumption of the anchor estimated positions âi cannot be considered as a
random variable, as discussed in Section 3.2.3. To empirically prove this
fact, we have carried out 106 Monte Carlo trials where δi uncertainty is
treated as a random variable contributing to the random, zero-mean white
noise in (3.16) and hence applying the multilateration (3.11), which results
in the position uncertainty in Figure 3.19, dashed line. As can be noticed,
this assumption end up with a non-negligible bias on the estimates of the
estimated position ŝk (the Figure 3.19 reports the bias on the x̂k axis, but
it acts similarly on ŷk). Consequently, the bias should be treated as a con-
stant but unknown quantity using (3.17), thus resulting in the unbiased
estimation uncertainty of Figure 3.19, solid line. In the next section, this
phenomenon is additionally highlighted in the experiments.
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FIGURE 3.18: PDoP evolution along the simulations in Figure 3.17-
(a) (GANP) and Figure 3.17-(b) (trivial), respectively.
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FIGURE 3.19: Monte Carlo trials for the placement problem. When
the placement error δi is treated as a random variable, a bias of
about 15 cm is induced (dashed line), while if it is treated as an
unknown but constant quantity estimated through (3.17) (solid line),

the estimator is practically unbiased (bias around 1 mm).

Experimental results

To test the algorithm on an actual set-up, we first characterise the UWB
anchors at disposal. To this end, we carried out a Type A analysis [208], col-
lecting at first repeated ranging measurements from known distances, i.e.,
at 1, 3 and 7 meters. As an example, the histogram of the ranging measure-
ments ρ̄i,k in (3.10) collected from an UWB anchor Decawave DWM1001 at
a distance of 3 m is reported for reference in Figure 3.20-a. Figure 3.20-b
reports the histogram of the error on the position. Albeit all the available
anchors behave similarly and with a relatively small variance σ2

ρ , they all
exhibit an approximately linear dependency on the actual distance ρi,k, as
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(a) (b)

FIGURE 3.20: (a) Characterisation of the ranging measurements ρ̄i,k
by means of an histogram obtained with 3000 consecutive measure-
ments (b) Histogram of positioning error with 30000 consecutive

measurements

TABLE 3.4: Characterisation of bias and standard deviation of the
ranging measurements

ρi,k [m] Bias [m] σρ [m]
1 0.06 0.029
3 0.10 0.0231
7 0.18 0.16

reported in Table 3.4 for the three sampled distances. We may noticed a
slight increase of the bias and of the standard deviation σρ, which can be
compensated with a simple linear fitting model. Since we do not have
a large arena to test the system, we test the GANP placement algorithm
forcing the anchors to be closed to each other by selecting pm = 2 to be
above the minimum PDoP value obtained for the known first four anchors,
which was g(Dk(s0), s0) = 1.1 (Dk(s0) = {a1, . . . , a4} in Figure 3.21-(a)).
As stated previously, once the new anchor has been deployed in position
a5 and due to the positioning uncertainty of the UAV, the robot actually
believes that the anchor is in â5 (Figure 3.21-(a)). After the placement, the
UAV comes back to the exploration path (solid line in Figure 3.21-(a)) and,
as described in Section 3.2.3, it stores three consecutive estimated positions,
namely ŝk, ŝk+1 and ŝk+2, which actually corresponds to the ideal values
to be reached sk, sk+1 and sk+2 (see Figure 3.21-(a) for reference). To esti-
mate the bias δ5, the robot collects 10 consecutive ranging measurements
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(a) (b)

FIGURE 3.21: (a) Experimental results for the bias δ5 compensation;
(b) Comparison between the LM and the LS solution to (3.17) with

respect to the initial deployment error.

ρ5,k from position sk and then compute the average. The process is then
repeated from sk+1 and sk+2. The solution to (3.17) is then obtained using
the Levenberg-Marquardt (LM) algorithm applied to the averages, thus
obtaining the corrected location acorrect

5 of Figure 3.21-(a), exhibiting a far re-
duced bias compared to â5. The method thus described has been compared
with a linearized least square (LS) solution to (3.17) on such experimental
data, which results in the comparison of Figure 3.21-(b). Of course the
iterative and incrementally precise approach of LM gives better results than
LS for the bias estimation. Similarly, LM performs better of LS also for
the standard positioning problem using multilateration. However, since
the algorithm can be executed on board the vehicle and with constrained
resources, the LM should be adopted with parsimony (its computation
times is about 40 times compared to a linearized LS). As a consequence, we
decided to keep the LM solution uniquely for the bias estimation problem.

3.3 Roaming the Red Planet: Revolutionizing Mars Explo-
ration with Dynamic Mobile Infrastructure

So far, we’ve discussed two contrasting approaches for positioning sys-
tems. One relies on a relative approach, where the target’s movement
generates an attractor point for the robot. This method utilizes an infras-
tructure mounted on the robot for trilaterating the moving target. The
second approach involves robots extending an initial infrastructure based
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on their requirements of navigation. By combining these approaches, an
innovative system can emerge. Here, a moving infrastructure of anchors
localizes itself while simultaneously supplying information to other nodes
in need of positioning services. This advancement pushes the boundaries
of positioning systems, introducing the first solution capable of offering
scalability, flexibility, and on-the-spot positioning services simultaneously.
This section presents notable advancements in the challenging domain
of exploration, particularly in planetary exploration. These contributions
include: i) Design of a distributed algorithm for Unmanned Aerial Vehicles
(UAVs) cooperative localisation; ii) Establishing a positioning framework
capable of accommodating multiple robots with unrestricted scalability; iii)
Analysis of the uncertainties involved in the process and their experimental
validation.

3.3.1 Background and Problem Formulation

The problem tackled with this contribution is to provide a (mobile) localisa-
tion infrastructure to a set of ground entities using ranging measurements.
The first step to solve is to find the coordinates of a set of q UAVs distributed
in a certain area, representing the team of q robots forming the localisation
infrastructure. In this work, we are considering the robots moving at known
heights by the presence of, e.g., a barometer or a sonar (this limitation al-
lows a clearer description of the method and will be removed as a future
work). Hence, we can describe the i-th UAV by its unknown Cartesian
planar coordinates (xi, yi), thus having the team matrix representation

X =
[
p1 . . . pq

]
=

[
x1 . . . xq

y1 . . . yq

]
. (3.18)

Let us assume that the i-th UAV is able to collect a measurement about the
distance to the j-th UAV, i.e.

ρi,j =
√
(xi − xj)2 + (yi − yj)2, (3.19)
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so that the symmetric squared Euclidean distance matrix

D =


0 ρ2

1,2 . . . ρ2
1,q

ρ2
2,1 0 . . . ρ2

2,q
...

...
. . .

...
ρ2

q,1 ρ2
q,2 . . . 0

 (3.20)

can be computed. Defining H as the double centring matrix, i.e., H =

Iq − e eT

q , where e eT = 1q × 1T
q , 1q is a column vector with q ones and Iq is

the identity matrix of dimension q × q, it follows that

G = −1
2

HDH = HXT XH. (3.21)

From (3.21), we can retrieve the matrix X̂ (i.e., the estimates of X in (3.18)),
up to a roto-translation transformation, as the solution of the optimisation
problem

arg min
X

∥G − X̂X̂T∥2. (3.22)

The solution to (3.22) is given by the eigen-decomposition of (3.21), that
is X̂ = U

√
V, where V and U are the eigenvalues diagonal matrix and

the eigenvector matrix of G, respectively. As aforementioned, the points
X̂ are affine transformations of the original set X, i.e., both verifying the
Euclidean distance matrix D. More precisely, there may exists an angle
θ ̸= 2kπ with k ∈ N such that

X =

[
cos θ − sin θ

sin θ cos θ

]
X̂ = R(θ)X̂, (3.23)

which corresponds to a rotation ambiguity occurs. Moreover, there may
also exists a flipping problem, i.e.

X = α

[
−1 0
0 1

]
X̂ = αAX̂, (3.24)

where α ∈ {−1, 1}.
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Problem formulation and solution overview

Given, ∀i = 1, . . . , q, the ranging measurements

ρ̃i,j = ρi,j + ϵi,j, (3.25)

where ρi,j is given in (3.19) and ϵi,j is the ranging uncertainty, we want to
estimate the location of all the nodes X in a local reference frame centred in
one agent, say p1. Moreover, we assume that the team of q robots is split
in two groups: n robots moves in the environment, whereas m = q − n are
standing in a hovering position to give precise references to the n moving
robots. The n robots act as a moving infrastructure meant to localise the
set of entities moving on the ground, while the m hovering robots act
similarly as a fixed infrastructure. It is worthwhile to note that moving
the entire group would increase the uncertainty on their location, which
propagates on the uncertainty of the localised ground entities; on the other
hand, letting all the q robots to stand still, will inevitably degrade the
ranging measurements when the ground vehicles are too far apart. With
the proposed approach, instead, the n and m groups alternate their motions
to keep track of the ground entities.

In order to tackle this problem, we first need to continuously keep track of
the relative positions of the q robots of the localisation infrastructure. There-
fore, we first use the solution provided in [187] that derives an estimate
X̂as the solution of the minimisation problem (3.22), and then, solves for
the ambiguity given in R(θ) and α ∈ {−1, 1} such that

X̂ = [p̂1, . . . , p̂q] = R(θ)αAX. (3.26)

It is worthwhile to note that the only assumption to apply the solution
in [187] is that only one agent moves at the beginning and that its turning
direction is known (clockwise and counter-clockwise rotations). Notably,
these assumptions are necessary and sufficient to solve the problem: hence,
from this point on we assume that the estimates X̂ are without the ro-
tational (3.23) and flipping (3.24) ambiguities when the algorithm starts.
Therefore, once a first guess X̂ is available, we adopt the recursive updating
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of the UAVs positions using [186], which is a cooperative and uncertainty-
aware adaptation of the MDS. More in depth, by computing the difference
between the ranging measurements ρ̃i,j and its estimated quantity ρ̂i,j com-
puted from X̂ using (3.19), we compute the innovation, as usually called in
filtering theory. Moreover, by defining the weights wi,j and γi modulating
the innovation and the prior knowledge regarding the position of the i–th
node, respectively (more on this in Section 3.3.3), we define the following
cost function to be minimised

Si = 2
n

∑
i=1

n+m

∑
j=i

wi,j(ρ̃i,j − ρ̂i,j)
2 +

n

∑
i=1

γi∥p⋆
i − p̂i∥2, (3.27)

where n is the number of moving robots, m is the number of hovering
robots and p⋆

i is the solution for the i-th agent minimising (3.27). Starting
from the solution provided in [186], which minimises a cost function similar
to (3.27) for a fixed infrastructure, we use a similar approach to provide a
distributed system that retrieves (without ambiguity) all the positions of
the members of the team of UAVs and continuously updates their positions
based on relative ranging measurements despite of the motions of the
agents inside the team. Since, the team of UAVs acts as a localisation
infrastructure for the ground entities and, thus, to scale-up the number of
ground entities localised with desired position uncertainty, our solution, as
presented in [188], introduces a distributed system where information is
stored directly on each entity to be localised. This unique feature let each
agent to independently select the appropriate update rate for its purposes,
regardless of the number of entities accessing the position information,
while guaranteeing the desired level of position uncertainty.

3.3.2 Infrastructure Positioning

The algorithm presented next is conceived for the infrastructure distributed
position estimates. More precisely, assuming that the UAVs exchange the
distance informations, i.e., builds up the matrix D in (3.20), every δt seconds,
the infrastructure positioning algorithm is executed at each time lδt, where
l = 1, 2, . . . . At the initial time l = 0, we assume an initial guess X̂0 given
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the solution provided in [187]. For the generic time instant lδt, we are inter-
ested to estimate the positions X̂l using the measurements ρ̃i,j,l (3.25) and
the prior estimates at time X̂l−1. We consider that the ranging uncertainties
in (3.25) are given by ϵi,j ∼ N (µρ, σ2

ρ ), determined with a Type A analy-
sis [209]. For notation simplicity, we drop the explicit reference to the time
lδt and we denote the prior estimates with X̂(0), i.e., p̂(0)

i , ∀i = 1, . . . , q, the

prior distances with ρ̂
(0)
i,j and the measurements available at time lδt with

ρ̃i,j. Moreover, since we are searching for an iterative solution to minimise a

cost function inspired by (3.27), we denote with X̂(k), i.e., p̂(k)
i , ∀i = 1, . . . , q,

the position and the distance ρ̂
(k)
i,j estimates, respectively, available at the

k-th iteration of the iterative algorithm.

Hence, for the generic k-th step of the algorithm, we assume that all the
UAVs are in line-of-sight, hence they can measure the distances between
each other, which accounts to have non-negative values for the weights
wi,j = 1/σ2

ρ in (3.27). Without loss of generality, we have that wi,j = wj,i

(bidirectional communication link) and wi,i = 0 (no self-distance measured).
It is worthwhile to note that the i-th UAV has access only to the measure-
ments it is able to collect, that is it only know the components of the i-th
row of the matrix D in (3.20), thus making evident the distributed nature of
the proposed solution. Therefore, we can rewrite (3.27) for the i-th moving
UAVs among the n available as

S(k)
i =

n

∑
j=1

wi,j(ρ̃i,j − ρ̂
(k)
i,j )

2+

+
n+m

∑
j=n+1

2wi,j(ρ̃i,j − ρ̂
(k)
i,j )

2 + γi∥p(k)
i − p̂(0)

i ∥2.

(3.28)

Since each UAV computes its estimation steps independently, we assume
that when the best estimate has been reached, the estimated positions are
transmitted to the other agents, in order to have the same X̂(0) for all the
UAVs for the next iteration step of the algorithm. The iterative minimisation
step of (3.28) is based on a quadratic upper-bounding function [210], which
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leads to the following position update rule

p(k+1)
i =

1
ai
(γip̂

(0)
i + X(k)b(k)

i ), (3.29)

where

ai =
n

∑
j=1,j ̸=i

wi,j +
q

∑
j=n+1

2wi,j + γi, (3.30)

and b(k)
i = [b(k)1 , . . . , b(k)q ]T is a column vector whose entries are

b(k)i =
n

∑
j=1,j ̸=i

wi,j
ρ̃i,j

ρ̂
(k)
i,j

+
m

∑
j=n+1

2wi,j
ρ̃i,j

ρ̂
(k)
i,j

,

b(k)j = wi,j

1 −
ρ̃i,j

ρ̂
(k)
i,j

 , if j ≤ n and j ̸= i,

b(k)j = 2wi,j

1 −
ρ̃i,j

ρ̂
(k)
i,j

 , if j ≥ n.

(3.31)

Notice that now the role of γi is clear: when γi gets larger, the solution
to (3.29) tends to be closer to the provided prior information p̂(0)

i . The
algorithm terminates when the accumulated cost function for the i-th
agent (3.28), i.e., S(k)

a,i = ∑k
j=0 S(j)

i , tends towards a limiting, steady state

value, i.e., when |S(k)
a,i − S(k−1)

a,i | ≤ ∆, where ∆ is a stopping criterion. The
entire algorithm thus described is depicted in Figure 3.22. We finally high-
lights that the position estimates for the m robots that are hovering is not
updated using the same algorithm, since they are assumed to have accurate
enough information (more on this aspect in the experimental analysis).

3.3.3 Results

This section presents the preliminary experimental results that prove the
effectiveness of the proposed solution. The assessment is carried out in two
stages: an evaluation of the positioning uncertainties on the ground entities
obtained perturbating the infrastructural UAVs positions and an analysis
of the uncertainties of the entire positioning framework.
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NO

YES

FIGURE 3.22: Flowchart of the cooperative positioning algorithm.

Uncertainties evaluation

As mentioned, the position of the q UAVs is obtained through cooper-
ative collection of ranging measurements. The uncertainties associated
with the ranging measurements ρ̃i,j in (3.25) propagate through the entire
positioning algorithm, affecting the accuracy of the ground entities po-
sitions. While the uncertainties of the DTDoA algorithm used to derive
the position of the ground entities is extensively discussed in [188], this
study analyses the entire chain of the propagation of the uncertainties. As
described in Section 3.3.1, the positions of the /uAVs generating the locali-
sation infrastructure are determined by minimisation of (3.28). As such, the
knowledge of the infrastructure positions is limited by the precision of this
estimation process: henceforth, we consider that the estimates are given
by p̂i = pi + ηi, where ηi = [ηxi , ηyi ]

T denotes the Cartesian uncertainties.
Given the complex algorithm adopted for the estimates, a Type A analysis
of the uncertainties is conducted, as described in [209]. To empirically assess
the accuracy of the proposed system, two Monte Carlo simulations were
conducted with 5000 trials each. In both simulations, we adopt q = 6 UAVs
and the swarm was divided into two equal groups, with m = 3 hovering
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robots and the other n = 3 covering a convex area to follow the ground
entity for positioning. Upon reaching a maximum distance between the
two groups and related to the hardware constraints, the roles are swapped,
with the formerly moving group switching to a hovering condition, while
the others moving towards them. It is important to note that the focus
of this contribution does not delve into the strategy for swarm control,
leaving this aspect for future work. To properly incorporate the different
positioning accuracy between the hovering and the manoeuvring UAVs
in the minimisation of (3.28) and assuming that the standard deviation for
the former group is σ̂ = 0.1, we empirically set γi = 1/σ̂2 = 100, while for
the moving group γi = 1/(5σ̂)2 = 4. Finally, the stopping criterion for the
algorithm has been set empirically to ∆ = 0.1.

In the first simulation, we assume that the uncertainties on the infras-
tructure positions are i.i.d. and generated by a Gaussian process, i.e.,
ηi ∼ N (M, Q). The vector of mean values is assumed to be M = µη [1, 1]T ,
with µη = [0, 500, 1000] mm, while the covariance matrix is Q = σ2

η I2, where
I2 is the identity matrix of dimension 2 and ση = [100, 300, 700, 1500] mm.
The objective here is to assess the positioning accuracy of one ground en-
tity, whose position is denoted with pT = [xT , yT ]

T . By denoting with
p̂T = [x̂T , ŷT ]

T the estimated ground entity position, function of both p̂i,
i = 1, . . . , q, and the uncertainties in the DTDoA, we have p̂T = pT + ξT ,
where ξT has mean values [µpTx

, µpTy
]T and variances σ2

pTx
and σ2

pTy
along

the Xw and Yw reference axes, respectively.

In the second set of Monte Carlo simulations, we are instead acting on
the ranging uncertainties ηi,j in (3.25), again assumed to be generated by
an i.i.d. Gaussian process with parameters µρ = [0, 500] mm and σρ =

[100, 500] mm. In this second analysis, both the position uncertainties of the
different UAVs as well as the position of the ground entity are computed.

The results for the two Monte Carlo simulations are summarised in Ta-
ble 3.5. The subsystem responsible for estimating p̂T , operating locally on
each agent, is significantly influenced by the statistical characteristics of the
UAVs position estimation uncertainty ηi, with an almost linear dependency.
As expected, a bias in the UAVs position induces an equivalent bias in
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TABLE 3.5: Monte Carlo simulations results. Both the first (un-
certainties in the positioning of the infrastructure) and the second
(uncertainties on the ranging measurements) set of simulations are

reported. All the quantities are reported in millimetres.

First Monte Carlo Simulations: p̂T − pT
ση = 100 ση = 300 ση = 700 ση = 1500

µpTx
µpTy

σpTx
σpTy

µpTx
µpTy

σpTx
σpTy

µpTx
µpTy

σpTx
σpTy

µpTx
µpTy

σpTx
σpTy

µη = 0 ∼ µη ∼ µη 130 150 ∼ µη ∼ µη 280 420 ∼ µη ∼ µη 670 970 ∼ µη ∼ µη > 1000 > 1000
µη = 500 ∼ µη ∼ µη ∼ 130 ∼ 150 ∼ µη ∼ µη ∼ 280 ∼ 420 ∼ µη ∼ µη ∼ 670 ∼ 970 ∼ µη ∼ µη > 1000 > 1000
µη = 1000 ∼ µη ∼ µη ∼ 130 ∼ 150 ∼ µη ∼ µη ∼ 280 ∼ 420 ∼ µη ∼ µη ∼ 670 ∼ 970 ∼ µη ∼ µη > 1000 > 1000

Second Monte Carlo Simulations: p̂i − pi, ∀i = 1, . . . , 6 and p̂T − pT
µρ = 0 µρ = 500

σρ = 100 σρ = 500 σρ = 100 σρ = 500
µpTx

µpTy
σpTx

σpTy
µpTx

µpTy
σpTx

σpTy
µpTx

µpTy
σpTx

σpTy
µpTx

µpTy
σpTx

σpTy

p̂1 − p1 <50 <50 270 170 <50 <50 >1000 800 340 430 270 170 330 -420 >1000 800
p̂2 − p2 <50 <50 310 120 <50 <50 >1000 600 <50 <50 320 120 <50 -510 >1000 800
p̂3 − p3 <50 <50 260 160 <50 <50 >1000 800 -310 -450 270 160 -280 -450 >1000 830
p̂4 − p4 <50 <50 210 150 >1000 300 800 >1000 230 <50 210 150 300 -240 >1000 860
p̂5 − p5 <50 <50 240 120 -550 -70 >1000 600 230 <50 230 120 610 220 >1000 630
p̂6 − p6 <50 <50 200 150 170 200 >1000 700 210 <50 240 150 270 800 >1000 800
p̂T − pT -140 -54 300 290 -400 <50 >1000 900 200 -250 640 390 <50 -450 >1000 950

the final estimation of the ground entity, while it is not affecting the preci-
sion. Instead, the uncertainties in the ranging measurements have a higher
impact on both the positions of the UAVs and the position of the ground
entity, while the bias in the ranging exhibits a similar behaviour of the
previous case. However, even in the worst-case scenario with parameters
µρ = σρ = 500 mm, the estimation precision is sufficiently accurate for
outdoor navigation purposes and, notably, greater than a standard commer-
cial GNSS module. This postive effect comes from the switching behavior
between the moving and the hovering UAVs roles, even though a more in
depth ablation study will be performed in the future work. Nevertheless,
it is evident how the hovering UAVs continuously accumulate observa-
tions about their relative positions, leading to the computation of an ever
increasing accurate and precise position. This fact is modelled through the
introduction of the parameter γi, representing the accuracy of prior infor-
mation. In our case, it quantifies the mean squared error between the node’s
mean position and its expected movement, that is a perturbation around
the hovering position. Nitce that, following the Bayesian perspective, the
influence of γi diminishes in the final solution as more measurements are
collected.

We finally present a validation with a dynamic ground entity following
an eight shaped trajectory (shown in Figure 3.23), where q = 6 UAVs are
moving along straight trajectories, alternating their role between hovering
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s

FIGURE 3.23: Dynamic example with a ground entity following an
8-shape trajectory, while the surrounding q = 6 UAVs move along
straight trajectories and denoted with different colors (the black

trajectories denote the actual positions in time).

(a) (b)

FIGURE 3.24: Distribution of the estimation error in the positions of
a moving ground entity, moving according to Figure 3.23, along the

Xw (a) and Yw (b) axes over 5000 repeated measurements.

and manoeuvring. In this case, the estimation error results are reported
in Figure 3.24 considering challenging ranging uncertainties of µρ = σρ =

500 mm. The results confirm the validity of the proposed approach, while
the analysis of the histograms reveals distinct behaviours along the Xw

and Yw axes. This discrepancy is attributed to a geometric issue known as
position dilution of precision [3], hence addressing the motion of the UAVs
taking into account this issue will be definitely beneficial.
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FIGURE 3.25: The UAV prototype

Preliminary Hardware Implementation

Qorvo’s latest commercial-off-the-shelf UWB module release provides an
opportunity to construct a flexible and robust infrastructure. Operating
in accordance with the IEEE 802.15.4z standard, this transceiver utilizes
the new communication channel 9 with a carrier frequency of 7987.2 MHz.
The synergy of this channel with the advancements in the developed mod-
ule significantly enhances ranging estimation precision and accuracy, as
detailed in [211]. The proposed system implementation revolves around
adopting two DWM3001 modules connected through the serial port to
the companion board of the UAVs. Precisely, one module is configured to
operate on channel 5 for data transmission to ground entities, providing
the positioning service. Simultaneously, the second module is configured
on channel 9 to serve as a ranging module among the UAVs. The UAV
computes its position on-board, and this computed position is appended to
the message payload for the second module. Consequently, during trans-
mission to the ground, the message includes not only the timestamp, as
in our previous work, but also the updated position of the infrastructure
nodes. The preliminary prototype of the UAV is shown in Figure 3.25.
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Chapter 4

Conclusion

In this comprehensive thesis, a multifaceted exploration of ultrawide-band
technology has been undertaken to address diverse challenges in local-
ization systems. The work begins by introducing an inexpensive and
anonymous contact tracing technology tailored for industrial environments
amidst the COVID-19 pandemic. This innovative solution combines ultra-
wideband positioning, Bluetooth low-energy, and inertial measurement
units, offering not only real-time risk detection, but become an innovative
tool for workplace assessment capabilities.

The subsequent sections delve into relative positioning systems, device-
free localization, UWB bistatic radar sensors, and UAV-based tracking.
Each section presents novel methodologies and hardware implementa-
tions, showcasing promising results such as mean RMSE position errors
below 20 cm, efficient tracking speeds, and successful deployment scenar-
ios. The work also addresses key challenges in scalability, uncertainties,
and dynamic environments, demonstrating a commitment to practical and
effective solutions.

Furthermore, the thesis explores groundbreaking approaches in deploying
UWB infrastructure through self-deployable robots and cooperative posi-
tioning schemes utilizing a swarm of UAVs. These advancements extend
the applicability of localization systems to challenging scenarios where
traditional infrastructures are impractical.
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The work not only contributes novel algorithms, hardware designs, and
methodologies but also highlights the potential for future extensions and ad-
vancements. The proposed solutions exhibit versatility, cost-effectiveness,
and scalability, opening new possibilities for applications in security, logis-
tics, IoT services, and even space exploration.

In conclusion, this thesis represents a significant contribution to the field of
localization systems, offering a diverse set of solutions to address real-world
challenges. The innovative technologies presented herein pave the way for
further research and applications, marking a substantial step forward in
enhancing the capabilities of localization systems across various domains.



150

Bibliography

[1] A. K. Melikov, Z. T. Ai, and D. G. Markov. “Intermittent occupancy
combined with ventilation: An efficient strategy for the reduction of
airborne transmission indoors”. In: The Science of the total environment
744 (Nov. 2020), pp. 140908–140908.

[2] Rifqi Rafifandi et al. “Leader–follower formation control of two
quadrotor UAVs”. In: SN Applied Sciences 1.6 (May 2019), p. 539.
ISSN: 2523-3971. DOI: 10.1007/s42452-019-0551-z. URL: https:
//doi.org/10.1007/s42452-019-0551-z.

[3] D. Fontanelli, F. Shamsfakhr, and L. Palopoli. “Cramer-Rao Lower
Bound Attainment in Range-only Positioning using Geometry: The
G-WLS”. In: IEEE Trans. on Instrumentation and Measurement 70 (Oct.
2021). Early Access, pp. 1–14. ISSN: 0018-9456. DOI: 10.1109/TIM.
2021.3122521.

[4] Javier Díez-González et al. “Local Wireless Sensor Networks Po-
sitioning Reliability Under Sensor Failure”. In: Sensors 20.5 (2020).
ISSN: 1424-8220.

[5] Ala’ Darabseh et al. “On ADS-B Sensor Placement for Secure Wide-
Area Multilateration”. In: Proceedings 59.1 (2020). ISSN: 2504-3900.

[6] Gaoang Feng et al. “GDOP index in UWB indoor location system
experiment”. In: 2015 IEEE SENSORS. 2015, pp. 1–4. DOI: 10.1109/
ICSENS.2015.7370254.

[7] Haosheng Huang and Georg Gartner. “A Survey of Mobile Indoor
Navigation Systems”. In: Jan. 2010, pp. 305–319. ISBN: 978-3-642-
03293-6. DOI: 10.1007/978-3-642-03294-3\_20.

[8] Yanying Gu, Anthony Lo, and Ignas Niemegeers. “A Survey of
Indoor Positioning Systems for Wireless Personal Networks”. In:

https://doi.org/10.1007/s42452-019-0551-z
https://doi.org/10.1007/s42452-019-0551-z
https://doi.org/10.1007/s42452-019-0551-z
https://doi.org/10.1109/TIM.2021.3122521
https://doi.org/10.1109/TIM.2021.3122521
https://doi.org/10.1109/ICSENS.2015.7370254
https://doi.org/10.1109/ICSENS.2015.7370254
https://doi.org/10.1007/978-3-642-03294-3\_20


Bibliography 151

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 11.1 (2009),
pp. 13–32. DOI: 10.1109/SURV.2009.090103.

[9] Gints Jekabsons, Vadim Kairish, and Vadim Zuravlyov. “An Anal-
ysis of Wi-Fi Based Indoor Positioning Accuracy.” In: Computer
Science (1407-7493) 47 (2011).

[10] Mostafa Abdel-Aleem, Shawki Shaaban, and Moustafa Aly. “Ultra
Wideband Systems and Modulation Techniques Using Different
Gaussian Monopulse Waveforms”. In: Sept. 2006, pp. 38–38. ISBN:
0-7695-2911-9. DOI: 10.1109/ICIMP.2007.31.

[11] Rainer Mautz. “Indoor positioning technologies”. In: (2012).
[12] JD Shi. “The Challenges of Indoor Positioning”. In: National Univer-

sity of Singapore: Singapore (2013).
[13] Hui Liu et al. “Survey of wireless indoor positioning techniques

and systems”. In: IEEE TRANSACTIONS ON SYSTEMS MAN AND
CYBERNETICS PART C-APPLICATIONS AND REVIEWS 37.6 (Nov.
2007), pp. 1067–1080. ISSN: 1094-6977. DOI: 10.1109/TSMCC.2007.
905750.

[14] Klaithem Al Nuaimi and Hesham Kamel. “A survey of indoor
positioning systems and algorithms”. In: 2011 international conference
on innovations in information technology. IEEE. 2011, pp. 185–190.

[15] Jeffrey Hightower and Gaetano Borriello. “Location sensing tech-
niques”. In: IEEE Computer 34.8 (2001), pp. 57–66.

[16] Ernesto Martín Gorostiza et al. “Infrared sensor system for mobile-
robot positioning in intelligent spaces”. In: Sensors 11.5 (2011),
pp. 5416–5438.

[17] E Brassart, C Pegard, and M Mouaddib. “Localization using infrared
beacons”. In: ROBOTICA 18.2 (Mar. 2000), pp. 153–161. ISSN: 0263-
5747. DOI: 10.1017/S0263574799001927.

[18] E Aitenbichler and M Mühlhäuser. “An IR local positioning system
for smart items and devices”. In: 23RD INTERNATIONAL CONFER-
ENCE ON DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS.
Ed. by FM Titsworth. 23rd International Conference on Distributed
Computing Systems Workshops, PROVIDENCE, RI, MAY 19-22,
2003. IEEE Comp Soc. 2003, pp. 334–339. ISBN: 0-7695-1921-0.

https://doi.org/10.1109/SURV.2009.090103
https://doi.org/10.1109/ICIMP.2007.31
https://doi.org/10.1109/TSMCC.2007.905750
https://doi.org/10.1109/TSMCC.2007.905750
https://doi.org/10.1017/S0263574799001927


Bibliography 152

[19] Mari Saua Svalastog. “Indoor positioning-technologies, services and
architectures”. MA thesis. 2007.

[20] Jacek Rapinski and Michal Smieja. “ZigBee Ranging using
Phase Shift Measurements”. In: JOURNAL OF NAVIGATION
68.4 (July 2015), pp. 665–677. ISSN: 0373-4633. DOI: 10 . 1017 /
S0373463315000028.

[21] Jacek Rapinski. “THE APPLICATION OF ZIGBEE PHASE SHIFT
MEASUREMENT IN RANGING”. In: ACTA GEODYNAMICA ET
GEOMATERIALIA 12.2 (2015), pp. 145–149. ISSN: 1214-9705.

[22] Liang Chen et al. “Carrier Phase Ranging for Indoor Positioning
With 5G NR Signals”. In: IEEE Internet of Things Journal 9.13 (2022),
pp. 10908–10919. DOI: 10.1109/JIOT.2021.3125373.

[23] Stephane Beauregard and Harald Haas. “Pedestrian dead reckoning:
A basis for personal positioning”. In: Proceedings of the 3rd Workshop
on Positioning, Navigation and Communication. 2006, pp. 27–35.

[24] Rosen Ivanov. “Indoor navigation system for visually impaired”.
In: Proceedings of the 11th International Conference on Computer Sys-
tems and Technologies and Workshop for PhD Students in Computing on
International Conference on Computer Systems and Technologies. 2010,
pp. 143–149.

[25] R. Mautz and S. Tilch. “Survey of optical indoor positioning sys-
tems”. In: Proc. Int. Conference on Indoor Positioning and Indoor Navi-
gation (IPIN). 2011, pp. 1–7.

[26] Zhenlong Song, Gangyi Jiang, and Chao Huang. “A Survey on
Indoor Positioning Technologies”. In: THEORETICAL AND MATH-
EMATICAL FOUNDATIONS OF COMPUTER SCIENCE. Ed. by
QH Zhou. Vol. 164. Communications in Computer and Information
Science. 2nd International Conference on Theoretical and Mathe-
matical Foundations of Computer Science (ICTMF 2011), Singapore,
MALAYSIA, MAY, 2011. Intelligent Informat Technol Appl Res As-
soc; Nanyang Technol Univ; SMU. 2011, pp. 198+. ISBN: 978-3-642-
24998-3.

https://doi.org/10.1017/S0373463315000028
https://doi.org/10.1017/S0373463315000028
https://doi.org/10.1109/JIOT.2021.3125373


Bibliography 153

[27] Mohammad Ghavami, Lachlan Michael, and Ryuji Kohno. Ultra
wideband signals and systems in communication engineering. John Wiley
& Sons, 2007.

[28] Guangliang Cheng. “Accurate TOA-Based UWB Localization Sys-
tem in Coal Mine Based on WSN”. In: INTERNATIONAL CONFER-
ENCE ON APPLIED PHYSICS AND INDUSTRIAL ENGINEERING
2012, PT A. Ed. by D Yang. Vol. 24. Physics Procedia A. Interna-
tional Conference on Applied Physics and Industrial Engineering
(ICAPIE), Wuhan, PEOPLES R CHINA, MAR 01-02, 2012. 2012,
pp. 534–540. DOI: 10.1016/j.phpro.2012.02.078.

[29] Kazimierz Siwiak and Debra McKeown. Ultra-wideband radio tech-
nology. John Wiley & Sons, 2004.

[30] Arash Shahi et al. “Deterioration of UWB positioning during con-
struction”. In: AUTOMATION IN CONSTRUCTION 24 (July 2012),
pp. 72–80. ISSN: 0926-5805. DOI: 10.1016/j.autcon.2012.02.009.

[31] M Segura, V Mut, and C Sisterna. “Ultra wideband indoor naviga-
tion system”. In: IET Radar, Sonar & Navigation 6.5 (2012), pp. 402–
411.

[32] Eva Arias-de Reyna and Umberto Mengali. “A Maximum Likeli-
hood UWB Localization Algorithm Exploiting Knowledge of the
Service Area Layout”. In: WIRELESS PERSONAL COMMUNICA-
TIONS 69.4 (Apr. 2013), pp. 1413–1426. ISSN: 0929-6212. DOI: 10.
1007/s11277-012-0642-2.

[33] Sivanand Krishnan et al. “A UWB based localization system for
indoor robot navigation”. In: 2007 IEEE International Conference on
Ultra-Wideband. IEEE. 2007, pp. 77–82.

[34] Luigi Cirrincione et al. “COVID-19 Pandemic: Prevention and Pro-
tection Measures to Be Adopted at the Workplace”. In: Sustainability
12.9 (2020).

[35] Jonathan W. Dyal. “COVID-19 Among Workers in Meat and Poultry
Processing Facilities - 19 States, April 2020.” In: MMWR. Morbidity
and mortality weekly report 69.18 (May 2020).

https://doi.org/10.1016/j.phpro.2012.02.078
https://doi.org/10.1016/j.autcon.2012.02.009
https://doi.org/10.1007/s11277-012-0642-2
https://doi.org/10.1007/s11277-012-0642-2


Bibliography 154

[36] Jack T. Dennerlein et al. “An Integrative Total Worker Health Frame-
work for Keeping Workers Safe and Healthy During the COVID-19
Pandemic”. In: Human Factors 62.5 (2020), pp. 689–696.

[37] Siswoyo Haryono Agung Sedaju and Nurlaila Anisahwati. “Flexible
Work Arrangement in Manufacturing during the Covid19 Pandemic:
An Evidence-Based Study of Indonesian Employees”. In: Interna-
tional Journal of Advanced Science and Technology 29.06 (Apr. 2020),
pp. 3914–3924.

[38] Marco Bortolini et al. “Multi-objective assembly line balancing con-
sidering component picking and ergonomic risk”. In: Computers and
Industrial Engineering 112 (2017), pp. 348–367. DOI: 10.1016/j.cie.
2017.08.029.

[39] D. Dardari, P. Closas, and P. Djurić. “Indoor Tracking: Theory, Meth-
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