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Abstract

Robot-assisted navigation is a perfect example of a class of applications requiring flexible control
approaches. When the human is reliable, the robot should concede space to their initiative. When the
human makes inappropriate choices the robot controller should kick-in guiding them towards safer
paths. Shared authority control is a way to achieve this behaviour by deciding online how much of
the authority should be given to the human and how much should be retained by the robot. An open
problem is how to evaluate the appropriateness of the human’s choices. One possible way is to consider
the deviation from an ideal path computed by the robot. This choice is certainly safe and efficient,
but it emphasises the importance of the robot’s decision and relegates the human to a secondary role.
In this paper, we propose a different paradigm: a human’s behaviour is correct if, at every time, it
bears a close resemblance to what other humans do in similar situations. This idea is implemented
through the combination of machine learning and adaptive control. The map of the environment is
decomposed into a grid. In each cell, we classify the possible motions that the human executes. We
use a neural network classifier to classify the current motion, and the probability score is used as a
hyperparameter in the control to vary the amount of intervention. The experiments collected for the
paper show the feasibility of the idea. A qualitative evaluation, done by surveying the users after they
have tested the robot, shows that the participants preferred our control method over a state-of-the-art
visco-elastic control.

Keywords: Shared Control, Human-Centered Robotics, Motion and Path Planning, Physically Assistive
Devices

1 Introduction

We are living a time when robots are no longer
confined to industrial environments but are used
in numerous applications that require an unprece-
dented degree of autonomy. Modern robots have
to adapt to humans, to understand their needs and
help them carry out their activities. It is easy to

predict a future in which the interaction between
robots and humans will draw a direct inspira-
tion from the rider-horse metaphor [1], with the
human having developed an “innate” ability to use
the robot’s services, and the robot being able to
grasp the human’s intention without any explicit
request.
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In this paper we consider a use case in which
the FriWalk robotic rollator (see Fig. 1-a), a
robotic assistant able to localise itself in complex
environments and generate safe routes, is used as
navigation and walking support for a person with
mild cognitive deficits. We consider the case of
users with mild cognitive deficits, who could find
it difficult to plan and follow long paths across
complex and populated environments. These con-
ditions could generate stress and fatigue and
determine a gradual withdrawal of the user from
the public space. A moderate cognitive support
implemented by a system that gently guides the
user can play a useful role in recovering or pre-
serving the user’s sense of direction and her/his
cognitive abilities. Since our ultimate goal is to
prolong and promote the human’s autonomy, the
system seeks to leave the human in control of
the guidance as much as possible taking over the
trajectory control only when the human’s actions
are evidently flawed. This is a specific paradigm
of a more general idea dubbed shared authority
control, in which the robot is moved partly by
the human and partly by the autonomous system,
based on the contingent situation. In our previ-
ous work [2], we developed a guidance system of
this kind based on a hybrid control scheme. In
that study, the system leaves the user in control
or kicks in the automatic guidance based on safety
considerations. This is a remarkable simplifica-
tion of the design space: the amount of authority
reserved to the guidance system is increased when
the distance from the border of a safe virtual cor-
ridor becomes too narrow. Similarly in [3] the
shift in authority is based on the localisation accu-
racy. The reference trajectory can be found by the
use of optimal path planning algorithms, even for
dynamic scenarios [4].

The previous paradigms used a robot-centric
and, to some extent, patronising point-of-view: the
ideal behaviour is one where the human would
do exactly the same things that the robot has
planned through optimal path planning. In this
paper we increase the level of our ambition: we
aim to take away control from the human only in
presence of erratic behaviours that deviate from
what any other human would do in the same situ-
ation. At the same time, we aim to give the highest
possible level of freedom to the user, without forc-
ing her/him to follow a particular trajectory. This
leads us to a central question: how do people
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Fig. 1 (a) The FriWalk used in our experiments. (b)
Walker representation and adopted reference frames 〈W 〉
and 〈R〉. In the example shown, the robot will allow any
movement to the left (green curves), while it will perform
a corrective action for all the non compliant ones (red
curves).

move when they travel between two destinations
in a known environment? The human body is
extremely versatile and can generate innumer-
able motion patterns. However, in the past few
years we learned that when humans walk, they
tend to minimise the derivative of the curvature,
which is a quantity related with the jerk [5]; this
implies that they follow regular motion patterns
similar to those generated by a nonholonomic
vehicle. These trajectories are well approximated
by clothoids (formal definition of a clothoid curve
in Section 4.1). Still, different individuals gener-
ate different classes of trajectories. In terms of
navigation, we can intuitively acknowledge that
there are different ways to “turn right”, which are
equally permissible and that together share the
attribute of being a “right turn”. Starting from
this observation, we have developed a learning-
based framework to classify the features of human
motion from synthetically generated trajectories,
based on the geometric properties of the paths,
thus creating a grid of expected behaviours. We
define the minimalistic set {Left-turn, Right-turn,
Straight} to identify the behaviour. Given a nav-
igation task, we look for the behaviour that more
closely matches the current motion in each por-
tion of the traversed space. The motion control
calculates the likelihood with which the current
motion belongs to the current region of interest.
When the likelihood becomes too low, it means
that the human is behaving unexpectedly and the
controller shifts the shared authority towards the
robot. This way, the human is left in control as
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long as they perform as other people would do
in the same environment. If the user is strongly
committed to follow a path different from the
one suggested by the system, s/he can force her
way. When the system detects a strong opposition,
it is disengaged for a configurable time unless a
strong safety risk is detected (e.g., the presence of
stairways).

From the implementation point of view, the
walker is actuated with a visco–elastic control
that regulates the steering angle. The classifica-
tion confidence on the observed features is used
as hyper-parameter to determine the visco–elastic
force. The paradigm is illustrated in Fig. 1-b.

The paper is organised as follows. In Section 2,
we summarise the most important literature con-
tributions used as reference in this work. In
Section 3 we formally describe the state of the
problem, while in Section 4 our proposed frame-
work is presented in detail. The simulation and
experimental results on the robot are reported in
Section 5, and finally in Section 6 we give our
conclusions and announce future work directions.

2 Related work

This paper presents strong elements of nov-
elty, which are supported by important previous
research results in several areas that will be dis-
cussed in this section.

In this work we use a robotic walker which sup-
ports a person during locomotion. As described
in [6] a robotic walker can have multiple func-
tions to support different problems in the elderly
locomotion. The robotic rollator can support
the human’s mobility, increase safety and self-
empowerment, compensate unbalanced gait, aid
during the sitting or getting up phases and be used
for rehabilitation [7] [8].

When robots need to move or to guide some-
one mimicking the human motion, it is essential
to have a model of human motion. It is rather
established that humans actually move follow-
ing smooth trajectories [9] and that their motion
model is well approximated by a unicycle [10],
which naturally generates clothoid curves, also
known as Euler spirals. As well as being used
to express human-like motion [11], clothoids have
important properties: they are smooth, have a
linear curvature and can be expressed through
a simple and analytic form that makes them

easy to manage in real–time implementations [12].
Arechavaleta et al. [5] use a dynamic extension
of the unicycle model and a numerical optimisa-
tion algorithm to find optimal solutions that well
approximate the human locomotor trajectories.
The cost functional minimises the time deriva-
tive of the curvature when the linear velocity is
assumed to be constant and positive.

In our previous work [13] the human motion
is successfully predicted using a neural network to
learn the parameters of the Social Force Model, a
physics-based model which describes the motion
of people in social contexts, considering the per-
son as a particle subject to attractive forces and
repulsive forces. In works such as [14], [15] and [16]
a combination of Inverse Reinforcement Learning
(IRL) and the principle of maximum entropy was
used to learn pedestrian decision making protocols
from large volumes of data.

Different works investigated how to retrieve
abstract information about the behaviour of
humans from their trajectories, the majority of
which use machine learning. For instance, Support
Vector Machines (SVM) have been used to classify
different walking styles and behaviours, including
movements such as straight, left-turn, right-turn,
U-turn, and not walking [17]. The input samples
included the normalised coordinates, the orienta-
tion, the velocities, and the bounding boxes of the
trajectories over the observation window. Instead,
with Autoencoders (AEs), it is possible to recon-
struct the data elaborated by the system while
learning lower dimensional representations of the
data, referred usually as its latent space represen-
tation. A combination of clustering and linear AEs
was proposed by [18] to predict the future trajec-
tory of vessels. The vessel state space is comprised
of pose and linear velocities. In [19] a convolu-
tional Variational Autoencoder (VAE) was used
to train a latent representation of real-world vehi-
cle trajectories, represented as a time series of
2D coordinates; the authors claim a reduction of
the dimension of the latent space from 10 to 2,
with evident benefits on the reconstruction abil-
ity without evident reduction of the classification
accuracy. Although it is commonly believed that
one of the goals of modern machine learning is
to identify useful characteristics from simple time
series of the coordinates, we argue that some prior
geometrical information can be easily extracted
and used as input for the neural model, in order to
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simplify its development and to improve the accu-
racy of the results. In a similar way, Lu et al. [20],
augment the input of a Convolutional Autoen-
coder (CAE) with spatio-temporal information
such as velocity, acceleration, and the heading
change rate. As explained in [21], the encoder
part of an autoencoder can be used to extract
the features of the input and can be connected
to a classification network to achieve classifica-
tion abilities. This is exactly what we do in this
work to classify the human trajectories. To the
best of our knowledge there is no past work that
uses the structure encoder + classification

network to determine to which class the anal-
ysed trajectory pertains to (Left-turn, Right-turn,
Straight).

As discussed below, we use an autoencoder
network to extract the geometric parameters of
each trajectory, and a second neural network to
associate the geometric parameters with a class
of behaviours. While the classification problem
could be solved by other means, the use of learn-
ing approaches has two significant advantages:
first, the use of NNs defines a general frame-
work that can be easily generalised to other types
of geometric features and behaviour classes; sec-
ond, at runtime the classification produced by the
NN can be used to produce a score that quan-
tifies the degree of agreement between observed
and expected behaviour. Specifically, during the
control phase, we use a Bayesian technique to
extract a measure of confidence on the behaviour
currently followed by the human.

To the best of our knowledge, this paper is the
first to use the neural network’s confidence score
to control the amount of intervention in a path
following task.

3 Problem Statement and
Solution Overview

The reference model for the walker kinematic is
the unicycle, described in discrete–time by the
equations


x(tk+1) = x(tk) + cos(θ(tk))δtv(tk),

y(tk+1) = y(tk) + sin(θ(tk))δtv(tk),

θ(tk+1) = θ(tk) + δtω(tk),

(1)
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Fig. 2 Overall scheme of the algorithm.

where q(tk) = [x(tk), y(tk), θ(tk)] is the state of
the vehicle, the coordinates (x(tk), y(tk)) iden-
tify the position of the mid point of the rear
wheel inter-axle in the Cartesian plane Xw × Yw
expressed in the 〈W 〉 = {Xw, Yw, Zw} world ref-
erence frame, θ(tk) is the longitudinal direction of
the vehicle with respect to the Xw axis, v(tk) and
ω(tk) are the longitudinal and angular velocities,
respectively, and δt = tk+1 − tk is the sampling
time. For the particular problem at hand, v(tk)
is imposed by the human (also for safety rea-
sons [22]), while ω(tk) is the control output and it
is shared between the human and the robot. The
problem to solve is to control the vehicle from a
starting position p0 = [x0, y0]T to a desired posi-
tion pf in a known environment. The key require-
ment is to use the robot controller contribution
to ω(tk) only when the human behaviour deviates
significantly from the expected behaviour.

To this end, we need first to abstract the path
following problem, that is usually defined in the
space q(tk), into a high level representation that
preserves the implicit features of the human tra-
jectories. Therefore, let us denote by H ⊂ R2

the path travelled by the human in 〈W 〉, i.e., the
sequence (x(hk), y(hk)) of coordinates expressed
with respect to the curvilinear abscissa h sam-
pled at times δt. Let R ⊂ R2 be the reference
path connecting p0 to pf . For both paths, we
extract a set of features of dimensionality m,
denoted as zk,H, zk,R ∈ Rm, respectively, which
are associated to a class of human-like behaviours
{Left-turn, Right-turn, Straight}.

The overall framework of the proposed solution
(sketched in Fig. 2) comprises the following steps:
1. Given an a-priori map of the environment,
composed of only the static obstacles information
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(walls, furniture...), we generate a large number of
trajectories that are collision free and that mimic
a human-like behaviour [23]. This operation is per-
formed offline and is showed in Fig. 2 as the block:
PRM with clothoid paths;
2. We partition the map using square cells. Then
we classify the generated trajectories inside each
cell into the {Left-turn, Right-turn, Straight}
classes by using a neural network (Trajectories
classifier block in Fig. 2). This classification
is used to create a map of possible human-
like manoeuvres that can be used to reach a
specific location. This grid map will be called
the behavioural map (Behavioural map block in
Fig. 2).
3. Given the user initial position p0, and a user–
selected final position pf we connect them with a
trajectory (the planning method will be explained
later in the paper). This trajectory is characterised
by its features zk,H. For each portion of the ideal
trajectory, we identify a reference cluster of tra-
jectories generated at Step 1 and 2. From this
cluster, we select a set of representative features
zk,R (e.g., the centroid of the cluster). This allows
us to compute the likelihood ε(tk) (Confidence
measure block in Fig. 2) and use it to generate
the setting of the visco-elastic force used in our
shared-authority control scheme (Walker control
block in Fig. 2).

4 Model generation and
behaviour–based control

The main pillars of our approach are an offline
analysis of the environment that generates the
behavioural map (i.e., the map of admissible
behaviours for every area of the environment) and
the online control module that adapts the shared
authority controller to the degree of compliance of
the user. The two modules are described next.

4.1 Behavioural map generation

Given the environment map, the behavioural map
associates each area of the space with the class of
trajectories (straight, right turn, left turn) possi-
bly followed by humans when they behave “cor-
rectly”. This information is generated in different
steps.

In the first step, we generate a Probabilistic
Road Map (PRM) [24] covering the entire space.

The PRM provides collision free geometric paths
connecting any pair of locations in the space. The
PRM is generated ensuring an average density of 4
nodes per squared meter, which is a good trade-off
between fine distribution of nodes and elaboration
time of the paths (e.g. in a 5x5 meters room we
have an average of 100 nodes).

In the second step, we consider pairs of ran-
dom starting positions and ending positions, find
the shortest path connecting them through the
PRM, and interpolate the different nodes by
clothoids. A clothoid is a line with curvature
proportional to the arc-length described by the

equation X(s) = x0+
∫ s
0

cos(κ′ τ
2

2 + κ0τ + θ0)dτ ,

Y (s) = y0 +
∫ s
0

sin(κ′ τ
2

2 + κ0τ + θ0)dτ , where s
is the curvilinear abscissa, (x0, y0) is the Carte-
sian coordinate of the initial point, θ0 is the initial
bearing, κ0 is the initial curvature and κ′ is the
change rate of the curvature. The interpolation
is done minimising the derivative of the squared
curvature [12]. We can argue that the trajectories
constructed in this way are a reasonable approx-
imation of human-like trajectories, as supported
by numerous results in the literature. The most
important are in the work of Laumond et al. [23],
in which clothoids are explicitly addressed as a
good approximation of human trajectories, and in
the work of Arechevaleta et al. [5], who have shown
that humans tend to minimise the derivative of
the squared curvature when they move.

In the third step, the environment is discre-
tised in a grid map using 1x1 meters cells. For each
trajectory i intersecting a cell j, we identify a class

c
(j)
i in the finite set c: c

(j)
i ∈ c. For instance, one

class could be “left turn” (L) or “move straight”
(S). This operation is performed by the Trajec-
tory Classifier, which allows us to partition each
trajectory into a sequence of elementary moves
(straight, left/right turn) and determine the class
that identify each of them in every cell. To account
for the different direction of motion of the i-th
trajectory within the j-th cell, we associate the

tangential direction θ
(j)
i , which is the mean direc-

tion of travel of the vehicle in the j-th cell w.r.t

the map reference frame, with the class c
(j)
i . For

instance if the user is moving with the walker
straight from west to east the tangential direction

θ
(j)
i will be 0. The set of all the pairs

(
c
(j)
i , θ

(j)
i

)
form the behavioural map. In Figure 3 some of
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clothoids.

the synthetic trajectories are shown in magenta
in a map of the Department of Engineering and
Computer Science of the University of Trento, the
grid map is shown in green and the corresponding
sub-trajectories that will be fed to the classifier
are highlighted with the blue circles. The start-
ing points of the magenta trajectories are depicted
with the red circles, while the ending points with
the yellow circles. The fundamental motion primi-
tives forming the behaviour map are shown in light
green in Figure 3.
The trajectory classifier. The trajectory fea-
tures are extracted with an encoder neural net-
work from the path geometry. More precisely, the
k-th abscissa sk of the path R, sampled such that
sk − sk−1 = δs is constant, is used to define the
vector of geometric parameters

p(sk) =


xp(sk)
yp(sk)

cos(θp(sk))
sin(θp(sk))
κp(sk)

 , (2)

where xp(sk) and yp(sk) are the Cartesian coor-
dinates, while θp(sk) and κp(sk) = dθp(sk)/dsk
are the tangential axis and the curvature of R
in (xp(sk), yp(sk)), respectively. To account for
the path characteristics, n consecutive parameters
are collected on the sampled abscissa coordinates
sk−(n−1) to sk, so as to build the matrix compris-
ing p(sk−(n−1)) to p(sk), which is then normalised

to avoid spatial biases, i.e.

xp(tk) =


[
x1p, . . . , x

n
p

]
− x1p1T[

y1p, . . . , y
n
p

]
− y1p1T

cos(θ1p), . . . , cos(θnp )
sin(θ1p), . . . , sin(θnp )

κ1p, . . . , κ
n
p

 , (3)

where 1 is an 1-dimensional column vector with
all ones, used for the normalisation of the posi-
tion vectors, and we adopt the compact nota-
tion xip = xp(sk−(n−i)). In order to avoid the
problem of angular periodicity, we used both
cos(θp(sk−(n−i))) and sin(θp(sk−(n−i))) instead of
θip.

In the training process of the encoder, xp(tk) ∈
R5×n is used as input. The weights of the encoder
are learned by training an autoencoder and min-
imising the reconstruction error between xp(sk)
and the reconstructed output x̃p(sk). The encoder
and the decoder sub-networks of the autoen-
coder, have a symmetrical structure: the input
xp(tk) passes through 3 convolutions and 3 fully-
connected layers, resulting in a final latent space
of m = 5 neurons. The decoder, then, has the
same structure, but takes as input the latent space
zk,R ∈ R5.

After learning the autoencoder weights, the
decoder sub-network is discarded as we will use the
latent space of the autoencoder as a compressed
representation of the human behaviour (Net1 ). A
second neural network (Net2 ) classifies zk,R into
the behavioural classes in the set c. More precisely,
the behaviour is identified in the minimalistic set
{Left-turn, Right-turn, Straight} and encoded by
the numeric label c = {1, 2, 3}. Hence, during the
learning phase we define the transformation

c̃ = hψ (zk,R) , (4)

where ψ is a set of parameters obtained by min-
imising the cross–entropy between the predicted c̃
and the actual c class. In the architecture of the
classifier network the input latent feature zk,R of
5 neurons passes through a single fully-connected
layer with just 3 neurons. Therefore, the combi-
nation of the neural networks maps the geometric
characteristics of the path xp(sk) into the tra-
jectory classes encoded in c. As a final step, a
softmax(·) activation function is applied to the
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three output neurons of Net2 to retrieve the con-
fidence εi(sk) (or equivalently εi(tk)) of the class

ci ∈ c, i.e.
∑3

i=1 εi(sk) = 1. Notice that this same
network is adopted to classify the synthetic gener-
ated paths and the current user behaviour, as will
be explained in the next Section 4.2.

Geometry of the Grid

In the discussion above we suggest a decomposi-
tion into a grid made of square cells. This choice
is not mandatory. For other types of environments
with the presence of static obstacles with non-
rectangular shape, it could be more convenient to
use a different type of cell decomposition (e.g.,
maximum clearance maps, maps resulting from
plane sweep, etc.) [25]. The technique proposed in
the paper would not be significantly affected by
the choices of a different polygonal geometry.

4.2 Online Control

As a first step in the online control, the user selects
their destination (pf ) starting from the initial
point p0 where the device is currently located. It is
prudent to impose limits on the maximum traveled
distance when dealing with individuals who may
have limited mobility or other frailties. Equally
important is the optimisation of routes connect-
ing subgoals based on specific metrics. We’ve
previously tackled these challenges and provided
solutions in our earlier work [26]. In our current
research, we assume that all pertinent decisions
regarding these constraints and optimisation crite-
ria have been predetermined before executing our
algorithm.

Following the same steps as for the behaviour
map generation, the system connects the two
points via the PRM and interpolates the inter-
mediate points by using a G2 spline that min-
imises the derivative of the squared curvature.
This allows us to determine for the current cell j

the reference class and its orientation (c
(j)

î
, θ

(j)

î
).

Roughly speaking, this pair encodes the most sen-
sible behaviour that a human would follow if they
want to reach pf from the cell j, and will be used
to measure the degree of compliance of the human.

A custom path reconstruction module,
described in [11], processes the odometry infor-
mation received by the FriWalk and produces
in real–time H and, hence, the sets xs(sk). The
currently performed path xs(sk) is reduced to its

features zk,H using the neural network explained
in the previous Section 4.1. These features are
compared to the ones stored in the Behavioural
map to obtain the confidence value εî(sk) (Con-
fidence measure in Figure 2). A high confidence
means that the features of the user motion are
compatible to a large extent with the class c

(j)

î
,

while a low confidence means that the user
is drifting away from the expected behaviour.
Hence, εî(sk) will be used as a hyper-parameter
in the control of the Walker.

The control module is designed synthesising a
visco–elastic torque that is applied to the steering
angle of the front wheels of the robot. The idea
of the visco-elastic control [27] can be described
as follows. Suppose that the path synthesised by
the system (desired trajectory) is described by
means of the desired steering angle θ? and steer-
ing velocity θ̇. Let θ and θ̇ be the actual measured
or estimated values. The torque applied to the
system is given by

τ = −a (θ − θ?)− b
(
θ̇ − θ̇?

)
.

In simple words, the vehicle is governed by
a torque generated by a spring-damper sys-
tem. Importantly, the spring constant a and the
damper constant b are not time invariant but are
functions. In our original idea [27] these functions
depend on the deviation from the desired path:
the larger the deviation from the desired path
the stiffer become the controller. This controller
is practically stable, meaning that it secures the
convergence of the error to a neighbourhood of the
origin.

To this end, we first define the actual right
(left) wheel angle as αr (αl), which can be mea-
sured by an absolute encoder (we dropped the
reference to the time tk for ease of notation). The
states are expressed in the robot reference frame
〈R〉 = {Xr, Yr, Zr}, with XR oriented along the
longitudinal direction and ZR pointing upwards.
The desired wheel angles α?r and α?l , instead, can
be obtained by the desired angular velocity ω?

(computed using the behaviour map associated

with the desired class (c
(j)

î
, θ

(j)

î
)), the actual lon-

gitudinal velocity v (obtained by the encoders
on the rear wheels) and the Ackermann steering
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geometry. Hence, the wheels orientation errors

eαr
= α?r − αr and eαl

= α?l − αl,

can be immediately obtained. The visco-elastic
controller that controls the torque to apply to the
wheel is determined as

ταr = aeαr + bėαr , (5)

and the same for the left wheel to obtain ταl
.

While this controller accounts for the local
direction that the vehicle has to take w.r.t. 〈R〉
(i.e., the curvature of the path), we also compute
the absolute orientation error of the front wheels
in 〈W 〉. Again, using the desired orientation θ

(j)

î
,

and thus compute the desired wheel direction βr
in 〈W 〉 as

eβr
= (θ? + α?r)− (θ + αr).

The same can be applied to βl. Hence, we can
compute the same visco-elastic controller in (5) for
the errors βr and βl (with the same parameters a
and b), thus obtaining the final control laws

τr = λταr
+ τβr

and τl = λταl
+ τβl

. (6)

The parameters λ, a and b are functions of
the confidence εî(tk) associated with the reference

class c
(j)

î
by means of

λ = 1− εî(tk),

a = a0 + a1λ,

b = b0 + b1λ.

(7)

The a parameters influence the elasticity of the
control law, while the b parameters influence its
viscosity. Specifically, a0 and b0 are the mini-
mum coefficients used when the controller does
not intervene (when the confidence is high). The
a1 and b1 are modulated by the hyperparam-
eter epsilon (the confidence). This means that
increasing values of higher a0 and b0 will result
in more intervention from the control, even when
the human is performing correct movements. Sim-
ilarly, the values of a1 and b1 widen or shrink
the range of the applied control signal between
when the system intervenes and when it does

not. These parameters have to be fine-tuned by
trail-and-error sessions on the specific application.

To summarise, we first compute the reference

class c
(j)

î
, then from the actual state xs(tk) we

compute εî(tk) and then, by means of (7), the
desired torques are computed with (6). The term
b0 is needed to avoid oscillatory behaviours while
a0 is needed to generate the correct control signal
that forces the wheel angle αr (αl) to the desired
value. In this way, when the confidence is high
(i.e., λ is low), the applied torque is predominantly
imposed by the user and the computed torques τr
and τl tend to zero. The system, instead, becomes
increasingly authoritative (i.e., torques τr and τl
imposed by the system) when λ gets closer to 1.

Management of obstacles and of exceptions

The approach outlined above hinges on the defi-
nition of a reference trajectory for each cell (given
by the centroid of the most probable cluster) and
on the application of visco-elastic control to make
sure that the user does not deviate too much. Two
type of exceptions can occur:
1. An unexpected dynamic obstacle (e.g., another
human) materialises,
2. The user strongly opposes the suggestion and
forces her/his way.
The first case is handled by using the so called
reactive planning [28]: the system replans a new
clothoidal trajectory that travels around the
obstacle and joins into the reference trajectory
as soon as the obstacle is overcome. This change
has no significant impact on the framework: we
can either use the visco-elastic control modulated
by the likelihood ε or opt for a stiffer behaviour
until the anomaly is over. For the second excep-
tion, we interpret the strong opposition of the user
as her/his better understanding of the scenario.
Therefore, we disengage the guidance system for
a reconfigurable time. This choice does not apply
if the user is travelling across areas that we deem
dangerous (e.g., a stairway).

5 Experimental Validation
and Results

Generation of the behavioural map. The
experimental validation of the approach has been
carried out in our Department premises. The
first step of the approach was the construction
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Table 1 RMSE of the Net1 and the precision discovery
rate of the Net2 on the validation set of the synthetic
trajectories.

x (m) y (m) cos(θ) sin(θ) κ

RMSE 0.0076 0.0118 0.0293 0.0449 0.0241

Left Right Straight Average

Accuracy 88.4% 88.3% 76.8% 84.3%

of the behaviour map generating the described
human-like synthetic trajectories (some exam-
ples are shown in Figure 3). For the training of
Net1 and Net2 we focused on an area consisting
of two intersecting corridors (conventional cross–
intersection). We simulated 1800 paths selecting
randomly pairs of waypoint positions p0 and pf .
The simulations were equally partitioned in the
Left-turn, Right-turn and Straight classes. We
select n = 12 samples for the inputs x , as shown in
Eq. (3), this implies that the encoder will have 60
input features. A step size of δs = 0.1 m has been
chosen to sample the trajectory. A fraction of 80%
of the dataset was used as training set, while the
remaining samples were randomly selected for the
validation. Both Net1 and Net2 were implemented
in Keras and trained with the Adam optimiser
with a learning rate of 0.001, batch size 64, and
number of epochs 300 using a 2.7 GHz Intel Core
i7 processor. Net1 was trained using the set of x as
both inputs and outputs of the network. Then, we
transferred the learned weights of the encoder in
the Net2, and performed a supervised training by
comparing its estimates with the one-hot encoded
labels of classes {Left-turn, Right-turn, Straight}.

In Table 1, we report the inference accuracy of
the network Net1 on the validation set, in terms of
Root Mean Squared Error (RMSE). The results
show that the network was correctly trained on
the dataset, and the even distribution of the error
over the different components of the input indi-
cates that no bias was produced in favour of a
particular component. The parameters a and b, as
explained in Section 4.2, are functions of the con-
fidence of the manoeuvre. For the angular velocity
ω, the parameters of the visco-elastic controller
in (7) were set to a0 = 25 N, a1 = 15 N, b0 = 15 Ns
and b1 = 10 Ns. For the steering wheel direction
β, the parameters of the visco-elastic controller
were set to a0 = 25 N, b0 = 25 Ns. These param-
eters were set leveraging our experience with the

system. Changing such parameters, modifies the
amount of intervention of the robot control.

The validation results for the training of the
network Net2 are reported in Table 1, showing
the accuracy of the inferred classes. It can be
noticed that the Left and Right classes obtained
a higher percentage with respect to the Straight
class: the reason behind this behaviour is that
the trajectories of the Straight class include fea-
tures in common with the ones of the other
classes (e.g., when the human slightly bends along
an almost straight path). This is noticeable in
Figure 3, where the sub-trajectories not always
are distinguishable between turns and straight
sectors.

5.1 Experiments with the FriWalk

The experimental evaluation of the approach pre-
sented in Section 3 and Section 4 was conducted
on the real FriWalk in an indoor hallway at the
University of Trento. The vehicle is endowed with
front electric DC motors to control the angle of
the front wheels. The localisation system of the
robot comprises incremental encoders in the rear
wheels and absolute encoders for the front wheels,
used in combination with a 2D camera system.
A collection of ArUco markers was placed in the
testing area, which has a dimension of roughly
7 × 7 m, allowing the walker to localise itself
with sufficient accuracy (error below 20 cm, as
reported in [29]). A ROS interface was used to
send the control to the actuators and to receive the
localisation data, including the odometry-based
estimates of q(tk) in 〈W 〉 and the angular posi-
tion of the wheels αr and αl in 〈R〉. We fixed the
initial and final waypoint areas for the tests and
we executed offline the behavioural path planning
described in Section 4.1, obtaining the mentioned
behavioural map. We then executed several trials
of the same mission, varying the general behaviour
of the human experimenter between three macro
categories: following diligently the predefined mis-
sion, following the mission roughly and deviating
from the mission. Figure 5-a shows the control
action of the robot while the human moved for
the leftmost corridor towards an exit on the upper
part of the map (see Figure 4-b). After 10 sec-
onds from the beginning of the experiment, the
user kept walking straight an area where the Left-
turn class was instead foreseen: the low likelihood
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Fig. 4 (a) Photo of the experimental area and (b) the
associated behavioural map.

on the Left behaviour (grey line in Figure 5-b)
triggered a compensating action on the control
signal ταr

and ταl
in (6) (dashed magenta curve

in Figure 5-a), thus causing a compensation in
the trajectory. This intervention results into the
increasing likelihood of the Left-turn behaviour
class (grey line in Figure 5-b). Similarly, as the
human tried to steer right after 13 seconds, the
corresponding Right-turn behaviour was caught
(purple dashed line in Fig. 5-b) and the authority
was again transferred to the robot, i.e., the human
was progressively pushed towards the correct turn-
ing behaviour. Notice that when the compensation
action occurs, the human user corrects the erratic
behaviour in a few instants, indulging the robot
action and indirectly lowering the control action.
Hence, the robot action is perceived as a brief
suggestion that vanishes immediately if the user
follows the change of the route, otherwise the con-
trol action will persistently assist the manoeuvre
towards the correct direction.

In Figure 6, we depict the performance of the
control for three different user’s behaviours.

When the person is compliant with the plan-
ning (blue trajectory), the control does not inter-
vene, so the person is fully in charge and do
not feel any opposing action from the robot.
When, instead, the user purposely acts against the
planned path, the control actions are extremely

(a)
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4

(b)
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0

0.5

1

1

2

3

Fig. 5 (a) Torque controls for eαr and eαl (magenta-
dashed line) and for eβr and eβl

(green-dotted line)
applied to the walker front wheels while performing the
trajectory in (Fig 4-b). (b) confidence for Left-turn (grey-
solid line), Right-turn (purple-dashed line) and Straight
(yellow-dotted line).

(a)
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(b)
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Fig. 6 Experimental evidence of the control action
behaviour in case of a user acting purposely against the
desired path (orange lines), making slight deviations (green
lines) or adhere to the planned path (blue lines). The
resulting path (a) and the relative control actions (b) are
reported.

evident (orange trajectory). Finally, in the most
typical case, the control acts loosely without
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excessively forcing the path correction (green tra-
jectory), keeping the motion in the appropriate
direction (please also refer to the multimedia com-
plementary material accompanying this paper for
further examples).

5.2 User evaluation

Since this work hinges for a large part on human-
robot interaction, a qualitative evaluation of the
system behaviour was needed to validate the user
acceptability. Simple experiments were defined to
propose the control strategy to participants, which
were followed by a brief poll to evaluate the level
of appreciation of the person. All the partici-
pants were informed that data collection and the
information provided are covered by the ethical
rules of the Research Ethics Committee, which
approved this experiment, and that they could
quit the experiment at anytime. Once consent was
obtained they were invited to perform the tasks
with the FriWalk. The experiment was performed
by 16 adults in the age range of 21-50 years old,
without motor nor cognitive impairments. The
participants were 11 males and 5 females, all from
the University of Trento. The participants do not
use walking aid devices in their daily lives.

The experiments were held in a single exper-
imental session for each participant with a max-
imum duration of 15 minutes, divided into three
main parts. The participant tried the walker with
two navigation techniques: the solution here pre-
sented and a visco–elastic control applied to force
the vehicle on an optimally planned path [27] used
as comparison. Both navigation techniques were
applied to the same indoor environment, with the
same points of departure and arrival and both
had similar performance and efficiency in terms of
data requirements, computing power, and scala-
bility. Moreover, the order of presentation of the
two techniques was randomised to obtain compa-
rable results from the polls, and to the participants
they were presented as navigation technique A and
navigation technique B. The participant would
not initially be told which of the two navigation
techniques is the result of this study so as to
avoid influencing the perceptions of the driving
experience. The participants were asked to walk
naturally with the aid of the walker from their
current initial position to a specific point showed
to them. They were asked to move compliantly

Table 2 User evaluation (yes)

Question
Visco–elastic

control
Behavioural
maps control

Was it evident
that was the walker
to decide the path

to follow?

87.5% 12.5%

Have you felt
to be pulled,

pushed or stuck?
37.5% 12.5%

Table 3 User evaluation (mean - standard deviation)

Question
Visco–elastic

control
Behavioural
maps control

The experience
with the walker
was pleasant?

3.38 - 0.92 4.75 - 0.46

You had the
impression you
had no control?

2.88 - 0.83 1.38 - 0.74

The walker
hindered/prevented
your usual way of

walking?

1.63 - 0.74 1.00 - 0.00

to the target and then a in a second attempt to
move erratically to the target or even go to the
wrong direction. Finally, the participant was asked
to answer a short questionnaire in which a qualita-
tive evaluation of the aspects of the two navigation
methods tried, and a final question were asked, in
which these methods were compared. The partic-
ipant could decide to repeat the navigation tests
several times before the polls if it was necessary to
achieve a better understanding of its functioning,
but none of them asked to repeat the test. The
participant could move freely in the environment,
keeping in mind that the navigation techniques
under test have no mechanism to avoid obstacles.
It was the participant who took charge of avoid-
ing hitting the walls and any other obstacles that
may arise during the experiment.

In Table 2 and Table 3 are reported the
poll results. The questions in Table 2 could
be answered with ”yes” or ”no”. In the table,
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beside its relative question, there is the percent-
age of answers that were ”yes”. The questions of
Table 3 could be answered with a value between
1 and 5, were 1 means ”not at all” and 5 means
”extremely”. The aggregate result is presented as
mean and standard deviation of the answers.

From the results in Table 2 we can deduct that
the Behavioural Maps’ control is less intrusive,
aiding the user’s navigation without sacrificing
her/his comfort. Through the questions reported
in Table 3, we could evaluate the cognitive aspects
derived from the experience of using the walker.
We can observe a good level of accordance between
the 12.5% reported in both questions of Table 2
for the Behavioural map control and 1.38 reported
in the second question of Table 3. Likewise, the
low performance reported for the visco-elastic con-
trol in the first question of Table 3 is an evident
consequence of its perceived level of authority and
intrusiveness reported in Table 2. The evident con-
clusion is that the impression of being in control
(at least in part) has an evident positive impact
on the quality of the user’s experience.

Moreover 100% of the participants preferred
the control strategy proposed in this paper over
the classic visco–elastic control. Some of the moti-
vations were that our method gives more auton-
omy and freedom to perform any path while the
turns were performed more softly, without forcing
the participant to a particular trajectory.

In this section, we have shown a complete
experimental evaluation both from the perspec-
tive of the quantitative performance and of the
user experience. In both cases, the results are very
good and prove that this framework provide a nav-
igation assistance, which guarantees a good level
of agreement of the user trajectories with socially
acceptable behaviours limiting at the same time
the level of interference of the system with the
user’s choices.

6 Conclusions

In this paper, we have considered a robot-assisted
navigation scenario. We adopted a shared author-
ity controller, in which the navigation decisions
are shared between the human and the robot.
The key contribution of the paper is to show how
this decision can be taken based on the degree of
conformance of the human’s behaviour with the
standard behaviour taken by humans in similar

situation. We substantiated this idea by a combi-
nation of learning and control approaches, where
the former are used to understand and classify the
human behaviours and the latter to change the
visco-elastic parameters of the guidance algorithm
to adapt to the level of confidence that we have
on the human behaviour.

In the future, we will continue this research
in many directions. The most important one is
removing the need for a prior knowledge of the
map. A possible approach could be to study
behavioural templates associated with specific fea-
tures of the environment. During the execution,
the system could classify the environment features
and associate them on-the-fly with the expected
behavioural templates. We will also investigate
other methods to increase the accuracy in distin-
guishing between turns and going straight. This
could be done increasing the number of features or
increasing the number of classes. The assumption
that humans use clothoids as their preferred choice
is certainly true in the majority of the cases and,
especially, when the road in front of the human is
sufficiently clear. In case these conditions are not
met (e.g., a densely populated environment), the
assumption could no longer hold. In the future we
plan to analyse also these special cases. In addi-
tion, it is possible that people deviate from this
standard motion pattern because of cognitive or
physical problems. In some of theses cases, using
a clothoid as a reference trajectory could be seen
as a rehabilitation policy. These hypotheses needs
further investigations. At last we want to evaluate
what happens when the goal is changed dynami-
cally during the online execution. This should not
cause any abnormal behaviour in the control sys-
tem: if the goal is altered while the user is in
motion, the current motion may no longer align
with the desired one. Consequently, the probabil-
ity score for the desired motion class may decrease,
leading to a change in the control hyperparameter.
This adjustment increases the amount of control
interventions, resulting in a more substantial elas-
tic recall and a smoother correction of the current
motion.
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