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Abstract
In this paper we discuss some limitations that selection mechanisms
face when the entities subject to selection are complex systems of
interdependent elements. We briefly present Kauffman’s NK model
which addresses this problem in biological systems. It is argued that,
contrary to the myopic search behaviour, underlying biological
fitness landscapes, social organisations are not bound in their search
dynamics. This amounts to say that the problem of finding optima on
a fitness landscape can be decomposed in many different ways.
Following work by Page (1996), we present some measures of the
complexity of a fitness landscape in terms of the complexity (size) of
the algorithm that decomposes the problem most accurately, while
still being able to locate the global optima with full certainty. We
then extend this measures to allow for nearly-decomposability in a
sense close to Simon (1969). Finally we study some evolutionary
properties of populations of agents characterised by different

decompositions of the same given problem.
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1. Introduction.

The power of market selection forces in eliminating inefficiencies has long been a
widespread but rather casual belief among economists. For instance, this belief has played the
central role in the so-called as-if” justification of the strong rationality assumptions of
neoclassical economics (cf. Friedman 1953). This justification claims that no matter the actual
decision algorithms employed by real decision makers, only those decision makers whose
behaviour cannot be distinguished from the behaviour which would be followed by an
optimising agent will eventually prevail under market selection. This argument has undergone
various criticisms (e.g. Winter 1986), but some recent models of selection developed in
biology pose some more fundamental questions on the validity of this rather casual faith in the
power of selection mechanisms. Whenever selection does not operate on one-dimensional
entities but on entities which have some complex? inner structure characterised by strong
interdependencies among their constituent elements, selection is usually unable to eliminate
inefficiencies of components which are tightly linked with others. Kauffman (1993) shows
that as interdependencies grow, the selection surface (or “fitness landscape” in his
terminology) tends to become more and more rugged, with many local optima. In this
situation, evolutionary dynamics based on local (“marginal”) search and selection will simply
allow individuals to climb up to a local optimum near their initial position. The global
optimum can be attained only by agents whose initial conditions are, by chance, within its
basin of attraction, which in turn becomes smaller as interdependencies increase. The system
shows strong properties of path-dependence (which local optimum is found depends on the
starting position) and lock-in (local optima trap exploring agents preventing them from
exploring any other point). Path-dependency and lock-in properties are stronger, the tighter
selection forces are. Actually, only “weak” selection forces which spare individuals with
decreasing fitness could eventually allow them to escape from bad local optima and climb
higher ones.

This simple argument has an immediate appeal for organisational economists: business
firms are undoubtedly complex systems of highly interrelated elements and Kauffman’s model
provides an appealing metaphor of organisational evolution and the limits of market selection.
This line of research has been already pursued by some papers, e.g. Kauffman and McReady
(1995) Westhoftr al. (1996), Levinthal (1997), Gavetti and Levinthal (1998).

However, the evolution of social organisations differs in important respect from the
biological model of mutation and selection. The one which is the main concern in the present
study is the possibility of social organisations of exploring their fithess landscape by applying
search algorithms which are not necessarily limited to the one-gene-mutation algorithm which
characterises biological systems. In other words, agents can virtually follow any kind of
problem-solving strategies, and evaluate their efficiency and effectiveness. Following Simon’s
(1969) theory of problem-solving, we focus on strategies that decompose a problem in sub
problems that are treated independently. Let us imagine that finding the global optimum of a
given fitness landscape is the problem that a social organisation composed of N components
(bits) has to solve, one-component (one-bit) mutation corresponds to a decomposition of such
a problem into the smallest possible sub-problems. In fact, this corresponds to trying to
optimise each component separately: this is potentially a very quick search strategy because if
each component has h possible states, the search requires at most hN steps. Unfortunately,

2 \We ask the reader who - rightly so — gets rather nervous whenever he or she finds some casual use of the word
“complexity”, to bear a little patience: providing a rigorous definition of what we mean by complex structure is
one of the main purposes of this paper.



Kauffman's model shows that if there are interdependencies among components, this
maximum degree of decomposition does not generally allow the system to reach the optimal
solution but only the local optimum which is closer to the initial position. At the other

extreme, the problem could not be decomposed at all, that is the organisation could apply
search algorithms which explore at the same time all N dimensions of the problem: this search
strategy corresponds to mutating (at most) all N components and leads with certainty to the

global optimum, but it does it only by examining af possible configurations. In between
there are many possible decompositions of the problem.

Following the methodology described by Page (1996), this paper provides some
rigorous measures of complexity of a problem in terms of the size of the smallest algorithms
which can locate the optimal solution starting from any initial condition. This provides a
formal definition of the decomposability of a problem. This methodology is then extended to
account for nearly decomposability: as suggested by Simon (1969), problem solvers are forced
to decompose problems which are not fully decomposable, since their computational
resources are limited. By separating interdependent elements into different sub-problems, a
problem whose complexity is far beyond available computational resources is reduced to
smaller sub-problems which can be handled, but it generally fails to provide the optimal
solution. This paper provides a formal measure of nearly-decomposability: we show that if
problems-solvers are ready to accept algorithms which lead to less than optimal (“satisficing”)
solutions they can decrease the size (and thus the execution time) of the algorithm required to
find it. In other words, there is a trade-off between optimality and complexity.

This last point raises some interesting questions on the evolutionary properties of this
kind of system: we simulate populations of agents characterised by different decompositions
of the problem they face and we let them evolve in a very basic selection environment. In this
way we can investigate whether, and under which conditions, agents with the “right” problem
decomposition invade the population, or whether agents employing search algorithms based
on sub-optimal decompositions. The latter type of agents have a high probability of being
locked-in into local optima but they locate such optima relatively “quickly”. Sub-optimal
decompositions, though not effective in finding the optimal solution, may well be most
efficient when one discounts for search time.

The papetris organised as follows. The next section briefly reviews the basic features
of Kauffman’s NK model of fitness landscapes. Section 3 introduces two complexity
measures, cover and Ascent Size, based on the decomposability of the search problem on a
landscape. In section 4 we extend the measures for nearly-decomposability. A simulation
model in section 5 explores some evolutionary properties of populations of agents applying
different decompositions of a given problem.

3 In this paper we treat the subject in a very abstract manner, without any direct reference to concrete problems.
Two companion papers, Marengo (1998) and Frenken ef al. (1998), present some applications respectively to a
model of division of labour and organisational evolution and to the problem of technological design.



2. Kauffman’s NK-model
The NK-model simulates the evolution of complex systems in which the el ements function
interdependently. Kauffman (1993) devel oped the NK-model primarily to simulate the evolution
of populations of organisms that are described by a string of genes, but its formal structure
allows for various applications in other domains.
A system is described by a string of loci which refers to the set of elements that make up
the system. The variable N refers to the number of elements (genes in biology) (i=1, ...,N). For
each element, there exist 4; possible states (allelesin biology). The number of al possible strings
among a system’s element is called the possibility space of a system. The size of the possibility
spaceS is given by:

S = A; 04> 0. DAy (1)

The K-value of a system refers to the number of “epistatic” relations among elements. The
ensemble of epistatic relations describe the system’s inner structure. The epistatic relations
between elements imply that the contribution of one element to the overall fithess of the system
is dependent both upon its own state and upon the st&tetber elements. Two limit cases of
complexity can be distinguishetkinimum complexity when K=0, and maximum complexity
whenkK=N-1.

Consider the example of a binary system consisting of three elements A;=2) in
which the elements are independekit=¢). The fitness contribution of each element to the
overall performance of the system is solely dependent upon its state (either “0” or “1”).
Following Kauffman (1993), we draw the fitness values of elements for the two possible states
randomly from an uniform distribution between 0.0 and 1.0. The fitness of the system as a whole
F'is calculated as the mean value of the fitness values of elerfienis. / presents a detailed
example.

The distribution of fithess values of all possible strings is callediriegs landscape of a
system. By means of one-bit mutations, an agent may be able to improve its fithess as it moves
through the fitness landscape. In the model, selection holds that when a new string is found that
has a higher fitness, an agent will remain there. As long as there exists at least one neighbouring
string that has a higher fitness than the fithess of the agent’s current string, an agent can “climb”
the fitness landscape by random one-bit mutations until it reaches an optimum. In this case of
K=0, the fitness landscape always contains only one optimum (in our example string 110). For
this reason, the global optimum is always found by a series of random one-bit mutations.

Figure 1: Fitness landscape of a N=3-system (K=0).
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In the case of maximum complexity (K=N-1), the functioning of elements in a system depends

upon all other elements. In this case, the fitness contribution of each element is dependent upon

the states of al other elements. The value of the fitness contribution of each element has to be
randomly drawn for each string separately. In other words, for each possible string of elements,

the nature of their interdependencies is different. An example of a fitness landscape of a N=K-1-

system is given in Figure 2. This fitness landscape contains two evolutionary optima: 100 and

010. String 100 is a global optimum and string 010 is alocal optimum. Kauffman (1993) speaks

of “rugged” landscapes containing several peaks (optima). Whether an agent ends up in either
100 or 111 depends upon its initial starting point: their search dynamics are stratgly
dependent. For both optima, it holds, an agent that occupies one of these strings, cannot improve
the fitness of the system by one-bit mutations (we discuss the case of multi-bit mutations below).
Once an optimum is found, an agentdsked-in forever. For this reason, contrary ko-0-
systems, random one-bit mutations do not necessarily lead to the global optimum.

The local optima arevolutionary attractors: once an agent occupies a local optimum, it
cannot escape this optimum by one-bit mutation. An important property of evolutionary
attractors is the number of starting points that can end up in the attractor state (including the
optimum itself). This number of strings is called tagin of attraction of the local optima. In
the example, the basin of attraction of the global optimum covers only four strings, while the
basin of attraction of the local optimum covers seven strings. For this reason, agents that move
within this particular fithess landscape are more likely to become trapped in the local optimum
rather than ending up in the global optimum.

Figure 2 : Fitness landscape of N=3-system (K=2).
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In between the two limit cases of minimum and maximum complexity, there are systems for
which K is positive but smaller than its maximum valde K<N-1). For these systems, the
fitness landscape usually contains several local optima, but less than in the case of maximum
complexity. Kauffman (1993) analyses the structure of fithess landscapes for different K- and
N-values by means of simulations to compare the evolutionary dynamics of systems with
different degrees of complexity. We list five important results:

1. The number of local optima increases exponentially as the K-parameter is tuned from its
minimum valuek=0 to its maximum valu&=N-1.



2. The locations of local optima in the possibility space are correlated for low K-values
(0<K<5). Put another way, the local optima of low-K systems have many states of elementsin
common.

3. The fitness values of local optima of low-K systems are highest on average. Thus, the
interdependencies between a system’s elements is strongest if the number of epistatic relations
is small (but positive).

4. The basins of attraction of local optima of low-K systems are larger on average, and,
generally, the higher their fitness, the larger their basin of attraction. As a consequence, a
population tends to evolve towards strings of local optima with a high fitness.

5. When the number of elemenf€ increases over time through the addition of new
elements, the fithess of local optima of low-K systems tends to increase more than the fitness
of high-K systems (Altenberg 1995). For this reason, one expects only systems with a low K-
value to be able to expand in si¥e

On the basis of these strong results, Kauffman (1993) suggested that systems with low
K-values enjoy at least two evolutionary advantages over systems with high K-values. Not
only, as mentioned above, do their local optima possess, on average, higher fitness values, but
more importantly, the correlated structure of the fithess landscape and the large basins of
attraction of “good” local optima make individuals more likely attain high fithess levels in
low K systems. For this reason, systems with a low K-value are expected to outperform
systems with a high K-value. Evolution then, will self-organise the composition of
populations into one that is dominated by systems with low K-values.

In the context of human problem solving, the underlying biological assumption of
random one-bit mutation is of limited relevance. The nature of search strategies in artificial
evolution differs from the blind mutations in biological evolution. There exist: poiori
constraints for human agents to proceed alomg/a-bit mutation strategy. This search strategy
is of importance since it may allow agents to escape strings that are the local optima with respect
to one-bit mutations, and extend their search process towards better solutions.

Consider again the example of a fithess landscap&#a¥ in figure 2. The local
optima are the strings which cannot be improved by one-bit mutation, and, as a consequence,
agents may be trapped in sub-optimal solutions. However, a two-step mutation strategy allows
an agent to escape these local optima by mutating the first bit from 0 to 1 and the second bit
from 1 to 0, thus moving to the global optimum. In the example, irrespective of the initial
conditions, agents with a two-bit mutation strategy will end up in the global optimum. Put
another way, if we assume that agents follow a two-bit search strategy, then the global
optimum has a basin of attraction equal to the size of the possibility space, and there is only
one optimum present in the fithess landscape. It is clear that the number of local optima (i.e.
the "ruggedness"”) of the landscape is not solely an objective feature of the fithess function as
such, but depends also on the search strategy used.

The local optima are not given by the model, but are depending upon the behavioural
assumptions underlying the model regarding the search behaviour of agents (as emphasised

by Jones 1995, the topology of a fithess landscape is defined only as a function of a given
search algorithm)

A powerful human device to solve complex problems is the construction of mental models
which map the epistatic relations between elements. Using these representations, agents
decompose the system in subsystems which are then solved independently (Simon 1969, 1973).
If their models map approximately the epistatic relations between elements, the decomposition
strategy allows them to economise considerably on search time. Thus, the complexity of a
system is related to its degree of decomposability which in turn depends on the system'’s
architecture. Complexity indicators therefore, should relate to the decomposability of the



specific system’s architecture. The next section present two complexity indicators which reflect
decomposability properties of a system.

3. Schemata and decomposability.

In this section we introduce alternative measures of the complexity of a search for the
global maximum of a function defined on binary strings such asvitiitness landscape
described in the previous paragraphhe measures we propose here are based on a notion of
complexity of a problem in terms of its decomposability into sub-problems which are
constructed in such a way as to contain all and only interdependent elements. That is, the
overall solution can be obtained by solvingependently each sub-problem. Conversely each
sub-problem is made of a set of interdependent elements which cannot be searched separately
from all other elements of the same sub-problem.

This methodology has been first proposed by Page (1996), and it is based on the notion
of schema (or, equivalently, hyperplane), introduced within Genetic Algorithms by Holland
(1975). We first provide an informal description and then spell out the formal details.

In short, a schema is a subset of bits of a string, and is dah&dant if by projecting
on it all other strings we obtain a new string with higher (or equal) fith@$ourse, only
schemata which are part of the strings with maximum fithess can be globally dominant. By
definition, a string with maximum fitness is itself a dominant schema (of maximum size): if
we mutate all bits of whatever string into those of the global maximum, we obtain the global
maximum itself. However, this is a schema of maximum dimension, and therefore, in order to
find it with certainty, we have to test all the possiblesch schemata: if this was the only
dominant schema, it would not allow for any reduction of dimension (i.e. decomposition) of
the problem.

Imagine instead, at the other extreme, that all N schemata of size 1 are dominant. This
is the case when all schemata have only one defining bit. This implies that we can tune each
bit at a time. In that case one is sure that, if for instance mutating a 0 into a 1/4th the
position increases the fithess of a string, then the optimal string has a 1ith thesition.

Thus, we can decompose the problem into N problems of size one and we are guaranteed to
find the global optimum in at most N steps by using N one-bit mutations.

A cover is a set of dominant schemata such that the union of all their defining bits
returns all the N bits. If we construct the cover with minimum size schemata, this will give us
the decomposition of the problem into minimum size sub-problems. This means that we can
optimise each subset of bits separately, defined by each of such schemata. The global
optimum will be simply the union of such sub-strings.

The Cover Size of a function defined on binary strings is exactly the size of the largest
schema contained in the minimum size cover. It represents a measure of complexity of the
problem in terms of the size of the largest of the smallest elements in which it can be
decomposed. A cover gives a “perfect” decomposition, in the sense that each subset of bits

* As noted above, for complexity of the search we refer to the number of local optima, or ruggedness, that
account for a complexity of alandscape. This depends on both the fitness function ("nature™") and on the search
strategy applied.

® The projection of a string on a schema will be defined below, but it can be easily understood by means of an
example: the projection of the string 10001 on the schema O##11 gives as a result the string 00011.



defined by a schemain a cover can be optimised independently from the others and only after
solving each sub-problem can the pieces be put together. Thus the problem can be solved in
parallel, and the largest sub-problem gives the upper bound to the complexity of the system,
i.e. thetime required to find its optimal solution.

Cover Size might over-estimate the complexity of the solution for a search algorithm
because, if some schemata which form the minimum cover have bits in common, solving one
of them reduces the size of those with overlapping elements. Of course, the bits which are
common to two or more schemata in the cover must take the same value at the optimum, thus
we can search for such values in the smallest of the overlapping schemata and then reduce the
dimension of the larger ones. Thisis the idea behind the second complexity measure, which is
called Ascent Size of the cover and gives the minimum number of bits we have to mutate at
the same time in order to be sureto find - sooner or later - the maximum of the function.

Cover Size and Ascent Size of a system give us the number of bits which have to be
mutated in order to be able to climb the function up to its optimum either by parallel or
sequential problem-solving. It is clear that this represents a generalisation of Kauffman’s
(1993) one-bit mutation walks a¥iX fitness landscapes as discussed above. It tells us which
kinds of algorithms are appropriate for which kind of fitness landscape. In particular, it turns
out from our simulations which are listed below that except in the limit éaseésand K=N-
1, the K-value is not a good indicator of the complexity of the landscape. We will show that
both Cover Size and Ascent Size are significantly higher than the K-value suggests: for
instance 100 randomly generated fitness landscapesN#ifl? and K=4 have an average
Cover Size of 11.89 and average Ascent Size of 11.60. Thus, they are of almost the same
complexity as a totally uncorrelated landscape KittiV-1. Only for the limit case€=0 and
K=N-1 we have that both cover and Ascent Size are, respectively, 1 and N.

An important property of the Cover Size and Ascent size is that they requieer
decomposability: we want schemata of a cover to cownfaitme bits which interact. This is a
very demanding requirement. Usually we are looking Aetrly-decomposability (Simon
1969, 1973): we want to isolate only the elements whose interactions bear a large influence on
the performance of the system, and ignore the elements whose interactions do not have a large
effect on the performance. Thus, elements with weak interactions are treated as if they were
independent elements. By doing so, one may be able to decompose the function in more
detail. Infigure 3 a schematic representation of a nearly-decomposable systemK=2) is
given, where the dotted lines stand for weak structural relations.

Figure 3: Example of a nearly-decomposable system (N=4, K=2)

In the following, we show how one can build coverg-afominant schemata, whegds the
degree of “satisficing”, i.e. the deviation from optimality we are ready to accept due to the
neglect of weak interactions. As we increase gtparameter, both cover and Ascent Size



sharply decrease. In this way, we can rigorously measure the trade-off between precision and
complexity of asearch agorithm.
We now turn to aformal definition of the notions discussed so far:
Sistheset of all binary strings of size n (in this section we use n for N):
sO0S;s=s1%..ss  s{0,1} IS|=2"
Wecall 1={1,2,.....,n} the corresponding set of indexes.
Be F: S— [ area valued (fithess) function that we want to maximise. We require that F be
defined on the entire set S. For simplicity we also require for the time being that F have a
unique global optimum (this assumption will be dropped in afollowing section).
A schema (or hyperplane) h isaternary string of size n:
h=hhy..h,  h{0,1,#}
The defining bits of a schema are those bits which differ from #. Let d(h) be the set of such
defining bits:
d(h) = {i; hz#
The size of a schema is the number of its defining bits:
sz (h) = [d(h)|
Asin Holland (1975) we say that a string s belongs to the schema h iff:
s=h Oidd(h)
To every schema h belong 2" strings.
The projection [ of astring s on a schemah is a new string z which has the same bits as the
schema’s defining bits and the string’s bits in the positions where the schema has a #:
sth=z where iz h iff idd(h)
zi= 5 otherwise
A schema h idominant for the function F iff:
F(sCh) = F(s) OsS
A cover is a decomposition scheme composed only by dominant schemata. Formally, a set of
schemata O{:hl,hz,....H<} is acover for the function F iff:
a) every his dominant for every(sS

b) 0d(h’)=]

Note that it is not necessary that the defining bits of the schemata forming a cover partition the
set | (i.e. schemata may overlap in their defining bits, and, as we will see, this might actually
reduce the complexity of the problem).
Thesize of a cover C is the size of the largest schema in it:
sz(C) = may sz ()}

For instance, imagine that a function defined on the set of 5 bit strings has the following
cover:
C ={1#H###, ###10, #1040
then we can be sure that, by allowing 3 mutations at a time, we are sure to reach the global
optimum.

The main question turns out to be that of finding dbweer of minimum size, because
this gives us the finest possible decomposition of the function into sub-problems which still
ensures that the global maximum can be reached from every starting point. This problem can
be easily solved recursively according to the following algorithm:

0. bes* the string with maximum fitness
l.sz:=1
2. find all the schemata of size containings*



3. for each such schema check if it is globally dominant, if so put it in the set C

4. if the union of defining bits of the schematain C givesthe set of all n bits then STOP
5.5z :=5z+1

6. return to step 2.

In this way we obtain the set C, i.e. the cover of minimum size. We are aways sure that the
algorithm will halt because at worst, by definition, s* is a dominant schema which, alone,
forms a cover. Note also that in general there exist multiple covers of a function, but using
this procedure we are sure, by construction, to find all those of minimum size.

Cover Size is a measure of the finest possible decomposition of a problem into sub-
problems which can be solved in parale. But it can overestimate the complexity of the
problem for a climbing algorithm which works sequentially®: in fact, if the cover contains
overlapping schemata, an algorithm can start locating lower dimension schemata and in this
way reduce the dimension of larger ones. Consider, as an example, that a problem has been
decomposed in the following cover:

C = { 14, 11, 110##, 1101#, 11010}

The Cover Size of this function is 5, thus, if we refer only to this measure, we conclude that
the function has maximum complexity. But, actually, if we explore the function with a one bit
mutation algorithm we are able to locate the first schema (of size one). Once we locate such a
schema we are able also to locate the second - still with a one bit mutation algorithm - and so
on. All in al, a one bit mutation algorithm is able to find the global optimum of the function,
although its Cover Size equals n. We express this by saying that the Ascent Size of the cover is
1, implying that all schemata, also those of high dimension, can be located by a one bit
mutation algorithm by using those bits which are in common with lower dimension schemata
as intermediate steps. Of course, in order to exploit such areduction of complexity we have to
solve the problem sequentially, as higher dimension schemata have to be located only after the
lower dimension ones have already been discovered.

Let C be the minimum size cover of a function, the corresponding Ascent Size can be
constructed by processing the schemata belonging to C in the following steps:

.bel={1,2,.....,n} the set of indexes

.sz:=1, I'=l

. find all the schemata of size equal to or smaller thaver the set I

. if no such schemata then:=sz + 1 and go to 2

. cancel from I’ all the indexes corresponding to the defining bits of such schemata
. if I' is empty then STOP

. else goto 2.

AN A WN =D

The valuesz computed by such an algorithm corresponds to the Ascent Size of the cover of
the given function.

4. Satisficing and nearly-decomposability.

® We have here a more formal appreciation of the intuition that working sequentially rather than in parallel can
sometimes be advantageous if the sub-problems are nested or at least partly overlapping. Then, having already
solved one sub-problem may reduce the complexity of the others.
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When building a cover for a function we look for perfect decomposability, in the sense that

we require that all schematain the cover be dominant on all strings of the domain. In this way,

we are guaranteed to decompose the problem into perfectly isolated components (in the sense

that each of them can be solved independently). We can soften the requirement of perfect
decomposability into one of nearly-decomposability by using a “satisficing” rule (cf. Simon

1969). In this case, we do not want the problem to be decomposed into completely separated
sub-problems, i.e. sub-problems which fully contain all interdependencies in a system, but we
want sub-problems to contain only the most “fithess-relevant” interdependencies while less
relevant ones can persist across sub-problems. Put in another way, a satisficing rule aims at
decreasing the effects of interdependencies in the sense that the structural relations that only
weakly influence the performance of the system, are ignored. In this way, optimising each
sub-problem independently will not, in general, give the global optimum, but a solution which
lies within some error leved from the global optimum itself, where>0 is a therefore a
measure of the degree of satisficing.

In this way, we can construct arCover of the function and the corresponding Cover
Size and Ascent Size measures. Afncreases the size of the schemata of ei@@over
decreases. Thus, we have a trade-off between precision, complexity and time in finding a
solution (remember that every unitary reduction in the size of the decomposition blocks halves
the solution time if the problem is solved in parallel). Of course a cover based on strict
dominance, or a 0-Cover in this terminology, is a special case.

Let us spell out the details of this method. So far, in order to construct the minimum
size cover of the function, we have looked for schemata which are dominant with respect to
every string in the domain of the function. This implies that by applying the schemata of a
cover we follow a fitness-increasing path that will inevitably lead to the (unique) global
optimum. Suppose now that instead of the global optimum we want to be sure to reach a set of
“satisficing” solutions, which we define in the following way:

The set ok-satisficing solutions is the set of strings whose value is at ngoswer than the
global optimum:
> ={sS; F(s)= (1€)F(s*)}
with Ose<1 and s* being the string corresponding to the global optimum.
In order to construct a cover which leads to such & set have to look for schemata which
are not globally dominant, but are so only on strings which do not bel@ng to
We can therefore give the following definition:
A set of schemata CEhlR,....H} is as-cover for the function F iff:
a) every his dominant for every(s>

b) 0d(h’)=]

Of course, ifZ contains only the global optimum we go back to the case previously analysed.
Moreover we can now also treat functions with multiple global optima, if this is the case we
just defineX as the set of all global optima.
Note that in the previous case only schemata belonging the global optimum were possible
candidates for inclusion in C, now instead all schemata belonging to the strings contained in
have to be tested for dominance.

The properties of-Covers are stated by the following propositions (cf. Marengo 1998
for the proofs):
Proposition I. the cardinality oE-Covers weakly increases @sicreases.
Proposition 2: the size ot-Covers weakly decreaseseasicreases.

11



Taken together these two propositions establish that as the satisfcing threshold € increases the
complexity of the satisficing solution (weakly) decreases.

In order to give an idea of the complexity reduction we can attain by accepting less
than optimal solutions, we made some test on random fitness landscapes generated using the
NK-model (Kauffman 1993, chapter 2) with bi-directional epistatic links.” For each value of
K, we generated 100 different random landscapes and computed cover and Ascent Sizes for
growing values of € (the case €=0 being the case of strict dominance and “perfect”
decomposability). Figures 4 and 5 below present, respectively, the average values of Cover
Size and Ascent Size over the 100 landscapes. Note that in these figsirasasured in
terms of relative deviation from the global optimum of the function:ee@2 means that we
are ready to accept that our search algorithm halts at a local maximum which is at most 20%
below the global maximum. From these results we can conclude that:

1. Cover Sizex Ascent Sizex (K+1), with equality holding only in the two extreme cases of

K=0 andK=N-1.

2. With =0, both cover and Ascent Size increase sharpl§ gets bigger than 0: already

with K=3 the corresponding landscapes are hardly distinguishable - in terms of complexity
measures - from completely random (Ke=N-1) ones.

3. ase¢ increases, i.e. when we lower the required performance of the algorithm, both cover
and Ascent Size sharply decrease. Note that every reduction by 1 in these two measures
corresponds to a decrease by half of the time required to complete the search. Therefore, in
evolutionary terms, optimising strategies could be selected away by satisficing ones because
the latter are much faster in reaching a “good” performance. This point will be developed in
the next section.

Figure 4: Cover Size for various K and satisficing thresholds
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" Originally, Kauffman’s model is based on uni-directional links, but the use of bi-directional links does not
change the qualitative properties of NK-systems with regard to their decomposition.
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Figure 5: Ascent Size for various K and satisficing thresholds
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5. Evolution of populations of problem-solvers.

Cover and Ascent Sizes set bounds to the complexity - in terms of decomposability -
of search strategies within given selection environments. Of course, such measures of
complexity are not known by agents who search adaptively the landscape with conjectural
search strategies based on a given hypothesis on the decomposition of the search space. What
are then the evolutionary properties of populations of agents (firms) which compete on the
basis of search strategies based on conjectural decompositions?

In order to give some preliminary answers to this questions we simulated® a popul ation
of agents, where each agent is characterised by one out of a limited set of decomposition
strategies. We let them compete in an environment defined by some simple rules of selection:
worst scoring agents are removed from the population and replaced with “copies” of the best
scoring agents. Copies are new agents that inherit the parent’s decomposition scheme, but
explore the landscape starting from a different — randomly assigned - point.

Agents start from a random point in the landscape and explore it according to their
individual decomposition scheme. Each agent is defined by a given decomposition of the
system into sub-systems and generates new points by choosing randomly one of the sub-
systems, and mutating its bits (possibly all of them) randomly.

For instance, consider an agent which follows the decomposition strategy
D={{1,2,3},{4,5,6,},{7,8,9},{10,11,12}}. Thus, the search space is decomposed into four
subspaces of equal size. In order to generate a new point, the agent chooses randomly one of
these 4 sub-spaces, then some (possibly all) of the bits in the chosen schema are mutated. The
fitness value of the new point is observed: if such a fitness is higher than the one of its current
position the agent moves to it, and the latter becomes the new starting point, otherwise the

8 All simulations have been developed using the simulation platform called “LSD” (Laboratory for Simulation
Development) (Valente, 1998) which provides a programming environment where simulations can be easily run
also by inexperienced computer users. The interested reader can find downloadable code, user's manuals, more
details of these and other simulations and programs to run simulations with different parameters and settings at
the site: http://www.business.auc.dk/~mv/Lsd1.1/Intro.html
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agent remains whereit is. This step isiterated. Thus, what differentiates agentsis only the way
they generated new points to be tested, i.e. their search strategy, which in turn is determined
by their decomposition of the search space.

Of course there is a huge number of possible decompositions, but in order to restrict
such a number® we imagine that agents “know” that only some “well-behaved”
decompositions are possible, in particular we imagine that schemata of an admissible
decomposition must have all the same dimension and that they form a partition of the search
space. We are thus left with only six possible decomposition and, correspondingly, six types
of agents, named after the dimension of the sub-problems into which they decompose the
problem:
Agent type 1: D={{1},{2},{3}.{4}.{5}.{6}.{7}.{8}.{9K10},{11},{12}}
Agent type 2: D={{1,2},{3,4},{5,6},{7,8},{9,10},{11,12}}
Agent type 3: D={{1,2,3},{4,5,6},{7,8,9},{10,11,12}}
Agent type 4: D={{1,2,3,4},{5,6,7,8},{9,10,11,12}}
Agent type 6: D={{1,2,3,4,5,6},{7,8,9,10,11,12}}
Agent type 12: D={{1,2,3,4,5,6,7,8,9,10,11,12}}

We first checked whether agents whose decomposition perfectly reflects the structure of the
underlying landscape are actually able to find its global optimum irrespectively of the initial
conditions. To test this hypothesis we built fivkinds of random landscapes with a given
structure, determined by the following covers (where + stands for either 1 or 0 and landscapes
are named after the size of the corresponding cover):

Landscape type 2:

{(F-HHHHHHHHHHIE), (B HHHERE), (B L), (R D), (),
(HHHHHHHH A+ 1)}

Landscape type 3:

{(F ), (BRI (FHHHHHE ), (R )}

Landscape type 4:

{(FH+HHHHHH), (), (B )}

Landscape type 6:

{(++++++HRHAE), (HHE )}

Landscape type 12:
{(+++++++++++4)}

For each type of landscape we let 180 artificial agents, 30 for each type, evolve without any
selection. Agents are initialized at a random point of the landscape, and then they pursue their
search strategy as described above (i.e. they choose one sub-problem and mutate randomly at
least one bit in it). To avoid the effect of lucky initial conditions (of course any agent can find
the global optimum if it starts “close” enough to it) we periodically “shake” the population:
when fitness values have settled, we reposition all existing agents in randomly chosen points,
from which they have to start again their search.

In figure 6 we report the average fitness values for each class on a landscape of Cover
Size 4 (we present the results obtained using one single landscape, though the same results
have been reproduced with several different landscapes of the given Cover Size).

® As we want to study the evolutionary properties of optimal decompositions, we have to compare them with
some “reasonable” ones, this is the reason why we restrict so much the number of possible decompositions.
19\We omit landscapes of Cover Size one because they are trivial.
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Figure 6: Average Fitness of Classes of Agents — Landscape type 4
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Average fitness values of each class are always non-decreasing (because agents either
increase their fitness or stay put) except the sudden drops they incur every 1000 iterations,
when agents are randomly repositioned. Note that the average fitness of agents of types 1, 2
and 3 quickly stops growing, because all agents in those classes become locked in local
optima (some of them may actually reach the global optimum if their starting point is close
enough, but this effect tends to be cancelled out by the periodic repositioning of agents). All
agentsin class 4 increase quickly their fitness and set on the global maximum. Agentsin class
6 grow less quickly than agents in the lower classes but they cannot all reach the global
optimum, since some of them are trapped in local optima. This is because at each mutation
they can jump on a wider range, but their decomposition does not allow to identify with
certainty the global maximum. Agents in class 12 use a purely random search, having the
possibility to jump on every point at each mutation. This allows them to grow slowly but
steadily, and in the end all agents in this class may also be able to find the global maximum.
But this strategy is extremely slow, being clearly outperformed, in speed of convergence, by
the one used by agents of class 4.

This result confirms that only classes 4 and classes 12 can aways reach the optimum,
but class 4 does it in much shorter time. Equivalent results have been found for landscapes of
Cover Sizes 2, 3, 6 and 12. In al exercises we observe the same results: strategies using
decompositions not including the one corresponding to the minimum size cover are bound to
be trapped in local optima. Strategies using decompositions which include the minimum one
but are bigger do always reach the global optimum but do so slowly. Search strategies
corresponding to the minimum cover clearly outperform every other strategy.

But correct decomposition strategies might not aways prevail in competitive
environments with some form of selection, in fact they are able to always locate the global
optimum with certainty, but the time required might be so long that they are actualy
eliminated by the selection mechanism. In order to test this proposition, we ran a set of
simulations where agents competed in a very simple selection environment. That is, we used a
similar set up as above (180 agents, 30 for each strategy initially located in points of the
landscape randomly chosen) but are not re-positioned. Instead, every 10 mutations they are
ranked according to their fitness. The 30 worst scoring agents are eliminated from the
population and replaced by copies of 30 agents chosen among the other surviving agents.

Figure 7 shows the average number of copies over 10 different ssmulation runs on each
of the landscapes considered, to avoid possible influences of particular initial points.
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Figure 7: Average Number of Agents per Class
(average on 10 runs)
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It is possible to see that, as expected, for landscapes of sizes 2, 3, 4 and 6, agents

whose decomposition perfectly reproduce the structure of the landscape tend to dominate the
population. On the contrary, on landscapes of size 12 this does not happen, as agents of type
12, in spite of being the only ones always able to find the global optimum, are displaced by
“simpler” strategies which tend be locked into local optima, but reach them relatively quickly.

The latter result is even stronger in “nearly-decomposable” or “modular” landscapes, where
sub-optimal, “satisficing” search strategies tend to be evolutionary dominant. We constructed
a nearly-decomposable system of skze/2 (4=2), composed of 3 modules of 4 elements
each. Elements within a module are all bilaterally linked to each-other, and one element of
each module has a unilateral link to an element of the next one. Figurei@es a schematic
representation of the structure of the system.
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Figure 8: Example of a nearly-decomposable (or modular) system

The fitness landscape of such systems has a Cover Size of 12, thus the optimising
decomposition strategy which secures the finding of the global is the 12-bit mutation strategy

(which is a “decomposition” into one subsystem). However, the architecture of structural
relations is highly pronounced: a decomposition strategy of size 4 is able to capture “most” of
the interdependencies if the system. Therefore, it is interesting to test whether “satisficing
strategies” adopting a decomposition strategy of type 4 outcompete optimising strategies
which follow a 12-bit mutation strategy. As shown by figure 9, the answer is that indeed the
optimising 12-bit mutation strategy is dominated by the 4-bit mutation decomposition strategy
into three subsystems. It is worth pointing out that also agents using a 3-bit mutation strategy
corresponding to a decomposition into four subsystems are also relative frequent in the
population though their decomposition scheme is not the right one. This shows that even
agents with a wrong decomposition scheme are able to outcompete the optimising 12-bit
mutation strategy.

We conclude that in highly complex landscapes, optimising strategies following a
search strategy corresponding to the “correct” structure of the system do not have an
advantage over satisficing strategies. It is not particularly useful to base a strategy on the
Cover Size since it is a very time-consuming search type. In an evolutionary environment, the
decomposition of the system into sub-systems, even if it is only an approximate
decomposition, allows agents to improve their fitness in very short time, even though they
usually are not able to find the global optimum. Thus, satisficing strategies aiming at a high
rate of improvement outcompete optimising strategies which aim at the maximum end result.
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Figure 9: Number of agents per class in a nearly-decomposable landscape of size 12
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