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Zusammenfassung
Verschränkung ist eine grundlegende Eigenschaft von Quantensystemen und
ihre Charakterisierung ein zentrales Problem der Physik. Darüber hinaus besteht
eine steigende Nachfrage nach skalierbaren Protokollen, die das Vorhandensein
von Verschränkung bescheinigen können. Dies liegt vor allem an der Rolle der
Verschränkung als entscheidende Ressource für Quantentechnologien. Die sys-
tematische Zertifizierung der Verschränkung ist jedoch sehr anspruchsvoll, und
dies gilt insbesondere für Quanten-Vielteilchensysteme. In dieser Dissertation
stellen wir uns dieser Herausforderung und stellen einige Techniken vor, die
die Zertifizierung von mehrteiliger Verschränkung in Vielteilchensystemen er-
möglichen. Dies wird mit einer Anwendung auf ein Modell wechselwirkender
Fermionen demonstriert, das das Vorhandensein einer elastischen mehrteili-
gen Verschränkung bei endlichen Temperaturen zeigt. Darüber hinaus disku-
tieren wir auch einige Feinheiten bezüglich der Definition von Verschränkung
in Systemen nicht unterscheidbarer Teilchen und liefern eine formale Charakter-
isierung der multipartiten Modenverschränkung. Dazu müssen wir mit einem
abstrakten Formalismus arbeiten, mit dem sich die Verschränkung in Quanten-
Vielteilchensystemen ohne Bezug auf eine bestimmte Struktur der Zustände
definieren lässt. Um diese Technik weiter zu demonstrieren, und auch mo-
tiviert durch aktuelle Quantensimulationsbemühungen, verwenden wir sie, um
den Rahmen von Verschränkungszeugen auf Theorien von Gittereichungen zu
erweitern.

v





Abstract
Entanglement is a fundamental property of quantum systems and its characteriza-
tion is a central problem for physics. Moreover, there is an increasing demand for
scalable protocols that can certify the presence of entanglement. This is primarily
due to the role of entanglement as a crucial resource for quantum technologies.
However, systematic entanglement certification is highly challenging, and this is
particularly the case for quantum many-body systems. In this dissertation, we
tackle this challenge and introduce some techniques that allow the certification
of multipartite entanglement in many-body systems. This is demonstrated with
an application to a model of interacting fermions that shows the presence of
resilient multipartite entanglement at finite temperatures. Moreover, we also
discuss some subtleties concerning the definition entanglement in systems of
indistinguishable particles and provide a formal characterization of multipartite
mode entanglement. This requires us to work with an abstract formalism that
can be used to define entanglement in quantum many-body systems without
reference to a specific structure of the states. To further showcase this technique,
and also motivated by current quantum simulation efforts, we use it to extend
the framework of entanglement witnesses to lattice gauge theories.
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Sommario
L’entanglement è una proprietà fondamentale dei sistemi quantistici e la sua
caratterizzazione è un problema centrale per la fisica. Inoltre, vi è una crescente
richiesta di protocolli scalabili in grado di certificare la presenza di entangle-
ment. Ciò è dovuto principalmente al ruolo dell’entanglement come risorsa
cruciale per le tecnologie quantistiche. Tuttavia, la certificazione sistematica
dell’entanglement è molto impegnativa, e questo è particolarmente vero per i
sistemi quantistici a molti corpi. In questa dissertazione, affrontiamo questa sfida
e introduciamo alcune tecniche che consentono la certificazione dell’entangle-
ment multipartito in sistemi a molti corpi. Ciò è dimostrato con un’applicazione
a un modello di fermioni interagenti che mostra la presenza di entanglement
multipartito resiliente a temperature finite. Inoltre, discutiamo anche alcune
sottigliezze riguardanti la definizione di entanglement in sistemi di particelle
indistinguibili e forniamo una caratterizzazione formale dell’entanglement mul-
tipartito. Ciò ci richiede di lavorare con un formalismo astratto che può essere
utilizzato per definire l’entanglement nei sistemi quantistici a molti corpi senza
fare riferimento a una struttura specifica degli stati. Per mostrare ulteriormente
questa tecnica, e anche motivata dagli attuali sforzi di simulazione quantistica,
la usiamo per estendere la struttura dei testimoni di entanglement alle teorie di
gauge del reticolo.
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Resumo
O emaranhamento é uma propriedade fundamental dos sistemas quânticos e
sua caracterização é um problema central para a física. Além disso, há uma
demanda crescente por protocolos escaláveis que possam certificar a presença
de emaranhamento. Isso se deve principalmente ao papel do emaranhamento
como um recurso crucial para as tecnologias quânticas. No entanto, a certificação
sistemática de emaranhamento é altamente desafiadora, e este é particularmente
o caso de sistemas quânticos de muitos corpos. Nesta dissertação, abordamos
este desafio e apresentamos algumas técnicas que permitem a certificação do
emaranhamento multipartido em sistemas de muitos corpos. Isto é demonstrado
com uma aplicação a ummodelo de férmions interagentes que mostra a presença
de emaranhamento multipartido resiliente a temperaturas finitas. Além disso,
também discutimos algumas sutilezas sobre a definição de emaranhamento em
sistemas de partículas indistinguíveis e fornecemos uma caracterização formal
do emaranhamento de modo multipartido. Isso exige que trabalhemos com
um formalismo abstrato que pode ser usado para definir o emaranhamento em
sistemas quânticos de muitos corpos sem referência a uma estrutura específica
dos estados. Para mostrar ainda mais essa técnica, e também motivado pelos
atuais esforços de simulação quântica, nós a usamos para estender a estrutura de
testemunhas de emaranhamento para teorias de gauge na rede.
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1 Introduction
Entanglement is a fundamental feature of quantum mechanics and one of its
most striking features. It is a direct byproduct of the basic postulates of quantum
mechanics as theywere laid down in the 1920s [1–4]. This was already recognized
in 1935 by Einstein et al. with their discovery of the Einstein–Podolski–Rosen
(EPR) paradox [5]. It demonstrated the puzzling consequences of the principle of
quantum superposition when applied to composite systems. Subsequent works
further examined this issue and formalized it systematically [6, 7]. It was in this
context that Schrödinger introduced the term entanglement to describe certain
quantum correlations.
The EPR paradox was part of a broader debate concerning the completeness

and validity of quantum mechanics. Specifically, it fueled the side of the debate
that argued that quantum mechanics was incomplete. This skepticism was origi-
nally caused by the ontic character of probabilities in the quantum mechanical
description, as established by the Born rule [8]. But the EPR paradox—and the
existence of entanglement—provided additional arguments. Hidden-variables
models were introduced as attempts to bypass these perceived issues, while still
explaining quantum mechanical phenomenology [9, 10]. However, they were
plagued with additional problems and explicitly violated locality.
It took more than three decades after the EPR discovery to resolve the issues

it raised. In a seminal work, Bell formalized the philosophical assumptions
underpinning the paradox and devise a quantitative way to test them [11]. It
demonstrated that local realism imposes strong restrictions on the admissible
correlations that can be observed in physical systems [12]. Bell’s inequality—and
its generalizations [13]—provided an experimentally accessible test for these
restrictions.
Remarkable experiments in the 1970s and 1980s showed violations of Bell

inequalities [14–16]. These experiments proved that reality cannot be described
by a model consistent with local realism. This excluded the possibility of local
hidden-variable models, and showed that the counter-intuitive features of quan-
tum mechanics are inevitable. Moreover, follow-up experiments closed various
loopholes to ensure that Bell inequalities are indeed violated [17–20]. As such,
by now, it is an experimentally verified fact that entanglement is a fundamental
part of reality.
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1 Introduction

The modern perspective on entanglement is completely opposite to the neg-
ative connotation it had in the early years of quantum mechanics [21]. It is
now widely understood that entanglement plays a crucial role in the description
of various systems. And its characterization is one of the central questions of
physics [22, 23]. This is particularly the case for quantum many-body physics,
for entanglement can explain certain salient phenomena, and shed new light
into pressing open problems [24–26]. Moreover, entanglement is an important
catalyst for current research efforts. In particular, it is key to the ongoing cross-
fertilization between atomic physics, solid state, and quantum information.
A prominent example of the relevance of entanglement in quantum many-

body physics is the development of tensor network methods. They originate
in the density matrix renormalization group (DMRG) method developed in the
early 1990s [27]. This method was instrumental and remains the primary com-
putational tool for studying one-dimensional quantum systems. However, its
theoretical understanding was limited until the development of matrix prod-
uct states (MPS) [28]. This is a class of ansatzes that generalize the Affleck–
Kennedy–Lieb–Tasaki (AKLT) state [29]. The advent of MPSs produced new
insights about the DMRG method and enabled the development of more gen-
eral tensor network ansatzes [30]. Examples of this are projected entangled
pair states (PEPS) [31], and the multiscale entanglement renormalization ansatz
(MERA) [32]. What all tensor network methods have in common is their reliance
on knowledge of the entanglement structure of many-body states [33].
Entanglement also provides a signature of quantum phase transitions, which

are the quantum counterpart of the familiar concept from statistical mechan-
ics [34]. Quantum phase transitions are driven by quantum fluctuations and
exist at zero temperature. At sufficiently small, but finite, temperatures, it is pos-
sible to find signatures of the quantum phase transition in the quantum critical
regime [35]. This is the region that lies above the quantum critical point (QCP),
where the transition takes place. In this region, entanglement displays scaling
behaviour [36], and certain measures of entanglement diverge [37–39].
Topological order is another important instance where entanglement deter-

mines the properties of a quantum many-body system. It describes the states of
topological phases of matter, which are phases that cannot be described by the
spontaneous symmetry breaking formalism [40]. Paradigmatic examples include
the Toric code [41], and string-net models [42]. Topologically ordered states are
characterized by a pattern of long-range entanglement. And they manifest a
plethora of unconventional phenomena. The two most emblematic ones are the
existence of a topological ground state degeneracy and the presence of anyonic
excitations. Both of which are extreme examples of emergent phenomena in
many-body physics, and require novel techniques to be studied.
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Entanglement also has the potential to fuel various technological applications.
As it is the resource necessary to power quantum technologies [43, 44]. The
most emblematic example is quantum computation. It is an idea that originates
in the 1980s [45, 46], but it is yet to be fully realized. The goal is to leverage
the properties of quantum mechanical systems to gain a speedup over classical
computers. Shor’s algorithm for prime number factorization is possibly the most
famous instance of this [47]. Additional examples include the Deutsch–Jozsa
algorithm [48], quantum search [49], and more [50]. However, despite rapid
progress and increasing capabilities [51], we still lack a scalable platform for
quantum computing.
Another potential quantum technology is quantum simulation. It employs

highly controllable quantum mechanical systems to simulate quantum many-
body systems [52], and probe physics that is otherwise inaccessible. These ma-
chines must satisfy various properties to ensure some degree of reliability [53].
Platforms suitable for this task include trapped ions [54] and ultracold atoms [55].
They enable the simulation of paradigmatic models such as the Hubbard model
with the help of optical lattices [56–61]. On the experimental side, quantum
simulation is only possible due to remarkable advances in experimental atomic,
molecular, and optical physics (AMO). The realization of Bose–Einstein conden-
sates (BEC) in the late 1990s being a key moment in this trajectory [62, 63].
Quantum metrology is perhaps the most mature quantum technology in

present day [64]. It arises as an extension of the problem of parameter esti-
mation to a quantum mechanical setting [65]. The concept is to use quantum
correlations to enhance the metrological sensitivity of a detection apparatus.
Thereby increasing the precision of parameter estimation in, e.g., a atomic inter-
ferometer. This procedure requires specially engineered states to work, such as
squeezed states of light [66, 67] or squeezed spin states [68–70]. It has been suc-
cessfully demonstrated in various experimental works [71–74], and has important
applications [75–77].
The metrological enhancement obtained with squeezed states is due to the

presence of entanglement [78, 79]. This has been implemented in multiple exper-
iments with great success [80–86]. And it raises the possibility of using metrology
as a tool to detect entangled states [87–89]. It is possible to further characterize
the quantum correlations of atomic systems that provide a metrological enhance-
ment. This leads to the concept of multipartite entanglement, which acts as a
resource for quantum metrology [90–92]. More rigorously, one can demonstrate
that the quantum Fisher information (QFI) [93], a quantifier of metrological
enhancement, is bounded by a function of the amount of entanglement in the
system. Therefore, the QFI provides a witness for multipartite entanglement in
systems described by spin degrees of freedom.
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1 Introduction

Given the potential technological applications, there is a growing demand
for techniques to certify the presence of entanglement [23]. Its importance to
quantummany-body physics provides further motivation for this quest. However,
many techniques for entanglement detection scale poorly with system size. This
is a significant problem and it restricts their application. The scaling problem
stems from the exponential growth of the Hilbert space, and reliance on quantum
state tomography techniques. State tomography, while a useful tool, has severe
limitations and becomes prohibitive for large systems [94, 95]. Thus, it is critical to
find scalable techniques that permit the certification of entanglement in quantum
many-body systems. In this work, we present our results that contribute to this
endeavor. In particular, we demonstrate that it is possible to extract the QFI of
quantum many-body system using an experimentally friendly protocol based
on engineered dynamics. This enables one certify the presence of multipartite
entanglement in quantum many-body systems.
Another crucial question for the characterization of entanglement in quantum

many-body systems is how to formally define entanglement. Specifically, how to
generalize the usual definition of entanglement for qubits—and distinguishable
particles—to systems made up of identical particles. This has been investigated
since the early 2000s [96–98], with some debates concerning the physical inter-
pretation of bosonic and fermionic entanglement [99], and known applications
to quantum technologies. Particularly to quantum metrology. However, existing
works about entanglement of indistinguishable particles have focused on the
bipartite case. Our results extends this to the multipartite case using a system-
atic, and unified formalism, that is system agnostic. This builds up on previous
works that demonstrated the relevance of operator algebras to the definition of
entanglement [100]. Recently, this technique has also been used to investigate
entanglement entropy in lattice gauge theory [101–104]. Motivated by this, we
apply our formalism to this setting as well, and use it to construct entanglement
witnesses for lattice gauge theories.
Chapter 2 is a summary of the background material for the rest of this disser-

tation with a review of the theory of entanglement. And a summary of theory of
quantum estimation. In chapter 3 we present our protocol for extracting the QFI
of states in thermal equilibrium. We derive it, discuss some of its advantages
and limitations, and present a extension beyond the scope of thermal states. The
two following chapters focus on multipartite entanglement of indistinguishable
particles. In chapter 4 we discuss multipartite mode entanglement and derive
QFI bounds for separable fermionic states. Chapter 5 contains our numerical
results for a model of interacting fermions. The topic of chapter 6 are lattice
gauge theories, and how to construct entanglement witnesses for them. Finally,
in chapter 7, we summarize the dissertation and discuss some future perspectives.
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This dissertation is based on two published works and another in preparation:

• R. Costa de Almeida and P. Hauke, “From entanglement certification with
quench dynamics to multipartite entanglement of interacting fermions”,
Phys. Rev. Research 3, L032051 (2021) [105].
In this publication, we present our protocol for extracting the QFI of ther-
mal states using quench dynamics. We also demonstrate that this procedure
can be used to certify the presence of multipartite entanglement in a system
of interacting fermions. Chapters 3 to 5 are expanded versions of the con-
tents of this publication. I was responsible for the theoretical derivations,
and the numerical computations.

• R. Costa de Almeida and P. Hauke, “Probing the quantum Fisher informa-
tion of passive states”, (in preparation) [106]
This upcoming work is an extension of the previous one. It aims to broaden
the scope of our multipartite entanglement certification protocol, so that it
applies to non thermal equilibrium states. In particular, we demonstrate
that the formula for extracting the QFI holds for a larger class of equilib-
rium states. And showcase the efficacy of this procedure with numerical
results based on random sampling of quantum many-body states. My con-
tributions include the theoretical derivations, and the implementation of
the sampling algorithm.

• V. Panizza, R. Costa de Almeida, and P. Hauke, “Entanglement witnessing
for lattice gauge theories”, J. High Energy Phys. 2022, 196 (2022) [107]
Our results for lattice gauge theories are presented in this work. In par-
ticular, we demonstrate the possibility of using entanglement witnesses
to detect entanglement in lattice gauge theories, and construct an explicit
example for a U(1) theory. The techniques introduced in this work are
particularly suited for implementation in quantum simulators. My primary
responsibility was to develop the theoretical framework for the characteri-
zation of entanglement witnesses in the presence of superselection rules,
but I also contributed to the development of the optimization procedure.
Parts of the results are also published in V. Panizza’s master thesis [108].

Additionally, chapter 4 contains a broader discussion of entanglement in systems
of indistinguishable particles, and results which have not been published yet. It
formalizes and significantly extends our previous results concerning multipartite
mode entanglement [105]. Finally, during the course of my Ph.D., I also helped
to supervise two masters students, but the contents of the work carried out with
them is not presented here and can be found in their thesis [109, 110].
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2 Theoretical background

In this chapter, we lay the theoretical foundations and basic toolkit for the disser-
tation. The central topic is entanglement, in its various incarnations, and some
techniques for detecting it. We adopt a bottom up approach, and progressively
build up a general formalism formultipartite entanglement. The other focal point
is quantum metrology and how entangled states can enhance sensing. Specially
because this provides us with a tool to certify the presence of multipartite entan-
glement. For the sake of conciseness, our presentation focuses on the theoretical
aspects that allow us to derive the entanglement bounds.

The first section concerns the bipartite case, the simplest scenario. Afterwards,
we move to the multipartite setting and discuss some of the basic results for it. In
both cases, we consider systems defined by qubits, or qudits, which is the most
familiar case. It is important to emphasize this, for chapters 4 and 6 discuss more
complex situations that do not admit such a description. The third section is a
summary of some theoretical aspects of quantum metrology, and its relation to
multipartite entanglement. This relation provides us with entanglement bounds
that will be used, and extended, in the subsequent chapters. Finally, we conclude
with a discussion of some mathematical aspects of entanglement from an alge-
braic point of view. The presentation in the final section is somewhat abstract,
but it will be made concrete through out this dissertation with examples.

The classic review by Horodecki et al. [21] is our primary reference for general
facts about entanglement. Additionally, the book by Nielsen et al. [43] covers
some of the more basic concepts discussed here. We also recommendWilde’s
book [111] for technical aspects of quantum information theory. Regarding
quantum metrology, we refer to the in-depth review by Pezzé et al. [64], and the
one by Tóth et al. [79]. The fourth section builds upon ideas from the theory of
operator algebras following the work of Balachandran et al. [100]. It employs
some concepts and terminology from algebraic quantum field theory (AQFT) and
the theory of 𝐶∗-algebras, but it is completely self-contained. Nonetheless, for the
interested reader, we suggest the book by Haag [112] which sets the foundations
of AQFT, and the one by Murphy [113] for background on operator algebras.
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2 Theoretical background

2.1 Entanglement in bipartite systems
Bipartite systems are the prototypical setting to study entanglement. This is the
case both for technical and historical reasons. After all, asmentioned in chapter 1,
research into quantum entanglement originates from the debate surrounding
the EPR paradox [5–7] and the eventual discovery of Bell inequalities [11, 13].
Both of which concern bipartite systems. Moreover, numerous technological
applications of quantum information science rely on bipartite entanglement
as a resource [43]. This is the case for dense coding [114], some quantum key
distribution protocols [115, 116], and quantum teleportation [117–120]. On a
more practical note, the theory of bipartite entanglement is necessary to make
sense of the multipartite scenario.

2.1.1 Nonlocal quantum correlations
Let us consider a system defined by two qubits, labeled 𝐴 and 𝐵. Each qubit is
taken to be a independent subsystem, such that 𝐴 and 𝐵 are physically separated.
For instance, one can assume that the two qubits are causally disconnected, in
the relativistic sense. However, we do not discard the possibility that 𝐴 and 𝐵
interacted in the past, so that they can be in an arbitrary state. A general pure
state of this system is given by

| 𝜓⟩ = 𝜓(0, 0)| 0𝐴⟩ ⊗ | 0𝐵⟩ + 𝜓(0, 1)| 0𝐴⟩ ⊗ | 1𝐵⟩
+ 𝜓(1, 0)| 1𝐴⟩ ⊗ | 0𝐵⟩ + 𝜓(1, 1)| 1𝐴⟩ ⊗ | 1𝐵⟩ ,

(2.1)

which is a superposition of the 4 classical states of a pair of bits. One can imagine
that there are agents, typically called Alice and Bob, that have local access to the
qubits. Each agent can manipulate their own qubit, but does not have access to
the other one.
We can use tensor products to reconstruct all observables by combining Pauli

matrices acting locally. Examples of this are

Ô𝐴 = σ̂𝑥𝐴 ⊗ 1̂𝐵 Ô′
𝐴 = σ̂𝑧𝐴 ⊗ 1̂𝐵

Ô𝐵 = 1̂𝐴 ⊗ ̂τ𝑥𝐵 Ô′
𝐵 = 1̂𝐴 ⊗ ̂τ𝑧𝐵 ,

(2.2)

where ̂τ𝑥 and ̂τ𝑧 are Pauli matrices rotated by 𝖾𝗑𝗉(𝑖𝜋σ̂𝑦/4). More generally, it is
possible to describe all quantum maps acting on such a bipartite system. But
Alice and Bob are only allowed to perform local operations and classical commu-
nication (LOCC).
Consider the observable T̂ = Ô𝐴Ô𝐵 + Ô′

𝐴Ô𝐵 + Ô𝐴Ô′
𝐵 − Ô′

𝐴Ô′
𝐵, and its expec-

tation value with respect to the state described by equation (2.1). If the wave

8



2.1 Entanglement in bipartite systems

function factorizes according to 𝜓(𝑖, 𝑗) = 𝜓𝐴(𝑖)𝜓𝐵(𝑗), it is straightforward to
check that ⟨T̂⟩ ≤ 2. This bounds the correlations of pure states that Alice and
Bob can produce locally. However, for an arbitrary pure state, the upper bound
is higher,

⟨T̂⟩ ≤ 2√2 , (2.3)

and it is known as Tsirelson’s bound [121]. It holds for arbitrary operators with
norm one, as long as the observables acting on 𝐴 commute with those acting
on 𝐵. Bell states saturate inequality (2.3), so the bound is tight and cannot be
improved. It follows that their wave function does not factorizes. As we already
mentioned, this implies that Alice and Bob cannot locally produce pure states
that will can the correlations of the Bell states. Moreover, since ⟨T̂⟩ is linear as a
function of the states, adding statistical mixtures will not change this. Hence,
the two qubits become indissociable if they are in a Bell state, and we say that
they are in a entangled state.
It is instructive to consider a classical counterpart of the situation we just de-

scribed. In a classical system, a state amounts to an assignment of objective values
to the observables features of the system. The observables amount to binary vari-
ables in the classical scenario, since they have eigenvalues ±1. Hence, a classical
state assigns variables 𝑜𝐴, 𝑜′𝐴, 𝑜𝐵, 𝑜′𝐵 ∈ {−1,+1} to the system. Rearranging the
terms of T̂, we have

⟨𝑜𝐴𝑜𝐵⟩ + ⟨𝑜′𝐴𝑜𝐵⟩ + ⟨𝑜𝐴𝑜′𝐵⟩ − ⟨𝑜′𝐴𝑜′𝐵⟩
= ⟨(𝑜𝐴 + 𝑜′𝐴)𝑜𝐵⟩ + ⟨(𝑜𝐴 − 𝑜′𝐴)𝑜′𝐵⟩ ≤ 2 .

(2.4)

The bound above comes from the fact that either 𝑜𝐴 = 𝑜′𝐴 or 𝑜𝐴 = −𝑜′𝐴, so the
two terms cannot contribute simultaneously. This is essentially the content of
Bell’s theorem [11]. It states that inequality (2.4) holds for any description of
reality consistent with local realism. Thus, the existence of quantum states that
violate it, implies that quantum mechanics is inconsistent with local realism.
Experimental tests showing violations of Bell inequalities demonstrate that

local realism does not describe reality [14–17]. And they exclude the possibility
of local hidden-variables models [12]. This is a very strong result. In particular,
it means that any theory consistent with experiments must also have the counter-
intuitive features of quantum mechanics. It also shows that entanglement is
a fundamental feature of nature, since only entangled states can violate Bell
inequalities. However, it is important to notice that not all entangled states are
Bell nonlocal [122]. This means that there are entangled states that admit a
description with a local hidden-variables model.

9



2 Theoretical background

2.1.2 Reduced states and entanglement
Let us consider a more general setting for a bipartite system and formally define
bipartite entanglement. Specifically, we fix a Hilbert spaceℋ𝐴𝐵 that admits a
decomposition into

ℋ𝐴𝐵 = ℋ𝐴 ⊗ℋ𝐵 , (2.5)

a tensor product of local Hilbert spacesℋ𝐴 andℋ𝐵. For concreteness, assume
that each subsystem is a qudit,

ℋ𝐴 =⨁
𝜇
ℂ| 𝜇𝐴⟩ = ℂ| 0𝐴⟩ ⊕⋯⊕ℂ| 𝑑𝐴 − 1⟩ ≅ ℂ𝑑𝐴 (2.6)

ℋ𝐵 =⨁
𝜈
ℂ| 𝜈𝐵⟩ = ℂ| 0𝐵⟩ ⊕⋯⊕ℂ| 𝑑𝐵 − 1⟩ ≅ ℂ𝑑𝐵 , (2.7)

with dimensions 𝑑𝐴 and 𝑑𝐵, respectively. It is possible to use qudits to model
various physical systems, and they can be experimentally realized in multiple
ways. But no further specification is necessary for our purposes.
Pure states can be decomposed according to equation (2.5) into

| 𝜓⟩ = ∑
𝜇,𝜈

𝜓(𝜇𝐴, 𝜈𝐵)| 𝜇𝐴⟩ ⊗ | 𝜈𝐵⟩ , (2.8)

where 𝜓(𝜇𝐴, 𝜈𝐵) is a wave function corresponding to some local bases. Further-
more, it is possible to regard 𝜓(𝜇𝐴, 𝜈𝐵) as a matrix and simplify equation (2.8)
with a singular value decomposition (SVD). This procedure yields bases {| 𝜅𝐴⟩}
and {| 𝜅𝐵⟩}, with a common index 𝜅, such that

| 𝜓⟩ = ∑
𝜅
√𝗉(𝜅)| 𝜅𝐴⟩ ⊗ | 𝜅𝐵⟩ , (2.9)

for a 𝗉(𝜅) that defines a probability distribution. Equation (2.9) is known as a
Schmidt decomposition and it is an indispensable tool for analysing bipartite
systems. It is also used extensively to implement tensor networks numerical
methods [30].
Product states are the simplest instance of a Schmidt decomposition. They

correspond to a delta probability distribution 𝗉(𝜅) = 𝛿(𝜅) and we can write

| 𝜓⟩ = | 𝜓𝐴⟩ ⊗ | 𝜓𝐵⟩ , (2.10)

so that the wave function factorizes 𝜓(𝜇𝐴, 𝜈𝐵) = 𝜓𝐴(𝜇𝐴)𝜓𝐵(𝜈𝐵). We showed that
they cannot violate a Bell inequality, so they do not have nonlocal correlations.

10



2.1 Entanglement in bipartite systems

In fact, this follows directly from their most important property, namely that the
correlations of all local observables vanish. Specifically,

⟨𝜓 | Ô𝐴 ⊗ Ô𝐵 | 𝜓⟩ = ⟨𝜓𝐴 | Ô𝐴 | 𝜓𝐴⟩⟨𝜓𝐵 | Ô𝐵 | 𝜓𝐵⟩ , (2.11)

for every observable Ô𝐴 and Ô𝐵 with local support in 𝐴 and 𝐵. As a consequence,
local states encode all expectation values and correlations. And there is no loss
of information when we restrict a product state to one of the subsystems. This
implies that product states are not entangled.
For an arbitrary state, the restriction to subsystems is more complicated and

there is loss of information. Using equation (2.9) we see that

⟨𝜓 | Ô𝐴 ⊗ 1̂𝐵 | 𝜓⟩ = ∑
𝜅,𝜅′

𝗉(𝜅)
1
2 𝗉(𝜅′)

1
2 ⟨𝜅′𝐴 | Ô𝐴 | 𝜅𝐴⟩⟨𝜅′𝐵 | 𝜅𝐵⟩

= ∑
𝜅
𝗉(𝜅)⟨𝜅𝐴 | Ô𝐴 | 𝜅𝐴⟩ = 𝖳𝗋(∑

𝜅
𝗉(𝜅)| 𝜅𝐴⟩⟨𝜅𝐴 |Ô𝐴) ,

(2.12)

so the restriction of | 𝜓⟩ to 𝐴 is a mixed state,

̂ρ𝐴 = ∑
𝜅
𝗉(𝜅)| 𝜅𝐴⟩⟨𝜅𝐴 | , (2.13)

and some information is lost. It is this loss that indicates that the two subsystems
become indissociable and that the state is entangled. The entropy of ̂ρ𝐴,

𝑆𝐴(| 𝜓⟩⟨𝜓 |) = 𝑆( ̂ρ𝐴) = −∑
𝜅
𝗉(𝜅) 𝗅𝗇 𝗉(𝜅) , (2.14)

quantifies this and it is known as the entanglement entropy. Of course, the same
reasoning applies to 𝐵 and one can check that 𝑆𝐴(| 𝜓⟩⟨𝜓 |) = 𝑆𝐵(| 𝜓⟩⟨𝜓 |).
Equation (2.13) is indicative of the presence of correlations between 𝐴 and 𝐵,

i.e., violations of equation (2.11). Indeed, for a general state, correlations between
𝐴 and 𝐵 are given by

⟨𝜓 | Ô𝐴 ⊗ Ô𝐵 | 𝜓⟩ − ⟨𝜓 | Ô𝐴 ⊗ 1̂𝐵 | 𝜓⟩⟨𝜓 | 1̂𝐴 ⊗ Ô𝐵 | 𝜓⟩
= ∑

𝜇,𝜈
∑
𝜇′,𝜈′

⟨𝜇𝐴 | Ô𝐴 | 𝜇′𝐴⟩⟨𝜈𝐵 | Ô𝐵 | 𝜈′𝐵⟩⋅

∑
𝜇″𝜈″

(
𝜓†(𝜇𝐴, 𝜈𝐵)𝜓(𝜇′𝐴, 𝜈′𝐵)𝜓†(𝜇″𝐴, 𝜈″𝐵)𝜓(𝜇″𝐴, 𝜈″𝐵)

−
𝜓†(𝜇𝐴, 𝜈″𝐵)𝜓(𝜇′𝐴, 𝜈″𝐵)𝜓†(𝜇″𝐴, 𝜈𝐵)𝜓(𝜇″𝐴, 𝜈′𝐵)

) ,

(2.15)

so there can be nonzero contributions depending on the wave function. Fixing
local bases that diagonalize Ô𝐴 and Ô𝐵, the expression becomes

= ∑
𝜇′,𝜈′

⟨𝜇′𝐴 | Ô𝐴 | 𝜇′𝐴⟩⟨𝜈′𝐵 | Ô𝐵 | 𝜈′𝐵⟩ ∑
𝜇″,𝜈″

(
𝗉(𝜇′𝐴, 𝜈′𝐵) 𝗉(𝜇″𝐴, 𝜈″𝐵)

−
𝗉(𝜇′𝐴, 𝜈″𝐵) 𝗉(𝜇″𝐴, 𝜈′𝐵)

) , (2.16)
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2 Theoretical background

where 𝗉(𝜇𝐴, 𝜈𝐵) = |𝜓(𝜇𝐴, 𝜈𝐵)|2 is the probability of measuring a specific basis
state. If, and only if, the state is a product state, equation (2.16) vanishes for
all local bases. As a consequence, equation (2.11) can only hold for all local
observables for product states. This shows that the two subsystems 𝐴 and 𝐵 will
be entangled whenever the state of the composite system is not a product state,
since there will be correlations between local observables. Therefore, we say that
a pure state is entangled if it is not a product state.

2.1.3 Bipartite entanglement detection
To extend the definition of entanglement to mixed states, we need an appropriate
generalization of equation (2.10). As it turns out, there is an easy solution. It is
to define separable states as those that can be written as a mixture of product
states,

̂ρ = ∑
𝜆
ρ𝜆| 𝜆𝐴⟩⟨𝜆𝐴 | ⊗ | 𝜆𝐵⟩⟨𝜆𝐵 | . (2.17)

If a state is not separable then it is impossible to model it with a statistical
ensemble of product states, and we say it is entangled [21]. The set of separable
states is manifestly convex, since it is given by the convex hull of the subset of
product states. Hence, the set of entangled states is the difference of two convex
sets, the set of all states 𝒮(𝐴𝐵) and the set of separable states 𝖲𝖾𝗉 (see figure 2.1).
Notice that simple correlations cannot distinguish entangledmixed states from

separable ones. This is because

⟨Ô𝐴 ⊗ Ô𝐵⟩ρ̂ − ⟨Ô𝐴⟩ρ̂⟨Ô𝐵⟩ρ̂ = ∑
𝜆
ρ𝜆⟨Ô𝐴Ô𝐵⟩ρ̂𝜆 − ∑

𝜆,𝜆′
ρ𝜆ρ𝜆′⟨Ô𝐴⟩ρ̂𝜆⟨Ô𝐵⟩ρ̂𝜆′ (2.18)

can achieve non zero values even if all ̂ρλ are product states. However, there
are alternative methods that can be used to detect entangled states [22], such as
those based on the Peres–Horodecki criterion [123, 124]. It is also possible to
use entanglement witnesses to detect entanglement [125–127]. To define one, it
is necessary to find an operator Ŵ whose 𝖳𝗋( ̂ρŴ) = 0 hyperplane appropriately
splits 𝒮(𝐴𝐵) (see figure 2.1). Specifically, Ŵmust be chosen such that 𝖳𝗋( ̂ρŴ) ≥ 0
for all separable states, so that a negative expectation value signals entanglement.
The operator Ŵ = 2 − T̂ is an example of this.
Of course, Bell inequalities also diagnose entangled states, but only Bell non-

local ones [122, 128]. We can leverage this to obtain a finer description of
𝒮(𝐴𝐵) ⧵ 𝖲𝖾𝗉 through a series of strict inclusions 𝖲𝖾𝗉 ⊂ 𝖫𝗈𝖼 ⊂ 𝒮(𝐴𝐵), as in
figure 2.1. The convex set 𝖫𝗈𝖼 contains all states that admit a description by a
local hidden-variables model and includes some entangled states.
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𝒮(𝐴𝐵) ⧵ 𝖫𝗈𝖼

𝖫𝗈𝖼 ⧵ 𝖲𝖾𝗉

𝖲𝖾𝗉

= 𝒮(𝐴𝐵) ⧵ 𝖲𝖾𝗉

𝖳𝗋( ̂ρŴ) = 0

Figure 2.1: Pictorial depiction of 𝒮(𝐴𝐵) for a bipartite system. Sep-
arable states are shown in a lighter shade displaying the convexity
of 𝖲𝖾𝗉. Bell nonlocal states, which are entangled, are represented
with the darkest shade. The intermediate color depicts 𝖫𝗈𝖼 ⧵ 𝖲𝖾𝗉,
i.e., states that are entangled but admit a description with a local
hidden-variables model. We also represent the hyperplane defined by
an entanglement witness Ŵ. States in the upper right corner region
are witnessed by Ŵ, whereas those in the bottom left are not.

2.2 Multipartite entanglement

Themultipartite case is a natural extension of the bipartite setting. Understanding
it is a major line of research in the field of quantum information. Moreover, it
is also central to the characterization of entanglement in quantum many-body
systems [26]. And this is our primary motivation for studying it. However, the
characterization of multipartite entanglement is much more intricate [129].

The added complexity of multipartite systems leads to a rich classification
theory [130]. Such that even the three qubit case is already qualitatively different
compared to the two qubit one. This is because it admits a different class of en-
tangled states that is inequivalent to Bell states [131]. Adding more qubits further
increases the possibilities, so that the classification difficulty also increases. This
approach also requires extensive knowledge of the states, so it is hard to translate
into directly observable features.

We present a different strategy here that does no rely on a full classification of
multipartite entangled states. Instead, it characterizes multipartite entanglement
with a hierarchy of different separability notions. It provides less information
about the structure of entanglement, but it is manageable.
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2.2.1 Partitions of many-body systems
Consider a quantum many-body system 𝑆 composed of N qudits. And assume
that the degrees of freedom of the system are homogeneous so that each qudit
has the same dimension 𝑑. Thus, the Hilbert spaceℋ𝑆 is given by

ℋ𝑆 =
𝑁

⨂
𝑖=1

ℋ𝑖 = ℋ1 ⊗⋯⊗ℋ𝑁 ≅ ℂ𝑑𝑁 . (2.19)

Similarly to equation (2.8), all pure states | 𝜓⟩ ∈ ℋ𝑆 admit a wave function
description,

| 𝜓⟩ = ∑
𝜇𝑖

𝜓(𝜇1,… , 𝜇𝑁)| 𝜇1⟩ ⊗⋯⊗ |𝜇𝑁⟩ , (2.20)

with respect to a local bases. However, there is an important difference relative
to the bipartite case. The wave function is a tensor with multiple indices, in-
stead of a matrix with only two indices. This is a byproduct of the exponential
growth of 𝖽𝗂𝗆ℋ𝑆 = 𝑑𝑁, but it also signals another difficulty. The definition of
entanglement explicitly relies on a choice of subsystem, but there are multiple
possibilities for 𝑆 that are all equally valid. Therefore, we require a systematic
formmalism to treat all possible partitions of 𝑆 on equal footing.
A partition of the system amounts to a division of the qudits into separate

groups, i.e., into subsystems. Formally, we may regard a subsystem 𝑅 as a subset
𝑅 ⊂ {1…𝑁} labelling the qudits that are a part of it. So a partition 𝑃 is just a
set of subsets 𝑃 ⊂ 2{1…𝑁}. The sets of the partition must be pairwise disjoint,
𝑅 ∩ 𝑄 = ∅ if 𝑅 ≠ 𝑄 ∈ 𝑃, so that each subsystem is independent of each other.
They must also cover {1…𝑁}, so that all qudits are included.
Given a fixed partition 𝑃, we consider a wave function 𝜓 such that

𝜓(𝜇1…𝜇𝑁) = ∏
𝑅∈𝑃

𝜓𝑅(𝜇𝑟1,… , 𝜇𝑟|𝑅|) , (2.21)

for some choice of subsystem wave functions 𝜓𝑅 (see figure 2.2). The indices
𝑟1,… , 𝑟|𝑅| are just labels for the qudits that belong to 𝑅 and the specific ordering
does not matter. As one might expect, expectation values factorize according to

⟨𝜓 | (∏
𝑅∈𝑃

Ô𝑅) | 𝜓⟩ = ∏
𝑅∈𝑃

⟨𝜓𝑅 | Ô𝑅 | 𝜓𝑅⟩ , (2.22)

as long as each observable Ô𝑅 has support in 𝑅 1. The simplest case occurs when
𝑅 ∈ 𝑃 is a singleton set. This can be understood as a mean-field wave function
1We say that Ô𝑅 has support in 𝑅 if it can be written as Ô𝑅 = ∑𝑧O

𝑧Ô𝑧
1 ⊗⋯⊗Ô𝑧

𝑁 such that,
for all 𝑖 ∉ 𝑅, Ô𝑧

𝑖 = 1̂𝑖.
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𝜇′1 𝜇′2

𝜓†

𝜇1 𝜇2

𝜓
=

𝜇2𝜇1

̂ρ𝑅1

𝜇′2𝜇′1

=

𝜇′1 𝜇′2

𝜇1 𝜇2

𝜓†𝑅1

𝜓𝑅1

𝜇6𝜇5𝜇4𝜇3𝜇2𝜇1

𝜓 =

𝜇1 𝜇2 𝜇3 𝜇4 𝜇5 𝜇6

𝜓𝑅1 𝜓𝑅2 𝜓𝑅3

Figure 2.2: An example of a 3-producible state in a systemwith𝑁 =
6. The partition in this example is 𝑃 = {𝑅1, 𝑅2, 𝑅3} with 𝑅1 = {1, 2},
𝑅2 = {3} and 𝑅3 = {4, 5, 6}. The bottom panel shows the reduced
state associated to 𝑅1 and how it is obtained. The diagrammatic
notation makes it explicit that it is pure.

ansatz,
𝜓(𝜇1…𝜇𝑁) =∏

𝑖
𝜓𝑖(𝜇𝑖) = 𝜓1(𝜇1)…𝜓𝑁 (𝜇𝑁) , (2.23)

since correlations betweendifferent qudits vanish. States that obey equation (2.21)
are called 𝑃-product states, or 𝑃-producible, by analogy with the bipartite case.
Equation (2.22) guarantees that they do not have correlations between different
subsystems. Hence, one can apply the same strategy as before and define 𝖲𝖾𝗉𝑃
as the convex hull of all 𝑃-producible states.
We can use the tricks from the last section to study 𝑃-entanglement, i.e., devi-

ations from the 𝑃-producible behaviour. In particular, given any state | 𝜓⟩, the
reduce state associated to some subsystem 𝑅 ∈ 𝑃 always exists. It is given by

̂ρ𝑅 = 𝖳𝗋𝑆⧵𝑅(| 𝜓⟩⟨𝜓 |)

= ∑
𝜇𝑖,𝜇′𝑖

𝜓(𝜇1,… , 𝜇𝑁)(∏
𝑧∉𝑅

𝛿(𝜇𝑧 = 𝜇′𝑧))𝜓†(𝜇′1,… , 𝜇′𝑁)⨂
𝑟∈𝑅

| 𝜇𝑟⟩⟨𝜇′𝑟 | , (2.24)

where the partial trace runs over all 𝑧 ∉ 𝑅. It is implemented by contractions
between 𝜇𝑧 and 𝜇′𝑧 enforced with 𝛿(𝜇𝑧 = 𝜇′𝑧). This operation maps 𝑃-producible
states into pure states, so 𝑆𝑅(| 𝜓⟩⟨𝜓 |) = 𝑆( ̂ρ𝑅) measures deviations from this
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behaviour (see figure 2.2). However, the entropy 𝑆𝑅(⋅) simply measures entangle-
ment between 𝑅 and 𝑆 ⧵ 𝑅. So one is measuring bipartite entanglement, and not
a truly multipartite feature. Nonetheless, in specific situations it is possible to
combine the entanglement entropy of multiple subsystems to obtain information
that goes beyond the bipartite framework. The topological entanglement entropy
is a prominent example of this [132, 133]. It provides a tool that can detect
topologically ordered states.

2.2.2 𝑘-Entanglement hierarchy
In order to obtain the multipartite entanglement hierarchy, it is necessary to
consider more flexible separability criteria. Instead of assuming a specific decom-
position, as in equation (2.21), we only restrict the complexity of the 𝜓𝑅 tensors.
So that different partitions are allowed to coexist in statistical mixtures. This
enables us to derive a measure of the degree to which a certain entangled states
is multipartite entangled, or not.
Concretely, a partition 𝑃 is a 𝑘-partition if each 𝑅 ∈ 𝑃 contains at most 𝑘

elements. This implies that the dimension of

ℋ𝑅 =⨂
𝑟∈𝑅

ℋ𝑟 (2.25)

is bounded by 𝑑𝑘 for all 𝑅 ∈ 𝑃. The complexity of the 𝜓𝑅 tensors is limited by this
constraint, and this changes the overall scaling of the problem. For instance, the
number of parameters that specify a state scales like 𝑑𝑁 in general. But for states
described by a 𝑘-partition, the number scales like 𝑓(𝑁/𝑘)𝑑𝑘, for some polynomial
function 𝑓(⋅).
A 𝑘-producible state is a state that is 𝑃-producible for some 𝑘-partition 𝑃. The

physical picture is that a 𝑘-producible state can be described by an anstaz that
only uses 𝑘-body wave functions. To define 𝑘-separability, we use the same
strategy as the bipartite case. The set of 𝑘-separable states 𝖲𝖾𝗉𝑘 is defined as the
convex hull of the set of all 𝑘-producible states. And a 𝑘-separable state ̂ρ is given
by

̂ρ = ∑
𝜆
ρ𝜆| 𝜓𝜆⟩⟨𝜓𝜆 | = ∑

𝜆
ρ𝜆 ⨂

𝑅∈𝑃𝜆

| 𝜓𝑅⟩⟨𝜓𝑅 | , (2.26)

a mixture of 𝑘-producible states | 𝜓𝜆⟩. Each | 𝜓𝜆⟩ is 𝑃𝜆-producible with respect
to some 𝑘-partition 𝑃𝜆, but these partitions do not have to be same. Therefore,
properties that hold for 𝑘-separable states cannot reference properties of a spe-
cific 𝑘-partition. In this sense, the 𝑘-separability criteria does not privilege any
particular partition.
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2.2 Multipartite entanglement

𝖲𝖾𝗉𝑁 ⧵ 𝖲𝖾𝗉𝑁−1
𝖲𝖾𝗉𝑁−1 ⧵ 𝖲𝖾𝗉𝑁−2 𝒮(𝑆) ⧵ 𝖲𝖾𝗉𝑘
…

𝖲𝖾𝗉𝑘 ⧵ 𝖲𝖾𝗉𝑘−1
…

𝖲𝖾𝗉𝑘𝖲𝖾𝗉2 ⧵ 𝖲𝖾𝗉1
𝖲𝖾𝗉1

𝖥𝖰[ ̂ρ, Ô]

Figure 2.3: Pictorial depiction of 𝒮(𝑆) for a multipartite system.
Each set 𝖲𝖾𝗉𝑘 ⧵ 𝖲𝖾𝗉𝑘−1 contains all states with entanglement depth 𝑘.
Genuine multipartite entangled states belong to the outermost layer
𝖲𝖾𝗉𝑁 ⧵ 𝖲𝖾𝗉𝑁−1. We also represent represent the contour levels of
𝖥𝖰[ ̂ρ, Ô] defined by inequality (2.48). The leftmost curve corresponds
to the SQL that realizes shot-noise 𝖥𝖰[ ̂ρ, Ô] ∝ 𝑁, and the rightmost
to the HL when 𝖥𝖰[ ̂ρ, Ô] ∝ 𝑁2.

Each set 𝖲𝖾𝗉𝑘 contains 𝖲𝖾𝗉𝑘−1 by construction, since it is defined by a weaker
constraint. Thus, the 𝑘-separability criteria define a hierarchy of convex sets as

𝖲𝖾𝗉1 ⊂ 𝖲𝖾𝗉2 ⊂ ⋯ ⊂ 𝖲𝖾𝗉𝑁−1 ⊂ 𝖲𝖾𝗉𝑁 = 𝒮(𝑆) , (2.27)

and we can use it to define multiple notions of entanglement. In particular, a
state is 𝑘-entangled if it is not (𝑘 − 1)-separable, and it has entanglement depth 𝑘
if it is 𝑘-separable and 𝑘-entangled simultaneously (see figure 2.3). Hence, states
of entanglement depth 𝑘 can be described by 𝑘-body wave functions, but nothing
less, whereas 𝑘-entangled states might require higher order wave functions. If a
state is 1-separable then it is called completely separable. By contrast, if a state is
𝑁-entangled then it is a genuine multipartite entangled (GME) state.
It is not possible to naively extend entanglement measures from bipartite

partition to the 𝑘-partite case. This is because the 𝑘-partitions in equation (2.26)
can be different for each state in themixture. It is harder to detect 𝑘-entanglement
because of this. But it also guarantees that the entanglement observed is actually
multipartite in nature. Nonetheless, somemeasures of multipartite entanglement
exist [129, 134, 135], but rely on additional assumptions.
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2 Theoretical background

2.3 Entanglement-enhanced metrology
As discussed in the introduction, multipartite entanglement is a resource for
quantum metrology. And we can use this to obtain a tool for certifying multi-
partite entanglement. However, in order to make this statement rigorous, we
must derive the basic result of quantum estimation theory. This will give us
the definition of the quantum Fisher information (QFI) and allow us to derive
multipartite entanglement bounds for it.

2.3.1 Classical Estimation theory
Let us quickly review some concepts fromclassical estimation theory. The starting
point is a conditional probability distribution 𝗉(𝜇 | 𝜃) that encodes the experi-
mental apparatus. An estimator ̄𝜃 is simply a random variable on the possible
outcomes 𝜇 and its prediction for the parameter is given by

𝔼( ̄𝜃 || 𝜃) = ∑
𝜇
𝗉(𝜇 | 𝜃) ̄𝜃(𝜇) . (2.28)

It is unbiased if 𝔼( ̄𝜃 || 𝜃) = 𝜃, that is, if it predicts the correct value of the parame-
ter. The variance Δ𝟤( ̄𝜃 || 𝜃) = 𝔼( ̄𝜃2 || 𝜃) − 𝔼( ̄𝜃 || 𝜃)2 quantifies the precision of the
estimator, and provides a figure of merit for its quality.
Our goal is to determine the quality of the measurement scheme itself, not

of a specific estimator. Therefore, we need a quantity that only depends on the
probability distribution. The Fisher information (FI) is precisely this [136, 137].
It is defined as

𝖥(𝜃) = Δ𝟤(𝜕𝜃 𝗅𝗇 𝗉(𝜇 | 𝜃) || 𝜃) = ∑
𝜇
𝗉(𝜇 | 𝜃)(𝜕𝜃 𝗅𝗇 𝗉(𝜇 | 𝜃))

2
. (2.29)

and measures the sensitivity of 𝗉(𝜇 | 𝜃) to changes of the parameter. The random
variable 𝑠(𝜇 | 𝜃) = −𝜕𝜃 𝗅𝗇 𝗉(𝜇 | 𝜃) is the score of the distribution, and measures
the change in likelihood function with respect to 𝜃. A direct calculation show
that 𝔼(𝑠(𝜇 | 𝜃) | 𝜃) = 0. Thus, 𝖥(𝜃) = Δ𝟤(𝑠(𝜇 | 𝜃) | 𝜃) is the simplest non trivial
measure of the properties of the score.
The Cramér–Rao inequality is a universal bound on the precision of any esti-

mator in terms of the FI [138, 139]. For any unbiased estimator ̄𝜃, we have

Δ𝟤( ̄𝜃 || 𝜃) ≥ 𝖥(𝜃)−1 , (2.30)

which bounds the precision an estimator.
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2.3 Entanglement-enhanced metrology

An important property of the FI is that it is convex in the probability distri-
bution. This means that the FI of a distribution 𝗉(𝜇 | 𝜃) = ∑𝜆 𝗉(𝜆)𝑐𝜆(𝜇 | 𝜃) is
bounded from above,

𝖥(𝜃) ≤ ∑
𝜆
𝑐𝜆 𝖥𝜆(𝜃) (2.31)

by the convex sum of the FI of each 𝗉𝜆(𝜇 | 𝜃). Convexity is extremely useful
as it allow us to bound the FI without having to calculate it directly. It is also
conceptually meaningful and consistent with inequality (2.30). This is because
convexity ensures one cannot improve the precision of parameter estimation by
simply adding statistical uncertainty.

2.3.2 Quantum Fisher information
Now we develop the quantum analogue of estimation theory. The basic object is
a parameter dependent state ̂ρ(𝜃), which is quantum version of the conditional
probability distribution. Given a quantum channel Φ𝜃 parameterized by 𝜃, we
can write ̂ρ(𝜃) = Φ𝜃( ̂ρ). And for a unitary channel, we have

̂ρ(𝜃) = Û𝜃 ̂ρÛ†
𝜃 = 𝖾𝗑𝗉(−𝑖𝜃Ô) ̂ρ 𝖾𝗑𝗉(+𝑖𝜃Ô) , (2.32)

where Ô is the observable that generates the unitary rotations by Û𝜃. The problem
of extracting the value of 𝜃 from ̂ρ(𝜃) is known as quantum parameter estimation.
It is the basic setup for quantum metrology. In particular, a central question is to
determine the metrological enhancement provided by ̂ρ.
Positive operator-valued measures (POVM) generalize the more common no-

tion of projective measurements. We can use them to build probability distri-
butions, and apply the machinery of estimation theory. This provides us with
a formalism to describe experimental setups in a systematic way. Formally, a
POVM is a set of positive semi-definite operators {Π̂𝜇} that satisfies

∑
𝜇
Π̂𝜇 = 1̂ . (2.33)

The labels 𝜇 denote the possible experimental outcomes, and

𝗉(𝜇 | 𝜃) = 𝖳𝗋( ̂ρ(𝜃)Π̂𝜇) (2.34)

is the probability of observing a certain event. Equation (2.33) guarantees that
the probabilities are properly normalized.
Using equations (2.29) and (2.34), we can calculate the metrological sensitivity

associated to each POVM. However, it is necessary to remove the explicit depen-
dence on POVM’s. This will produce a metrological bound intrinsic to the state.
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Optimizing over all possible POVM’s,

𝖥𝖰[ ̂ρ𝜃] = 𝗆𝖺𝗑
{Π̂𝜇}

𝖥(𝜃) (2.35)

realizes this and defines the quantum Fisher information (QFI). This definition
has a clear operational meaning. It describes the metrological sensitivity of a
completely optimized experimental setup. In particular, we have the quantum
Cramér–Rao bound,

Δ𝟤( ̄𝜃 || 𝜃) ≥ 𝖥(𝜃)−1 ≥ 𝖥𝖰[ ̂ρ𝜃]
−1 , (2.36)

which is, by construction, a generic bound on the precision of parameter estima-
tion. The FI in inequality (2.36) is associated to the probability distribution of
some arbitrary POVM.
Equation (2.35) enables one to derive many of the properties of the QFI. In

particular, inequality (2.31) implies that

𝗆𝖺𝗑
{Π̂𝜇}

𝖥(𝜃) ≤ ∑
𝜆
ρ𝜆𝗆𝖺𝗑

{Π̂𝜇}
𝖥𝜆(𝜃) , (2.37)

for any state ̂ρ = ∑𝜆 ρ𝜆 ̂ρ𝜆. Therefore, the QFI is also convex. This is consistent
with the intuition from the classical scenario, but it only accounts for classical
correlations. Wewill see that it is possible to use quantum correlations to improve
the metrological sensitivity, i.e., increase the QFI.
The original definition of theQFI is different from the onewe just presented [93].

It defines the QFI as geometrical measure of statistical distinguishability in the
space of states. In particular, one can show that the QFI is the metric associated
to the Bures metric. And it is connected to the fidelity of two states ̂ρ𝜃1 and ̂ρ𝜃2.
Of course, the definition we presented is equivalent to the geometrical one.
Despite its advantages, equation (2.35) has drawbacks. The most severe is

that it does not give an explicit formula for the QFI. But it is possible to obtain
one with the help of the geometric perspective. To derive it, we first define the
symmetric logarithmic derivative (SLD) L̂(𝜃) implicitly through

𝜕𝜃 ̂ρ(𝜃) = 1
2{ ̂ρ(𝜃), L̂(𝜃)} =

1
2( ̂ρ(𝜃)L̂(𝜃) + L̂(𝜃) ̂ρ(𝜃)) . (2.38)

Explicit calculation shows that 𝜕𝜃 𝗉(𝜇 | 𝜃) = 𝖱𝖾 𝖳𝗋( ̂ρ(𝜃)Π̂𝜇L̂(𝜃)) for any POVM.
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2.3 Entanglement-enhanced metrology

Applying this to equation (2.29), it follows that

𝖥(𝜃) = ∑
𝜇

(𝖱𝖾 𝖳𝗋( ̂ρ(𝜃)Π̂𝜇L̂(𝜃)))
2

𝖳𝗋( ̂ρ(𝜃)Π̂𝜇)
≤ ∑

𝜇

||𝖳𝗋(√ ̂ρ(𝜃)√Π̂𝜇√Π̂𝜇L̂(𝜃)√ ̂ρ(𝜃))||
2

𝖳𝗋( ̂ρ(𝜃)Π̂𝜇)

≤ ∑
𝜇

𝖳𝗋( ̂ρ(𝜃)Π̂𝜇)
𝖳𝗋( ̂ρ(𝜃)Π̂𝜇)

𝖳𝗋( ̂ρ(𝜃)L̂(𝜃)Π̂𝜇L̂(𝜃)) = 𝖳𝗋( ̂ρ(𝜃)L̂(𝜃)2) ,

(2.39)
where we used the Schwartz inequality to get to the second line. It is easy to
show that there is a POVM that realizes the bound above so

𝖥𝖰[ ̂ρ(𝜃)] = 𝖳𝗋( ̂ρ(𝜃)L̂(𝜃)2) , (2.40)

and it is sufficient to obtain the SLD to calculate the QFI.
The SLD operates as a quantum analogue of the score. For the unitary case,

we can use equations (2.32) and (2.40) to obtain

𝖥𝖰[ ̂ρ(𝜃 = 0)] = 𝖥𝖰[ ̂ρ, Ô] = 2∑
𝜇,𝜈

ρ𝜇 − ρ𝜈
ρ𝜇 + ρ𝜈

(ρ𝜇 − ρ𝜈)|⟨𝜇 | Ô | 𝜈⟩|2 , (2.41)

where we fix a bases that diagonalizes ̂ρ, and consider 𝜃 = 0 for simplicity. If the
state is pure then we have a particularly simple formula,

𝖥𝖰[| 𝜓⟩⟨𝜓 |, Ô] = 4 ∑
𝜇≠𝜓

|⟨𝜇 | Ô | 𝜓⟩|2 = 4(⟨𝜓 | Ô2 | 𝜓⟩ − ⟨𝜓 | Ô | 𝜓⟩2) , (2.42)

that shows that the QFI is proportional to the quantum mechanical variance.
More generally, we have

𝖥𝖰[ ̂ρ, Ô] ≤ 4∑
𝜆
ρ𝜆(⟨𝜓𝜆 | Ô2 | 𝜓𝜆⟩ − ⟨𝜓𝜆 | Ô | 𝜓𝜆⟩2) (2.43)

if the state ̂ρ is a mixture of pure states | 𝜓𝜆⟩. In fact, one can recover the QFI of
a state by taking the infimum of the right-hand side of inequality (2.43) over all
possible decompositions into mixtures of pure states [140].
Equation (2.41) is more approachable compared to equation (2.35), but it is still

hard to use. In particular, the need for a diagonal basis introduces a substantial
obstacle. In a experimental setting it forces one to perform state tomography
for a generic state. As such, the resources involved scale exponentially with
system size. This makes the procedure unfeasible for general quantum many-
body systems. However, some groundbreaking experiments have been able to
circumvent this restriction and obtain positive results [83–86]. In chapter 3, we
will discuss a technique that allow us to calculate the QFI of certain equilibrium
states. It bypasses the need for access to a diagonal basis, and provide us with an
experimentally friendly protocol.
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2 Theoretical background

2.3.3 Multipartite entanglement bounds
Besides technological applications, our main interest in the QFI is its ability to
detect multipartite entanglement [79, 90–92]. In chapter 1, we already discussed
the concept of squeezing and its relations to entanglement. Nowwe will formally
derive bounds for the QFI that relate it to the 𝑘-separability criteria of section 2.2.
Consider the systemdefined by themultipartiteHilbert space of equation (2.19).

Let us fix a local observable Ô that acts on a single qudit and define the generator

Ô𝑆 =
𝑁
∑
𝑖=1

Ô𝑖 =
𝑁
∑
𝑖=1

1̂1 ⊗⋯⊗ 1̂𝑖−1 ⊗ Ô ⊗ 1̂𝑖+1 ⊗⋯⊗ 1̂𝑁 (2.44)

that acts on the entire multipartite system. If we consider a partition 𝑃 together
with a 𝑃-producible state | 𝜓⟩, then equation (2.22) implies

𝖥𝖰[| 𝜓⟩⟨𝜓 |, Ô𝑆] = 4(⟨𝜓 | Ô2
𝑆 | 𝜓⟩ − ⟨𝜓 | Ô𝑆 | 𝜓⟩2)

= 4∑
𝑖𝑗
(⟨𝜓 | Ô𝑖Ô𝑗 | 𝜓⟩ − ⟨𝜓 | Ô𝑖 | 𝜓⟩⟨𝜓 | Ô𝑗 | 𝜓⟩)

= 4 ∑
𝑅∈𝑃

∑
𝑖𝑗∈𝑅

(⟨𝜓𝑅 | Ô𝑖Ô𝑗 | 𝜓𝑅⟩ − ⟨𝜓𝑅 | Ô𝑖 | 𝜓𝑅⟩⟨𝜓𝑅 | Ô𝑗 | 𝜓𝑅⟩)

= ∑
𝑅∈𝑃

𝖥𝖰[| 𝜓𝑅⟩⟨𝜓𝑅 |, Ô𝑅] ,

(2.45)

where we have used the factorization to go from the second line to the third one.
The observable Ô𝑅 introduced in the last line of equation (2.45) is just the sum of
Ô𝑖 over all 𝑖 ∈ 𝑅. Of course, there is a slight abuse of notation since we use the
same symbol do denote the observable acting on 𝑆 and its restriction to 𝑅. This
does not cause problems, since each Ô𝑖 is a tensor product of local observables.
Assume the absolute value of the eigenvalues of Ô is bounded by some constant

𝐶/2 ∈ ℝ+. This constrains the eigenvalues of Ô𝑅 to −𝐶|𝑅|/2 ≤ O𝜇 ≤ 𝐶|𝑅|/2.
The maximum variance is reached by a uniform superposition of the eigenstates
with maximum and minimum eigenstates. Hence,

⟨𝜓𝑅 | Ô𝑖Ô𝑗 | 𝜓𝑅⟩ − ⟨𝜓𝑅 | Ô𝑖 | 𝜓𝑅⟩⟨𝜓𝑅 | Ô𝑗 | 𝜓𝑅⟩ ≤
(𝐶|𝑅|/2 − (−𝐶|𝑅|/2))2

4 , (2.46)

and combining this with equation (2.45) yields

𝖥𝖰[| 𝜓⟩⟨𝜓 |, Ô𝑆] ≤ ∑
𝑅∈𝑃

𝐶|𝑅|2 , (2.47)

which bounds the QFI of every 𝑃-producible state.
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2.3 Entanglement-enhanced metrology

It is necessary to remove the partition dependence from inequality (2.47). We
can do this by optimizing over all 𝑘-partite partitions. The result is a bound that
holds for all 𝑘-producible states. It is given by

𝖥𝖰[| 𝜓⟩⟨𝜓 |, Ô𝑆] ≤ 𝗆𝖺𝗑
𝑃

∑
𝑅∈𝑃

𝐶|𝑅|2 = 𝐶(𝑑𝑘2 + 𝑟2) , (2.48)

where 𝑁 = 𝑑𝑘+ 𝑟 [90–92]. Inequality (2.48) also holds for 𝑘-separable states due
to the convexity of the QFI. Therefore, this inequality detects states which are
not 𝑘-separable and whose multipartite entanglement leads to a metrological
enhancement (see figure 2.3).
The two extreme cases occur for 𝑘 = 1 and 𝑘 = 𝑁. In the first one, the QFI can

only scale linearly 𝖥𝖰 ≤ 𝐶𝑁 ∝ 𝑁 and this is the usual classical behaviour. This
scaling can be replicated with a probability distribution by taking 𝑁 independent
copies of it. Hence, there is no quantum advantage, and this scenario corresponds
to the standard quantum limit (SQL). This should be the case, since 𝑘 = 1
implies the system has no entanglement. The Heisenberg limit (HL) is the other
side of the coin. It occurs for 𝑘 = 𝑁 and corresponds to a quadratic scaling
of the QFI [141]. This is the maximummetrological enhancement a quantum
mechanical system can achieve.
In applications with atomic interferometers, one typically consider a linear

generator such as in equation (2.44). The most common case is the spin 1/2 with

Ô𝑆 =
1
2 ∑𝑖

⃗𝑛𝑖 ⋅ σ̂𝑖 , (2.49)

so that 𝐶 = 1 in inequality (2.48). Each local spin operator ⃗𝑛𝑖 ⋅ σ̂𝑖 acts in some
arbitrary direction ⃗𝑛𝑖 = (𝑛𝑥𝑖 , 𝑛

𝑦
𝑖 , 𝑛𝑧𝑖 ). Greenberger–Horne–Zeilinger (GHZ) states

violate inequality (2.48) so they are multipartite entangled. In particular,

|GHZ⟩ = 1
21/2

(| ↓⟩ ⊗⋯⊗ | ↓⟩ + | ↑⟩ ⊗⋯⊗ | ↑⟩) (2.50)

is a quantum state of entanglement depth 𝑁, i.e., it is a GME state. However,
notice that not all multipartite states violate inequality (2.48) for some observable.
The primary example of an entangled state that cannot be detected by the QFI is
the W state,

|𝑊⟩ = 1
𝑁1/2 (| ↓⟩ ⊗ | ↑⟩⋯⊗ | ↓⟩ +⋯ + | ↓⟩ ⊗… | ↑⟩ ⊗ | ↓⟩) , (2.51)

which arises as one of the equivalency classes of entangled states in the three
qubit case [131]. Hence, the QFI can certify that a state is multipartite entangled,
but a negative outcome does not exclude this possibility.
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2.4 Algebraic perspective
In general, whenever a tensor product decomposition exists, one can utilize the
techniques of sections 2.1 and 2.2 to define entangled states. However, there are
physical systems that do not admit a tensor product structure. This was already
considered in various works in the early 2000s [142–145]. And it was shown
that the factorization conditions of equations (2.11) and (2.22) provide a solution.
In particular, they provide a separability criteria that generalizes to general
systems regardless of the Hilbert space structure. This was elegantly formulated
in the work by Bañuls et al. [98] for the case of fermions, and formalized by
Balachandran et al. [100] using an algebraic formalism.
In this section, we present the algebraic characterization of separability and

entanglement in a self-contained manner. It will be used in chapter 4 to derive
multipartite mode entanglement bounds for indistinguishable particles. And in
chapter 6 to construct entanglement witnesses for lattice gauge theories. The
terminology we introduce here will provide an unified perspective for both cases.
Let us consider a quantum mechanical system 𝑆. We can use the factorization

condition to define entanglement. Specifically, given a partition 𝑃 of 𝑆, we say
that a state factorizes with respect to the partition whenever

⟨∏
𝑅∈𝑃

Ô𝑅⟩ρ̂𝑆 = ∏
𝑅∈𝑃

⟨Ô𝑅⟩ρ̂𝑅 , (2.52)

for all local observables Ô𝑅. This is just the definition of 𝑃-producible states from
section 2.2, so we can use the same procedure to define multipartite entangle-
ment. But it is necessary to have some ingredients in order to make sense of
equation (2.52). In particular, we need a consistent notion of subsystems and
some procedure to translate between the system and its subsystems.
From an algebraic point of view, the system 𝑆 is defined by an algebra, which

we denote by𝒜(𝑆), that specifies its observables. The simplest and most familiar
example occurs when one considers the algebra𝒜(𝑆) = ℬ(𝑆) formed by bounded
linear operators acting on someHilbert spaceℋ𝑆. However, in general, one has to
consider 𝐶∗-algebras [113], which generalize the properties of operator algebras
to a more abstract setting. The Gelfand–Naimark theorem [146] provides a bridge
between this formalism, and the Hilbert space approach. In particular, it allows
one to construct a Hilbert spaceℋ𝑆 from the algebra𝒜(𝑆) such that𝒜(𝑆) ⊂ ℬ(𝑆).
Thus, it is always possible to realize an abstract 𝐶∗-algebra as a set of operators
that satisfy some property. Nonetheless, it is advantageous to keep the abstract
point of view inmind, since it puts the observable features of the system in center
stage. An allows us to easily define the ingredients required for equation (2.52).
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Every 𝐶∗-algebra carries an involution †∶ 𝒜(𝑆) → 𝒜(𝑆) structure and we can
use it to define self-adjoint and positive elements. In particular, the self-adjoint
elements of the algebra,

{Ô ∈ 𝒜(𝑆) ∣ Ô = Ô†} ⊂ 𝒜(𝑆) , (2.53)

coincides with the observables of the system. Positive elements are those of
the form Q̂†Q̂ for some Q̂ ∈ 𝒜(𝑆) and they allow us to define states. Formally,
a state of the system is a linear functional ̂ρ ∈ 𝒜(𝑆)∗ that assigns probability
amplitudes ⟨Ô⟩ρ̂ ∈ ℂ to elements of the algebra. A state must assign positive
values to positive elements, that is,

⟨Q̂†Q̂⟩ρ̂ ≥ 0 (2.54)

for all operators Q̂ ∈ 𝒜(𝑆). It also needs to be unital, i.e., preserve the unit of the
algebra. In concrete terms, this means that the state is normalized according to

⟨1̂𝑆⟩ρ̂ = 1 , (2.55)

where 1̂𝑆 ∈ 𝒜(𝑆) is the unit of the algebra. Inequality (2.54) and equation (2.55)
are physical assumptions that ensure that the assignment of probability ampli-
tudes is consistent with the Born rule.
The choice of notation is suggestive of the more familiar density matrix for-

malism, and we can replicate the usual constructions with it. For instance, given
a set of projectors {Π̂𝜇} that add up to unit, we have

𝗉(𝜇) = ⟨Π̂𝜇⟩ρ̂ = ⟨Π̂†
𝜇Π̂𝜇⟩ρ̂ ≥ 0 (2.56)

and
∑
𝜇
𝗉(𝜇) = ∑

𝜇
⟨Π̂𝜇⟩ρ̂ = ⟨1̂𝑆⟩ρ̂ = 1 , (2.57)

so 𝗉(𝜇) can be interpreted as the probability of the event 𝜇 occurring. Moreover,
the set of states 𝒮(𝑆) is convex. This is easy to check for the familiar case of a
finite dimensional Hilbert spaceℋ𝑆, but it also holds for arbitrary 𝐶∗-algebras.
The extremal points of the set correspond to pure states, the states that define
irreducible representations of 𝒜(𝑆) under the Gelfand–Naimark–Segal (GNS)
construction [146, 147].
We can recover the usual formalism when 𝒜(𝑆) = ℬ(𝑆). In particular, in the

usual setting, the definition of states as linear functionals is equivalent to the
one with density matrices. This follows from Gleason’s theorem [148], which
demonstrates that any function that assigns probabilities to projectors—in a way
compatible with equations (2.56) and (2.57)—can be written as

Π̂ ↦ 𝖳𝗋( ̂ρΠ̂) ∈ [0, 1] , (2.58)

where ̂ρ is some positive semi-definite operator with trace one.
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2 Theoretical background

2.4.1 Nets of observables
To define entanglement, we need a systematic way of tracking the subsystems
of 𝑆. We do it by employing the concept of a local net of observables. This is a
mathematical structure that was originally introduced in the context of the Haag–
Kastler axioms [149]. It formalizes the physical intuition that a quantum field
theory (QFT) assigns observables to subregions of space-time in a way consistent
with relativity. For our purposes, it is not necessary to go into the details of the
axioms, but they provide us with our basic motivations.
Given a subsystem 𝑅 ⊂ 𝑆, we can also assign a 𝐶∗-algebra 𝒜(𝑅) that describes

its observables. After all, it is also a quantummechanical subsystem. The observ-
ables of the subsystem 𝑅 are also observables of the system𝑆, so there must be an
embedding of 𝒜(𝑅) into 𝒜(𝑆). Thus, we have a map

𝜄𝑆𝑅∶ 𝒜(𝑅) ↪ 𝒜(𝑆) , (2.59)

that converts observables of 𝑅 into observables of 𝑆. This map has to preserve the
structure of 𝒜(𝑅), i.e., it is a ∗-monomorphism. In particular,𝒜(𝑅) and 𝜄𝑆𝑅(𝒜(𝑅))
are isomorphic as 𝐶∗-algebras, and we can regard them as the same algebra and
omit the embedding when there is no risk of ambiguity. Notice that embeddings
should be consistent, i.e., if we have 𝑄 ⊂ 𝑅 ⊂ 𝑆, then 𝜄𝑆𝑄 = 𝜄𝑆𝑅 ∘ 𝜄𝑅𝑄.
If we consider the collection of all subsystems, and their associated algebras,

we have a net of observables. In the case of the bipartite systems of section 2.1
this is very simple. We have an algebra 𝒜(𝑆) = ℬ(𝐴) ⊗ ℬ(𝐵) for the entire
system, and assign 𝒜(𝐴) = ℬ(𝐴) and 𝒜(𝐵) = ℬ(𝐵) to the two subsystems. The
embeddings are given by

Ô𝐴 ∈ 𝒜(𝐴) ↪ Ô𝐴 ⊗ 1̂𝐵 ∈ 𝒜(𝑆)
Ô𝐵 ∈ 𝒜(𝐵) ↪ 1̂𝐴 ⊗ Ô𝐵 ∈ 𝒜(𝑆) ,

(2.60)

so 𝐴 and 𝐵 are indeed subsystems of 𝑆. Of course, this can be extended to the
multipartite case with qudits in a straightforward way.
An important property of the net of observables is that the algebras of indepen-

dent subsystems must commute. To formalize this, it is convenient to introduce
the set

𝒜(𝑅)′ = {Ô ∈ 𝒜(𝑆) ∣ ∀Ô𝑅 ∈ 𝒜(𝑅) [Ô, Ô𝑅] = 0} ⊂ 𝒜(𝑆) (2.61)

known as the commutant of 𝒜(𝑅). The operators in 𝒜(𝑅)′ commute with all the
operators acting on 𝑅, so they are compatible with 𝒜(𝑅). Thus, we say that two
subsystems 𝑅1, 𝑅2 ⊂ 𝑅 are independent if 𝒜(𝑅1) ⊂ 𝒜(𝑅2)′ and 𝒜(𝑅2) ⊂ 𝒜(𝑅1)′.
As such, the commutant contains the algebra of the complementary subsystem,
i.e., 𝒜(𝑆 ⧵ 𝑅) ⊂ 𝒜(𝑅)′.
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2.4 Algebraic perspective

Finally, we also need to replicate the notion a partition of the system. We
already have a definition of subsystem—at least at the algebraic level—and a
criteria to determine when two subsystems are independent. Therefore, the only
missing ingredient is how to determine when some collection of subsystems
cover the entire system. The commutant can also help us with this task. If we
have a subsystem with an algebra 𝒜(𝑅), then its bicommutant 𝒜(𝑅)″ = (𝒜(𝑅)′)′
is the algebra generated by the observables of 𝑅 inside 𝑆. Hence, given a collection
of subsystems 𝑃, we can associate an algebra to it according to

𝒜(𝑃) = (⋃
𝑅∈𝑃

𝒜(𝑅))
″
, (2.62)

which is the algebra generated by all subsystems. We say that 𝑃 is a partition of 𝑆
if all subsystems in it are pairwise independent, and 𝒜(𝑆) = 𝒜(𝑃).

2.4.2 Separability criteria
Now we have all the components to use equation (2.52) to define entanglement
using the local net of observables. Given a partition 𝑃 and state ̂ρ ∈ 𝒮(𝑆), we say
that the state is a 𝑃-product state if

⟨∏
𝑅∈𝑃

𝜄𝑅𝑆 (Ô𝑅)⟩ρ̂ = ∏
𝑅∈𝑃

⟨𝜄𝑅𝑆 (Ô𝑅)⟩ρ̂ = ∏
𝑅∈𝑃

⟨Ô𝑅⟩ρ̂𝑅 , (2.63)

for all local observables Ô𝑅 ∈ 𝒜(𝑅). The reduced states ̂ρ𝑅 ∈ 𝒮(𝑅) in the equation
above are defined according to

̂ρ ∈ 𝒮(𝑆) ↦ ̂ρ𝑅 = ̂ρ ∘ 𝜄𝑅𝑆 ∈ 𝒮(𝑅) , (2.64)

the restriction of the state ̂ρ to the subsystems. Contrast this to equation (2.13)
and equation (2.24), which define the same quantity for qudit systems, but in a
concrete manner.
The set of 𝑃-separable states 𝖲𝖾𝗉𝑃 is defined just like before, i.e., it is the

convex hull of the set of states that obey equation (2.63). And we can use the
GNS construction to bound the complexity of the partition and recover the
definition of 𝑘-separability. Specifically, let 𝑑𝑅 be the dimension of the Hilbert
space associated to 𝒜(𝑅) by the GNS representation, then we say that 𝑃 is a
𝑘-partition if 𝗅𝗈𝗀 𝑑𝑅 ≤ 𝑘 for all subsystems 𝑅 ∈ 𝑃. The base of the log is not
important as it just provides uswith a normalization to account for local degrees of
freedom. A 𝑘-entangled state, with respect to the chosen local net of observables,
is a state that cannot be written as a mixture of states that factorize with respect
to a 𝑘-partition.
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3 Entanglement certification
protocol

In this chapter, we present our protocol for certifying multipartite entanglement
with the help of the QFI. It leverages linear response theory to extract data that
would normally require full knowledge of the quantum state. This is particularly
valuable for applications to many-body systems. After all, although lower bounds
of the QFI have been obtained in some groundbreaking experiments [83–86],
general and scalable procedures to directly extract the QFI remain in great de-
mand. Thus, the protocol we describe in this chapter allows us to use the QFI as
a tool for certifying the presence of multipartite entanglement in regimes where
this was previously inaccessible.
The technique we present here builds upon previous work by Hauke et al. [39].

However, in contrast to it, our protocol only requires measuring the short-time
dynamics of mean expectation values after a quench. As such, it does not require
access to higher moments and does not rely on frequency-dependent dynamic
susceptibilities, as previous proposals. Moreover, to realize such a simplified
protocol only requires a weak, abrupt quench, as can be conveniently imple-
mented, e.g., in cold-atom experiments [53, 150, 151]. Notice that various other
theoretical works have also used the relation between the QFI and linear re-
sponse theory [152–154]. And very recently there have been some experimental
results [155, 156].
This chapter is an extended account of the results published in reference [105].

We begin with a review of the essential concepts requires from linear response
theory. In particular, we derive all the standard results for arbitrary equilibrium
states, except for those that are specific to thermal states. Afterwards, we proceed
to derive our main result, namely, the formula that powers the quench protocol.
We derive the results in full generality first, describing the deconvolution pro-
cedure in detail, and then discuss some properties of the quench protocol. We
emphasize the experimental advantages of the protocol and its limited require-
ments. Finally, section 3.3 contains unpublished results that extend the protocol
beyond thermal states.
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3 Entanglement certification protocol

3.1 Linear response theory
Linear response theory is a powerful tool for studying quantum many-body sys-
tems. It relates the time evolution of a perturbed system to correlation functions
and can be used to obtain various quantities of interest. In this section we are
going to briefly summarize the main concepts and techniques of linear response
theory. Emphasis will be given to what is necessary for presenting our results in
sections 3.2 and 3.3. The book by Coleman [157] contains further details that
complement our presentation.

3.1.1 Kubo linear response function
Suppose we have a Hamiltonian Ĥ that describes a quantum mechanical system
in equilibrium. The initial state of the system corresponds to a density matrix
̂ρ that commutes with the Hamiltonian, to ensure that the system is actually in
equilibrium. If one applies a time-dependent pertubation, the Hamiltonian of
the system becomes time-dependent and we can write it as

Ĥ(𝜏) = Ĥ − 𝑓(𝜏)Ô′ , (3.1)

where 𝑓(𝜏) is an external drive that couples to the system through an observable
Ô′. The von Neumann equation of the pertubed system is given by

𝜕𝜏 ̂ρS(𝜏) = 𝑖[ ̂ρS(𝜏), Ĥ(𝜏)] (3.2)

and it governs the dynamics of ̂ρS(𝜏), the Schrödinger picture state. Therefore, it
allows us to calculate the expectation value of observables as they fluctuate in
time.
To find a formal solution to equation (3.2), it is convenient to move to the Dirac

picture, defined by

̂ρD(𝜏) = 𝖾𝗑𝗉(+𝑖Ĥ𝜏) ̂ρS(𝜏) 𝖾𝗑𝗉(−𝑖Ĥ𝜏) (3.3)

Ô′
D(𝜏) = 𝖾𝗑𝗉(+𝑖Ĥ𝜏)Ô′ 𝖾𝗑𝗉(−𝑖Ĥ𝜏) . (3.4)

We have that

𝜕𝜏 ̂ρD(𝜏) = 𝖾𝗑𝗉(+𝑖Ĥ𝜏)(−𝑖[ ̂ρS(𝜏), Ĥ] + 𝑖[ ̂ρS(𝜏), Ĥ(𝜏)]) 𝖾𝗑𝗉(−𝑖Ĥ𝜏)

= −𝑖𝑓(𝜏)[ ̂ρD(𝜏), Ô′
D(𝜏)] ,

(3.5)

so the generator of the time evolution in the Dirac picture is the perturbation
operator. This yields a self-consistent integral equation

̂ρD(𝜏) = ̂ρD(−∞) − 𝑖∫
𝜏

−∞
𝖽𝜏′𝑓(𝜏′)[ ̂ρD(𝜏′), Ô′

D(𝜏′)] (3.6)
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3.1 Linear response theory

which we can expand into the Dyson series to get an exact solution.
Initially the system was in equilibrium so ̂ρD(−∞) = ̂ρ. Plugging this into

equation (3.6) results in

̂ρD(𝜏) = ̂ρ − 𝑖∫
𝜏

−∞
𝖽𝜏′𝑓(𝜏′)[ ̂ρ, Ô′

D(𝜏′)] + … (3.7)

and we get the solution up to linear order in 𝑓(𝜏) if we truncate the series. The
time evolution of an observable Ô can now be easily calculated according to

⟨Ô(𝜏)⟩ = 𝖳𝗋( ̂ρS(𝜏)Ô) = 𝖳𝗋( ̂ρD(𝜏)Ô𝐷(𝜏))

= 𝖳𝗋( ̂ρÔ) − 𝑖∫
𝜏

−∞
𝖽𝜏′𝑓(𝜏′) 𝖳𝗋([ ̂ρ, Ô′

D(𝜏′)]Ô𝐷(𝜏))

= 𝖳𝗋( ̂ρÔ) + 𝑖∫
𝜏

−∞
𝖽𝜏′𝑓(𝜏′) 𝖳𝗋( ̂ρ[Ô𝐷(𝜏), Ô′

D(𝜏′)])

= ⟨Ô⟩0 + 𝑖∫
𝜏

−∞
𝖽𝜏′𝑓(𝜏′)⟨[Ô𝐷(𝜏), Ô′

D(𝜏′)]⟩0 ,

(3.8)

where ⟨⋅⟩0 denotes the trace with respect to the equilibrium state. Equation (3.8)
is the famous Kubo formula for the linear response of a quantum system [158,
159]. It is most commonly formulated using the Kubo response function,

𝜒ÔÔ′(𝜏 − 𝜏′) = 𝑖𝜃(𝜏 − 𝜏′)⟨[Ô𝐷(𝜏), Ô′
D(𝜏′)]⟩0 , (3.9)

as a convolution with the drive

𝛥O(𝜏) = ⟨Ô(𝜏)⟩ − ⟨Ô⟩0 = ( 𝑓 ∗ 𝜒ÔÔ′)(𝜏) = ∫
+∞

−∞
𝖽𝜏′𝑓(𝜏′)𝜒ÔÔ′(𝜏 − 𝜏′) . (3.10)

The Heaviside function 𝜃(𝜏 − 𝜏′) is necessary to ensure causality, since it elimi-
nates contributions coming from the future.

3.1.2 Expressions in frequency space
The diagonal basis of the equilibrium Hamiltonian gives an useful expression
for the Kubo response function 𝜒ÔÔ′(𝜏 − 𝜏′). Fixing Ĥ = ∑𝜇 ε𝜇| 𝜇⟩⟨𝜇 |, it is

𝜒ÔÔ′(𝜏 − 𝜏′) = 𝑖𝜃(𝜏 − 𝜏′)∑
𝜇,𝜈

𝑒−𝑖(𝜏−𝜏′)𝜔𝜇𝜈(ρ𝜇 − ρ𝜈)⟨𝜇 | Ô | 𝜈⟩⟨𝜈 | Ô′ | 𝜇⟩ , (3.11)

where 𝜔𝜇𝜈 = ε𝜈 − ε𝜇 is the energy difference between two levels and we use the
fact that the initial state is diagonal in the energy bases. Equation (3.11) allows
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3 Entanglement certification protocol

us to obtain the Fourier transform of the Kubo response function with the help
of the convolution theorem. In particular, we can write

𝜒ÔÔ′(𝜔) = 𝑖∑
𝜇,𝜈
(𝛿𝜔𝜇𝜈 ∗ ̌𝜃)(𝜔)(ρ𝜇 − ρ𝜈)⟨𝜇 | Ô | 𝜈⟩⟨𝜈 | Ô′ | 𝜇⟩ , (3.12)

using 𝛿𝜔𝜇𝜈(𝜔) = 𝛿(𝜔 − 𝜔𝜇𝜈) and ̌𝜃(𝜔), the Fourier transforms of the plane wave
and the Heaviside function.
The main subtlety of equation (3.12) is ̌𝜃(𝜔) = 𝜋𝛿(𝜔) + 𝑃[1/𝑖𝜔], since the

Cauchy principal value 𝑃[1/𝑖𝜔] needs to be handled with care. Regardless, the
outcome of the convolution is

( ̌𝜃 ∗ 𝛿𝜔𝜇𝜈)(𝜔) = ∫
+∞

−∞
𝖽𝜔′𝛿(𝜔′ − 𝜔𝜇𝜈)(𝜋𝛿(𝜔 − 𝜔′) + 𝑃[1/𝑖(𝜔 − 𝜔′)])

= 𝜋𝛿(𝜔 − 𝜔𝜇𝜈) − 𝑖∫
+∞

−∞
𝖽𝜔′𝛿(𝜔′ − 𝜔𝜇𝜈)𝑃[1/(𝜔 − 𝜔′)]

(3.13)

and we can use it to express the Kubo response function in frequency space. The
imaginary contribution 𝜒″ÔÔ′(𝜔) = 𝖨𝗆𝜒ÔÔ′(𝜔) is given by

𝜒″ÔÔ′(𝜔) = 𝜋∑
𝜇,𝜈

𝛿(𝜔 − 𝜔𝜇𝜈)(ρ𝜇 − ρ𝜈)⟨𝜇 | Ô | 𝜈⟩⟨𝜈 | Ô′ | 𝜇⟩ (3.14)

and it is known as the dissipative part. We have to be a bit careful with the real
part 𝜒′ÔÔ′(𝜔) = 𝖱𝖾𝜒ÔÔ′(𝜔) due to the Cauchy principal value in equation (3.13).
For 𝜔 ≠ 0, the formula is

𝜒′ÔÔ′(𝜔) = ∑
𝜇,𝜈

1
𝜔 − 𝜔𝜇𝜈

(ρ𝜇 − ρ𝜈)⟨𝜇 | Ô | 𝜈⟩⟨𝜈 | Ô′ | 𝜇⟩ , (3.15)

where we only sum over the indices that satisfy 𝜔𝜇𝜈 ≠ 0. However, this is not the
correct expression for 𝜒′ÔÔ′(𝜔 = 0), which needs to be properly regularized. We
will not discuss this regularization here, as our main interest is in the dissipative
part. In any case, we mention that 𝜒′ÔÔ′(𝜔) is known as the reactive part of the
response and 𝜒′ÔÔ′(𝜔 = 0) is the elastic contribution contribution to it.
Contrasting equation (3.11) with equation (3.14) leads to

𝜒ÔÔ′(𝜏) =
𝑖
𝜋𝜃(𝜏)∫

+∞

−∞
𝖽𝜔 𝖾𝗑𝗉(−𝑖𝜔𝜏)𝜒″ÔÔ′(𝜔) , (3.16)

so it seems that knowledge of the dissipative part is sufficient to determine the
response. Indeed, performing another Fourier transform, we obtain

𝜒ÔÔ′(𝜔) =
1
𝜋𝑃∫

+∞

−∞
𝖽𝜔′

𝜒″ÔÔ′(𝜔′)
𝜔′ − 𝜔⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

=𝜒′
ÔÔ′(𝜔)

+𝑖𝜒″ÔÔ′(𝜔) , (3.17)
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3.1 Linear response theory

where we’ve used our standard trick with the convolution theorem and ̌𝜃(𝜔) to
resolve the Fourier transform. Equation (3.17) is the Kramers–Kronig relation
and it implies that the reactive part of the response is fully determined by the
dissipative part. This procedure also shows that the Kubo response function
admits an analytic extension to the upper half-plane in frequency space. As
it turns out, this is a direct consequence of the causality condition satisfied by
equation (3.9).

3.1.3 Kubo–Martin–Schwinger condition
So far we worked with an arbitrary state initial state ̂ρ that commutes with the
equilibrium Hamiltonian. Now we will discuss a property specific to thermal
states. Therefore, we fix an inverse temperature 𝛽 = 1/𝑇 and set our initial state
to the canonical ensemble. The density matrix is defined by the Gibbs state,

̂ρ = 1
𝑍(𝛽)

𝖾𝗑𝗉(−𝛽Ĥ) , (3.18)

with a normalization given by the partition function 𝑍(𝛽) = 𝖳𝗋(𝖾𝗑𝗉(−𝛽Ĥ)). The
derivation of the Boltzmann weights formula usually relies on an entropy ar-
gument. Specifically, given a fixed a energy constraint 𝖳𝗋( ̂ρĤ) = 𝜀, the thermal
state is the one that maximizes entropy while satisfying the energy constraint.
This optimization problem is easy to solve and the outcome is equation (3.18)
with 𝛽 appearing as a Lagrange multiplier. Different ensembles, such as the
grand canonical, can be derived with a similar argument, but with additional
constraints.
Linear response theory provides an alternative derivation of the Boltzmann en-

semble. The argument is based on the boundary conditions of certain correlation
functions in imaginary time. To understand it, let us first notice that

⟨Ô′
𝐷(0)Ô𝐷(𝜏 + 𝑖𝛽)⟩0 =

1
𝑍(𝛽)

𝖳𝗋(𝑒−𝛽ĤÔ′𝑒+𝑖Ĥ(𝜏+𝑖𝛽)Ô𝑒−𝑖Ĥ(𝜏+𝑖𝛽))

= 1
𝑍(𝛽)

𝖳𝗋(𝑒+𝑖Ĥ(𝜏+𝑖𝛽)Ô𝑒−𝑖Ĥ(𝜏+𝑖𝛽)𝑒−𝛽ĤÔ′)

= 1
𝑍(𝛽)

𝖳𝗋(𝑒−𝛽Ĥ𝑒+𝑖Ĥ𝜏Ô𝑒−𝑖Ĥ𝜏Ô′) = ⟨Ô𝐷(𝜏)Ô′
𝐷(0)⟩0 ,

(3.19)
where we have used analytic continuation into the strip 𝐼+𝛽 = {𝜏 + 𝑖𝛾 ∈ ℂ |
0 < 𝛾 < 𝛽} for the first expectation value. Equation (3.19) is the Kubo–Martin-
Schwinger (KMS) condition and it completely characterizes thermal states [158,
160, 161]. As we shall demonstrate.
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For 𝜏 = 0, the KMS condition reduces to

⟨Ô′𝑒−𝛽ĤÔ𝑒+𝛽Ĥ⟩0 = 𝖳𝗋(Ô′𝑒−𝛽ĤÔ𝑒+𝛽Ĥ ̂ρ) = 𝖳𝗋(Ô′ ̂ρÔ) = ⟨ÔÔ′⟩0 (3.20)

and this has to hold for all Ô and Ô′. The trace is non degenerate so 𝖳𝗋(Ô′X̂) =
𝖳𝗋(Ô′Ŷ) can only be true for all Ô′ if X̂ = Ŷ. Hence, 𝑒−𝛽ĤÔ𝑒+𝛽Ĥ ̂ρ = ̂ρÔ and, once
again, this should be the case for all operators Ô. Rearranging this expression,
we see that it is equivalent to [Ô, 𝑒+𝛽Ĥ ̂ρ] = 0 so 𝑒+𝛽Ĥ ̂ρmust be in the center of
the algebra. We conclude that ̂ρ = 𝑒−𝛽ĤN̂ for some observable N̂ in the center.
In the usual case, N̂ has to be a number, so we recover equation (3.18) with
N̂ = 1/𝑍(𝛽), after enforcing the normalization. Thus, the thermal state with
inverse temperature 𝛽 is the only one that fulfills the KMS condition, as we set
out to prove.
Formally, equation (3.19) implies the existence of an analytic function 𝐹ÔÔ′(𝑧),

defined for 𝑧 ∈ 𝐼+𝛽 , that fulfills the boundary conditions given by equation (3.19).
The function is defined by

𝐹ÔÔ′(𝜏) = ⟨Ô′
𝐷(0)Ô𝐷(𝜏)⟩0 , (3.21)

for real time 𝜏, and by

𝐹ÔÔ′(𝜏 + 𝑖𝛽) = ⟨Ô𝐷(𝜏)Ô′
𝐷(0)⟩0 (3.22)

in the upper line of the strip 𝐼+𝛽 . A similar procedure yields an analytic function
𝐺ÔÔ′(𝑧) defined for 𝑧 ∈ 𝐼−𝛽 = {𝜏 + 𝑖𝛾 ∈ ℂ | 𝛽 < 𝛾 < 0}, whic also fulfils specific
boundary conditions. In particular, 𝐺ÔÔ′(𝜏) = ⟨Ô𝐷(𝜏)Ô′

𝐷(0)⟩0 for real time. The
KMS condition is equivalent to

𝐹ÔÔ′(𝜔) = 𝖾𝗑𝗉(−𝛽𝜔)𝐺ÔÔ′(𝜔) , (3.23)

in frequency space, as long as there are analytic continuations to the interior of
the strips. Our ability to perform the analytic continuation is related to equa-
tion (3.17), and a modified version of it for the lower half-plane.
The importance of the KMS condition is that it provides an alternative charac-

terization of thermal equilibrium [161–165]. Crucially, it is a criteria that can
be extended to a much broader setting, compared to a naive approach based on
Gibbs states, while avoiding technical difficulties. For instance, it provides the
correct infinite size limit and rigorous definitions of various phenomena, such
as spontaneous symmetry breaking [166, 167]. Our main interest in the KMS
condition is that it gives rise to the concept of passive states [168], which will be
central to section 3.3.
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3.1.4 Fluctuation–Dissipation relation
Adirect consequence of the KMS condition is the fluctuation–dissipation relation
(FDR). To derive it, let us begin with the following expression

(𝐺ÔÔ′(𝜔) − 𝐹ÔÔ′(𝜔)) = (1 − 𝑒−𝛽𝜔)𝐺ÔÔ′(𝜔)

= (1 − 𝑒−𝛽𝜔

1 + 𝑒−𝛽𝜔
)(𝐺ÔÔ′(𝜔) + 𝐹ÔÔ′(𝜔))

= 𝗍𝖺𝗇𝗁(𝛽𝜔/2)(𝐺ÔÔ′(𝜔) + 𝐹ÔÔ′(𝜔)) ,

(3.24)

which follows directly from equation (3.23). It is the precursor of the FDR, but
we need to work to get it in the familiar form, which has physical meaning.
The right hand side of equation (3.24) contains a symmetric combination,

and it translates to the expectation value of an anti-commutator in real time.
Specifically, it maps to the symmetric correlation function, which is given by

𝑆ÔÔ′(𝜏) =
1
2⟨{Ô𝐷(𝜏), Ô′

D(0)}⟩0 =
1
2(⟨Ô𝐷(𝜏)Ô′

D(0)⟩0 + ⟨Ô′
D(0)Ô𝐷(𝜏)⟩0) , (3.25)

and relates to the dynamical fluctuations in the system. We canmove to frequency
space easily and obtain

𝑆ÔÔ′(𝜔) =
1
2(𝐺ÔÔ′(𝜔) + 𝐹ÔÔ′(𝜔)) , (3.26)

as expected. Hence, the right hand side of equation (3.24) corresponds to the
fluctuation part of the FDR.
Notice that the formula for the Kubo response is very similar to equation (3.25),

but it has a commutator instead of the anti-commutator. This already suggests
that the left hand side of equation (3.24) is related to a response function. In fact,
we can derive

𝜒″ÔÔ′(𝜔) =
1
2(𝐺ÔÔ′(𝜔) − 𝐹ÔÔ′(𝜔)) , (3.27)

so the left hand side is related to the dissipative part of the response function.
Finally, combining equation (3.26) and equation (3.27) leads to

𝜒″ÔÔ′(𝜔) = 𝗍𝖺𝗇𝗁(𝛽𝜔/2)𝑆ÔÔ′(𝜔) , (3.28)

the FDR. Equation (3.28) is extremely important and establishes yet another
characterization of thermal equilibrium. It also connects a quantity that is easily
measured, the Kubo response function, with another one that is hard to extract,
the symmetric correlation function. Recently, there have been proposals to use it
to test thermalization in quantummany-body systems, with the help a procedure
to measure the anti-commutators [169].
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3.2 Protocol for thermal states
In this section we are going to derive our main result. It is the formula that
connects the QFI to linear response theory. This is the basis for the protocol for
extracting the QFI from quench dynamics which will be put to use in chapter 5.
We begin with the derivation of a generalized formula that holds for any well-
behaved time-dependent drive. Afterwards, we specialize to the case of an abrupt
quench, and discuss various properties of protocol. In particular, we demonstrate
various advantageous features of the protocol.

3.2.1 Derivation of the main result
The starting point for our derivation is the formula for 𝖥𝖰[ ̂ρ, Ô] in the diagonal
bases of the state. As derived in section 2.3, the expression is

𝖥𝖰[ ̂ρ, Ô] = 2∑
𝜇,𝜈

ρ𝜇 − ρ𝜈
ρ𝜇 + ρ𝜈⎵⎵⎵⎵⎵

(I)

(ρ𝜇 − ρ𝜈)|⟨𝜇 | Ô | 𝜈⟩|2⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
(II)

, (3.29)

where the basis states are now eigenstates of the equilibrium Hamiltonian. We
have marked two parts of the formula, (I) and (II), which will analyse separately.
First, consider the expression (I), for a thermal state it becomes

(I) =
ρ𝜇 − ρ𝜈
ρ𝜇 + ρ𝜈

= 𝑒−𝛽𝜀𝜇 − 𝑒−𝛽𝜀𝜈

𝑒−𝛽𝜀𝜇 + 𝑒−𝛽𝜀𝜈
= 𝗍𝖺𝗇𝗁(

𝛽𝜔𝜇𝜈
2 ) , (3.30)

so we get the same factor as in the FDR. It is essentially a frequency filter that
suppresses low frequency contributions. Thus, it discards transitionswith 𝜀𝜇 ≈ 𝜀𝜈,
that is, between states of similar energy . To make sense of the second term, we
just need to look at equation (3.14). It shows that (II) amounts to the contribution
to 𝜒″ÔÔ′(𝜔) from a specific transition.
The Dirac deltas 𝛿(𝜔−𝜔𝜇𝜈) in the formula for the dissipative response enforce

energy conservation. Therefore, if we integrate 𝜒″ÔÔ′(𝜔) against a frequency
filter, only valid transitions will contribute. Combining this consideration with
equation (3.30) yields,

𝖥𝖰[ ̂ρ, Ô] =
2
𝜋 ∫

+∞

−∞
𝖽𝜔 𝗍𝖺𝗇𝗁(

𝛽𝜔
2 )𝜒″ÔÔ′(𝜔)

= 4
𝜋 ∫

+∞

0
𝖽𝜔 𝗍𝖺𝗇𝗁(

𝛽𝜔
2 )𝜒″ÔÔ′(𝜔) ,

(3.31)
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where we have used the fact that the integrand is a even function in the second
equality. Equation (3.31) was originally derived in [39]. It is also possible to derive
a time domain formula by transforming the integral to frequency space, but we
will do this shortly with a different approach. Conceptually, these expressions
represent a significant advance as they explicitly relate the QFI to correlations
encoded in the response functions. However, as mentioned in the beginning
of the chapter, their reliance on unequal-time correlation functions, such as
⟨[ÔD(𝜏), ÔD]⟩, hinder their application in some settings. It is worth mentioning
that the time domain expression has computational advantages compared to
equation (3.31) and has been used for computing the QFI [39, 153].
As indicated, we want to derive a protocol that solely relies on measurements

of expectation values ⟨Ô(𝜏)⟩. We begin this task by deriving the time domain
analogue of equation (3.31). Consider the following alternative version of equa-
tion (3.30)

ρ𝜇 − ρ𝜈
ρ𝜇 + ρ𝜈

= 𝗍𝖺𝗇𝗁(
𝛽𝜔𝜇𝜈
2 ) = 𝑖𝛽−1∫

+∞

−∞
𝖽𝜏 𝑒−𝑖𝜔𝜇𝜈𝜏

𝗌𝗂𝗇𝗁(𝜋𝜏
𝛽
)
. (3.32)

Inserting this formula in equation (3.29), we obtain

𝖥𝖰[ ̂ρ, Ô] = 2𝛽−1∫
+∞

−∞
𝖽𝜏 1

𝗌𝗂𝗇𝗁(𝜋𝜏
𝛽
)
𝑖∑
𝜇,𝜈

𝑒−𝑖𝜔𝜇𝜈𝜏(ρ𝜇 − ρ𝜈)|⟨𝜇 | Ô | 𝜈⟩|2

= 4𝛽−1∫
+∞

0
𝖽𝜏 1

𝗌𝗂𝗇𝗁(𝜋𝜏
𝛽
)
𝑖𝜃(𝜏)∑

𝜇,𝜈
𝑒−𝑖𝜔𝜇𝜈𝜏(ρ𝜇 − ρ𝜈)|⟨𝜇 | Ô | 𝜈⟩|2

= 4𝛽−1∫
+∞

0
𝖽𝜏

𝜒ÔÔ(𝜏)

𝗌𝗂𝗇𝗁(𝜋𝜏
𝛽
)
,

(3.33)

where we have used equation (3.11) to get to the last line.
With equation (3.33) in hands, it is possible to obtain the expressions we

need. The insight is that the Kubo formula allows us to rewrite the integral
in equation (3.33) in terms of 𝛥O(𝜏). This is the case because we can apply a
deconvolution procedure to the Kubo formula to extract 𝜒ÔÔ(𝜏) from 𝛥O(𝜏).
However, this will require us to modify the integral filter to account for the drive
𝑓(𝜏).
Once again, we use our favorite trick, the convolution theorem. Applying it to

equation (3.10), we obtain

𝛥O(𝜔) = 𝑓(𝜔)𝜒ÔÔ(𝜔) , (3.34)
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which is the Kubo formula in frequency space. This allows us to formally invert
𝑓(𝜔) and write

𝜒ÔÔ(𝜔) = 𝑓(𝜔)−1𝛥O(𝜔) , (3.35)

as an equation of generalized functions, i.e., distributions. Of course, the formula
above looks a bit too easy, and this is because it is hiding a lot of complexity. To
make sense of it, we must recall that distributions are linear functionals mapping
test function into numbers. Hence, 𝑓(𝜔)−1 and equation (3.35), only makes sense
when integrated against a test function. Nonetheless, the procedure works for a
arbitrary well-behaved drive function 𝑓(𝜏), as long as it fulfills some properties.
Most importantly, 𝑓(𝜔) can only have isolated zeros in the support of 𝜒ÔÔ(𝜔), for
this ensures that 𝑓(𝜔)−1 is well defined as a generalized function. A simple drive
that does not fulfill this condition is 𝑓(𝜏) = 𝖼𝗈𝗌(𝜔0𝜏) as its Fourier transform only
contain contributions from frequencies 𝜔 = ±𝜔0. From a physical standpoint,
this simply highlights that the time dependent perturbation under consideration
must probe all frequencies of the response function.
Let 𝑣𝑓(𝜏) be the inverse Fourier transform of 𝑓(𝜔)−1. It is given by the usual

formula,

𝑣𝑓(𝜏) =
1
2𝜋 ∫

+∞

−∞
𝖽𝜔𝑒𝑖𝜔𝜏𝑓(𝜔)−1 , (3.36)

and it is also a generalized distribution. The inverse relation defines 𝑓(𝜔)−1
and encodes that 𝜑 ∗ 𝑓 ∗ 𝑣𝑓 = 𝜑must hold for any well behaved test function
𝜑. Technically, we only need it to hold for the response function, so we could
weaken this conditions by imposing physical assumptions—such as causality—
onto the test function 𝜑. However, for the examples we consider, this is not
necessary. Combining equations (3.35) and (3.36), we have

𝜒ÔÔ(𝜏) = (𝛥O ∗ 𝑣𝑓)(𝜏) = ∫
+∞

−∞
𝖽𝜏′𝛥O(𝜏′)𝑣𝑓(𝜏 − 𝜏′) . (3.37)

Equation (3.37) is precisely what we require, a deconvolution of the Kubo re-
sponse function with respect to the drive. Inserting equation (3.37) into equa-
tion (3.33) leads to our desired outcome, i.e., a formula for the QFI in terms of
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𝛥O(𝜏). Specifically,

𝖥𝖰[ ̂ρ, Ô] = 4𝛽−1∫
+∞

0
𝖽𝜏′

𝜒ÔÔ(𝜏′)

𝗌𝗂𝗇𝗁(𝜋𝜏
′

𝛽
)

= 4𝛽−1∫
+∞

0
𝖽𝜏′ 1

𝗌𝗂𝗇𝗁(𝜋𝜏
′

𝛽
)
∫

+∞

−∞
𝖽𝜏𝛥O(𝜏)𝑣𝑓(𝜏′ − 𝜏)

= 4𝛽−1∫
+∞

−∞
𝖽𝜏𝛥O(𝜏)∫

+∞

0
𝖽𝜏′

𝑣𝑓(𝜏′ − 𝜏)

𝗌𝗂𝗇𝗁(𝜋𝜏
′

𝛽
)

= 4𝛽−1∫
+∞

0
𝖽𝜏𝛥O(𝜏)𝜅𝑓(𝜏) ,

(3.38)

where we have used causality to drop the negative time integration, and defined
a modified filter 𝜅𝑓(𝜏). It is simply

𝜅𝑓(𝜏) = ∫
+∞

0
𝖽𝜏′

𝑣𝑓(𝜏′ − 𝜏)

𝗌𝗂𝗇𝗁(𝜋𝜏
′

𝛽
)
. (3.39)

Equation (3.38) is our main results as it provides a method of extracting the
QFI from the linear response of a quantum mechanical system. This gives a
procedure to certify the presence of entanglement when combined with the
multipartite entanglement bounds for the QFI. To obtain a concrete protocol,
we now specialize to the case of an instantaneous quench. In this scenario, the
drive function is simply 𝑓(𝜏) = 𝑞𝜃(𝜏) and we need to resolve equation (3.39) to
calculate the correct filter.
We have already encountered the Fourier transform of the Heaviside function,

and it is straightforward to invert it. Specifically,

𝑓(𝜔)−1 = 1
𝑞(𝜋𝛿(𝜔) + 𝑃 1𝑖𝜔)

−1
= 𝑖𝜔

𝑞 (3.40)

and we can immediately write

𝑣quench(𝑡) =
𝛿′(𝑡)
𝑞 (3.41)

using the derivative of the Dirac delta function, since multiplication in frequency
space amounts to a derivate in real time. It is straightforward to check the validity
of equation (3.40) in frequency space as 𝜔𝛿(𝜔) = 0. For a less abstract proof, we
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can explicitly calculate 𝜑 ∗ 𝜃 ∗ 𝛿′ = 𝜑 in the time domain for an arbitrary test
function. We have that

(𝜑 ∗ 𝜃 ∗ 𝛿′)(𝜏) = ∫
+∞

0
𝖽𝜏2∫

+∞

0
𝖽𝜏1𝜑(𝜏1)𝜃(𝜏2 − 𝜏1)𝛿′(𝜏 − 𝜏2)

= ∫
+∞

0
𝖽(𝜏 − 𝜏2)∫

𝜏2

0
𝖽𝜏1𝜑(𝜏1)𝛿′(𝜏 − 𝜏2)

= (− 𝖽
𝖽𝜏3

∫
𝜏2

0
𝖽𝜏1𝜑(𝜏1))

𝜏3=𝜏−𝜏2=0

= ( 𝖽
𝖽𝜏2

∫
𝜏2

0
𝖽𝜏1𝜑(𝜏1))

𝜏2=𝜏

= 𝜑(𝜏)

(3.42)

so 𝛿′ is indeed the convolution inverse of 𝜃.
Finally, we have our formula

𝖥𝖰[ ̂ρ, Ô] =
4
𝑞𝛽 ∫

+∞

0
𝖽𝜏𝛥Ôquench(𝜏)(−

𝖽
𝖽𝜏′

1
𝗌𝗂𝗇𝗁(𝜋𝜏′𝛽−1))𝜏′=𝜏

= 4𝜋
𝑞𝛽2 ∫

+∞

0
𝖽𝜏

𝛥Ôquench(𝜏)
𝗌𝗂𝗇𝗁(𝜋𝜏𝛽−1) 𝗍𝖺𝗇𝗁(𝜋𝜏𝛽−1)

,
(3.43)

which relates the QFI to the response of the system to an abrupt quench. Thus,
we can summarize our protocol into four steps: (i.) Prepare a thermal state. (ii.)
Turn on the quench abruptly. (iii.) Measure the evolution of the expectation
values. (iv.) Integrate results according to equation (3.43). Thermal equilibrium
and a perturbation in the linear regime are the only assumptions used for deriv-
ing equation (3.38). As such, the quench protocol applies to arbitrary quench
operators and quantum many-body systems, including fermionic, bosonic, and
spin systems.
It is also convenient to introduce the cumulative response function, which we

define as

𝜉ÔÔ(𝜏) = ∫
𝜏

0
𝖽𝜏′𝜒ÔÔ(𝜏′) , (3.44)

One can check that 𝜉ÔÔ(𝜏) = 𝛥Ôquench(𝜏)/𝑞, so it is 𝜉ÔÔ(𝜏) that enters equa-
tion (3.43). Of course, the derivative of the cumulative response function if the
Kubo response function. This is consistent with equation (3.41).
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3.2.2 Properties of the quench protocol
Our quench protocol has a series of advantageous properties. First of all, only
expectation values of Ô(𝑡) are used and access to higher moments is not nec-
essary. This is a great simplification compared to equation (3.31). It reduces
the requirements for extracting the QFI in many situations, as no time–time
correlations are required. Moreover, the rapid decay of the filter,

𝜅quench(𝜏) =
4𝜋
𝛽2 (𝗌𝗂𝗇𝗁(

𝜋𝜏
𝛽 ) 𝗍𝖺𝗇𝗁(𝜋𝜏𝛽 ))

−1
(3.45)

implies only short measurement times are required. This feature provides re-
silience against dissipative effects such as atom loss in experiments with ultracold
atoms. At small temperatures, where the required observation times become
long, the variance of Ô in the initial state yields a reliable upper bound on the
QFI. Our protocol can complement this with a lower bound, by tracking the time
evolution up to experimentally accessible times.
Another useful property is that equation (3.43) is additive in the integration

time. This implies that, given a cutoff time 𝜏cutoff,

4𝜋
𝑞𝛽2 ∫

𝜏cutoff

0
𝖽𝜏

𝛥Ôquench(𝜏)
𝗌𝗂𝗇𝗁(𝜋𝜏𝛽−1) 𝗍𝖺𝗇𝗁(𝜋𝜏𝛽−1)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
=𝖥𝖰[ρ̂,Ô](𝜏cutoff)

≤ 4𝜋
𝑞𝛽2 ∫

+∞

0
𝖽𝜏

𝛥Ôquench(𝜏)
𝗌𝗂𝗇𝗁(𝜋𝜏𝛽−1) 𝗍𝖺𝗇𝗁(𝜋𝜏𝛽−1)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

=𝖥𝖰[ρ̂,Ô]

,

(3.46)
so truncating the integral yields a lower bound for the QFI. It ensures that a
limited integration time cannot cause a false negative for entanglement certi-
fication. This is because the entanglement bounds come from upper bounds
on the QFI that hold for separable states. If one such upper bound is violated
by 𝖥𝖰[ ̂ρ, Ô](𝜏cutoff), then it is also violated by the QFI. Hence, we can safely use
truncated integrals to certify entanglement.
The requirement of quenching in the linear regime can be tested by comparing

responses with different 𝑞-parameters. In principle, 𝛥Ôquench(𝜏) contains higher-
order corrections, while we are only interested in the part that is described by
linear response theory. Formally, one can expand

𝛥Ôquench(𝜏) =
∞
∑
𝑛=1

𝛥Ô(𝑛)
quench(𝜏)𝑞𝑛 , (3.47)

and the term that enters equation (3.43) is 𝜉ÔÔ(𝜏) = 𝛥Ô(1)
quench(𝜏). Fortunately,

the linear part dominates for short times, so the decay of the filter function
mitigates any errors coming from non-linear effects. Even more, it is possible to
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obtain better estimates on the linear contribution by using different values of the
quench parameter 𝑞 and combining the results through a polynomial fit. This
also enables extrapolation to 𝑞 = 0. The simplest application relies on performing
the quench with some small 𝑞 and with −𝑞. Both measurements can then be
combined to yield

𝛥Ôquench(𝜏)|𝑞 − 𝛥Ôquench(𝜏)|−𝑞
2 = 𝛥Ô(1)

quench(𝜏)𝑞 + 𝛥Ô(3)
quench(𝜏)𝑞3 +… , (3.48)

which removes the quadratic contributions and enables one to get accurate results
over larger timescales. One can also apply this principle directly to the values of
𝖥𝖰[ ̂ρ, Ô] as any deviations from the correct value, due to higher-order terms, will
also depend algebraically on the quench parameter.
In a experiment the quench might not be ideal one 𝑓(𝜏) = 𝑞𝜃(𝜏), but some

ramp 𝑓(𝜏) = 𝑞𝑟(𝜏) with a smooth function 𝑟(𝜏). This is of no concern as long
as the timescales when the ramp reaches 𝑟(𝜏) ≈ 1 are much smaller than the
relevant timescales for the system dynamics. Even when that is not the case, it
is possible to account for the ramp rigorously by deriving the correct 𝜅𝑓 for the
specific ramp profile. For a ramp 𝑟𝜏0(𝜏) defined by a time scale 𝜏0, one has

𝑓(𝜏) = 𝑞𝑟𝜏0(𝜏) = 𝑞𝑔(𝜏/𝜏0) (3.49)

where 𝑔(𝜏/𝜏0) is a function that describes the shape of the ramp as it reaches the
final value of the quench. The filter for this ramp is given by 𝜅𝑓(𝜏) = 𝜅quench(𝜏) ∗
̄𝑔(𝜏/𝜏0), where ̄𝑔(𝑡) is defined by its Fourier transform

̄𝑔(𝜔𝜏0) = (𝑒−𝑖𝜔𝜏0 + 𝑖𝜔𝜏0∫
1

0
𝖽𝑦𝑒−𝑖𝑦𝜔𝜏0𝑔(𝑦))

−1
. (3.50)

For a linear ramp, 𝑔(𝜏/𝜏0) = 𝜏/𝜏0, we have ̄𝑔(𝜔𝜏0) = 𝑖𝜔𝜏0/(𝑒−𝑖𝜔𝜏0 − 1).
Additionally, the drive function 𝑓(𝜏)might not have a simple functional ex-

pression and both 𝑓(𝜏) and 𝛥Ôquench(𝜏) will contain some noise. A direct decon-
volution procedure such as the Wiener deconvolution can account for this [170].
It produces an approximation for 𝑣𝑓(𝜔) given by

𝑣𝑓(𝜔) =
𝑓(𝜔)∗𝑆𝜒(𝜔)

|𝑓(𝜔)|2𝑆𝜒(𝜔) + 𝑆𝑛(𝜔)
(3.51)

where 𝑆𝜒(𝑛)(𝜔) denotes the mean power spectral density of 𝜒 (the noise).
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ω̂0

ω̂1

ω̂2

⟨Ĥ⟩

𝜀0

𝜀1

𝜀2

Figure 3.1: Schematic depiction of the simplex of equilibrium states
(larger triangle) and the simplex of passive states (smaller triangle)
for a three-level system. The curve corresponds to the thermal states,
going from the infinite temperature state ω̂2 to the zero temperature
state ω̂0.

3.3 Extension to passive states
We would like to extend equation (3.43) and the quench protocol to non-thermal
equilibrium states. This is highly desirable on a conceptual and a practical level
because it is challenging to actually test whether a state is in thermal equilib-
rium or not. Thus, removing the assumption of a thermal equilibrium would
significantly increase in scope of applicability of the quench protocol. Our hy-
pothesis is that it is possible, given some compromises, to extract the QFI using
equation (3.43) for a sufficiently generic class of equilibrium ensembles. This is
corroborated by existence of expressions connecting theQFI to linear response for
other ensembles, such as the eigenstate thermalization hypothesis (ETH) [154].
Herewe consider an intermediary step in our endeavor. Specifically, we demon-

strate that for a certain class of equilibrium states, know as passive states, there is
an effective temperature such that the quench protocol works. Passive states are
a class of equilibrium states that defines a weaker thermalization condition [168].
Formally, a state ̂ρ is passive if

𝖳𝗋(Û ̂ρÛ†Ĥ) ≤ 𝖳𝗋( ̂ρĤ) (3.52)

for all unitaries Û acting on the system. This condition states that it is not
possible to lower the energy of a passive state with a reversible process. It also
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means that passive states are those that obey the second law in the Kelvin–Planck
formulation of thermodynamics [171].
Passive states can also be described more concretely. They are equilibrium

states that fulfil an extra equilibration condition, namely that ρ𝜇 ≥ ρ𝜈 whenever
𝜀𝜈 ≥ 𝜀𝜇. This can be formulated elegantly using virtual temperatures, which are
defined implicitly by

ρ𝜇 − ρ𝜈
ρ𝜇 + ρ𝜈

= 𝗍𝖺𝗇𝗁(
𝛽𝜇𝜈𝜔𝜇𝜈

2 ) , (3.53)

where 𝛽𝜇𝜈 is the virtual temperature associated to the transition between 𝜇 and
𝜈. Using this definition one can check that a state is passive if, and only if, all of
its virtual temperatures are positive [172]. The connection with equation (3.52)
is that, whenever there is a negative virtual energy, one can lower the energy of
the state by inverting the populations of the relevant transition.
Now we introduce the virtual QFI, which we will use to connect passive states

to the QFI. For an equilibrium state it is given by

𝖥𝖰𝛾[ ̂ρ, Ô] =
4𝜋
𝑞𝛾2 ∫

+∞

0
𝖽𝜏

𝛥Ôquench(𝜏)
𝗌𝗂𝗇𝗁(𝜋𝜏𝛾−1) 𝗍𝖺𝗇𝗁(𝜋𝜏𝛾−1)

, (3.54)

where 𝛾 ∈ ℝ+ is some positive number that plays the role of an effective temper-
ature. The choice of the quench formula itself is not particularly critical and it is
easy to show that this can be rewritten using other ramps. More importantly, we
can write it as

𝖥𝖰𝛾[ ̂ρ, Ô] = ∑
𝜇𝜈
𝗍𝖺𝗇𝗁(

𝛾𝜔𝜇𝜈
2 )(ρ𝜇 − ρ𝜈)|⟨𝜇 | Ô | 𝜈⟩|2 , (3.55)

which makes the analogy with the QFI of the thermal state explicit.
In the limit when 𝛾 → +∞ the tangent hyperbolic in equation (3.55) becomes

a sign function. Therefore, the limit is given by

𝗅𝗂𝗆
𝛾→+∞

𝖥𝖰𝛾[ ̂ρ, Ô] = ∑
𝜇𝜈
𝗌𝗂𝗀𝗇(𝛽𝜇𝜈)||ρ𝜇 − ρ𝜈|||⟨𝜇 | Ô | 𝜈⟩|2 , (3.56)

and it is positive for passive states. In fact, for passive states this gives an upper
bound for the QFI. The limit 𝛾 → 0 is clearly zero, so we have the following
inequality for all passive states

𝗅𝗂𝗆
𝛾→0

𝖥𝖰𝛾[ ̂ρ, Ô] ≤ 𝖥𝖰[ ̂ρ, Ô] ≤ 𝗅𝗂𝗆
𝛾→+∞

𝖥𝖰𝛾[ ̂ρ, Ô] . (3.57)
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It follows from inequality (3.57) and the intermediate value theorem that there
is a ̃𝛽( ̂ρ) ∈ ℝ+ such that

𝖥𝖰[ ̂ρ, Ô] = 𝖥𝖰
̃𝛽(ρ̂)[ ̂ρ, Ô] , (3.58)

so we can recover the QFI of a passive state using the quench protocol. In partic-
ular, we see that the effective temperature ̃𝛽( ̂ρ) contains all the non linearities of
the QFI, since the response function are linear on the state. This means that it is
not easy to calculate ̃𝛽( ̂ρ), so that we are essentially shifting the complexity from
the QFI to it. However, since 𝖥𝖰𝛾[ ̂ρ, Ô] is a monotonic increasing function of 𝛾,
any 𝛾 ≤ ̃𝛽( ̂ρ) defines a lower bound for the QFI. Thus, we can use approximations
𝛾 ≲ ̃𝛽( ̂ρ) to get arbitrarily good approximations of the QFI and this allows us to
bypass part of the complexity of the calculation. We can currently studying the
properties of ̃𝛽( ̂ρ) as a function of the state by performing random sampling of
passive states. This can be done relatively efficiently because the set of passive
states defines a simplex (see figure 3.1) [171]. This statistical analysis provides
with information about ̃𝛽( ̂ρ) as a function of observables of the system, so that we
calculate lower bounds for it with data that would be experimentally accessible.
These results, together with the derivation in this section are a part of a work
currently in preparation [106].
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4 Multipartite mode entanglement
In this chapter we discuss entanglement in the context of indistinguishable
particles. This is fundamentally different from the case of qudits due to the
presence of particle statistics. Specifically, bosonic and fermionic systems do not
admit a Hilbert space with a tensor product decomposition that is compatible
with their observables. And this means that an entanglement definition based
on tensor product states does not apply. Nonetheless, it is possible to define
and characterize entanglement using alternative routes, such as wave function
decompositions [96, 97], and the factorization condition [98].
Our focus is the so-called mode entanglement of identical particles. From this

perspective, entanglement is a feature of the observables of the system, and their
correlation functions. By contrast, particle entanglement is a different character-
ization of entanglement that focuses on the particles themselves. Which point
of view is the correct one, has been a topic of debate since the early 2000s [99].
However, there is substantial evidence by now that mode entanglement is the
only consistent criteria for indistinguishable particles [173]. With multiple works
successfully employing it to describe entangled states in systems of bosons and
fermions [174–177]. Moreover, It has been demonstrated that mode entangle-
ment is a resource for quantum metrology [178–182]. Additionally, techniques
such as entanglement witnessing [183, 184] and teleportation [185, 186] have
also been extended to indistinguishable particle through the mode entanglement
angle.
However, much of the literature focuses on the bipartite case, typically with

additional restrictions on the system. In this chapter, we present our resultswhich
extend previous techniques to the multipartite case and use it to derive QFI mode
entanglement bounds. The presentation is based on our publication, but contains
an extended discussion of the theoretical reasoning [105]. The work by Bañuls
et al. [98] is of particular importance to us and it is our theoretical reference point.
It introduced the factorization condition—as in equation (2.63)—as a criteria for
identifying fermionic mode entanglement. Because this technique is agnostic
about the structure of the Hilbert space, it bypasses many of the difficulties that
come with indistinguishable particles. Additionally, our approach is related to
that of Benatti et al. [180], which provides a connection between fermionic mode
entanglement and metrology for the two-mode case.
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4 Multipartite mode entanglement

4.1 Indistinguishable particles
The Hilbert space of a system of indistinguishable particles is a Fock space
defined by the single-particle states. In the bosonic case, wave functions must be
symmetric under permutation, so the Fock space is defined by the symmetrized
tensor product. It is a graded vector space given by

⋁(ℋI) =
∞

⨁
N=0

⋁𝑁(ℋI) =
∞

⨁
N=0

ℋI∨⋯ ∨ℋI , (4.1)

whereℋI denotes the single-particle Hilbert space. Similarly, if the particles are
fermions, the Fock space is generated by the exterior algebra ofℋI,

⋀(ℋI) =
𝑑

⨁
N=0

⋀𝑁(ℋI) =
𝑑

⨁
N=0

ℋI ∧⋯ ∧ℋI , (4.2)

which is the antisymmetric version of the tensor algebra. Here, 𝑑 denotes the
dimension of the single-particle Hilbert space.
The symmetric and antisymmetric product simply realize the standard proce-

dure to obtain bosonic and fermionicwave functions. For instance, the symmetric
product of two single-particle states is

| 𝜓⟩ ∨ | 𝜑⟩ = | 𝜑⟩ ∨ | 𝜓⟩ ≅ 1
√2

(| 𝜓⟩ ⊗ | 𝜑⟩ + | 𝜑⟩ ⊗ | 𝜓⟩) , (4.3)

and generate a bosonic two-particle state. The fermionic counterpart is given by

| 𝜓⟩ ∧ | 𝜑⟩ = −| 𝜑⟩ ∧ | 𝜓⟩ ≅ 1
√2

(| 𝜓⟩ ⊗ | 𝜑⟩ − | 𝜑⟩ ⊗ | 𝜓⟩) , (4.4)

and it defines a antisymmetric wave function. We use the ≅ notation above to
emphasize that, strictly speaking, the products | 𝜓⟩ ∨ | 𝜑⟩ and | 𝜓⟩ ∧ | 𝜑⟩ do not
belong to the same space as | 𝜓⟩ ⊗ | 𝜑⟩. Nonetheless, there is and embedding of
ℋI ⊗ℋI into bothℋI ∨ℋI andℋI ∧ℋI, and it defines the equivalence in the
equations above.
Due to the construction of the Fock space, a ℕ-grading arises naturally. It

defines the number operator N̂, which counts the number of particles of a given
states. Crucially, it factors through the direct sums in equations (4.1) and (4.2).
The number operator is unbounded for bosonic particles, something that intro-
duces some technical challenges, as the dimension of the symmetric Hilbert
space is infinite. Nonetheless, it is bounded in the fermionic case due to the Pauli
exclusion principle.
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4.1 Indistinguishable particles

Creation and annihilation operators allow us to describe the observables act-
ing on the Fock space. They provide the most efficient way of working with
identical particles. This is because they bypass the laborious process of explic-
itly symmetrizing, or antisymmetrizing, the many-body wave function. Instead,
they encode the particle statistics in the canonical commutation relations, in the
case of bosons, and in the canonical anticommutation relations, in the case of
fermions.
Let us consider two single-particle states | 𝜑⟩, | 𝜓⟩ ∈ ℋI. We define bosonic

creation and annihilation operators by

â𝜑(| 𝜓1⟩ ∨ ⋯ ∨ | 𝜓𝑛⟩) =⟨𝜑 | 𝜓1⟩(| 𝜓2⟩ ∨ ⋯ ∨ | 𝜓𝑛⟩)
+ | 𝜓1⟩ ∨ â𝜑(| 𝜓2⟩ ∨ ⋯ ∨ | 𝜓𝑛⟩)

â†𝜓(| 𝜓1⟩ ∨ ⋯ ∨ | 𝜓𝑛⟩) =| 𝜓⟩ ∨ | 𝜓1⟩ ∨ ⋯ ∨ | 𝜓𝑛⟩ ,
(4.5)

and they satisfy the canonical commutation relations,

[â𝜑, â
†
𝜓] = ⟨𝜑 | 𝜓⟩ . (4.6)

Similarly, we write fermionic creation and annihilation operators as

̂c𝜑(| 𝜓1⟩ ∧ ⋯ ∧ | 𝜓𝑛⟩) =⟨𝜑 | 𝜓1⟩(| 𝜓2⟩ ∧ ⋯ ∧ | 𝜓𝑛⟩)
− | 𝜓1⟩ ∧ ̂c𝜑(| 𝜓2⟩ ∧ ⋯ ∧ | 𝜓𝑛⟩)

̂c†𝜓(| 𝜓1⟩ ∧ ⋯ ∧ | 𝜓𝑛⟩) =| 𝜓⟩ ∧ | 𝜓1⟩ ∧ ⋯ ∧ | 𝜓𝑛⟩ ,
(4.7)

and they satisfy the canonical anticommutation relations,

{ ̂c𝜑, ̂c
†
𝜓} = ⟨𝜑 | 𝜓⟩ . (4.8)

Fixing a basis of the single particle Hilbert space

ℋI = ⨁
𝑚∈𝑀

ℂ|𝑚⟩ , (4.9)

we recover the more familiar expressions for equations (4.6) and (4.8). The labels
for the basis are called modes. It is also convenient to fix an enumeration for
the basis in the fermionic case. This is because an expression like∏𝑚∈𝑀 ̂c†𝑚 is
ambiguous in general, due to the antisymmetric nature of the fermions. The
ambiguity boils down to a factor of ±1 that arises when we rearrange the creation
operators. Strictly speaking, we only need to fix the parity of the enumeration to
remove the ambiguous term, but it is simpler to choose a specific enumeration.
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4 Multipartite mode entanglement

The vacuum state | ⟩ spans theN = 0 sector. Moreover, it defines the occupation
basis that spans higher occupation sectors. Specifically, we have

| 𝜂𝐵⟩ = â†𝜂𝐵| ⟩ = ∏
𝑚∈𝑀

(â†𝑚)
𝜂𝐵(𝑚)| ⟩ (4.10)

| 𝜂𝐹⟩ = ̂c†𝜂𝐹| ⟩ = ∏
𝑚∈𝑀

( ̂c†𝑚)
𝜂𝐹(𝑚)| ⟩ , (4.11)

where 𝜂𝐵, 𝜂𝐹 are functions that specify the occupation of the bosonic and fermionic
modes. The product of creation operators in equation (4.11) is ordered according
to our fixed enumeration. In the bosonic case, 𝜂𝐵(𝑚) can be any natural num-
ber and 𝜂𝐵 ∈ ℕ𝑀. For fermions, 𝜂𝐹 ∈ 2𝑀 since the occupation numbers are
restricted to 𝜂𝐵(𝑚) ∈ {0, 1}. Furthermore, we can define generalized creation
operators which can create all possible states from the vacuum. In the fermionic
case, they are given by

Ĉ† = ∑
𝜂𝐹
𝜑†(𝜂𝐹) ̂c

†
𝜂𝐹 , (4.12)

where 𝜑†(𝜂𝐹) ∈ ℂ is a probability amplitude that corresponds to the many-
particle wave function.

4.1.1 Selection and superselection rules
In the case of fermions, an additional subtlety arises due to the parity supers-
election rule [187]. It forbids the existence of coherence between states with
different parity. Concretely, if we write the parity operator as

P̂ = (−1)N̂ = ∏
𝑚∈𝑀

(−1)ĉ
†
𝑚ĉ𝑚 , (4.13)

then it is not possible to go from the P = 1 sector to the P = −1 sector with
physically accessible operations. This has important consequences as it alters
the algebra of observables, and the space of states of a fermionic systems.
The fermionic creation and annihilation operators generate a 𝐶∗-algebra

𝖢𝖠𝖱(𝑀), but this is not the algebra that describes physical operators. This because
the parity superselection rules forbids any operator that can change the super-
selection section. Therefore, the actual 𝐶∗-algebra that describes the physical
observables of the fermionic system is

𝒜(𝑀)𝐹 = {Ô ∈ 𝖢𝖠𝖱(𝑀) || [Ô, P̂] = 0} , (4.14)

the set of all operators that commute with the parity operator. , not all operators
in 𝖢𝖠𝖱(𝑀) are physical. Notice that despite the use of a fixed set of modes in
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4.1 Indistinguishable particles

equations (4.13) and (4.14), the parity operator and the algebra do not depend on
a particular choice of modes. Nonetheless, the fixed modes provide a concrete
description of 𝒜(𝑀)𝐹. This is because the operators that belong to it can only
change the number of particles by multiples of two. And this restricts them to
be combinations of even products of creation and annihilation operators. Thus,
the elements of 𝒜(𝑀)𝐹 are even polynomials on the creation and annihilation
operators associated to the modes.
Fermionic states are normalized positive functionals ̂ρ ∈ 𝒜(𝑀)∗𝐹, which we

can represent by density matrices acting on the fermionic Fock space. Due to the
parity superselection rule, the states must also commute with the parity operator.
As such, all valid fermionic states are of the form

̂ρ = 𝗉(+) ̂ρ+ ⊕ 𝗉(−) ̂ρ− , (4.15)

where ̂ρ± is a state with fixed parity ±1. This is a direct consequence of equa-
tion (4.14) and the condition that all physical observables commute with P̂.
Specifically, the center of 𝒜(𝑀)𝐹1,

𝒵(𝑀)𝐹 = 𝒜(𝑀)𝐹 ∩ 𝒜(𝑀)′𝐹 = {𝛼1̂ + 𝛽P̂ | 𝛼, 𝛽 ∈ ℂ} , (4.16)

is nontrivial, as it contains P̂, and this induces the decomposition in equa-
tion (4.15). As a consequence, it is not possible to connect states with an even
number of particles with those with an odd number of particles. It is this fact that
prevents one from decomposing the fermionic Fock space into a tensor product
of local Hilbert spaces.
Superselection rules are a fundamental feature of physics and apply to all

systems. By contrast, selection rules arise in specific situations, such as when a
Hamiltonian has a conservation law. Nonetheless, one can use the same formal-
ism to describe both selection and superselection rules. The simplest example
of selection rule for identical particles is particle number conservation. In a
fermionic system, we can use it to further restrict the algebra of physical opera-
tors. We do so by defining

𝒜(𝑀)N𝐹 = {Ô ∈ 𝖢𝖠𝖱(𝑀) || [Ô, N̂] = 0} ⊂ 𝒜(𝑀)𝐹 , (4.17)

which contains the operators that preserve particle number. Naturally, this
algebra also has a nontrivial center𝒵(𝑀)N𝐹 that induces a diagonal decomposition
like equation (4.15), but in terms of the particle number sectors.

1The center of an algebra 𝒵(𝐴) is the intersection of the algebra with its commutant. As such,
it is given by 𝒵(𝐴) = 𝐴 ∩𝐴′ and it defines a commutative subalgebra.
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Bosonic system do not have a superselection rule. This means we can assign

𝒜(𝑀)𝐵 = 𝖢𝖢𝖱(𝑀) (4.18)

directly. Thus, the entire algebra generated by bosonic creation and annihila-
tion operators defines physical operators. However, this introduces a technical
difficulty of another kind, namely that the operators in the bosonic algebra are
unbounded. This because an operator like â†𝑚â𝑚 has arbitrarily large eigenval-
ues, and this implies that 𝒜(𝑀)𝐵 is not a 𝐶∗-algebra, so some care is necessary.
Nonetheless, for the applications we have in mind, we can assume that there is a
fixed number of particles and this resolved the issues with unbounded operators.
This effectively means that we only work with

𝒜(𝑀)N𝐵 = {Ô ∈ 𝖢𝖢𝖱(𝑀) || [Ô, N̂] = 0} ⊂ 𝒜(𝑀)𝐵 , (4.19)

the algebra of bosonic operators that conserve total particle number, i.e., we
assume that there is a selection rule in place for bosonic systems.

4.2 Mode entanglement in fermionic systems
In this section, we are going to define multipartite mode entanglement for
fermionic systems. We do so by introducing a local net of observables asso-
ciated to the algebra of parity preserving fermionic operators. This allows us to
implement the techniques presented in section 2.4. In particular, we can define
a multipartite separability criteria for fermionic modes. This allow us to identify
the analogues of product states and use them to derive QFI entanglement bounds
for fermionic mode entanglement. The bounds allow us to use the QFI as a tool
for certifying multipartite mode entanglement, and we will put them to use in
the next chapter.
Wederivemultipartite entanglement bounds for three different settings, namely:

• Arbitrary fermionic systems.

• Fermionic systems with particle number conservation.

• Fermionic systems with a fixed occupation number.

Each scenario provides increasingly tight bounds on the QFI, which can be
adapted to different applications. We provide a concrete algorithm to calculate
the bounds systematically. This is a flexible technique that can be adapted to other
scenarios. For instance, one can enhance the bounds by introducing additional
conserved quantities.
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4.2.1 Separability criteria
Let us assume for a moment that the single-particle basis states that define𝑀
correspond to localized orbitals in a lattice. It follows that a subset 𝐾 ⊂ 𝑀
amounts to a certain subregion of the lattice, so that we may regard it as a
subsystem. The algebra 𝒜(𝐾)𝐹 describes the physical operators with support in
this subregion. In particular, there is a local parity operator P̂𝐾 that defines a
superselection rule for the observables of 𝐾 and the reduced states associated to
it. It it constrained by the global parity operator due to the equation

P̂ = P̂𝐾P̂𝑀⧵𝐾 = (∏
𝑚∈𝐾

(−1)ĉ
†
𝑚ĉ𝑚)(∏

𝑚∉𝐾
(−1)ĉ

†
𝑚ĉ𝑚) , (4.20)

which relates the parity in the global system to the one associated to 𝐾 and its
complement. In any case, this procedure yields a local net of observables that
describes the locality structure in the𝑀 space, which amount to real space for
this particular example.
More broadly, we may consider local net of observables associated to subsets

of 𝑀 regardless of what the modes describe. For instance, in the lattice example,
one may consider the basis that is diagonal in momentum space. This yields a
net of observables that is local in momentum space, instead of real space. In
general, each choice of modes will define a different local net of observables and,
consequently, a different notion of entanglement.
A partition of the system amounts to a decomposition of 𝑀 into various inde-

pendent subsystems. Specifically, we have

𝑀 = ⨆
𝑗∈𝐽

𝑀𝑗 = 𝑀1 ⊔𝑀2⋯⊔𝑀|𝐽| , (4.21)

with subsets of modes𝑀𝑗 ⊂ 𝑀 that are labeled by indexes 𝑗 ∈ 𝐽. The subsets are
assumed to be pairwise disjoint, so that we have

ℋI =⨁
𝑗∈𝐽

ℋ𝑗 = ℋ1 ⊕ℋ2 ⊕⋯⊕ℋ|𝐽| (4.22)

whereℋ𝑗 is the single-particle Hilbert space spanned by the modes of 𝑀𝑗. This
guarantees that the algebras𝒜(𝑀𝑗)𝐹 are independent of each other, but only due
to the enforcement of the parity superselection rule. It follows that

𝒜(𝑀)𝐹 = (⋃
𝑗∈𝐽

𝒜(𝑀𝑗)𝐹)
″
, (4.23)

as expected for a partition of the system. In particular, we can express the parity
operator as P̂ = P̂1P̂2…P̂|𝐽|, where P̂𝑗 = P̂𝑀𝑗.
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4 Multipartite mode entanglement

Equation (4.23) provide us with a separability criteria for mode entanglement.
Specifically, {𝑀𝑗}-product states are those that satisfy

⟨∏
𝑗∈𝐽

Ô𝑗⟩ρ̂ =∏
𝑗∈𝐽

⟨Ô𝑗⟩ρ̂𝑗 (4.24)

for all operators Ô𝑗 ∈ 𝒜(𝑀𝑗)𝐹. If each 𝑀𝑗 has at most 𝑘 modes, we say—by
analogy with the procedure in section 2.2— that the partition is a 𝑘-partition.
And we define the set of 𝑘-separable fermionic states 𝖲𝖾𝗉𝑘 as the convex hull of
all states which are {𝑀𝑗}-producible for some 𝑘-partition. Finally, a fermionic
state has 𝑘-partite mode entanglement if it does not belong to 𝖲𝖾𝗉𝑘.
The reduced states ̂ρ𝑗 in equation (4.24) must be physical states, i.e., commute

the local parity P̂𝑗. This can only occur if they have fixed parities P𝑗, such that

P = P1…P|𝐽| , (4.25)

where P is a fixed parity for the state ̂ρ. In fact, a concrete calculate shows
that a partial trace procedure for the fermionic modes is only consistent for
states that respect the superselection rule [176]. The necessity to account for
the superselection rule in order to obtain a consistent definition of fermionic
mode entanglement is a general requirement [98, 174, 176]. The advantage of
our formalism is it does this automatically, as we consider the algebras 𝒜(𝑀𝑗)𝐹
which already handle the parity.
It is worth pointing out that the algebra 𝖢𝖠𝖱(𝑀) is isomorphic to the algebra

of a system of 𝑑 qubits, since the dimension of the fermionic Fock space is 2𝑑.
However, this does not imply that the fermions can be treated as qubits [188]. In
particular, it is the superselection rule that induces the local net of observables
defined by𝒜(𝐾)𝐹. This is what differentiates fermions from qubits. One can also
see this concretely by mapping the fermionic modes into qubits with a procedure
such as the Jordan–Wigner transformation. It sends operators that are local in
the fermionic mode picture into nonlocal qubit operators, and vice versa. Thus,
the qubit local net of observables, induced by the tensor product structure, is
incompatible with the fermionic modes net, which is induced by exterior product
structure of the Fock space.
As we have mentioned, the choice of the modes𝑀 is critical as inequivalent

choices lead to different entanglement criteria. However, due to the generality of
our methods, it is not necessary to make any assumptions on𝑀. And, while the
majority of works on entanglement focus on modes localized in real-space, there
are interesting possibilities for the reciprocal space [182]. This is particularly the
case in light of the recent experiments with fermionic atomic species [189].
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4.2 Mode entanglement in fermionic systems

4.2.2 Entanglement bounds for fermionic systems
Our goal is to derive QFI bounds 𝑘-producible states to obtain a way to certify the
presence of multipartite mode entanglement. We choose a generator for the QFI
that is a generalized version of the generators associated to linear interferometers.
Specifically, we employ

Ô = ∑
𝑚∈𝑀

𝑤(𝑚) ̂c†𝑚 ̂c𝑚 , (4.26)

with weights 𝑤(𝑚) ∈ ℝ. This generator is compatible with any partition—as in
equation (4.21)—since we can rearrange the occupation numbers into

Ô = ∑
𝑗
Ô𝑗 = ∑

𝑗
∑

𝑚∈𝑀𝑗

𝑤(𝑚) ̂c†𝑚 ̂c𝑚 , (4.27)

such that Ô𝑗 ∈ 𝒜(𝑀𝑗)𝐹. In particular, analogously to equation (2.45), it is possible
to decompose the QFI of any {𝑀𝑗}-producible state into

𝖥𝖰[ ̂ρ, Ô] = ∑
𝑗∈𝐽

𝖥𝖰[ ̂ρ𝑗, Ô𝑗] , (4.28)

using the factorization given by equation (4.24). Thus, we need to find an upper
bound on the right-hand side of equation (4.28) that holds for all 𝑘-partitions.
Moreover, we can use equation (4.15) to decompose the QFI into

𝖥𝖰[ ̂ρ, Ô] = 𝗉(+) 𝖥𝖰[ ̂ρ+, Ô] + 𝗉(−) 𝖥𝖰[ ̂ρ−, Ô] , (4.29)

so we can assume a fixed parity to obtain the bound.
Just like the qudit case, the fist step is to derive an expression for the QFI of

{𝑀𝑗}-producible states. We begin by noticing that a state defined by

| 𝜓⟩ = Ĉ†1Ĉ
†
2…Ĉ†|𝐽|| ⟩ (4.30)

is {𝑀𝑗}-producible as long as each generalized creation operator Ĉ
†
𝑗 is restricted

to𝑀𝑗. Specifically, we have

Ĉ†𝑗 = ∑
𝜂𝑗

𝜑†𝑗 (𝜂𝑗) ̂c
†
𝜂𝑗 , (4.31)

where the sum runs over all 𝜂𝑗 ∈ 2𝑀𝑗 with a fixed parity P𝑗. In fact, every state that
is {𝑀𝑗}-producible is of this form, as can be easily verified with Wick’s theorem.
Therefore, it is sufficient to calculate the variance of Ô with respect to | 𝜓⟩.
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4 Multipartite mode entanglement

The expectation value of the operator Ô follows fromWick’s theorem. It is
given by

⟨𝜓 | Ô | 𝜓⟩ = ∑
𝑚∈𝑀

𝑤(𝑚)⟨ | (∏
𝑗
Ĉ𝑗) ̂c

†
𝑚 ̂c𝑚(∏

𝑗
Ĉ†𝑗 ) | ⟩

= ∑
𝑗

∑
𝑚∈𝑀𝑗

𝑤(𝑚)⟨ | Ĉ𝑗 ̂c
†
𝑚 ̂c𝑚Ĉ

†
𝑗 | ⟩ = ∑

𝑗
∑
𝜂𝑗

𝑤𝑗(𝜂𝑗) 𝗉𝑗(𝜂𝑗) ,
(4.32)

where we have assumed that the state is normalized, so that ⟨ | Ĉ𝑗Ĉ
†
𝑗 | ⟩ = 1. In

the equation above, we introduced random variables

𝑤𝑗(𝜂𝑗) = ∑
𝑚∈𝑀𝑗

𝑤(𝑚)𝜂𝑗(𝑚) (4.33)

distributed according to the probabilities 𝗉𝑗(𝜂𝑗) = 𝜑†𝑗 (𝜂𝑗)𝜑𝑗(𝜂𝑗). A similar calcula-
tion yields

⟨𝜓 | Ô2 | 𝜓⟩ = ∑
𝑗≠𝑗′

(∑
𝜂𝑗

𝑤𝑗(𝜂𝑗) 𝗉𝑗(𝜂𝑗))(∑
𝜂𝑗′
𝑤𝑗′(𝜂𝑗′) 𝗉𝑗(𝜂𝑗′))

+∑
𝑗
∑
𝜂𝑗

𝑤𝑗(𝜂𝑗)2 𝗉𝑗(𝜂𝑗) ,
(4.34)

and we get

⟨𝜓 | Ô2 | 𝜓⟩ − ⟨𝜓 | Ô | 𝜓⟩2 = ∑
𝑗
Δ𝟤𝑤𝑗 , (4.35)

as the crossed terms 𝑗 ≠ 𝑗′ cancel out. Hence, we conclude that the QFI of | 𝜓⟩ is
given by 𝖥𝖰[| 𝜓⟩⟨𝜓 |, Ô] = 4∑𝑗 Δ

𝟤𝑤𝑗.
To obtain a useful bound on the QFI, it is necessary to find a bound for∑𝑗 Δ

𝟤𝑤𝑗
that depends neither on the probability distributions 𝗉𝑗 nor on the specific parti-
tions𝑀𝑗, as these are state dependent. Instead, we need a quantity that applies
to all 𝑘-producible states and the values of the 𝑤(𝑚). Our tool of choice for this
task is Popoviciu’s inequality on variances [190, 191]. It states that

Δ𝟤𝑤𝑗 ≤
1
4(𝗆𝖺𝗑𝜂𝑗

𝑤𝑗(𝜂𝑗) − 𝗆𝗂𝗇
𝜂𝑗

𝑤𝑗(𝜂𝑗)) , (4.36)

where the maximum and minimum are taken over all allowed configurations.
We use this to optimize over all valid 𝑘-partitions—while accounting for the
constraints from the superselection rule—to obtain a generic bound for equa-
tion (4.35).
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4.2 Mode entanglement in fermionic systems

Consider a fixed partition {𝑀𝑗} and let us divide each𝑀𝑗 into

𝑀+
𝑗 = {𝑚 ∈ 𝑀𝑗 | 𝑤(𝑚) > 0}

𝑀0
𝑗 = {𝑚 ∈ 𝑀𝑗 | 𝑤(𝑚) = 0}

𝑀−
𝑗 = {𝑚 ∈ 𝑀𝑗 | 𝑤(𝑚) < 0} .

(4.37)

It follows that
∑

𝑚∈𝑀−
𝑗

𝑤(𝑚) ≤ 𝑤𝑗(𝜂𝑗) ≤ ∑
𝑚∈𝑀+

𝑗

𝑤(𝑚) , (4.38)

and this provides the maximum and minimum necessary for Popoviciu’s inequal-
ity. If (−1)|𝑀

+
𝑗 | ≠ (−1)|𝑀

−
𝑗 |, then the superselection rule allow us improve the

bound since the two limits above cannot be reached by states of the same parity.
However, we will neglect this for now because we can account for it during the
optimization procedure. Combining inequalities (4.36) and (4.38), we have

∑
𝑗
Δ𝟤𝑤𝑗 ≤ ∑

𝑗

1
4( ∑

𝑚∈𝑀+
𝑗

𝑤(𝑚) − ∑
𝑚∈𝑀−

𝑗

𝑤(𝑚))
2
= 1
4 ∑𝑗

( ∑
𝑚∈𝑀𝑗

|𝑤(𝑚)|)
2
, (4.39)

where the sum over𝑀+
𝑗 corresponds to the maximum of 𝑤(𝜂𝑗) over all 𝜂𝑗 and the

sum over𝑀−
𝑗 to the minimum.

Now we need a global bound that is optimized over all 𝑘-partitions. To obtain
it, we construct the 𝑘-partition that maximizes the right hand side of inequal-
ity (4.39). It is given by the algorithm bellow:
1: procedure Opt(𝑀,𝑤)
2: 𝑀• ← 𝑀
3: 𝑗 ← 1
4: while𝑀• ≠ ∅ do
5: 𝑀𝑗 ← ∅
6: Move the 𝑘modes with highest |𝑤(𝑚)| from𝑀• to𝑀𝑗

7: if (−1)|𝑀
+
𝑗 | ≠ (−1)|𝑀

−
𝑗 | then

8: Move the mode with the lowest |𝑤(𝑚)| from𝑀𝑗 to𝑀•
9: end if
10: 𝑗 ← 𝑗 + 1
11: end while
12: return {𝑀𝑗}
13: end procedure
Optimality is ensured by the step in line 6. It guarantees that each element𝑀𝑗 of
the partition has at most 𝑘modes, and it concentrates the modes that contribute

57



4 Multipartite mode entanglement

the most to inequality (4.39) together. This yields an optimal partition because
they will contribute quadratically, and the largest value arises when we square
the highest possible number. Lines 7 to 9 makes sure that the bound is as tight as
possible. This is because they ensure that the contribution associated to each𝑀𝑗
can be realized by a physical state, that respects the parity superselection rule.
Our optimization procedure generates a parition that is optimal for a global

parity given by

P =∏
𝑗
P𝑗 =∏

𝑗
(−1)|𝑀

+
𝑗 | =∏

𝑗
(−1)|𝑀

−
𝑗 | , (4.40)

and it yields a bound

𝖥𝖰[ ̂ρ, Ô] ≤ ∑
𝑗
( ∑
𝑚∈𝑀𝑗

|𝑤(𝑚)|)
2
≤ (𝑑𝑘2 + 𝑟2)(𝗆𝖺𝗑

𝑚∈𝑀
|𝑤(𝑚)|)

2
(4.41)

for all 𝑘-separable fermionic states. The second bound above is a generic expres-
sions that does not depend explicitly on the optimal partition. Inequality (4.41)
follows from our construction due to the convexity of the QFI, and we can use it
to certify the presence of multipartite fermionic mode entanglement.

4.2.3 Enhanced bounds at fixed particle number
If we consider a system with particle number conservation, then we can enhance
the QFI bound given by inequality (4.41). This is because the algorithm we
used to obtain the optimal partition did not factor in any constraints in the
occupation numbers. Thus, we can derive a new algorithm that generates an
optimal partition for a fixed particle number, and use it to tighten the QFI bound.
In particular, the QFI of a state ̂ρ that commutes with the number operator
follows

𝖥𝖰[ ̂ρ, Ô] = ∑
N
𝗉(N) 𝖥𝖰[ ̂ρN, Ô] , (4.42)

where ̂ρN is a state with a fixed number of particles and 𝗉(N) is the probability of
observing N particles. Therefore, it is sufficient to derive a QFI bound for states
with a fixed number of particles, since 𝗉(N) can be easily calculated or measured.
We proceed as before, with the state given by equation (4.30). However, there

is an additional requirement, namely that each generalized creation operator
Ĉ†𝑗 commutes with the number operator. In practice this means that each Ĉ

†
𝑗

creates states with a fixed particle number N𝑗. The global occupation number is
N = ∑𝑗N𝑗, and we assume that it is fixed from now on.
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4.2 Mode entanglement in fermionic systems

The derivations for the expectations values, and the variance of Ô, do not
change. However, the lower and upper bounds for 𝑤(𝜂𝑗), shown in inequal-
ity (4.38), cannot always be reached if there are restrictions on the occupation
numbers. In particular, the number of modes in𝑀+

𝑗 and𝑀−
𝑗 has to be the same

and equal to 𝑁𝑗. Otherwise, no choice of occupations 𝜂𝑗 can achieve the limits
inequality (4.38). We can exploit this to derive tighter bounds for the variance of
the state. Effectively, it is necessary to identify what is 𝗆𝖺𝗑 /𝗆𝗂𝗇𝜂𝑗𝑤𝑗(𝜂𝑗) when
there is a fixed number of particles.
To obtain the improved bounds, let us again consider an arbitrary partition

{𝑀𝑗}. Moreover, we fix an allocated number of particles N𝑗, that add to the global
value N. Divide each𝑀𝑗 into

𝑀𝑗 = 𝑀ᵆ
𝑗 ∪𝑀𝑖

𝑗 ∪𝑀
𝑙
𝑗 , (4.43)

where the lower portion 𝑀𝑙
𝑗 contains the 𝑁𝑗 modes with the lowest weights,

the upper portion𝑀ᵆ
𝑗 contains the 𝑁𝑗 modes with the highest weights, and the

intermediary portion𝑀𝑖
𝑗 contains the rest of the modes. It follows that

∑
𝑚∈𝑀𝑙

𝑗

𝑤(𝑚) ≤ 𝑤𝑗(𝜂𝑗) ≤ ∑
𝑚∈𝑀𝑢

𝑗

𝑤(𝑚) , (4.44)

if we only consider occupations 𝜂𝑗 compatible with the particle number N𝑗, that
is, such that the creation operator c†𝜂𝑗 creates exactly N𝑗 particles. Once again, we
apply Popoviciu’s inequality to obtain

∑
𝑗
Δ𝟤𝑤𝑗 ≤ ∑

𝑗

1
4( ∑

𝑚∈𝑀𝑢
𝑗

𝑤(𝑚) − ∑
𝑚∈𝑀𝑙

𝑗

𝑤(𝑚))
2
. (4.45)

In this case, we cannot benefit from the absolute value and there is an explicit
dependence of the occupation numbers.
Now, the task is to find the 𝑘-partition𝑀𝑗 that optimizes the right hand side of

inequality (4.45). This can be done by concentrating the modes with the highest
weights into the same𝑀ᵆ

𝑗 and those with the lowest weights into the same𝑀𝑙
𝑗 , in

a similar fashion as before. However, we also need to optimize over the allocation
of particles to each𝑀𝑗, since the bound can only depend on the total number N.
To do so, we must half-fill as many𝑀𝑗 as possible, giving priority to the𝑀𝑗 that
contribute the most. This is because𝑀ᵆ

𝑗 and𝑀𝑙
𝑗 overlap when N𝑗 is larger than

⌊|𝑀𝑗|/2⌋, i.e., when𝑀𝑗 is filled beyond half-filling. And this reduces the bound of
inequality (4.45), since some of the terms in the difference will cancel. Similarly,
if the filling is below half-filling, there will be modes in𝑀𝑖

𝑗 that do not contribute.
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Combining our insights, we can define an algorithm to construct the optimal
partition, designed to maximize the righ hand side of inequality (4.45) over all
𝑘-partitions and allocations of N particles. It is given by
1: procedure Opt(𝑀,N,𝑤)
2: 𝑀• ← 𝑀
3: N• ← N
4: 𝑗 ← 1
5: while𝑀• ≠ ∅ do
6: 𝑀𝑗 ← ∅
7: Move the ⌊𝑘/2⌋modes with highest 𝑤(𝑚) from𝑀• to𝑀𝑗
8: Move the ⌊𝑘/2⌋modes with lowest 𝑤(𝑚) from𝑀• to𝑀𝑗
9: if N• > ⌊|𝑀𝑗|/2⌋ then
10: N𝑗 ← ⌊|𝑀𝑗|/2⌋
11: N• ← N• − ⌊|𝑀𝑗|/2⌋
12: else
13: N𝑗 ← N•
14: N• ← 0
15: end if
16: 𝑗 ← 𝑗 + 1
17: end while
18: while N• > 0 do
19: if N• > ⌈|𝑀𝑗|/2⌉ then
20: N𝑗 ← N𝑗 + ⌈|𝑀𝑗|/2⌉
21: N• ← N• − ⌈|𝑀𝑗|/2⌉
22: else
23: N𝑗 ← N•
24: N• ← 0
25: end if
26: 𝑗 ← 𝑗 − 1
27: end while
28: return {𝑀𝑗} and {N𝑗}
29: end procedure

Lines 7 and 8 allocate up to 𝑘modes to𝑀𝑗 in order to maximize the contributions
to inequality (4.45). The steps in lines 9 to 15 assign the particles in such manner
as to ensure that all𝑀𝑗—with the possible exception of the last one—are half-
filled. If there are particles remaining, lines 18 to 27 allocates them. The loop
goes backwards, starting from the 𝑀𝑗 with the smallest weights, because this
procedure reduces the contributions from the𝑀𝑗 that get filled beyond |𝑀𝑗|/2.
This occurs when N > |𝑀|/2 and reduces the value of the upper bound.
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Once again, the convexity of the QFI implies that

𝖥𝖰[ ̂ρ, Ô] ≤ ∑
N
𝗉(N) ∑

𝑗
( ∑
𝑚∈𝑀𝑢

𝑗

𝑤(𝑚) − ∑
𝑚∈𝑀𝑙

𝑗

𝑤(𝑚))
2

⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
Optimal partition forN

, (4.46)

for all 𝑘-separable states with particle number conservation. And we obtain
another family of bounds that can be used to certify fermionic multipartite
mode entanglement in quantum many-body systems. They are a refinement of
inequality (4.41), since we leveraged the additional information to derive tighter
bounds. Our algorithm for the optimal partition also implies that the bound for
half-filling N = |𝑀|/2 is a bound for all other occupation values. Thus, it can be
used in settings where it is know that there is particle number conservation, but
it is no possible to obtain the probabilities 𝗉(N). In particular, we get a generic
bound

𝖥𝖰[ ̂ρ, Ô] ≤
𝑑𝑘2 + 𝑟2

4 (𝗆𝖺𝗑
𝑚∈𝑀

𝑤(𝑚) − 𝗆𝗂𝗇
𝑚∈𝑀

𝑤(𝑚))2 , (4.47)

which does not depend on the optimal partitions or the occupation probabilities.

4.3 Considerations for bosonic systems
It is possible apply to adapt our discussion of fermionic mode entanglement to
the context of bosons. In particular, we can use the bosonic algebras 𝒜(𝑀)N𝐵
to define a local net of observables that describes bosonic multipartite mode
entanglement. Concretely, we can also write

𝒜(𝑀)N𝐵 = (⋃
𝑗∈𝐽

𝒜(𝑀𝑗)N𝐵 )
″
, (4.48)

using a decomposition of the modes as in equation (4.21). This allow us to
formulate a factorization condition and use it to define a 𝑘-separability criteria for
bosons. The condition is the same as its fermionic counterpart in equation (4.24),
but with the bosonic algebra instead.
One can also write 𝑘-producible bosonic states using generalized creation

operators. Specifically, we have

| 𝜓⟩ = Â†1Ĉ
†
𝐴…Â†|𝐽|| ⟩ (4.49)

where Â†𝑗 is a generalized creation operators that only acts on the 𝑀𝑗 mode.
The relevant occupations are 𝜂𝑗 ∈ ℕ𝑀𝑗, so they can arbitrarily large if we do

61



4 Multipartite mode entanglement

not add any restrictions. This is why we have to work with the algebras that
conserve particle number, for this allows us to bound the spectrum of the bosonic
operators.
Using a linear generator for the QFI,

Ô = ∑
𝑚∈𝑀

𝑤(𝑚)â†𝑚â𝑚 , (4.50)

we can reproduce the same steps as before to find multipartite entanglement
bounds. However, there is a problem that needs to be accounted for. For a system
with N bosons, the QFI is bounded by

𝖥𝖰[ ̂ρ, Ô] ≤
N2

4 (𝗆𝖺𝗑
𝑚∈𝑀

𝑤(𝑚) − 𝗆𝗂𝗇
𝑚∈𝑀

𝑤(𝑚))2 , (4.51)

and this already realized by a 2-producible state. The reason is that the variance
of the superposition (â†𝑚𝗆𝖺𝗑)N| ⟩ + (â†𝑚𝗆𝗂𝗇)N| ⟩ already this maximum. Thus, we
cannot get useful multipartite mode entanglement bounds, or at least not without
some additional work.
The states that realize inequality (4.51) are analogous to 𝐺𝐻𝑍 spin states, and

extremely fragile. By contrast, states that occur in experiments with bosonic
atomic species will typically have a smoother particle number distribution. This
constrains the occupations 𝜂𝑗 ∈ ℕ𝑀𝑗 that actually occur in the system and allows
one to derive multipartite entanglement bounds. After all, this has to be the
case, given that experiments with bosonic species have already demonstrated the
connection betweenmultipartite entanglement and ametrological enhancement,
e.g., using spinor BECs [192]. On the theoretical side, more systematic studies
has been conducted for the spin-squeezing parameter and provide multipartite
entanglement bounds [88, 193]. In these works, one has effective spins, so that
the 2-producible bosonic states that realize inequality (4.46) can be disregarded.
We can use our techniques to obtain multipartite entanglement bounds that
apply to a more general setting, with arbitrary local occupation numbers.
Let us consider a bosonic system with fixed total particle number N, such that

each mode𝑚 can be occupied by at most n𝗆𝖺𝗑𝑚 particles. This is a generalization
of the hard-core bosons case, and should provide an approximation of systems
where typical local occupation numbers are bounded. In the hard-core limit,
when all n𝗆𝖺𝗑𝑚 = 1, we can derive a multipartite mode entanglement bound
using the same algorithm as the case fermionic case with conserved particle
number. This follows from the same partition-optimization procedure, and we
can construct optimal partitions for arbitrary local constraints n𝗆𝖺𝗑𝑚 .
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4.3 Considerations for bosonic systems

The algorithm that constructs optimal partitions is given by:
1: procedure Opt(𝑀,N,𝑤, n𝗆𝖺𝗑)
2: 𝑀• ← 𝑀
3: N• ← N
4: 𝑗 ← 1
5: while𝑀• ≠ ∅ do
6: 𝑀𝑗 ← ∅
7: Move the ⌊𝑘/2⌋modes with highest 𝑤(𝑚)n𝗆𝖺𝗑𝑚 from𝑀• to𝑀𝑗
8: Nᵆ

𝑗 ←∑𝑚∈𝑀𝑗
n𝗆𝖺𝗑𝑚

9: Move the ⌊𝑘/2⌋modes with lowest 𝑤(𝑚)n𝗆𝖺𝗑𝑚 from𝑀• to𝑀𝑗
10: N𝑙

𝑗 ←∑𝑚∈𝑀𝑗
n𝗆𝖺𝗑𝑚 − Nᵆ

𝑗

11: if ||∑𝑚∈𝑀𝑙
𝑗
𝑤(𝑚)n𝗆𝖺𝗑𝑚

|| ≤ ||∑𝑚∈𝑀𝑢
𝑗
𝑤(𝑚)n𝗆𝖺𝗑𝑚

|| then
12: N𝑗 ← Nᵆ

𝑗
13: else
14: N𝑗 ← N𝑙

𝑗
15: end if
16: if N• > N𝑗 then
17: N• ← N• − N𝑗
18: else
19: N𝑗 ← N•
20: N• ← 0
21: end if
22: 𝑗 ← 𝑗 + 1
23: end while
24: while N• > 0 do
25: if N• > Nᵆ

𝑗 + N𝑙
𝑗 − N𝑗 then

26: D ← Nᵆ
𝑗 + N𝑙

𝑗 − N𝑗
27: N𝑗 ← N𝑗 + D
28: N• ← N• − D
29: else
30: N𝑗 ← N•
31: N• ← 0
32: end if
33: 𝑗 ← 𝑗 − 1
34: end while
35: return {𝑀𝑗} and {N𝑗}
36: end procedure
It produces the same type of multipartite mode entanglement bounds as the
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4 Multipartite mode entanglement

fermionic procedures, and can also be calculated efficiently for large quantum
many-body systems. Thus, we have

𝖥𝖰[ ̂ρ, Ô] ≤ ∑
N
𝗉(N) ∑

𝑗
( ∑
𝑚∈𝑀𝑢

𝑗

𝑤(𝑚) − ∑
𝑚∈𝑀𝑙

𝑗

𝑤(𝑚))
2

⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
Optimal partition forN and n𝗆𝖺𝗑

, (4.52)

for all 𝑘-separable bosonic states with particle number conservation. This yields
a tool for certifying bosonic multipartite mode entanglement in quantum many-
body systems.
If the probabilities 𝗉(N) decay sufficiently fast, we can use inequality (4.52) to

derive entanglement bounds for the QFI density in continuum systems. This can
be done with a regularization procedure based on local constraints n𝗆𝖺𝗑𝑚 ≈ n(𝑥)
that depend on the particle density, and the systems volume. We began exploring
this approach in the context of Latz’smaster thesis [109], but it has been expanded
and refined since then. The results presented here, including the optimization
algorithm, are the outcome of this refinement and we are currently exploring
potential applications to atomic systems.
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5 Application to a model of
interacting fermions

The Fermi–Hubbard model is a paradigmatic model for strongly correlated elec-
trons [150, 194]. It is known to reproduce various qualitative features of solid
states systems, but its theoretical description is notoriously challenging. As such,
it is a natural candidate for quantum simulation using ultracold atoms [57, 61].
Recent experiments with fermionic species have realized this and pave the way
for exploring exotic solid state physics with atomic platforms [195–200]. This
opens the possibility of using quantum simulation to characterize entanglement
in systems of interacting fermions.

In this chapter, we present our results for the Fermi–Hubbard model. It show-
cases the techniques discussed in the previous two chapters and demonstrates
their viability for current ultracold atoms experiments. Our numerical simu-
lations demonstrate the presence of multipartite mode entanglement at finite
temperatures across the phase diagram of the Fermi–Hubbard mode. They sug-
gest a relation between the strongly correlated behavior and the presence of
resilient multipartite entanglement. Additionally, we use this as an opportunity
to illustrate some of the advantages of the quench protocol that were discussed in
chapter 3. The contents presented here are based on our publication and include
data taken from it [105].

The first section is a short introduction to the Fermi–Hubbard model, with
special attention to its behaviour at large interaction strengths (see the review by
Tarruell et al. for further details [61]). This provide us with some intuition about
the physics of the model. And suggests which operators will yield good measures
of fermionic mode entanglement. Afterwards, we present the numerical results
for the QFI obtained with the quench protocol. Besides this, we also discuss some
experimental issues and provide numerical results to corroborate the resilience
of our quench protocol.
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5 Application to a model of interacting fermions

5.1 Fermi–Hubbard model
The Fermi–Hubbard model was introduced in 1960s as a tool to study interacting
electrons in metallic systems [201–203]. It displays various nontrivial features
and operates as a toy model for more elaborate solid state models. In its simplest
version, it describes interacting spin-half fermions in a lattice with nearest neigh-
bour tunneling and a on-site interaction. This corresponds to a tight-binding
approximation, whose localized modes correspond toWannier functions [204],
with a cutoff that limits the interaction range.
We consider the one dimensional case of an open chain of size 𝐿, so that the

fermions live on lattice sites 𝑥 = 1, 2,…𝐿 and have two internal states, 𝑠 =↑, ↓.
In a ultracold atoms setup, this can be realized with an optical lattice and two
addressable atomic levels. The Hamiltonian is given by

Ĥ = −𝐽∑
𝑥𝑠
( ̂c†𝑥𝑠 ̂c𝑥+1𝑠 + 𝗁. 𝖼.) + 𝑈∑

𝑥
n̂𝑥↑n̂𝑥↓ , (5.1)

where the first term is the kinetic contribution, coupling adjacent sites, and the
second corresponds to a on-site interaction potential, which can be attractive or
repulsive (see figure 5.1).

(a) Kinetic energy (b) On-site interaction

Figure 5.1: Diagrammatic representation of the contributions to
equation (5.1). The dynamics of the system are defined by the com-
petition between the kinetic energy, diagonal in momentum space,
and the on-site interaction, diagonal in real space.

If 𝑈 = 0 then equation (5.1) becomes a free theory, and the 𝑠 = ↑ sector
decouples from 𝑠 = ↓. In momentum space we have

Ĥ|𝑈=0 = ∑
𝑘𝑠
ε𝑘 ̂c†𝑘𝑠 ̂c𝑘𝑠 , (5.2)

where ̂c𝑘𝑠 = √(1/𝐿)∑𝑥 𝑒
+𝑖𝑘𝑥 ̂c𝑥𝑠 and ε𝑘 = 2𝐽 𝖼𝗈𝗌 𝑥, as usual. So that the eigen-

states are localized in momentum space. By contrast, for 𝐽 = 0, equation (5.1) is
already diagonal and the eigenstates are localized in real space.
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5.1 Fermi–Hubbard model

U/J

-8

0

8

-8 -4 40 8

ε/J - UL/4J

Figure 5.2: Spectrum of a Fermi–Hubbard model with 𝐿 = 4 at
half-filling with no magnetic field. The system develops separate
bands for large |𝑈| that effectively decouple due to energy gap. The
effective antiferromagnetic Hamiltonian of equation (5.4) describes
the physics within each band. We add an energy shift proportional
to 𝑈 to make the duality of the system evident. Data was obtained
with exact diagonalization.

The occupation number, N̂ = ∑𝑥(n̂𝑥↑ + n̂𝑥↓), and the magnetic field, M̂ =
∑𝑥(n̂𝑥↑ − n̂𝑥↓), are conserved by equation (5.1) so we can fix their values. More-
over, the system has particle–hole symmetry, which we can use to our benefit. It
allows us to define a duality that relates the repulsive and attractive regime [61].
The transformation is defined by its action on the 𝑠 =↓ sector,

̂c𝑥↓ ↦ (−1)𝑥 ̂c†𝑥↓ , (5.3)

and acts trivially for 𝑠 =↑. If we define the doping with respect to half-filling as
D = N − 𝐿, then we have a duality between the repulsive and attractive sides
that swaps D andM. Therefore, it is sufficient to calculate properties on one side
of the phase diagram, since they can be translated to the other side.

5.1.1 Effective description for large interactions
Let us consider the infinitely repulsive limit 𝑈 ≫ 𝐽 to get a better handle on
the physics of the model. Due to the repulsive interaction, the Hamiltonian will
prevent pairs from forming. In the half-filling case with no magnetization,N = 𝐿
and M = 0, this means that there will be a ground state manifold defined by
all possible configurations of the system with only one particle per site. In the
opposite limit, when 𝑈 goes to negative infinity, low energy states will contain
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5 Application to a model of interacting fermions

̂c†𝑥↓ ̂c𝑥+1↓ ̂c†𝑥+1↓ ̂c𝑥↓

Figure 5.3: Second order perturbative corrections to 𝑈 → ±∞
regime, come from transitions like the one depicted here. The block-
age of this process induces the antiferromagnetic interaction of equa-
tion (5.4). In the repulsive regime, the bottom state is the low energy
one and the one above corresponds to an excitation of energy |𝑈|.
This is reversed in the attractive case.

as many pairs, created by ̂c†𝑥↑ ̂c†𝑥↓, as possible. Thus, the ground state manifold
will contain all possible permutations of the positions of the pairs. See figure 5.2
for a depiction of the energy levels of the system across the phase diagram. It
displays the ground state manifolds for |𝑈| ≫ 𝐽 and the excited bands.
Hence, in the repulsive regime, the density degree of freedom n̂𝑥↑ + n̂𝑥↓ is

frozen and all dynamics occur in the spin sector n̂𝑥↑−n̂𝑥↓. The opposite happens
in the attractive case, consistent with particle–hole symmetry. It is an manifesta-
tion of of spin–charge separation and fractionalization [205] This is a hallmark
feature of one dimensional interacting systems and it is predicted by the theory of
Tomonaga–Luttinger liquids [206–209]. It has been observed in ultracold atoms
experiments with the help of quantum gas microscopy [200].
We can calculate the corrections for finite |𝑈| with perturbation theory. The

first correction is of second order and comes from the process depicted in fig-
ure 5.3. It results in an antiferromagnetic effective Hamiltonian,

Ĥeff ≈
4𝐽2
|𝑈| ∑𝑥

Ŝ𝑥 ⋅ Ŝ𝑥+1 , (5.4)

where Ŝ𝑥 = 1/2∑𝑛=𝑥,𝑦,𝑧( ̂c
†
𝑥↑ ̂c†𝑥↓)σ̂𝑛𝑥( ̂c𝑥↑ ̂c𝑥↓)𝑇 is the effective spin vector. The

ground states are two-fold degenerate and defined by alternating spin (density)
and constant density (spin) in the repulsive (attractive) regime. The antiferro-
magnetic order has already been observed experimentally in experiments with
ultracold atoms [197, 199, 210]. Higher bands correspond to the creation of
doublon–holon excitations (breaking of pairs) in the repulsive (attractive) side.
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5.2 Numerical results at half-filling

On the attractive side, one can lift the degeneracy in the perturbative regime
by applying a spatially modulated shift in the chemical potential. It amounts to

Ĥ → Ĥ −∑
𝑥
𝜇𝑥(n̂𝑥↑ + n̂𝑥↓) = Ĥ − 𝑞Ô− (5.5)

with a staggered pattern 𝜇𝑥 = (−1)𝑥𝑞 and Ô− = ∑𝑥(−1)
𝑥(n̂𝑥↑ + n̂𝑥↓). If 𝑞 is

sufficiently small, this will select a reference ground state, but it will not couple
the low energy manifold to high energy states. The same strategy applies to the
repulsive case, with the spin degree of freedom instead, so we consider

Ĥ → Ĥ −∑
𝑥
𝑚𝑥(n̂𝑥↑ − n̂𝑥↓) = Ĥ − 𝑞Ô+ (5.6)

where Ô+ = ∑𝑥(−1)
𝑥(n̂𝑥↑ − n̂𝑥↓) is an alternating magnetic field.

5.2 Numerical results at half-filling
In this section we apply the quench protocol of chapter 3 to the Fermi–Hubbard
chain. Thus, we consider a system in thermal equilibrium in the canonical
ensemble with an inverse temperature 𝛽 = 1/𝑇. The occupation number is fixed
to half-filling and the magnetization to zero. To simulate the quench protocol of
section 3.2, we consider two generators given by equations (5.5) and (5.6). The
motivation is that, as we move from the large interactions regime to |𝑈| ≈ 𝐽,
the system will develop fluctuations that destroy the effective description. This
suggests that these generators should have a high metrological sensitivity [39].
And that they provide a good probe for multipartite entanglement.
We extract the cumulative response function 𝜉(𝜏) = 𝛥Ôquench(𝜏)/𝑞 from exact

diagonalization by simulating an abrupt quench. This provides the full response,
including non linear corrections, and we obtain the linear part by considering
sufficiently weak quenches. Integrating with the appropriate filter, yields the
QFI as a function of 𝑈/𝐽 and 𝑇/𝐽. The results are summarized in figures 5.4
and 5.5. And demonstrate the presence of multipartite entanglement at finite
temperatures.
Figure 5.5 shows the presence of multipartite entanglement that is resilient

to thermal fluctuations in the intermediary region |𝑈| ≈ 𝐽. By contrast, entan-
glement in the perturbative regime decays quickly as the temperature increases.
This is because it is related to a fragile GHZ-like ground state that develops due
to finite size effects and . Figure 5.6 contain a cut for fixed temperature where
this effect is shown clearly.
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Figure 5.4: Quench protocol for QFI extraction, exemplified at tem-
peratures 𝑇/𝐽 = 0.2, 0.4, 0.8 (from light to dark shades) for a quench
with the staggered magnetization. (a) At time 𝜏 = 0, the system is
quenched with the operator Ô+ and strength 𝑞. Measuring ⟨Ô+(𝜏)⟩
and the deviations from the equilibrium expectation value yields the
cumulative response function. (b) Using equation (3.43), the QFI
can be computed by integrating with the filter function defined by
equation (3.45). (c) Cutting off the integral at time 𝜏cutoff produces the
lower bound of inequality (3.46). (d) Due to the functional form of
𝜅(𝜏) = 𝜅quench(𝜏), the convergence is exponentially fast with a decay
constant set by the temperature, 𝖥𝖰−𝖥𝖰(𝜏cutoff) ∼ 𝖾𝗑𝗉(−𝜋𝑇𝜏cutoff).
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Figure 5.5: Heatmap showing the QFI across the phase diagram. It
is calculated using the best generator out of Ô±. Contour lines show
the multipartite entanglement bounds obtained in section 4.2.2 for
a fixed particle number. Many-body entanglement is certified up to
large temperatures. Data for a chain with 𝐿 = 8.
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Figure 5.6: QFI density for different system sizes at 𝑇/𝐽 = 0.4 with
thresholds for certifying entanglement (dotted lines). Multipartite
entanglement is detected in the intermediate region, and the system-
size dependence suggests the entanglement is especially robust in it,
making it a prime candidate to search for experimental signatures of
multipartite entanglement.
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Figure 5.7: Optimization of the QFI generator for fermionic mode
entanglement bounds for a chain of size 𝐿 = 4. QFI computed
from exact diagonalization for all linear operators with amplitude
𝑤𝑥𝑠 = ±1. The dark line denotes the optimized QFI, whereas the
gray curves are the QFI for the various generators. It corresponds
to the staggered magnetization Ô+ for 𝑈/𝐽 > 0 and to the staggered
density Ô− for 𝑈/𝐽 < 0. This corroborates the suitability of the
physical intuition to use operators where large quantum fluctuations
can be expected.

The choice of the generator Ô is critical for obtaining useful entanglement
bounds. This is a known issue for the study of the QFI and, in general, finding
the optimal operator is a computationally challenging task. And it remains a
challenge with the restriction on the form of the operator required by the entan-
glement bounds. For our purposes, we consider a simplified case by considering

Ô = ∑
𝑥𝑠
𝑤𝑥𝑠n̂𝑥𝑠 (5.7)

with 𝑤𝑥𝑠 ∈ {−1,+1}. The reason for this choice is to consider operators with the
same entanglement bound as Ô±. In this way, we can investigate the optimal op-
erator for this entanglement bound. As seen in figure 5.7, the optimal operator for
the Fermi–Hubbard chain is given by Ô±. This corroborates our initial intuition
based on the behaviour of the system in the effective perturbative description.
Of course, alternative options exist, such as the modulation 𝑤𝑥𝑠 = 𝖼𝗈𝗌(𝑘𝑠𝑥 + 𝜑𝑠)
that provides a generalization of the staggered density and magnetization.
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5.3 Experimental considerations

(a) Staggered chemical potential (b) Staggered magnetic field
𝜇𝑥 = (−1)𝑥𝑞 𝑚𝑥 = (−1)𝑥𝑞

Figure 5.8: Realization of staggered quench specified in the previ-
ous section. This can be accomplished with a superlattice in the case
of Ô− to modulate the local chemical potentials in a staggered fash-
ion. In the repulsive regime, it is necessary to use spin-dependent
superlattices to modulate the local magnetic field.

5.3 Experimental considerations

Ultracold atoms are now reaching strongly-correlated many-body states of the
Fermi–Hubbard model at temperatures as low as 𝑇/𝐽 = 0.25 [197, 199, 200],
well within the region where multipartite entanglement can be detected (see
figure 5.5). Moreover, as shown in figure 5.4, at such temperatures the QFI con-
verges within few hopping events (𝐽𝜏 ≲ 8), i.e., on time scales faster than typical
decoherence rates [200]. A quench with Ô± amounts to abruptly modifying
the chemical potential in a staggered fashion, which can be implemented with
superlattices in a straightforward manner, without the need for quantum gas
microscopes (see figure 5.8). The relevant observable ⟨Ô±(𝜏)⟩ can be measured
through site-dependent imaging using existing techniques [211–216]. Thus,
our quench protocol enables the detection of multipartite entanglement within
existing experimental setups.
Nonlinear effects are always present in the quench dynamics, but they are

negligible for sufficiently small quench parameters. Figure 5.9 shows a systematic
test of the extent to which nonlinear effection have to be accounted for in the
QFI extraction. Specifically, it shows the outcome of the quench protocol when
performed using quench parameters ranging from −0.1𝐽 to 0.1𝐽. We see that
even for 𝑞/𝐽 ≈ 10%, reasonable precision can be achieved for the QFI, with
errors on the order of few percent at most. In particular, errors are limited
to 5%, except for extreme values of interaction strength. Thus, one can reliably
implement the protocol with a finite quench, and still obtain an accurate estimate
for the QFI. This is compounded with the fact that the errors are negative, so
the value obtained for the QFI can be safely used for entanglement certification.
If necessary, accuracy can be further improved by taking several data points at

73



5 Application to a model of interacting fermions

U/J = 0.1 U/J = 1.0 U/J = 10.0

0.00 0.06

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%
F 

(q
   

0)
 -

 
Q

   
F Q

-0.06

q/J

Figure 5.9: QFI extraction with different 𝑞 for a chain with 𝐿 = 4 at
𝑇/𝐽 = 4.0.. Deviations of 𝛥Ôquench(𝜏) from the predictions of linear
response theory lead to a 𝑞 dependent value for 𝖥𝖰. Here, the errors
relative to the correct value are shown. A quadratic correction, com-
ing from the 𝛥Ô(3)

quench(𝜏) term, dominates at this scale and increases
with interaction strength.

𝑞 > 0 and extrapolating to 𝑞 = 0, as discussed in section 3.2.2.

5.3.1 Resilience against atom loss
Finally, the time evolution of the expectation value of Ô can be subject to decoher-
ence. One strength of our proposal is that only measurements over exponentially
short times are required and this significantlymitigates the effects of decoherence.
As such, in an experiment with sufficient control so as to ensure a separation of
scales, we expect our method to be resilient against deviations from the unitary
quench dynamics proposed. Nonetheless, it is worht considering an example to
test this hypothesis explicitly.
The time evolution of the system subjected to decoherence is governed by

open quantum system dynamics. It can be described with a master equation
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Figure 5.10: QFI extraction subjected to atom loss, exemplified with
the the staggeredmagnetization Ô = Ô+. Data for a chain of size 𝐿 =
4with temperatures𝑇/𝐽 = 0.2, 0.4, 0.6, 0.8 (from light to dark shades).
(a) As we increase the rate of atom loss (decreasing the half–life 𝐽𝜏1/2),
𝜉(𝜏) decreases but for moderate atom loss rates we retain the signal
for short time scales. (b) Here, the rate of atom loss is parameterized
by the half-life 𝜏1/2, so that the number of atoms evolves according
to N̂(𝜏) = N̂(0)2−𝜏/𝜏1/2. (c) We see that entanglement certification is
still possible for all but extremely high rates of atom loss 𝐽𝜏1/2 < 4.
(d) The extent to which the QFI is underestimated is limited to 70%
for 𝐽𝜏1/2 ≈ 10 and only drops so much for the lowest temperatures.

in the Markovian case, which amounts to adding jump operators to the Von
Neumann equation. We use this to model the experimentally relevant case of
atom loss and perform numerical simulations. Figure 5.10 contains the results
and demonstrates that entanglement certification can still be performed on
systems subjected to sizable loss. Decoherence coming from atom loss also has
the benign property of only decreasing the value obtained for the QFI which
prevents any false positives for entanglement certification. We also observe that
the QFI for 𝑈/𝐽 = 2.0 is more resilient to atom loss then that of 𝑈/𝐽 = 4.0. This
is consistent with the observation that, qualitatively, the entanglement in the
strongly correlated region appears to be more robust.
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6 Entanglement witnesses for
lattice gauge theories

In this chapter, we present our results related to entanglement in lattice gauge
theories, and demonstrate how to construct entanglement witnesses for them.
This extends the existing framework of entanglement witnesses, typically em-
ployed in systems consisting of qubits, to gauge invariant states. It enables the
detection of entanglement in lattice gauge theories with simple expectation val-
ues of physically accessible observables. As such, it has a considerable advantage
over entanglement measures such as the entanglement entropy, which requires
knowledge of the physical state that grows exponentially with system size. Thus,
we provide an efficient and scalable framework for accessing entanglement in
lattice gauge theories.
The interest in studying entanglement in lattice gauge theories, and in gauge

theories more generally, is manifold. First, there is evidence that entanglement
plays a role in the thermalization and equilibration of gauge theories [217–220],
an important topic in the field of high-energy physics. More broadly, given their
prominent role as building blocks of the standard model, gauge theories are a
natural setting to explore synergies between high-energy physics and quantum
information science. Another motivation arises from the rapid development
of quantum simulation platforms, and the prospect of realizing a lattice gauge
theory in a tabletop experiment [221–228]. Additionally, lattice gauge theories
are related to topological quantum computation, and provide the basic models
for topological states of matter [41, 229, 230].
From a theoretical standpoint, the application of measures of entanglement to

lattice gauge theories has received considerable attention in recent years [101–104,
231–236]. In particular, because the presence of local conservation laws—such
as Gauss’ law—introduces major subtleties that are of theoretical interests. It
gives rise to superselection sectors for the algebra of gauge invariant observables,
and this must be accounted by any characterization of entanglement [101, 237].
Here, we employ the formalism introduced in section 2.4, which was used in
chapter 4, to achieve this. In particular , It enables us to construct entanglement
witness, which are well suited for applications in future experiments performing
quantum simulation of lattice gauge theories.
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6 Entanglement witnesses for lattice gauge theories

6.1 Lattice gauge theories
Lattice gauge theories are discretized versions of continuum gauge theories
defined over a lattice. They were originally introduced by Wilson [238] as a tool
to investigate confinement in QCD , and have since found applications in many
areas of physics. The basic idea is to model gauge fields using local degrees of
freedom assigned to the edges of a lattice [239]. Additionally, an action, or a
Hamiltonian, has to be constructed for the lattice in a way that is consistent with
the underlying gauge symmetry.
Let us consider a two dimensional square lattice 𝐿 for concreteness. Wilson

loops define canonical gauge invariant degrees of freedom associated to plaque-
ttes of the lattice. They are given by

W[𝛤𝑝] = 𝖳𝗋(𝑃 𝖾𝗑𝗉 𝑖∮
𝛤𝑝
𝖽𝑥𝜇𝐴𝜇) ≈ 𝖳𝗋(U𝑣0𝑣1U𝑣1𝑣3U

†
𝑣2𝑣3U

†
𝑣0𝑣2) , (6.1)

where the integral in equation (6.1) runs over the path 𝛤𝑝 = 𝜕𝑝 outlined by the
boundary of the plaquette 𝑝. Each U𝑣𝑤 amounts to a parallel transport along the
edge connecting vertices 𝑣 and 𝑤. Here we assume that there is a irreducible
representation of the gauge group 𝐺, so that the trace is taken with respect to
this representation. The gauge symmetry acts on the U𝑣𝑤 degrees of freedom
according to

U′
𝑣𝑤 = 𝖾𝗑𝗉(+𝑖𝛼𝑎(𝑣)λ𝑎)U𝑣𝑤 𝖾𝗑𝗉(−𝑖𝛼𝑎(𝑤)λ𝑎) , (6.2)

with generators of the symmetry λ𝑎 and an implicit sum over the internal indices
𝑎. This gives rises to the Wilson action,

𝑆(U) = −∑
𝑝
𝖱𝖾 𝖳𝗋(U𝑣0𝑣1U𝑣1𝑣3U

†
𝑣2𝑣3U

†
𝑣0𝑣2) , (6.3)

which is manifestly gauge invariant. Equation (6.3) is a discretization of the well
known Yang–Mills action [240]. As such, it realizes a lattice gauge theory with
the plaquette contributions playing the role of the field strength 𝐹𝑎𝜇𝜈.
Besides the action formulation, it is possible to obtain a Hamiltonian formula-

tion of lattice gauge theories [241]. This will bemore convenient for our purposes,
so we follow this approach from now on. In particular, we consider quantum
link models [242]. They provide a Hamiltonian formulation of lattice gauge
theories that extends the Wilsonian description and are particularly well suited
for quantum simulation [243]. We provide a quick review to introduce the main
ingredients following Chandrasekharan et al. [242].
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6.1 Lattice gauge theories

6.1.1 Quantum link models
To define quantum link models, we start with a description that is not gauge
invariant and reconstruct a gauge invariant sector from it. We assign local Hilbert
space to the edges of the lattice such that we have a global Hilbert space given by

ℋ𝐿 = ⨂
𝑣𝑤∈𝐿1

ℋ𝑣𝑤 ≅ ℂ𝑑|𝐿1| , (6.4)

where 𝐿1 denotes the set of edges of lattice, and we assume each local degree of
freedom is a qudit of dimension 𝑑. The parallel transporters amount to 𝐺-valued
operators Û𝑣𝑤 acting on this Hilbert space and we can write a Hamiltonian

Ĥ = 𝐽
2 ∑
𝑝∈𝐿2

(𝖳𝗋(Û𝑣1𝑣2Û𝑣2𝑣4Û
†
𝑣3𝑣4Û

†
𝑣1𝑣3) + 𝗁. 𝖼.) , (6.5)

where, once again, the trace is taken with respect to the representation of the
group.
Gauge transformations are realized by local generators Ĝ𝑎

𝑣 associated to the
vertices of the system. They transform parallel transporters according to

Û′
𝑣𝑤 = 𝖾𝗑𝗉(+𝑖𝛼𝑎(𝑣)Ĝ𝑎

𝑣)Û𝑣𝑤 𝖾𝗑𝗉(−𝑖𝛼𝑎(𝑤)Ĝ𝑎
𝑤) , (6.6)

which is the analogue of equation (6.2). More generally, we can define a path
operator Û𝛤 associated to each path 𝛤 by

Û𝛤 = 𝑃 ∏
𝑣𝑤∈𝛤

Û𝑣𝑤 = Û𝑣0𝑣1Û𝑣1𝑣2 …Û𝑣𝑙−2𝑣𝑙−1Û𝑣𝑙−1𝑣𝑙 , (6.7)

and it will also transform according equation (6.6) if we take 𝑣 = 𝑣0 and 𝑤 = 𝑣𝑙
as the end points of the path. Thus, the operators associated to Wilson loops
Ŵ𝛤 = 𝖳𝗋𝐺 Û𝛤 are gauge invariant due to the cyclic property of the trace.
The relevant algebra of operators of the quantum link model is

[Ĝ𝑎
𝑣, Ĝ𝑏

𝑤] = 𝛿𝑣𝑤𝑓𝑎𝑏𝑐Ĝ𝑐
𝑣

[Û𝑣𝑤, Ĝ𝑎
𝑣] = λ𝑎Û𝑣𝑤

[Û𝑣𝑤, Ĝ𝑎
𝑤] = Û𝑣𝑤λ𝑎 ,

(6.8)

where 𝑓𝑎𝑏𝑐 are the structure constants of the underlying Lie algebra, i.e., they are
defined by [λ𝑎, λ𝑏] = 𝑓𝑎𝑏𝑐λ𝑐. The first commutation relation arises since the gauge
symmetry should define a local representation of 𝐺, so that its generators define
a representation of the corresponding Lie algebra. Equation (6.6) is equivalent to
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6 Entanglement witnesses for lattice gauge theories

second commutation relation as it defines how the parallel transporters transform
after an infinitesimal gauge transformation. Combined, these commutation
relations generate the algebra that is necessary to implement the lattice gauge
theory. In particular, the algebra of gauge invariant operators is given by

𝒜(𝐿)𝐺 = {Ô ∈ ℬ(𝐿) || ∀𝑎∀𝑣 [Ô, Ĝ𝑎
𝑣] = 0} , (6.9)

and it defines the physical observables of the theory. Of course, it is necessary to
obtain a concrete representation of this algebra to get an actual model. This is
relatively straight forward for abelian groups, and we will describe the procedure
in detail for the𝖴(1) gauge group. However, the basic idea applies more generally
and one can also construct quantum link models for for non-abelian theories,
such as QCD with the 𝖲𝖴(3) gauge group [244].

6.1.2 Example: U(1) quantum link model
If we consider 𝐺 = 𝖴(1), then the Lie algebra is trivial and we only have one
generator λ ≅ 1, so we can drop the group representation indices. Equation (6.8)
simplifies and the only nontrivial commutation relations are

[Û𝑣𝑤, Ĝ𝑣] = Û𝑣𝑤
[Û𝑣𝑤, Ĝ𝑤] = −Û𝑣𝑤 .

(6.10)

This can be realized with a spin algebra, so we assume that each local degree of
freedomℋ𝑣𝑤 corresponds to a spin.
We fix the 𝑧 component of the spin as the preferred direction which we use to

define the gauge generators. Employing this convention, the generators are

Ĝ𝑣 = ∑
𝑣𝑤∈𝐿1

Ŝ𝑧𝑣𝑤 − ∑
𝑤𝑣∈𝐿1

Ŝ𝑧𝑤𝑣

= Ŝ𝑧𝑣𝑤1 + Ŝ𝑧𝑣𝑤2 − Ŝ𝑧𝑤3𝑣 − Ŝ𝑧𝑤4𝑣 ,
(6.11)

where we sum over edges attached to 𝑣 with a ±1 factor accounts to account
for the relative orientation. This is necessary to compensate for the different
signs in equation (6.10). For a two dimensional square lattice this reduces to four
contributions, two positive ones coming from incoming edges, and two negative
ones from the outgoing edges.
The Hamiltonian commutes with the gauge generators by construction, be-

cause it has to be gauge invariant. Furthermore, since the group is abelian, the
generators commute amongst themselves, i.e., they are gauge invariant. This
allows us to associate a physical observable to the contributions to Ĝ𝑣 coming
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6.2 Separability and gauge symmetries

from each edge. They are the electric field of the theory and we write Ê𝑣𝑤 = Ŝ𝑧𝑣𝑤
to denote this. It follows that each generator amounts to the electric flux across a
curve—which acts as Gaussian surface—circling around the vertex. Moreover,
we can enforce constraint coming from Gauss’ law,

Ĝ𝑣| 𝜓⟩ = (Ê𝑣𝑤1 + Ê𝑣𝑤2 − Ê𝑤3𝑣 − Ê𝑤4𝑣)| 𝜓⟩ = 0 , (6.12)

by setting the background charges to zero. This procedure defines the physical
states of the theory and the corresponding Hilbert space,

ℋG
𝐿 = {| 𝜓⟩ ∈ ℋ𝐿 || ∀𝑣 Ĝ𝑣| 𝜓⟩ = 0} , (6.13)

as an eigenspace of the gauge generators.
If we compare equation (6.10) to the commutation relations of spin operators,

it becomes clear how to represent the parallel transporters. They correspond to
spin raising operators Û𝑣𝑤 = Ŝ+𝑣𝑤 and, in the reverse direction, to spin lowering
operators Û𝑤𝑣 = Û†

𝑣𝑤 = Ŝ−𝑣𝑤. Thus, the plaquette operators are given by

Û𝑝 = Û𝛤𝑝 = Ŝ+𝑣1𝑣2Ŝ
+
𝑣2𝑣4Ŝ

−
𝑣3𝑣4Ŝ

−
𝑣1𝑣3 , (6.14)

and more general Wilson loops arise from the similar expressions.
Fixing 𝑑 = 2, so that the consider spin half, it is possible to get a clear picture

of the action of the relevant operators. In particular, we can represent the electric
field by its relative orientation to the orientation of the lattice. This is because it
can only assume two values. With this convention, equation (6.12) implements
the so called two-in-two-out rule. This means that in a physical configuration,
each vertex always has two incoming and two outgoing electric fields. The
plaquette operator action depends on the orientation of the electric field along
the boundary of the plaquette. If there is a well-defined clockwise orientation,
Û𝑝 flips the orientation of the plaquette, otherwise it annihilates the state. The
hermitian conjugate Û†

𝑝 acts similarly, but with respect to the opposite orientation.
Motivated by this, we introduce

X̂𝑝 =
1
2(Û𝑝 + Û†

𝑝) (6.15)

which is the operator that flips the orientation of the plaquette. Notice that it is
this operator that contributes to the Hamiltonian.

6.2 Separability and gauge symmetries
As we have seen in previous chapters, the algebras of local operators are the
fundamental objects that inform the requirements for a well defined separability
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6 Entanglement witnesses for lattice gauge theories

criteria. In particular, it is the local net of observables that dictates the enforce-
ment of the factorization condition. If the observables of the algebra have to
fulfill certain constraints, due to selection or superselection rules, the factoriza-
tion condition becomes weaker, and defines a larger set of separable states. This
is the case for a lattice gauge theory, since the presence of local conservation laws
introduces an extensive number of constraints. With this insight, we are ready
to discuss the notion of separability in lattice gauge theories, which will present
the theoretical basis for constructing entanglement witnesses for such systems.
Our methods apply to general lattice gauge theories, but we will formulate them
for the 𝖴(1) case to keep the notation concise.
The first step is to define the local net of observables. This is relatively straight

forward because we can regard any subregion of the lattice 𝑅 ⊂ 𝐿 as a subsystem.
We assign the algebra of gauge invariant operators with support in 𝑅 to it. Thus,

𝒜(𝑅)𝐺 = {Ô ∈ ℬ(𝑅) || ∀𝑣 [Ô, Ĝ𝑣] = 0} , (6.16)

where we regard ℬ(𝑅) as a subalgebra of ℬ(𝐿) in the usual way1. Concretely,
𝒜(𝑅)𝐺 is generated by the plaquette operators of plaquettes inside 𝑅, and the
electric field operators of edges inside it.
With the local net of observables, we can formulate the separability criteria

and define entanglement. The aim here is to detect entanglement between
two subsystems 𝐴 and 𝐵 (see figure 6.2). Therefore, we consider the following
factorization condition

⟨Ô𝐴Ô𝐵⟩ρ̂ = ⟨Ô𝐴⟩ρ̂⟨Ô𝐵⟩ρ̂ = ⟨Ô𝐴⟩ρ̂𝐴⟨Ô𝐵⟩ρ̂𝐵 , (6.17)

for all Ô𝐴 ∈ 𝒜(𝐴)𝐺 and Ô𝐵 ∈ 𝒜(𝐵)𝐺. Notice that 𝐴 and 𝐵 do not define a par-
tition of the system, so what we are considering are the quantum correlations
inherited by the two subsystems from the global state. Nonetheless, we can easily
define a partition by introducing the complement subsystem 𝐶 = 𝐿 ⧵ (𝐴 ∪ 𝐵),
but we are not interested in the observables acting on it. For simplicity, 𝐴 and 𝐵
are taken to be two disjoint subregions whose boundaries do not touch directly.
This avoids subtleties that occur when dividing a lattice gauge theory into sub-
systems whose boundaries touch [101, 102, 104, 235]. And it will simplify some
discussions and computations later on. Notice that only gauge invariant states
are allowed, in the full lattice and also in the subregions, and this guaranteed
automatically by the algebraic formalism.
As we shall see, the algebras𝒜(𝐴)𝐺 and𝒜(𝐵)𝐺 have nontrivial centers, which

induce superselection rules. From the perspective of an observer who lives within
1The embedding of ℬ(𝑅) intoℬ(𝐿) is the same map described in chapter 2 for the qudit case.
Specifically, it maps⨂𝑣𝑤∈𝑅1

Ô𝑣𝑤 into⨂𝑣𝑤∈𝐿1
Ô𝑣𝑤 with Ô𝑣𝑤 = 1̂𝑣𝑤 if 𝑣𝑤 ∉ 𝑅1
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6.2 Separability and gauge symmetries

the lattice gauge theory, it is not possible to observe coherence between different
sectors. This is because, from this point of view, the gauge symmetry constitutes
a fundamental, and inescapable, aspect of the system, so only gauge invariant
observables are admissible. However, this is in sharp contrast with physical
realizations that may exist, e.g., in an actual laboratory device that performs a
gauge theory quantum simulation. An outside experimenter may apply certain
rotations on the qubits constituting the device or perform measurements in
basis that are incompatible with Gauss’ law, which observers within the gauge
theory cannot access. Such a procedure might introduce coherence between
different superselection sectors. However, this should be disregarded from the
point of view of the gauge theory, for it does not translate into nontrivial quantum
correlations for gauge invariant observables.

6.2.1 Superselection sector and the center
Equation (6.17) defines the analogues of product states, but it does so implicitly.
To be able to compute property of separable states, and derive ways of detecting
entangled states, we need amore concrete description. As in the case of fermions,
we cannot rely on simple tensor product structure, because such a decomposition
does not exist for lattice gauge theories. After all,ℋ𝐺

𝐿 cannot decompose into
a simple tensor product because any such decomposition would violate Gauss’
law. This a direct consequence of the defining characteristic of a gauge theory,
i.e., the presence of a local gauge symmetry. More specifically, it arises due to
the presence of superselection rules, and we need to understand these rules to
characterize the separable states.
The superselection rules arise as consequence of the presence of a non-trivial

center [101]. In fact, this is precisely the obstruction to the existence of tensor
product decomposition and we can use this to our advantage. To make this
concrete, let us consider the center of 𝐴,

𝒵(𝐴) = 𝒜(𝐴)𝐺 ∩ 𝒜(𝐴)′𝐺
= {Ẑ ∈ 𝒜(𝐿)𝐺 || ∀Ô𝐴 ∈ 𝒜(𝐴)𝐺 [Ẑ, Ô𝐴] = 0} ,

(6.18)

and try to identify the nontrivial elements. The first guess would be the gauge
generators, since they commute with every gauge invariant operator, but they act
trivially on the physical states due to equation (6.12). As an alternative, consider
the boundary 𝜕𝐴 and let us assume that it defines a closed loop. If we have a
vertex 𝑣 ∈ 𝜕𝐴, then the operator Ĝ𝑣 can be divided into two parts, one coming
from the edges inside 𝐴, and another one associated to the edgers outside 𝐴.
Therefore, we can write

Ĝ𝑣 = Ĝ𝑣|𝐴 + Ĝ𝑣|𝑅 , (6.19)
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6 Entanglement witnesses for lattice gauge theories

where Ĝ𝑣|𝐴 ∈ 𝒜(𝐴)𝐺 and Ĝ𝑣|𝑅 ∈ 𝒜(𝑅)𝐺. Clearly, Ĝ𝑣|𝑅 ∈ 𝒜(𝐴)′𝐺 since the
operators in𝒜(𝐴)𝐺 do not act on 𝑅. Moreover, Gauss’ law implies Ĝ𝑣|𝐴 = −Ĝ𝑣|𝑅
for physical states, so Ĝ𝑣|𝐴 ∈ 𝒜(𝐴)′𝐺 as well. It follows that Ĝ𝑣|𝐴 is a nontrivial
element of the center. The eigenvalues of such operators define superselection
sectors for 𝐴, since no Ô𝐴 ∈ 𝒜(𝐴)𝐺 can couple different sectors. The same
reasoning also applies to 𝐵, and 𝑅.
If we consider all 𝑣 ∈ 𝜕𝐴, we get a set of generators of the center of 𝐴 obtained

from the split Gauss’ operators of equation (6.19). However, for our considera-
tions, it is sufficient to consider some arbitrary set of generators, as long as they
are known and act locally. So let us consider arbitrary operators Ẑ𝑖|𝐴 ∈ 𝒵(𝐴)
and Ẑ𝑗|𝐵 ∈ 𝒵(𝐵) that generate their respective centers. The labels 𝑖 ∈ 𝐼 and
𝑗 ∈ 𝐽 are not important, but we should keep in mind that the number of labels is
proportional to the size of the boundaries. Consider eigenvalues Z𝐴 = {Z𝑖|𝐴} and
Z𝐵 = {Z𝑗|𝐵} for the generators, then we can write

ℋ𝐺
𝐿 = ⨁

(Z𝐴,Z𝑅,Z𝐵)
ℋ𝐺

𝐴(Z𝐴) ⊗ℋ𝐺
𝑅 (Z𝑅) ⊗ℋ𝐺

𝐵 (Z𝐵) , (6.20)

where ℋ𝐺
𝐴(Z𝐴) ⊂ ℋ𝐺

𝐴 denotes the eigenspace associated to the eigenvalues
Z𝐴, and analogously for 𝑅 and 𝐵. Equation (6.20) holds because, inside the
eigenspaces, the generators are proportional to the identity, so that they act
trivially. As a consequence, there is no obstruction to a tensor decomposition
within a fixed superselection sector.
The eigenvalues Z𝑅 enter equation (6.20) to account for the presence of a non-

trivial center of the remaining lattice. Additionally, there is an important caveat,
namely the direct sum only runs over compatible combinations (Z𝐴, Z𝑅, Z𝐵) of
superselection sectors. For instance, the shared boundary of 𝐴 and 𝑅 implies that
the generators of 𝒵(𝐴) are related to operators in 𝒵(𝑅) so that the values of Z𝐴
and Z𝑅 are not independent (and mutatis mutandis for Z𝐵 and Z𝑅). Hence, the
compatibility rules between Z𝐵, Z𝐵 and Z𝑅 capture how one can glue gauge invari-
ant states of the subregions to construct a global gauge invariant state. Moreover,
it may happen that 𝐿 itself has superselection rules In principle, this can be
accounted for by Z𝑅, but it is more convenient to fix the global superselection
sector from the start.

6.2.2 Representation of the reduced state
We can use equation (6.20) to characterize separable states in a more compu-
tational manner. In particular, inside each superselection sector, we have the
standard tensor product structure, so we can use the usual formulas. This implies
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that the restriction of separable states follows the standard formula after the
projection into the eigenspaces. Hence, one can write a separable mixed state
restricted to 𝐴 and 𝐵 as

̂ρ𝐴∪𝐵 = ⨁
(Z𝐴,Z𝐵)

𝗉(Z𝐴, Z𝐵) ̂ρ𝐴(Z𝐴) ̂ρ𝐵(Z𝐵) , (6.21)

where the direct sum runs over compatible superselection sectors (compare to
equation (26) in referece [101]). The distribution of the state into superselection
sectors is inherited from the global state and encoded into the probabilities
𝗉(Z𝐴, Z𝐵).
States described the equation above are exactly those that fulfil the factorization

condition in equation (6.17). In some sense, this turns the approach typical of
tensor product Hilbert spaces around, where first separability is defined on the
state level from which then consequences on observables follow. Importantly,
equation (6.21) does not imply that the overall Hilbert space is a tensor product.
Specially as the non-trivial structure of equation (6.20) manifests itself through
the consistency relations among the different sectors. In any case, we can use
equation (6.21) as way to test if a state is separable, and design procedures to
detect entanglement witnesses based on this.

6.3 Construction of entanglement witnesses
As briefly mentioned in chapter 2, entanglement witnesses are tool for detecting
entangled states. They consist of an operator Ŵ chosen such that the hyperplane
⟨Ŵ⟩ρ̂ = 0 splits the space of quantum states while leaving the convex set of
separable states fully contained in one half, typically chosen as ⟨Ŵ⟩ρ̂ ≥ 0. Under
this construction, any state with ⟨Ŵ⟩ρ̂ < 0 cannot be separable, and must be
entangled. In this way, one can use the measurement of Ŵ as a tool to diagnose
entangled states. Entanglement witnesses are by definition not able to detect all
entangled states and do not define an order relation between entangled states. But
they imply a significant resource economy: entanglement witnessing entails the
measurement of a (more or less complex) physical observable. This is in contrast
to the knowledge of the full quantum state that is required for entanglement
measures such as entanglement entropy or negativity [22, 23].
Entanglement witnessing is well-established for systems with a tensor product

Hilbert space [125–127]. However, some care is necessary in the presence of
superselection rules, as in the case with fermions [183, 184]. To develop an entan-
glement witness for lattice gauge theories, we need to identify observables that
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can faithfully divide out the separable states defined according to equation (6.21).
We consider witness operators of the form

Ŵ± = ±(𝜔±sep1̂ −∑
𝑚
Ô𝑚
𝐴 Ô𝑚

𝐵 ) , (6.22)

with observables Ô𝑚
𝐴 Ô𝑚

𝐵 designed to capture quantum correlations between
subsystems 𝐴 and 𝐵. Most importantly, in the construction of Ŵ±, we must
employ only gauge invariant observables that preserve the local superselection
rules, i.e., Ô𝑚

𝐴 ∈ 𝒜(𝐴) and Ô𝑚
𝐵 ∈ 𝒜(𝐵). The constants 𝜔±sep are chosen to ensure

a non-negative expectation value for all separable states. By optimizing over all
separable states,

𝜔±sep = 𝗆𝖺𝗑/𝗆𝗂𝗇
ρ̂∈𝖲𝖾𝗉

⟨∑
𝑚
Ô𝑚
𝐴 Ô𝑚

𝐵 ⟩ρ̂
, (6.23)

the ⟨�̂�±⟩𝜌 = 0 hyperplane touches the boundary of the set of separable states
(see figure 6.1), thus maximizing the entangled region detected by Ŵ± [126].
However, for the entanglement witness to be effective, at least some entangled
state has to overcome the bounds from equation (6.23), i.e.,

𝜔− < 𝜔−sep or 𝜔+sep < 𝜔+ , (6.24)

where 𝜔± is the maximal/minimal obtained by optimizing over all states.

6.3.1 Optimization of a witness
In general it is not feasible to perform the optimization required of equation (6.23)
as the complexity scales poorly with system size [126]. This means that one has
to construct witnesses through indirect means. However, in our case, we can
leverage the gauge symmetry to our advantage and perform the optimization
more efficiently. This is because the direct sum in equation (6.21) enables a
substantial simplification of the optimization procedure.
We can solve the optimization procedure for separable states within a fixed

pair of compatible superselection sectors Z𝐴 and Z𝐵,

𝜔±sep(Z𝐵, Z𝐵) = 𝗆𝖺𝗑/𝗆𝗂𝗇
| 𝜇𝐴⟩,| 𝜈𝐵⟩

∑
𝑚
⟨𝜇𝐴 | Ô𝑚

𝐴 | 𝜇𝐴⟩⟨𝜈𝐵 | Ô𝑚
𝐵 | 𝜈𝐵⟩ , (6.25)

where we optimize over the states of a basis of ℋ𝐺
𝐴(Z𝐴) and ℋ𝐺

𝐵 (Z𝐵). Subse-
quently optimizing over all compatible pairs Z𝐴) and Z𝐴), one recovers 𝜔±sep. This
procedure is significantly more efficient than performing a single optimization
over the set of all separable states. Moreover, in a scenario where there is addi-
tional information about the state being evaluated, a more sensitive witness may
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⟨Ŵ−⟩ = 0 ⟨Ŵ+⟩ = 0

⟨Ĉ⟩
𝜔− 𝜔+𝜔−sep 𝜔+sep

Figure 6.1: Depiction of the entanglement witness optimized over
all separable states. Witness operators Ŵ± constructed from a corre-
lator Ĉ = ∑𝑚 Ô𝑚

𝐴 Ô𝑚
𝐵 as in equation (6.22). The darker shade depict

the entangled states detected by the witness, the intermediary shade
shows the entangled state that are not detected, and the light shade
denotes the set of separable states.

be obtained. For instance, if the probability distribution 𝗉(Z𝐴, Z𝐵) is known, the
constants

𝜔±sep(𝗉) = ⨁
(Z𝐴,Z𝐵)

𝗉(Z𝐴, Z𝐵)𝜔±sep(Z𝐵, Z𝐵) (6.26)

yield tighter bounds that may detect entangled states that 𝜔±sep cannot. In partic-
ular, if there is only a single fixed superselection pair for 𝐴 and 𝐵, the bounds
from equation (6.25) can be used directly.

Notably, though we focus on the bipartite case, our separability criterion and
the construction of the entanglement witness can be easily extended to the mul-
tipartite case. Assume a scenario with subregions 𝑅1…𝑅𝑘. We can then define
Ŵ± = ±(𝜔±sep1̂ −∑𝑚 Ô𝑚

𝑅1 …Ô𝑚
𝑅𝑘), and use the additional possibilities, since each

summand can couple different subregions. To calculate the analogues of equa-
tion (6.25), one further needs to compute the compatible superselection sector
combinations (Z𝐴1,… , Z𝐴𝑘). This leading to bounds for multipartite separable
states and enables the detection of multipartite entanglement in lattice gauge
theories.
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X̂𝑎1X̂𝑏1 X̂𝑎2X̂𝑏2

= | 𝜑1⟩ = | 𝜑2⟩

= | 𝜑3⟩

Figure 6.2: Minimal example with the bipartite setup for the entan-
glement witness with system 𝐴 in blue and 𝐵 in purple. The states
shown here are the basis for one of the superselection sectors that
have non trivial entanglement features. In particular, they define an
entangled state | 𝜓⟩ = 1

2
| 𝜑1⟩ +

1
2
| 𝜑2⟩ +

1
√2
| 𝜑3⟩ which is detected by

the witness of equation (6.28) and reaches the maximum value for
the correlator Ĉ.

6.3.2 Concrete example for U(1) theories
Given the definitions above, we can construct a valid entanglement witness for
the considered 𝖴(1) gauge theory. The available gauge invariant observables are
the flip operators X̂𝑝, so we consider the following witness

Ŵ± = ±(𝜔±sep1̂ − Ĉ) = ±(𝜔±sep1̂ − ∑
𝑝𝐴𝑝𝐵

𝑐(𝑝𝐴, 𝑝𝐵)X̂𝑝𝐴X̂𝑝𝐵) , (6.27)

where the sum runs over plaquettes 𝑝𝐴 and 𝑝𝐵 in𝐴 and 𝐵. The function 𝑐(𝑝𝐴, 𝑝𝐵)
selects which contributions enter the witness and defines the correlator Ĉ. To
employ the witness, it is necessary to evaluate ⟨Ĉ⟩ over all separable states and
obtain the constants for equation (6.24). As we have demonstrated, this can be
done more efficiently by fixing superselection sectors, and then optimizing.
The simplest example that already yields nontrivial results occurs when both

𝐴 and 𝐵 contain two plaquettes. We consider this simple geometry depicted in
figure 6.2. In this scenario, that the correlator

Ĉ = X̂𝑎1X̂𝑏1 + X̂𝑎2X̂𝑏2 (6.28)

witness entanglement in the system. Specifically, we have 𝜔± = ±√2 and 𝜔sep =
±1, where the nontrivial contributions only come from one pair of compatible
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superselection sectors (see figure 6.2). In particular, this superselection sector
has dimension 3 and basis states | 𝜑1⟩, | 𝜑2⟩ and | 𝜑3⟩ such that

Ĉ| 𝜑1⟩ = ̂𝐶| 𝜑2⟩ = | 𝜑3⟩
Ĉ| 𝜑3⟩ = | 𝜑1⟩ + | 𝜑2⟩ ,

(6.29)

so | 𝜓⟩ = 1
2
| 𝜑1⟩ +

1
2
| 𝜑2⟩ +

1
√2
| 𝜑3⟩ satisfy ⟨𝜓 | Ĉ | 𝜓⟩ = √2. Thus, it is entangled.

This example is just a minimal proof of principle, but the procedure that we
used for it can be implemented for larger systems with the help of numerical
techniques for optimizing over the superselection sectors (see reference [107]).
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7 Conclusion
In this dissertation, we presented some techniques for certifying the presence of
entanglement in quantum many-body systems. Conceptually, we tackled two
types of question. The issue of how to characterize entanglement in systems
that cannot be described by tensor products of local degrees of freedom. And
the problem of detecting entanglement in quantum many-body systems with
scalable protocols, as opposed to entanglement measures that require near com-
plete knowledge of the quantum state. Our approach aimed at mathematical
rigor, while also keeping existing experimental platforms in mind. The tech-
niques discussed in this work are well suited for implementation in, e.g., existing
experiments performing quantum simulation.
On the certification side, we demonstrated the possibility of extracting the QFI

of certain equilibrium states using engineered dynamics with a protocol that is
scalable and experimentally friendly. This was benchmarked with a model of
interacting fermions, and we observed the presence of multipartite entanglement
at sizeable temperatures. The results further indicate a relation, between the
resilience of entanglement to temperature and strongly correlated physics.
The characterization of entanglement was carried out with a formalism that

is rigorous, but versatile and applies to quantum systems regardless of their
underlying degrees of freedom. It allowed us to define and study multipartite
mode entanglement of indistinguishable particles, and obtain bounds that enable
the certification of entanglement that is useful for quantum metrology. The
bounds were derived with adaptable algorithms, that can be further enhanced
for specific situations, giving rise to more effective entanglement certification.
Finally, we also studied entanglement in lattice gauge theories, and extended the
existing technique of entanglement witnessing to this context.
We are currently in the final stages of implementing the extension of the

quench protocol to passive states [106]. This is an important step in pushing the
range of applicability of our technique beyond thermal ensembles. Moreover, it
fits within our long term research programme of developing a protocol capable
of efficiently extracting the QFI that only relies on experimentally verifiable
assumptions. Access to such a technique would be a major breakthrough as
it would enable certification of entanglement in scalable manner for arbitrary
quantum systems.
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7 Conclusion

Furthermore, there are various possibilities to develop the ideas presented in
this dissertation. In particular, as already mentioned in chapter 4, the bosonic
bounds for the QFI are well suited for existing experiments with bosonic atomic
species, and we are currently investigating a good model to test them. This is
particularly interesting as a way to explore entanglement in continuum systems
in a controlled manner. Moreover, our formalism for entanglement witnesses
extends naturally to non-abelian gauge theories, and provides multiple possibil-
ities for future research. Constructing entanglement witnesses for a quantum
link model realization of the 𝖲𝖴(3) gauge theory is prominent example.
More broadly, the results presented in this work contribute to the ongoing effort

to characterize the structure of entanglement in quantum many-body system.
This particularly the case in light of the evidence we found of a relation between
the thermal stability of entanglement and strongly correlated behaviour. Our
contributions are also timely due to the relevance of the problem of entanglement
certification to upcoming quantum technologies.
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